ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.122 by root, Sat Nov 17 02:00:48 2007 UTC vs.
Revision 1.260 by root, Mon Sep 8 17:24:39 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
38 51
39# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 53# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
42# endif 55# endif
43# ifndef EV_USE_REALTIME 56# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 57# define EV_USE_REALTIME 1
45# endif 58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
46# endif 66# endif
47 67
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
50# endif 74# endif
51 75
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
53# define EV_USE_POLL 1 78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
54# endif 82# endif
55 83
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
57# define EV_USE_EPOLL 1 86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
58# endif 90# endif
59 91
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
62# endif 98# endif
63 99
64# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
65# define EV_USE_PORT 1 102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
66# endif 106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
67 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
68#endif 132#endif
69 133
70#include <math.h> 134#include <math.h>
71#include <stdlib.h> 135#include <stdlib.h>
72#include <fcntl.h> 136#include <fcntl.h>
79#include <sys/types.h> 143#include <sys/types.h>
80#include <time.h> 144#include <time.h>
81 145
82#include <signal.h> 146#include <signal.h>
83 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
84#ifndef _WIN32 154#ifndef _WIN32
85# include <unistd.h>
86# include <sys/time.h> 155# include <sys/time.h>
87# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
88#else 158#else
159# include <io.h>
89# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
90# include <windows.h> 161# include <windows.h>
91# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
92# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
93# endif 164# endif
94#endif 165#endif
95 166
96/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
97 168
98#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
99# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
100#endif 175#endif
101 176
102#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
103# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
179#endif
180
181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
185# define EV_USE_NANOSLEEP 0
186# endif
104#endif 187#endif
105 188
106#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
107# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
108#endif 191#endif
114# define EV_USE_POLL 1 197# define EV_USE_POLL 1
115# endif 198# endif
116#endif 199#endif
117 200
118#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
119# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
120#endif 207#endif
121 208
122#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
123# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
124#endif 211#endif
125 212
126#ifndef EV_USE_PORT 213#ifndef EV_USE_PORT
127# define EV_USE_PORT 0 214# define EV_USE_PORT 0
128#endif 215#endif
129 216
130/**/ 217#ifndef EV_USE_INOTIFY
131 218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
132/* darwin simply cannot be helped */ 219# define EV_USE_INOTIFY 1
133#ifdef __APPLE__ 220# else
134# undef EV_USE_POLL 221# define EV_USE_INOTIFY 0
135# undef EV_USE_KQUEUE
136#endif 222# endif
223#endif
224
225#ifndef EV_PID_HASHSIZE
226# if EV_MINIMAL
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
230# endif
231#endif
232
233#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif
240
241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
137 268
138#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
139# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
140# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
141#endif 272#endif
143#ifndef CLOCK_REALTIME 274#ifndef CLOCK_REALTIME
144# undef EV_USE_REALTIME 275# undef EV_USE_REALTIME
145# define EV_USE_REALTIME 0 276# define EV_USE_REALTIME 0
146#endif 277#endif
147 278
279#if !EV_STAT_ENABLE
280# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0
282#endif
283
284#if !EV_USE_NANOSLEEP
285# ifndef _WIN32
286# include <sys/select.h>
287# endif
288#endif
289
290#if EV_USE_INOTIFY
291# include <sys/inotify.h>
292#endif
293
148#if EV_SELECT_IS_WINSOCKET 294#if EV_SELECT_IS_WINSOCKET
149# include <winsock.h> 295# include <winsock.h>
150#endif 296#endif
151 297
298#if EV_USE_EVENTFD
299/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
300# include <stdint.h>
301# ifdef __cplusplus
302extern "C" {
303# endif
304int eventfd (unsigned int initval, int flags);
305# ifdef __cplusplus
306}
307# endif
308#endif
309
152/**/ 310/**/
311
312#if EV_VERIFY >= 3
313# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
314#else
315# define EV_FREQUENT_CHECK do { } while (0)
316#endif
317
318/*
319 * This is used to avoid floating point rounding problems.
320 * It is added to ev_rt_now when scheduling periodics
321 * to ensure progress, time-wise, even when rounding
322 * errors are against us.
323 * This value is good at least till the year 4000.
324 * Better solutions welcome.
325 */
326#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
153 327
154#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 328#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
155#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 329#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
156#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
157/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 330/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
158 331
159#ifdef EV_H
160# include EV_H
161#else
162# include "ev.h"
163#endif
164
165#if __GNUC__ >= 3 332#if __GNUC__ >= 4
166# define expect(expr,value) __builtin_expect ((expr),(value)) 333# define expect(expr,value) __builtin_expect ((expr),(value))
167# define inline inline 334# define noinline __attribute__ ((noinline))
168#else 335#else
169# define expect(expr,value) (expr) 336# define expect(expr,value) (expr)
170# define inline static 337# define noinline
338# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
339# define inline
340# endif
171#endif 341#endif
172 342
173#define expect_false(expr) expect ((expr) != 0, 0) 343#define expect_false(expr) expect ((expr) != 0, 0)
174#define expect_true(expr) expect ((expr) != 0, 1) 344#define expect_true(expr) expect ((expr) != 0, 1)
345#define inline_size static inline
346
347#if EV_MINIMAL
348# define inline_speed static noinline
349#else
350# define inline_speed static inline
351#endif
175 352
176#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 353#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
177#define ABSPRI(w) ((w)->priority - EV_MINPRI) 354#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
178 355
179#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 356#define EMPTY /* required for microsofts broken pseudo-c compiler */
180#define EMPTY2(a,b) /* used to suppress some warnings */ 357#define EMPTY2(a,b) /* used to suppress some warnings */
181 358
182typedef struct ev_watcher *W; 359typedef ev_watcher *W;
183typedef struct ev_watcher_list *WL; 360typedef ev_watcher_list *WL;
184typedef struct ev_watcher_time *WT; 361typedef ev_watcher_time *WT;
185 362
363#define ev_active(w) ((W)(w))->active
364#define ev_at(w) ((WT)(w))->at
365
366#if EV_USE_MONOTONIC
367/* sig_atomic_t is used to avoid per-thread variables or locking but still */
368/* giving it a reasonably high chance of working on typical architetcures */
186static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 369static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
370#endif
187 371
188#ifdef _WIN32 372#ifdef _WIN32
189# include "ev_win32.c" 373# include "ev_win32.c"
190#endif 374#endif
191 375
192/*****************************************************************************/ 376/*****************************************************************************/
193 377
194static void (*syserr_cb)(const char *msg); 378static void (*syserr_cb)(const char *msg);
195 379
380void
196void ev_set_syserr_cb (void (*cb)(const char *msg)) 381ev_set_syserr_cb (void (*cb)(const char *msg))
197{ 382{
198 syserr_cb = cb; 383 syserr_cb = cb;
199} 384}
200 385
201static void 386static void noinline
202syserr (const char *msg) 387syserr (const char *msg)
203{ 388{
204 if (!msg) 389 if (!msg)
205 msg = "(libev) system error"; 390 msg = "(libev) system error";
206 391
211 perror (msg); 396 perror (msg);
212 abort (); 397 abort ();
213 } 398 }
214} 399}
215 400
401static void *
402ev_realloc_emul (void *ptr, long size)
403{
404 /* some systems, notably openbsd and darwin, fail to properly
405 * implement realloc (x, 0) (as required by both ansi c-98 and
406 * the single unix specification, so work around them here.
407 */
408
409 if (size)
410 return realloc (ptr, size);
411
412 free (ptr);
413 return 0;
414}
415
216static void *(*alloc)(void *ptr, long size); 416static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
217 417
418void
218void ev_set_allocator (void *(*cb)(void *ptr, long size)) 419ev_set_allocator (void *(*cb)(void *ptr, long size))
219{ 420{
220 alloc = cb; 421 alloc = cb;
221} 422}
222 423
223static void * 424inline_speed void *
224ev_realloc (void *ptr, long size) 425ev_realloc (void *ptr, long size)
225{ 426{
226 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 427 ptr = alloc (ptr, size);
227 428
228 if (!ptr && size) 429 if (!ptr && size)
229 { 430 {
230 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 431 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
231 abort (); 432 abort ();
252typedef struct 453typedef struct
253{ 454{
254 W w; 455 W w;
255 int events; 456 int events;
256} ANPENDING; 457} ANPENDING;
458
459#if EV_USE_INOTIFY
460/* hash table entry per inotify-id */
461typedef struct
462{
463 WL head;
464} ANFS;
465#endif
466
467/* Heap Entry */
468#if EV_HEAP_CACHE_AT
469 typedef struct {
470 ev_tstamp at;
471 WT w;
472 } ANHE;
473
474 #define ANHE_w(he) (he).w /* access watcher, read-write */
475 #define ANHE_at(he) (he).at /* access cached at, read-only */
476 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
477#else
478 typedef WT ANHE;
479
480 #define ANHE_w(he) (he)
481 #define ANHE_at(he) (he)->at
482 #define ANHE_at_cache(he)
483#endif
257 484
258#if EV_MULTIPLICITY 485#if EV_MULTIPLICITY
259 486
260 struct ev_loop 487 struct ev_loop
261 { 488 {
295 gettimeofday (&tv, 0); 522 gettimeofday (&tv, 0);
296 return tv.tv_sec + tv.tv_usec * 1e-6; 523 return tv.tv_sec + tv.tv_usec * 1e-6;
297#endif 524#endif
298} 525}
299 526
300inline ev_tstamp 527ev_tstamp inline_size
301get_clock (void) 528get_clock (void)
302{ 529{
303#if EV_USE_MONOTONIC 530#if EV_USE_MONOTONIC
304 if (expect_true (have_monotonic)) 531 if (expect_true (have_monotonic))
305 { 532 {
318{ 545{
319 return ev_rt_now; 546 return ev_rt_now;
320} 547}
321#endif 548#endif
322 549
323#define array_roundsize(type,n) (((n) | 4) & ~3) 550void
551ev_sleep (ev_tstamp delay)
552{
553 if (delay > 0.)
554 {
555#if EV_USE_NANOSLEEP
556 struct timespec ts;
557
558 ts.tv_sec = (time_t)delay;
559 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
560
561 nanosleep (&ts, 0);
562#elif defined(_WIN32)
563 Sleep ((unsigned long)(delay * 1e3));
564#else
565 struct timeval tv;
566
567 tv.tv_sec = (time_t)delay;
568 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
569
570 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
571 /* somehting nto guaranteed by newer posix versions, but guaranteed */
572 /* by older ones */
573 select (0, 0, 0, 0, &tv);
574#endif
575 }
576}
577
578/*****************************************************************************/
579
580#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
581
582int inline_size
583array_nextsize (int elem, int cur, int cnt)
584{
585 int ncur = cur + 1;
586
587 do
588 ncur <<= 1;
589 while (cnt > ncur);
590
591 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
592 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
593 {
594 ncur *= elem;
595 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
596 ncur = ncur - sizeof (void *) * 4;
597 ncur /= elem;
598 }
599
600 return ncur;
601}
602
603static noinline void *
604array_realloc (int elem, void *base, int *cur, int cnt)
605{
606 *cur = array_nextsize (elem, *cur, cnt);
607 return ev_realloc (base, elem * *cur);
608}
324 609
325#define array_needsize(type,base,cur,cnt,init) \ 610#define array_needsize(type,base,cur,cnt,init) \
326 if (expect_false ((cnt) > cur)) \ 611 if (expect_false ((cnt) > (cur))) \
327 { \ 612 { \
328 int newcnt = cur; \ 613 int ocur_ = (cur); \
329 do \ 614 (base) = (type *)array_realloc \
330 { \ 615 (sizeof (type), (base), &(cur), (cnt)); \
331 newcnt = array_roundsize (type, newcnt << 1); \ 616 init ((base) + (ocur_), (cur) - ocur_); \
332 } \
333 while ((cnt) > newcnt); \
334 \
335 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
336 init (base + cur, newcnt - cur); \
337 cur = newcnt; \
338 } 617 }
339 618
619#if 0
340#define array_slim(type,stem) \ 620#define array_slim(type,stem) \
341 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 621 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
342 { \ 622 { \
343 stem ## max = array_roundsize (stem ## cnt >> 1); \ 623 stem ## max = array_roundsize (stem ## cnt >> 1); \
344 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 624 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
345 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 625 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
346 } 626 }
627#endif
347 628
348#define array_free(stem, idx) \ 629#define array_free(stem, idx) \
349 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 630 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
350 631
351/*****************************************************************************/ 632/*****************************************************************************/
352 633
353static void 634void noinline
635ev_feed_event (EV_P_ void *w, int revents)
636{
637 W w_ = (W)w;
638 int pri = ABSPRI (w_);
639
640 if (expect_false (w_->pending))
641 pendings [pri][w_->pending - 1].events |= revents;
642 else
643 {
644 w_->pending = ++pendingcnt [pri];
645 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
646 pendings [pri][w_->pending - 1].w = w_;
647 pendings [pri][w_->pending - 1].events = revents;
648 }
649}
650
651void inline_speed
652queue_events (EV_P_ W *events, int eventcnt, int type)
653{
654 int i;
655
656 for (i = 0; i < eventcnt; ++i)
657 ev_feed_event (EV_A_ events [i], type);
658}
659
660/*****************************************************************************/
661
662void inline_size
354anfds_init (ANFD *base, int count) 663anfds_init (ANFD *base, int count)
355{ 664{
356 while (count--) 665 while (count--)
357 { 666 {
358 base->head = 0; 667 base->head = 0;
361 670
362 ++base; 671 ++base;
363 } 672 }
364} 673}
365 674
366void 675void inline_speed
367ev_feed_event (EV_P_ void *w, int revents)
368{
369 W w_ = (W)w;
370
371 if (w_->pending)
372 {
373 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
374 return;
375 }
376
377 w_->pending = ++pendingcnt [ABSPRI (w_)];
378 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
379 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
380 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
381}
382
383static void
384queue_events (EV_P_ W *events, int eventcnt, int type)
385{
386 int i;
387
388 for (i = 0; i < eventcnt; ++i)
389 ev_feed_event (EV_A_ events [i], type);
390}
391
392inline void
393fd_event (EV_P_ int fd, int revents) 676fd_event (EV_P_ int fd, int revents)
394{ 677{
395 ANFD *anfd = anfds + fd; 678 ANFD *anfd = anfds + fd;
396 struct ev_io *w; 679 ev_io *w;
397 680
398 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 681 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
399 { 682 {
400 int ev = w->events & revents; 683 int ev = w->events & revents;
401 684
402 if (ev) 685 if (ev)
403 ev_feed_event (EV_A_ (W)w, ev); 686 ev_feed_event (EV_A_ (W)w, ev);
405} 688}
406 689
407void 690void
408ev_feed_fd_event (EV_P_ int fd, int revents) 691ev_feed_fd_event (EV_P_ int fd, int revents)
409{ 692{
693 if (fd >= 0 && fd < anfdmax)
410 fd_event (EV_A_ fd, revents); 694 fd_event (EV_A_ fd, revents);
411} 695}
412 696
413/*****************************************************************************/ 697void inline_size
414
415static void
416fd_reify (EV_P) 698fd_reify (EV_P)
417{ 699{
418 int i; 700 int i;
419 701
420 for (i = 0; i < fdchangecnt; ++i) 702 for (i = 0; i < fdchangecnt; ++i)
421 { 703 {
422 int fd = fdchanges [i]; 704 int fd = fdchanges [i];
423 ANFD *anfd = anfds + fd; 705 ANFD *anfd = anfds + fd;
424 struct ev_io *w; 706 ev_io *w;
425 707
426 int events = 0; 708 unsigned char events = 0;
427 709
428 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 710 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
429 events |= w->events; 711 events |= (unsigned char)w->events;
430 712
431#if EV_SELECT_IS_WINSOCKET 713#if EV_SELECT_IS_WINSOCKET
432 if (events) 714 if (events)
433 { 715 {
434 unsigned long argp; 716 unsigned long arg;
717 #ifdef EV_FD_TO_WIN32_HANDLE
718 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
719 #else
435 anfd->handle = _get_osfhandle (fd); 720 anfd->handle = _get_osfhandle (fd);
721 #endif
436 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 722 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
437 } 723 }
438#endif 724#endif
439 725
726 {
727 unsigned char o_events = anfd->events;
728 unsigned char o_reify = anfd->reify;
729
440 anfd->reify = 0; 730 anfd->reify = 0;
441
442 method_modify (EV_A_ fd, anfd->events, events);
443 anfd->events = events; 731 anfd->events = events;
732
733 if (o_events != events || o_reify & EV_IOFDSET)
734 backend_modify (EV_A_ fd, o_events, events);
735 }
444 } 736 }
445 737
446 fdchangecnt = 0; 738 fdchangecnt = 0;
447} 739}
448 740
449static void 741void inline_size
450fd_change (EV_P_ int fd) 742fd_change (EV_P_ int fd, int flags)
451{ 743{
452 if (anfds [fd].reify) 744 unsigned char reify = anfds [fd].reify;
453 return;
454
455 anfds [fd].reify = 1; 745 anfds [fd].reify |= flags;
456 746
747 if (expect_true (!reify))
748 {
457 ++fdchangecnt; 749 ++fdchangecnt;
458 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 750 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
459 fdchanges [fdchangecnt - 1] = fd; 751 fdchanges [fdchangecnt - 1] = fd;
752 }
460} 753}
461 754
462static void 755void inline_speed
463fd_kill (EV_P_ int fd) 756fd_kill (EV_P_ int fd)
464{ 757{
465 struct ev_io *w; 758 ev_io *w;
466 759
467 while ((w = (struct ev_io *)anfds [fd].head)) 760 while ((w = (ev_io *)anfds [fd].head))
468 { 761 {
469 ev_io_stop (EV_A_ w); 762 ev_io_stop (EV_A_ w);
470 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 763 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
471 } 764 }
472} 765}
473 766
474static int 767int inline_size
475fd_valid (int fd) 768fd_valid (int fd)
476{ 769{
477#ifdef _WIN32 770#ifdef _WIN32
478 return _get_osfhandle (fd) != -1; 771 return _get_osfhandle (fd) != -1;
479#else 772#else
480 return fcntl (fd, F_GETFD) != -1; 773 return fcntl (fd, F_GETFD) != -1;
481#endif 774#endif
482} 775}
483 776
484/* called on EBADF to verify fds */ 777/* called on EBADF to verify fds */
485static void 778static void noinline
486fd_ebadf (EV_P) 779fd_ebadf (EV_P)
487{ 780{
488 int fd; 781 int fd;
489 782
490 for (fd = 0; fd < anfdmax; ++fd) 783 for (fd = 0; fd < anfdmax; ++fd)
491 if (anfds [fd].events) 784 if (anfds [fd].events)
492 if (!fd_valid (fd) == -1 && errno == EBADF) 785 if (!fd_valid (fd) && errno == EBADF)
493 fd_kill (EV_A_ fd); 786 fd_kill (EV_A_ fd);
494} 787}
495 788
496/* called on ENOMEM in select/poll to kill some fds and retry */ 789/* called on ENOMEM in select/poll to kill some fds and retry */
497static void 790static void noinline
498fd_enomem (EV_P) 791fd_enomem (EV_P)
499{ 792{
500 int fd; 793 int fd;
501 794
502 for (fd = anfdmax; fd--; ) 795 for (fd = anfdmax; fd--; )
505 fd_kill (EV_A_ fd); 798 fd_kill (EV_A_ fd);
506 return; 799 return;
507 } 800 }
508} 801}
509 802
510/* usually called after fork if method needs to re-arm all fds from scratch */ 803/* usually called after fork if backend needs to re-arm all fds from scratch */
511static void 804static void noinline
512fd_rearm_all (EV_P) 805fd_rearm_all (EV_P)
513{ 806{
514 int fd; 807 int fd;
515 808
516 /* this should be highly optimised to not do anything but set a flag */
517 for (fd = 0; fd < anfdmax; ++fd) 809 for (fd = 0; fd < anfdmax; ++fd)
518 if (anfds [fd].events) 810 if (anfds [fd].events)
519 { 811 {
520 anfds [fd].events = 0; 812 anfds [fd].events = 0;
521 fd_change (EV_A_ fd); 813 fd_change (EV_A_ fd, EV_IOFDSET | 1);
522 } 814 }
523} 815}
524 816
525/*****************************************************************************/ 817/*****************************************************************************/
526 818
527static void 819/*
528upheap (WT *heap, int k) 820 * the heap functions want a real array index. array index 0 uis guaranteed to not
529{ 821 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
530 WT w = heap [k]; 822 * the branching factor of the d-tree.
823 */
531 824
532 while (k && heap [k >> 1]->at > w->at) 825/*
533 { 826 * at the moment we allow libev the luxury of two heaps,
534 heap [k] = heap [k >> 1]; 827 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
535 ((W)heap [k])->active = k + 1; 828 * which is more cache-efficient.
536 k >>= 1; 829 * the difference is about 5% with 50000+ watchers.
537 } 830 */
831#if EV_USE_4HEAP
538 832
539 heap [k] = w; 833#define DHEAP 4
540 ((W)heap [k])->active = k + 1; 834#define HEAP0 (DHEAP - 1) /* index of first element in heap */
835#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
836#define UPHEAP_DONE(p,k) ((p) == (k))
541 837
542} 838/* away from the root */
543 839void inline_speed
544static void
545downheap (WT *heap, int N, int k) 840downheap (ANHE *heap, int N, int k)
546{ 841{
547 WT w = heap [k]; 842 ANHE he = heap [k];
843 ANHE *E = heap + N + HEAP0;
548 844
549 while (k < (N >> 1)) 845 for (;;)
550 { 846 {
551 int j = k << 1; 847 ev_tstamp minat;
848 ANHE *minpos;
849 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
552 850
553 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 851 /* find minimum child */
852 if (expect_true (pos + DHEAP - 1 < E))
554 ++j; 853 {
555 854 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
556 if (w->at <= heap [j]->at) 855 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
856 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
857 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
858 }
859 else if (pos < E)
860 {
861 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
862 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
863 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
864 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
865 }
866 else
557 break; 867 break;
558 868
869 if (ANHE_at (he) <= minat)
870 break;
871
872 heap [k] = *minpos;
873 ev_active (ANHE_w (*minpos)) = k;
874
875 k = minpos - heap;
876 }
877
878 heap [k] = he;
879 ev_active (ANHE_w (he)) = k;
880}
881
882#else /* 4HEAP */
883
884#define HEAP0 1
885#define HPARENT(k) ((k) >> 1)
886#define UPHEAP_DONE(p,k) (!(p))
887
888/* away from the root */
889void inline_speed
890downheap (ANHE *heap, int N, int k)
891{
892 ANHE he = heap [k];
893
894 for (;;)
895 {
896 int c = k << 1;
897
898 if (c > N + HEAP0 - 1)
899 break;
900
901 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
902 ? 1 : 0;
903
904 if (ANHE_at (he) <= ANHE_at (heap [c]))
905 break;
906
559 heap [k] = heap [j]; 907 heap [k] = heap [c];
560 ((W)heap [k])->active = k + 1; 908 ev_active (ANHE_w (heap [k])) = k;
909
561 k = j; 910 k = c;
562 } 911 }
563 912
564 heap [k] = w; 913 heap [k] = he;
565 ((W)heap [k])->active = k + 1; 914 ev_active (ANHE_w (he)) = k;
566} 915}
916#endif
567 917
568inline void 918/* towards the root */
919void inline_speed
920upheap (ANHE *heap, int k)
921{
922 ANHE he = heap [k];
923
924 for (;;)
925 {
926 int p = HPARENT (k);
927
928 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
929 break;
930
931 heap [k] = heap [p];
932 ev_active (ANHE_w (heap [k])) = k;
933 k = p;
934 }
935
936 heap [k] = he;
937 ev_active (ANHE_w (he)) = k;
938}
939
940void inline_size
569adjustheap (WT *heap, int N, int k) 941adjustheap (ANHE *heap, int N, int k)
570{ 942{
943 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
571 upheap (heap, k); 944 upheap (heap, k);
945 else
572 downheap (heap, N, k); 946 downheap (heap, N, k);
947}
948
949/* rebuild the heap: this function is used only once and executed rarely */
950void inline_size
951reheap (ANHE *heap, int N)
952{
953 int i;
954
955 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
956 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
957 for (i = 0; i < N; ++i)
958 upheap (heap, i + HEAP0);
573} 959}
574 960
575/*****************************************************************************/ 961/*****************************************************************************/
576 962
577typedef struct 963typedef struct
578{ 964{
579 WL head; 965 WL head;
580 sig_atomic_t volatile gotsig; 966 EV_ATOMIC_T gotsig;
581} ANSIG; 967} ANSIG;
582 968
583static ANSIG *signals; 969static ANSIG *signals;
584static int signalmax; 970static int signalmax;
585 971
586static int sigpipe [2]; 972static EV_ATOMIC_T gotsig;
587static sig_atomic_t volatile gotsig;
588static struct ev_io sigev;
589 973
590static void 974void inline_size
591signals_init (ANSIG *base, int count) 975signals_init (ANSIG *base, int count)
592{ 976{
593 while (count--) 977 while (count--)
594 { 978 {
595 base->head = 0; 979 base->head = 0;
597 981
598 ++base; 982 ++base;
599 } 983 }
600} 984}
601 985
602static void 986/*****************************************************************************/
603sighandler (int signum)
604{
605#if _WIN32
606 signal (signum, sighandler);
607#endif
608 987
609 signals [signum - 1].gotsig = 1; 988void inline_speed
610
611 if (!gotsig)
612 {
613 int old_errno = errno;
614 gotsig = 1;
615 write (sigpipe [1], &signum, 1);
616 errno = old_errno;
617 }
618}
619
620void
621ev_feed_signal_event (EV_P_ int signum)
622{
623 WL w;
624
625#if EV_MULTIPLICITY
626 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
627#endif
628
629 --signum;
630
631 if (signum < 0 || signum >= signalmax)
632 return;
633
634 signals [signum].gotsig = 0;
635
636 for (w = signals [signum].head; w; w = w->next)
637 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
638}
639
640static void
641sigcb (EV_P_ struct ev_io *iow, int revents)
642{
643 int signum;
644
645 read (sigpipe [0], &revents, 1);
646 gotsig = 0;
647
648 for (signum = signalmax; signum--; )
649 if (signals [signum].gotsig)
650 ev_feed_signal_event (EV_A_ signum + 1);
651}
652
653inline void
654fd_intern (int fd) 989fd_intern (int fd)
655{ 990{
656#ifdef _WIN32 991#ifdef _WIN32
657 int arg = 1; 992 unsigned long arg = 1;
658 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 993 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
659#else 994#else
660 fcntl (fd, F_SETFD, FD_CLOEXEC); 995 fcntl (fd, F_SETFD, FD_CLOEXEC);
661 fcntl (fd, F_SETFL, O_NONBLOCK); 996 fcntl (fd, F_SETFL, O_NONBLOCK);
662#endif 997#endif
663} 998}
664 999
1000static void noinline
1001evpipe_init (EV_P)
1002{
1003 if (!ev_is_active (&pipeev))
1004 {
1005#if EV_USE_EVENTFD
1006 if ((evfd = eventfd (0, 0)) >= 0)
1007 {
1008 evpipe [0] = -1;
1009 fd_intern (evfd);
1010 ev_io_set (&pipeev, evfd, EV_READ);
1011 }
1012 else
1013#endif
1014 {
1015 while (pipe (evpipe))
1016 syserr ("(libev) error creating signal/async pipe");
1017
1018 fd_intern (evpipe [0]);
1019 fd_intern (evpipe [1]);
1020 ev_io_set (&pipeev, evpipe [0], EV_READ);
1021 }
1022
1023 ev_io_start (EV_A_ &pipeev);
1024 ev_unref (EV_A); /* watcher should not keep loop alive */
1025 }
1026}
1027
1028void inline_size
1029evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1030{
1031 if (!*flag)
1032 {
1033 int old_errno = errno; /* save errno because write might clobber it */
1034
1035 *flag = 1;
1036
1037#if EV_USE_EVENTFD
1038 if (evfd >= 0)
1039 {
1040 uint64_t counter = 1;
1041 write (evfd, &counter, sizeof (uint64_t));
1042 }
1043 else
1044#endif
1045 write (evpipe [1], &old_errno, 1);
1046
1047 errno = old_errno;
1048 }
1049}
1050
665static void 1051static void
666siginit (EV_P) 1052pipecb (EV_P_ ev_io *iow, int revents)
667{ 1053{
668 fd_intern (sigpipe [0]); 1054#if EV_USE_EVENTFD
669 fd_intern (sigpipe [1]); 1055 if (evfd >= 0)
1056 {
1057 uint64_t counter;
1058 read (evfd, &counter, sizeof (uint64_t));
1059 }
1060 else
1061#endif
1062 {
1063 char dummy;
1064 read (evpipe [0], &dummy, 1);
1065 }
670 1066
671 ev_io_set (&sigev, sigpipe [0], EV_READ); 1067 if (gotsig && ev_is_default_loop (EV_A))
672 ev_io_start (EV_A_ &sigev); 1068 {
673 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1069 int signum;
1070 gotsig = 0;
1071
1072 for (signum = signalmax; signum--; )
1073 if (signals [signum].gotsig)
1074 ev_feed_signal_event (EV_A_ signum + 1);
1075 }
1076
1077#if EV_ASYNC_ENABLE
1078 if (gotasync)
1079 {
1080 int i;
1081 gotasync = 0;
1082
1083 for (i = asynccnt; i--; )
1084 if (asyncs [i]->sent)
1085 {
1086 asyncs [i]->sent = 0;
1087 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1088 }
1089 }
1090#endif
674} 1091}
675 1092
676/*****************************************************************************/ 1093/*****************************************************************************/
677 1094
678static struct ev_child *childs [PID_HASHSIZE]; 1095static void
1096ev_sighandler (int signum)
1097{
1098#if EV_MULTIPLICITY
1099 struct ev_loop *loop = &default_loop_struct;
1100#endif
1101
1102#if _WIN32
1103 signal (signum, ev_sighandler);
1104#endif
1105
1106 signals [signum - 1].gotsig = 1;
1107 evpipe_write (EV_A_ &gotsig);
1108}
1109
1110void noinline
1111ev_feed_signal_event (EV_P_ int signum)
1112{
1113 WL w;
1114
1115#if EV_MULTIPLICITY
1116 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1117#endif
1118
1119 --signum;
1120
1121 if (signum < 0 || signum >= signalmax)
1122 return;
1123
1124 signals [signum].gotsig = 0;
1125
1126 for (w = signals [signum].head; w; w = w->next)
1127 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1128}
1129
1130/*****************************************************************************/
1131
1132static WL childs [EV_PID_HASHSIZE];
679 1133
680#ifndef _WIN32 1134#ifndef _WIN32
681 1135
682static struct ev_signal childev; 1136static ev_signal childev;
1137
1138#ifndef WIFCONTINUED
1139# define WIFCONTINUED(status) 0
1140#endif
1141
1142void inline_speed
1143child_reap (EV_P_ int chain, int pid, int status)
1144{
1145 ev_child *w;
1146 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1147
1148 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1149 {
1150 if ((w->pid == pid || !w->pid)
1151 && (!traced || (w->flags & 1)))
1152 {
1153 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1154 w->rpid = pid;
1155 w->rstatus = status;
1156 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1157 }
1158 }
1159}
683 1160
684#ifndef WCONTINUED 1161#ifndef WCONTINUED
685# define WCONTINUED 0 1162# define WCONTINUED 0
686#endif 1163#endif
687 1164
688static void 1165static void
689child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
690{
691 struct ev_child *w;
692
693 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
694 if (w->pid == pid || !w->pid)
695 {
696 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
697 w->rpid = pid;
698 w->rstatus = status;
699 ev_feed_event (EV_A_ (W)w, EV_CHILD);
700 }
701}
702
703static void
704childcb (EV_P_ struct ev_signal *sw, int revents) 1166childcb (EV_P_ ev_signal *sw, int revents)
705{ 1167{
706 int pid, status; 1168 int pid, status;
707 1169
1170 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
708 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1171 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
709 { 1172 if (!WCONTINUED
1173 || errno != EINVAL
1174 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1175 return;
1176
710 /* make sure we are called again until all childs have been reaped */ 1177 /* make sure we are called again until all children have been reaped */
1178 /* we need to do it this way so that the callback gets called before we continue */
711 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1179 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
712 1180
713 child_reap (EV_A_ sw, pid, pid, status); 1181 child_reap (EV_A_ pid, pid, status);
1182 if (EV_PID_HASHSIZE > 1)
714 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1183 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
715 }
716} 1184}
717 1185
718#endif 1186#endif
719 1187
720/*****************************************************************************/ 1188/*****************************************************************************/
746{ 1214{
747 return EV_VERSION_MINOR; 1215 return EV_VERSION_MINOR;
748} 1216}
749 1217
750/* return true if we are running with elevated privileges and should ignore env variables */ 1218/* return true if we are running with elevated privileges and should ignore env variables */
751static int 1219int inline_size
752enable_secure (void) 1220enable_secure (void)
753{ 1221{
754#ifdef _WIN32 1222#ifdef _WIN32
755 return 0; 1223 return 0;
756#else 1224#else
758 || getgid () != getegid (); 1226 || getgid () != getegid ();
759#endif 1227#endif
760} 1228}
761 1229
762unsigned int 1230unsigned int
763ev_method (EV_P) 1231ev_supported_backends (void)
764{ 1232{
765 return method; 1233 unsigned int flags = 0;
766}
767 1234
768static void 1235 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1236 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1237 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1238 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1239 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1240
1241 return flags;
1242}
1243
1244unsigned int
1245ev_recommended_backends (void)
1246{
1247 unsigned int flags = ev_supported_backends ();
1248
1249#ifndef __NetBSD__
1250 /* kqueue is borked on everything but netbsd apparently */
1251 /* it usually doesn't work correctly on anything but sockets and pipes */
1252 flags &= ~EVBACKEND_KQUEUE;
1253#endif
1254#ifdef __APPLE__
1255 // flags &= ~EVBACKEND_KQUEUE; for documentation
1256 flags &= ~EVBACKEND_POLL;
1257#endif
1258
1259 return flags;
1260}
1261
1262unsigned int
1263ev_embeddable_backends (void)
1264{
1265 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1266
1267 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1268 /* please fix it and tell me how to detect the fix */
1269 flags &= ~EVBACKEND_EPOLL;
1270
1271 return flags;
1272}
1273
1274unsigned int
1275ev_backend (EV_P)
1276{
1277 return backend;
1278}
1279
1280unsigned int
1281ev_loop_count (EV_P)
1282{
1283 return loop_count;
1284}
1285
1286void
1287ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1288{
1289 io_blocktime = interval;
1290}
1291
1292void
1293ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1294{
1295 timeout_blocktime = interval;
1296}
1297
1298static void noinline
769loop_init (EV_P_ unsigned int flags) 1299loop_init (EV_P_ unsigned int flags)
770{ 1300{
771 if (!method) 1301 if (!backend)
772 { 1302 {
773#if EV_USE_MONOTONIC 1303#if EV_USE_MONOTONIC
774 { 1304 {
775 struct timespec ts; 1305 struct timespec ts;
776 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1306 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
777 have_monotonic = 1; 1307 have_monotonic = 1;
778 } 1308 }
779#endif 1309#endif
780 1310
781 ev_rt_now = ev_time (); 1311 ev_rt_now = ev_time ();
782 mn_now = get_clock (); 1312 mn_now = get_clock ();
783 now_floor = mn_now; 1313 now_floor = mn_now;
784 rtmn_diff = ev_rt_now - mn_now; 1314 rtmn_diff = ev_rt_now - mn_now;
785 1315
786 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1316 io_blocktime = 0.;
1317 timeout_blocktime = 0.;
1318 backend = 0;
1319 backend_fd = -1;
1320 gotasync = 0;
1321#if EV_USE_INOTIFY
1322 fs_fd = -2;
1323#endif
1324
1325 /* pid check not overridable via env */
1326#ifndef _WIN32
1327 if (flags & EVFLAG_FORKCHECK)
1328 curpid = getpid ();
1329#endif
1330
1331 if (!(flags & EVFLAG_NOENV)
1332 && !enable_secure ()
1333 && getenv ("LIBEV_FLAGS"))
787 flags = atoi (getenv ("LIBEV_FLAGS")); 1334 flags = atoi (getenv ("LIBEV_FLAGS"));
788 1335
789 if (!(flags & 0x0000ffff)) 1336 if (!(flags & 0x0000ffffU))
790 flags |= 0x0000ffff; 1337 flags |= ev_recommended_backends ();
791 1338
792 method = 0;
793#if EV_USE_PORT 1339#if EV_USE_PORT
794 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags); 1340 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
795#endif 1341#endif
796#if EV_USE_KQUEUE 1342#if EV_USE_KQUEUE
797 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 1343 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
798#endif 1344#endif
799#if EV_USE_EPOLL 1345#if EV_USE_EPOLL
800 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 1346 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
801#endif 1347#endif
802#if EV_USE_POLL 1348#if EV_USE_POLL
803 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 1349 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
804#endif 1350#endif
805#if EV_USE_SELECT 1351#if EV_USE_SELECT
806 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 1352 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
807#endif 1353#endif
808 1354
809 ev_init (&sigev, sigcb); 1355 ev_init (&pipeev, pipecb);
810 ev_set_priority (&sigev, EV_MAXPRI); 1356 ev_set_priority (&pipeev, EV_MAXPRI);
811 } 1357 }
812} 1358}
813 1359
814void 1360static void noinline
815loop_destroy (EV_P) 1361loop_destroy (EV_P)
816{ 1362{
817 int i; 1363 int i;
818 1364
1365 if (ev_is_active (&pipeev))
1366 {
1367 ev_ref (EV_A); /* signal watcher */
1368 ev_io_stop (EV_A_ &pipeev);
1369
1370#if EV_USE_EVENTFD
1371 if (evfd >= 0)
1372 close (evfd);
1373#endif
1374
1375 if (evpipe [0] >= 0)
1376 {
1377 close (evpipe [0]);
1378 close (evpipe [1]);
1379 }
1380 }
1381
1382#if EV_USE_INOTIFY
1383 if (fs_fd >= 0)
1384 close (fs_fd);
1385#endif
1386
1387 if (backend_fd >= 0)
1388 close (backend_fd);
1389
819#if EV_USE_PORT 1390#if EV_USE_PORT
820 if (method == EVMETHOD_PORT ) port_destroy (EV_A); 1391 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
821#endif 1392#endif
822#if EV_USE_KQUEUE 1393#if EV_USE_KQUEUE
823 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1394 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
824#endif 1395#endif
825#if EV_USE_EPOLL 1396#if EV_USE_EPOLL
826 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1397 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
827#endif 1398#endif
828#if EV_USE_POLL 1399#if EV_USE_POLL
829 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1400 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
830#endif 1401#endif
831#if EV_USE_SELECT 1402#if EV_USE_SELECT
832 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1403 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
833#endif 1404#endif
834 1405
835 for (i = NUMPRI; i--; ) 1406 for (i = NUMPRI; i--; )
1407 {
836 array_free (pending, [i]); 1408 array_free (pending, [i]);
1409#if EV_IDLE_ENABLE
1410 array_free (idle, [i]);
1411#endif
1412 }
1413
1414 ev_free (anfds); anfdmax = 0;
837 1415
838 /* have to use the microsoft-never-gets-it-right macro */ 1416 /* have to use the microsoft-never-gets-it-right macro */
839 array_free (fdchange, EMPTY0); 1417 array_free (fdchange, EMPTY);
840 array_free (timer, EMPTY0); 1418 array_free (timer, EMPTY);
841#if EV_PERIODICS 1419#if EV_PERIODIC_ENABLE
842 array_free (periodic, EMPTY0); 1420 array_free (periodic, EMPTY);
843#endif 1421#endif
1422#if EV_FORK_ENABLE
844 array_free (idle, EMPTY0); 1423 array_free (fork, EMPTY);
1424#endif
845 array_free (prepare, EMPTY0); 1425 array_free (prepare, EMPTY);
846 array_free (check, EMPTY0); 1426 array_free (check, EMPTY);
1427#if EV_ASYNC_ENABLE
1428 array_free (async, EMPTY);
1429#endif
847 1430
848 method = 0; 1431 backend = 0;
849} 1432}
850 1433
851static void 1434#if EV_USE_INOTIFY
1435void inline_size infy_fork (EV_P);
1436#endif
1437
1438void inline_size
852loop_fork (EV_P) 1439loop_fork (EV_P)
853{ 1440{
854#if EV_USE_PORT 1441#if EV_USE_PORT
855 if (method == EVMETHOD_PORT ) port_fork (EV_A); 1442 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
856#endif 1443#endif
857#if EV_USE_KQUEUE 1444#if EV_USE_KQUEUE
858 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1445 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
859#endif 1446#endif
860#if EV_USE_EPOLL 1447#if EV_USE_EPOLL
861 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1448 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
862#endif 1449#endif
1450#if EV_USE_INOTIFY
1451 infy_fork (EV_A);
1452#endif
863 1453
864 if (ev_is_active (&sigev)) 1454 if (ev_is_active (&pipeev))
865 { 1455 {
866 /* default loop */ 1456 /* this "locks" the handlers against writing to the pipe */
1457 /* while we modify the fd vars */
1458 gotsig = 1;
1459#if EV_ASYNC_ENABLE
1460 gotasync = 1;
1461#endif
867 1462
868 ev_ref (EV_A); 1463 ev_ref (EV_A);
869 ev_io_stop (EV_A_ &sigev); 1464 ev_io_stop (EV_A_ &pipeev);
1465
1466#if EV_USE_EVENTFD
1467 if (evfd >= 0)
1468 close (evfd);
1469#endif
1470
1471 if (evpipe [0] >= 0)
1472 {
870 close (sigpipe [0]); 1473 close (evpipe [0]);
871 close (sigpipe [1]); 1474 close (evpipe [1]);
1475 }
872 1476
873 while (pipe (sigpipe))
874 syserr ("(libev) error creating pipe");
875
876 siginit (EV_A); 1477 evpipe_init (EV_A);
1478 /* now iterate over everything, in case we missed something */
1479 pipecb (EV_A_ &pipeev, EV_READ);
877 } 1480 }
878 1481
879 postfork = 0; 1482 postfork = 0;
880} 1483}
1484
1485#if EV_MULTIPLICITY
1486
1487struct ev_loop *
1488ev_loop_new (unsigned int flags)
1489{
1490 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1491
1492 memset (loop, 0, sizeof (struct ev_loop));
1493
1494 loop_init (EV_A_ flags);
1495
1496 if (ev_backend (EV_A))
1497 return loop;
1498
1499 return 0;
1500}
1501
1502void
1503ev_loop_destroy (EV_P)
1504{
1505 loop_destroy (EV_A);
1506 ev_free (loop);
1507}
1508
1509void
1510ev_loop_fork (EV_P)
1511{
1512 postfork = 1; /* must be in line with ev_default_fork */
1513}
1514
1515#if EV_VERIFY
1516static void noinline
1517verify_watcher (EV_P_ W w)
1518{
1519 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1520
1521 if (w->pending)
1522 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1523}
1524
1525static void noinline
1526verify_heap (EV_P_ ANHE *heap, int N)
1527{
1528 int i;
1529
1530 for (i = HEAP0; i < N + HEAP0; ++i)
1531 {
1532 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1533 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1534 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1535
1536 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1537 }
1538}
1539
1540static void noinline
1541array_verify (EV_P_ W *ws, int cnt)
1542{
1543 while (cnt--)
1544 {
1545 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1546 verify_watcher (EV_A_ ws [cnt]);
1547 }
1548}
1549#endif
1550
1551void
1552ev_loop_verify (EV_P)
1553{
1554#if EV_VERIFY
1555 int i;
1556 WL w;
1557
1558 assert (activecnt >= -1);
1559
1560 assert (fdchangemax >= fdchangecnt);
1561 for (i = 0; i < fdchangecnt; ++i)
1562 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1563
1564 assert (anfdmax >= 0);
1565 for (i = 0; i < anfdmax; ++i)
1566 for (w = anfds [i].head; w; w = w->next)
1567 {
1568 verify_watcher (EV_A_ (W)w);
1569 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1570 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1571 }
1572
1573 assert (timermax >= timercnt);
1574 verify_heap (EV_A_ timers, timercnt);
1575
1576#if EV_PERIODIC_ENABLE
1577 assert (periodicmax >= periodiccnt);
1578 verify_heap (EV_A_ periodics, periodiccnt);
1579#endif
1580
1581 for (i = NUMPRI; i--; )
1582 {
1583 assert (pendingmax [i] >= pendingcnt [i]);
1584#if EV_IDLE_ENABLE
1585 assert (idleall >= 0);
1586 assert (idlemax [i] >= idlecnt [i]);
1587 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1588#endif
1589 }
1590
1591#if EV_FORK_ENABLE
1592 assert (forkmax >= forkcnt);
1593 array_verify (EV_A_ (W *)forks, forkcnt);
1594#endif
1595
1596#if EV_ASYNC_ENABLE
1597 assert (asyncmax >= asynccnt);
1598 array_verify (EV_A_ (W *)asyncs, asynccnt);
1599#endif
1600
1601 assert (preparemax >= preparecnt);
1602 array_verify (EV_A_ (W *)prepares, preparecnt);
1603
1604 assert (checkmax >= checkcnt);
1605 array_verify (EV_A_ (W *)checks, checkcnt);
1606
1607# if 0
1608 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1609 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1610# endif
1611#endif
1612}
1613
1614#endif /* multiplicity */
881 1615
882#if EV_MULTIPLICITY 1616#if EV_MULTIPLICITY
883struct ev_loop * 1617struct ev_loop *
884ev_loop_new (unsigned int flags)
885{
886 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
887
888 memset (loop, 0, sizeof (struct ev_loop));
889
890 loop_init (EV_A_ flags);
891
892 if (ev_method (EV_A))
893 return loop;
894
895 return 0;
896}
897
898void
899ev_loop_destroy (EV_P)
900{
901 loop_destroy (EV_A);
902 ev_free (loop);
903}
904
905void
906ev_loop_fork (EV_P)
907{
908 postfork = 1;
909}
910
911#endif
912
913#if EV_MULTIPLICITY
914struct ev_loop *
915ev_default_loop_ (unsigned int flags) 1618ev_default_loop_init (unsigned int flags)
916#else 1619#else
917int 1620int
918ev_default_loop (unsigned int flags) 1621ev_default_loop (unsigned int flags)
919#endif 1622#endif
920{ 1623{
921 if (sigpipe [0] == sigpipe [1])
922 if (pipe (sigpipe))
923 return 0;
924
925 if (!ev_default_loop_ptr) 1624 if (!ev_default_loop_ptr)
926 { 1625 {
927#if EV_MULTIPLICITY 1626#if EV_MULTIPLICITY
928 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1627 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
929#else 1628#else
930 ev_default_loop_ptr = 1; 1629 ev_default_loop_ptr = 1;
931#endif 1630#endif
932 1631
933 loop_init (EV_A_ flags); 1632 loop_init (EV_A_ flags);
934 1633
935 if (ev_method (EV_A)) 1634 if (ev_backend (EV_A))
936 { 1635 {
937 siginit (EV_A);
938
939#ifndef _WIN32 1636#ifndef _WIN32
940 ev_signal_init (&childev, childcb, SIGCHLD); 1637 ev_signal_init (&childev, childcb, SIGCHLD);
941 ev_set_priority (&childev, EV_MAXPRI); 1638 ev_set_priority (&childev, EV_MAXPRI);
942 ev_signal_start (EV_A_ &childev); 1639 ev_signal_start (EV_A_ &childev);
943 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1640 ev_unref (EV_A); /* child watcher should not keep loop alive */
960#ifndef _WIN32 1657#ifndef _WIN32
961 ev_ref (EV_A); /* child watcher */ 1658 ev_ref (EV_A); /* child watcher */
962 ev_signal_stop (EV_A_ &childev); 1659 ev_signal_stop (EV_A_ &childev);
963#endif 1660#endif
964 1661
965 ev_ref (EV_A); /* signal watcher */
966 ev_io_stop (EV_A_ &sigev);
967
968 close (sigpipe [0]); sigpipe [0] = 0;
969 close (sigpipe [1]); sigpipe [1] = 0;
970
971 loop_destroy (EV_A); 1662 loop_destroy (EV_A);
972} 1663}
973 1664
974void 1665void
975ev_default_fork (void) 1666ev_default_fork (void)
976{ 1667{
977#if EV_MULTIPLICITY 1668#if EV_MULTIPLICITY
978 struct ev_loop *loop = ev_default_loop_ptr; 1669 struct ev_loop *loop = ev_default_loop_ptr;
979#endif 1670#endif
980 1671
981 if (method) 1672 if (backend)
982 postfork = 1; 1673 postfork = 1; /* must be in line with ev_loop_fork */
983} 1674}
984 1675
985/*****************************************************************************/ 1676/*****************************************************************************/
986 1677
987static int 1678void
988any_pending (EV_P) 1679ev_invoke (EV_P_ void *w, int revents)
989{ 1680{
990 int pri; 1681 EV_CB_INVOKE ((W)w, revents);
991
992 for (pri = NUMPRI; pri--; )
993 if (pendingcnt [pri])
994 return 1;
995
996 return 0;
997} 1682}
998 1683
999inline void 1684void inline_speed
1000call_pending (EV_P) 1685call_pending (EV_P)
1001{ 1686{
1002 int pri; 1687 int pri;
1003 1688
1004 for (pri = NUMPRI; pri--; ) 1689 for (pri = NUMPRI; pri--; )
1006 { 1691 {
1007 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1692 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1008 1693
1009 if (expect_true (p->w)) 1694 if (expect_true (p->w))
1010 { 1695 {
1696 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1697
1011 p->w->pending = 0; 1698 p->w->pending = 0;
1012 EV_CB_INVOKE (p->w, p->events); 1699 EV_CB_INVOKE (p->w, p->events);
1700 EV_FREQUENT_CHECK;
1013 } 1701 }
1014 } 1702 }
1015} 1703}
1016 1704
1017static void 1705#if EV_IDLE_ENABLE
1706void inline_size
1707idle_reify (EV_P)
1708{
1709 if (expect_false (idleall))
1710 {
1711 int pri;
1712
1713 for (pri = NUMPRI; pri--; )
1714 {
1715 if (pendingcnt [pri])
1716 break;
1717
1718 if (idlecnt [pri])
1719 {
1720 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1721 break;
1722 }
1723 }
1724 }
1725}
1726#endif
1727
1728void inline_size
1018timers_reify (EV_P) 1729timers_reify (EV_P)
1019{ 1730{
1731 EV_FREQUENT_CHECK;
1732
1020 while (timercnt && ((WT)timers [0])->at <= mn_now) 1733 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1021 { 1734 {
1022 struct ev_timer *w = timers [0]; 1735 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1023 1736
1024 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1737 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1025 1738
1026 /* first reschedule or stop timer */ 1739 /* first reschedule or stop timer */
1027 if (w->repeat) 1740 if (w->repeat)
1028 { 1741 {
1742 ev_at (w) += w->repeat;
1743 if (ev_at (w) < mn_now)
1744 ev_at (w) = mn_now;
1745
1029 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1746 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1030 1747
1031 ((WT)w)->at += w->repeat; 1748 ANHE_at_cache (timers [HEAP0]);
1032 if (((WT)w)->at < mn_now)
1033 ((WT)w)->at = mn_now;
1034
1035 downheap ((WT *)timers, timercnt, 0); 1749 downheap (timers, timercnt, HEAP0);
1036 } 1750 }
1037 else 1751 else
1038 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1752 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1039 1753
1754 EV_FREQUENT_CHECK;
1040 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1755 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1041 } 1756 }
1042} 1757}
1043 1758
1044#if EV_PERIODICS 1759#if EV_PERIODIC_ENABLE
1045static void 1760void inline_size
1046periodics_reify (EV_P) 1761periodics_reify (EV_P)
1047{ 1762{
1763 EV_FREQUENT_CHECK;
1764
1048 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1765 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1049 { 1766 {
1050 struct ev_periodic *w = periodics [0]; 1767 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1051 1768
1052 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1769 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1053 1770
1054 /* first reschedule or stop timer */ 1771 /* first reschedule or stop timer */
1055 if (w->reschedule_cb) 1772 if (w->reschedule_cb)
1056 { 1773 {
1057 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1774 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1775
1058 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1776 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1777
1778 ANHE_at_cache (periodics [HEAP0]);
1059 downheap ((WT *)periodics, periodiccnt, 0); 1779 downheap (periodics, periodiccnt, HEAP0);
1060 } 1780 }
1061 else if (w->interval) 1781 else if (w->interval)
1062 { 1782 {
1063 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1783 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1064 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1784 /* if next trigger time is not sufficiently in the future, put it there */
1785 /* this might happen because of floating point inexactness */
1786 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1787 {
1788 ev_at (w) += w->interval;
1789
1790 /* if interval is unreasonably low we might still have a time in the past */
1791 /* so correct this. this will make the periodic very inexact, but the user */
1792 /* has effectively asked to get triggered more often than possible */
1793 if (ev_at (w) < ev_rt_now)
1794 ev_at (w) = ev_rt_now;
1795 }
1796
1797 ANHE_at_cache (periodics [HEAP0]);
1065 downheap ((WT *)periodics, periodiccnt, 0); 1798 downheap (periodics, periodiccnt, HEAP0);
1066 } 1799 }
1067 else 1800 else
1068 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1801 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1069 1802
1803 EV_FREQUENT_CHECK;
1070 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1804 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1071 } 1805 }
1072} 1806}
1073 1807
1074static void 1808static void noinline
1075periodics_reschedule (EV_P) 1809periodics_reschedule (EV_P)
1076{ 1810{
1077 int i; 1811 int i;
1078 1812
1079 /* adjust periodics after time jump */ 1813 /* adjust periodics after time jump */
1080 for (i = 0; i < periodiccnt; ++i) 1814 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1081 { 1815 {
1082 struct ev_periodic *w = periodics [i]; 1816 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1083 1817
1084 if (w->reschedule_cb) 1818 if (w->reschedule_cb)
1085 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1819 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1086 else if (w->interval) 1820 else if (w->interval)
1087 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1821 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1822
1823 ANHE_at_cache (periodics [i]);
1824 }
1825
1826 reheap (periodics, periodiccnt);
1827}
1828#endif
1829
1830void inline_speed
1831time_update (EV_P_ ev_tstamp max_block)
1832{
1833 int i;
1834
1835#if EV_USE_MONOTONIC
1836 if (expect_true (have_monotonic))
1088 } 1837 {
1838 ev_tstamp odiff = rtmn_diff;
1089 1839
1090 /* now rebuild the heap */
1091 for (i = periodiccnt >> 1; i--; )
1092 downheap ((WT *)periodics, periodiccnt, i);
1093}
1094#endif
1095
1096inline int
1097time_update_monotonic (EV_P)
1098{
1099 mn_now = get_clock (); 1840 mn_now = get_clock ();
1100 1841
1842 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1843 /* interpolate in the meantime */
1101 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1844 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1102 { 1845 {
1103 ev_rt_now = rtmn_diff + mn_now; 1846 ev_rt_now = rtmn_diff + mn_now;
1104 return 0; 1847 return;
1105 } 1848 }
1106 else 1849
1107 {
1108 now_floor = mn_now; 1850 now_floor = mn_now;
1109 ev_rt_now = ev_time (); 1851 ev_rt_now = ev_time ();
1110 return 1;
1111 }
1112}
1113 1852
1114static void 1853 /* loop a few times, before making important decisions.
1115time_update (EV_P) 1854 * on the choice of "4": one iteration isn't enough,
1116{ 1855 * in case we get preempted during the calls to
1117 int i; 1856 * ev_time and get_clock. a second call is almost guaranteed
1118 1857 * to succeed in that case, though. and looping a few more times
1119#if EV_USE_MONOTONIC 1858 * doesn't hurt either as we only do this on time-jumps or
1120 if (expect_true (have_monotonic)) 1859 * in the unlikely event of having been preempted here.
1121 { 1860 */
1122 if (time_update_monotonic (EV_A)) 1861 for (i = 4; --i; )
1123 { 1862 {
1124 ev_tstamp odiff = rtmn_diff; 1863 rtmn_diff = ev_rt_now - mn_now;
1125 1864
1126 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1865 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1866 return; /* all is well */
1867
1868 ev_rt_now = ev_time ();
1869 mn_now = get_clock ();
1870 now_floor = mn_now;
1871 }
1872
1873# if EV_PERIODIC_ENABLE
1874 periodics_reschedule (EV_A);
1875# endif
1876 /* no timer adjustment, as the monotonic clock doesn't jump */
1877 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1878 }
1879 else
1880#endif
1881 {
1882 ev_rt_now = ev_time ();
1883
1884 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1885 {
1886#if EV_PERIODIC_ENABLE
1887 periodics_reschedule (EV_A);
1888#endif
1889 /* adjust timers. this is easy, as the offset is the same for all of them */
1890 for (i = 0; i < timercnt; ++i)
1127 { 1891 {
1128 rtmn_diff = ev_rt_now - mn_now; 1892 ANHE *he = timers + i + HEAP0;
1129 1893 ANHE_w (*he)->at += ev_rt_now - mn_now;
1130 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1894 ANHE_at_cache (*he);
1131 return; /* all is well */
1132
1133 ev_rt_now = ev_time ();
1134 mn_now = get_clock ();
1135 now_floor = mn_now;
1136 } 1895 }
1137
1138# if EV_PERIODICS
1139 periodics_reschedule (EV_A);
1140# endif
1141 /* no timer adjustment, as the monotonic clock doesn't jump */
1142 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1143 } 1896 }
1144 }
1145 else
1146#endif
1147 {
1148 ev_rt_now = ev_time ();
1149
1150 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1151 {
1152#if EV_PERIODICS
1153 periodics_reschedule (EV_A);
1154#endif
1155
1156 /* adjust timers. this is easy, as the offset is the same for all */
1157 for (i = 0; i < timercnt; ++i)
1158 ((WT)timers [i])->at += ev_rt_now - mn_now;
1159 }
1160 1897
1161 mn_now = ev_rt_now; 1898 mn_now = ev_rt_now;
1162 } 1899 }
1163} 1900}
1164 1901
1172ev_unref (EV_P) 1909ev_unref (EV_P)
1173{ 1910{
1174 --activecnt; 1911 --activecnt;
1175} 1912}
1176 1913
1914void
1915ev_now_update (EV_P)
1916{
1917 time_update (EV_A_ 1e100);
1918}
1919
1177static int loop_done; 1920static int loop_done;
1178 1921
1179void 1922void
1180ev_loop (EV_P_ int flags) 1923ev_loop (EV_P_ int flags)
1181{ 1924{
1182 double block; 1925 loop_done = EVUNLOOP_CANCEL;
1183 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1184 1926
1185 while (activecnt) 1927 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1928
1929 do
1186 { 1930 {
1931#if EV_VERIFY >= 2
1932 ev_loop_verify (EV_A);
1933#endif
1934
1935#ifndef _WIN32
1936 if (expect_false (curpid)) /* penalise the forking check even more */
1937 if (expect_false (getpid () != curpid))
1938 {
1939 curpid = getpid ();
1940 postfork = 1;
1941 }
1942#endif
1943
1944#if EV_FORK_ENABLE
1945 /* we might have forked, so queue fork handlers */
1946 if (expect_false (postfork))
1947 if (forkcnt)
1948 {
1949 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1950 call_pending (EV_A);
1951 }
1952#endif
1953
1187 /* queue check watchers (and execute them) */ 1954 /* queue prepare watchers (and execute them) */
1188 if (expect_false (preparecnt)) 1955 if (expect_false (preparecnt))
1189 { 1956 {
1190 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1957 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1191 call_pending (EV_A); 1958 call_pending (EV_A);
1192 } 1959 }
1193 1960
1961 if (expect_false (!activecnt))
1962 break;
1963
1194 /* we might have forked, so reify kernel state if necessary */ 1964 /* we might have forked, so reify kernel state if necessary */
1195 if (expect_false (postfork)) 1965 if (expect_false (postfork))
1196 loop_fork (EV_A); 1966 loop_fork (EV_A);
1197 1967
1198 /* update fd-related kernel structures */ 1968 /* update fd-related kernel structures */
1199 fd_reify (EV_A); 1969 fd_reify (EV_A);
1200 1970
1201 /* calculate blocking time */ 1971 /* calculate blocking time */
1972 {
1973 ev_tstamp waittime = 0.;
1974 ev_tstamp sleeptime = 0.;
1202 1975
1203 /* we only need this for !monotonic clock or timers, but as we basically 1976 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1204 always have timers, we just calculate it always */
1205#if EV_USE_MONOTONIC
1206 if (expect_true (have_monotonic))
1207 time_update_monotonic (EV_A);
1208 else
1209#endif
1210 { 1977 {
1211 ev_rt_now = ev_time (); 1978 /* update time to cancel out callback processing overhead */
1212 mn_now = ev_rt_now; 1979 time_update (EV_A_ 1e100);
1213 }
1214 1980
1215 if (flags & EVLOOP_NONBLOCK || idlecnt)
1216 block = 0.;
1217 else
1218 {
1219 block = MAX_BLOCKTIME; 1981 waittime = MAX_BLOCKTIME;
1220 1982
1221 if (timercnt) 1983 if (timercnt)
1222 { 1984 {
1223 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1985 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1224 if (block > to) block = to; 1986 if (waittime > to) waittime = to;
1225 } 1987 }
1226 1988
1227#if EV_PERIODICS 1989#if EV_PERIODIC_ENABLE
1228 if (periodiccnt) 1990 if (periodiccnt)
1229 { 1991 {
1230 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1992 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1231 if (block > to) block = to; 1993 if (waittime > to) waittime = to;
1232 } 1994 }
1233#endif 1995#endif
1234 1996
1235 if (block < 0.) block = 0.; 1997 if (expect_false (waittime < timeout_blocktime))
1998 waittime = timeout_blocktime;
1999
2000 sleeptime = waittime - backend_fudge;
2001
2002 if (expect_true (sleeptime > io_blocktime))
2003 sleeptime = io_blocktime;
2004
2005 if (sleeptime)
2006 {
2007 ev_sleep (sleeptime);
2008 waittime -= sleeptime;
2009 }
1236 } 2010 }
1237 2011
1238 method_poll (EV_A_ block); 2012 ++loop_count;
2013 backend_poll (EV_A_ waittime);
1239 2014
1240 /* update ev_rt_now, do magic */ 2015 /* update ev_rt_now, do magic */
1241 time_update (EV_A); 2016 time_update (EV_A_ waittime + sleeptime);
2017 }
1242 2018
1243 /* queue pending timers and reschedule them */ 2019 /* queue pending timers and reschedule them */
1244 timers_reify (EV_A); /* relative timers called last */ 2020 timers_reify (EV_A); /* relative timers called last */
1245#if EV_PERIODICS 2021#if EV_PERIODIC_ENABLE
1246 periodics_reify (EV_A); /* absolute timers called first */ 2022 periodics_reify (EV_A); /* absolute timers called first */
1247#endif 2023#endif
1248 2024
2025#if EV_IDLE_ENABLE
1249 /* queue idle watchers unless io or timers are pending */ 2026 /* queue idle watchers unless other events are pending */
1250 if (idlecnt && !any_pending (EV_A)) 2027 idle_reify (EV_A);
1251 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2028#endif
1252 2029
1253 /* queue check watchers, to be executed first */ 2030 /* queue check watchers, to be executed first */
1254 if (checkcnt) 2031 if (expect_false (checkcnt))
1255 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2032 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1256 2033
1257 call_pending (EV_A); 2034 call_pending (EV_A);
1258
1259 if (loop_done)
1260 break;
1261 } 2035 }
2036 while (expect_true (
2037 activecnt
2038 && !loop_done
2039 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2040 ));
1262 2041
1263 if (loop_done != 2) 2042 if (loop_done == EVUNLOOP_ONE)
1264 loop_done = 0; 2043 loop_done = EVUNLOOP_CANCEL;
1265} 2044}
1266 2045
1267void 2046void
1268ev_unloop (EV_P_ int how) 2047ev_unloop (EV_P_ int how)
1269{ 2048{
1270 loop_done = how; 2049 loop_done = how;
1271} 2050}
1272 2051
1273/*****************************************************************************/ 2052/*****************************************************************************/
1274 2053
1275inline void 2054void inline_size
1276wlist_add (WL *head, WL elem) 2055wlist_add (WL *head, WL elem)
1277{ 2056{
1278 elem->next = *head; 2057 elem->next = *head;
1279 *head = elem; 2058 *head = elem;
1280} 2059}
1281 2060
1282inline void 2061void inline_size
1283wlist_del (WL *head, WL elem) 2062wlist_del (WL *head, WL elem)
1284{ 2063{
1285 while (*head) 2064 while (*head)
1286 { 2065 {
1287 if (*head == elem) 2066 if (*head == elem)
1292 2071
1293 head = &(*head)->next; 2072 head = &(*head)->next;
1294 } 2073 }
1295} 2074}
1296 2075
1297inline void 2076void inline_speed
1298ev_clear_pending (EV_P_ W w) 2077clear_pending (EV_P_ W w)
1299{ 2078{
1300 if (w->pending) 2079 if (w->pending)
1301 { 2080 {
1302 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2081 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1303 w->pending = 0; 2082 w->pending = 0;
1304 } 2083 }
1305} 2084}
1306 2085
1307inline void 2086int
2087ev_clear_pending (EV_P_ void *w)
2088{
2089 W w_ = (W)w;
2090 int pending = w_->pending;
2091
2092 if (expect_true (pending))
2093 {
2094 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2095 w_->pending = 0;
2096 p->w = 0;
2097 return p->events;
2098 }
2099 else
2100 return 0;
2101}
2102
2103void inline_size
2104pri_adjust (EV_P_ W w)
2105{
2106 int pri = w->priority;
2107 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2108 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2109 w->priority = pri;
2110}
2111
2112void inline_speed
1308ev_start (EV_P_ W w, int active) 2113ev_start (EV_P_ W w, int active)
1309{ 2114{
1310 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2115 pri_adjust (EV_A_ w);
1311 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1312
1313 w->active = active; 2116 w->active = active;
1314 ev_ref (EV_A); 2117 ev_ref (EV_A);
1315} 2118}
1316 2119
1317inline void 2120void inline_size
1318ev_stop (EV_P_ W w) 2121ev_stop (EV_P_ W w)
1319{ 2122{
1320 ev_unref (EV_A); 2123 ev_unref (EV_A);
1321 w->active = 0; 2124 w->active = 0;
1322} 2125}
1323 2126
1324/*****************************************************************************/ 2127/*****************************************************************************/
1325 2128
1326void 2129void noinline
1327ev_io_start (EV_P_ struct ev_io *w) 2130ev_io_start (EV_P_ ev_io *w)
1328{ 2131{
1329 int fd = w->fd; 2132 int fd = w->fd;
1330 2133
1331 if (ev_is_active (w)) 2134 if (expect_false (ev_is_active (w)))
1332 return; 2135 return;
1333 2136
1334 assert (("ev_io_start called with negative fd", fd >= 0)); 2137 assert (("ev_io_start called with negative fd", fd >= 0));
2138
2139 EV_FREQUENT_CHECK;
1335 2140
1336 ev_start (EV_A_ (W)w, 1); 2141 ev_start (EV_A_ (W)w, 1);
1337 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2142 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1338 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2143 wlist_add (&anfds[fd].head, (WL)w);
1339 2144
1340 fd_change (EV_A_ fd); 2145 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1341} 2146 w->events &= ~EV_IOFDSET;
1342 2147
1343void 2148 EV_FREQUENT_CHECK;
2149}
2150
2151void noinline
1344ev_io_stop (EV_P_ struct ev_io *w) 2152ev_io_stop (EV_P_ ev_io *w)
1345{ 2153{
1346 ev_clear_pending (EV_A_ (W)w); 2154 clear_pending (EV_A_ (W)w);
1347 if (!ev_is_active (w)) 2155 if (expect_false (!ev_is_active (w)))
1348 return; 2156 return;
1349 2157
1350 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2158 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1351 2159
2160 EV_FREQUENT_CHECK;
2161
1352 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2162 wlist_del (&anfds[w->fd].head, (WL)w);
1353 ev_stop (EV_A_ (W)w); 2163 ev_stop (EV_A_ (W)w);
1354 2164
1355 fd_change (EV_A_ w->fd); 2165 fd_change (EV_A_ w->fd, 1);
1356}
1357 2166
1358void 2167 EV_FREQUENT_CHECK;
2168}
2169
2170void noinline
1359ev_timer_start (EV_P_ struct ev_timer *w) 2171ev_timer_start (EV_P_ ev_timer *w)
1360{ 2172{
1361 if (ev_is_active (w)) 2173 if (expect_false (ev_is_active (w)))
1362 return; 2174 return;
1363 2175
1364 ((WT)w)->at += mn_now; 2176 ev_at (w) += mn_now;
1365 2177
1366 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2178 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1367 2179
2180 EV_FREQUENT_CHECK;
2181
2182 ++timercnt;
1368 ev_start (EV_A_ (W)w, ++timercnt); 2183 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1369 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2184 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1370 timers [timercnt - 1] = w; 2185 ANHE_w (timers [ev_active (w)]) = (WT)w;
1371 upheap ((WT *)timers, timercnt - 1); 2186 ANHE_at_cache (timers [ev_active (w)]);
2187 upheap (timers, ev_active (w));
1372 2188
2189 EV_FREQUENT_CHECK;
2190
1373 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2191 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1374} 2192}
1375 2193
1376void 2194void noinline
1377ev_timer_stop (EV_P_ struct ev_timer *w) 2195ev_timer_stop (EV_P_ ev_timer *w)
1378{ 2196{
1379 ev_clear_pending (EV_A_ (W)w); 2197 clear_pending (EV_A_ (W)w);
1380 if (!ev_is_active (w)) 2198 if (expect_false (!ev_is_active (w)))
1381 return; 2199 return;
1382 2200
2201 EV_FREQUENT_CHECK;
2202
2203 {
2204 int active = ev_active (w);
2205
1383 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2206 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1384 2207
1385 if (((W)w)->active < timercnt--) 2208 --timercnt;
2209
2210 if (expect_true (active < timercnt + HEAP0))
1386 { 2211 {
1387 timers [((W)w)->active - 1] = timers [timercnt]; 2212 timers [active] = timers [timercnt + HEAP0];
1388 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2213 adjustheap (timers, timercnt, active);
1389 } 2214 }
2215 }
1390 2216
1391 ((WT)w)->at -= mn_now; 2217 EV_FREQUENT_CHECK;
2218
2219 ev_at (w) -= mn_now;
1392 2220
1393 ev_stop (EV_A_ (W)w); 2221 ev_stop (EV_A_ (W)w);
1394} 2222}
1395 2223
1396void 2224void noinline
1397ev_timer_again (EV_P_ struct ev_timer *w) 2225ev_timer_again (EV_P_ ev_timer *w)
1398{ 2226{
2227 EV_FREQUENT_CHECK;
2228
1399 if (ev_is_active (w)) 2229 if (ev_is_active (w))
1400 { 2230 {
1401 if (w->repeat) 2231 if (w->repeat)
1402 { 2232 {
1403 ((WT)w)->at = mn_now + w->repeat; 2233 ev_at (w) = mn_now + w->repeat;
2234 ANHE_at_cache (timers [ev_active (w)]);
1404 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2235 adjustheap (timers, timercnt, ev_active (w));
1405 } 2236 }
1406 else 2237 else
1407 ev_timer_stop (EV_A_ w); 2238 ev_timer_stop (EV_A_ w);
1408 } 2239 }
1409 else if (w->repeat) 2240 else if (w->repeat)
1410 { 2241 {
1411 w->at = w->repeat; 2242 ev_at (w) = w->repeat;
1412 ev_timer_start (EV_A_ w); 2243 ev_timer_start (EV_A_ w);
1413 } 2244 }
1414}
1415 2245
2246 EV_FREQUENT_CHECK;
2247}
2248
1416#if EV_PERIODICS 2249#if EV_PERIODIC_ENABLE
1417void 2250void noinline
1418ev_periodic_start (EV_P_ struct ev_periodic *w) 2251ev_periodic_start (EV_P_ ev_periodic *w)
1419{ 2252{
1420 if (ev_is_active (w)) 2253 if (expect_false (ev_is_active (w)))
1421 return; 2254 return;
1422 2255
1423 if (w->reschedule_cb) 2256 if (w->reschedule_cb)
1424 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2257 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1425 else if (w->interval) 2258 else if (w->interval)
1426 { 2259 {
1427 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2260 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1428 /* this formula differs from the one in periodic_reify because we do not always round up */ 2261 /* this formula differs from the one in periodic_reify because we do not always round up */
1429 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2262 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1430 } 2263 }
2264 else
2265 ev_at (w) = w->offset;
1431 2266
2267 EV_FREQUENT_CHECK;
2268
2269 ++periodiccnt;
1432 ev_start (EV_A_ (W)w, ++periodiccnt); 2270 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1433 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2271 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1434 periodics [periodiccnt - 1] = w; 2272 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1435 upheap ((WT *)periodics, periodiccnt - 1); 2273 ANHE_at_cache (periodics [ev_active (w)]);
2274 upheap (periodics, ev_active (w));
1436 2275
2276 EV_FREQUENT_CHECK;
2277
1437 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2278 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1438} 2279}
1439 2280
1440void 2281void noinline
1441ev_periodic_stop (EV_P_ struct ev_periodic *w) 2282ev_periodic_stop (EV_P_ ev_periodic *w)
1442{ 2283{
1443 ev_clear_pending (EV_A_ (W)w); 2284 clear_pending (EV_A_ (W)w);
1444 if (!ev_is_active (w)) 2285 if (expect_false (!ev_is_active (w)))
1445 return; 2286 return;
1446 2287
2288 EV_FREQUENT_CHECK;
2289
2290 {
2291 int active = ev_active (w);
2292
1447 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2293 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1448 2294
1449 if (((W)w)->active < periodiccnt--) 2295 --periodiccnt;
2296
2297 if (expect_true (active < periodiccnt + HEAP0))
1450 { 2298 {
1451 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2299 periodics [active] = periodics [periodiccnt + HEAP0];
1452 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2300 adjustheap (periodics, periodiccnt, active);
1453 } 2301 }
2302 }
2303
2304 EV_FREQUENT_CHECK;
1454 2305
1455 ev_stop (EV_A_ (W)w); 2306 ev_stop (EV_A_ (W)w);
1456} 2307}
1457 2308
1458void 2309void noinline
1459ev_periodic_again (EV_P_ struct ev_periodic *w) 2310ev_periodic_again (EV_P_ ev_periodic *w)
1460{ 2311{
1461 /* TODO: use adjustheap and recalculation */ 2312 /* TODO: use adjustheap and recalculation */
1462 ev_periodic_stop (EV_A_ w); 2313 ev_periodic_stop (EV_A_ w);
1463 ev_periodic_start (EV_A_ w); 2314 ev_periodic_start (EV_A_ w);
1464} 2315}
1465#endif 2316#endif
1466 2317
1467void
1468ev_idle_start (EV_P_ struct ev_idle *w)
1469{
1470 if (ev_is_active (w))
1471 return;
1472
1473 ev_start (EV_A_ (W)w, ++idlecnt);
1474 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1475 idles [idlecnt - 1] = w;
1476}
1477
1478void
1479ev_idle_stop (EV_P_ struct ev_idle *w)
1480{
1481 ev_clear_pending (EV_A_ (W)w);
1482 if (!ev_is_active (w))
1483 return;
1484
1485 idles [((W)w)->active - 1] = idles [--idlecnt];
1486 ev_stop (EV_A_ (W)w);
1487}
1488
1489void
1490ev_prepare_start (EV_P_ struct ev_prepare *w)
1491{
1492 if (ev_is_active (w))
1493 return;
1494
1495 ev_start (EV_A_ (W)w, ++preparecnt);
1496 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1497 prepares [preparecnt - 1] = w;
1498}
1499
1500void
1501ev_prepare_stop (EV_P_ struct ev_prepare *w)
1502{
1503 ev_clear_pending (EV_A_ (W)w);
1504 if (!ev_is_active (w))
1505 return;
1506
1507 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1508 ev_stop (EV_A_ (W)w);
1509}
1510
1511void
1512ev_check_start (EV_P_ struct ev_check *w)
1513{
1514 if (ev_is_active (w))
1515 return;
1516
1517 ev_start (EV_A_ (W)w, ++checkcnt);
1518 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1519 checks [checkcnt - 1] = w;
1520}
1521
1522void
1523ev_check_stop (EV_P_ struct ev_check *w)
1524{
1525 ev_clear_pending (EV_A_ (W)w);
1526 if (!ev_is_active (w))
1527 return;
1528
1529 checks [((W)w)->active - 1] = checks [--checkcnt];
1530 ev_stop (EV_A_ (W)w);
1531}
1532
1533#ifndef SA_RESTART 2318#ifndef SA_RESTART
1534# define SA_RESTART 0 2319# define SA_RESTART 0
1535#endif 2320#endif
1536 2321
1537void 2322void noinline
1538ev_signal_start (EV_P_ struct ev_signal *w) 2323ev_signal_start (EV_P_ ev_signal *w)
1539{ 2324{
1540#if EV_MULTIPLICITY 2325#if EV_MULTIPLICITY
1541 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2326 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1542#endif 2327#endif
1543 if (ev_is_active (w)) 2328 if (expect_false (ev_is_active (w)))
1544 return; 2329 return;
1545 2330
1546 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2331 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1547 2332
2333 evpipe_init (EV_A);
2334
2335 EV_FREQUENT_CHECK;
2336
2337 {
2338#ifndef _WIN32
2339 sigset_t full, prev;
2340 sigfillset (&full);
2341 sigprocmask (SIG_SETMASK, &full, &prev);
2342#endif
2343
2344 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2345
2346#ifndef _WIN32
2347 sigprocmask (SIG_SETMASK, &prev, 0);
2348#endif
2349 }
2350
1548 ev_start (EV_A_ (W)w, 1); 2351 ev_start (EV_A_ (W)w, 1);
1549 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1550 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2352 wlist_add (&signals [w->signum - 1].head, (WL)w);
1551 2353
1552 if (!((WL)w)->next) 2354 if (!((WL)w)->next)
1553 { 2355 {
1554#if _WIN32 2356#if _WIN32
1555 signal (w->signum, sighandler); 2357 signal (w->signum, ev_sighandler);
1556#else 2358#else
1557 struct sigaction sa; 2359 struct sigaction sa;
1558 sa.sa_handler = sighandler; 2360 sa.sa_handler = ev_sighandler;
1559 sigfillset (&sa.sa_mask); 2361 sigfillset (&sa.sa_mask);
1560 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2362 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1561 sigaction (w->signum, &sa, 0); 2363 sigaction (w->signum, &sa, 0);
1562#endif 2364#endif
1563 } 2365 }
1564}
1565 2366
1566void 2367 EV_FREQUENT_CHECK;
2368}
2369
2370void noinline
1567ev_signal_stop (EV_P_ struct ev_signal *w) 2371ev_signal_stop (EV_P_ ev_signal *w)
1568{ 2372{
1569 ev_clear_pending (EV_A_ (W)w); 2373 clear_pending (EV_A_ (W)w);
1570 if (!ev_is_active (w)) 2374 if (expect_false (!ev_is_active (w)))
1571 return; 2375 return;
1572 2376
2377 EV_FREQUENT_CHECK;
2378
1573 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2379 wlist_del (&signals [w->signum - 1].head, (WL)w);
1574 ev_stop (EV_A_ (W)w); 2380 ev_stop (EV_A_ (W)w);
1575 2381
1576 if (!signals [w->signum - 1].head) 2382 if (!signals [w->signum - 1].head)
1577 signal (w->signum, SIG_DFL); 2383 signal (w->signum, SIG_DFL);
1578}
1579 2384
2385 EV_FREQUENT_CHECK;
2386}
2387
1580void 2388void
1581ev_child_start (EV_P_ struct ev_child *w) 2389ev_child_start (EV_P_ ev_child *w)
1582{ 2390{
1583#if EV_MULTIPLICITY 2391#if EV_MULTIPLICITY
1584 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2392 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1585#endif 2393#endif
1586 if (ev_is_active (w)) 2394 if (expect_false (ev_is_active (w)))
1587 return; 2395 return;
1588 2396
2397 EV_FREQUENT_CHECK;
2398
1589 ev_start (EV_A_ (W)w, 1); 2399 ev_start (EV_A_ (W)w, 1);
1590 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2400 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1591}
1592 2401
2402 EV_FREQUENT_CHECK;
2403}
2404
1593void 2405void
1594ev_child_stop (EV_P_ struct ev_child *w) 2406ev_child_stop (EV_P_ ev_child *w)
1595{ 2407{
1596 ev_clear_pending (EV_A_ (W)w); 2408 clear_pending (EV_A_ (W)w);
1597 if (!ev_is_active (w)) 2409 if (expect_false (!ev_is_active (w)))
1598 return; 2410 return;
1599 2411
2412 EV_FREQUENT_CHECK;
2413
1600 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2414 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1601 ev_stop (EV_A_ (W)w); 2415 ev_stop (EV_A_ (W)w);
2416
2417 EV_FREQUENT_CHECK;
1602} 2418}
2419
2420#if EV_STAT_ENABLE
2421
2422# ifdef _WIN32
2423# undef lstat
2424# define lstat(a,b) _stati64 (a,b)
2425# endif
2426
2427#define DEF_STAT_INTERVAL 5.0074891
2428#define MIN_STAT_INTERVAL 0.1074891
2429
2430static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2431
2432#if EV_USE_INOTIFY
2433# define EV_INOTIFY_BUFSIZE 8192
2434
2435static void noinline
2436infy_add (EV_P_ ev_stat *w)
2437{
2438 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2439
2440 if (w->wd < 0)
2441 {
2442 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2443
2444 /* monitor some parent directory for speedup hints */
2445 /* note that exceeding the hardcoded limit is not a correctness issue, */
2446 /* but an efficiency issue only */
2447 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2448 {
2449 char path [4096];
2450 strcpy (path, w->path);
2451
2452 do
2453 {
2454 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2455 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2456
2457 char *pend = strrchr (path, '/');
2458
2459 if (!pend)
2460 break; /* whoops, no '/', complain to your admin */
2461
2462 *pend = 0;
2463 w->wd = inotify_add_watch (fs_fd, path, mask);
2464 }
2465 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2466 }
2467 }
2468 else
2469 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2470
2471 if (w->wd >= 0)
2472 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2473}
2474
2475static void noinline
2476infy_del (EV_P_ ev_stat *w)
2477{
2478 int slot;
2479 int wd = w->wd;
2480
2481 if (wd < 0)
2482 return;
2483
2484 w->wd = -2;
2485 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2486 wlist_del (&fs_hash [slot].head, (WL)w);
2487
2488 /* remove this watcher, if others are watching it, they will rearm */
2489 inotify_rm_watch (fs_fd, wd);
2490}
2491
2492static void noinline
2493infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2494{
2495 if (slot < 0)
2496 /* overflow, need to check for all hahs slots */
2497 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2498 infy_wd (EV_A_ slot, wd, ev);
2499 else
2500 {
2501 WL w_;
2502
2503 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2504 {
2505 ev_stat *w = (ev_stat *)w_;
2506 w_ = w_->next; /* lets us remove this watcher and all before it */
2507
2508 if (w->wd == wd || wd == -1)
2509 {
2510 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2511 {
2512 w->wd = -1;
2513 infy_add (EV_A_ w); /* re-add, no matter what */
2514 }
2515
2516 stat_timer_cb (EV_A_ &w->timer, 0);
2517 }
2518 }
2519 }
2520}
2521
2522static void
2523infy_cb (EV_P_ ev_io *w, int revents)
2524{
2525 char buf [EV_INOTIFY_BUFSIZE];
2526 struct inotify_event *ev = (struct inotify_event *)buf;
2527 int ofs;
2528 int len = read (fs_fd, buf, sizeof (buf));
2529
2530 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2531 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2532}
2533
2534void inline_size
2535infy_init (EV_P)
2536{
2537 if (fs_fd != -2)
2538 return;
2539
2540 fs_fd = inotify_init ();
2541
2542 if (fs_fd >= 0)
2543 {
2544 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2545 ev_set_priority (&fs_w, EV_MAXPRI);
2546 ev_io_start (EV_A_ &fs_w);
2547 }
2548}
2549
2550void inline_size
2551infy_fork (EV_P)
2552{
2553 int slot;
2554
2555 if (fs_fd < 0)
2556 return;
2557
2558 close (fs_fd);
2559 fs_fd = inotify_init ();
2560
2561 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2562 {
2563 WL w_ = fs_hash [slot].head;
2564 fs_hash [slot].head = 0;
2565
2566 while (w_)
2567 {
2568 ev_stat *w = (ev_stat *)w_;
2569 w_ = w_->next; /* lets us add this watcher */
2570
2571 w->wd = -1;
2572
2573 if (fs_fd >= 0)
2574 infy_add (EV_A_ w); /* re-add, no matter what */
2575 else
2576 ev_timer_start (EV_A_ &w->timer);
2577 }
2578
2579 }
2580}
2581
2582#endif
2583
2584#ifdef _WIN32
2585# define EV_LSTAT(p,b) _stati64 (p, b)
2586#else
2587# define EV_LSTAT(p,b) lstat (p, b)
2588#endif
2589
2590void
2591ev_stat_stat (EV_P_ ev_stat *w)
2592{
2593 if (lstat (w->path, &w->attr) < 0)
2594 w->attr.st_nlink = 0;
2595 else if (!w->attr.st_nlink)
2596 w->attr.st_nlink = 1;
2597}
2598
2599static void noinline
2600stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2601{
2602 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2603
2604 /* we copy this here each the time so that */
2605 /* prev has the old value when the callback gets invoked */
2606 w->prev = w->attr;
2607 ev_stat_stat (EV_A_ w);
2608
2609 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2610 if (
2611 w->prev.st_dev != w->attr.st_dev
2612 || w->prev.st_ino != w->attr.st_ino
2613 || w->prev.st_mode != w->attr.st_mode
2614 || w->prev.st_nlink != w->attr.st_nlink
2615 || w->prev.st_uid != w->attr.st_uid
2616 || w->prev.st_gid != w->attr.st_gid
2617 || w->prev.st_rdev != w->attr.st_rdev
2618 || w->prev.st_size != w->attr.st_size
2619 || w->prev.st_atime != w->attr.st_atime
2620 || w->prev.st_mtime != w->attr.st_mtime
2621 || w->prev.st_ctime != w->attr.st_ctime
2622 ) {
2623 #if EV_USE_INOTIFY
2624 infy_del (EV_A_ w);
2625 infy_add (EV_A_ w);
2626 ev_stat_stat (EV_A_ w); /* avoid race... */
2627 #endif
2628
2629 ev_feed_event (EV_A_ w, EV_STAT);
2630 }
2631}
2632
2633void
2634ev_stat_start (EV_P_ ev_stat *w)
2635{
2636 if (expect_false (ev_is_active (w)))
2637 return;
2638
2639 /* since we use memcmp, we need to clear any padding data etc. */
2640 memset (&w->prev, 0, sizeof (ev_statdata));
2641 memset (&w->attr, 0, sizeof (ev_statdata));
2642
2643 ev_stat_stat (EV_A_ w);
2644
2645 if (w->interval < MIN_STAT_INTERVAL)
2646 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2647
2648 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2649 ev_set_priority (&w->timer, ev_priority (w));
2650
2651#if EV_USE_INOTIFY
2652 infy_init (EV_A);
2653
2654 if (fs_fd >= 0)
2655 infy_add (EV_A_ w);
2656 else
2657#endif
2658 ev_timer_start (EV_A_ &w->timer);
2659
2660 ev_start (EV_A_ (W)w, 1);
2661
2662 EV_FREQUENT_CHECK;
2663}
2664
2665void
2666ev_stat_stop (EV_P_ ev_stat *w)
2667{
2668 clear_pending (EV_A_ (W)w);
2669 if (expect_false (!ev_is_active (w)))
2670 return;
2671
2672 EV_FREQUENT_CHECK;
2673
2674#if EV_USE_INOTIFY
2675 infy_del (EV_A_ w);
2676#endif
2677 ev_timer_stop (EV_A_ &w->timer);
2678
2679 ev_stop (EV_A_ (W)w);
2680
2681 EV_FREQUENT_CHECK;
2682}
2683#endif
2684
2685#if EV_IDLE_ENABLE
2686void
2687ev_idle_start (EV_P_ ev_idle *w)
2688{
2689 if (expect_false (ev_is_active (w)))
2690 return;
2691
2692 pri_adjust (EV_A_ (W)w);
2693
2694 EV_FREQUENT_CHECK;
2695
2696 {
2697 int active = ++idlecnt [ABSPRI (w)];
2698
2699 ++idleall;
2700 ev_start (EV_A_ (W)w, active);
2701
2702 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2703 idles [ABSPRI (w)][active - 1] = w;
2704 }
2705
2706 EV_FREQUENT_CHECK;
2707}
2708
2709void
2710ev_idle_stop (EV_P_ ev_idle *w)
2711{
2712 clear_pending (EV_A_ (W)w);
2713 if (expect_false (!ev_is_active (w)))
2714 return;
2715
2716 EV_FREQUENT_CHECK;
2717
2718 {
2719 int active = ev_active (w);
2720
2721 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2722 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2723
2724 ev_stop (EV_A_ (W)w);
2725 --idleall;
2726 }
2727
2728 EV_FREQUENT_CHECK;
2729}
2730#endif
2731
2732void
2733ev_prepare_start (EV_P_ ev_prepare *w)
2734{
2735 if (expect_false (ev_is_active (w)))
2736 return;
2737
2738 EV_FREQUENT_CHECK;
2739
2740 ev_start (EV_A_ (W)w, ++preparecnt);
2741 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2742 prepares [preparecnt - 1] = w;
2743
2744 EV_FREQUENT_CHECK;
2745}
2746
2747void
2748ev_prepare_stop (EV_P_ ev_prepare *w)
2749{
2750 clear_pending (EV_A_ (W)w);
2751 if (expect_false (!ev_is_active (w)))
2752 return;
2753
2754 EV_FREQUENT_CHECK;
2755
2756 {
2757 int active = ev_active (w);
2758
2759 prepares [active - 1] = prepares [--preparecnt];
2760 ev_active (prepares [active - 1]) = active;
2761 }
2762
2763 ev_stop (EV_A_ (W)w);
2764
2765 EV_FREQUENT_CHECK;
2766}
2767
2768void
2769ev_check_start (EV_P_ ev_check *w)
2770{
2771 if (expect_false (ev_is_active (w)))
2772 return;
2773
2774 EV_FREQUENT_CHECK;
2775
2776 ev_start (EV_A_ (W)w, ++checkcnt);
2777 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2778 checks [checkcnt - 1] = w;
2779
2780 EV_FREQUENT_CHECK;
2781}
2782
2783void
2784ev_check_stop (EV_P_ ev_check *w)
2785{
2786 clear_pending (EV_A_ (W)w);
2787 if (expect_false (!ev_is_active (w)))
2788 return;
2789
2790 EV_FREQUENT_CHECK;
2791
2792 {
2793 int active = ev_active (w);
2794
2795 checks [active - 1] = checks [--checkcnt];
2796 ev_active (checks [active - 1]) = active;
2797 }
2798
2799 ev_stop (EV_A_ (W)w);
2800
2801 EV_FREQUENT_CHECK;
2802}
2803
2804#if EV_EMBED_ENABLE
2805void noinline
2806ev_embed_sweep (EV_P_ ev_embed *w)
2807{
2808 ev_loop (w->other, EVLOOP_NONBLOCK);
2809}
2810
2811static void
2812embed_io_cb (EV_P_ ev_io *io, int revents)
2813{
2814 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2815
2816 if (ev_cb (w))
2817 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2818 else
2819 ev_loop (w->other, EVLOOP_NONBLOCK);
2820}
2821
2822static void
2823embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2824{
2825 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2826
2827 {
2828 struct ev_loop *loop = w->other;
2829
2830 while (fdchangecnt)
2831 {
2832 fd_reify (EV_A);
2833 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2834 }
2835 }
2836}
2837
2838#if 0
2839static void
2840embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2841{
2842 ev_idle_stop (EV_A_ idle);
2843}
2844#endif
2845
2846void
2847ev_embed_start (EV_P_ ev_embed *w)
2848{
2849 if (expect_false (ev_is_active (w)))
2850 return;
2851
2852 {
2853 struct ev_loop *loop = w->other;
2854 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2855 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2856 }
2857
2858 EV_FREQUENT_CHECK;
2859
2860 ev_set_priority (&w->io, ev_priority (w));
2861 ev_io_start (EV_A_ &w->io);
2862
2863 ev_prepare_init (&w->prepare, embed_prepare_cb);
2864 ev_set_priority (&w->prepare, EV_MINPRI);
2865 ev_prepare_start (EV_A_ &w->prepare);
2866
2867 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2868
2869 ev_start (EV_A_ (W)w, 1);
2870
2871 EV_FREQUENT_CHECK;
2872}
2873
2874void
2875ev_embed_stop (EV_P_ ev_embed *w)
2876{
2877 clear_pending (EV_A_ (W)w);
2878 if (expect_false (!ev_is_active (w)))
2879 return;
2880
2881 EV_FREQUENT_CHECK;
2882
2883 ev_io_stop (EV_A_ &w->io);
2884 ev_prepare_stop (EV_A_ &w->prepare);
2885
2886 ev_stop (EV_A_ (W)w);
2887
2888 EV_FREQUENT_CHECK;
2889}
2890#endif
2891
2892#if EV_FORK_ENABLE
2893void
2894ev_fork_start (EV_P_ ev_fork *w)
2895{
2896 if (expect_false (ev_is_active (w)))
2897 return;
2898
2899 EV_FREQUENT_CHECK;
2900
2901 ev_start (EV_A_ (W)w, ++forkcnt);
2902 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2903 forks [forkcnt - 1] = w;
2904
2905 EV_FREQUENT_CHECK;
2906}
2907
2908void
2909ev_fork_stop (EV_P_ ev_fork *w)
2910{
2911 clear_pending (EV_A_ (W)w);
2912 if (expect_false (!ev_is_active (w)))
2913 return;
2914
2915 EV_FREQUENT_CHECK;
2916
2917 {
2918 int active = ev_active (w);
2919
2920 forks [active - 1] = forks [--forkcnt];
2921 ev_active (forks [active - 1]) = active;
2922 }
2923
2924 ev_stop (EV_A_ (W)w);
2925
2926 EV_FREQUENT_CHECK;
2927}
2928#endif
2929
2930#if EV_ASYNC_ENABLE
2931void
2932ev_async_start (EV_P_ ev_async *w)
2933{
2934 if (expect_false (ev_is_active (w)))
2935 return;
2936
2937 evpipe_init (EV_A);
2938
2939 EV_FREQUENT_CHECK;
2940
2941 ev_start (EV_A_ (W)w, ++asynccnt);
2942 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2943 asyncs [asynccnt - 1] = w;
2944
2945 EV_FREQUENT_CHECK;
2946}
2947
2948void
2949ev_async_stop (EV_P_ ev_async *w)
2950{
2951 clear_pending (EV_A_ (W)w);
2952 if (expect_false (!ev_is_active (w)))
2953 return;
2954
2955 EV_FREQUENT_CHECK;
2956
2957 {
2958 int active = ev_active (w);
2959
2960 asyncs [active - 1] = asyncs [--asynccnt];
2961 ev_active (asyncs [active - 1]) = active;
2962 }
2963
2964 ev_stop (EV_A_ (W)w);
2965
2966 EV_FREQUENT_CHECK;
2967}
2968
2969void
2970ev_async_send (EV_P_ ev_async *w)
2971{
2972 w->sent = 1;
2973 evpipe_write (EV_A_ &gotasync);
2974}
2975#endif
1603 2976
1604/*****************************************************************************/ 2977/*****************************************************************************/
1605 2978
1606struct ev_once 2979struct ev_once
1607{ 2980{
1608 struct ev_io io; 2981 ev_io io;
1609 struct ev_timer to; 2982 ev_timer to;
1610 void (*cb)(int revents, void *arg); 2983 void (*cb)(int revents, void *arg);
1611 void *arg; 2984 void *arg;
1612}; 2985};
1613 2986
1614static void 2987static void
1615once_cb (EV_P_ struct ev_once *once, int revents) 2988once_cb (EV_P_ struct ev_once *once, int revents)
1616{ 2989{
1617 void (*cb)(int revents, void *arg) = once->cb; 2990 void (*cb)(int revents, void *arg) = once->cb;
1618 void *arg = once->arg; 2991 void *arg = once->arg;
1619 2992
1620 ev_io_stop (EV_A_ &once->io); 2993 ev_io_stop (EV_A_ &once->io);
1621 ev_timer_stop (EV_A_ &once->to); 2994 ev_timer_stop (EV_A_ &once->to);
1622 ev_free (once); 2995 ev_free (once);
1623 2996
1624 cb (revents, arg); 2997 cb (revents, arg);
1625} 2998}
1626 2999
1627static void 3000static void
1628once_cb_io (EV_P_ struct ev_io *w, int revents) 3001once_cb_io (EV_P_ ev_io *w, int revents)
1629{ 3002{
1630 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3003 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1631} 3004}
1632 3005
1633static void 3006static void
1634once_cb_to (EV_P_ struct ev_timer *w, int revents) 3007once_cb_to (EV_P_ ev_timer *w, int revents)
1635{ 3008{
1636 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3009 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1637} 3010}
1638 3011
1639void 3012void
1640ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3013ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1641{ 3014{
1642 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3015 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1643 3016
1644 if (!once) 3017 if (expect_false (!once))
3018 {
1645 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3019 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1646 else 3020 return;
1647 { 3021 }
3022
1648 once->cb = cb; 3023 once->cb = cb;
1649 once->arg = arg; 3024 once->arg = arg;
1650 3025
1651 ev_init (&once->io, once_cb_io); 3026 ev_init (&once->io, once_cb_io);
1652 if (fd >= 0) 3027 if (fd >= 0)
1653 { 3028 {
1654 ev_io_set (&once->io, fd, events); 3029 ev_io_set (&once->io, fd, events);
1655 ev_io_start (EV_A_ &once->io); 3030 ev_io_start (EV_A_ &once->io);
1656 } 3031 }
1657 3032
1658 ev_init (&once->to, once_cb_to); 3033 ev_init (&once->to, once_cb_to);
1659 if (timeout >= 0.) 3034 if (timeout >= 0.)
1660 { 3035 {
1661 ev_timer_set (&once->to, timeout, 0.); 3036 ev_timer_set (&once->to, timeout, 0.);
1662 ev_timer_start (EV_A_ &once->to); 3037 ev_timer_start (EV_A_ &once->to);
1663 }
1664 } 3038 }
1665} 3039}
3040
3041#if EV_MULTIPLICITY
3042 #include "ev_wrap.h"
3043#endif
1666 3044
1667#ifdef __cplusplus 3045#ifdef __cplusplus
1668} 3046}
1669#endif 3047#endif
1670 3048

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines