ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.127 by root, Sun Nov 18 02:17:57 2007 UTC vs.
Revision 1.259 by root, Mon Sep 8 13:14:23 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
38 51
39# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 53# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
42# endif 55# endif
47# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
49# endif 62# endif
50# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
52# endif 73# endif
53# endif 74# endif
54 75
55# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
56# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
90# else 111# else
91# define EV_USE_PORT 0 112# define EV_USE_PORT 0
92# endif 113# endif
93# endif 114# endif
94 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
95#endif 132#endif
96 133
97#include <math.h> 134#include <math.h>
98#include <stdlib.h> 135#include <stdlib.h>
99#include <fcntl.h> 136#include <fcntl.h>
106#include <sys/types.h> 143#include <sys/types.h>
107#include <time.h> 144#include <time.h>
108 145
109#include <signal.h> 146#include <signal.h>
110 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
111#ifndef _WIN32 154#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 155# include <sys/time.h>
114# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
115#else 158#else
159# include <io.h>
116# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 161# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
120# endif 164# endif
121#endif 165#endif
122 166
123/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
124 168
125#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
126# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
127#endif 175#endif
128 176
129#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
179#endif
180
181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
185# define EV_USE_NANOSLEEP 0
186# endif
131#endif 187#endif
132 188
133#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
134# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
135#endif 191#endif
141# define EV_USE_POLL 1 197# define EV_USE_POLL 1
142# endif 198# endif
143#endif 199#endif
144 200
145#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
146# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
147#endif 207#endif
148 208
149#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
150# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
151#endif 211#endif
152 212
153#ifndef EV_USE_PORT 213#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 214# define EV_USE_PORT 0
155#endif 215#endif
156 216
157/**/ 217#ifndef EV_USE_INOTIFY
158 218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
159/* darwin simply cannot be helped */ 219# define EV_USE_INOTIFY 1
160#ifdef __APPLE__ 220# else
161# undef EV_USE_POLL 221# define EV_USE_INOTIFY 0
162# undef EV_USE_KQUEUE
163#endif 222# endif
223#endif
224
225#ifndef EV_PID_HASHSIZE
226# if EV_MINIMAL
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
230# endif
231#endif
232
233#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif
240
241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
164 268
165#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
166# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
167# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
168#endif 272#endif
170#ifndef CLOCK_REALTIME 274#ifndef CLOCK_REALTIME
171# undef EV_USE_REALTIME 275# undef EV_USE_REALTIME
172# define EV_USE_REALTIME 0 276# define EV_USE_REALTIME 0
173#endif 277#endif
174 278
279#if !EV_STAT_ENABLE
280# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0
282#endif
283
284#if !EV_USE_NANOSLEEP
285# ifndef _WIN32
286# include <sys/select.h>
287# endif
288#endif
289
290#if EV_USE_INOTIFY
291# include <sys/inotify.h>
292#endif
293
175#if EV_SELECT_IS_WINSOCKET 294#if EV_SELECT_IS_WINSOCKET
176# include <winsock.h> 295# include <winsock.h>
177#endif 296#endif
178 297
298#if EV_USE_EVENTFD
299/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
300# include <stdint.h>
301# ifdef __cplusplus
302extern "C" {
303# endif
304int eventfd (unsigned int initval, int flags);
305# ifdef __cplusplus
306}
307# endif
308#endif
309
179/**/ 310/**/
311
312#if EV_VERIFY >= 3
313# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
314#else
315# define EV_FREQUENT_CHECK do { } while (0)
316#endif
317
318/*
319 * This is used to avoid floating point rounding problems.
320 * It is added to ev_rt_now when scheduling periodics
321 * to ensure progress, time-wise, even when rounding
322 * errors are against us.
323 * This value is good at least till the year 4000.
324 * Better solutions welcome.
325 */
326#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
180 327
181#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 328#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
182#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 329#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
183#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
184/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 330/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
185 331
186#ifdef EV_H
187# include EV_H
188#else
189# include "ev.h"
190#endif
191
192#if __GNUC__ >= 3 332#if __GNUC__ >= 4
193# define expect(expr,value) __builtin_expect ((expr),(value)) 333# define expect(expr,value) __builtin_expect ((expr),(value))
194# define inline static inline 334# define noinline __attribute__ ((noinline))
195#else 335#else
196# define expect(expr,value) (expr) 336# define expect(expr,value) (expr)
197# define inline static 337# define noinline
338# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
339# define inline
340# endif
198#endif 341#endif
199 342
200#define expect_false(expr) expect ((expr) != 0, 0) 343#define expect_false(expr) expect ((expr) != 0, 0)
201#define expect_true(expr) expect ((expr) != 0, 1) 344#define expect_true(expr) expect ((expr) != 0, 1)
345#define inline_size static inline
346
347#if EV_MINIMAL
348# define inline_speed static noinline
349#else
350# define inline_speed static inline
351#endif
202 352
203#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 353#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
204#define ABSPRI(w) ((w)->priority - EV_MINPRI) 354#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
205 355
206#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 356#define EMPTY /* required for microsofts broken pseudo-c compiler */
207#define EMPTY2(a,b) /* used to suppress some warnings */ 357#define EMPTY2(a,b) /* used to suppress some warnings */
208 358
209typedef struct ev_watcher *W; 359typedef ev_watcher *W;
210typedef struct ev_watcher_list *WL; 360typedef ev_watcher_list *WL;
211typedef struct ev_watcher_time *WT; 361typedef ev_watcher_time *WT;
212 362
363#define ev_active(w) ((W)(w))->active
364#define ev_at(w) ((WT)(w))->at
365
366#if EV_USE_MONOTONIC
367/* sig_atomic_t is used to avoid per-thread variables or locking but still */
368/* giving it a reasonably high chance of working on typical architetcures */
213static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 369static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
370#endif
214 371
215#ifdef _WIN32 372#ifdef _WIN32
216# include "ev_win32.c" 373# include "ev_win32.c"
217#endif 374#endif
218 375
219/*****************************************************************************/ 376/*****************************************************************************/
220 377
221static void (*syserr_cb)(const char *msg); 378static void (*syserr_cb)(const char *msg);
222 379
380void
223void ev_set_syserr_cb (void (*cb)(const char *msg)) 381ev_set_syserr_cb (void (*cb)(const char *msg))
224{ 382{
225 syserr_cb = cb; 383 syserr_cb = cb;
226} 384}
227 385
228static void 386static void noinline
229syserr (const char *msg) 387syserr (const char *msg)
230{ 388{
231 if (!msg) 389 if (!msg)
232 msg = "(libev) system error"; 390 msg = "(libev) system error";
233 391
238 perror (msg); 396 perror (msg);
239 abort (); 397 abort ();
240 } 398 }
241} 399}
242 400
401static void *
402ev_realloc_emul (void *ptr, long size)
403{
404 /* some systems, notably openbsd and darwin, fail to properly
405 * implement realloc (x, 0) (as required by both ansi c-98 and
406 * the single unix specification, so work around them here.
407 */
408
409 if (size)
410 return realloc (ptr, size);
411
412 free (ptr);
413 return 0;
414}
415
243static void *(*alloc)(void *ptr, long size); 416static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
244 417
418void
245void ev_set_allocator (void *(*cb)(void *ptr, long size)) 419ev_set_allocator (void *(*cb)(void *ptr, long size))
246{ 420{
247 alloc = cb; 421 alloc = cb;
248} 422}
249 423
250static void * 424inline_speed void *
251ev_realloc (void *ptr, long size) 425ev_realloc (void *ptr, long size)
252{ 426{
253 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 427 ptr = alloc (ptr, size);
254 428
255 if (!ptr && size) 429 if (!ptr && size)
256 { 430 {
257 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 431 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
258 abort (); 432 abort ();
279typedef struct 453typedef struct
280{ 454{
281 W w; 455 W w;
282 int events; 456 int events;
283} ANPENDING; 457} ANPENDING;
458
459#if EV_USE_INOTIFY
460/* hash table entry per inotify-id */
461typedef struct
462{
463 WL head;
464} ANFS;
465#endif
466
467/* Heap Entry */
468#if EV_HEAP_CACHE_AT
469 typedef struct {
470 ev_tstamp at;
471 WT w;
472 } ANHE;
473
474 #define ANHE_w(he) (he).w /* access watcher, read-write */
475 #define ANHE_at(he) (he).at /* access cached at, read-only */
476 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
477#else
478 typedef WT ANHE;
479
480 #define ANHE_w(he) (he)
481 #define ANHE_at(he) (he)->at
482 #define ANHE_at_cache(he)
483#endif
284 484
285#if EV_MULTIPLICITY 485#if EV_MULTIPLICITY
286 486
287 struct ev_loop 487 struct ev_loop
288 { 488 {
322 gettimeofday (&tv, 0); 522 gettimeofday (&tv, 0);
323 return tv.tv_sec + tv.tv_usec * 1e-6; 523 return tv.tv_sec + tv.tv_usec * 1e-6;
324#endif 524#endif
325} 525}
326 526
327inline ev_tstamp 527ev_tstamp inline_size
328get_clock (void) 528get_clock (void)
329{ 529{
330#if EV_USE_MONOTONIC 530#if EV_USE_MONOTONIC
331 if (expect_true (have_monotonic)) 531 if (expect_true (have_monotonic))
332 { 532 {
345{ 545{
346 return ev_rt_now; 546 return ev_rt_now;
347} 547}
348#endif 548#endif
349 549
350#define array_roundsize(type,n) (((n) | 4) & ~3) 550void
551ev_sleep (ev_tstamp delay)
552{
553 if (delay > 0.)
554 {
555#if EV_USE_NANOSLEEP
556 struct timespec ts;
557
558 ts.tv_sec = (time_t)delay;
559 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
560
561 nanosleep (&ts, 0);
562#elif defined(_WIN32)
563 Sleep ((unsigned long)(delay * 1e3));
564#else
565 struct timeval tv;
566
567 tv.tv_sec = (time_t)delay;
568 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
569
570 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
571 /* somehting nto guaranteed by newer posix versions, but guaranteed */
572 /* by older ones */
573 select (0, 0, 0, 0, &tv);
574#endif
575 }
576}
577
578/*****************************************************************************/
579
580#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
581
582int inline_size
583array_nextsize (int elem, int cur, int cnt)
584{
585 int ncur = cur + 1;
586
587 do
588 ncur <<= 1;
589 while (cnt > ncur);
590
591 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
592 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
593 {
594 ncur *= elem;
595 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
596 ncur = ncur - sizeof (void *) * 4;
597 ncur /= elem;
598 }
599
600 return ncur;
601}
602
603static noinline void *
604array_realloc (int elem, void *base, int *cur, int cnt)
605{
606 *cur = array_nextsize (elem, *cur, cnt);
607 return ev_realloc (base, elem * *cur);
608}
351 609
352#define array_needsize(type,base,cur,cnt,init) \ 610#define array_needsize(type,base,cur,cnt,init) \
353 if (expect_false ((cnt) > cur)) \ 611 if (expect_false ((cnt) > (cur))) \
354 { \ 612 { \
355 int newcnt = cur; \ 613 int ocur_ = (cur); \
356 do \ 614 (base) = (type *)array_realloc \
357 { \ 615 (sizeof (type), (base), &(cur), (cnt)); \
358 newcnt = array_roundsize (type, newcnt << 1); \ 616 init ((base) + (ocur_), (cur) - ocur_); \
359 } \
360 while ((cnt) > newcnt); \
361 \
362 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
363 init (base + cur, newcnt - cur); \
364 cur = newcnt; \
365 } 617 }
366 618
619#if 0
367#define array_slim(type,stem) \ 620#define array_slim(type,stem) \
368 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 621 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
369 { \ 622 { \
370 stem ## max = array_roundsize (stem ## cnt >> 1); \ 623 stem ## max = array_roundsize (stem ## cnt >> 1); \
371 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 624 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
372 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 625 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
373 } 626 }
627#endif
374 628
375#define array_free(stem, idx) \ 629#define array_free(stem, idx) \
376 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 630 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
377 631
378/*****************************************************************************/ 632/*****************************************************************************/
379 633
380static void 634void noinline
635ev_feed_event (EV_P_ void *w, int revents)
636{
637 W w_ = (W)w;
638 int pri = ABSPRI (w_);
639
640 if (expect_false (w_->pending))
641 pendings [pri][w_->pending - 1].events |= revents;
642 else
643 {
644 w_->pending = ++pendingcnt [pri];
645 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
646 pendings [pri][w_->pending - 1].w = w_;
647 pendings [pri][w_->pending - 1].events = revents;
648 }
649}
650
651void inline_speed
652queue_events (EV_P_ W *events, int eventcnt, int type)
653{
654 int i;
655
656 for (i = 0; i < eventcnt; ++i)
657 ev_feed_event (EV_A_ events [i], type);
658}
659
660/*****************************************************************************/
661
662void inline_size
381anfds_init (ANFD *base, int count) 663anfds_init (ANFD *base, int count)
382{ 664{
383 while (count--) 665 while (count--)
384 { 666 {
385 base->head = 0; 667 base->head = 0;
388 670
389 ++base; 671 ++base;
390 } 672 }
391} 673}
392 674
393void 675void inline_speed
394ev_feed_event (EV_P_ void *w, int revents)
395{
396 W w_ = (W)w;
397
398 if (expect_false (w_->pending))
399 {
400 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
401 return;
402 }
403
404 w_->pending = ++pendingcnt [ABSPRI (w_)];
405 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
406 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
407 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
408}
409
410static void
411queue_events (EV_P_ W *events, int eventcnt, int type)
412{
413 int i;
414
415 for (i = 0; i < eventcnt; ++i)
416 ev_feed_event (EV_A_ events [i], type);
417}
418
419inline void
420fd_event (EV_P_ int fd, int revents) 676fd_event (EV_P_ int fd, int revents)
421{ 677{
422 ANFD *anfd = anfds + fd; 678 ANFD *anfd = anfds + fd;
423 struct ev_io *w; 679 ev_io *w;
424 680
425 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 681 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
426 { 682 {
427 int ev = w->events & revents; 683 int ev = w->events & revents;
428 684
429 if (ev) 685 if (ev)
430 ev_feed_event (EV_A_ (W)w, ev); 686 ev_feed_event (EV_A_ (W)w, ev);
432} 688}
433 689
434void 690void
435ev_feed_fd_event (EV_P_ int fd, int revents) 691ev_feed_fd_event (EV_P_ int fd, int revents)
436{ 692{
693 if (fd >= 0 && fd < anfdmax)
437 fd_event (EV_A_ fd, revents); 694 fd_event (EV_A_ fd, revents);
438} 695}
439 696
440/*****************************************************************************/ 697void inline_size
441
442inline void
443fd_reify (EV_P) 698fd_reify (EV_P)
444{ 699{
445 int i; 700 int i;
446 701
447 for (i = 0; i < fdchangecnt; ++i) 702 for (i = 0; i < fdchangecnt; ++i)
448 { 703 {
449 int fd = fdchanges [i]; 704 int fd = fdchanges [i];
450 ANFD *anfd = anfds + fd; 705 ANFD *anfd = anfds + fd;
451 struct ev_io *w; 706 ev_io *w;
452 707
453 int events = 0; 708 unsigned char events = 0;
454 709
455 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 710 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
456 events |= w->events; 711 events |= (unsigned char)w->events;
457 712
458#if EV_SELECT_IS_WINSOCKET 713#if EV_SELECT_IS_WINSOCKET
459 if (events) 714 if (events)
460 { 715 {
461 unsigned long argp; 716 unsigned long arg;
717 #ifdef EV_FD_TO_WIN32_HANDLE
718 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
719 #else
462 anfd->handle = _get_osfhandle (fd); 720 anfd->handle = _get_osfhandle (fd);
721 #endif
463 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 722 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
464 } 723 }
465#endif 724#endif
466 725
726 {
727 unsigned char o_events = anfd->events;
728 unsigned char o_reify = anfd->reify;
729
467 anfd->reify = 0; 730 anfd->reify = 0;
468
469 method_modify (EV_A_ fd, anfd->events, events);
470 anfd->events = events; 731 anfd->events = events;
732
733 if (o_events != events || o_reify & EV_IOFDSET)
734 backend_modify (EV_A_ fd, o_events, events);
735 }
471 } 736 }
472 737
473 fdchangecnt = 0; 738 fdchangecnt = 0;
474} 739}
475 740
476static void 741void inline_size
477fd_change (EV_P_ int fd) 742fd_change (EV_P_ int fd, int flags)
478{ 743{
479 if (expect_false (anfds [fd].reify)) 744 unsigned char reify = anfds [fd].reify;
480 return;
481
482 anfds [fd].reify = 1; 745 anfds [fd].reify |= flags;
483 746
747 if (expect_true (!reify))
748 {
484 ++fdchangecnt; 749 ++fdchangecnt;
485 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 750 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
486 fdchanges [fdchangecnt - 1] = fd; 751 fdchanges [fdchangecnt - 1] = fd;
752 }
487} 753}
488 754
489static void 755void inline_speed
490fd_kill (EV_P_ int fd) 756fd_kill (EV_P_ int fd)
491{ 757{
492 struct ev_io *w; 758 ev_io *w;
493 759
494 while ((w = (struct ev_io *)anfds [fd].head)) 760 while ((w = (ev_io *)anfds [fd].head))
495 { 761 {
496 ev_io_stop (EV_A_ w); 762 ev_io_stop (EV_A_ w);
497 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 763 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
498 } 764 }
499} 765}
500 766
501inline int 767int inline_size
502fd_valid (int fd) 768fd_valid (int fd)
503{ 769{
504#ifdef _WIN32 770#ifdef _WIN32
505 return _get_osfhandle (fd) != -1; 771 return _get_osfhandle (fd) != -1;
506#else 772#else
507 return fcntl (fd, F_GETFD) != -1; 773 return fcntl (fd, F_GETFD) != -1;
508#endif 774#endif
509} 775}
510 776
511/* called on EBADF to verify fds */ 777/* called on EBADF to verify fds */
512static void 778static void noinline
513fd_ebadf (EV_P) 779fd_ebadf (EV_P)
514{ 780{
515 int fd; 781 int fd;
516 782
517 for (fd = 0; fd < anfdmax; ++fd) 783 for (fd = 0; fd < anfdmax; ++fd)
518 if (anfds [fd].events) 784 if (anfds [fd].events)
519 if (!fd_valid (fd) == -1 && errno == EBADF) 785 if (!fd_valid (fd) && errno == EBADF)
520 fd_kill (EV_A_ fd); 786 fd_kill (EV_A_ fd);
521} 787}
522 788
523/* called on ENOMEM in select/poll to kill some fds and retry */ 789/* called on ENOMEM in select/poll to kill some fds and retry */
524static void 790static void noinline
525fd_enomem (EV_P) 791fd_enomem (EV_P)
526{ 792{
527 int fd; 793 int fd;
528 794
529 for (fd = anfdmax; fd--; ) 795 for (fd = anfdmax; fd--; )
532 fd_kill (EV_A_ fd); 798 fd_kill (EV_A_ fd);
533 return; 799 return;
534 } 800 }
535} 801}
536 802
537/* usually called after fork if method needs to re-arm all fds from scratch */ 803/* usually called after fork if backend needs to re-arm all fds from scratch */
538static void 804static void noinline
539fd_rearm_all (EV_P) 805fd_rearm_all (EV_P)
540{ 806{
541 int fd; 807 int fd;
542 808
543 /* this should be highly optimised to not do anything but set a flag */
544 for (fd = 0; fd < anfdmax; ++fd) 809 for (fd = 0; fd < anfdmax; ++fd)
545 if (anfds [fd].events) 810 if (anfds [fd].events)
546 { 811 {
547 anfds [fd].events = 0; 812 anfds [fd].events = 0;
548 fd_change (EV_A_ fd); 813 fd_change (EV_A_ fd, EV_IOFDSET | 1);
549 } 814 }
550} 815}
551 816
552/*****************************************************************************/ 817/*****************************************************************************/
553 818
554static void 819/*
555upheap (WT *heap, int k) 820 * the heap functions want a real array index. array index 0 uis guaranteed to not
556{ 821 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
557 WT w = heap [k]; 822 * the branching factor of the d-tree.
823 */
558 824
559 while (k && heap [k >> 1]->at > w->at) 825/*
560 { 826 * at the moment we allow libev the luxury of two heaps,
561 heap [k] = heap [k >> 1]; 827 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
562 ((W)heap [k])->active = k + 1; 828 * which is more cache-efficient.
563 k >>= 1; 829 * the difference is about 5% with 50000+ watchers.
564 } 830 */
831#if EV_USE_4HEAP
565 832
566 heap [k] = w; 833#define DHEAP 4
567 ((W)heap [k])->active = k + 1; 834#define HEAP0 (DHEAP - 1) /* index of first element in heap */
835#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
836#define UPHEAP_DONE(p,k) ((p) == (k))
568 837
569} 838/* away from the root */
570 839void inline_speed
571static void
572downheap (WT *heap, int N, int k) 840downheap (ANHE *heap, int N, int k)
573{ 841{
574 WT w = heap [k]; 842 ANHE he = heap [k];
843 ANHE *E = heap + N + HEAP0;
575 844
576 while (k < (N >> 1)) 845 for (;;)
577 { 846 {
578 int j = k << 1; 847 ev_tstamp minat;
848 ANHE *minpos;
849 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
579 850
580 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 851 /* find minimum child */
852 if (expect_true (pos + DHEAP - 1 < E))
581 ++j; 853 {
582 854 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
583 if (w->at <= heap [j]->at) 855 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
856 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
857 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
858 }
859 else if (pos < E)
860 {
861 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
862 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
863 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
864 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
865 }
866 else
584 break; 867 break;
585 868
869 if (ANHE_at (he) <= minat)
870 break;
871
872 heap [k] = *minpos;
873 ev_active (ANHE_w (*minpos)) = k;
874
875 k = minpos - heap;
876 }
877
878 heap [k] = he;
879 ev_active (ANHE_w (he)) = k;
880}
881
882#else /* 4HEAP */
883
884#define HEAP0 1
885#define HPARENT(k) ((k) >> 1)
886#define UPHEAP_DONE(p,k) (!(p))
887
888/* away from the root */
889void inline_speed
890downheap (ANHE *heap, int N, int k)
891{
892 ANHE he = heap [k];
893
894 for (;;)
895 {
896 int c = k << 1;
897
898 if (c > N + HEAP0 - 1)
899 break;
900
901 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
902 ? 1 : 0;
903
904 if (ANHE_at (he) <= ANHE_at (heap [c]))
905 break;
906
586 heap [k] = heap [j]; 907 heap [k] = heap [c];
587 ((W)heap [k])->active = k + 1; 908 ev_active (ANHE_w (heap [k])) = k;
909
588 k = j; 910 k = c;
589 } 911 }
590 912
591 heap [k] = w; 913 heap [k] = he;
592 ((W)heap [k])->active = k + 1; 914 ev_active (ANHE_w (he)) = k;
593} 915}
916#endif
594 917
595inline void 918/* towards the root */
919void inline_speed
920upheap (ANHE *heap, int k)
921{
922 ANHE he = heap [k];
923
924 for (;;)
925 {
926 int p = HPARENT (k);
927
928 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
929 break;
930
931 heap [k] = heap [p];
932 ev_active (ANHE_w (heap [k])) = k;
933 k = p;
934 }
935
936 heap [k] = he;
937 ev_active (ANHE_w (he)) = k;
938}
939
940void inline_size
596adjustheap (WT *heap, int N, int k) 941adjustheap (ANHE *heap, int N, int k)
597{ 942{
943 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
598 upheap (heap, k); 944 upheap (heap, k);
945 else
599 downheap (heap, N, k); 946 downheap (heap, N, k);
947}
948
949/* rebuild the heap: this function is used only once and executed rarely */
950void inline_size
951reheap (ANHE *heap, int N)
952{
953 int i;
954
955 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
956 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
957 for (i = 0; i < N; ++i)
958 upheap (heap, i + HEAP0);
600} 959}
601 960
602/*****************************************************************************/ 961/*****************************************************************************/
603 962
604typedef struct 963typedef struct
605{ 964{
606 WL head; 965 WL head;
607 sig_atomic_t volatile gotsig; 966 EV_ATOMIC_T gotsig;
608} ANSIG; 967} ANSIG;
609 968
610static ANSIG *signals; 969static ANSIG *signals;
611static int signalmax; 970static int signalmax;
612 971
613static int sigpipe [2]; 972static EV_ATOMIC_T gotsig;
614static sig_atomic_t volatile gotsig;
615static struct ev_io sigev;
616 973
617static void 974void inline_size
618signals_init (ANSIG *base, int count) 975signals_init (ANSIG *base, int count)
619{ 976{
620 while (count--) 977 while (count--)
621 { 978 {
622 base->head = 0; 979 base->head = 0;
624 981
625 ++base; 982 ++base;
626 } 983 }
627} 984}
628 985
629static void 986/*****************************************************************************/
630sighandler (int signum)
631{
632#if _WIN32
633 signal (signum, sighandler);
634#endif
635 987
636 signals [signum - 1].gotsig = 1; 988void inline_speed
637
638 if (!gotsig)
639 {
640 int old_errno = errno;
641 gotsig = 1;
642 write (sigpipe [1], &signum, 1);
643 errno = old_errno;
644 }
645}
646
647void
648ev_feed_signal_event (EV_P_ int signum)
649{
650 WL w;
651
652#if EV_MULTIPLICITY
653 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
654#endif
655
656 --signum;
657
658 if (signum < 0 || signum >= signalmax)
659 return;
660
661 signals [signum].gotsig = 0;
662
663 for (w = signals [signum].head; w; w = w->next)
664 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
665}
666
667static void
668sigcb (EV_P_ struct ev_io *iow, int revents)
669{
670 int signum;
671
672 read (sigpipe [0], &revents, 1);
673 gotsig = 0;
674
675 for (signum = signalmax; signum--; )
676 if (signals [signum].gotsig)
677 ev_feed_signal_event (EV_A_ signum + 1);
678}
679
680static void
681fd_intern (int fd) 989fd_intern (int fd)
682{ 990{
683#ifdef _WIN32 991#ifdef _WIN32
684 int arg = 1; 992 unsigned long arg = 1;
685 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 993 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
686#else 994#else
687 fcntl (fd, F_SETFD, FD_CLOEXEC); 995 fcntl (fd, F_SETFD, FD_CLOEXEC);
688 fcntl (fd, F_SETFL, O_NONBLOCK); 996 fcntl (fd, F_SETFL, O_NONBLOCK);
689#endif 997#endif
690} 998}
691 999
1000static void noinline
1001evpipe_init (EV_P)
1002{
1003 if (!ev_is_active (&pipeev))
1004 {
1005#if EV_USE_EVENTFD
1006 if ((evfd = eventfd (0, 0)) >= 0)
1007 {
1008 evpipe [0] = -1;
1009 fd_intern (evfd);
1010 ev_io_set (&pipeev, evfd, EV_READ);
1011 }
1012 else
1013#endif
1014 {
1015 while (pipe (evpipe))
1016 syserr ("(libev) error creating signal/async pipe");
1017
1018 fd_intern (evpipe [0]);
1019 fd_intern (evpipe [1]);
1020 ev_io_set (&pipeev, evpipe [0], EV_READ);
1021 }
1022
1023 ev_io_start (EV_A_ &pipeev);
1024 ev_unref (EV_A); /* watcher should not keep loop alive */
1025 }
1026}
1027
1028void inline_size
1029evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1030{
1031 if (!*flag)
1032 {
1033 int old_errno = errno; /* save errno because write might clobber it */
1034
1035 *flag = 1;
1036
1037#if EV_USE_EVENTFD
1038 if (evfd >= 0)
1039 {
1040 uint64_t counter = 1;
1041 write (evfd, &counter, sizeof (uint64_t));
1042 }
1043 else
1044#endif
1045 write (evpipe [1], &old_errno, 1);
1046
1047 errno = old_errno;
1048 }
1049}
1050
692static void 1051static void
693siginit (EV_P) 1052pipecb (EV_P_ ev_io *iow, int revents)
694{ 1053{
695 fd_intern (sigpipe [0]); 1054#if EV_USE_EVENTFD
696 fd_intern (sigpipe [1]); 1055 if (evfd >= 0)
1056 {
1057 uint64_t counter;
1058 read (evfd, &counter, sizeof (uint64_t));
1059 }
1060 else
1061#endif
1062 {
1063 char dummy;
1064 read (evpipe [0], &dummy, 1);
1065 }
697 1066
698 ev_io_set (&sigev, sigpipe [0], EV_READ); 1067 if (gotsig && ev_is_default_loop (EV_A))
699 ev_io_start (EV_A_ &sigev); 1068 {
700 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1069 int signum;
1070 gotsig = 0;
1071
1072 for (signum = signalmax; signum--; )
1073 if (signals [signum].gotsig)
1074 ev_feed_signal_event (EV_A_ signum + 1);
1075 }
1076
1077#if EV_ASYNC_ENABLE
1078 if (gotasync)
1079 {
1080 int i;
1081 gotasync = 0;
1082
1083 for (i = asynccnt; i--; )
1084 if (asyncs [i]->sent)
1085 {
1086 asyncs [i]->sent = 0;
1087 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1088 }
1089 }
1090#endif
701} 1091}
702 1092
703/*****************************************************************************/ 1093/*****************************************************************************/
704 1094
705static struct ev_child *childs [PID_HASHSIZE]; 1095static void
1096ev_sighandler (int signum)
1097{
1098#if EV_MULTIPLICITY
1099 struct ev_loop *loop = &default_loop_struct;
1100#endif
1101
1102#if _WIN32
1103 signal (signum, ev_sighandler);
1104#endif
1105
1106 signals [signum - 1].gotsig = 1;
1107 evpipe_write (EV_A_ &gotsig);
1108}
1109
1110void noinline
1111ev_feed_signal_event (EV_P_ int signum)
1112{
1113 WL w;
1114
1115#if EV_MULTIPLICITY
1116 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1117#endif
1118
1119 --signum;
1120
1121 if (signum < 0 || signum >= signalmax)
1122 return;
1123
1124 signals [signum].gotsig = 0;
1125
1126 for (w = signals [signum].head; w; w = w->next)
1127 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1128}
1129
1130/*****************************************************************************/
1131
1132static WL childs [EV_PID_HASHSIZE];
706 1133
707#ifndef _WIN32 1134#ifndef _WIN32
708 1135
709static struct ev_signal childev; 1136static ev_signal childev;
1137
1138#ifndef WIFCONTINUED
1139# define WIFCONTINUED(status) 0
1140#endif
1141
1142void inline_speed
1143child_reap (EV_P_ int chain, int pid, int status)
1144{
1145 ev_child *w;
1146 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1147
1148 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1149 {
1150 if ((w->pid == pid || !w->pid)
1151 && (!traced || (w->flags & 1)))
1152 {
1153 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1154 w->rpid = pid;
1155 w->rstatus = status;
1156 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1157 }
1158 }
1159}
710 1160
711#ifndef WCONTINUED 1161#ifndef WCONTINUED
712# define WCONTINUED 0 1162# define WCONTINUED 0
713#endif 1163#endif
714 1164
715static void 1165static void
716child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
717{
718 struct ev_child *w;
719
720 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
721 if (w->pid == pid || !w->pid)
722 {
723 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
724 w->rpid = pid;
725 w->rstatus = status;
726 ev_feed_event (EV_A_ (W)w, EV_CHILD);
727 }
728}
729
730static void
731childcb (EV_P_ struct ev_signal *sw, int revents) 1166childcb (EV_P_ ev_signal *sw, int revents)
732{ 1167{
733 int pid, status; 1168 int pid, status;
734 1169
1170 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
735 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1171 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
736 { 1172 if (!WCONTINUED
1173 || errno != EINVAL
1174 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1175 return;
1176
737 /* make sure we are called again until all childs have been reaped */ 1177 /* make sure we are called again until all children have been reaped */
1178 /* we need to do it this way so that the callback gets called before we continue */
738 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1179 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
739 1180
740 child_reap (EV_A_ sw, pid, pid, status); 1181 child_reap (EV_A_ pid, pid, status);
1182 if (EV_PID_HASHSIZE > 1)
741 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1183 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
742 }
743} 1184}
744 1185
745#endif 1186#endif
746 1187
747/*****************************************************************************/ 1188/*****************************************************************************/
773{ 1214{
774 return EV_VERSION_MINOR; 1215 return EV_VERSION_MINOR;
775} 1216}
776 1217
777/* return true if we are running with elevated privileges and should ignore env variables */ 1218/* return true if we are running with elevated privileges and should ignore env variables */
778static int 1219int inline_size
779enable_secure (void) 1220enable_secure (void)
780{ 1221{
781#ifdef _WIN32 1222#ifdef _WIN32
782 return 0; 1223 return 0;
783#else 1224#else
785 || getgid () != getegid (); 1226 || getgid () != getegid ();
786#endif 1227#endif
787} 1228}
788 1229
789unsigned int 1230unsigned int
790ev_method (EV_P) 1231ev_supported_backends (void)
791{ 1232{
792 return method; 1233 unsigned int flags = 0;
793}
794 1234
795static void 1235 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1236 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1237 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1238 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1239 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1240
1241 return flags;
1242}
1243
1244unsigned int
1245ev_recommended_backends (void)
1246{
1247 unsigned int flags = ev_supported_backends ();
1248
1249#ifndef __NetBSD__
1250 /* kqueue is borked on everything but netbsd apparently */
1251 /* it usually doesn't work correctly on anything but sockets and pipes */
1252 flags &= ~EVBACKEND_KQUEUE;
1253#endif
1254#ifdef __APPLE__
1255 // flags &= ~EVBACKEND_KQUEUE; for documentation
1256 flags &= ~EVBACKEND_POLL;
1257#endif
1258
1259 return flags;
1260}
1261
1262unsigned int
1263ev_embeddable_backends (void)
1264{
1265 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1266
1267 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1268 /* please fix it and tell me how to detect the fix */
1269 flags &= ~EVBACKEND_EPOLL;
1270
1271 return flags;
1272}
1273
1274unsigned int
1275ev_backend (EV_P)
1276{
1277 return backend;
1278}
1279
1280unsigned int
1281ev_loop_count (EV_P)
1282{
1283 return loop_count;
1284}
1285
1286void
1287ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1288{
1289 io_blocktime = interval;
1290}
1291
1292void
1293ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1294{
1295 timeout_blocktime = interval;
1296}
1297
1298static void noinline
796loop_init (EV_P_ unsigned int flags) 1299loop_init (EV_P_ unsigned int flags)
797{ 1300{
798 if (!method) 1301 if (!backend)
799 { 1302 {
800#if EV_USE_MONOTONIC 1303#if EV_USE_MONOTONIC
801 { 1304 {
802 struct timespec ts; 1305 struct timespec ts;
803 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1306 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
804 have_monotonic = 1; 1307 have_monotonic = 1;
805 } 1308 }
806#endif 1309#endif
807 1310
808 ev_rt_now = ev_time (); 1311 ev_rt_now = ev_time ();
809 mn_now = get_clock (); 1312 mn_now = get_clock ();
810 now_floor = mn_now; 1313 now_floor = mn_now;
811 rtmn_diff = ev_rt_now - mn_now; 1314 rtmn_diff = ev_rt_now - mn_now;
812 1315
813 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1316 io_blocktime = 0.;
1317 timeout_blocktime = 0.;
1318 backend = 0;
1319 backend_fd = -1;
1320 gotasync = 0;
1321#if EV_USE_INOTIFY
1322 fs_fd = -2;
1323#endif
1324
1325 /* pid check not overridable via env */
1326#ifndef _WIN32
1327 if (flags & EVFLAG_FORKCHECK)
1328 curpid = getpid ();
1329#endif
1330
1331 if (!(flags & EVFLAG_NOENV)
1332 && !enable_secure ()
1333 && getenv ("LIBEV_FLAGS"))
814 flags = atoi (getenv ("LIBEV_FLAGS")); 1334 flags = atoi (getenv ("LIBEV_FLAGS"));
815 1335
816 if (!(flags & 0x0000ffff)) 1336 if (!(flags & 0x0000ffffU))
817 flags |= 0x0000ffff; 1337 flags |= ev_recommended_backends ();
818 1338
819 method = 0;
820#if EV_USE_PORT 1339#if EV_USE_PORT
821 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags); 1340 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
822#endif 1341#endif
823#if EV_USE_KQUEUE 1342#if EV_USE_KQUEUE
824 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 1343 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
825#endif 1344#endif
826#if EV_USE_EPOLL 1345#if EV_USE_EPOLL
827 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 1346 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
828#endif 1347#endif
829#if EV_USE_POLL 1348#if EV_USE_POLL
830 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 1349 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
831#endif 1350#endif
832#if EV_USE_SELECT 1351#if EV_USE_SELECT
833 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 1352 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
834#endif 1353#endif
835 1354
836 ev_init (&sigev, sigcb); 1355 ev_init (&pipeev, pipecb);
837 ev_set_priority (&sigev, EV_MAXPRI); 1356 ev_set_priority (&pipeev, EV_MAXPRI);
838 } 1357 }
839} 1358}
840 1359
841static void 1360static void noinline
842loop_destroy (EV_P) 1361loop_destroy (EV_P)
843{ 1362{
844 int i; 1363 int i;
845 1364
1365 if (ev_is_active (&pipeev))
1366 {
1367 ev_ref (EV_A); /* signal watcher */
1368 ev_io_stop (EV_A_ &pipeev);
1369
1370#if EV_USE_EVENTFD
1371 if (evfd >= 0)
1372 close (evfd);
1373#endif
1374
1375 if (evpipe [0] >= 0)
1376 {
1377 close (evpipe [0]);
1378 close (evpipe [1]);
1379 }
1380 }
1381
1382#if EV_USE_INOTIFY
1383 if (fs_fd >= 0)
1384 close (fs_fd);
1385#endif
1386
1387 if (backend_fd >= 0)
1388 close (backend_fd);
1389
846#if EV_USE_PORT 1390#if EV_USE_PORT
847 if (method == EVMETHOD_PORT ) port_destroy (EV_A); 1391 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
848#endif 1392#endif
849#if EV_USE_KQUEUE 1393#if EV_USE_KQUEUE
850 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1394 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
851#endif 1395#endif
852#if EV_USE_EPOLL 1396#if EV_USE_EPOLL
853 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1397 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
854#endif 1398#endif
855#if EV_USE_POLL 1399#if EV_USE_POLL
856 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1400 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
857#endif 1401#endif
858#if EV_USE_SELECT 1402#if EV_USE_SELECT
859 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1403 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
860#endif 1404#endif
861 1405
862 for (i = NUMPRI; i--; ) 1406 for (i = NUMPRI; i--; )
1407 {
863 array_free (pending, [i]); 1408 array_free (pending, [i]);
1409#if EV_IDLE_ENABLE
1410 array_free (idle, [i]);
1411#endif
1412 }
1413
1414 ev_free (anfds); anfdmax = 0;
864 1415
865 /* have to use the microsoft-never-gets-it-right macro */ 1416 /* have to use the microsoft-never-gets-it-right macro */
866 array_free (fdchange, EMPTY0); 1417 array_free (fdchange, EMPTY);
867 array_free (timer, EMPTY0); 1418 array_free (timer, EMPTY);
868#if EV_PERIODICS 1419#if EV_PERIODIC_ENABLE
869 array_free (periodic, EMPTY0); 1420 array_free (periodic, EMPTY);
870#endif 1421#endif
1422#if EV_FORK_ENABLE
871 array_free (idle, EMPTY0); 1423 array_free (fork, EMPTY);
1424#endif
872 array_free (prepare, EMPTY0); 1425 array_free (prepare, EMPTY);
873 array_free (check, EMPTY0); 1426 array_free (check, EMPTY);
1427#if EV_ASYNC_ENABLE
1428 array_free (async, EMPTY);
1429#endif
874 1430
875 method = 0; 1431 backend = 0;
876} 1432}
877 1433
878static void 1434#if EV_USE_INOTIFY
1435void inline_size infy_fork (EV_P);
1436#endif
1437
1438void inline_size
879loop_fork (EV_P) 1439loop_fork (EV_P)
880{ 1440{
881#if EV_USE_PORT 1441#if EV_USE_PORT
882 if (method == EVMETHOD_PORT ) port_fork (EV_A); 1442 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
883#endif 1443#endif
884#if EV_USE_KQUEUE 1444#if EV_USE_KQUEUE
885 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1445 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
886#endif 1446#endif
887#if EV_USE_EPOLL 1447#if EV_USE_EPOLL
888 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1448 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
889#endif 1449#endif
1450#if EV_USE_INOTIFY
1451 infy_fork (EV_A);
1452#endif
890 1453
891 if (ev_is_active (&sigev)) 1454 if (ev_is_active (&pipeev))
892 { 1455 {
893 /* default loop */ 1456 /* this "locks" the handlers against writing to the pipe */
1457 /* while we modify the fd vars */
1458 gotsig = 1;
1459#if EV_ASYNC_ENABLE
1460 gotasync = 1;
1461#endif
894 1462
895 ev_ref (EV_A); 1463 ev_ref (EV_A);
896 ev_io_stop (EV_A_ &sigev); 1464 ev_io_stop (EV_A_ &pipeev);
1465
1466#if EV_USE_EVENTFD
1467 if (evfd >= 0)
1468 close (evfd);
1469#endif
1470
1471 if (evpipe [0] >= 0)
1472 {
897 close (sigpipe [0]); 1473 close (evpipe [0]);
898 close (sigpipe [1]); 1474 close (evpipe [1]);
1475 }
899 1476
900 while (pipe (sigpipe))
901 syserr ("(libev) error creating pipe");
902
903 siginit (EV_A); 1477 evpipe_init (EV_A);
1478 /* now iterate over everything, in case we missed something */
1479 pipecb (EV_A_ &pipeev, EV_READ);
904 } 1480 }
905 1481
906 postfork = 0; 1482 postfork = 0;
907} 1483}
908 1484
909#if EV_MULTIPLICITY 1485#if EV_MULTIPLICITY
1486
910struct ev_loop * 1487struct ev_loop *
911ev_loop_new (unsigned int flags) 1488ev_loop_new (unsigned int flags)
912{ 1489{
913 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1490 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
914 1491
915 memset (loop, 0, sizeof (struct ev_loop)); 1492 memset (loop, 0, sizeof (struct ev_loop));
916 1493
917 loop_init (EV_A_ flags); 1494 loop_init (EV_A_ flags);
918 1495
919 if (ev_method (EV_A)) 1496 if (ev_backend (EV_A))
920 return loop; 1497 return loop;
921 1498
922 return 0; 1499 return 0;
923} 1500}
924 1501
930} 1507}
931 1508
932void 1509void
933ev_loop_fork (EV_P) 1510ev_loop_fork (EV_P)
934{ 1511{
935 postfork = 1; 1512 postfork = 1; /* must be in line with ev_default_fork */
936} 1513}
937 1514
1515#if EV_VERIFY
1516static void noinline
1517verify_watcher (EV_P_ W w)
1518{
1519 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1520
1521 if (w->pending)
1522 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1523}
1524
1525static void noinline
1526verify_heap (EV_P_ ANHE *heap, int N)
1527{
1528 int i;
1529
1530 for (i = HEAP0; i < N + HEAP0; ++i)
1531 {
1532 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1533 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1534 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1535
1536 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1537 }
1538}
1539
1540static void noinline
1541array_verify (EV_P_ W *ws, int cnt)
1542{
1543 while (cnt--)
1544 {
1545 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1546 verify_watcher (EV_A_ ws [cnt]);
1547 }
1548}
1549#endif
1550
1551void
1552ev_loop_verify (EV_P)
1553{
1554#if EV_VERIFY
1555 int i;
1556 WL w;
1557
1558 assert (activecnt >= -1);
1559
1560 assert (fdchangemax >= fdchangecnt);
1561 for (i = 0; i < fdchangecnt; ++i)
1562 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1563
1564 assert (anfdmax >= 0);
1565 for (i = 0; i < anfdmax; ++i)
1566 for (w = anfds [i].head; w; w = w->next)
1567 {
1568 verify_watcher (EV_A_ (W)w);
1569 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1570 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1571 }
1572
1573 assert (timermax >= timercnt);
1574 verify_heap (EV_A_ timers, timercnt);
1575
1576#if EV_PERIODIC_ENABLE
1577 assert (periodicmax >= periodiccnt);
1578 verify_heap (EV_A_ periodics, periodiccnt);
1579#endif
1580
1581 for (i = NUMPRI; i--; )
1582 {
1583 assert (pendingmax [i] >= pendingcnt [i]);
1584#if EV_IDLE_ENABLE
1585 assert (idleall >= 0);
1586 assert (idlemax [i] >= idlecnt [i]);
1587 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1588#endif
1589 }
1590
1591#if EV_FORK_ENABLE
1592 assert (forkmax >= forkcnt);
1593 array_verify (EV_A_ (W *)forks, forkcnt);
1594#endif
1595
1596#if EV_ASYNC_ENABLE
1597 assert (asyncmax >= asynccnt);
1598 array_verify (EV_A_ (W *)asyncs, asynccnt);
1599#endif
1600
1601 assert (preparemax >= preparecnt);
1602 array_verify (EV_A_ (W *)prepares, preparecnt);
1603
1604 assert (checkmax >= checkcnt);
1605 array_verify (EV_A_ (W *)checks, checkcnt);
1606
1607# if 0
1608 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1609 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
938#endif 1610# endif
1611#endif
1612}
1613
1614#endif /* multiplicity */
939 1615
940#if EV_MULTIPLICITY 1616#if EV_MULTIPLICITY
941struct ev_loop * 1617struct ev_loop *
942ev_default_loop_init (unsigned int flags) 1618ev_default_loop_init (unsigned int flags)
943#else 1619#else
944int 1620int
945ev_default_loop (unsigned int flags) 1621ev_default_loop (unsigned int flags)
946#endif 1622#endif
947{ 1623{
948 if (sigpipe [0] == sigpipe [1])
949 if (pipe (sigpipe))
950 return 0;
951
952 if (!ev_default_loop_ptr) 1624 if (!ev_default_loop_ptr)
953 { 1625 {
954#if EV_MULTIPLICITY 1626#if EV_MULTIPLICITY
955 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1627 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
956#else 1628#else
957 ev_default_loop_ptr = 1; 1629 ev_default_loop_ptr = 1;
958#endif 1630#endif
959 1631
960 loop_init (EV_A_ flags); 1632 loop_init (EV_A_ flags);
961 1633
962 if (ev_method (EV_A)) 1634 if (ev_backend (EV_A))
963 { 1635 {
964 siginit (EV_A);
965
966#ifndef _WIN32 1636#ifndef _WIN32
967 ev_signal_init (&childev, childcb, SIGCHLD); 1637 ev_signal_init (&childev, childcb, SIGCHLD);
968 ev_set_priority (&childev, EV_MAXPRI); 1638 ev_set_priority (&childev, EV_MAXPRI);
969 ev_signal_start (EV_A_ &childev); 1639 ev_signal_start (EV_A_ &childev);
970 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1640 ev_unref (EV_A); /* child watcher should not keep loop alive */
987#ifndef _WIN32 1657#ifndef _WIN32
988 ev_ref (EV_A); /* child watcher */ 1658 ev_ref (EV_A); /* child watcher */
989 ev_signal_stop (EV_A_ &childev); 1659 ev_signal_stop (EV_A_ &childev);
990#endif 1660#endif
991 1661
992 ev_ref (EV_A); /* signal watcher */
993 ev_io_stop (EV_A_ &sigev);
994
995 close (sigpipe [0]); sigpipe [0] = 0;
996 close (sigpipe [1]); sigpipe [1] = 0;
997
998 loop_destroy (EV_A); 1662 loop_destroy (EV_A);
999} 1663}
1000 1664
1001void 1665void
1002ev_default_fork (void) 1666ev_default_fork (void)
1003{ 1667{
1004#if EV_MULTIPLICITY 1668#if EV_MULTIPLICITY
1005 struct ev_loop *loop = ev_default_loop_ptr; 1669 struct ev_loop *loop = ev_default_loop_ptr;
1006#endif 1670#endif
1007 1671
1008 if (method) 1672 if (backend)
1009 postfork = 1; 1673 postfork = 1; /* must be in line with ev_loop_fork */
1010} 1674}
1011 1675
1012/*****************************************************************************/ 1676/*****************************************************************************/
1013 1677
1014static int 1678void
1015any_pending (EV_P) 1679ev_invoke (EV_P_ void *w, int revents)
1016{ 1680{
1017 int pri; 1681 EV_CB_INVOKE ((W)w, revents);
1018
1019 for (pri = NUMPRI; pri--; )
1020 if (pendingcnt [pri])
1021 return 1;
1022
1023 return 0;
1024} 1682}
1025 1683
1026inline void 1684void inline_speed
1027call_pending (EV_P) 1685call_pending (EV_P)
1028{ 1686{
1029 int pri; 1687 int pri;
1030 1688
1031 for (pri = NUMPRI; pri--; ) 1689 for (pri = NUMPRI; pri--; )
1033 { 1691 {
1034 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1692 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1035 1693
1036 if (expect_true (p->w)) 1694 if (expect_true (p->w))
1037 { 1695 {
1696 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1697
1038 p->w->pending = 0; 1698 p->w->pending = 0;
1039 EV_CB_INVOKE (p->w, p->events); 1699 EV_CB_INVOKE (p->w, p->events);
1700 EV_FREQUENT_CHECK;
1040 } 1701 }
1041 } 1702 }
1042} 1703}
1043 1704
1044inline void 1705#if EV_IDLE_ENABLE
1706void inline_size
1707idle_reify (EV_P)
1708{
1709 if (expect_false (idleall))
1710 {
1711 int pri;
1712
1713 for (pri = NUMPRI; pri--; )
1714 {
1715 if (pendingcnt [pri])
1716 break;
1717
1718 if (idlecnt [pri])
1719 {
1720 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1721 break;
1722 }
1723 }
1724 }
1725}
1726#endif
1727
1728void inline_size
1045timers_reify (EV_P) 1729timers_reify (EV_P)
1046{ 1730{
1731 EV_FREQUENT_CHECK;
1732
1047 while (timercnt && ((WT)timers [0])->at <= mn_now) 1733 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1048 { 1734 {
1049 struct ev_timer *w = timers [0]; 1735 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1050 1736
1051 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1737 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1052 1738
1053 /* first reschedule or stop timer */ 1739 /* first reschedule or stop timer */
1054 if (w->repeat) 1740 if (w->repeat)
1055 { 1741 {
1742 ev_at (w) += w->repeat;
1743 if (ev_at (w) < mn_now)
1744 ev_at (w) = mn_now;
1745
1056 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1746 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1057 1747
1058 ((WT)w)->at += w->repeat; 1748 ANHE_at_cache (timers [HEAP0]);
1059 if (((WT)w)->at < mn_now)
1060 ((WT)w)->at = mn_now;
1061
1062 downheap ((WT *)timers, timercnt, 0); 1749 downheap (timers, timercnt, HEAP0);
1063 } 1750 }
1064 else 1751 else
1065 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1752 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1066 1753
1754 EV_FREQUENT_CHECK;
1067 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1755 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1068 } 1756 }
1069} 1757}
1070 1758
1071#if EV_PERIODICS 1759#if EV_PERIODIC_ENABLE
1072inline void 1760void inline_size
1073periodics_reify (EV_P) 1761periodics_reify (EV_P)
1074{ 1762{
1763 EV_FREQUENT_CHECK;
1764
1075 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1765 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1076 { 1766 {
1077 struct ev_periodic *w = periodics [0]; 1767 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1078 1768
1079 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1769 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1080 1770
1081 /* first reschedule or stop timer */ 1771 /* first reschedule or stop timer */
1082 if (w->reschedule_cb) 1772 if (w->reschedule_cb)
1083 { 1773 {
1084 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1774 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1775
1085 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1776 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1777
1778 ANHE_at_cache (periodics [HEAP0]);
1086 downheap ((WT *)periodics, periodiccnt, 0); 1779 downheap (periodics, periodiccnt, HEAP0);
1087 } 1780 }
1088 else if (w->interval) 1781 else if (w->interval)
1089 { 1782 {
1090 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1783 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1091 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1784 /* if next trigger time is not sufficiently in the future, put it there */
1785 /* this might happen because of floating point inexactness */
1786 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1787 {
1788 ev_at (w) += w->interval;
1789
1790 /* if interval is unreasonably low we might still have a time in the past */
1791 /* so correct this. this will make the periodic very inexact, but the user */
1792 /* has effectively asked to get triggered more often than possible */
1793 if (ev_at (w) < ev_rt_now)
1794 ev_at (w) = ev_rt_now;
1795 }
1796
1797 ANHE_at_cache (periodics [HEAP0]);
1092 downheap ((WT *)periodics, periodiccnt, 0); 1798 downheap (periodics, periodiccnt, HEAP0);
1093 } 1799 }
1094 else 1800 else
1095 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1801 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1096 1802
1803 EV_FREQUENT_CHECK;
1097 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1804 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1098 } 1805 }
1099} 1806}
1100 1807
1101static void 1808static void noinline
1102periodics_reschedule (EV_P) 1809periodics_reschedule (EV_P)
1103{ 1810{
1104 int i; 1811 int i;
1105 1812
1106 /* adjust periodics after time jump */ 1813 /* adjust periodics after time jump */
1107 for (i = 0; i < periodiccnt; ++i) 1814 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1108 { 1815 {
1109 struct ev_periodic *w = periodics [i]; 1816 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1110 1817
1111 if (w->reschedule_cb) 1818 if (w->reschedule_cb)
1112 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1819 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1113 else if (w->interval) 1820 else if (w->interval)
1114 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1821 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1822
1823 ANHE_at_cache (periodics [i]);
1824 }
1825
1826 reheap (periodics, periodiccnt);
1827}
1828#endif
1829
1830void inline_speed
1831time_update (EV_P_ ev_tstamp max_block)
1832{
1833 int i;
1834
1835#if EV_USE_MONOTONIC
1836 if (expect_true (have_monotonic))
1115 } 1837 {
1838 ev_tstamp odiff = rtmn_diff;
1116 1839
1117 /* now rebuild the heap */
1118 for (i = periodiccnt >> 1; i--; )
1119 downheap ((WT *)periodics, periodiccnt, i);
1120}
1121#endif
1122
1123inline int
1124time_update_monotonic (EV_P)
1125{
1126 mn_now = get_clock (); 1840 mn_now = get_clock ();
1127 1841
1842 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1843 /* interpolate in the meantime */
1128 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1844 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1129 { 1845 {
1130 ev_rt_now = rtmn_diff + mn_now; 1846 ev_rt_now = rtmn_diff + mn_now;
1131 return 0; 1847 return;
1132 } 1848 }
1133 else 1849
1134 {
1135 now_floor = mn_now; 1850 now_floor = mn_now;
1136 ev_rt_now = ev_time (); 1851 ev_rt_now = ev_time ();
1137 return 1;
1138 }
1139}
1140 1852
1141inline void 1853 /* loop a few times, before making important decisions.
1142time_update (EV_P) 1854 * on the choice of "4": one iteration isn't enough,
1143{ 1855 * in case we get preempted during the calls to
1144 int i; 1856 * ev_time and get_clock. a second call is almost guaranteed
1145 1857 * to succeed in that case, though. and looping a few more times
1146#if EV_USE_MONOTONIC 1858 * doesn't hurt either as we only do this on time-jumps or
1147 if (expect_true (have_monotonic)) 1859 * in the unlikely event of having been preempted here.
1148 { 1860 */
1149 if (time_update_monotonic (EV_A)) 1861 for (i = 4; --i; )
1150 { 1862 {
1151 ev_tstamp odiff = rtmn_diff; 1863 rtmn_diff = ev_rt_now - mn_now;
1152 1864
1153 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1865 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1866 return; /* all is well */
1867
1868 ev_rt_now = ev_time ();
1869 mn_now = get_clock ();
1870 now_floor = mn_now;
1871 }
1872
1873# if EV_PERIODIC_ENABLE
1874 periodics_reschedule (EV_A);
1875# endif
1876 /* no timer adjustment, as the monotonic clock doesn't jump */
1877 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1878 }
1879 else
1880#endif
1881 {
1882 ev_rt_now = ev_time ();
1883
1884 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1885 {
1886#if EV_PERIODIC_ENABLE
1887 periodics_reschedule (EV_A);
1888#endif
1889 /* adjust timers. this is easy, as the offset is the same for all of them */
1890 for (i = 0; i < timercnt; ++i)
1154 { 1891 {
1155 rtmn_diff = ev_rt_now - mn_now; 1892 ANHE *he = timers + i + HEAP0;
1156 1893 ANHE_w (*he)->at += ev_rt_now - mn_now;
1157 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1894 ANHE_at_cache (*he);
1158 return; /* all is well */
1159
1160 ev_rt_now = ev_time ();
1161 mn_now = get_clock ();
1162 now_floor = mn_now;
1163 } 1895 }
1164
1165# if EV_PERIODICS
1166 periodics_reschedule (EV_A);
1167# endif
1168 /* no timer adjustment, as the monotonic clock doesn't jump */
1169 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1170 } 1896 }
1171 }
1172 else
1173#endif
1174 {
1175 ev_rt_now = ev_time ();
1176
1177 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1178 {
1179#if EV_PERIODICS
1180 periodics_reschedule (EV_A);
1181#endif
1182
1183 /* adjust timers. this is easy, as the offset is the same for all */
1184 for (i = 0; i < timercnt; ++i)
1185 ((WT)timers [i])->at += ev_rt_now - mn_now;
1186 }
1187 1897
1188 mn_now = ev_rt_now; 1898 mn_now = ev_rt_now;
1189 } 1899 }
1190} 1900}
1191 1901
1204static int loop_done; 1914static int loop_done;
1205 1915
1206void 1916void
1207ev_loop (EV_P_ int flags) 1917ev_loop (EV_P_ int flags)
1208{ 1918{
1209 double block; 1919 loop_done = EVUNLOOP_CANCEL;
1210 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1211 1920
1212 while (activecnt) 1921 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1922
1923 do
1213 { 1924 {
1925#if EV_VERIFY >= 2
1926 ev_loop_verify (EV_A);
1927#endif
1928
1929#ifndef _WIN32
1930 if (expect_false (curpid)) /* penalise the forking check even more */
1931 if (expect_false (getpid () != curpid))
1932 {
1933 curpid = getpid ();
1934 postfork = 1;
1935 }
1936#endif
1937
1938#if EV_FORK_ENABLE
1939 /* we might have forked, so queue fork handlers */
1940 if (expect_false (postfork))
1941 if (forkcnt)
1942 {
1943 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1944 call_pending (EV_A);
1945 }
1946#endif
1947
1214 /* queue check watchers (and execute them) */ 1948 /* queue prepare watchers (and execute them) */
1215 if (expect_false (preparecnt)) 1949 if (expect_false (preparecnt))
1216 { 1950 {
1217 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1951 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1218 call_pending (EV_A); 1952 call_pending (EV_A);
1219 } 1953 }
1220 1954
1955 if (expect_false (!activecnt))
1956 break;
1957
1221 /* we might have forked, so reify kernel state if necessary */ 1958 /* we might have forked, so reify kernel state if necessary */
1222 if (expect_false (postfork)) 1959 if (expect_false (postfork))
1223 loop_fork (EV_A); 1960 loop_fork (EV_A);
1224 1961
1225 /* update fd-related kernel structures */ 1962 /* update fd-related kernel structures */
1226 fd_reify (EV_A); 1963 fd_reify (EV_A);
1227 1964
1228 /* calculate blocking time */ 1965 /* calculate blocking time */
1966 {
1967 ev_tstamp waittime = 0.;
1968 ev_tstamp sleeptime = 0.;
1229 1969
1230 /* we only need this for !monotonic clock or timers, but as we basically 1970 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1231 always have timers, we just calculate it always */
1232#if EV_USE_MONOTONIC
1233 if (expect_true (have_monotonic))
1234 time_update_monotonic (EV_A);
1235 else
1236#endif
1237 { 1971 {
1238 ev_rt_now = ev_time (); 1972 /* update time to cancel out callback processing overhead */
1239 mn_now = ev_rt_now; 1973 time_update (EV_A_ 1e100);
1240 }
1241 1974
1242 if (flags & EVLOOP_NONBLOCK || idlecnt)
1243 block = 0.;
1244 else
1245 {
1246 block = MAX_BLOCKTIME; 1975 waittime = MAX_BLOCKTIME;
1247 1976
1248 if (timercnt) 1977 if (timercnt)
1249 { 1978 {
1250 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1979 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1251 if (block > to) block = to; 1980 if (waittime > to) waittime = to;
1252 } 1981 }
1253 1982
1254#if EV_PERIODICS 1983#if EV_PERIODIC_ENABLE
1255 if (periodiccnt) 1984 if (periodiccnt)
1256 { 1985 {
1257 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1986 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1258 if (block > to) block = to; 1987 if (waittime > to) waittime = to;
1259 } 1988 }
1260#endif 1989#endif
1261 1990
1262 if (expect_false (block < 0.)) block = 0.; 1991 if (expect_false (waittime < timeout_blocktime))
1992 waittime = timeout_blocktime;
1993
1994 sleeptime = waittime - backend_fudge;
1995
1996 if (expect_true (sleeptime > io_blocktime))
1997 sleeptime = io_blocktime;
1998
1999 if (sleeptime)
2000 {
2001 ev_sleep (sleeptime);
2002 waittime -= sleeptime;
2003 }
1263 } 2004 }
1264 2005
1265 method_poll (EV_A_ block); 2006 ++loop_count;
2007 backend_poll (EV_A_ waittime);
1266 2008
1267 /* update ev_rt_now, do magic */ 2009 /* update ev_rt_now, do magic */
1268 time_update (EV_A); 2010 time_update (EV_A_ waittime + sleeptime);
2011 }
1269 2012
1270 /* queue pending timers and reschedule them */ 2013 /* queue pending timers and reschedule them */
1271 timers_reify (EV_A); /* relative timers called last */ 2014 timers_reify (EV_A); /* relative timers called last */
1272#if EV_PERIODICS 2015#if EV_PERIODIC_ENABLE
1273 periodics_reify (EV_A); /* absolute timers called first */ 2016 periodics_reify (EV_A); /* absolute timers called first */
1274#endif 2017#endif
1275 2018
2019#if EV_IDLE_ENABLE
1276 /* queue idle watchers unless io or timers are pending */ 2020 /* queue idle watchers unless other events are pending */
1277 if (idlecnt && !any_pending (EV_A)) 2021 idle_reify (EV_A);
1278 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2022#endif
1279 2023
1280 /* queue check watchers, to be executed first */ 2024 /* queue check watchers, to be executed first */
1281 if (expect_false (checkcnt)) 2025 if (expect_false (checkcnt))
1282 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2026 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1283 2027
1284 call_pending (EV_A); 2028 call_pending (EV_A);
1285
1286 if (expect_false (loop_done))
1287 break;
1288 } 2029 }
2030 while (expect_true (
2031 activecnt
2032 && !loop_done
2033 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2034 ));
1289 2035
1290 if (loop_done != 2) 2036 if (loop_done == EVUNLOOP_ONE)
1291 loop_done = 0; 2037 loop_done = EVUNLOOP_CANCEL;
1292} 2038}
1293 2039
1294void 2040void
1295ev_unloop (EV_P_ int how) 2041ev_unloop (EV_P_ int how)
1296{ 2042{
1297 loop_done = how; 2043 loop_done = how;
1298} 2044}
1299 2045
1300/*****************************************************************************/ 2046/*****************************************************************************/
1301 2047
1302inline void 2048void inline_size
1303wlist_add (WL *head, WL elem) 2049wlist_add (WL *head, WL elem)
1304{ 2050{
1305 elem->next = *head; 2051 elem->next = *head;
1306 *head = elem; 2052 *head = elem;
1307} 2053}
1308 2054
1309inline void 2055void inline_size
1310wlist_del (WL *head, WL elem) 2056wlist_del (WL *head, WL elem)
1311{ 2057{
1312 while (*head) 2058 while (*head)
1313 { 2059 {
1314 if (*head == elem) 2060 if (*head == elem)
1319 2065
1320 head = &(*head)->next; 2066 head = &(*head)->next;
1321 } 2067 }
1322} 2068}
1323 2069
1324inline void 2070void inline_speed
1325ev_clear_pending (EV_P_ W w) 2071clear_pending (EV_P_ W w)
1326{ 2072{
1327 if (w->pending) 2073 if (w->pending)
1328 { 2074 {
1329 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2075 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1330 w->pending = 0; 2076 w->pending = 0;
1331 } 2077 }
1332} 2078}
1333 2079
1334inline void 2080int
2081ev_clear_pending (EV_P_ void *w)
2082{
2083 W w_ = (W)w;
2084 int pending = w_->pending;
2085
2086 if (expect_true (pending))
2087 {
2088 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2089 w_->pending = 0;
2090 p->w = 0;
2091 return p->events;
2092 }
2093 else
2094 return 0;
2095}
2096
2097void inline_size
2098pri_adjust (EV_P_ W w)
2099{
2100 int pri = w->priority;
2101 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2102 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2103 w->priority = pri;
2104}
2105
2106void inline_speed
1335ev_start (EV_P_ W w, int active) 2107ev_start (EV_P_ W w, int active)
1336{ 2108{
1337 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2109 pri_adjust (EV_A_ w);
1338 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1339
1340 w->active = active; 2110 w->active = active;
1341 ev_ref (EV_A); 2111 ev_ref (EV_A);
1342} 2112}
1343 2113
1344inline void 2114void inline_size
1345ev_stop (EV_P_ W w) 2115ev_stop (EV_P_ W w)
1346{ 2116{
1347 ev_unref (EV_A); 2117 ev_unref (EV_A);
1348 w->active = 0; 2118 w->active = 0;
1349} 2119}
1350 2120
1351/*****************************************************************************/ 2121/*****************************************************************************/
1352 2122
1353void 2123void noinline
1354ev_io_start (EV_P_ struct ev_io *w) 2124ev_io_start (EV_P_ ev_io *w)
1355{ 2125{
1356 int fd = w->fd; 2126 int fd = w->fd;
1357 2127
1358 if (expect_false (ev_is_active (w))) 2128 if (expect_false (ev_is_active (w)))
1359 return; 2129 return;
1360 2130
1361 assert (("ev_io_start called with negative fd", fd >= 0)); 2131 assert (("ev_io_start called with negative fd", fd >= 0));
1362 2132
2133 EV_FREQUENT_CHECK;
2134
1363 ev_start (EV_A_ (W)w, 1); 2135 ev_start (EV_A_ (W)w, 1);
1364 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2136 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1365 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2137 wlist_add (&anfds[fd].head, (WL)w);
1366 2138
1367 fd_change (EV_A_ fd); 2139 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1368} 2140 w->events &= ~EV_IOFDSET;
1369 2141
1370void 2142 EV_FREQUENT_CHECK;
2143}
2144
2145void noinline
1371ev_io_stop (EV_P_ struct ev_io *w) 2146ev_io_stop (EV_P_ ev_io *w)
1372{ 2147{
1373 ev_clear_pending (EV_A_ (W)w); 2148 clear_pending (EV_A_ (W)w);
1374 if (expect_false (!ev_is_active (w))) 2149 if (expect_false (!ev_is_active (w)))
1375 return; 2150 return;
1376 2151
1377 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2152 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1378 2153
2154 EV_FREQUENT_CHECK;
2155
1379 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2156 wlist_del (&anfds[w->fd].head, (WL)w);
1380 ev_stop (EV_A_ (W)w); 2157 ev_stop (EV_A_ (W)w);
1381 2158
1382 fd_change (EV_A_ w->fd); 2159 fd_change (EV_A_ w->fd, 1);
1383}
1384 2160
1385void 2161 EV_FREQUENT_CHECK;
2162}
2163
2164void noinline
1386ev_timer_start (EV_P_ struct ev_timer *w) 2165ev_timer_start (EV_P_ ev_timer *w)
1387{ 2166{
1388 if (expect_false (ev_is_active (w))) 2167 if (expect_false (ev_is_active (w)))
1389 return; 2168 return;
1390 2169
1391 ((WT)w)->at += mn_now; 2170 ev_at (w) += mn_now;
1392 2171
1393 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2172 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1394 2173
2174 EV_FREQUENT_CHECK;
2175
2176 ++timercnt;
1395 ev_start (EV_A_ (W)w, ++timercnt); 2177 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1396 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2178 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1397 timers [timercnt - 1] = w; 2179 ANHE_w (timers [ev_active (w)]) = (WT)w;
1398 upheap ((WT *)timers, timercnt - 1); 2180 ANHE_at_cache (timers [ev_active (w)]);
2181 upheap (timers, ev_active (w));
1399 2182
2183 EV_FREQUENT_CHECK;
2184
1400 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2185 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1401} 2186}
1402 2187
1403void 2188void noinline
1404ev_timer_stop (EV_P_ struct ev_timer *w) 2189ev_timer_stop (EV_P_ ev_timer *w)
1405{ 2190{
1406 ev_clear_pending (EV_A_ (W)w); 2191 clear_pending (EV_A_ (W)w);
1407 if (expect_false (!ev_is_active (w))) 2192 if (expect_false (!ev_is_active (w)))
1408 return; 2193 return;
1409 2194
2195 EV_FREQUENT_CHECK;
2196
2197 {
2198 int active = ev_active (w);
2199
1410 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2200 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1411 2201
2202 --timercnt;
2203
1412 if (expect_true (((W)w)->active < timercnt--)) 2204 if (expect_true (active < timercnt + HEAP0))
1413 { 2205 {
1414 timers [((W)w)->active - 1] = timers [timercnt]; 2206 timers [active] = timers [timercnt + HEAP0];
1415 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2207 adjustheap (timers, timercnt, active);
1416 } 2208 }
2209 }
1417 2210
1418 ((WT)w)->at -= mn_now; 2211 EV_FREQUENT_CHECK;
2212
2213 ev_at (w) -= mn_now;
1419 2214
1420 ev_stop (EV_A_ (W)w); 2215 ev_stop (EV_A_ (W)w);
1421} 2216}
1422 2217
1423void 2218void noinline
1424ev_timer_again (EV_P_ struct ev_timer *w) 2219ev_timer_again (EV_P_ ev_timer *w)
1425{ 2220{
2221 EV_FREQUENT_CHECK;
2222
1426 if (ev_is_active (w)) 2223 if (ev_is_active (w))
1427 { 2224 {
1428 if (w->repeat) 2225 if (w->repeat)
1429 { 2226 {
1430 ((WT)w)->at = mn_now + w->repeat; 2227 ev_at (w) = mn_now + w->repeat;
2228 ANHE_at_cache (timers [ev_active (w)]);
1431 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2229 adjustheap (timers, timercnt, ev_active (w));
1432 } 2230 }
1433 else 2231 else
1434 ev_timer_stop (EV_A_ w); 2232 ev_timer_stop (EV_A_ w);
1435 } 2233 }
1436 else if (w->repeat) 2234 else if (w->repeat)
1437 { 2235 {
1438 w->at = w->repeat; 2236 ev_at (w) = w->repeat;
1439 ev_timer_start (EV_A_ w); 2237 ev_timer_start (EV_A_ w);
1440 } 2238 }
1441}
1442 2239
2240 EV_FREQUENT_CHECK;
2241}
2242
1443#if EV_PERIODICS 2243#if EV_PERIODIC_ENABLE
1444void 2244void noinline
1445ev_periodic_start (EV_P_ struct ev_periodic *w) 2245ev_periodic_start (EV_P_ ev_periodic *w)
1446{ 2246{
1447 if (expect_false (ev_is_active (w))) 2247 if (expect_false (ev_is_active (w)))
1448 return; 2248 return;
1449 2249
1450 if (w->reschedule_cb) 2250 if (w->reschedule_cb)
1451 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2251 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1452 else if (w->interval) 2252 else if (w->interval)
1453 { 2253 {
1454 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2254 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1455 /* this formula differs from the one in periodic_reify because we do not always round up */ 2255 /* this formula differs from the one in periodic_reify because we do not always round up */
1456 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2256 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1457 } 2257 }
2258 else
2259 ev_at (w) = w->offset;
1458 2260
2261 EV_FREQUENT_CHECK;
2262
2263 ++periodiccnt;
1459 ev_start (EV_A_ (W)w, ++periodiccnt); 2264 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1460 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2265 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1461 periodics [periodiccnt - 1] = w; 2266 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1462 upheap ((WT *)periodics, periodiccnt - 1); 2267 ANHE_at_cache (periodics [ev_active (w)]);
2268 upheap (periodics, ev_active (w));
1463 2269
2270 EV_FREQUENT_CHECK;
2271
1464 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2272 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1465} 2273}
1466 2274
1467void 2275void noinline
1468ev_periodic_stop (EV_P_ struct ev_periodic *w) 2276ev_periodic_stop (EV_P_ ev_periodic *w)
1469{ 2277{
1470 ev_clear_pending (EV_A_ (W)w); 2278 clear_pending (EV_A_ (W)w);
1471 if (expect_false (!ev_is_active (w))) 2279 if (expect_false (!ev_is_active (w)))
1472 return; 2280 return;
1473 2281
2282 EV_FREQUENT_CHECK;
2283
2284 {
2285 int active = ev_active (w);
2286
1474 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2287 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1475 2288
2289 --periodiccnt;
2290
1476 if (expect_true (((W)w)->active < periodiccnt--)) 2291 if (expect_true (active < periodiccnt + HEAP0))
1477 { 2292 {
1478 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2293 periodics [active] = periodics [periodiccnt + HEAP0];
1479 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2294 adjustheap (periodics, periodiccnt, active);
1480 } 2295 }
2296 }
2297
2298 EV_FREQUENT_CHECK;
1481 2299
1482 ev_stop (EV_A_ (W)w); 2300 ev_stop (EV_A_ (W)w);
1483} 2301}
1484 2302
1485void 2303void noinline
1486ev_periodic_again (EV_P_ struct ev_periodic *w) 2304ev_periodic_again (EV_P_ ev_periodic *w)
1487{ 2305{
1488 /* TODO: use adjustheap and recalculation */ 2306 /* TODO: use adjustheap and recalculation */
1489 ev_periodic_stop (EV_A_ w); 2307 ev_periodic_stop (EV_A_ w);
1490 ev_periodic_start (EV_A_ w); 2308 ev_periodic_start (EV_A_ w);
1491} 2309}
1492#endif 2310#endif
1493 2311
1494void 2312#ifndef SA_RESTART
1495ev_idle_start (EV_P_ struct ev_idle *w) 2313# define SA_RESTART 0
2314#endif
2315
2316void noinline
2317ev_signal_start (EV_P_ ev_signal *w)
1496{ 2318{
2319#if EV_MULTIPLICITY
2320 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2321#endif
1497 if (expect_false (ev_is_active (w))) 2322 if (expect_false (ev_is_active (w)))
1498 return; 2323 return;
1499 2324
1500 ev_start (EV_A_ (W)w, ++idlecnt);
1501 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1502 idles [idlecnt - 1] = w;
1503}
1504
1505void
1506ev_idle_stop (EV_P_ struct ev_idle *w)
1507{
1508 ev_clear_pending (EV_A_ (W)w);
1509 if (expect_false (!ev_is_active (w)))
1510 return;
1511
1512 idles [((W)w)->active - 1] = idles [--idlecnt];
1513 ev_stop (EV_A_ (W)w);
1514}
1515
1516void
1517ev_prepare_start (EV_P_ struct ev_prepare *w)
1518{
1519 if (expect_false (ev_is_active (w)))
1520 return;
1521
1522 ev_start (EV_A_ (W)w, ++preparecnt);
1523 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1524 prepares [preparecnt - 1] = w;
1525}
1526
1527void
1528ev_prepare_stop (EV_P_ struct ev_prepare *w)
1529{
1530 ev_clear_pending (EV_A_ (W)w);
1531 if (expect_false (!ev_is_active (w)))
1532 return;
1533
1534 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1535 ev_stop (EV_A_ (W)w);
1536}
1537
1538void
1539ev_check_start (EV_P_ struct ev_check *w)
1540{
1541 if (expect_false (ev_is_active (w)))
1542 return;
1543
1544 ev_start (EV_A_ (W)w, ++checkcnt);
1545 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1546 checks [checkcnt - 1] = w;
1547}
1548
1549void
1550ev_check_stop (EV_P_ struct ev_check *w)
1551{
1552 ev_clear_pending (EV_A_ (W)w);
1553 if (expect_false (!ev_is_active (w)))
1554 return;
1555
1556 checks [((W)w)->active - 1] = checks [--checkcnt];
1557 ev_stop (EV_A_ (W)w);
1558}
1559
1560#ifndef SA_RESTART
1561# define SA_RESTART 0
1562#endif
1563
1564void
1565ev_signal_start (EV_P_ struct ev_signal *w)
1566{
1567#if EV_MULTIPLICITY
1568 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1569#endif
1570 if (expect_false (ev_is_active (w)))
1571 return;
1572
1573 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2325 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1574 2326
2327 evpipe_init (EV_A);
2328
2329 EV_FREQUENT_CHECK;
2330
2331 {
2332#ifndef _WIN32
2333 sigset_t full, prev;
2334 sigfillset (&full);
2335 sigprocmask (SIG_SETMASK, &full, &prev);
2336#endif
2337
2338 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2339
2340#ifndef _WIN32
2341 sigprocmask (SIG_SETMASK, &prev, 0);
2342#endif
2343 }
2344
1575 ev_start (EV_A_ (W)w, 1); 2345 ev_start (EV_A_ (W)w, 1);
1576 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1577 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2346 wlist_add (&signals [w->signum - 1].head, (WL)w);
1578 2347
1579 if (!((WL)w)->next) 2348 if (!((WL)w)->next)
1580 { 2349 {
1581#if _WIN32 2350#if _WIN32
1582 signal (w->signum, sighandler); 2351 signal (w->signum, ev_sighandler);
1583#else 2352#else
1584 struct sigaction sa; 2353 struct sigaction sa;
1585 sa.sa_handler = sighandler; 2354 sa.sa_handler = ev_sighandler;
1586 sigfillset (&sa.sa_mask); 2355 sigfillset (&sa.sa_mask);
1587 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2356 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1588 sigaction (w->signum, &sa, 0); 2357 sigaction (w->signum, &sa, 0);
1589#endif 2358#endif
1590 } 2359 }
1591}
1592 2360
1593void 2361 EV_FREQUENT_CHECK;
2362}
2363
2364void noinline
1594ev_signal_stop (EV_P_ struct ev_signal *w) 2365ev_signal_stop (EV_P_ ev_signal *w)
1595{ 2366{
1596 ev_clear_pending (EV_A_ (W)w); 2367 clear_pending (EV_A_ (W)w);
1597 if (expect_false (!ev_is_active (w))) 2368 if (expect_false (!ev_is_active (w)))
1598 return; 2369 return;
1599 2370
2371 EV_FREQUENT_CHECK;
2372
1600 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2373 wlist_del (&signals [w->signum - 1].head, (WL)w);
1601 ev_stop (EV_A_ (W)w); 2374 ev_stop (EV_A_ (W)w);
1602 2375
1603 if (!signals [w->signum - 1].head) 2376 if (!signals [w->signum - 1].head)
1604 signal (w->signum, SIG_DFL); 2377 signal (w->signum, SIG_DFL);
1605}
1606 2378
2379 EV_FREQUENT_CHECK;
2380}
2381
1607void 2382void
1608ev_child_start (EV_P_ struct ev_child *w) 2383ev_child_start (EV_P_ ev_child *w)
1609{ 2384{
1610#if EV_MULTIPLICITY 2385#if EV_MULTIPLICITY
1611 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2386 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1612#endif 2387#endif
1613 if (expect_false (ev_is_active (w))) 2388 if (expect_false (ev_is_active (w)))
1614 return; 2389 return;
1615 2390
2391 EV_FREQUENT_CHECK;
2392
1616 ev_start (EV_A_ (W)w, 1); 2393 ev_start (EV_A_ (W)w, 1);
1617 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2394 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1618}
1619 2395
2396 EV_FREQUENT_CHECK;
2397}
2398
1620void 2399void
1621ev_child_stop (EV_P_ struct ev_child *w) 2400ev_child_stop (EV_P_ ev_child *w)
1622{ 2401{
1623 ev_clear_pending (EV_A_ (W)w); 2402 clear_pending (EV_A_ (W)w);
1624 if (expect_false (!ev_is_active (w))) 2403 if (expect_false (!ev_is_active (w)))
1625 return; 2404 return;
1626 2405
2406 EV_FREQUENT_CHECK;
2407
1627 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2408 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1628 ev_stop (EV_A_ (W)w); 2409 ev_stop (EV_A_ (W)w);
2410
2411 EV_FREQUENT_CHECK;
1629} 2412}
2413
2414#if EV_STAT_ENABLE
2415
2416# ifdef _WIN32
2417# undef lstat
2418# define lstat(a,b) _stati64 (a,b)
2419# endif
2420
2421#define DEF_STAT_INTERVAL 5.0074891
2422#define MIN_STAT_INTERVAL 0.1074891
2423
2424static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2425
2426#if EV_USE_INOTIFY
2427# define EV_INOTIFY_BUFSIZE 8192
2428
2429static void noinline
2430infy_add (EV_P_ ev_stat *w)
2431{
2432 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2433
2434 if (w->wd < 0)
2435 {
2436 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2437
2438 /* monitor some parent directory for speedup hints */
2439 /* note that exceeding the hardcoded limit is not a correctness issue, */
2440 /* but an efficiency issue only */
2441 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2442 {
2443 char path [4096];
2444 strcpy (path, w->path);
2445
2446 do
2447 {
2448 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2449 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2450
2451 char *pend = strrchr (path, '/');
2452
2453 if (!pend)
2454 break; /* whoops, no '/', complain to your admin */
2455
2456 *pend = 0;
2457 w->wd = inotify_add_watch (fs_fd, path, mask);
2458 }
2459 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2460 }
2461 }
2462 else
2463 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2464
2465 if (w->wd >= 0)
2466 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2467}
2468
2469static void noinline
2470infy_del (EV_P_ ev_stat *w)
2471{
2472 int slot;
2473 int wd = w->wd;
2474
2475 if (wd < 0)
2476 return;
2477
2478 w->wd = -2;
2479 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2480 wlist_del (&fs_hash [slot].head, (WL)w);
2481
2482 /* remove this watcher, if others are watching it, they will rearm */
2483 inotify_rm_watch (fs_fd, wd);
2484}
2485
2486static void noinline
2487infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2488{
2489 if (slot < 0)
2490 /* overflow, need to check for all hahs slots */
2491 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2492 infy_wd (EV_A_ slot, wd, ev);
2493 else
2494 {
2495 WL w_;
2496
2497 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2498 {
2499 ev_stat *w = (ev_stat *)w_;
2500 w_ = w_->next; /* lets us remove this watcher and all before it */
2501
2502 if (w->wd == wd || wd == -1)
2503 {
2504 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2505 {
2506 w->wd = -1;
2507 infy_add (EV_A_ w); /* re-add, no matter what */
2508 }
2509
2510 stat_timer_cb (EV_A_ &w->timer, 0);
2511 }
2512 }
2513 }
2514}
2515
2516static void
2517infy_cb (EV_P_ ev_io *w, int revents)
2518{
2519 char buf [EV_INOTIFY_BUFSIZE];
2520 struct inotify_event *ev = (struct inotify_event *)buf;
2521 int ofs;
2522 int len = read (fs_fd, buf, sizeof (buf));
2523
2524 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2525 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2526}
2527
2528void inline_size
2529infy_init (EV_P)
2530{
2531 if (fs_fd != -2)
2532 return;
2533
2534 fs_fd = inotify_init ();
2535
2536 if (fs_fd >= 0)
2537 {
2538 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2539 ev_set_priority (&fs_w, EV_MAXPRI);
2540 ev_io_start (EV_A_ &fs_w);
2541 }
2542}
2543
2544void inline_size
2545infy_fork (EV_P)
2546{
2547 int slot;
2548
2549 if (fs_fd < 0)
2550 return;
2551
2552 close (fs_fd);
2553 fs_fd = inotify_init ();
2554
2555 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2556 {
2557 WL w_ = fs_hash [slot].head;
2558 fs_hash [slot].head = 0;
2559
2560 while (w_)
2561 {
2562 ev_stat *w = (ev_stat *)w_;
2563 w_ = w_->next; /* lets us add this watcher */
2564
2565 w->wd = -1;
2566
2567 if (fs_fd >= 0)
2568 infy_add (EV_A_ w); /* re-add, no matter what */
2569 else
2570 ev_timer_start (EV_A_ &w->timer);
2571 }
2572
2573 }
2574}
2575
2576#endif
2577
2578#ifdef _WIN32
2579# define EV_LSTAT(p,b) _stati64 (p, b)
2580#else
2581# define EV_LSTAT(p,b) lstat (p, b)
2582#endif
2583
2584void
2585ev_stat_stat (EV_P_ ev_stat *w)
2586{
2587 if (lstat (w->path, &w->attr) < 0)
2588 w->attr.st_nlink = 0;
2589 else if (!w->attr.st_nlink)
2590 w->attr.st_nlink = 1;
2591}
2592
2593static void noinline
2594stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2595{
2596 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2597
2598 /* we copy this here each the time so that */
2599 /* prev has the old value when the callback gets invoked */
2600 w->prev = w->attr;
2601 ev_stat_stat (EV_A_ w);
2602
2603 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2604 if (
2605 w->prev.st_dev != w->attr.st_dev
2606 || w->prev.st_ino != w->attr.st_ino
2607 || w->prev.st_mode != w->attr.st_mode
2608 || w->prev.st_nlink != w->attr.st_nlink
2609 || w->prev.st_uid != w->attr.st_uid
2610 || w->prev.st_gid != w->attr.st_gid
2611 || w->prev.st_rdev != w->attr.st_rdev
2612 || w->prev.st_size != w->attr.st_size
2613 || w->prev.st_atime != w->attr.st_atime
2614 || w->prev.st_mtime != w->attr.st_mtime
2615 || w->prev.st_ctime != w->attr.st_ctime
2616 ) {
2617 #if EV_USE_INOTIFY
2618 infy_del (EV_A_ w);
2619 infy_add (EV_A_ w);
2620 ev_stat_stat (EV_A_ w); /* avoid race... */
2621 #endif
2622
2623 ev_feed_event (EV_A_ w, EV_STAT);
2624 }
2625}
2626
2627void
2628ev_stat_start (EV_P_ ev_stat *w)
2629{
2630 if (expect_false (ev_is_active (w)))
2631 return;
2632
2633 /* since we use memcmp, we need to clear any padding data etc. */
2634 memset (&w->prev, 0, sizeof (ev_statdata));
2635 memset (&w->attr, 0, sizeof (ev_statdata));
2636
2637 ev_stat_stat (EV_A_ w);
2638
2639 if (w->interval < MIN_STAT_INTERVAL)
2640 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2641
2642 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2643 ev_set_priority (&w->timer, ev_priority (w));
2644
2645#if EV_USE_INOTIFY
2646 infy_init (EV_A);
2647
2648 if (fs_fd >= 0)
2649 infy_add (EV_A_ w);
2650 else
2651#endif
2652 ev_timer_start (EV_A_ &w->timer);
2653
2654 ev_start (EV_A_ (W)w, 1);
2655
2656 EV_FREQUENT_CHECK;
2657}
2658
2659void
2660ev_stat_stop (EV_P_ ev_stat *w)
2661{
2662 clear_pending (EV_A_ (W)w);
2663 if (expect_false (!ev_is_active (w)))
2664 return;
2665
2666 EV_FREQUENT_CHECK;
2667
2668#if EV_USE_INOTIFY
2669 infy_del (EV_A_ w);
2670#endif
2671 ev_timer_stop (EV_A_ &w->timer);
2672
2673 ev_stop (EV_A_ (W)w);
2674
2675 EV_FREQUENT_CHECK;
2676}
2677#endif
2678
2679#if EV_IDLE_ENABLE
2680void
2681ev_idle_start (EV_P_ ev_idle *w)
2682{
2683 if (expect_false (ev_is_active (w)))
2684 return;
2685
2686 pri_adjust (EV_A_ (W)w);
2687
2688 EV_FREQUENT_CHECK;
2689
2690 {
2691 int active = ++idlecnt [ABSPRI (w)];
2692
2693 ++idleall;
2694 ev_start (EV_A_ (W)w, active);
2695
2696 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2697 idles [ABSPRI (w)][active - 1] = w;
2698 }
2699
2700 EV_FREQUENT_CHECK;
2701}
2702
2703void
2704ev_idle_stop (EV_P_ ev_idle *w)
2705{
2706 clear_pending (EV_A_ (W)w);
2707 if (expect_false (!ev_is_active (w)))
2708 return;
2709
2710 EV_FREQUENT_CHECK;
2711
2712 {
2713 int active = ev_active (w);
2714
2715 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2716 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2717
2718 ev_stop (EV_A_ (W)w);
2719 --idleall;
2720 }
2721
2722 EV_FREQUENT_CHECK;
2723}
2724#endif
2725
2726void
2727ev_prepare_start (EV_P_ ev_prepare *w)
2728{
2729 if (expect_false (ev_is_active (w)))
2730 return;
2731
2732 EV_FREQUENT_CHECK;
2733
2734 ev_start (EV_A_ (W)w, ++preparecnt);
2735 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2736 prepares [preparecnt - 1] = w;
2737
2738 EV_FREQUENT_CHECK;
2739}
2740
2741void
2742ev_prepare_stop (EV_P_ ev_prepare *w)
2743{
2744 clear_pending (EV_A_ (W)w);
2745 if (expect_false (!ev_is_active (w)))
2746 return;
2747
2748 EV_FREQUENT_CHECK;
2749
2750 {
2751 int active = ev_active (w);
2752
2753 prepares [active - 1] = prepares [--preparecnt];
2754 ev_active (prepares [active - 1]) = active;
2755 }
2756
2757 ev_stop (EV_A_ (W)w);
2758
2759 EV_FREQUENT_CHECK;
2760}
2761
2762void
2763ev_check_start (EV_P_ ev_check *w)
2764{
2765 if (expect_false (ev_is_active (w)))
2766 return;
2767
2768 EV_FREQUENT_CHECK;
2769
2770 ev_start (EV_A_ (W)w, ++checkcnt);
2771 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2772 checks [checkcnt - 1] = w;
2773
2774 EV_FREQUENT_CHECK;
2775}
2776
2777void
2778ev_check_stop (EV_P_ ev_check *w)
2779{
2780 clear_pending (EV_A_ (W)w);
2781 if (expect_false (!ev_is_active (w)))
2782 return;
2783
2784 EV_FREQUENT_CHECK;
2785
2786 {
2787 int active = ev_active (w);
2788
2789 checks [active - 1] = checks [--checkcnt];
2790 ev_active (checks [active - 1]) = active;
2791 }
2792
2793 ev_stop (EV_A_ (W)w);
2794
2795 EV_FREQUENT_CHECK;
2796}
2797
2798#if EV_EMBED_ENABLE
2799void noinline
2800ev_embed_sweep (EV_P_ ev_embed *w)
2801{
2802 ev_loop (w->other, EVLOOP_NONBLOCK);
2803}
2804
2805static void
2806embed_io_cb (EV_P_ ev_io *io, int revents)
2807{
2808 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2809
2810 if (ev_cb (w))
2811 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2812 else
2813 ev_loop (w->other, EVLOOP_NONBLOCK);
2814}
2815
2816static void
2817embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2818{
2819 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2820
2821 {
2822 struct ev_loop *loop = w->other;
2823
2824 while (fdchangecnt)
2825 {
2826 fd_reify (EV_A);
2827 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2828 }
2829 }
2830}
2831
2832#if 0
2833static void
2834embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2835{
2836 ev_idle_stop (EV_A_ idle);
2837}
2838#endif
2839
2840void
2841ev_embed_start (EV_P_ ev_embed *w)
2842{
2843 if (expect_false (ev_is_active (w)))
2844 return;
2845
2846 {
2847 struct ev_loop *loop = w->other;
2848 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2849 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2850 }
2851
2852 EV_FREQUENT_CHECK;
2853
2854 ev_set_priority (&w->io, ev_priority (w));
2855 ev_io_start (EV_A_ &w->io);
2856
2857 ev_prepare_init (&w->prepare, embed_prepare_cb);
2858 ev_set_priority (&w->prepare, EV_MINPRI);
2859 ev_prepare_start (EV_A_ &w->prepare);
2860
2861 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2862
2863 ev_start (EV_A_ (W)w, 1);
2864
2865 EV_FREQUENT_CHECK;
2866}
2867
2868void
2869ev_embed_stop (EV_P_ ev_embed *w)
2870{
2871 clear_pending (EV_A_ (W)w);
2872 if (expect_false (!ev_is_active (w)))
2873 return;
2874
2875 EV_FREQUENT_CHECK;
2876
2877 ev_io_stop (EV_A_ &w->io);
2878 ev_prepare_stop (EV_A_ &w->prepare);
2879
2880 ev_stop (EV_A_ (W)w);
2881
2882 EV_FREQUENT_CHECK;
2883}
2884#endif
2885
2886#if EV_FORK_ENABLE
2887void
2888ev_fork_start (EV_P_ ev_fork *w)
2889{
2890 if (expect_false (ev_is_active (w)))
2891 return;
2892
2893 EV_FREQUENT_CHECK;
2894
2895 ev_start (EV_A_ (W)w, ++forkcnt);
2896 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2897 forks [forkcnt - 1] = w;
2898
2899 EV_FREQUENT_CHECK;
2900}
2901
2902void
2903ev_fork_stop (EV_P_ ev_fork *w)
2904{
2905 clear_pending (EV_A_ (W)w);
2906 if (expect_false (!ev_is_active (w)))
2907 return;
2908
2909 EV_FREQUENT_CHECK;
2910
2911 {
2912 int active = ev_active (w);
2913
2914 forks [active - 1] = forks [--forkcnt];
2915 ev_active (forks [active - 1]) = active;
2916 }
2917
2918 ev_stop (EV_A_ (W)w);
2919
2920 EV_FREQUENT_CHECK;
2921}
2922#endif
2923
2924#if EV_ASYNC_ENABLE
2925void
2926ev_async_start (EV_P_ ev_async *w)
2927{
2928 if (expect_false (ev_is_active (w)))
2929 return;
2930
2931 evpipe_init (EV_A);
2932
2933 EV_FREQUENT_CHECK;
2934
2935 ev_start (EV_A_ (W)w, ++asynccnt);
2936 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2937 asyncs [asynccnt - 1] = w;
2938
2939 EV_FREQUENT_CHECK;
2940}
2941
2942void
2943ev_async_stop (EV_P_ ev_async *w)
2944{
2945 clear_pending (EV_A_ (W)w);
2946 if (expect_false (!ev_is_active (w)))
2947 return;
2948
2949 EV_FREQUENT_CHECK;
2950
2951 {
2952 int active = ev_active (w);
2953
2954 asyncs [active - 1] = asyncs [--asynccnt];
2955 ev_active (asyncs [active - 1]) = active;
2956 }
2957
2958 ev_stop (EV_A_ (W)w);
2959
2960 EV_FREQUENT_CHECK;
2961}
2962
2963void
2964ev_async_send (EV_P_ ev_async *w)
2965{
2966 w->sent = 1;
2967 evpipe_write (EV_A_ &gotasync);
2968}
2969#endif
1630 2970
1631/*****************************************************************************/ 2971/*****************************************************************************/
1632 2972
1633struct ev_once 2973struct ev_once
1634{ 2974{
1635 struct ev_io io; 2975 ev_io io;
1636 struct ev_timer to; 2976 ev_timer to;
1637 void (*cb)(int revents, void *arg); 2977 void (*cb)(int revents, void *arg);
1638 void *arg; 2978 void *arg;
1639}; 2979};
1640 2980
1641static void 2981static void
1642once_cb (EV_P_ struct ev_once *once, int revents) 2982once_cb (EV_P_ struct ev_once *once, int revents)
1643{ 2983{
1644 void (*cb)(int revents, void *arg) = once->cb; 2984 void (*cb)(int revents, void *arg) = once->cb;
1645 void *arg = once->arg; 2985 void *arg = once->arg;
1646 2986
1647 ev_io_stop (EV_A_ &once->io); 2987 ev_io_stop (EV_A_ &once->io);
1648 ev_timer_stop (EV_A_ &once->to); 2988 ev_timer_stop (EV_A_ &once->to);
1649 ev_free (once); 2989 ev_free (once);
1650 2990
1651 cb (revents, arg); 2991 cb (revents, arg);
1652} 2992}
1653 2993
1654static void 2994static void
1655once_cb_io (EV_P_ struct ev_io *w, int revents) 2995once_cb_io (EV_P_ ev_io *w, int revents)
1656{ 2996{
1657 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2997 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1658} 2998}
1659 2999
1660static void 3000static void
1661once_cb_to (EV_P_ struct ev_timer *w, int revents) 3001once_cb_to (EV_P_ ev_timer *w, int revents)
1662{ 3002{
1663 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3003 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1664} 3004}
1665 3005
1666void 3006void
1690 ev_timer_set (&once->to, timeout, 0.); 3030 ev_timer_set (&once->to, timeout, 0.);
1691 ev_timer_start (EV_A_ &once->to); 3031 ev_timer_start (EV_A_ &once->to);
1692 } 3032 }
1693} 3033}
1694 3034
3035#if EV_MULTIPLICITY
3036 #include "ev_wrap.h"
3037#endif
3038
1695#ifdef __cplusplus 3039#ifdef __cplusplus
1696} 3040}
1697#endif 3041#endif
1698 3042

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines