ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.224 by root, Wed Apr 9 22:07:50 2008 UTC vs.
Revision 1.260 by root, Mon Sep 8 17:24:39 2008 UTC

126# define EV_USE_EVENTFD 1 126# define EV_USE_EVENTFD 1
127# else 127# else
128# define EV_USE_EVENTFD 0 128# define EV_USE_EVENTFD 0
129# endif 129# endif
130# endif 130# endif
131 131
132#endif 132#endif
133 133
134#include <math.h> 134#include <math.h>
135#include <stdlib.h> 135#include <stdlib.h>
136#include <fcntl.h> 136#include <fcntl.h>
154#ifndef _WIN32 154#ifndef _WIN32
155# include <sys/time.h> 155# include <sys/time.h>
156# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h> 157# include <unistd.h>
158#else 158#else
159# include <io.h>
159# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 161# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
163# endif 164# endif
164#endif 165#endif
165 166
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
167 168
168#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
169# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
170#endif 175#endif
171 176
172#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
174#endif 179#endif
175 180
176#ifndef EV_USE_NANOSLEEP 181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
177# define EV_USE_NANOSLEEP 0 185# define EV_USE_NANOSLEEP 0
186# endif
178#endif 187#endif
179 188
180#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
182#endif 191#endif
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 243# define EV_USE_EVENTFD 1
235# else 244# else
236# define EV_USE_EVENTFD 0 245# define EV_USE_EVENTFD 0
237# endif 246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
238#endif 265#endif
239 266
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 268
242#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
279} 306}
280# endif 307# endif
281#endif 308#endif
282 309
283/**/ 310/**/
311
312#if EV_VERIFY >= 3
313# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
314#else
315# define EV_FREQUENT_CHECK do { } while (0)
316#endif
284 317
285/* 318/*
286 * This is used to avoid floating point rounding problems. 319 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 320 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 321 * to ensure progress, time-wise, even when rounding
325 358
326typedef ev_watcher *W; 359typedef ev_watcher *W;
327typedef ev_watcher_list *WL; 360typedef ev_watcher_list *WL;
328typedef ev_watcher_time *WT; 361typedef ev_watcher_time *WT;
329 362
363#define ev_active(w) ((W)(w))->active
364#define ev_at(w) ((WT)(w))->at
365
330#if EV_USE_MONOTONIC 366#if EV_USE_MONOTONIC
331/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 367/* sig_atomic_t is used to avoid per-thread variables or locking but still */
332/* giving it a reasonably high chance of working on typical architetcures */ 368/* giving it a reasonably high chance of working on typical architetcures */
333static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 369static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
334#endif 370#endif
419 W w; 455 W w;
420 int events; 456 int events;
421} ANPENDING; 457} ANPENDING;
422 458
423#if EV_USE_INOTIFY 459#if EV_USE_INOTIFY
460/* hash table entry per inotify-id */
424typedef struct 461typedef struct
425{ 462{
426 WL head; 463 WL head;
427} ANFS; 464} ANFS;
465#endif
466
467/* Heap Entry */
468#if EV_HEAP_CACHE_AT
469 typedef struct {
470 ev_tstamp at;
471 WT w;
472 } ANHE;
473
474 #define ANHE_w(he) (he).w /* access watcher, read-write */
475 #define ANHE_at(he) (he).at /* access cached at, read-only */
476 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
477#else
478 typedef WT ANHE;
479
480 #define ANHE_w(he) (he)
481 #define ANHE_at(he) (he)->at
482 #define ANHE_at_cache(he)
428#endif 483#endif
429 484
430#if EV_MULTIPLICITY 485#if EV_MULTIPLICITY
431 486
432 struct ev_loop 487 struct ev_loop
510 struct timeval tv; 565 struct timeval tv;
511 566
512 tv.tv_sec = (time_t)delay; 567 tv.tv_sec = (time_t)delay;
513 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 568 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
514 569
570 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
571 /* somehting nto guaranteed by newer posix versions, but guaranteed */
572 /* by older ones */
515 select (0, 0, 0, 0, &tv); 573 select (0, 0, 0, 0, &tv);
516#endif 574#endif
517 } 575 }
518} 576}
519 577
520/*****************************************************************************/ 578/*****************************************************************************/
579
580#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
521 581
522int inline_size 582int inline_size
523array_nextsize (int elem, int cur, int cnt) 583array_nextsize (int elem, int cur, int cnt)
524{ 584{
525 int ncur = cur + 1; 585 int ncur = cur + 1;
526 586
527 do 587 do
528 ncur <<= 1; 588 ncur <<= 1;
529 while (cnt > ncur); 589 while (cnt > ncur);
530 590
531 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 591 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
532 if (elem * ncur > 4096) 592 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
533 { 593 {
534 ncur *= elem; 594 ncur *= elem;
535 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 595 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
536 ncur = ncur - sizeof (void *) * 4; 596 ncur = ncur - sizeof (void *) * 4;
537 ncur /= elem; 597 ncur /= elem;
538 } 598 }
539 599
540 return ncur; 600 return ncur;
651 events |= (unsigned char)w->events; 711 events |= (unsigned char)w->events;
652 712
653#if EV_SELECT_IS_WINSOCKET 713#if EV_SELECT_IS_WINSOCKET
654 if (events) 714 if (events)
655 { 715 {
656 unsigned long argp; 716 unsigned long arg;
657 #ifdef EV_FD_TO_WIN32_HANDLE 717 #ifdef EV_FD_TO_WIN32_HANDLE
658 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 718 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
659 #else 719 #else
660 anfd->handle = _get_osfhandle (fd); 720 anfd->handle = _get_osfhandle (fd);
661 #endif 721 #endif
662 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 722 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
663 } 723 }
664#endif 724#endif
665 725
666 { 726 {
667 unsigned char o_events = anfd->events; 727 unsigned char o_events = anfd->events;
720{ 780{
721 int fd; 781 int fd;
722 782
723 for (fd = 0; fd < anfdmax; ++fd) 783 for (fd = 0; fd < anfdmax; ++fd)
724 if (anfds [fd].events) 784 if (anfds [fd].events)
725 if (!fd_valid (fd) == -1 && errno == EBADF) 785 if (!fd_valid (fd) && errno == EBADF)
726 fd_kill (EV_A_ fd); 786 fd_kill (EV_A_ fd);
727} 787}
728 788
729/* called on ENOMEM in select/poll to kill some fds and retry */ 789/* called on ENOMEM in select/poll to kill some fds and retry */
730static void noinline 790static void noinline
754 } 814 }
755} 815}
756 816
757/*****************************************************************************/ 817/*****************************************************************************/
758 818
819/*
820 * the heap functions want a real array index. array index 0 uis guaranteed to not
821 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
822 * the branching factor of the d-tree.
823 */
824
825/*
826 * at the moment we allow libev the luxury of two heaps,
827 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
828 * which is more cache-efficient.
829 * the difference is about 5% with 50000+ watchers.
830 */
831#if EV_USE_4HEAP
832
833#define DHEAP 4
834#define HEAP0 (DHEAP - 1) /* index of first element in heap */
835#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
836#define UPHEAP_DONE(p,k) ((p) == (k))
837
838/* away from the root */
759void inline_speed 839void inline_speed
760upheap (WT *heap, int k) 840downheap (ANHE *heap, int N, int k)
761{ 841{
762 WT w = heap [k]; 842 ANHE he = heap [k];
843 ANHE *E = heap + N + HEAP0;
763 844
764 while (k) 845 for (;;)
765 { 846 {
766 int p = (k - 1) >> 1; 847 ev_tstamp minat;
848 ANHE *minpos;
849 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
767 850
768 if (heap [p]->at <= w->at) 851 /* find minimum child */
852 if (expect_true (pos + DHEAP - 1 < E))
853 {
854 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
855 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
856 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
857 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
858 }
859 else if (pos < E)
860 {
861 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
862 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
863 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
864 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
865 }
866 else
769 break; 867 break;
770 868
869 if (ANHE_at (he) <= minat)
870 break;
871
872 heap [k] = *minpos;
873 ev_active (ANHE_w (*minpos)) = k;
874
875 k = minpos - heap;
876 }
877
878 heap [k] = he;
879 ev_active (ANHE_w (he)) = k;
880}
881
882#else /* 4HEAP */
883
884#define HEAP0 1
885#define HPARENT(k) ((k) >> 1)
886#define UPHEAP_DONE(p,k) (!(p))
887
888/* away from the root */
889void inline_speed
890downheap (ANHE *heap, int N, int k)
891{
892 ANHE he = heap [k];
893
894 for (;;)
895 {
896 int c = k << 1;
897
898 if (c > N + HEAP0 - 1)
899 break;
900
901 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
902 ? 1 : 0;
903
904 if (ANHE_at (he) <= ANHE_at (heap [c]))
905 break;
906
907 heap [k] = heap [c];
908 ev_active (ANHE_w (heap [k])) = k;
909
910 k = c;
911 }
912
913 heap [k] = he;
914 ev_active (ANHE_w (he)) = k;
915}
916#endif
917
918/* towards the root */
919void inline_speed
920upheap (ANHE *heap, int k)
921{
922 ANHE he = heap [k];
923
924 for (;;)
925 {
926 int p = HPARENT (k);
927
928 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
929 break;
930
771 heap [k] = heap [p]; 931 heap [k] = heap [p];
772 ((W)heap [k])->active = k + 1; 932 ev_active (ANHE_w (heap [k])) = k;
773 k = p; 933 k = p;
774 } 934 }
775 935
776 heap [k] = w; 936 heap [k] = he;
777 ((W)heap [k])->active = k + 1; 937 ev_active (ANHE_w (he)) = k;
778}
779
780void inline_speed
781downheap (WT *heap, int N, int k)
782{
783 WT w = heap [k];
784
785 for (;;)
786 {
787 int c = (k << 1) + 1;
788
789 if (c >= N)
790 break;
791
792 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
793 ? 1 : 0;
794
795 if (w->at <= heap [c]->at)
796 break;
797
798 heap [k] = heap [c];
799 ((W)heap [k])->active = k + 1;
800
801 k = c;
802 }
803
804 heap [k] = w;
805 ((W)heap [k])->active = k + 1;
806} 938}
807 939
808void inline_size 940void inline_size
809adjustheap (WT *heap, int N, int k) 941adjustheap (ANHE *heap, int N, int k)
810{ 942{
943 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
811 upheap (heap, k); 944 upheap (heap, k);
945 else
812 downheap (heap, N, k); 946 downheap (heap, N, k);
947}
948
949/* rebuild the heap: this function is used only once and executed rarely */
950void inline_size
951reheap (ANHE *heap, int N)
952{
953 int i;
954
955 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
956 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
957 for (i = 0; i < N; ++i)
958 upheap (heap, i + HEAP0);
813} 959}
814 960
815/*****************************************************************************/ 961/*****************************************************************************/
816 962
817typedef struct 963typedef struct
841 987
842void inline_speed 988void inline_speed
843fd_intern (int fd) 989fd_intern (int fd)
844{ 990{
845#ifdef _WIN32 991#ifdef _WIN32
846 int arg = 1; 992 unsigned long arg = 1;
847 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 993 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
848#else 994#else
849 fcntl (fd, F_SETFD, FD_CLOEXEC); 995 fcntl (fd, F_SETFD, FD_CLOEXEC);
850 fcntl (fd, F_SETFL, O_NONBLOCK); 996 fcntl (fd, F_SETFL, O_NONBLOCK);
851#endif 997#endif
906pipecb (EV_P_ ev_io *iow, int revents) 1052pipecb (EV_P_ ev_io *iow, int revents)
907{ 1053{
908#if EV_USE_EVENTFD 1054#if EV_USE_EVENTFD
909 if (evfd >= 0) 1055 if (evfd >= 0)
910 { 1056 {
911 uint64_t counter = 1; 1057 uint64_t counter;
912 read (evfd, &counter, sizeof (uint64_t)); 1058 read (evfd, &counter, sizeof (uint64_t));
913 } 1059 }
914 else 1060 else
915#endif 1061#endif
916 { 1062 {
1185 if (!(flags & EVFLAG_NOENV) 1331 if (!(flags & EVFLAG_NOENV)
1186 && !enable_secure () 1332 && !enable_secure ()
1187 && getenv ("LIBEV_FLAGS")) 1333 && getenv ("LIBEV_FLAGS"))
1188 flags = atoi (getenv ("LIBEV_FLAGS")); 1334 flags = atoi (getenv ("LIBEV_FLAGS"));
1189 1335
1190 if (!(flags & 0x0000ffffUL)) 1336 if (!(flags & 0x0000ffffU))
1191 flags |= ev_recommended_backends (); 1337 flags |= ev_recommended_backends ();
1192 1338
1193#if EV_USE_PORT 1339#if EV_USE_PORT
1194 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1340 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1195#endif 1341#endif
1283#endif 1429#endif
1284 1430
1285 backend = 0; 1431 backend = 0;
1286} 1432}
1287 1433
1434#if EV_USE_INOTIFY
1288void inline_size infy_fork (EV_P); 1435void inline_size infy_fork (EV_P);
1436#endif
1289 1437
1290void inline_size 1438void inline_size
1291loop_fork (EV_P) 1439loop_fork (EV_P)
1292{ 1440{
1293#if EV_USE_PORT 1441#if EV_USE_PORT
1333 1481
1334 postfork = 0; 1482 postfork = 0;
1335} 1483}
1336 1484
1337#if EV_MULTIPLICITY 1485#if EV_MULTIPLICITY
1486
1338struct ev_loop * 1487struct ev_loop *
1339ev_loop_new (unsigned int flags) 1488ev_loop_new (unsigned int flags)
1340{ 1489{
1341 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1490 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1342 1491
1361ev_loop_fork (EV_P) 1510ev_loop_fork (EV_P)
1362{ 1511{
1363 postfork = 1; /* must be in line with ev_default_fork */ 1512 postfork = 1; /* must be in line with ev_default_fork */
1364} 1513}
1365 1514
1515#if EV_VERIFY
1516static void noinline
1517verify_watcher (EV_P_ W w)
1518{
1519 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1520
1521 if (w->pending)
1522 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1523}
1524
1525static void noinline
1526verify_heap (EV_P_ ANHE *heap, int N)
1527{
1528 int i;
1529
1530 for (i = HEAP0; i < N + HEAP0; ++i)
1531 {
1532 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1533 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1534 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1535
1536 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1537 }
1538}
1539
1540static void noinline
1541array_verify (EV_P_ W *ws, int cnt)
1542{
1543 while (cnt--)
1544 {
1545 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1546 verify_watcher (EV_A_ ws [cnt]);
1547 }
1548}
1549#endif
1550
1551void
1552ev_loop_verify (EV_P)
1553{
1554#if EV_VERIFY
1555 int i;
1556 WL w;
1557
1558 assert (activecnt >= -1);
1559
1560 assert (fdchangemax >= fdchangecnt);
1561 for (i = 0; i < fdchangecnt; ++i)
1562 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1563
1564 assert (anfdmax >= 0);
1565 for (i = 0; i < anfdmax; ++i)
1566 for (w = anfds [i].head; w; w = w->next)
1567 {
1568 verify_watcher (EV_A_ (W)w);
1569 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1570 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1571 }
1572
1573 assert (timermax >= timercnt);
1574 verify_heap (EV_A_ timers, timercnt);
1575
1576#if EV_PERIODIC_ENABLE
1577 assert (periodicmax >= periodiccnt);
1578 verify_heap (EV_A_ periodics, periodiccnt);
1579#endif
1580
1581 for (i = NUMPRI; i--; )
1582 {
1583 assert (pendingmax [i] >= pendingcnt [i]);
1584#if EV_IDLE_ENABLE
1585 assert (idleall >= 0);
1586 assert (idlemax [i] >= idlecnt [i]);
1587 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1588#endif
1589 }
1590
1591#if EV_FORK_ENABLE
1592 assert (forkmax >= forkcnt);
1593 array_verify (EV_A_ (W *)forks, forkcnt);
1594#endif
1595
1596#if EV_ASYNC_ENABLE
1597 assert (asyncmax >= asynccnt);
1598 array_verify (EV_A_ (W *)asyncs, asynccnt);
1599#endif
1600
1601 assert (preparemax >= preparecnt);
1602 array_verify (EV_A_ (W *)prepares, preparecnt);
1603
1604 assert (checkmax >= checkcnt);
1605 array_verify (EV_A_ (W *)checks, checkcnt);
1606
1607# if 0
1608 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1609 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1366#endif 1610# endif
1611#endif
1612}
1613
1614#endif /* multiplicity */
1367 1615
1368#if EV_MULTIPLICITY 1616#if EV_MULTIPLICITY
1369struct ev_loop * 1617struct ev_loop *
1370ev_default_loop_init (unsigned int flags) 1618ev_default_loop_init (unsigned int flags)
1371#else 1619#else
1447 { 1695 {
1448 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1696 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1449 1697
1450 p->w->pending = 0; 1698 p->w->pending = 0;
1451 EV_CB_INVOKE (p->w, p->events); 1699 EV_CB_INVOKE (p->w, p->events);
1700 EV_FREQUENT_CHECK;
1452 } 1701 }
1453 } 1702 }
1454} 1703}
1455
1456void inline_size
1457timers_reify (EV_P)
1458{
1459 while (timercnt && ((WT)timers [0])->at <= mn_now)
1460 {
1461 ev_timer *w = (ev_timer *)timers [0];
1462
1463 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1464
1465 /* first reschedule or stop timer */
1466 if (w->repeat)
1467 {
1468 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1469
1470 ((WT)w)->at += w->repeat;
1471 if (((WT)w)->at < mn_now)
1472 ((WT)w)->at = mn_now;
1473
1474 downheap (timers, timercnt, 0);
1475 }
1476 else
1477 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1478
1479 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1480 }
1481}
1482
1483#if EV_PERIODIC_ENABLE
1484void inline_size
1485periodics_reify (EV_P)
1486{
1487 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1488 {
1489 ev_periodic *w = (ev_periodic *)periodics [0];
1490
1491 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1492
1493 /* first reschedule or stop timer */
1494 if (w->reschedule_cb)
1495 {
1496 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1497 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1498 downheap (periodics, periodiccnt, 0);
1499 }
1500 else if (w->interval)
1501 {
1502 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1503 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1504 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1505 downheap (periodics, periodiccnt, 0);
1506 }
1507 else
1508 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1509
1510 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1511 }
1512}
1513
1514static void noinline
1515periodics_reschedule (EV_P)
1516{
1517 int i;
1518
1519 /* adjust periodics after time jump */
1520 for (i = 0; i < periodiccnt; ++i)
1521 {
1522 ev_periodic *w = (ev_periodic *)periodics [i];
1523
1524 if (w->reschedule_cb)
1525 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1526 else if (w->interval)
1527 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1528 }
1529
1530 /* now rebuild the heap */
1531 for (i = periodiccnt >> 1; i--; )
1532 downheap (periodics, periodiccnt, i);
1533}
1534#endif
1535 1704
1536#if EV_IDLE_ENABLE 1705#if EV_IDLE_ENABLE
1537void inline_size 1706void inline_size
1538idle_reify (EV_P) 1707idle_reify (EV_P)
1539{ 1708{
1551 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1720 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1552 break; 1721 break;
1553 } 1722 }
1554 } 1723 }
1555 } 1724 }
1725}
1726#endif
1727
1728void inline_size
1729timers_reify (EV_P)
1730{
1731 EV_FREQUENT_CHECK;
1732
1733 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1734 {
1735 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1736
1737 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1738
1739 /* first reschedule or stop timer */
1740 if (w->repeat)
1741 {
1742 ev_at (w) += w->repeat;
1743 if (ev_at (w) < mn_now)
1744 ev_at (w) = mn_now;
1745
1746 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1747
1748 ANHE_at_cache (timers [HEAP0]);
1749 downheap (timers, timercnt, HEAP0);
1750 }
1751 else
1752 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1753
1754 EV_FREQUENT_CHECK;
1755 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1756 }
1757}
1758
1759#if EV_PERIODIC_ENABLE
1760void inline_size
1761periodics_reify (EV_P)
1762{
1763 EV_FREQUENT_CHECK;
1764
1765 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1766 {
1767 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1768
1769 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1770
1771 /* first reschedule or stop timer */
1772 if (w->reschedule_cb)
1773 {
1774 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1775
1776 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1777
1778 ANHE_at_cache (periodics [HEAP0]);
1779 downheap (periodics, periodiccnt, HEAP0);
1780 }
1781 else if (w->interval)
1782 {
1783 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1784 /* if next trigger time is not sufficiently in the future, put it there */
1785 /* this might happen because of floating point inexactness */
1786 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1787 {
1788 ev_at (w) += w->interval;
1789
1790 /* if interval is unreasonably low we might still have a time in the past */
1791 /* so correct this. this will make the periodic very inexact, but the user */
1792 /* has effectively asked to get triggered more often than possible */
1793 if (ev_at (w) < ev_rt_now)
1794 ev_at (w) = ev_rt_now;
1795 }
1796
1797 ANHE_at_cache (periodics [HEAP0]);
1798 downheap (periodics, periodiccnt, HEAP0);
1799 }
1800 else
1801 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1802
1803 EV_FREQUENT_CHECK;
1804 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1805 }
1806}
1807
1808static void noinline
1809periodics_reschedule (EV_P)
1810{
1811 int i;
1812
1813 /* adjust periodics after time jump */
1814 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1815 {
1816 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1817
1818 if (w->reschedule_cb)
1819 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1820 else if (w->interval)
1821 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1822
1823 ANHE_at_cache (periodics [i]);
1824 }
1825
1826 reheap (periodics, periodiccnt);
1556} 1827}
1557#endif 1828#endif
1558 1829
1559void inline_speed 1830void inline_speed
1560time_update (EV_P_ ev_tstamp max_block) 1831time_update (EV_P_ ev_tstamp max_block)
1589 */ 1860 */
1590 for (i = 4; --i; ) 1861 for (i = 4; --i; )
1591 { 1862 {
1592 rtmn_diff = ev_rt_now - mn_now; 1863 rtmn_diff = ev_rt_now - mn_now;
1593 1864
1594 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1865 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1595 return; /* all is well */ 1866 return; /* all is well */
1596 1867
1597 ev_rt_now = ev_time (); 1868 ev_rt_now = ev_time ();
1598 mn_now = get_clock (); 1869 mn_now = get_clock ();
1599 now_floor = mn_now; 1870 now_floor = mn_now;
1615#if EV_PERIODIC_ENABLE 1886#if EV_PERIODIC_ENABLE
1616 periodics_reschedule (EV_A); 1887 periodics_reschedule (EV_A);
1617#endif 1888#endif
1618 /* adjust timers. this is easy, as the offset is the same for all of them */ 1889 /* adjust timers. this is easy, as the offset is the same for all of them */
1619 for (i = 0; i < timercnt; ++i) 1890 for (i = 0; i < timercnt; ++i)
1891 {
1892 ANHE *he = timers + i + HEAP0;
1620 ((WT)timers [i])->at += ev_rt_now - mn_now; 1893 ANHE_w (*he)->at += ev_rt_now - mn_now;
1894 ANHE_at_cache (*he);
1895 }
1621 } 1896 }
1622 1897
1623 mn_now = ev_rt_now; 1898 mn_now = ev_rt_now;
1624 } 1899 }
1625} 1900}
1634ev_unref (EV_P) 1909ev_unref (EV_P)
1635{ 1910{
1636 --activecnt; 1911 --activecnt;
1637} 1912}
1638 1913
1914void
1915ev_now_update (EV_P)
1916{
1917 time_update (EV_A_ 1e100);
1918}
1919
1639static int loop_done; 1920static int loop_done;
1640 1921
1641void 1922void
1642ev_loop (EV_P_ int flags) 1923ev_loop (EV_P_ int flags)
1643{ 1924{
1645 1926
1646 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1927 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1647 1928
1648 do 1929 do
1649 { 1930 {
1931#if EV_VERIFY >= 2
1932 ev_loop_verify (EV_A);
1933#endif
1934
1650#ifndef _WIN32 1935#ifndef _WIN32
1651 if (expect_false (curpid)) /* penalise the forking check even more */ 1936 if (expect_false (curpid)) /* penalise the forking check even more */
1652 if (expect_false (getpid () != curpid)) 1937 if (expect_false (getpid () != curpid))
1653 { 1938 {
1654 curpid = getpid (); 1939 curpid = getpid ();
1695 1980
1696 waittime = MAX_BLOCKTIME; 1981 waittime = MAX_BLOCKTIME;
1697 1982
1698 if (timercnt) 1983 if (timercnt)
1699 { 1984 {
1700 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1985 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1701 if (waittime > to) waittime = to; 1986 if (waittime > to) waittime = to;
1702 } 1987 }
1703 1988
1704#if EV_PERIODIC_ENABLE 1989#if EV_PERIODIC_ENABLE
1705 if (periodiccnt) 1990 if (periodiccnt)
1706 { 1991 {
1707 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1992 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1708 if (waittime > to) waittime = to; 1993 if (waittime > to) waittime = to;
1709 } 1994 }
1710#endif 1995#endif
1711 1996
1712 if (expect_false (waittime < timeout_blocktime)) 1997 if (expect_false (waittime < timeout_blocktime))
1849 if (expect_false (ev_is_active (w))) 2134 if (expect_false (ev_is_active (w)))
1850 return; 2135 return;
1851 2136
1852 assert (("ev_io_start called with negative fd", fd >= 0)); 2137 assert (("ev_io_start called with negative fd", fd >= 0));
1853 2138
2139 EV_FREQUENT_CHECK;
2140
1854 ev_start (EV_A_ (W)w, 1); 2141 ev_start (EV_A_ (W)w, 1);
1855 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2142 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1856 wlist_add (&anfds[fd].head, (WL)w); 2143 wlist_add (&anfds[fd].head, (WL)w);
1857 2144
1858 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2145 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1859 w->events &= ~EV_IOFDSET; 2146 w->events &= ~EV_IOFDSET;
2147
2148 EV_FREQUENT_CHECK;
1860} 2149}
1861 2150
1862void noinline 2151void noinline
1863ev_io_stop (EV_P_ ev_io *w) 2152ev_io_stop (EV_P_ ev_io *w)
1864{ 2153{
1865 clear_pending (EV_A_ (W)w); 2154 clear_pending (EV_A_ (W)w);
1866 if (expect_false (!ev_is_active (w))) 2155 if (expect_false (!ev_is_active (w)))
1867 return; 2156 return;
1868 2157
1869 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2158 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2159
2160 EV_FREQUENT_CHECK;
1870 2161
1871 wlist_del (&anfds[w->fd].head, (WL)w); 2162 wlist_del (&anfds[w->fd].head, (WL)w);
1872 ev_stop (EV_A_ (W)w); 2163 ev_stop (EV_A_ (W)w);
1873 2164
1874 fd_change (EV_A_ w->fd, 1); 2165 fd_change (EV_A_ w->fd, 1);
2166
2167 EV_FREQUENT_CHECK;
1875} 2168}
1876 2169
1877void noinline 2170void noinline
1878ev_timer_start (EV_P_ ev_timer *w) 2171ev_timer_start (EV_P_ ev_timer *w)
1879{ 2172{
1880 if (expect_false (ev_is_active (w))) 2173 if (expect_false (ev_is_active (w)))
1881 return; 2174 return;
1882 2175
1883 ((WT)w)->at += mn_now; 2176 ev_at (w) += mn_now;
1884 2177
1885 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2178 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1886 2179
2180 EV_FREQUENT_CHECK;
2181
2182 ++timercnt;
1887 ev_start (EV_A_ (W)w, ++timercnt); 2183 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1888 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2184 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1889 timers [timercnt - 1] = (WT)w; 2185 ANHE_w (timers [ev_active (w)]) = (WT)w;
1890 upheap (timers, timercnt - 1); 2186 ANHE_at_cache (timers [ev_active (w)]);
2187 upheap (timers, ev_active (w));
1891 2188
2189 EV_FREQUENT_CHECK;
2190
1892 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2191 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1893} 2192}
1894 2193
1895void noinline 2194void noinline
1896ev_timer_stop (EV_P_ ev_timer *w) 2195ev_timer_stop (EV_P_ ev_timer *w)
1897{ 2196{
1898 clear_pending (EV_A_ (W)w); 2197 clear_pending (EV_A_ (W)w);
1899 if (expect_false (!ev_is_active (w))) 2198 if (expect_false (!ev_is_active (w)))
1900 return; 2199 return;
1901 2200
1902 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2201 EV_FREQUENT_CHECK;
1903 2202
1904 { 2203 {
1905 int active = ((W)w)->active; 2204 int active = ev_active (w);
1906 2205
2206 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2207
2208 --timercnt;
2209
1907 if (expect_true (--active < --timercnt)) 2210 if (expect_true (active < timercnt + HEAP0))
1908 { 2211 {
1909 timers [active] = timers [timercnt]; 2212 timers [active] = timers [timercnt + HEAP0];
1910 adjustheap (timers, timercnt, active); 2213 adjustheap (timers, timercnt, active);
1911 } 2214 }
1912 } 2215 }
1913 2216
1914 ((WT)w)->at -= mn_now; 2217 EV_FREQUENT_CHECK;
2218
2219 ev_at (w) -= mn_now;
1915 2220
1916 ev_stop (EV_A_ (W)w); 2221 ev_stop (EV_A_ (W)w);
1917} 2222}
1918 2223
1919void noinline 2224void noinline
1920ev_timer_again (EV_P_ ev_timer *w) 2225ev_timer_again (EV_P_ ev_timer *w)
1921{ 2226{
2227 EV_FREQUENT_CHECK;
2228
1922 if (ev_is_active (w)) 2229 if (ev_is_active (w))
1923 { 2230 {
1924 if (w->repeat) 2231 if (w->repeat)
1925 { 2232 {
1926 ((WT)w)->at = mn_now + w->repeat; 2233 ev_at (w) = mn_now + w->repeat;
2234 ANHE_at_cache (timers [ev_active (w)]);
1927 adjustheap (timers, timercnt, ((W)w)->active - 1); 2235 adjustheap (timers, timercnt, ev_active (w));
1928 } 2236 }
1929 else 2237 else
1930 ev_timer_stop (EV_A_ w); 2238 ev_timer_stop (EV_A_ w);
1931 } 2239 }
1932 else if (w->repeat) 2240 else if (w->repeat)
1933 { 2241 {
1934 w->at = w->repeat; 2242 ev_at (w) = w->repeat;
1935 ev_timer_start (EV_A_ w); 2243 ev_timer_start (EV_A_ w);
1936 } 2244 }
2245
2246 EV_FREQUENT_CHECK;
1937} 2247}
1938 2248
1939#if EV_PERIODIC_ENABLE 2249#if EV_PERIODIC_ENABLE
1940void noinline 2250void noinline
1941ev_periodic_start (EV_P_ ev_periodic *w) 2251ev_periodic_start (EV_P_ ev_periodic *w)
1942{ 2252{
1943 if (expect_false (ev_is_active (w))) 2253 if (expect_false (ev_is_active (w)))
1944 return; 2254 return;
1945 2255
1946 if (w->reschedule_cb) 2256 if (w->reschedule_cb)
1947 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2257 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1948 else if (w->interval) 2258 else if (w->interval)
1949 { 2259 {
1950 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2260 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1951 /* this formula differs from the one in periodic_reify because we do not always round up */ 2261 /* this formula differs from the one in periodic_reify because we do not always round up */
1952 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2262 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1953 } 2263 }
1954 else 2264 else
1955 ((WT)w)->at = w->offset; 2265 ev_at (w) = w->offset;
1956 2266
2267 EV_FREQUENT_CHECK;
2268
2269 ++periodiccnt;
1957 ev_start (EV_A_ (W)w, ++periodiccnt); 2270 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1958 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2271 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1959 periodics [periodiccnt - 1] = (WT)w; 2272 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1960 upheap (periodics, periodiccnt - 1); 2273 ANHE_at_cache (periodics [ev_active (w)]);
2274 upheap (periodics, ev_active (w));
1961 2275
2276 EV_FREQUENT_CHECK;
2277
1962 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2278 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1963} 2279}
1964 2280
1965void noinline 2281void noinline
1966ev_periodic_stop (EV_P_ ev_periodic *w) 2282ev_periodic_stop (EV_P_ ev_periodic *w)
1967{ 2283{
1968 clear_pending (EV_A_ (W)w); 2284 clear_pending (EV_A_ (W)w);
1969 if (expect_false (!ev_is_active (w))) 2285 if (expect_false (!ev_is_active (w)))
1970 return; 2286 return;
1971 2287
1972 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2288 EV_FREQUENT_CHECK;
1973 2289
1974 { 2290 {
1975 int active = ((W)w)->active; 2291 int active = ev_active (w);
1976 2292
2293 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2294
2295 --periodiccnt;
2296
1977 if (expect_true (--active < --periodiccnt)) 2297 if (expect_true (active < periodiccnt + HEAP0))
1978 { 2298 {
1979 periodics [active] = periodics [periodiccnt]; 2299 periodics [active] = periodics [periodiccnt + HEAP0];
1980 adjustheap (periodics, periodiccnt, active); 2300 adjustheap (periodics, periodiccnt, active);
1981 } 2301 }
1982 } 2302 }
1983 2303
2304 EV_FREQUENT_CHECK;
2305
1984 ev_stop (EV_A_ (W)w); 2306 ev_stop (EV_A_ (W)w);
1985} 2307}
1986 2308
1987void noinline 2309void noinline
1988ev_periodic_again (EV_P_ ev_periodic *w) 2310ev_periodic_again (EV_P_ ev_periodic *w)
2007 return; 2329 return;
2008 2330
2009 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2331 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2010 2332
2011 evpipe_init (EV_A); 2333 evpipe_init (EV_A);
2334
2335 EV_FREQUENT_CHECK;
2012 2336
2013 { 2337 {
2014#ifndef _WIN32 2338#ifndef _WIN32
2015 sigset_t full, prev; 2339 sigset_t full, prev;
2016 sigfillset (&full); 2340 sigfillset (&full);
2037 sigfillset (&sa.sa_mask); 2361 sigfillset (&sa.sa_mask);
2038 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2362 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2039 sigaction (w->signum, &sa, 0); 2363 sigaction (w->signum, &sa, 0);
2040#endif 2364#endif
2041 } 2365 }
2366
2367 EV_FREQUENT_CHECK;
2042} 2368}
2043 2369
2044void noinline 2370void noinline
2045ev_signal_stop (EV_P_ ev_signal *w) 2371ev_signal_stop (EV_P_ ev_signal *w)
2046{ 2372{
2047 clear_pending (EV_A_ (W)w); 2373 clear_pending (EV_A_ (W)w);
2048 if (expect_false (!ev_is_active (w))) 2374 if (expect_false (!ev_is_active (w)))
2049 return; 2375 return;
2050 2376
2377 EV_FREQUENT_CHECK;
2378
2051 wlist_del (&signals [w->signum - 1].head, (WL)w); 2379 wlist_del (&signals [w->signum - 1].head, (WL)w);
2052 ev_stop (EV_A_ (W)w); 2380 ev_stop (EV_A_ (W)w);
2053 2381
2054 if (!signals [w->signum - 1].head) 2382 if (!signals [w->signum - 1].head)
2055 signal (w->signum, SIG_DFL); 2383 signal (w->signum, SIG_DFL);
2384
2385 EV_FREQUENT_CHECK;
2056} 2386}
2057 2387
2058void 2388void
2059ev_child_start (EV_P_ ev_child *w) 2389ev_child_start (EV_P_ ev_child *w)
2060{ 2390{
2062 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2392 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2063#endif 2393#endif
2064 if (expect_false (ev_is_active (w))) 2394 if (expect_false (ev_is_active (w)))
2065 return; 2395 return;
2066 2396
2397 EV_FREQUENT_CHECK;
2398
2067 ev_start (EV_A_ (W)w, 1); 2399 ev_start (EV_A_ (W)w, 1);
2068 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2400 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2401
2402 EV_FREQUENT_CHECK;
2069} 2403}
2070 2404
2071void 2405void
2072ev_child_stop (EV_P_ ev_child *w) 2406ev_child_stop (EV_P_ ev_child *w)
2073{ 2407{
2074 clear_pending (EV_A_ (W)w); 2408 clear_pending (EV_A_ (W)w);
2075 if (expect_false (!ev_is_active (w))) 2409 if (expect_false (!ev_is_active (w)))
2076 return; 2410 return;
2077 2411
2412 EV_FREQUENT_CHECK;
2413
2078 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2414 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2079 ev_stop (EV_A_ (W)w); 2415 ev_stop (EV_A_ (W)w);
2416
2417 EV_FREQUENT_CHECK;
2080} 2418}
2081 2419
2082#if EV_STAT_ENABLE 2420#if EV_STAT_ENABLE
2083 2421
2084# ifdef _WIN32 2422# ifdef _WIN32
2102 if (w->wd < 0) 2440 if (w->wd < 0)
2103 { 2441 {
2104 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2442 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2105 2443
2106 /* monitor some parent directory for speedup hints */ 2444 /* monitor some parent directory for speedup hints */
2445 /* note that exceeding the hardcoded limit is not a correctness issue, */
2446 /* but an efficiency issue only */
2107 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2447 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2108 { 2448 {
2109 char path [4096]; 2449 char path [4096];
2110 strcpy (path, w->path); 2450 strcpy (path, w->path);
2111 2451
2237 } 2577 }
2238 2578
2239 } 2579 }
2240} 2580}
2241 2581
2582#endif
2583
2584#ifdef _WIN32
2585# define EV_LSTAT(p,b) _stati64 (p, b)
2586#else
2587# define EV_LSTAT(p,b) lstat (p, b)
2242#endif 2588#endif
2243 2589
2244void 2590void
2245ev_stat_stat (EV_P_ ev_stat *w) 2591ev_stat_stat (EV_P_ ev_stat *w)
2246{ 2592{
2310 else 2656 else
2311#endif 2657#endif
2312 ev_timer_start (EV_A_ &w->timer); 2658 ev_timer_start (EV_A_ &w->timer);
2313 2659
2314 ev_start (EV_A_ (W)w, 1); 2660 ev_start (EV_A_ (W)w, 1);
2661
2662 EV_FREQUENT_CHECK;
2315} 2663}
2316 2664
2317void 2665void
2318ev_stat_stop (EV_P_ ev_stat *w) 2666ev_stat_stop (EV_P_ ev_stat *w)
2319{ 2667{
2320 clear_pending (EV_A_ (W)w); 2668 clear_pending (EV_A_ (W)w);
2321 if (expect_false (!ev_is_active (w))) 2669 if (expect_false (!ev_is_active (w)))
2322 return; 2670 return;
2323 2671
2672 EV_FREQUENT_CHECK;
2673
2324#if EV_USE_INOTIFY 2674#if EV_USE_INOTIFY
2325 infy_del (EV_A_ w); 2675 infy_del (EV_A_ w);
2326#endif 2676#endif
2327 ev_timer_stop (EV_A_ &w->timer); 2677 ev_timer_stop (EV_A_ &w->timer);
2328 2678
2329 ev_stop (EV_A_ (W)w); 2679 ev_stop (EV_A_ (W)w);
2680
2681 EV_FREQUENT_CHECK;
2330} 2682}
2331#endif 2683#endif
2332 2684
2333#if EV_IDLE_ENABLE 2685#if EV_IDLE_ENABLE
2334void 2686void
2336{ 2688{
2337 if (expect_false (ev_is_active (w))) 2689 if (expect_false (ev_is_active (w)))
2338 return; 2690 return;
2339 2691
2340 pri_adjust (EV_A_ (W)w); 2692 pri_adjust (EV_A_ (W)w);
2693
2694 EV_FREQUENT_CHECK;
2341 2695
2342 { 2696 {
2343 int active = ++idlecnt [ABSPRI (w)]; 2697 int active = ++idlecnt [ABSPRI (w)];
2344 2698
2345 ++idleall; 2699 ++idleall;
2346 ev_start (EV_A_ (W)w, active); 2700 ev_start (EV_A_ (W)w, active);
2347 2701
2348 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2702 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2349 idles [ABSPRI (w)][active - 1] = w; 2703 idles [ABSPRI (w)][active - 1] = w;
2350 } 2704 }
2705
2706 EV_FREQUENT_CHECK;
2351} 2707}
2352 2708
2353void 2709void
2354ev_idle_stop (EV_P_ ev_idle *w) 2710ev_idle_stop (EV_P_ ev_idle *w)
2355{ 2711{
2356 clear_pending (EV_A_ (W)w); 2712 clear_pending (EV_A_ (W)w);
2357 if (expect_false (!ev_is_active (w))) 2713 if (expect_false (!ev_is_active (w)))
2358 return; 2714 return;
2359 2715
2716 EV_FREQUENT_CHECK;
2717
2360 { 2718 {
2361 int active = ((W)w)->active; 2719 int active = ev_active (w);
2362 2720
2363 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2721 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2364 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2722 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2365 2723
2366 ev_stop (EV_A_ (W)w); 2724 ev_stop (EV_A_ (W)w);
2367 --idleall; 2725 --idleall;
2368 } 2726 }
2727
2728 EV_FREQUENT_CHECK;
2369} 2729}
2370#endif 2730#endif
2371 2731
2372void 2732void
2373ev_prepare_start (EV_P_ ev_prepare *w) 2733ev_prepare_start (EV_P_ ev_prepare *w)
2374{ 2734{
2375 if (expect_false (ev_is_active (w))) 2735 if (expect_false (ev_is_active (w)))
2376 return; 2736 return;
2737
2738 EV_FREQUENT_CHECK;
2377 2739
2378 ev_start (EV_A_ (W)w, ++preparecnt); 2740 ev_start (EV_A_ (W)w, ++preparecnt);
2379 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2741 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2380 prepares [preparecnt - 1] = w; 2742 prepares [preparecnt - 1] = w;
2743
2744 EV_FREQUENT_CHECK;
2381} 2745}
2382 2746
2383void 2747void
2384ev_prepare_stop (EV_P_ ev_prepare *w) 2748ev_prepare_stop (EV_P_ ev_prepare *w)
2385{ 2749{
2386 clear_pending (EV_A_ (W)w); 2750 clear_pending (EV_A_ (W)w);
2387 if (expect_false (!ev_is_active (w))) 2751 if (expect_false (!ev_is_active (w)))
2388 return; 2752 return;
2389 2753
2754 EV_FREQUENT_CHECK;
2755
2390 { 2756 {
2391 int active = ((W)w)->active; 2757 int active = ev_active (w);
2758
2392 prepares [active - 1] = prepares [--preparecnt]; 2759 prepares [active - 1] = prepares [--preparecnt];
2393 ((W)prepares [active - 1])->active = active; 2760 ev_active (prepares [active - 1]) = active;
2394 } 2761 }
2395 2762
2396 ev_stop (EV_A_ (W)w); 2763 ev_stop (EV_A_ (W)w);
2764
2765 EV_FREQUENT_CHECK;
2397} 2766}
2398 2767
2399void 2768void
2400ev_check_start (EV_P_ ev_check *w) 2769ev_check_start (EV_P_ ev_check *w)
2401{ 2770{
2402 if (expect_false (ev_is_active (w))) 2771 if (expect_false (ev_is_active (w)))
2403 return; 2772 return;
2773
2774 EV_FREQUENT_CHECK;
2404 2775
2405 ev_start (EV_A_ (W)w, ++checkcnt); 2776 ev_start (EV_A_ (W)w, ++checkcnt);
2406 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2777 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2407 checks [checkcnt - 1] = w; 2778 checks [checkcnt - 1] = w;
2779
2780 EV_FREQUENT_CHECK;
2408} 2781}
2409 2782
2410void 2783void
2411ev_check_stop (EV_P_ ev_check *w) 2784ev_check_stop (EV_P_ ev_check *w)
2412{ 2785{
2413 clear_pending (EV_A_ (W)w); 2786 clear_pending (EV_A_ (W)w);
2414 if (expect_false (!ev_is_active (w))) 2787 if (expect_false (!ev_is_active (w)))
2415 return; 2788 return;
2416 2789
2790 EV_FREQUENT_CHECK;
2791
2417 { 2792 {
2418 int active = ((W)w)->active; 2793 int active = ev_active (w);
2794
2419 checks [active - 1] = checks [--checkcnt]; 2795 checks [active - 1] = checks [--checkcnt];
2420 ((W)checks [active - 1])->active = active; 2796 ev_active (checks [active - 1]) = active;
2421 } 2797 }
2422 2798
2423 ev_stop (EV_A_ (W)w); 2799 ev_stop (EV_A_ (W)w);
2800
2801 EV_FREQUENT_CHECK;
2424} 2802}
2425 2803
2426#if EV_EMBED_ENABLE 2804#if EV_EMBED_ENABLE
2427void noinline 2805void noinline
2428ev_embed_sweep (EV_P_ ev_embed *w) 2806ev_embed_sweep (EV_P_ ev_embed *w)
2475 struct ev_loop *loop = w->other; 2853 struct ev_loop *loop = w->other;
2476 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2854 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2477 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2855 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2478 } 2856 }
2479 2857
2858 EV_FREQUENT_CHECK;
2859
2480 ev_set_priority (&w->io, ev_priority (w)); 2860 ev_set_priority (&w->io, ev_priority (w));
2481 ev_io_start (EV_A_ &w->io); 2861 ev_io_start (EV_A_ &w->io);
2482 2862
2483 ev_prepare_init (&w->prepare, embed_prepare_cb); 2863 ev_prepare_init (&w->prepare, embed_prepare_cb);
2484 ev_set_priority (&w->prepare, EV_MINPRI); 2864 ev_set_priority (&w->prepare, EV_MINPRI);
2485 ev_prepare_start (EV_A_ &w->prepare); 2865 ev_prepare_start (EV_A_ &w->prepare);
2486 2866
2487 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2867 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2488 2868
2489 ev_start (EV_A_ (W)w, 1); 2869 ev_start (EV_A_ (W)w, 1);
2870
2871 EV_FREQUENT_CHECK;
2490} 2872}
2491 2873
2492void 2874void
2493ev_embed_stop (EV_P_ ev_embed *w) 2875ev_embed_stop (EV_P_ ev_embed *w)
2494{ 2876{
2495 clear_pending (EV_A_ (W)w); 2877 clear_pending (EV_A_ (W)w);
2496 if (expect_false (!ev_is_active (w))) 2878 if (expect_false (!ev_is_active (w)))
2497 return; 2879 return;
2498 2880
2881 EV_FREQUENT_CHECK;
2882
2499 ev_io_stop (EV_A_ &w->io); 2883 ev_io_stop (EV_A_ &w->io);
2500 ev_prepare_stop (EV_A_ &w->prepare); 2884 ev_prepare_stop (EV_A_ &w->prepare);
2501 2885
2502 ev_stop (EV_A_ (W)w); 2886 ev_stop (EV_A_ (W)w);
2887
2888 EV_FREQUENT_CHECK;
2503} 2889}
2504#endif 2890#endif
2505 2891
2506#if EV_FORK_ENABLE 2892#if EV_FORK_ENABLE
2507void 2893void
2508ev_fork_start (EV_P_ ev_fork *w) 2894ev_fork_start (EV_P_ ev_fork *w)
2509{ 2895{
2510 if (expect_false (ev_is_active (w))) 2896 if (expect_false (ev_is_active (w)))
2511 return; 2897 return;
2898
2899 EV_FREQUENT_CHECK;
2512 2900
2513 ev_start (EV_A_ (W)w, ++forkcnt); 2901 ev_start (EV_A_ (W)w, ++forkcnt);
2514 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2902 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2515 forks [forkcnt - 1] = w; 2903 forks [forkcnt - 1] = w;
2904
2905 EV_FREQUENT_CHECK;
2516} 2906}
2517 2907
2518void 2908void
2519ev_fork_stop (EV_P_ ev_fork *w) 2909ev_fork_stop (EV_P_ ev_fork *w)
2520{ 2910{
2521 clear_pending (EV_A_ (W)w); 2911 clear_pending (EV_A_ (W)w);
2522 if (expect_false (!ev_is_active (w))) 2912 if (expect_false (!ev_is_active (w)))
2523 return; 2913 return;
2524 2914
2915 EV_FREQUENT_CHECK;
2916
2525 { 2917 {
2526 int active = ((W)w)->active; 2918 int active = ev_active (w);
2919
2527 forks [active - 1] = forks [--forkcnt]; 2920 forks [active - 1] = forks [--forkcnt];
2528 ((W)forks [active - 1])->active = active; 2921 ev_active (forks [active - 1]) = active;
2529 } 2922 }
2530 2923
2531 ev_stop (EV_A_ (W)w); 2924 ev_stop (EV_A_ (W)w);
2925
2926 EV_FREQUENT_CHECK;
2532} 2927}
2533#endif 2928#endif
2534 2929
2535#if EV_ASYNC_ENABLE 2930#if EV_ASYNC_ENABLE
2536void 2931void
2538{ 2933{
2539 if (expect_false (ev_is_active (w))) 2934 if (expect_false (ev_is_active (w)))
2540 return; 2935 return;
2541 2936
2542 evpipe_init (EV_A); 2937 evpipe_init (EV_A);
2938
2939 EV_FREQUENT_CHECK;
2543 2940
2544 ev_start (EV_A_ (W)w, ++asynccnt); 2941 ev_start (EV_A_ (W)w, ++asynccnt);
2545 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2942 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2546 asyncs [asynccnt - 1] = w; 2943 asyncs [asynccnt - 1] = w;
2944
2945 EV_FREQUENT_CHECK;
2547} 2946}
2548 2947
2549void 2948void
2550ev_async_stop (EV_P_ ev_async *w) 2949ev_async_stop (EV_P_ ev_async *w)
2551{ 2950{
2552 clear_pending (EV_A_ (W)w); 2951 clear_pending (EV_A_ (W)w);
2553 if (expect_false (!ev_is_active (w))) 2952 if (expect_false (!ev_is_active (w)))
2554 return; 2953 return;
2555 2954
2955 EV_FREQUENT_CHECK;
2956
2556 { 2957 {
2557 int active = ((W)w)->active; 2958 int active = ev_active (w);
2959
2558 asyncs [active - 1] = asyncs [--asynccnt]; 2960 asyncs [active - 1] = asyncs [--asynccnt];
2559 ((W)asyncs [active - 1])->active = active; 2961 ev_active (asyncs [active - 1]) = active;
2560 } 2962 }
2561 2963
2562 ev_stop (EV_A_ (W)w); 2964 ev_stop (EV_A_ (W)w);
2965
2966 EV_FREQUENT_CHECK;
2563} 2967}
2564 2968
2565void 2969void
2566ev_async_send (EV_P_ ev_async *w) 2970ev_async_send (EV_P_ ev_async *w)
2567{ 2971{
2584once_cb (EV_P_ struct ev_once *once, int revents) 2988once_cb (EV_P_ struct ev_once *once, int revents)
2585{ 2989{
2586 void (*cb)(int revents, void *arg) = once->cb; 2990 void (*cb)(int revents, void *arg) = once->cb;
2587 void *arg = once->arg; 2991 void *arg = once->arg;
2588 2992
2589 ev_io_stop (EV_A_ &once->io); 2993 ev_io_stop (EV_A_ &once->io);
2590 ev_timer_stop (EV_A_ &once->to); 2994 ev_timer_stop (EV_A_ &once->to);
2591 ev_free (once); 2995 ev_free (once);
2592 2996
2593 cb (revents, arg); 2997 cb (revents, arg);
2594} 2998}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines