ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.195 by root, Sat Dec 22 11:44:51 2007 UTC vs.
Revision 1.260 by root, Mon Sep 8 17:24:39 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
110# else 119# else
111# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
112# endif 121# endif
113# endif 122# endif
114 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
115#endif 132#endif
116 133
117#include <math.h> 134#include <math.h>
118#include <stdlib.h> 135#include <stdlib.h>
119#include <fcntl.h> 136#include <fcntl.h>
137#ifndef _WIN32 154#ifndef _WIN32
138# include <sys/time.h> 155# include <sys/time.h>
139# include <sys/wait.h> 156# include <sys/wait.h>
140# include <unistd.h> 157# include <unistd.h>
141#else 158#else
159# include <io.h>
142# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
143# include <windows.h> 161# include <windows.h>
144# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
146# endif 164# endif
147#endif 165#endif
148 166
149/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
150 168
151#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
152# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
153#endif 175#endif
154 176
155#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
156# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
157#endif 179#endif
158 180
159#ifndef EV_USE_NANOSLEEP 181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
160# define EV_USE_NANOSLEEP 0 185# define EV_USE_NANOSLEEP 0
186# endif
161#endif 187#endif
162 188
163#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
164# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
165#endif 191#endif
171# define EV_USE_POLL 1 197# define EV_USE_POLL 1
172# endif 198# endif
173#endif 199#endif
174 200
175#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
176# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
177#endif 207#endif
178 208
179#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
180# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
181#endif 211#endif
183#ifndef EV_USE_PORT 213#ifndef EV_USE_PORT
184# define EV_USE_PORT 0 214# define EV_USE_PORT 0
185#endif 215#endif
186 216
187#ifndef EV_USE_INOTIFY 217#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1
220# else
188# define EV_USE_INOTIFY 0 221# define EV_USE_INOTIFY 0
222# endif
189#endif 223#endif
190 224
191#ifndef EV_PID_HASHSIZE 225#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL 226# if EV_MINIMAL
193# define EV_PID_HASHSIZE 1 227# define EV_PID_HASHSIZE 1
202# else 236# else
203# define EV_INOTIFY_HASHSIZE 16 237# define EV_INOTIFY_HASHSIZE 16
204# endif 238# endif
205#endif 239#endif
206 240
207/**/ 241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
208 268
209#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
210# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
211# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
212#endif 272#endif
233 293
234#if EV_SELECT_IS_WINSOCKET 294#if EV_SELECT_IS_WINSOCKET
235# include <winsock.h> 295# include <winsock.h>
236#endif 296#endif
237 297
298#if EV_USE_EVENTFD
299/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
300# include <stdint.h>
301# ifdef __cplusplus
302extern "C" {
303# endif
304int eventfd (unsigned int initval, int flags);
305# ifdef __cplusplus
306}
307# endif
308#endif
309
238/**/ 310/**/
311
312#if EV_VERIFY >= 3
313# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
314#else
315# define EV_FREQUENT_CHECK do { } while (0)
316#endif
239 317
240/* 318/*
241 * This is used to avoid floating point rounding problems. 319 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics 320 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding 321 * to ensure progress, time-wise, even when rounding
255# define expect(expr,value) __builtin_expect ((expr),(value)) 333# define expect(expr,value) __builtin_expect ((expr),(value))
256# define noinline __attribute__ ((noinline)) 334# define noinline __attribute__ ((noinline))
257#else 335#else
258# define expect(expr,value) (expr) 336# define expect(expr,value) (expr)
259# define noinline 337# define noinline
260# if __STDC_VERSION__ < 199901L 338# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
261# define inline 339# define inline
262# endif 340# endif
263#endif 341#endif
264 342
265#define expect_false(expr) expect ((expr) != 0, 0) 343#define expect_false(expr) expect ((expr) != 0, 0)
280 358
281typedef ev_watcher *W; 359typedef ev_watcher *W;
282typedef ev_watcher_list *WL; 360typedef ev_watcher_list *WL;
283typedef ev_watcher_time *WT; 361typedef ev_watcher_time *WT;
284 362
363#define ev_active(w) ((W)(w))->active
364#define ev_at(w) ((WT)(w))->at
365
366#if EV_USE_MONOTONIC
285/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 367/* sig_atomic_t is used to avoid per-thread variables or locking but still */
286/* giving it a reasonably high chance of working on typical architetcures */ 368/* giving it a reasonably high chance of working on typical architetcures */
287static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 369static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
370#endif
288 371
289#ifdef _WIN32 372#ifdef _WIN32
290# include "ev_win32.c" 373# include "ev_win32.c"
291#endif 374#endif
292 375
313 perror (msg); 396 perror (msg);
314 abort (); 397 abort ();
315 } 398 }
316} 399}
317 400
401static void *
402ev_realloc_emul (void *ptr, long size)
403{
404 /* some systems, notably openbsd and darwin, fail to properly
405 * implement realloc (x, 0) (as required by both ansi c-98 and
406 * the single unix specification, so work around them here.
407 */
408
409 if (size)
410 return realloc (ptr, size);
411
412 free (ptr);
413 return 0;
414}
415
318static void *(*alloc)(void *ptr, long size); 416static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
319 417
320void 418void
321ev_set_allocator (void *(*cb)(void *ptr, long size)) 419ev_set_allocator (void *(*cb)(void *ptr, long size))
322{ 420{
323 alloc = cb; 421 alloc = cb;
324} 422}
325 423
326inline_speed void * 424inline_speed void *
327ev_realloc (void *ptr, long size) 425ev_realloc (void *ptr, long size)
328{ 426{
329 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 427 ptr = alloc (ptr, size);
330 428
331 if (!ptr && size) 429 if (!ptr && size)
332 { 430 {
333 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 431 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
334 abort (); 432 abort ();
357 W w; 455 W w;
358 int events; 456 int events;
359} ANPENDING; 457} ANPENDING;
360 458
361#if EV_USE_INOTIFY 459#if EV_USE_INOTIFY
460/* hash table entry per inotify-id */
362typedef struct 461typedef struct
363{ 462{
364 WL head; 463 WL head;
365} ANFS; 464} ANFS;
465#endif
466
467/* Heap Entry */
468#if EV_HEAP_CACHE_AT
469 typedef struct {
470 ev_tstamp at;
471 WT w;
472 } ANHE;
473
474 #define ANHE_w(he) (he).w /* access watcher, read-write */
475 #define ANHE_at(he) (he).at /* access cached at, read-only */
476 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
477#else
478 typedef WT ANHE;
479
480 #define ANHE_w(he) (he)
481 #define ANHE_at(he) (he)->at
482 #define ANHE_at_cache(he)
366#endif 483#endif
367 484
368#if EV_MULTIPLICITY 485#if EV_MULTIPLICITY
369 486
370 struct ev_loop 487 struct ev_loop
441 ts.tv_sec = (time_t)delay; 558 ts.tv_sec = (time_t)delay;
442 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 559 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
443 560
444 nanosleep (&ts, 0); 561 nanosleep (&ts, 0);
445#elif defined(_WIN32) 562#elif defined(_WIN32)
446 Sleep (delay * 1e3); 563 Sleep ((unsigned long)(delay * 1e3));
447#else 564#else
448 struct timeval tv; 565 struct timeval tv;
449 566
450 tv.tv_sec = (time_t)delay; 567 tv.tv_sec = (time_t)delay;
451 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 568 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
452 569
570 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
571 /* somehting nto guaranteed by newer posix versions, but guaranteed */
572 /* by older ones */
453 select (0, 0, 0, 0, &tv); 573 select (0, 0, 0, 0, &tv);
454#endif 574#endif
455 } 575 }
456} 576}
457 577
458/*****************************************************************************/ 578/*****************************************************************************/
579
580#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
459 581
460int inline_size 582int inline_size
461array_nextsize (int elem, int cur, int cnt) 583array_nextsize (int elem, int cur, int cnt)
462{ 584{
463 int ncur = cur + 1; 585 int ncur = cur + 1;
464 586
465 do 587 do
466 ncur <<= 1; 588 ncur <<= 1;
467 while (cnt > ncur); 589 while (cnt > ncur);
468 590
469 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 591 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
470 if (elem * ncur > 4096) 592 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
471 { 593 {
472 ncur *= elem; 594 ncur *= elem;
473 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 595 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
474 ncur = ncur - sizeof (void *) * 4; 596 ncur = ncur - sizeof (void *) * 4;
475 ncur /= elem; 597 ncur /= elem;
476 } 598 }
477 599
478 return ncur; 600 return ncur;
589 events |= (unsigned char)w->events; 711 events |= (unsigned char)w->events;
590 712
591#if EV_SELECT_IS_WINSOCKET 713#if EV_SELECT_IS_WINSOCKET
592 if (events) 714 if (events)
593 { 715 {
594 unsigned long argp; 716 unsigned long arg;
717 #ifdef EV_FD_TO_WIN32_HANDLE
718 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
719 #else
595 anfd->handle = _get_osfhandle (fd); 720 anfd->handle = _get_osfhandle (fd);
721 #endif
596 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 722 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
597 } 723 }
598#endif 724#endif
599 725
600 { 726 {
601 unsigned char o_events = anfd->events; 727 unsigned char o_events = anfd->events;
654{ 780{
655 int fd; 781 int fd;
656 782
657 for (fd = 0; fd < anfdmax; ++fd) 783 for (fd = 0; fd < anfdmax; ++fd)
658 if (anfds [fd].events) 784 if (anfds [fd].events)
659 if (!fd_valid (fd) == -1 && errno == EBADF) 785 if (!fd_valid (fd) && errno == EBADF)
660 fd_kill (EV_A_ fd); 786 fd_kill (EV_A_ fd);
661} 787}
662 788
663/* called on ENOMEM in select/poll to kill some fds and retry */ 789/* called on ENOMEM in select/poll to kill some fds and retry */
664static void noinline 790static void noinline
688 } 814 }
689} 815}
690 816
691/*****************************************************************************/ 817/*****************************************************************************/
692 818
819/*
820 * the heap functions want a real array index. array index 0 uis guaranteed to not
821 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
822 * the branching factor of the d-tree.
823 */
824
825/*
826 * at the moment we allow libev the luxury of two heaps,
827 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
828 * which is more cache-efficient.
829 * the difference is about 5% with 50000+ watchers.
830 */
831#if EV_USE_4HEAP
832
833#define DHEAP 4
834#define HEAP0 (DHEAP - 1) /* index of first element in heap */
835#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
836#define UPHEAP_DONE(p,k) ((p) == (k))
837
838/* away from the root */
693void inline_speed 839void inline_speed
694upheap (WT *heap, int k) 840downheap (ANHE *heap, int N, int k)
695{ 841{
696 WT w = heap [k]; 842 ANHE he = heap [k];
843 ANHE *E = heap + N + HEAP0;
697 844
698 while (k) 845 for (;;)
699 { 846 {
700 int p = (k - 1) >> 1; 847 ev_tstamp minat;
848 ANHE *minpos;
849 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
701 850
702 if (heap [p]->at <= w->at) 851 /* find minimum child */
852 if (expect_true (pos + DHEAP - 1 < E))
853 {
854 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
855 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
856 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
857 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
858 }
859 else if (pos < E)
860 {
861 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
862 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
863 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
864 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
865 }
866 else
703 break; 867 break;
704 868
869 if (ANHE_at (he) <= minat)
870 break;
871
872 heap [k] = *minpos;
873 ev_active (ANHE_w (*minpos)) = k;
874
875 k = minpos - heap;
876 }
877
878 heap [k] = he;
879 ev_active (ANHE_w (he)) = k;
880}
881
882#else /* 4HEAP */
883
884#define HEAP0 1
885#define HPARENT(k) ((k) >> 1)
886#define UPHEAP_DONE(p,k) (!(p))
887
888/* away from the root */
889void inline_speed
890downheap (ANHE *heap, int N, int k)
891{
892 ANHE he = heap [k];
893
894 for (;;)
895 {
896 int c = k << 1;
897
898 if (c > N + HEAP0 - 1)
899 break;
900
901 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
902 ? 1 : 0;
903
904 if (ANHE_at (he) <= ANHE_at (heap [c]))
905 break;
906
907 heap [k] = heap [c];
908 ev_active (ANHE_w (heap [k])) = k;
909
910 k = c;
911 }
912
913 heap [k] = he;
914 ev_active (ANHE_w (he)) = k;
915}
916#endif
917
918/* towards the root */
919void inline_speed
920upheap (ANHE *heap, int k)
921{
922 ANHE he = heap [k];
923
924 for (;;)
925 {
926 int p = HPARENT (k);
927
928 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
929 break;
930
705 heap [k] = heap [p]; 931 heap [k] = heap [p];
706 ((W)heap [k])->active = k + 1; 932 ev_active (ANHE_w (heap [k])) = k;
707 k = p; 933 k = p;
708 } 934 }
709 935
710 heap [k] = w; 936 heap [k] = he;
711 ((W)heap [k])->active = k + 1; 937 ev_active (ANHE_w (he)) = k;
712}
713
714void inline_speed
715downheap (WT *heap, int N, int k)
716{
717 WT w = heap [k];
718
719 for (;;)
720 {
721 int c = (k << 1) + 1;
722
723 if (c >= N)
724 break;
725
726 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
727 ? 1 : 0;
728
729 if (w->at <= heap [c]->at)
730 break;
731
732 heap [k] = heap [c];
733 ((W)heap [k])->active = k + 1;
734
735 k = c;
736 }
737
738 heap [k] = w;
739 ((W)heap [k])->active = k + 1;
740} 938}
741 939
742void inline_size 940void inline_size
743adjustheap (WT *heap, int N, int k) 941adjustheap (ANHE *heap, int N, int k)
744{ 942{
943 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
745 upheap (heap, k); 944 upheap (heap, k);
945 else
746 downheap (heap, N, k); 946 downheap (heap, N, k);
947}
948
949/* rebuild the heap: this function is used only once and executed rarely */
950void inline_size
951reheap (ANHE *heap, int N)
952{
953 int i;
954
955 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
956 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
957 for (i = 0; i < N; ++i)
958 upheap (heap, i + HEAP0);
747} 959}
748 960
749/*****************************************************************************/ 961/*****************************************************************************/
750 962
751typedef struct 963typedef struct
752{ 964{
753 WL head; 965 WL head;
754 sig_atomic_t volatile gotsig; 966 EV_ATOMIC_T gotsig;
755} ANSIG; 967} ANSIG;
756 968
757static ANSIG *signals; 969static ANSIG *signals;
758static int signalmax; 970static int signalmax;
759 971
760static int sigpipe [2]; 972static EV_ATOMIC_T gotsig;
761static sig_atomic_t volatile gotsig;
762static ev_io sigev;
763 973
764void inline_size 974void inline_size
765signals_init (ANSIG *base, int count) 975signals_init (ANSIG *base, int count)
766{ 976{
767 while (count--) 977 while (count--)
771 981
772 ++base; 982 ++base;
773 } 983 }
774} 984}
775 985
776static void 986/*****************************************************************************/
777sighandler (int signum)
778{
779#if _WIN32
780 signal (signum, sighandler);
781#endif
782
783 signals [signum - 1].gotsig = 1;
784
785 if (!gotsig)
786 {
787 int old_errno = errno;
788 gotsig = 1;
789 write (sigpipe [1], &signum, 1);
790 errno = old_errno;
791 }
792}
793
794void noinline
795ev_feed_signal_event (EV_P_ int signum)
796{
797 WL w;
798
799#if EV_MULTIPLICITY
800 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
801#endif
802
803 --signum;
804
805 if (signum < 0 || signum >= signalmax)
806 return;
807
808 signals [signum].gotsig = 0;
809
810 for (w = signals [signum].head; w; w = w->next)
811 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
812}
813
814static void
815sigcb (EV_P_ ev_io *iow, int revents)
816{
817 int signum;
818
819 read (sigpipe [0], &revents, 1);
820 gotsig = 0;
821
822 for (signum = signalmax; signum--; )
823 if (signals [signum].gotsig)
824 ev_feed_signal_event (EV_A_ signum + 1);
825}
826 987
827void inline_speed 988void inline_speed
828fd_intern (int fd) 989fd_intern (int fd)
829{ 990{
830#ifdef _WIN32 991#ifdef _WIN32
831 int arg = 1; 992 unsigned long arg = 1;
832 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 993 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
833#else 994#else
834 fcntl (fd, F_SETFD, FD_CLOEXEC); 995 fcntl (fd, F_SETFD, FD_CLOEXEC);
835 fcntl (fd, F_SETFL, O_NONBLOCK); 996 fcntl (fd, F_SETFL, O_NONBLOCK);
836#endif 997#endif
837} 998}
838 999
839static void noinline 1000static void noinline
840siginit (EV_P) 1001evpipe_init (EV_P)
841{ 1002{
1003 if (!ev_is_active (&pipeev))
1004 {
1005#if EV_USE_EVENTFD
1006 if ((evfd = eventfd (0, 0)) >= 0)
1007 {
1008 evpipe [0] = -1;
1009 fd_intern (evfd);
1010 ev_io_set (&pipeev, evfd, EV_READ);
1011 }
1012 else
1013#endif
1014 {
1015 while (pipe (evpipe))
1016 syserr ("(libev) error creating signal/async pipe");
1017
842 fd_intern (sigpipe [0]); 1018 fd_intern (evpipe [0]);
843 fd_intern (sigpipe [1]); 1019 fd_intern (evpipe [1]);
1020 ev_io_set (&pipeev, evpipe [0], EV_READ);
1021 }
844 1022
845 ev_io_set (&sigev, sigpipe [0], EV_READ);
846 ev_io_start (EV_A_ &sigev); 1023 ev_io_start (EV_A_ &pipeev);
847 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1024 ev_unref (EV_A); /* watcher should not keep loop alive */
1025 }
1026}
1027
1028void inline_size
1029evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1030{
1031 if (!*flag)
1032 {
1033 int old_errno = errno; /* save errno because write might clobber it */
1034
1035 *flag = 1;
1036
1037#if EV_USE_EVENTFD
1038 if (evfd >= 0)
1039 {
1040 uint64_t counter = 1;
1041 write (evfd, &counter, sizeof (uint64_t));
1042 }
1043 else
1044#endif
1045 write (evpipe [1], &old_errno, 1);
1046
1047 errno = old_errno;
1048 }
1049}
1050
1051static void
1052pipecb (EV_P_ ev_io *iow, int revents)
1053{
1054#if EV_USE_EVENTFD
1055 if (evfd >= 0)
1056 {
1057 uint64_t counter;
1058 read (evfd, &counter, sizeof (uint64_t));
1059 }
1060 else
1061#endif
1062 {
1063 char dummy;
1064 read (evpipe [0], &dummy, 1);
1065 }
1066
1067 if (gotsig && ev_is_default_loop (EV_A))
1068 {
1069 int signum;
1070 gotsig = 0;
1071
1072 for (signum = signalmax; signum--; )
1073 if (signals [signum].gotsig)
1074 ev_feed_signal_event (EV_A_ signum + 1);
1075 }
1076
1077#if EV_ASYNC_ENABLE
1078 if (gotasync)
1079 {
1080 int i;
1081 gotasync = 0;
1082
1083 for (i = asynccnt; i--; )
1084 if (asyncs [i]->sent)
1085 {
1086 asyncs [i]->sent = 0;
1087 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1088 }
1089 }
1090#endif
848} 1091}
849 1092
850/*****************************************************************************/ 1093/*****************************************************************************/
851 1094
1095static void
1096ev_sighandler (int signum)
1097{
1098#if EV_MULTIPLICITY
1099 struct ev_loop *loop = &default_loop_struct;
1100#endif
1101
1102#if _WIN32
1103 signal (signum, ev_sighandler);
1104#endif
1105
1106 signals [signum - 1].gotsig = 1;
1107 evpipe_write (EV_A_ &gotsig);
1108}
1109
1110void noinline
1111ev_feed_signal_event (EV_P_ int signum)
1112{
1113 WL w;
1114
1115#if EV_MULTIPLICITY
1116 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1117#endif
1118
1119 --signum;
1120
1121 if (signum < 0 || signum >= signalmax)
1122 return;
1123
1124 signals [signum].gotsig = 0;
1125
1126 for (w = signals [signum].head; w; w = w->next)
1127 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1128}
1129
1130/*****************************************************************************/
1131
852static WL childs [EV_PID_HASHSIZE]; 1132static WL childs [EV_PID_HASHSIZE];
853 1133
854#ifndef _WIN32 1134#ifndef _WIN32
855 1135
856static ev_signal childev; 1136static ev_signal childev;
857 1137
1138#ifndef WIFCONTINUED
1139# define WIFCONTINUED(status) 0
1140#endif
1141
858void inline_speed 1142void inline_speed
859child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1143child_reap (EV_P_ int chain, int pid, int status)
860{ 1144{
861 ev_child *w; 1145 ev_child *w;
1146 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
862 1147
863 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1148 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1149 {
864 if (w->pid == pid || !w->pid) 1150 if ((w->pid == pid || !w->pid)
1151 && (!traced || (w->flags & 1)))
865 { 1152 {
866 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1153 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
867 w->rpid = pid; 1154 w->rpid = pid;
868 w->rstatus = status; 1155 w->rstatus = status;
869 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1156 ev_feed_event (EV_A_ (W)w, EV_CHILD);
870 } 1157 }
1158 }
871} 1159}
872 1160
873#ifndef WCONTINUED 1161#ifndef WCONTINUED
874# define WCONTINUED 0 1162# define WCONTINUED 0
875#endif 1163#endif
884 if (!WCONTINUED 1172 if (!WCONTINUED
885 || errno != EINVAL 1173 || errno != EINVAL
886 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1174 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
887 return; 1175 return;
888 1176
889 /* make sure we are called again until all childs have been reaped */ 1177 /* make sure we are called again until all children have been reaped */
890 /* we need to do it this way so that the callback gets called before we continue */ 1178 /* we need to do it this way so that the callback gets called before we continue */
891 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1179 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
892 1180
893 child_reap (EV_A_ sw, pid, pid, status); 1181 child_reap (EV_A_ pid, pid, status);
894 if (EV_PID_HASHSIZE > 1) 1182 if (EV_PID_HASHSIZE > 1)
895 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1183 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
896} 1184}
897 1185
898#endif 1186#endif
899 1187
900/*****************************************************************************/ 1188/*****************************************************************************/
972} 1260}
973 1261
974unsigned int 1262unsigned int
975ev_embeddable_backends (void) 1263ev_embeddable_backends (void)
976{ 1264{
1265 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1266
977 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1267 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
978 return EVBACKEND_KQUEUE 1268 /* please fix it and tell me how to detect the fix */
979 | EVBACKEND_PORT; 1269 flags &= ~EVBACKEND_EPOLL;
1270
1271 return flags;
980} 1272}
981 1273
982unsigned int 1274unsigned int
983ev_backend (EV_P) 1275ev_backend (EV_P)
984{ 1276{
1014 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1306 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1015 have_monotonic = 1; 1307 have_monotonic = 1;
1016 } 1308 }
1017#endif 1309#endif
1018 1310
1019 ev_rt_now = ev_time (); 1311 ev_rt_now = ev_time ();
1020 mn_now = get_clock (); 1312 mn_now = get_clock ();
1021 now_floor = mn_now; 1313 now_floor = mn_now;
1022 rtmn_diff = ev_rt_now - mn_now; 1314 rtmn_diff = ev_rt_now - mn_now;
1023 1315
1024 io_blocktime = 0.; 1316 io_blocktime = 0.;
1025 timeout_blocktime = 0.; 1317 timeout_blocktime = 0.;
1318 backend = 0;
1319 backend_fd = -1;
1320 gotasync = 0;
1321#if EV_USE_INOTIFY
1322 fs_fd = -2;
1323#endif
1026 1324
1027 /* pid check not overridable via env */ 1325 /* pid check not overridable via env */
1028#ifndef _WIN32 1326#ifndef _WIN32
1029 if (flags & EVFLAG_FORKCHECK) 1327 if (flags & EVFLAG_FORKCHECK)
1030 curpid = getpid (); 1328 curpid = getpid ();
1033 if (!(flags & EVFLAG_NOENV) 1331 if (!(flags & EVFLAG_NOENV)
1034 && !enable_secure () 1332 && !enable_secure ()
1035 && getenv ("LIBEV_FLAGS")) 1333 && getenv ("LIBEV_FLAGS"))
1036 flags = atoi (getenv ("LIBEV_FLAGS")); 1334 flags = atoi (getenv ("LIBEV_FLAGS"));
1037 1335
1038 if (!(flags & 0x0000ffffUL)) 1336 if (!(flags & 0x0000ffffU))
1039 flags |= ev_recommended_backends (); 1337 flags |= ev_recommended_backends ();
1040
1041 backend = 0;
1042 backend_fd = -1;
1043#if EV_USE_INOTIFY
1044 fs_fd = -2;
1045#endif
1046 1338
1047#if EV_USE_PORT 1339#if EV_USE_PORT
1048 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1340 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1049#endif 1341#endif
1050#if EV_USE_KQUEUE 1342#if EV_USE_KQUEUE
1058#endif 1350#endif
1059#if EV_USE_SELECT 1351#if EV_USE_SELECT
1060 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1352 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1061#endif 1353#endif
1062 1354
1063 ev_init (&sigev, sigcb); 1355 ev_init (&pipeev, pipecb);
1064 ev_set_priority (&sigev, EV_MAXPRI); 1356 ev_set_priority (&pipeev, EV_MAXPRI);
1065 } 1357 }
1066} 1358}
1067 1359
1068static void noinline 1360static void noinline
1069loop_destroy (EV_P) 1361loop_destroy (EV_P)
1070{ 1362{
1071 int i; 1363 int i;
1364
1365 if (ev_is_active (&pipeev))
1366 {
1367 ev_ref (EV_A); /* signal watcher */
1368 ev_io_stop (EV_A_ &pipeev);
1369
1370#if EV_USE_EVENTFD
1371 if (evfd >= 0)
1372 close (evfd);
1373#endif
1374
1375 if (evpipe [0] >= 0)
1376 {
1377 close (evpipe [0]);
1378 close (evpipe [1]);
1379 }
1380 }
1072 1381
1073#if EV_USE_INOTIFY 1382#if EV_USE_INOTIFY
1074 if (fs_fd >= 0) 1383 if (fs_fd >= 0)
1075 close (fs_fd); 1384 close (fs_fd);
1076#endif 1385#endif
1113#if EV_FORK_ENABLE 1422#if EV_FORK_ENABLE
1114 array_free (fork, EMPTY); 1423 array_free (fork, EMPTY);
1115#endif 1424#endif
1116 array_free (prepare, EMPTY); 1425 array_free (prepare, EMPTY);
1117 array_free (check, EMPTY); 1426 array_free (check, EMPTY);
1427#if EV_ASYNC_ENABLE
1428 array_free (async, EMPTY);
1429#endif
1118 1430
1119 backend = 0; 1431 backend = 0;
1120} 1432}
1121 1433
1434#if EV_USE_INOTIFY
1122void inline_size infy_fork (EV_P); 1435void inline_size infy_fork (EV_P);
1436#endif
1123 1437
1124void inline_size 1438void inline_size
1125loop_fork (EV_P) 1439loop_fork (EV_P)
1126{ 1440{
1127#if EV_USE_PORT 1441#if EV_USE_PORT
1135#endif 1449#endif
1136#if EV_USE_INOTIFY 1450#if EV_USE_INOTIFY
1137 infy_fork (EV_A); 1451 infy_fork (EV_A);
1138#endif 1452#endif
1139 1453
1140 if (ev_is_active (&sigev)) 1454 if (ev_is_active (&pipeev))
1141 { 1455 {
1142 /* default loop */ 1456 /* this "locks" the handlers against writing to the pipe */
1457 /* while we modify the fd vars */
1458 gotsig = 1;
1459#if EV_ASYNC_ENABLE
1460 gotasync = 1;
1461#endif
1143 1462
1144 ev_ref (EV_A); 1463 ev_ref (EV_A);
1145 ev_io_stop (EV_A_ &sigev); 1464 ev_io_stop (EV_A_ &pipeev);
1465
1466#if EV_USE_EVENTFD
1467 if (evfd >= 0)
1468 close (evfd);
1469#endif
1470
1471 if (evpipe [0] >= 0)
1472 {
1146 close (sigpipe [0]); 1473 close (evpipe [0]);
1147 close (sigpipe [1]); 1474 close (evpipe [1]);
1475 }
1148 1476
1149 while (pipe (sigpipe))
1150 syserr ("(libev) error creating pipe");
1151
1152 siginit (EV_A); 1477 evpipe_init (EV_A);
1478 /* now iterate over everything, in case we missed something */
1479 pipecb (EV_A_ &pipeev, EV_READ);
1153 } 1480 }
1154 1481
1155 postfork = 0; 1482 postfork = 0;
1156} 1483}
1157 1484
1158#if EV_MULTIPLICITY 1485#if EV_MULTIPLICITY
1486
1159struct ev_loop * 1487struct ev_loop *
1160ev_loop_new (unsigned int flags) 1488ev_loop_new (unsigned int flags)
1161{ 1489{
1162 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1490 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1163 1491
1179} 1507}
1180 1508
1181void 1509void
1182ev_loop_fork (EV_P) 1510ev_loop_fork (EV_P)
1183{ 1511{
1184 postfork = 1; 1512 postfork = 1; /* must be in line with ev_default_fork */
1185} 1513}
1186 1514
1515#if EV_VERIFY
1516static void noinline
1517verify_watcher (EV_P_ W w)
1518{
1519 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1520
1521 if (w->pending)
1522 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1523}
1524
1525static void noinline
1526verify_heap (EV_P_ ANHE *heap, int N)
1527{
1528 int i;
1529
1530 for (i = HEAP0; i < N + HEAP0; ++i)
1531 {
1532 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1533 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1534 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1535
1536 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1537 }
1538}
1539
1540static void noinline
1541array_verify (EV_P_ W *ws, int cnt)
1542{
1543 while (cnt--)
1544 {
1545 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1546 verify_watcher (EV_A_ ws [cnt]);
1547 }
1548}
1549#endif
1550
1551void
1552ev_loop_verify (EV_P)
1553{
1554#if EV_VERIFY
1555 int i;
1556 WL w;
1557
1558 assert (activecnt >= -1);
1559
1560 assert (fdchangemax >= fdchangecnt);
1561 for (i = 0; i < fdchangecnt; ++i)
1562 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1563
1564 assert (anfdmax >= 0);
1565 for (i = 0; i < anfdmax; ++i)
1566 for (w = anfds [i].head; w; w = w->next)
1567 {
1568 verify_watcher (EV_A_ (W)w);
1569 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1570 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1571 }
1572
1573 assert (timermax >= timercnt);
1574 verify_heap (EV_A_ timers, timercnt);
1575
1576#if EV_PERIODIC_ENABLE
1577 assert (periodicmax >= periodiccnt);
1578 verify_heap (EV_A_ periodics, periodiccnt);
1579#endif
1580
1581 for (i = NUMPRI; i--; )
1582 {
1583 assert (pendingmax [i] >= pendingcnt [i]);
1584#if EV_IDLE_ENABLE
1585 assert (idleall >= 0);
1586 assert (idlemax [i] >= idlecnt [i]);
1587 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1588#endif
1589 }
1590
1591#if EV_FORK_ENABLE
1592 assert (forkmax >= forkcnt);
1593 array_verify (EV_A_ (W *)forks, forkcnt);
1594#endif
1595
1596#if EV_ASYNC_ENABLE
1597 assert (asyncmax >= asynccnt);
1598 array_verify (EV_A_ (W *)asyncs, asynccnt);
1599#endif
1600
1601 assert (preparemax >= preparecnt);
1602 array_verify (EV_A_ (W *)prepares, preparecnt);
1603
1604 assert (checkmax >= checkcnt);
1605 array_verify (EV_A_ (W *)checks, checkcnt);
1606
1607# if 0
1608 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1609 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1187#endif 1610# endif
1611#endif
1612}
1613
1614#endif /* multiplicity */
1188 1615
1189#if EV_MULTIPLICITY 1616#if EV_MULTIPLICITY
1190struct ev_loop * 1617struct ev_loop *
1191ev_default_loop_init (unsigned int flags) 1618ev_default_loop_init (unsigned int flags)
1192#else 1619#else
1193int 1620int
1194ev_default_loop (unsigned int flags) 1621ev_default_loop (unsigned int flags)
1195#endif 1622#endif
1196{ 1623{
1197 if (sigpipe [0] == sigpipe [1])
1198 if (pipe (sigpipe))
1199 return 0;
1200
1201 if (!ev_default_loop_ptr) 1624 if (!ev_default_loop_ptr)
1202 { 1625 {
1203#if EV_MULTIPLICITY 1626#if EV_MULTIPLICITY
1204 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1627 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1205#else 1628#else
1208 1631
1209 loop_init (EV_A_ flags); 1632 loop_init (EV_A_ flags);
1210 1633
1211 if (ev_backend (EV_A)) 1634 if (ev_backend (EV_A))
1212 { 1635 {
1213 siginit (EV_A);
1214
1215#ifndef _WIN32 1636#ifndef _WIN32
1216 ev_signal_init (&childev, childcb, SIGCHLD); 1637 ev_signal_init (&childev, childcb, SIGCHLD);
1217 ev_set_priority (&childev, EV_MAXPRI); 1638 ev_set_priority (&childev, EV_MAXPRI);
1218 ev_signal_start (EV_A_ &childev); 1639 ev_signal_start (EV_A_ &childev);
1219 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1640 ev_unref (EV_A); /* child watcher should not keep loop alive */
1236#ifndef _WIN32 1657#ifndef _WIN32
1237 ev_ref (EV_A); /* child watcher */ 1658 ev_ref (EV_A); /* child watcher */
1238 ev_signal_stop (EV_A_ &childev); 1659 ev_signal_stop (EV_A_ &childev);
1239#endif 1660#endif
1240 1661
1241 ev_ref (EV_A); /* signal watcher */
1242 ev_io_stop (EV_A_ &sigev);
1243
1244 close (sigpipe [0]); sigpipe [0] = 0;
1245 close (sigpipe [1]); sigpipe [1] = 0;
1246
1247 loop_destroy (EV_A); 1662 loop_destroy (EV_A);
1248} 1663}
1249 1664
1250void 1665void
1251ev_default_fork (void) 1666ev_default_fork (void)
1253#if EV_MULTIPLICITY 1668#if EV_MULTIPLICITY
1254 struct ev_loop *loop = ev_default_loop_ptr; 1669 struct ev_loop *loop = ev_default_loop_ptr;
1255#endif 1670#endif
1256 1671
1257 if (backend) 1672 if (backend)
1258 postfork = 1; 1673 postfork = 1; /* must be in line with ev_loop_fork */
1259} 1674}
1260 1675
1261/*****************************************************************************/ 1676/*****************************************************************************/
1262 1677
1263void 1678void
1280 { 1695 {
1281 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1696 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1282 1697
1283 p->w->pending = 0; 1698 p->w->pending = 0;
1284 EV_CB_INVOKE (p->w, p->events); 1699 EV_CB_INVOKE (p->w, p->events);
1700 EV_FREQUENT_CHECK;
1285 } 1701 }
1286 } 1702 }
1287} 1703}
1288
1289void inline_size
1290timers_reify (EV_P)
1291{
1292 while (timercnt && ((WT)timers [0])->at <= mn_now)
1293 {
1294 ev_timer *w = (ev_timer *)timers [0];
1295
1296 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1297
1298 /* first reschedule or stop timer */
1299 if (w->repeat)
1300 {
1301 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1302
1303 ((WT)w)->at += w->repeat;
1304 if (((WT)w)->at < mn_now)
1305 ((WT)w)->at = mn_now;
1306
1307 downheap (timers, timercnt, 0);
1308 }
1309 else
1310 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1311
1312 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1313 }
1314}
1315
1316#if EV_PERIODIC_ENABLE
1317void inline_size
1318periodics_reify (EV_P)
1319{
1320 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1321 {
1322 ev_periodic *w = (ev_periodic *)periodics [0];
1323
1324 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1325
1326 /* first reschedule or stop timer */
1327 if (w->reschedule_cb)
1328 {
1329 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1330 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1331 downheap (periodics, periodiccnt, 0);
1332 }
1333 else if (w->interval)
1334 {
1335 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1336 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1337 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1338 downheap (periodics, periodiccnt, 0);
1339 }
1340 else
1341 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1342
1343 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1344 }
1345}
1346
1347static void noinline
1348periodics_reschedule (EV_P)
1349{
1350 int i;
1351
1352 /* adjust periodics after time jump */
1353 for (i = 0; i < periodiccnt; ++i)
1354 {
1355 ev_periodic *w = (ev_periodic *)periodics [i];
1356
1357 if (w->reschedule_cb)
1358 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1359 else if (w->interval)
1360 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1361 }
1362
1363 /* now rebuild the heap */
1364 for (i = periodiccnt >> 1; i--; )
1365 downheap (periodics, periodiccnt, i);
1366}
1367#endif
1368 1704
1369#if EV_IDLE_ENABLE 1705#if EV_IDLE_ENABLE
1370void inline_size 1706void inline_size
1371idle_reify (EV_P) 1707idle_reify (EV_P)
1372{ 1708{
1384 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1720 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1385 break; 1721 break;
1386 } 1722 }
1387 } 1723 }
1388 } 1724 }
1725}
1726#endif
1727
1728void inline_size
1729timers_reify (EV_P)
1730{
1731 EV_FREQUENT_CHECK;
1732
1733 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1734 {
1735 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1736
1737 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1738
1739 /* first reschedule or stop timer */
1740 if (w->repeat)
1741 {
1742 ev_at (w) += w->repeat;
1743 if (ev_at (w) < mn_now)
1744 ev_at (w) = mn_now;
1745
1746 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1747
1748 ANHE_at_cache (timers [HEAP0]);
1749 downheap (timers, timercnt, HEAP0);
1750 }
1751 else
1752 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1753
1754 EV_FREQUENT_CHECK;
1755 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1756 }
1757}
1758
1759#if EV_PERIODIC_ENABLE
1760void inline_size
1761periodics_reify (EV_P)
1762{
1763 EV_FREQUENT_CHECK;
1764
1765 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1766 {
1767 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1768
1769 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1770
1771 /* first reschedule or stop timer */
1772 if (w->reschedule_cb)
1773 {
1774 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1775
1776 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1777
1778 ANHE_at_cache (periodics [HEAP0]);
1779 downheap (periodics, periodiccnt, HEAP0);
1780 }
1781 else if (w->interval)
1782 {
1783 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1784 /* if next trigger time is not sufficiently in the future, put it there */
1785 /* this might happen because of floating point inexactness */
1786 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1787 {
1788 ev_at (w) += w->interval;
1789
1790 /* if interval is unreasonably low we might still have a time in the past */
1791 /* so correct this. this will make the periodic very inexact, but the user */
1792 /* has effectively asked to get triggered more often than possible */
1793 if (ev_at (w) < ev_rt_now)
1794 ev_at (w) = ev_rt_now;
1795 }
1796
1797 ANHE_at_cache (periodics [HEAP0]);
1798 downheap (periodics, periodiccnt, HEAP0);
1799 }
1800 else
1801 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1802
1803 EV_FREQUENT_CHECK;
1804 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1805 }
1806}
1807
1808static void noinline
1809periodics_reschedule (EV_P)
1810{
1811 int i;
1812
1813 /* adjust periodics after time jump */
1814 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1815 {
1816 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1817
1818 if (w->reschedule_cb)
1819 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1820 else if (w->interval)
1821 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1822
1823 ANHE_at_cache (periodics [i]);
1824 }
1825
1826 reheap (periodics, periodiccnt);
1389} 1827}
1390#endif 1828#endif
1391 1829
1392void inline_speed 1830void inline_speed
1393time_update (EV_P_ ev_tstamp max_block) 1831time_update (EV_P_ ev_tstamp max_block)
1422 */ 1860 */
1423 for (i = 4; --i; ) 1861 for (i = 4; --i; )
1424 { 1862 {
1425 rtmn_diff = ev_rt_now - mn_now; 1863 rtmn_diff = ev_rt_now - mn_now;
1426 1864
1427 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1865 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1428 return; /* all is well */ 1866 return; /* all is well */
1429 1867
1430 ev_rt_now = ev_time (); 1868 ev_rt_now = ev_time ();
1431 mn_now = get_clock (); 1869 mn_now = get_clock ();
1432 now_floor = mn_now; 1870 now_floor = mn_now;
1448#if EV_PERIODIC_ENABLE 1886#if EV_PERIODIC_ENABLE
1449 periodics_reschedule (EV_A); 1887 periodics_reschedule (EV_A);
1450#endif 1888#endif
1451 /* adjust timers. this is easy, as the offset is the same for all of them */ 1889 /* adjust timers. this is easy, as the offset is the same for all of them */
1452 for (i = 0; i < timercnt; ++i) 1890 for (i = 0; i < timercnt; ++i)
1891 {
1892 ANHE *he = timers + i + HEAP0;
1453 ((WT)timers [i])->at += ev_rt_now - mn_now; 1893 ANHE_w (*he)->at += ev_rt_now - mn_now;
1894 ANHE_at_cache (*he);
1895 }
1454 } 1896 }
1455 1897
1456 mn_now = ev_rt_now; 1898 mn_now = ev_rt_now;
1457 } 1899 }
1458} 1900}
1467ev_unref (EV_P) 1909ev_unref (EV_P)
1468{ 1910{
1469 --activecnt; 1911 --activecnt;
1470} 1912}
1471 1913
1914void
1915ev_now_update (EV_P)
1916{
1917 time_update (EV_A_ 1e100);
1918}
1919
1472static int loop_done; 1920static int loop_done;
1473 1921
1474void 1922void
1475ev_loop (EV_P_ int flags) 1923ev_loop (EV_P_ int flags)
1476{ 1924{
1477 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1925 loop_done = EVUNLOOP_CANCEL;
1478 ? EVUNLOOP_ONE
1479 : EVUNLOOP_CANCEL;
1480 1926
1481 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1927 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1482 1928
1483 do 1929 do
1484 { 1930 {
1931#if EV_VERIFY >= 2
1932 ev_loop_verify (EV_A);
1933#endif
1934
1485#ifndef _WIN32 1935#ifndef _WIN32
1486 if (expect_false (curpid)) /* penalise the forking check even more */ 1936 if (expect_false (curpid)) /* penalise the forking check even more */
1487 if (expect_false (getpid () != curpid)) 1937 if (expect_false (getpid () != curpid))
1488 { 1938 {
1489 curpid = getpid (); 1939 curpid = getpid ();
1530 1980
1531 waittime = MAX_BLOCKTIME; 1981 waittime = MAX_BLOCKTIME;
1532 1982
1533 if (timercnt) 1983 if (timercnt)
1534 { 1984 {
1535 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1985 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1536 if (waittime > to) waittime = to; 1986 if (waittime > to) waittime = to;
1537 } 1987 }
1538 1988
1539#if EV_PERIODIC_ENABLE 1989#if EV_PERIODIC_ENABLE
1540 if (periodiccnt) 1990 if (periodiccnt)
1541 { 1991 {
1542 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1992 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1543 if (waittime > to) waittime = to; 1993 if (waittime > to) waittime = to;
1544 } 1994 }
1545#endif 1995#endif
1546 1996
1547 if (expect_false (waittime < timeout_blocktime)) 1997 if (expect_false (waittime < timeout_blocktime))
1580 /* queue check watchers, to be executed first */ 2030 /* queue check watchers, to be executed first */
1581 if (expect_false (checkcnt)) 2031 if (expect_false (checkcnt))
1582 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2032 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1583 2033
1584 call_pending (EV_A); 2034 call_pending (EV_A);
1585
1586 } 2035 }
1587 while (expect_true (activecnt && !loop_done)); 2036 while (expect_true (
2037 activecnt
2038 && !loop_done
2039 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2040 ));
1588 2041
1589 if (loop_done == EVUNLOOP_ONE) 2042 if (loop_done == EVUNLOOP_ONE)
1590 loop_done = EVUNLOOP_CANCEL; 2043 loop_done = EVUNLOOP_CANCEL;
1591} 2044}
1592 2045
1681 if (expect_false (ev_is_active (w))) 2134 if (expect_false (ev_is_active (w)))
1682 return; 2135 return;
1683 2136
1684 assert (("ev_io_start called with negative fd", fd >= 0)); 2137 assert (("ev_io_start called with negative fd", fd >= 0));
1685 2138
2139 EV_FREQUENT_CHECK;
2140
1686 ev_start (EV_A_ (W)w, 1); 2141 ev_start (EV_A_ (W)w, 1);
1687 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2142 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1688 wlist_add (&anfds[fd].head, (WL)w); 2143 wlist_add (&anfds[fd].head, (WL)w);
1689 2144
1690 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2145 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1691 w->events &= ~EV_IOFDSET; 2146 w->events &= ~EV_IOFDSET;
2147
2148 EV_FREQUENT_CHECK;
1692} 2149}
1693 2150
1694void noinline 2151void noinline
1695ev_io_stop (EV_P_ ev_io *w) 2152ev_io_stop (EV_P_ ev_io *w)
1696{ 2153{
1697 clear_pending (EV_A_ (W)w); 2154 clear_pending (EV_A_ (W)w);
1698 if (expect_false (!ev_is_active (w))) 2155 if (expect_false (!ev_is_active (w)))
1699 return; 2156 return;
1700 2157
1701 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2158 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2159
2160 EV_FREQUENT_CHECK;
1702 2161
1703 wlist_del (&anfds[w->fd].head, (WL)w); 2162 wlist_del (&anfds[w->fd].head, (WL)w);
1704 ev_stop (EV_A_ (W)w); 2163 ev_stop (EV_A_ (W)w);
1705 2164
1706 fd_change (EV_A_ w->fd, 1); 2165 fd_change (EV_A_ w->fd, 1);
2166
2167 EV_FREQUENT_CHECK;
1707} 2168}
1708 2169
1709void noinline 2170void noinline
1710ev_timer_start (EV_P_ ev_timer *w) 2171ev_timer_start (EV_P_ ev_timer *w)
1711{ 2172{
1712 if (expect_false (ev_is_active (w))) 2173 if (expect_false (ev_is_active (w)))
1713 return; 2174 return;
1714 2175
1715 ((WT)w)->at += mn_now; 2176 ev_at (w) += mn_now;
1716 2177
1717 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2178 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1718 2179
2180 EV_FREQUENT_CHECK;
2181
2182 ++timercnt;
1719 ev_start (EV_A_ (W)w, ++timercnt); 2183 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1720 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2184 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1721 timers [timercnt - 1] = (WT)w; 2185 ANHE_w (timers [ev_active (w)]) = (WT)w;
1722 upheap (timers, timercnt - 1); 2186 ANHE_at_cache (timers [ev_active (w)]);
2187 upheap (timers, ev_active (w));
1723 2188
2189 EV_FREQUENT_CHECK;
2190
1724 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2191 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1725} 2192}
1726 2193
1727void noinline 2194void noinline
1728ev_timer_stop (EV_P_ ev_timer *w) 2195ev_timer_stop (EV_P_ ev_timer *w)
1729{ 2196{
1730 clear_pending (EV_A_ (W)w); 2197 clear_pending (EV_A_ (W)w);
1731 if (expect_false (!ev_is_active (w))) 2198 if (expect_false (!ev_is_active (w)))
1732 return; 2199 return;
1733 2200
1734 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2201 EV_FREQUENT_CHECK;
1735 2202
1736 { 2203 {
1737 int active = ((W)w)->active; 2204 int active = ev_active (w);
1738 2205
2206 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2207
2208 --timercnt;
2209
1739 if (expect_true (--active < --timercnt)) 2210 if (expect_true (active < timercnt + HEAP0))
1740 { 2211 {
1741 timers [active] = timers [timercnt]; 2212 timers [active] = timers [timercnt + HEAP0];
1742 adjustheap (timers, timercnt, active); 2213 adjustheap (timers, timercnt, active);
1743 } 2214 }
1744 } 2215 }
1745 2216
1746 ((WT)w)->at -= mn_now; 2217 EV_FREQUENT_CHECK;
2218
2219 ev_at (w) -= mn_now;
1747 2220
1748 ev_stop (EV_A_ (W)w); 2221 ev_stop (EV_A_ (W)w);
1749} 2222}
1750 2223
1751void noinline 2224void noinline
1752ev_timer_again (EV_P_ ev_timer *w) 2225ev_timer_again (EV_P_ ev_timer *w)
1753{ 2226{
2227 EV_FREQUENT_CHECK;
2228
1754 if (ev_is_active (w)) 2229 if (ev_is_active (w))
1755 { 2230 {
1756 if (w->repeat) 2231 if (w->repeat)
1757 { 2232 {
1758 ((WT)w)->at = mn_now + w->repeat; 2233 ev_at (w) = mn_now + w->repeat;
2234 ANHE_at_cache (timers [ev_active (w)]);
1759 adjustheap (timers, timercnt, ((W)w)->active - 1); 2235 adjustheap (timers, timercnt, ev_active (w));
1760 } 2236 }
1761 else 2237 else
1762 ev_timer_stop (EV_A_ w); 2238 ev_timer_stop (EV_A_ w);
1763 } 2239 }
1764 else if (w->repeat) 2240 else if (w->repeat)
1765 { 2241 {
1766 w->at = w->repeat; 2242 ev_at (w) = w->repeat;
1767 ev_timer_start (EV_A_ w); 2243 ev_timer_start (EV_A_ w);
1768 } 2244 }
2245
2246 EV_FREQUENT_CHECK;
1769} 2247}
1770 2248
1771#if EV_PERIODIC_ENABLE 2249#if EV_PERIODIC_ENABLE
1772void noinline 2250void noinline
1773ev_periodic_start (EV_P_ ev_periodic *w) 2251ev_periodic_start (EV_P_ ev_periodic *w)
1774{ 2252{
1775 if (expect_false (ev_is_active (w))) 2253 if (expect_false (ev_is_active (w)))
1776 return; 2254 return;
1777 2255
1778 if (w->reschedule_cb) 2256 if (w->reschedule_cb)
1779 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2257 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1780 else if (w->interval) 2258 else if (w->interval)
1781 { 2259 {
1782 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2260 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1783 /* this formula differs from the one in periodic_reify because we do not always round up */ 2261 /* this formula differs from the one in periodic_reify because we do not always round up */
1784 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2262 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1785 } 2263 }
1786 else 2264 else
1787 ((WT)w)->at = w->offset; 2265 ev_at (w) = w->offset;
1788 2266
2267 EV_FREQUENT_CHECK;
2268
2269 ++periodiccnt;
1789 ev_start (EV_A_ (W)w, ++periodiccnt); 2270 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1790 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2271 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1791 periodics [periodiccnt - 1] = (WT)w; 2272 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1792 upheap (periodics, periodiccnt - 1); 2273 ANHE_at_cache (periodics [ev_active (w)]);
2274 upheap (periodics, ev_active (w));
1793 2275
2276 EV_FREQUENT_CHECK;
2277
1794 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2278 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1795} 2279}
1796 2280
1797void noinline 2281void noinline
1798ev_periodic_stop (EV_P_ ev_periodic *w) 2282ev_periodic_stop (EV_P_ ev_periodic *w)
1799{ 2283{
1800 clear_pending (EV_A_ (W)w); 2284 clear_pending (EV_A_ (W)w);
1801 if (expect_false (!ev_is_active (w))) 2285 if (expect_false (!ev_is_active (w)))
1802 return; 2286 return;
1803 2287
1804 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2288 EV_FREQUENT_CHECK;
1805 2289
1806 { 2290 {
1807 int active = ((W)w)->active; 2291 int active = ev_active (w);
1808 2292
2293 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2294
2295 --periodiccnt;
2296
1809 if (expect_true (--active < --periodiccnt)) 2297 if (expect_true (active < periodiccnt + HEAP0))
1810 { 2298 {
1811 periodics [active] = periodics [periodiccnt]; 2299 periodics [active] = periodics [periodiccnt + HEAP0];
1812 adjustheap (periodics, periodiccnt, active); 2300 adjustheap (periodics, periodiccnt, active);
1813 } 2301 }
1814 } 2302 }
1815 2303
2304 EV_FREQUENT_CHECK;
2305
1816 ev_stop (EV_A_ (W)w); 2306 ev_stop (EV_A_ (W)w);
1817} 2307}
1818 2308
1819void noinline 2309void noinline
1820ev_periodic_again (EV_P_ ev_periodic *w) 2310ev_periodic_again (EV_P_ ev_periodic *w)
1837#endif 2327#endif
1838 if (expect_false (ev_is_active (w))) 2328 if (expect_false (ev_is_active (w)))
1839 return; 2329 return;
1840 2330
1841 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2331 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2332
2333 evpipe_init (EV_A);
2334
2335 EV_FREQUENT_CHECK;
1842 2336
1843 { 2337 {
1844#ifndef _WIN32 2338#ifndef _WIN32
1845 sigset_t full, prev; 2339 sigset_t full, prev;
1846 sigfillset (&full); 2340 sigfillset (&full);
1858 wlist_add (&signals [w->signum - 1].head, (WL)w); 2352 wlist_add (&signals [w->signum - 1].head, (WL)w);
1859 2353
1860 if (!((WL)w)->next) 2354 if (!((WL)w)->next)
1861 { 2355 {
1862#if _WIN32 2356#if _WIN32
1863 signal (w->signum, sighandler); 2357 signal (w->signum, ev_sighandler);
1864#else 2358#else
1865 struct sigaction sa; 2359 struct sigaction sa;
1866 sa.sa_handler = sighandler; 2360 sa.sa_handler = ev_sighandler;
1867 sigfillset (&sa.sa_mask); 2361 sigfillset (&sa.sa_mask);
1868 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2362 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1869 sigaction (w->signum, &sa, 0); 2363 sigaction (w->signum, &sa, 0);
1870#endif 2364#endif
1871 } 2365 }
2366
2367 EV_FREQUENT_CHECK;
1872} 2368}
1873 2369
1874void noinline 2370void noinline
1875ev_signal_stop (EV_P_ ev_signal *w) 2371ev_signal_stop (EV_P_ ev_signal *w)
1876{ 2372{
1877 clear_pending (EV_A_ (W)w); 2373 clear_pending (EV_A_ (W)w);
1878 if (expect_false (!ev_is_active (w))) 2374 if (expect_false (!ev_is_active (w)))
1879 return; 2375 return;
1880 2376
2377 EV_FREQUENT_CHECK;
2378
1881 wlist_del (&signals [w->signum - 1].head, (WL)w); 2379 wlist_del (&signals [w->signum - 1].head, (WL)w);
1882 ev_stop (EV_A_ (W)w); 2380 ev_stop (EV_A_ (W)w);
1883 2381
1884 if (!signals [w->signum - 1].head) 2382 if (!signals [w->signum - 1].head)
1885 signal (w->signum, SIG_DFL); 2383 signal (w->signum, SIG_DFL);
2384
2385 EV_FREQUENT_CHECK;
1886} 2386}
1887 2387
1888void 2388void
1889ev_child_start (EV_P_ ev_child *w) 2389ev_child_start (EV_P_ ev_child *w)
1890{ 2390{
1892 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2392 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1893#endif 2393#endif
1894 if (expect_false (ev_is_active (w))) 2394 if (expect_false (ev_is_active (w)))
1895 return; 2395 return;
1896 2396
2397 EV_FREQUENT_CHECK;
2398
1897 ev_start (EV_A_ (W)w, 1); 2399 ev_start (EV_A_ (W)w, 1);
1898 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2400 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2401
2402 EV_FREQUENT_CHECK;
1899} 2403}
1900 2404
1901void 2405void
1902ev_child_stop (EV_P_ ev_child *w) 2406ev_child_stop (EV_P_ ev_child *w)
1903{ 2407{
1904 clear_pending (EV_A_ (W)w); 2408 clear_pending (EV_A_ (W)w);
1905 if (expect_false (!ev_is_active (w))) 2409 if (expect_false (!ev_is_active (w)))
1906 return; 2410 return;
1907 2411
2412 EV_FREQUENT_CHECK;
2413
1908 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2414 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1909 ev_stop (EV_A_ (W)w); 2415 ev_stop (EV_A_ (W)w);
2416
2417 EV_FREQUENT_CHECK;
1910} 2418}
1911 2419
1912#if EV_STAT_ENABLE 2420#if EV_STAT_ENABLE
1913 2421
1914# ifdef _WIN32 2422# ifdef _WIN32
1932 if (w->wd < 0) 2440 if (w->wd < 0)
1933 { 2441 {
1934 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2442 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1935 2443
1936 /* monitor some parent directory for speedup hints */ 2444 /* monitor some parent directory for speedup hints */
2445 /* note that exceeding the hardcoded limit is not a correctness issue, */
2446 /* but an efficiency issue only */
1937 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2447 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1938 { 2448 {
1939 char path [4096]; 2449 char path [4096];
1940 strcpy (path, w->path); 2450 strcpy (path, w->path);
1941 2451
2067 } 2577 }
2068 2578
2069 } 2579 }
2070} 2580}
2071 2581
2582#endif
2583
2584#ifdef _WIN32
2585# define EV_LSTAT(p,b) _stati64 (p, b)
2586#else
2587# define EV_LSTAT(p,b) lstat (p, b)
2072#endif 2588#endif
2073 2589
2074void 2590void
2075ev_stat_stat (EV_P_ ev_stat *w) 2591ev_stat_stat (EV_P_ ev_stat *w)
2076{ 2592{
2140 else 2656 else
2141#endif 2657#endif
2142 ev_timer_start (EV_A_ &w->timer); 2658 ev_timer_start (EV_A_ &w->timer);
2143 2659
2144 ev_start (EV_A_ (W)w, 1); 2660 ev_start (EV_A_ (W)w, 1);
2661
2662 EV_FREQUENT_CHECK;
2145} 2663}
2146 2664
2147void 2665void
2148ev_stat_stop (EV_P_ ev_stat *w) 2666ev_stat_stop (EV_P_ ev_stat *w)
2149{ 2667{
2150 clear_pending (EV_A_ (W)w); 2668 clear_pending (EV_A_ (W)w);
2151 if (expect_false (!ev_is_active (w))) 2669 if (expect_false (!ev_is_active (w)))
2152 return; 2670 return;
2153 2671
2672 EV_FREQUENT_CHECK;
2673
2154#if EV_USE_INOTIFY 2674#if EV_USE_INOTIFY
2155 infy_del (EV_A_ w); 2675 infy_del (EV_A_ w);
2156#endif 2676#endif
2157 ev_timer_stop (EV_A_ &w->timer); 2677 ev_timer_stop (EV_A_ &w->timer);
2158 2678
2159 ev_stop (EV_A_ (W)w); 2679 ev_stop (EV_A_ (W)w);
2680
2681 EV_FREQUENT_CHECK;
2160} 2682}
2161#endif 2683#endif
2162 2684
2163#if EV_IDLE_ENABLE 2685#if EV_IDLE_ENABLE
2164void 2686void
2166{ 2688{
2167 if (expect_false (ev_is_active (w))) 2689 if (expect_false (ev_is_active (w)))
2168 return; 2690 return;
2169 2691
2170 pri_adjust (EV_A_ (W)w); 2692 pri_adjust (EV_A_ (W)w);
2693
2694 EV_FREQUENT_CHECK;
2171 2695
2172 { 2696 {
2173 int active = ++idlecnt [ABSPRI (w)]; 2697 int active = ++idlecnt [ABSPRI (w)];
2174 2698
2175 ++idleall; 2699 ++idleall;
2176 ev_start (EV_A_ (W)w, active); 2700 ev_start (EV_A_ (W)w, active);
2177 2701
2178 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2702 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2179 idles [ABSPRI (w)][active - 1] = w; 2703 idles [ABSPRI (w)][active - 1] = w;
2180 } 2704 }
2705
2706 EV_FREQUENT_CHECK;
2181} 2707}
2182 2708
2183void 2709void
2184ev_idle_stop (EV_P_ ev_idle *w) 2710ev_idle_stop (EV_P_ ev_idle *w)
2185{ 2711{
2186 clear_pending (EV_A_ (W)w); 2712 clear_pending (EV_A_ (W)w);
2187 if (expect_false (!ev_is_active (w))) 2713 if (expect_false (!ev_is_active (w)))
2188 return; 2714 return;
2189 2715
2716 EV_FREQUENT_CHECK;
2717
2190 { 2718 {
2191 int active = ((W)w)->active; 2719 int active = ev_active (w);
2192 2720
2193 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2721 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2194 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2722 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2195 2723
2196 ev_stop (EV_A_ (W)w); 2724 ev_stop (EV_A_ (W)w);
2197 --idleall; 2725 --idleall;
2198 } 2726 }
2727
2728 EV_FREQUENT_CHECK;
2199} 2729}
2200#endif 2730#endif
2201 2731
2202void 2732void
2203ev_prepare_start (EV_P_ ev_prepare *w) 2733ev_prepare_start (EV_P_ ev_prepare *w)
2204{ 2734{
2205 if (expect_false (ev_is_active (w))) 2735 if (expect_false (ev_is_active (w)))
2206 return; 2736 return;
2737
2738 EV_FREQUENT_CHECK;
2207 2739
2208 ev_start (EV_A_ (W)w, ++preparecnt); 2740 ev_start (EV_A_ (W)w, ++preparecnt);
2209 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2741 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2210 prepares [preparecnt - 1] = w; 2742 prepares [preparecnt - 1] = w;
2743
2744 EV_FREQUENT_CHECK;
2211} 2745}
2212 2746
2213void 2747void
2214ev_prepare_stop (EV_P_ ev_prepare *w) 2748ev_prepare_stop (EV_P_ ev_prepare *w)
2215{ 2749{
2216 clear_pending (EV_A_ (W)w); 2750 clear_pending (EV_A_ (W)w);
2217 if (expect_false (!ev_is_active (w))) 2751 if (expect_false (!ev_is_active (w)))
2218 return; 2752 return;
2219 2753
2754 EV_FREQUENT_CHECK;
2755
2220 { 2756 {
2221 int active = ((W)w)->active; 2757 int active = ev_active (w);
2758
2222 prepares [active - 1] = prepares [--preparecnt]; 2759 prepares [active - 1] = prepares [--preparecnt];
2223 ((W)prepares [active - 1])->active = active; 2760 ev_active (prepares [active - 1]) = active;
2224 } 2761 }
2225 2762
2226 ev_stop (EV_A_ (W)w); 2763 ev_stop (EV_A_ (W)w);
2764
2765 EV_FREQUENT_CHECK;
2227} 2766}
2228 2767
2229void 2768void
2230ev_check_start (EV_P_ ev_check *w) 2769ev_check_start (EV_P_ ev_check *w)
2231{ 2770{
2232 if (expect_false (ev_is_active (w))) 2771 if (expect_false (ev_is_active (w)))
2233 return; 2772 return;
2773
2774 EV_FREQUENT_CHECK;
2234 2775
2235 ev_start (EV_A_ (W)w, ++checkcnt); 2776 ev_start (EV_A_ (W)w, ++checkcnt);
2236 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2777 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2237 checks [checkcnt - 1] = w; 2778 checks [checkcnt - 1] = w;
2779
2780 EV_FREQUENT_CHECK;
2238} 2781}
2239 2782
2240void 2783void
2241ev_check_stop (EV_P_ ev_check *w) 2784ev_check_stop (EV_P_ ev_check *w)
2242{ 2785{
2243 clear_pending (EV_A_ (W)w); 2786 clear_pending (EV_A_ (W)w);
2244 if (expect_false (!ev_is_active (w))) 2787 if (expect_false (!ev_is_active (w)))
2245 return; 2788 return;
2246 2789
2790 EV_FREQUENT_CHECK;
2791
2247 { 2792 {
2248 int active = ((W)w)->active; 2793 int active = ev_active (w);
2794
2249 checks [active - 1] = checks [--checkcnt]; 2795 checks [active - 1] = checks [--checkcnt];
2250 ((W)checks [active - 1])->active = active; 2796 ev_active (checks [active - 1]) = active;
2251 } 2797 }
2252 2798
2253 ev_stop (EV_A_ (W)w); 2799 ev_stop (EV_A_ (W)w);
2800
2801 EV_FREQUENT_CHECK;
2254} 2802}
2255 2803
2256#if EV_EMBED_ENABLE 2804#if EV_EMBED_ENABLE
2257void noinline 2805void noinline
2258ev_embed_sweep (EV_P_ ev_embed *w) 2806ev_embed_sweep (EV_P_ ev_embed *w)
2305 struct ev_loop *loop = w->other; 2853 struct ev_loop *loop = w->other;
2306 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2854 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2307 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2855 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2308 } 2856 }
2309 2857
2858 EV_FREQUENT_CHECK;
2859
2310 ev_set_priority (&w->io, ev_priority (w)); 2860 ev_set_priority (&w->io, ev_priority (w));
2311 ev_io_start (EV_A_ &w->io); 2861 ev_io_start (EV_A_ &w->io);
2312 2862
2313 ev_prepare_init (&w->prepare, embed_prepare_cb); 2863 ev_prepare_init (&w->prepare, embed_prepare_cb);
2314 ev_set_priority (&w->prepare, EV_MINPRI); 2864 ev_set_priority (&w->prepare, EV_MINPRI);
2315 ev_prepare_start (EV_A_ &w->prepare); 2865 ev_prepare_start (EV_A_ &w->prepare);
2316 2866
2317 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2867 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2318 2868
2319 ev_start (EV_A_ (W)w, 1); 2869 ev_start (EV_A_ (W)w, 1);
2870
2871 EV_FREQUENT_CHECK;
2320} 2872}
2321 2873
2322void 2874void
2323ev_embed_stop (EV_P_ ev_embed *w) 2875ev_embed_stop (EV_P_ ev_embed *w)
2324{ 2876{
2325 clear_pending (EV_A_ (W)w); 2877 clear_pending (EV_A_ (W)w);
2326 if (expect_false (!ev_is_active (w))) 2878 if (expect_false (!ev_is_active (w)))
2327 return; 2879 return;
2328 2880
2881 EV_FREQUENT_CHECK;
2882
2329 ev_io_stop (EV_A_ &w->io); 2883 ev_io_stop (EV_A_ &w->io);
2330 ev_prepare_stop (EV_A_ &w->prepare); 2884 ev_prepare_stop (EV_A_ &w->prepare);
2331 2885
2332 ev_stop (EV_A_ (W)w); 2886 ev_stop (EV_A_ (W)w);
2887
2888 EV_FREQUENT_CHECK;
2333} 2889}
2334#endif 2890#endif
2335 2891
2336#if EV_FORK_ENABLE 2892#if EV_FORK_ENABLE
2337void 2893void
2338ev_fork_start (EV_P_ ev_fork *w) 2894ev_fork_start (EV_P_ ev_fork *w)
2339{ 2895{
2340 if (expect_false (ev_is_active (w))) 2896 if (expect_false (ev_is_active (w)))
2341 return; 2897 return;
2898
2899 EV_FREQUENT_CHECK;
2342 2900
2343 ev_start (EV_A_ (W)w, ++forkcnt); 2901 ev_start (EV_A_ (W)w, ++forkcnt);
2344 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2902 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2345 forks [forkcnt - 1] = w; 2903 forks [forkcnt - 1] = w;
2904
2905 EV_FREQUENT_CHECK;
2346} 2906}
2347 2907
2348void 2908void
2349ev_fork_stop (EV_P_ ev_fork *w) 2909ev_fork_stop (EV_P_ ev_fork *w)
2350{ 2910{
2351 clear_pending (EV_A_ (W)w); 2911 clear_pending (EV_A_ (W)w);
2352 if (expect_false (!ev_is_active (w))) 2912 if (expect_false (!ev_is_active (w)))
2353 return; 2913 return;
2354 2914
2915 EV_FREQUENT_CHECK;
2916
2355 { 2917 {
2356 int active = ((W)w)->active; 2918 int active = ev_active (w);
2919
2357 forks [active - 1] = forks [--forkcnt]; 2920 forks [active - 1] = forks [--forkcnt];
2358 ((W)forks [active - 1])->active = active; 2921 ev_active (forks [active - 1]) = active;
2359 } 2922 }
2360 2923
2361 ev_stop (EV_A_ (W)w); 2924 ev_stop (EV_A_ (W)w);
2925
2926 EV_FREQUENT_CHECK;
2927}
2928#endif
2929
2930#if EV_ASYNC_ENABLE
2931void
2932ev_async_start (EV_P_ ev_async *w)
2933{
2934 if (expect_false (ev_is_active (w)))
2935 return;
2936
2937 evpipe_init (EV_A);
2938
2939 EV_FREQUENT_CHECK;
2940
2941 ev_start (EV_A_ (W)w, ++asynccnt);
2942 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2943 asyncs [asynccnt - 1] = w;
2944
2945 EV_FREQUENT_CHECK;
2946}
2947
2948void
2949ev_async_stop (EV_P_ ev_async *w)
2950{
2951 clear_pending (EV_A_ (W)w);
2952 if (expect_false (!ev_is_active (w)))
2953 return;
2954
2955 EV_FREQUENT_CHECK;
2956
2957 {
2958 int active = ev_active (w);
2959
2960 asyncs [active - 1] = asyncs [--asynccnt];
2961 ev_active (asyncs [active - 1]) = active;
2962 }
2963
2964 ev_stop (EV_A_ (W)w);
2965
2966 EV_FREQUENT_CHECK;
2967}
2968
2969void
2970ev_async_send (EV_P_ ev_async *w)
2971{
2972 w->sent = 1;
2973 evpipe_write (EV_A_ &gotasync);
2362} 2974}
2363#endif 2975#endif
2364 2976
2365/*****************************************************************************/ 2977/*****************************************************************************/
2366 2978
2376once_cb (EV_P_ struct ev_once *once, int revents) 2988once_cb (EV_P_ struct ev_once *once, int revents)
2377{ 2989{
2378 void (*cb)(int revents, void *arg) = once->cb; 2990 void (*cb)(int revents, void *arg) = once->cb;
2379 void *arg = once->arg; 2991 void *arg = once->arg;
2380 2992
2381 ev_io_stop (EV_A_ &once->io); 2993 ev_io_stop (EV_A_ &once->io);
2382 ev_timer_stop (EV_A_ &once->to); 2994 ev_timer_stop (EV_A_ &once->to);
2383 ev_free (once); 2995 ev_free (once);
2384 2996
2385 cb (revents, arg); 2997 cb (revents, arg);
2386} 2998}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines