ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.221 by root, Sun Apr 6 12:44:49 2008 UTC vs.
Revision 1.260 by root, Mon Sep 8 17:24:39 2008 UTC

126# define EV_USE_EVENTFD 1 126# define EV_USE_EVENTFD 1
127# else 127# else
128# define EV_USE_EVENTFD 0 128# define EV_USE_EVENTFD 0
129# endif 129# endif
130# endif 130# endif
131 131
132#endif 132#endif
133 133
134#include <math.h> 134#include <math.h>
135#include <stdlib.h> 135#include <stdlib.h>
136#include <fcntl.h> 136#include <fcntl.h>
154#ifndef _WIN32 154#ifndef _WIN32
155# include <sys/time.h> 155# include <sys/time.h>
156# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h> 157# include <unistd.h>
158#else 158#else
159# include <io.h>
159# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 161# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
163# endif 164# endif
164#endif 165#endif
165 166
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
167 168
168#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
169# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
170#endif 175#endif
171 176
172#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
174#endif 179#endif
175 180
176#ifndef EV_USE_NANOSLEEP 181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
177# define EV_USE_NANOSLEEP 0 185# define EV_USE_NANOSLEEP 0
186# endif
178#endif 187#endif
179 188
180#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
182#endif 191#endif
235# else 244# else
236# define EV_USE_EVENTFD 0 245# define EV_USE_EVENTFD 0
237# endif 246# endif
238#endif 247#endif
239 248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 268
242#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
269#endif 296#endif
270 297
271#if EV_USE_EVENTFD 298#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 299/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 300# include <stdint.h>
301# ifdef __cplusplus
302extern "C" {
303# endif
274int eventfd (unsigned int initval, int flags); 304int eventfd (unsigned int initval, int flags);
305# ifdef __cplusplus
306}
307# endif
275#endif 308#endif
276 309
277/**/ 310/**/
311
312#if EV_VERIFY >= 3
313# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
314#else
315# define EV_FREQUENT_CHECK do { } while (0)
316#endif
278 317
279/* 318/*
280 * This is used to avoid floating point rounding problems. 319 * This is used to avoid floating point rounding problems.
281 * It is added to ev_rt_now when scheduling periodics 320 * It is added to ev_rt_now when scheduling periodics
282 * to ensure progress, time-wise, even when rounding 321 * to ensure progress, time-wise, even when rounding
294# define expect(expr,value) __builtin_expect ((expr),(value)) 333# define expect(expr,value) __builtin_expect ((expr),(value))
295# define noinline __attribute__ ((noinline)) 334# define noinline __attribute__ ((noinline))
296#else 335#else
297# define expect(expr,value) (expr) 336# define expect(expr,value) (expr)
298# define noinline 337# define noinline
299# if __STDC_VERSION__ < 199901L 338# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
300# define inline 339# define inline
301# endif 340# endif
302#endif 341#endif
303 342
304#define expect_false(expr) expect ((expr) != 0, 0) 343#define expect_false(expr) expect ((expr) != 0, 0)
319 358
320typedef ev_watcher *W; 359typedef ev_watcher *W;
321typedef ev_watcher_list *WL; 360typedef ev_watcher_list *WL;
322typedef ev_watcher_time *WT; 361typedef ev_watcher_time *WT;
323 362
363#define ev_active(w) ((W)(w))->active
364#define ev_at(w) ((WT)(w))->at
365
324#if EV_USE_MONOTONIC 366#if EV_USE_MONOTONIC
325/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 367/* sig_atomic_t is used to avoid per-thread variables or locking but still */
326/* giving it a reasonably high chance of working on typical architetcures */ 368/* giving it a reasonably high chance of working on typical architetcures */
327static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 369static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
328#endif 370#endif
354 perror (msg); 396 perror (msg);
355 abort (); 397 abort ();
356 } 398 }
357} 399}
358 400
401static void *
402ev_realloc_emul (void *ptr, long size)
403{
404 /* some systems, notably openbsd and darwin, fail to properly
405 * implement realloc (x, 0) (as required by both ansi c-98 and
406 * the single unix specification, so work around them here.
407 */
408
409 if (size)
410 return realloc (ptr, size);
411
412 free (ptr);
413 return 0;
414}
415
359static void *(*alloc)(void *ptr, long size); 416static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
360 417
361void 418void
362ev_set_allocator (void *(*cb)(void *ptr, long size)) 419ev_set_allocator (void *(*cb)(void *ptr, long size))
363{ 420{
364 alloc = cb; 421 alloc = cb;
365} 422}
366 423
367inline_speed void * 424inline_speed void *
368ev_realloc (void *ptr, long size) 425ev_realloc (void *ptr, long size)
369{ 426{
370 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 427 ptr = alloc (ptr, size);
371 428
372 if (!ptr && size) 429 if (!ptr && size)
373 { 430 {
374 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 431 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
375 abort (); 432 abort ();
398 W w; 455 W w;
399 int events; 456 int events;
400} ANPENDING; 457} ANPENDING;
401 458
402#if EV_USE_INOTIFY 459#if EV_USE_INOTIFY
460/* hash table entry per inotify-id */
403typedef struct 461typedef struct
404{ 462{
405 WL head; 463 WL head;
406} ANFS; 464} ANFS;
465#endif
466
467/* Heap Entry */
468#if EV_HEAP_CACHE_AT
469 typedef struct {
470 ev_tstamp at;
471 WT w;
472 } ANHE;
473
474 #define ANHE_w(he) (he).w /* access watcher, read-write */
475 #define ANHE_at(he) (he).at /* access cached at, read-only */
476 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
477#else
478 typedef WT ANHE;
479
480 #define ANHE_w(he) (he)
481 #define ANHE_at(he) (he)->at
482 #define ANHE_at_cache(he)
407#endif 483#endif
408 484
409#if EV_MULTIPLICITY 485#if EV_MULTIPLICITY
410 486
411 struct ev_loop 487 struct ev_loop
489 struct timeval tv; 565 struct timeval tv;
490 566
491 tv.tv_sec = (time_t)delay; 567 tv.tv_sec = (time_t)delay;
492 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 568 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
493 569
570 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
571 /* somehting nto guaranteed by newer posix versions, but guaranteed */
572 /* by older ones */
494 select (0, 0, 0, 0, &tv); 573 select (0, 0, 0, 0, &tv);
495#endif 574#endif
496 } 575 }
497} 576}
498 577
499/*****************************************************************************/ 578/*****************************************************************************/
579
580#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
500 581
501int inline_size 582int inline_size
502array_nextsize (int elem, int cur, int cnt) 583array_nextsize (int elem, int cur, int cnt)
503{ 584{
504 int ncur = cur + 1; 585 int ncur = cur + 1;
505 586
506 do 587 do
507 ncur <<= 1; 588 ncur <<= 1;
508 while (cnt > ncur); 589 while (cnt > ncur);
509 590
510 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 591 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
511 if (elem * ncur > 4096) 592 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
512 { 593 {
513 ncur *= elem; 594 ncur *= elem;
514 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 595 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
515 ncur = ncur - sizeof (void *) * 4; 596 ncur = ncur - sizeof (void *) * 4;
516 ncur /= elem; 597 ncur /= elem;
517 } 598 }
518 599
519 return ncur; 600 return ncur;
630 events |= (unsigned char)w->events; 711 events |= (unsigned char)w->events;
631 712
632#if EV_SELECT_IS_WINSOCKET 713#if EV_SELECT_IS_WINSOCKET
633 if (events) 714 if (events)
634 { 715 {
635 unsigned long argp; 716 unsigned long arg;
636 #ifdef EV_FD_TO_WIN32_HANDLE 717 #ifdef EV_FD_TO_WIN32_HANDLE
637 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 718 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
638 #else 719 #else
639 anfd->handle = _get_osfhandle (fd); 720 anfd->handle = _get_osfhandle (fd);
640 #endif 721 #endif
641 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 722 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
642 } 723 }
643#endif 724#endif
644 725
645 { 726 {
646 unsigned char o_events = anfd->events; 727 unsigned char o_events = anfd->events;
699{ 780{
700 int fd; 781 int fd;
701 782
702 for (fd = 0; fd < anfdmax; ++fd) 783 for (fd = 0; fd < anfdmax; ++fd)
703 if (anfds [fd].events) 784 if (anfds [fd].events)
704 if (!fd_valid (fd) == -1 && errno == EBADF) 785 if (!fd_valid (fd) && errno == EBADF)
705 fd_kill (EV_A_ fd); 786 fd_kill (EV_A_ fd);
706} 787}
707 788
708/* called on ENOMEM in select/poll to kill some fds and retry */ 789/* called on ENOMEM in select/poll to kill some fds and retry */
709static void noinline 790static void noinline
733 } 814 }
734} 815}
735 816
736/*****************************************************************************/ 817/*****************************************************************************/
737 818
819/*
820 * the heap functions want a real array index. array index 0 uis guaranteed to not
821 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
822 * the branching factor of the d-tree.
823 */
824
825/*
826 * at the moment we allow libev the luxury of two heaps,
827 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
828 * which is more cache-efficient.
829 * the difference is about 5% with 50000+ watchers.
830 */
831#if EV_USE_4HEAP
832
833#define DHEAP 4
834#define HEAP0 (DHEAP - 1) /* index of first element in heap */
835#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
836#define UPHEAP_DONE(p,k) ((p) == (k))
837
838/* away from the root */
738void inline_speed 839void inline_speed
739upheap (WT *heap, int k) 840downheap (ANHE *heap, int N, int k)
740{ 841{
741 WT w = heap [k]; 842 ANHE he = heap [k];
843 ANHE *E = heap + N + HEAP0;
742 844
743 while (k) 845 for (;;)
744 { 846 {
745 int p = (k - 1) >> 1; 847 ev_tstamp minat;
848 ANHE *minpos;
849 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
746 850
747 if (heap [p]->at <= w->at) 851 /* find minimum child */
852 if (expect_true (pos + DHEAP - 1 < E))
853 {
854 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
855 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
856 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
857 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
858 }
859 else if (pos < E)
860 {
861 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
862 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
863 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
864 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
865 }
866 else
748 break; 867 break;
749 868
869 if (ANHE_at (he) <= minat)
870 break;
871
872 heap [k] = *minpos;
873 ev_active (ANHE_w (*minpos)) = k;
874
875 k = minpos - heap;
876 }
877
878 heap [k] = he;
879 ev_active (ANHE_w (he)) = k;
880}
881
882#else /* 4HEAP */
883
884#define HEAP0 1
885#define HPARENT(k) ((k) >> 1)
886#define UPHEAP_DONE(p,k) (!(p))
887
888/* away from the root */
889void inline_speed
890downheap (ANHE *heap, int N, int k)
891{
892 ANHE he = heap [k];
893
894 for (;;)
895 {
896 int c = k << 1;
897
898 if (c > N + HEAP0 - 1)
899 break;
900
901 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
902 ? 1 : 0;
903
904 if (ANHE_at (he) <= ANHE_at (heap [c]))
905 break;
906
907 heap [k] = heap [c];
908 ev_active (ANHE_w (heap [k])) = k;
909
910 k = c;
911 }
912
913 heap [k] = he;
914 ev_active (ANHE_w (he)) = k;
915}
916#endif
917
918/* towards the root */
919void inline_speed
920upheap (ANHE *heap, int k)
921{
922 ANHE he = heap [k];
923
924 for (;;)
925 {
926 int p = HPARENT (k);
927
928 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
929 break;
930
750 heap [k] = heap [p]; 931 heap [k] = heap [p];
751 ((W)heap [k])->active = k + 1; 932 ev_active (ANHE_w (heap [k])) = k;
752 k = p; 933 k = p;
753 } 934 }
754 935
755 heap [k] = w; 936 heap [k] = he;
756 ((W)heap [k])->active = k + 1; 937 ev_active (ANHE_w (he)) = k;
757}
758
759void inline_speed
760downheap (WT *heap, int N, int k)
761{
762 WT w = heap [k];
763
764 for (;;)
765 {
766 int c = (k << 1) + 1;
767
768 if (c >= N)
769 break;
770
771 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
772 ? 1 : 0;
773
774 if (w->at <= heap [c]->at)
775 break;
776
777 heap [k] = heap [c];
778 ((W)heap [k])->active = k + 1;
779
780 k = c;
781 }
782
783 heap [k] = w;
784 ((W)heap [k])->active = k + 1;
785} 938}
786 939
787void inline_size 940void inline_size
788adjustheap (WT *heap, int N, int k) 941adjustheap (ANHE *heap, int N, int k)
789{ 942{
943 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
790 upheap (heap, k); 944 upheap (heap, k);
945 else
791 downheap (heap, N, k); 946 downheap (heap, N, k);
947}
948
949/* rebuild the heap: this function is used only once and executed rarely */
950void inline_size
951reheap (ANHE *heap, int N)
952{
953 int i;
954
955 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
956 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
957 for (i = 0; i < N; ++i)
958 upheap (heap, i + HEAP0);
792} 959}
793 960
794/*****************************************************************************/ 961/*****************************************************************************/
795 962
796typedef struct 963typedef struct
820 987
821void inline_speed 988void inline_speed
822fd_intern (int fd) 989fd_intern (int fd)
823{ 990{
824#ifdef _WIN32 991#ifdef _WIN32
825 int arg = 1; 992 unsigned long arg = 1;
826 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 993 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
827#else 994#else
828 fcntl (fd, F_SETFD, FD_CLOEXEC); 995 fcntl (fd, F_SETFD, FD_CLOEXEC);
829 fcntl (fd, F_SETFL, O_NONBLOCK); 996 fcntl (fd, F_SETFL, O_NONBLOCK);
830#endif 997#endif
885pipecb (EV_P_ ev_io *iow, int revents) 1052pipecb (EV_P_ ev_io *iow, int revents)
886{ 1053{
887#if EV_USE_EVENTFD 1054#if EV_USE_EVENTFD
888 if (evfd >= 0) 1055 if (evfd >= 0)
889 { 1056 {
890 uint64_t counter = 1; 1057 uint64_t counter;
891 read (evfd, &counter, sizeof (uint64_t)); 1058 read (evfd, &counter, sizeof (uint64_t));
892 } 1059 }
893 else 1060 else
894#endif 1061#endif
895 { 1062 {
1164 if (!(flags & EVFLAG_NOENV) 1331 if (!(flags & EVFLAG_NOENV)
1165 && !enable_secure () 1332 && !enable_secure ()
1166 && getenv ("LIBEV_FLAGS")) 1333 && getenv ("LIBEV_FLAGS"))
1167 flags = atoi (getenv ("LIBEV_FLAGS")); 1334 flags = atoi (getenv ("LIBEV_FLAGS"));
1168 1335
1169 if (!(flags & 0x0000ffffUL)) 1336 if (!(flags & 0x0000ffffU))
1170 flags |= ev_recommended_backends (); 1337 flags |= ev_recommended_backends ();
1171 1338
1172#if EV_USE_PORT 1339#if EV_USE_PORT
1173 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1340 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1174#endif 1341#endif
1262#endif 1429#endif
1263 1430
1264 backend = 0; 1431 backend = 0;
1265} 1432}
1266 1433
1434#if EV_USE_INOTIFY
1267void inline_size infy_fork (EV_P); 1435void inline_size infy_fork (EV_P);
1436#endif
1268 1437
1269void inline_size 1438void inline_size
1270loop_fork (EV_P) 1439loop_fork (EV_P)
1271{ 1440{
1272#if EV_USE_PORT 1441#if EV_USE_PORT
1312 1481
1313 postfork = 0; 1482 postfork = 0;
1314} 1483}
1315 1484
1316#if EV_MULTIPLICITY 1485#if EV_MULTIPLICITY
1486
1317struct ev_loop * 1487struct ev_loop *
1318ev_loop_new (unsigned int flags) 1488ev_loop_new (unsigned int flags)
1319{ 1489{
1320 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1490 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1321 1491
1340ev_loop_fork (EV_P) 1510ev_loop_fork (EV_P)
1341{ 1511{
1342 postfork = 1; /* must be in line with ev_default_fork */ 1512 postfork = 1; /* must be in line with ev_default_fork */
1343} 1513}
1344 1514
1515#if EV_VERIFY
1516static void noinline
1517verify_watcher (EV_P_ W w)
1518{
1519 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1520
1521 if (w->pending)
1522 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1523}
1524
1525static void noinline
1526verify_heap (EV_P_ ANHE *heap, int N)
1527{
1528 int i;
1529
1530 for (i = HEAP0; i < N + HEAP0; ++i)
1531 {
1532 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1533 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1534 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1535
1536 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1537 }
1538}
1539
1540static void noinline
1541array_verify (EV_P_ W *ws, int cnt)
1542{
1543 while (cnt--)
1544 {
1545 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1546 verify_watcher (EV_A_ ws [cnt]);
1547 }
1548}
1549#endif
1550
1551void
1552ev_loop_verify (EV_P)
1553{
1554#if EV_VERIFY
1555 int i;
1556 WL w;
1557
1558 assert (activecnt >= -1);
1559
1560 assert (fdchangemax >= fdchangecnt);
1561 for (i = 0; i < fdchangecnt; ++i)
1562 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1563
1564 assert (anfdmax >= 0);
1565 for (i = 0; i < anfdmax; ++i)
1566 for (w = anfds [i].head; w; w = w->next)
1567 {
1568 verify_watcher (EV_A_ (W)w);
1569 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1570 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1571 }
1572
1573 assert (timermax >= timercnt);
1574 verify_heap (EV_A_ timers, timercnt);
1575
1576#if EV_PERIODIC_ENABLE
1577 assert (periodicmax >= periodiccnt);
1578 verify_heap (EV_A_ periodics, periodiccnt);
1579#endif
1580
1581 for (i = NUMPRI; i--; )
1582 {
1583 assert (pendingmax [i] >= pendingcnt [i]);
1584#if EV_IDLE_ENABLE
1585 assert (idleall >= 0);
1586 assert (idlemax [i] >= idlecnt [i]);
1587 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1588#endif
1589 }
1590
1591#if EV_FORK_ENABLE
1592 assert (forkmax >= forkcnt);
1593 array_verify (EV_A_ (W *)forks, forkcnt);
1594#endif
1595
1596#if EV_ASYNC_ENABLE
1597 assert (asyncmax >= asynccnt);
1598 array_verify (EV_A_ (W *)asyncs, asynccnt);
1599#endif
1600
1601 assert (preparemax >= preparecnt);
1602 array_verify (EV_A_ (W *)prepares, preparecnt);
1603
1604 assert (checkmax >= checkcnt);
1605 array_verify (EV_A_ (W *)checks, checkcnt);
1606
1607# if 0
1608 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1609 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1345#endif 1610# endif
1611#endif
1612}
1613
1614#endif /* multiplicity */
1346 1615
1347#if EV_MULTIPLICITY 1616#if EV_MULTIPLICITY
1348struct ev_loop * 1617struct ev_loop *
1349ev_default_loop_init (unsigned int flags) 1618ev_default_loop_init (unsigned int flags)
1350#else 1619#else
1426 { 1695 {
1427 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1696 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1428 1697
1429 p->w->pending = 0; 1698 p->w->pending = 0;
1430 EV_CB_INVOKE (p->w, p->events); 1699 EV_CB_INVOKE (p->w, p->events);
1700 EV_FREQUENT_CHECK;
1431 } 1701 }
1432 } 1702 }
1433} 1703}
1434
1435void inline_size
1436timers_reify (EV_P)
1437{
1438 while (timercnt && ((WT)timers [0])->at <= mn_now)
1439 {
1440 ev_timer *w = (ev_timer *)timers [0];
1441
1442 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1443
1444 /* first reschedule or stop timer */
1445 if (w->repeat)
1446 {
1447 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1448
1449 ((WT)w)->at += w->repeat;
1450 if (((WT)w)->at < mn_now)
1451 ((WT)w)->at = mn_now;
1452
1453 downheap (timers, timercnt, 0);
1454 }
1455 else
1456 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1457
1458 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1459 }
1460}
1461
1462#if EV_PERIODIC_ENABLE
1463void inline_size
1464periodics_reify (EV_P)
1465{
1466 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1467 {
1468 ev_periodic *w = (ev_periodic *)periodics [0];
1469
1470 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1471
1472 /* first reschedule or stop timer */
1473 if (w->reschedule_cb)
1474 {
1475 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1476 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1477 downheap (periodics, periodiccnt, 0);
1478 }
1479 else if (w->interval)
1480 {
1481 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1482 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1483 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1484 downheap (periodics, periodiccnt, 0);
1485 }
1486 else
1487 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1488
1489 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1490 }
1491}
1492
1493static void noinline
1494periodics_reschedule (EV_P)
1495{
1496 int i;
1497
1498 /* adjust periodics after time jump */
1499 for (i = 0; i < periodiccnt; ++i)
1500 {
1501 ev_periodic *w = (ev_periodic *)periodics [i];
1502
1503 if (w->reschedule_cb)
1504 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1505 else if (w->interval)
1506 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1507 }
1508
1509 /* now rebuild the heap */
1510 for (i = periodiccnt >> 1; i--; )
1511 downheap (periodics, periodiccnt, i);
1512}
1513#endif
1514 1704
1515#if EV_IDLE_ENABLE 1705#if EV_IDLE_ENABLE
1516void inline_size 1706void inline_size
1517idle_reify (EV_P) 1707idle_reify (EV_P)
1518{ 1708{
1530 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1720 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1531 break; 1721 break;
1532 } 1722 }
1533 } 1723 }
1534 } 1724 }
1725}
1726#endif
1727
1728void inline_size
1729timers_reify (EV_P)
1730{
1731 EV_FREQUENT_CHECK;
1732
1733 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1734 {
1735 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1736
1737 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1738
1739 /* first reschedule or stop timer */
1740 if (w->repeat)
1741 {
1742 ev_at (w) += w->repeat;
1743 if (ev_at (w) < mn_now)
1744 ev_at (w) = mn_now;
1745
1746 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1747
1748 ANHE_at_cache (timers [HEAP0]);
1749 downheap (timers, timercnt, HEAP0);
1750 }
1751 else
1752 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1753
1754 EV_FREQUENT_CHECK;
1755 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1756 }
1757}
1758
1759#if EV_PERIODIC_ENABLE
1760void inline_size
1761periodics_reify (EV_P)
1762{
1763 EV_FREQUENT_CHECK;
1764
1765 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1766 {
1767 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1768
1769 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1770
1771 /* first reschedule or stop timer */
1772 if (w->reschedule_cb)
1773 {
1774 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1775
1776 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1777
1778 ANHE_at_cache (periodics [HEAP0]);
1779 downheap (periodics, periodiccnt, HEAP0);
1780 }
1781 else if (w->interval)
1782 {
1783 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1784 /* if next trigger time is not sufficiently in the future, put it there */
1785 /* this might happen because of floating point inexactness */
1786 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1787 {
1788 ev_at (w) += w->interval;
1789
1790 /* if interval is unreasonably low we might still have a time in the past */
1791 /* so correct this. this will make the periodic very inexact, but the user */
1792 /* has effectively asked to get triggered more often than possible */
1793 if (ev_at (w) < ev_rt_now)
1794 ev_at (w) = ev_rt_now;
1795 }
1796
1797 ANHE_at_cache (periodics [HEAP0]);
1798 downheap (periodics, periodiccnt, HEAP0);
1799 }
1800 else
1801 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1802
1803 EV_FREQUENT_CHECK;
1804 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1805 }
1806}
1807
1808static void noinline
1809periodics_reschedule (EV_P)
1810{
1811 int i;
1812
1813 /* adjust periodics after time jump */
1814 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1815 {
1816 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1817
1818 if (w->reschedule_cb)
1819 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1820 else if (w->interval)
1821 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1822
1823 ANHE_at_cache (periodics [i]);
1824 }
1825
1826 reheap (periodics, periodiccnt);
1535} 1827}
1536#endif 1828#endif
1537 1829
1538void inline_speed 1830void inline_speed
1539time_update (EV_P_ ev_tstamp max_block) 1831time_update (EV_P_ ev_tstamp max_block)
1568 */ 1860 */
1569 for (i = 4; --i; ) 1861 for (i = 4; --i; )
1570 { 1862 {
1571 rtmn_diff = ev_rt_now - mn_now; 1863 rtmn_diff = ev_rt_now - mn_now;
1572 1864
1573 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1865 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1574 return; /* all is well */ 1866 return; /* all is well */
1575 1867
1576 ev_rt_now = ev_time (); 1868 ev_rt_now = ev_time ();
1577 mn_now = get_clock (); 1869 mn_now = get_clock ();
1578 now_floor = mn_now; 1870 now_floor = mn_now;
1594#if EV_PERIODIC_ENABLE 1886#if EV_PERIODIC_ENABLE
1595 periodics_reschedule (EV_A); 1887 periodics_reschedule (EV_A);
1596#endif 1888#endif
1597 /* adjust timers. this is easy, as the offset is the same for all of them */ 1889 /* adjust timers. this is easy, as the offset is the same for all of them */
1598 for (i = 0; i < timercnt; ++i) 1890 for (i = 0; i < timercnt; ++i)
1891 {
1892 ANHE *he = timers + i + HEAP0;
1599 ((WT)timers [i])->at += ev_rt_now - mn_now; 1893 ANHE_w (*he)->at += ev_rt_now - mn_now;
1894 ANHE_at_cache (*he);
1895 }
1600 } 1896 }
1601 1897
1602 mn_now = ev_rt_now; 1898 mn_now = ev_rt_now;
1603 } 1899 }
1604} 1900}
1613ev_unref (EV_P) 1909ev_unref (EV_P)
1614{ 1910{
1615 --activecnt; 1911 --activecnt;
1616} 1912}
1617 1913
1914void
1915ev_now_update (EV_P)
1916{
1917 time_update (EV_A_ 1e100);
1918}
1919
1618static int loop_done; 1920static int loop_done;
1619 1921
1620void 1922void
1621ev_loop (EV_P_ int flags) 1923ev_loop (EV_P_ int flags)
1622{ 1924{
1624 1926
1625 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1927 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1626 1928
1627 do 1929 do
1628 { 1930 {
1931#if EV_VERIFY >= 2
1932 ev_loop_verify (EV_A);
1933#endif
1934
1629#ifndef _WIN32 1935#ifndef _WIN32
1630 if (expect_false (curpid)) /* penalise the forking check even more */ 1936 if (expect_false (curpid)) /* penalise the forking check even more */
1631 if (expect_false (getpid () != curpid)) 1937 if (expect_false (getpid () != curpid))
1632 { 1938 {
1633 curpid = getpid (); 1939 curpid = getpid ();
1674 1980
1675 waittime = MAX_BLOCKTIME; 1981 waittime = MAX_BLOCKTIME;
1676 1982
1677 if (timercnt) 1983 if (timercnt)
1678 { 1984 {
1679 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1985 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1680 if (waittime > to) waittime = to; 1986 if (waittime > to) waittime = to;
1681 } 1987 }
1682 1988
1683#if EV_PERIODIC_ENABLE 1989#if EV_PERIODIC_ENABLE
1684 if (periodiccnt) 1990 if (periodiccnt)
1685 { 1991 {
1686 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1992 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1687 if (waittime > to) waittime = to; 1993 if (waittime > to) waittime = to;
1688 } 1994 }
1689#endif 1995#endif
1690 1996
1691 if (expect_false (waittime < timeout_blocktime)) 1997 if (expect_false (waittime < timeout_blocktime))
1828 if (expect_false (ev_is_active (w))) 2134 if (expect_false (ev_is_active (w)))
1829 return; 2135 return;
1830 2136
1831 assert (("ev_io_start called with negative fd", fd >= 0)); 2137 assert (("ev_io_start called with negative fd", fd >= 0));
1832 2138
2139 EV_FREQUENT_CHECK;
2140
1833 ev_start (EV_A_ (W)w, 1); 2141 ev_start (EV_A_ (W)w, 1);
1834 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2142 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1835 wlist_add (&anfds[fd].head, (WL)w); 2143 wlist_add (&anfds[fd].head, (WL)w);
1836 2144
1837 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2145 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1838 w->events &= ~EV_IOFDSET; 2146 w->events &= ~EV_IOFDSET;
2147
2148 EV_FREQUENT_CHECK;
1839} 2149}
1840 2150
1841void noinline 2151void noinline
1842ev_io_stop (EV_P_ ev_io *w) 2152ev_io_stop (EV_P_ ev_io *w)
1843{ 2153{
1844 clear_pending (EV_A_ (W)w); 2154 clear_pending (EV_A_ (W)w);
1845 if (expect_false (!ev_is_active (w))) 2155 if (expect_false (!ev_is_active (w)))
1846 return; 2156 return;
1847 2157
1848 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2158 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2159
2160 EV_FREQUENT_CHECK;
1849 2161
1850 wlist_del (&anfds[w->fd].head, (WL)w); 2162 wlist_del (&anfds[w->fd].head, (WL)w);
1851 ev_stop (EV_A_ (W)w); 2163 ev_stop (EV_A_ (W)w);
1852 2164
1853 fd_change (EV_A_ w->fd, 1); 2165 fd_change (EV_A_ w->fd, 1);
2166
2167 EV_FREQUENT_CHECK;
1854} 2168}
1855 2169
1856void noinline 2170void noinline
1857ev_timer_start (EV_P_ ev_timer *w) 2171ev_timer_start (EV_P_ ev_timer *w)
1858{ 2172{
1859 if (expect_false (ev_is_active (w))) 2173 if (expect_false (ev_is_active (w)))
1860 return; 2174 return;
1861 2175
1862 ((WT)w)->at += mn_now; 2176 ev_at (w) += mn_now;
1863 2177
1864 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2178 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1865 2179
2180 EV_FREQUENT_CHECK;
2181
2182 ++timercnt;
1866 ev_start (EV_A_ (W)w, ++timercnt); 2183 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1867 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2184 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1868 timers [timercnt - 1] = (WT)w; 2185 ANHE_w (timers [ev_active (w)]) = (WT)w;
1869 upheap (timers, timercnt - 1); 2186 ANHE_at_cache (timers [ev_active (w)]);
2187 upheap (timers, ev_active (w));
1870 2188
2189 EV_FREQUENT_CHECK;
2190
1871 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2191 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1872} 2192}
1873 2193
1874void noinline 2194void noinline
1875ev_timer_stop (EV_P_ ev_timer *w) 2195ev_timer_stop (EV_P_ ev_timer *w)
1876{ 2196{
1877 clear_pending (EV_A_ (W)w); 2197 clear_pending (EV_A_ (W)w);
1878 if (expect_false (!ev_is_active (w))) 2198 if (expect_false (!ev_is_active (w)))
1879 return; 2199 return;
1880 2200
1881 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2201 EV_FREQUENT_CHECK;
1882 2202
1883 { 2203 {
1884 int active = ((W)w)->active; 2204 int active = ev_active (w);
1885 2205
2206 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2207
2208 --timercnt;
2209
1886 if (expect_true (--active < --timercnt)) 2210 if (expect_true (active < timercnt + HEAP0))
1887 { 2211 {
1888 timers [active] = timers [timercnt]; 2212 timers [active] = timers [timercnt + HEAP0];
1889 adjustheap (timers, timercnt, active); 2213 adjustheap (timers, timercnt, active);
1890 } 2214 }
1891 } 2215 }
1892 2216
1893 ((WT)w)->at -= mn_now; 2217 EV_FREQUENT_CHECK;
2218
2219 ev_at (w) -= mn_now;
1894 2220
1895 ev_stop (EV_A_ (W)w); 2221 ev_stop (EV_A_ (W)w);
1896} 2222}
1897 2223
1898void noinline 2224void noinline
1899ev_timer_again (EV_P_ ev_timer *w) 2225ev_timer_again (EV_P_ ev_timer *w)
1900{ 2226{
2227 EV_FREQUENT_CHECK;
2228
1901 if (ev_is_active (w)) 2229 if (ev_is_active (w))
1902 { 2230 {
1903 if (w->repeat) 2231 if (w->repeat)
1904 { 2232 {
1905 ((WT)w)->at = mn_now + w->repeat; 2233 ev_at (w) = mn_now + w->repeat;
2234 ANHE_at_cache (timers [ev_active (w)]);
1906 adjustheap (timers, timercnt, ((W)w)->active - 1); 2235 adjustheap (timers, timercnt, ev_active (w));
1907 } 2236 }
1908 else 2237 else
1909 ev_timer_stop (EV_A_ w); 2238 ev_timer_stop (EV_A_ w);
1910 } 2239 }
1911 else if (w->repeat) 2240 else if (w->repeat)
1912 { 2241 {
1913 w->at = w->repeat; 2242 ev_at (w) = w->repeat;
1914 ev_timer_start (EV_A_ w); 2243 ev_timer_start (EV_A_ w);
1915 } 2244 }
2245
2246 EV_FREQUENT_CHECK;
1916} 2247}
1917 2248
1918#if EV_PERIODIC_ENABLE 2249#if EV_PERIODIC_ENABLE
1919void noinline 2250void noinline
1920ev_periodic_start (EV_P_ ev_periodic *w) 2251ev_periodic_start (EV_P_ ev_periodic *w)
1921{ 2252{
1922 if (expect_false (ev_is_active (w))) 2253 if (expect_false (ev_is_active (w)))
1923 return; 2254 return;
1924 2255
1925 if (w->reschedule_cb) 2256 if (w->reschedule_cb)
1926 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2257 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1927 else if (w->interval) 2258 else if (w->interval)
1928 { 2259 {
1929 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2260 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1930 /* this formula differs from the one in periodic_reify because we do not always round up */ 2261 /* this formula differs from the one in periodic_reify because we do not always round up */
1931 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2262 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1932 } 2263 }
1933 else 2264 else
1934 ((WT)w)->at = w->offset; 2265 ev_at (w) = w->offset;
1935 2266
2267 EV_FREQUENT_CHECK;
2268
2269 ++periodiccnt;
1936 ev_start (EV_A_ (W)w, ++periodiccnt); 2270 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1937 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2271 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1938 periodics [periodiccnt - 1] = (WT)w; 2272 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1939 upheap (periodics, periodiccnt - 1); 2273 ANHE_at_cache (periodics [ev_active (w)]);
2274 upheap (periodics, ev_active (w));
1940 2275
2276 EV_FREQUENT_CHECK;
2277
1941 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2278 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1942} 2279}
1943 2280
1944void noinline 2281void noinline
1945ev_periodic_stop (EV_P_ ev_periodic *w) 2282ev_periodic_stop (EV_P_ ev_periodic *w)
1946{ 2283{
1947 clear_pending (EV_A_ (W)w); 2284 clear_pending (EV_A_ (W)w);
1948 if (expect_false (!ev_is_active (w))) 2285 if (expect_false (!ev_is_active (w)))
1949 return; 2286 return;
1950 2287
1951 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2288 EV_FREQUENT_CHECK;
1952 2289
1953 { 2290 {
1954 int active = ((W)w)->active; 2291 int active = ev_active (w);
1955 2292
2293 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2294
2295 --periodiccnt;
2296
1956 if (expect_true (--active < --periodiccnt)) 2297 if (expect_true (active < periodiccnt + HEAP0))
1957 { 2298 {
1958 periodics [active] = periodics [periodiccnt]; 2299 periodics [active] = periodics [periodiccnt + HEAP0];
1959 adjustheap (periodics, periodiccnt, active); 2300 adjustheap (periodics, periodiccnt, active);
1960 } 2301 }
1961 } 2302 }
1962 2303
2304 EV_FREQUENT_CHECK;
2305
1963 ev_stop (EV_A_ (W)w); 2306 ev_stop (EV_A_ (W)w);
1964} 2307}
1965 2308
1966void noinline 2309void noinline
1967ev_periodic_again (EV_P_ ev_periodic *w) 2310ev_periodic_again (EV_P_ ev_periodic *w)
1986 return; 2329 return;
1987 2330
1988 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2331 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1989 2332
1990 evpipe_init (EV_A); 2333 evpipe_init (EV_A);
2334
2335 EV_FREQUENT_CHECK;
1991 2336
1992 { 2337 {
1993#ifndef _WIN32 2338#ifndef _WIN32
1994 sigset_t full, prev; 2339 sigset_t full, prev;
1995 sigfillset (&full); 2340 sigfillset (&full);
2016 sigfillset (&sa.sa_mask); 2361 sigfillset (&sa.sa_mask);
2017 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2362 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2018 sigaction (w->signum, &sa, 0); 2363 sigaction (w->signum, &sa, 0);
2019#endif 2364#endif
2020 } 2365 }
2366
2367 EV_FREQUENT_CHECK;
2021} 2368}
2022 2369
2023void noinline 2370void noinline
2024ev_signal_stop (EV_P_ ev_signal *w) 2371ev_signal_stop (EV_P_ ev_signal *w)
2025{ 2372{
2026 clear_pending (EV_A_ (W)w); 2373 clear_pending (EV_A_ (W)w);
2027 if (expect_false (!ev_is_active (w))) 2374 if (expect_false (!ev_is_active (w)))
2028 return; 2375 return;
2029 2376
2377 EV_FREQUENT_CHECK;
2378
2030 wlist_del (&signals [w->signum - 1].head, (WL)w); 2379 wlist_del (&signals [w->signum - 1].head, (WL)w);
2031 ev_stop (EV_A_ (W)w); 2380 ev_stop (EV_A_ (W)w);
2032 2381
2033 if (!signals [w->signum - 1].head) 2382 if (!signals [w->signum - 1].head)
2034 signal (w->signum, SIG_DFL); 2383 signal (w->signum, SIG_DFL);
2384
2385 EV_FREQUENT_CHECK;
2035} 2386}
2036 2387
2037void 2388void
2038ev_child_start (EV_P_ ev_child *w) 2389ev_child_start (EV_P_ ev_child *w)
2039{ 2390{
2041 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2392 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2042#endif 2393#endif
2043 if (expect_false (ev_is_active (w))) 2394 if (expect_false (ev_is_active (w)))
2044 return; 2395 return;
2045 2396
2397 EV_FREQUENT_CHECK;
2398
2046 ev_start (EV_A_ (W)w, 1); 2399 ev_start (EV_A_ (W)w, 1);
2047 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2400 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2401
2402 EV_FREQUENT_CHECK;
2048} 2403}
2049 2404
2050void 2405void
2051ev_child_stop (EV_P_ ev_child *w) 2406ev_child_stop (EV_P_ ev_child *w)
2052{ 2407{
2053 clear_pending (EV_A_ (W)w); 2408 clear_pending (EV_A_ (W)w);
2054 if (expect_false (!ev_is_active (w))) 2409 if (expect_false (!ev_is_active (w)))
2055 return; 2410 return;
2056 2411
2412 EV_FREQUENT_CHECK;
2413
2057 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2414 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2058 ev_stop (EV_A_ (W)w); 2415 ev_stop (EV_A_ (W)w);
2416
2417 EV_FREQUENT_CHECK;
2059} 2418}
2060 2419
2061#if EV_STAT_ENABLE 2420#if EV_STAT_ENABLE
2062 2421
2063# ifdef _WIN32 2422# ifdef _WIN32
2081 if (w->wd < 0) 2440 if (w->wd < 0)
2082 { 2441 {
2083 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2442 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2084 2443
2085 /* monitor some parent directory for speedup hints */ 2444 /* monitor some parent directory for speedup hints */
2445 /* note that exceeding the hardcoded limit is not a correctness issue, */
2446 /* but an efficiency issue only */
2086 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2447 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2087 { 2448 {
2088 char path [4096]; 2449 char path [4096];
2089 strcpy (path, w->path); 2450 strcpy (path, w->path);
2090 2451
2216 } 2577 }
2217 2578
2218 } 2579 }
2219} 2580}
2220 2581
2582#endif
2583
2584#ifdef _WIN32
2585# define EV_LSTAT(p,b) _stati64 (p, b)
2586#else
2587# define EV_LSTAT(p,b) lstat (p, b)
2221#endif 2588#endif
2222 2589
2223void 2590void
2224ev_stat_stat (EV_P_ ev_stat *w) 2591ev_stat_stat (EV_P_ ev_stat *w)
2225{ 2592{
2289 else 2656 else
2290#endif 2657#endif
2291 ev_timer_start (EV_A_ &w->timer); 2658 ev_timer_start (EV_A_ &w->timer);
2292 2659
2293 ev_start (EV_A_ (W)w, 1); 2660 ev_start (EV_A_ (W)w, 1);
2661
2662 EV_FREQUENT_CHECK;
2294} 2663}
2295 2664
2296void 2665void
2297ev_stat_stop (EV_P_ ev_stat *w) 2666ev_stat_stop (EV_P_ ev_stat *w)
2298{ 2667{
2299 clear_pending (EV_A_ (W)w); 2668 clear_pending (EV_A_ (W)w);
2300 if (expect_false (!ev_is_active (w))) 2669 if (expect_false (!ev_is_active (w)))
2301 return; 2670 return;
2302 2671
2672 EV_FREQUENT_CHECK;
2673
2303#if EV_USE_INOTIFY 2674#if EV_USE_INOTIFY
2304 infy_del (EV_A_ w); 2675 infy_del (EV_A_ w);
2305#endif 2676#endif
2306 ev_timer_stop (EV_A_ &w->timer); 2677 ev_timer_stop (EV_A_ &w->timer);
2307 2678
2308 ev_stop (EV_A_ (W)w); 2679 ev_stop (EV_A_ (W)w);
2680
2681 EV_FREQUENT_CHECK;
2309} 2682}
2310#endif 2683#endif
2311 2684
2312#if EV_IDLE_ENABLE 2685#if EV_IDLE_ENABLE
2313void 2686void
2315{ 2688{
2316 if (expect_false (ev_is_active (w))) 2689 if (expect_false (ev_is_active (w)))
2317 return; 2690 return;
2318 2691
2319 pri_adjust (EV_A_ (W)w); 2692 pri_adjust (EV_A_ (W)w);
2693
2694 EV_FREQUENT_CHECK;
2320 2695
2321 { 2696 {
2322 int active = ++idlecnt [ABSPRI (w)]; 2697 int active = ++idlecnt [ABSPRI (w)];
2323 2698
2324 ++idleall; 2699 ++idleall;
2325 ev_start (EV_A_ (W)w, active); 2700 ev_start (EV_A_ (W)w, active);
2326 2701
2327 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2702 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2328 idles [ABSPRI (w)][active - 1] = w; 2703 idles [ABSPRI (w)][active - 1] = w;
2329 } 2704 }
2705
2706 EV_FREQUENT_CHECK;
2330} 2707}
2331 2708
2332void 2709void
2333ev_idle_stop (EV_P_ ev_idle *w) 2710ev_idle_stop (EV_P_ ev_idle *w)
2334{ 2711{
2335 clear_pending (EV_A_ (W)w); 2712 clear_pending (EV_A_ (W)w);
2336 if (expect_false (!ev_is_active (w))) 2713 if (expect_false (!ev_is_active (w)))
2337 return; 2714 return;
2338 2715
2716 EV_FREQUENT_CHECK;
2717
2339 { 2718 {
2340 int active = ((W)w)->active; 2719 int active = ev_active (w);
2341 2720
2342 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2721 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2343 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2722 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2344 2723
2345 ev_stop (EV_A_ (W)w); 2724 ev_stop (EV_A_ (W)w);
2346 --idleall; 2725 --idleall;
2347 } 2726 }
2727
2728 EV_FREQUENT_CHECK;
2348} 2729}
2349#endif 2730#endif
2350 2731
2351void 2732void
2352ev_prepare_start (EV_P_ ev_prepare *w) 2733ev_prepare_start (EV_P_ ev_prepare *w)
2353{ 2734{
2354 if (expect_false (ev_is_active (w))) 2735 if (expect_false (ev_is_active (w)))
2355 return; 2736 return;
2737
2738 EV_FREQUENT_CHECK;
2356 2739
2357 ev_start (EV_A_ (W)w, ++preparecnt); 2740 ev_start (EV_A_ (W)w, ++preparecnt);
2358 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2741 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2359 prepares [preparecnt - 1] = w; 2742 prepares [preparecnt - 1] = w;
2743
2744 EV_FREQUENT_CHECK;
2360} 2745}
2361 2746
2362void 2747void
2363ev_prepare_stop (EV_P_ ev_prepare *w) 2748ev_prepare_stop (EV_P_ ev_prepare *w)
2364{ 2749{
2365 clear_pending (EV_A_ (W)w); 2750 clear_pending (EV_A_ (W)w);
2366 if (expect_false (!ev_is_active (w))) 2751 if (expect_false (!ev_is_active (w)))
2367 return; 2752 return;
2368 2753
2754 EV_FREQUENT_CHECK;
2755
2369 { 2756 {
2370 int active = ((W)w)->active; 2757 int active = ev_active (w);
2758
2371 prepares [active - 1] = prepares [--preparecnt]; 2759 prepares [active - 1] = prepares [--preparecnt];
2372 ((W)prepares [active - 1])->active = active; 2760 ev_active (prepares [active - 1]) = active;
2373 } 2761 }
2374 2762
2375 ev_stop (EV_A_ (W)w); 2763 ev_stop (EV_A_ (W)w);
2764
2765 EV_FREQUENT_CHECK;
2376} 2766}
2377 2767
2378void 2768void
2379ev_check_start (EV_P_ ev_check *w) 2769ev_check_start (EV_P_ ev_check *w)
2380{ 2770{
2381 if (expect_false (ev_is_active (w))) 2771 if (expect_false (ev_is_active (w)))
2382 return; 2772 return;
2773
2774 EV_FREQUENT_CHECK;
2383 2775
2384 ev_start (EV_A_ (W)w, ++checkcnt); 2776 ev_start (EV_A_ (W)w, ++checkcnt);
2385 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2777 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2386 checks [checkcnt - 1] = w; 2778 checks [checkcnt - 1] = w;
2779
2780 EV_FREQUENT_CHECK;
2387} 2781}
2388 2782
2389void 2783void
2390ev_check_stop (EV_P_ ev_check *w) 2784ev_check_stop (EV_P_ ev_check *w)
2391{ 2785{
2392 clear_pending (EV_A_ (W)w); 2786 clear_pending (EV_A_ (W)w);
2393 if (expect_false (!ev_is_active (w))) 2787 if (expect_false (!ev_is_active (w)))
2394 return; 2788 return;
2395 2789
2790 EV_FREQUENT_CHECK;
2791
2396 { 2792 {
2397 int active = ((W)w)->active; 2793 int active = ev_active (w);
2794
2398 checks [active - 1] = checks [--checkcnt]; 2795 checks [active - 1] = checks [--checkcnt];
2399 ((W)checks [active - 1])->active = active; 2796 ev_active (checks [active - 1]) = active;
2400 } 2797 }
2401 2798
2402 ev_stop (EV_A_ (W)w); 2799 ev_stop (EV_A_ (W)w);
2800
2801 EV_FREQUENT_CHECK;
2403} 2802}
2404 2803
2405#if EV_EMBED_ENABLE 2804#if EV_EMBED_ENABLE
2406void noinline 2805void noinline
2407ev_embed_sweep (EV_P_ ev_embed *w) 2806ev_embed_sweep (EV_P_ ev_embed *w)
2454 struct ev_loop *loop = w->other; 2853 struct ev_loop *loop = w->other;
2455 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2854 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2456 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2855 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2457 } 2856 }
2458 2857
2858 EV_FREQUENT_CHECK;
2859
2459 ev_set_priority (&w->io, ev_priority (w)); 2860 ev_set_priority (&w->io, ev_priority (w));
2460 ev_io_start (EV_A_ &w->io); 2861 ev_io_start (EV_A_ &w->io);
2461 2862
2462 ev_prepare_init (&w->prepare, embed_prepare_cb); 2863 ev_prepare_init (&w->prepare, embed_prepare_cb);
2463 ev_set_priority (&w->prepare, EV_MINPRI); 2864 ev_set_priority (&w->prepare, EV_MINPRI);
2464 ev_prepare_start (EV_A_ &w->prepare); 2865 ev_prepare_start (EV_A_ &w->prepare);
2465 2866
2466 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2867 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2467 2868
2468 ev_start (EV_A_ (W)w, 1); 2869 ev_start (EV_A_ (W)w, 1);
2870
2871 EV_FREQUENT_CHECK;
2469} 2872}
2470 2873
2471void 2874void
2472ev_embed_stop (EV_P_ ev_embed *w) 2875ev_embed_stop (EV_P_ ev_embed *w)
2473{ 2876{
2474 clear_pending (EV_A_ (W)w); 2877 clear_pending (EV_A_ (W)w);
2475 if (expect_false (!ev_is_active (w))) 2878 if (expect_false (!ev_is_active (w)))
2476 return; 2879 return;
2477 2880
2881 EV_FREQUENT_CHECK;
2882
2478 ev_io_stop (EV_A_ &w->io); 2883 ev_io_stop (EV_A_ &w->io);
2479 ev_prepare_stop (EV_A_ &w->prepare); 2884 ev_prepare_stop (EV_A_ &w->prepare);
2480 2885
2481 ev_stop (EV_A_ (W)w); 2886 ev_stop (EV_A_ (W)w);
2887
2888 EV_FREQUENT_CHECK;
2482} 2889}
2483#endif 2890#endif
2484 2891
2485#if EV_FORK_ENABLE 2892#if EV_FORK_ENABLE
2486void 2893void
2487ev_fork_start (EV_P_ ev_fork *w) 2894ev_fork_start (EV_P_ ev_fork *w)
2488{ 2895{
2489 if (expect_false (ev_is_active (w))) 2896 if (expect_false (ev_is_active (w)))
2490 return; 2897 return;
2898
2899 EV_FREQUENT_CHECK;
2491 2900
2492 ev_start (EV_A_ (W)w, ++forkcnt); 2901 ev_start (EV_A_ (W)w, ++forkcnt);
2493 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2902 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2494 forks [forkcnt - 1] = w; 2903 forks [forkcnt - 1] = w;
2904
2905 EV_FREQUENT_CHECK;
2495} 2906}
2496 2907
2497void 2908void
2498ev_fork_stop (EV_P_ ev_fork *w) 2909ev_fork_stop (EV_P_ ev_fork *w)
2499{ 2910{
2500 clear_pending (EV_A_ (W)w); 2911 clear_pending (EV_A_ (W)w);
2501 if (expect_false (!ev_is_active (w))) 2912 if (expect_false (!ev_is_active (w)))
2502 return; 2913 return;
2503 2914
2915 EV_FREQUENT_CHECK;
2916
2504 { 2917 {
2505 int active = ((W)w)->active; 2918 int active = ev_active (w);
2919
2506 forks [active - 1] = forks [--forkcnt]; 2920 forks [active - 1] = forks [--forkcnt];
2507 ((W)forks [active - 1])->active = active; 2921 ev_active (forks [active - 1]) = active;
2508 } 2922 }
2509 2923
2510 ev_stop (EV_A_ (W)w); 2924 ev_stop (EV_A_ (W)w);
2925
2926 EV_FREQUENT_CHECK;
2511} 2927}
2512#endif 2928#endif
2513 2929
2514#if EV_ASYNC_ENABLE 2930#if EV_ASYNC_ENABLE
2515void 2931void
2517{ 2933{
2518 if (expect_false (ev_is_active (w))) 2934 if (expect_false (ev_is_active (w)))
2519 return; 2935 return;
2520 2936
2521 evpipe_init (EV_A); 2937 evpipe_init (EV_A);
2938
2939 EV_FREQUENT_CHECK;
2522 2940
2523 ev_start (EV_A_ (W)w, ++asynccnt); 2941 ev_start (EV_A_ (W)w, ++asynccnt);
2524 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2942 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2525 asyncs [asynccnt - 1] = w; 2943 asyncs [asynccnt - 1] = w;
2944
2945 EV_FREQUENT_CHECK;
2526} 2946}
2527 2947
2528void 2948void
2529ev_async_stop (EV_P_ ev_async *w) 2949ev_async_stop (EV_P_ ev_async *w)
2530{ 2950{
2531 clear_pending (EV_A_ (W)w); 2951 clear_pending (EV_A_ (W)w);
2532 if (expect_false (!ev_is_active (w))) 2952 if (expect_false (!ev_is_active (w)))
2533 return; 2953 return;
2534 2954
2955 EV_FREQUENT_CHECK;
2956
2535 { 2957 {
2536 int active = ((W)w)->active; 2958 int active = ev_active (w);
2959
2537 asyncs [active - 1] = asyncs [--asynccnt]; 2960 asyncs [active - 1] = asyncs [--asynccnt];
2538 ((W)asyncs [active - 1])->active = active; 2961 ev_active (asyncs [active - 1]) = active;
2539 } 2962 }
2540 2963
2541 ev_stop (EV_A_ (W)w); 2964 ev_stop (EV_A_ (W)w);
2965
2966 EV_FREQUENT_CHECK;
2542} 2967}
2543 2968
2544void 2969void
2545ev_async_send (EV_P_ ev_async *w) 2970ev_async_send (EV_P_ ev_async *w)
2546{ 2971{
2563once_cb (EV_P_ struct ev_once *once, int revents) 2988once_cb (EV_P_ struct ev_once *once, int revents)
2564{ 2989{
2565 void (*cb)(int revents, void *arg) = once->cb; 2990 void (*cb)(int revents, void *arg) = once->cb;
2566 void *arg = once->arg; 2991 void *arg = once->arg;
2567 2992
2568 ev_io_stop (EV_A_ &once->io); 2993 ev_io_stop (EV_A_ &once->io);
2569 ev_timer_stop (EV_A_ &once->to); 2994 ev_timer_stop (EV_A_ &once->to);
2570 ev_free (once); 2995 ev_free (once);
2571 2996
2572 cb (revents, arg); 2997 cb (revents, arg);
2573} 2998}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines