ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.26 by root, Wed Oct 31 21:50:15 2007 UTC vs.
Revision 1.260 by root, Mon Sep 8 17:24:39 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
6 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
7 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
8 * 27 *
9 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
10 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
11 * 30 * in which case the provisions of the GPL are applicable instead of
12 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
13 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
14 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
15 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
16 * 35 * and other provisions required by the GPL. If you do not delete the
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
18 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
19 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1
55# endif
56# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1
58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
74# endif
75
76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
90# endif
91
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
98# endif
99
100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
132#endif
29 133
30#include <math.h> 134#include <math.h>
31#include <stdlib.h> 135#include <stdlib.h>
32#include <unistd.h>
33#include <fcntl.h> 136#include <fcntl.h>
34#include <signal.h>
35#include <stddef.h> 137#include <stddef.h>
36 138
37#include <stdio.h> 139#include <stdio.h>
38 140
39#include <assert.h> 141#include <assert.h>
40#include <errno.h> 142#include <errno.h>
41#include <sys/types.h> 143#include <sys/types.h>
42#include <sys/wait.h>
43#include <sys/time.h>
44#include <time.h> 144#include <time.h>
45 145
46#ifndef HAVE_MONOTONIC 146#include <signal.h>
47# ifdef CLOCK_MONOTONIC 147
48# define HAVE_MONOTONIC 1 148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
154#ifndef _WIN32
155# include <sys/time.h>
156# include <sys/wait.h>
157# include <unistd.h>
158#else
159# include <io.h>
160# define WIN32_LEAN_AND_MEAN
161# include <windows.h>
162# ifndef EV_SELECT_IS_WINSOCKET
163# define EV_SELECT_IS_WINSOCKET 1
49# endif 164# endif
50#endif 165#endif
51 166
52#ifndef HAVE_SELECT 167/* this block tries to deduce configuration from header-defined symbols and defaults */
53# define HAVE_SELECT 1 168
169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
173# define EV_USE_MONOTONIC 0
54#endif 174# endif
175#endif
55 176
56#ifndef HAVE_EPOLL 177#ifndef EV_USE_REALTIME
57# define HAVE_EPOLL 0 178# define EV_USE_REALTIME 0
179#endif
180
181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
185# define EV_USE_NANOSLEEP 0
58#endif 186# endif
187#endif
59 188
60#ifndef HAVE_REALTIME 189#ifndef EV_USE_SELECT
61# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 190# define EV_USE_SELECT 1
191#endif
192
193#ifndef EV_USE_POLL
194# ifdef _WIN32
195# define EV_USE_POLL 0
196# else
197# define EV_USE_POLL 1
62#endif 198# endif
199#endif
200
201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
205# define EV_USE_EPOLL 0
206# endif
207#endif
208
209#ifndef EV_USE_KQUEUE
210# define EV_USE_KQUEUE 0
211#endif
212
213#ifndef EV_USE_PORT
214# define EV_USE_PORT 0
215#endif
216
217#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1
220# else
221# define EV_USE_INOTIFY 0
222# endif
223#endif
224
225#ifndef EV_PID_HASHSIZE
226# if EV_MINIMAL
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
230# endif
231#endif
232
233#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif
240
241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
268
269#ifndef CLOCK_MONOTONIC
270# undef EV_USE_MONOTONIC
271# define EV_USE_MONOTONIC 0
272#endif
273
274#ifndef CLOCK_REALTIME
275# undef EV_USE_REALTIME
276# define EV_USE_REALTIME 0
277#endif
278
279#if !EV_STAT_ENABLE
280# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0
282#endif
283
284#if !EV_USE_NANOSLEEP
285# ifndef _WIN32
286# include <sys/select.h>
287# endif
288#endif
289
290#if EV_USE_INOTIFY
291# include <sys/inotify.h>
292#endif
293
294#if EV_SELECT_IS_WINSOCKET
295# include <winsock.h>
296#endif
297
298#if EV_USE_EVENTFD
299/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
300# include <stdint.h>
301# ifdef __cplusplus
302extern "C" {
303# endif
304int eventfd (unsigned int initval, int flags);
305# ifdef __cplusplus
306}
307# endif
308#endif
309
310/**/
311
312#if EV_VERIFY >= 3
313# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
314#else
315# define EV_FREQUENT_CHECK do { } while (0)
316#endif
317
318/*
319 * This is used to avoid floating point rounding problems.
320 * It is added to ev_rt_now when scheduling periodics
321 * to ensure progress, time-wise, even when rounding
322 * errors are against us.
323 * This value is good at least till the year 4000.
324 * Better solutions welcome.
325 */
326#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
63 327
64#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 328#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
65#define MAX_BLOCKTIME 60. 329#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
66#define PID_HASHSIZE 16 /* size of pid hahs table, must be power of two */ 330/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
67 331
68#include "ev.h" 332#if __GNUC__ >= 4
333# define expect(expr,value) __builtin_expect ((expr),(value))
334# define noinline __attribute__ ((noinline))
335#else
336# define expect(expr,value) (expr)
337# define noinline
338# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
339# define inline
340# endif
341#endif
69 342
343#define expect_false(expr) expect ((expr) != 0, 0)
344#define expect_true(expr) expect ((expr) != 0, 1)
345#define inline_size static inline
346
347#if EV_MINIMAL
348# define inline_speed static noinline
349#else
350# define inline_speed static inline
351#endif
352
353#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
354#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
355
356#define EMPTY /* required for microsofts broken pseudo-c compiler */
357#define EMPTY2(a,b) /* used to suppress some warnings */
358
70typedef struct ev_watcher *W; 359typedef ev_watcher *W;
71typedef struct ev_watcher_list *WL; 360typedef ev_watcher_list *WL;
72typedef struct ev_watcher_time *WT; 361typedef ev_watcher_time *WT;
73 362
74static ev_tstamp now, diff; /* monotonic clock */ 363#define ev_active(w) ((W)(w))->active
364#define ev_at(w) ((WT)(w))->at
365
366#if EV_USE_MONOTONIC
367/* sig_atomic_t is used to avoid per-thread variables or locking but still */
368/* giving it a reasonably high chance of working on typical architetcures */
369static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
370#endif
371
372#ifdef _WIN32
373# include "ev_win32.c"
374#endif
375
376/*****************************************************************************/
377
378static void (*syserr_cb)(const char *msg);
379
380void
381ev_set_syserr_cb (void (*cb)(const char *msg))
382{
383 syserr_cb = cb;
384}
385
386static void noinline
387syserr (const char *msg)
388{
389 if (!msg)
390 msg = "(libev) system error";
391
392 if (syserr_cb)
393 syserr_cb (msg);
394 else
395 {
396 perror (msg);
397 abort ();
398 }
399}
400
401static void *
402ev_realloc_emul (void *ptr, long size)
403{
404 /* some systems, notably openbsd and darwin, fail to properly
405 * implement realloc (x, 0) (as required by both ansi c-98 and
406 * the single unix specification, so work around them here.
407 */
408
409 if (size)
410 return realloc (ptr, size);
411
412 free (ptr);
413 return 0;
414}
415
416static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
417
418void
419ev_set_allocator (void *(*cb)(void *ptr, long size))
420{
421 alloc = cb;
422}
423
424inline_speed void *
425ev_realloc (void *ptr, long size)
426{
427 ptr = alloc (ptr, size);
428
429 if (!ptr && size)
430 {
431 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
432 abort ();
433 }
434
435 return ptr;
436}
437
438#define ev_malloc(size) ev_realloc (0, (size))
439#define ev_free(ptr) ev_realloc ((ptr), 0)
440
441/*****************************************************************************/
442
443typedef struct
444{
445 WL head;
446 unsigned char events;
447 unsigned char reify;
448#if EV_SELECT_IS_WINSOCKET
449 SOCKET handle;
450#endif
451} ANFD;
452
453typedef struct
454{
455 W w;
456 int events;
457} ANPENDING;
458
459#if EV_USE_INOTIFY
460/* hash table entry per inotify-id */
461typedef struct
462{
463 WL head;
464} ANFS;
465#endif
466
467/* Heap Entry */
468#if EV_HEAP_CACHE_AT
469 typedef struct {
470 ev_tstamp at;
471 WT w;
472 } ANHE;
473
474 #define ANHE_w(he) (he).w /* access watcher, read-write */
475 #define ANHE_at(he) (he).at /* access cached at, read-only */
476 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
477#else
478 typedef WT ANHE;
479
480 #define ANHE_w(he) (he)
481 #define ANHE_at(he) (he)->at
482 #define ANHE_at_cache(he)
483#endif
484
485#if EV_MULTIPLICITY
486
487 struct ev_loop
488 {
489 ev_tstamp ev_rt_now;
490 #define ev_rt_now ((loop)->ev_rt_now)
491 #define VAR(name,decl) decl;
492 #include "ev_vars.h"
493 #undef VAR
494 };
495 #include "ev_wrap.h"
496
497 static struct ev_loop default_loop_struct;
498 struct ev_loop *ev_default_loop_ptr;
499
500#else
501
75ev_tstamp ev_now; 502 ev_tstamp ev_rt_now;
76int ev_method; 503 #define VAR(name,decl) static decl;
504 #include "ev_vars.h"
505 #undef VAR
77 506
78static int have_monotonic; /* runtime */ 507 static int ev_default_loop_ptr;
79 508
80static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 509#endif
81static void (*method_modify)(int fd, int oev, int nev);
82static void (*method_poll)(ev_tstamp timeout);
83 510
84/*****************************************************************************/ 511/*****************************************************************************/
85 512
86ev_tstamp 513ev_tstamp
87ev_time (void) 514ev_time (void)
88{ 515{
89#if HAVE_REALTIME 516#if EV_USE_REALTIME
90 struct timespec ts; 517 struct timespec ts;
91 clock_gettime (CLOCK_REALTIME, &ts); 518 clock_gettime (CLOCK_REALTIME, &ts);
92 return ts.tv_sec + ts.tv_nsec * 1e-9; 519 return ts.tv_sec + ts.tv_nsec * 1e-9;
93#else 520#else
94 struct timeval tv; 521 struct timeval tv;
95 gettimeofday (&tv, 0); 522 gettimeofday (&tv, 0);
96 return tv.tv_sec + tv.tv_usec * 1e-6; 523 return tv.tv_sec + tv.tv_usec * 1e-6;
97#endif 524#endif
98} 525}
99 526
100static ev_tstamp 527ev_tstamp inline_size
101get_clock (void) 528get_clock (void)
102{ 529{
103#if HAVE_MONOTONIC 530#if EV_USE_MONOTONIC
104 if (have_monotonic) 531 if (expect_true (have_monotonic))
105 { 532 {
106 struct timespec ts; 533 struct timespec ts;
107 clock_gettime (CLOCK_MONOTONIC, &ts); 534 clock_gettime (CLOCK_MONOTONIC, &ts);
108 return ts.tv_sec + ts.tv_nsec * 1e-9; 535 return ts.tv_sec + ts.tv_nsec * 1e-9;
109 } 536 }
110#endif 537#endif
111 538
112 return ev_time (); 539 return ev_time ();
113} 540}
114 541
115#define array_needsize(base,cur,cnt,init) \ 542#if EV_MULTIPLICITY
116 if ((cnt) > cur) \ 543ev_tstamp
117 { \ 544ev_now (EV_P)
118 int newcnt = cur; \ 545{
119 do \ 546 return ev_rt_now;
120 { \ 547}
121 newcnt = (newcnt << 1) | 4 & ~3; \ 548#endif
122 } \ 549
123 while ((cnt) > newcnt); \ 550void
124 \ 551ev_sleep (ev_tstamp delay)
125 base = realloc (base, sizeof (*base) * (newcnt)); \ 552{
126 init (base + cur, newcnt - cur); \ 553 if (delay > 0.)
127 cur = newcnt; \
128 } 554 {
555#if EV_USE_NANOSLEEP
556 struct timespec ts;
557
558 ts.tv_sec = (time_t)delay;
559 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
560
561 nanosleep (&ts, 0);
562#elif defined(_WIN32)
563 Sleep ((unsigned long)(delay * 1e3));
564#else
565 struct timeval tv;
566
567 tv.tv_sec = (time_t)delay;
568 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
569
570 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
571 /* somehting nto guaranteed by newer posix versions, but guaranteed */
572 /* by older ones */
573 select (0, 0, 0, 0, &tv);
574#endif
575 }
576}
129 577
130/*****************************************************************************/ 578/*****************************************************************************/
131 579
580#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
581
582int inline_size
583array_nextsize (int elem, int cur, int cnt)
584{
585 int ncur = cur + 1;
586
587 do
588 ncur <<= 1;
589 while (cnt > ncur);
590
591 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
592 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
593 {
594 ncur *= elem;
595 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
596 ncur = ncur - sizeof (void *) * 4;
597 ncur /= elem;
598 }
599
600 return ncur;
601}
602
603static noinline void *
604array_realloc (int elem, void *base, int *cur, int cnt)
605{
606 *cur = array_nextsize (elem, *cur, cnt);
607 return ev_realloc (base, elem * *cur);
608}
609
610#define array_needsize(type,base,cur,cnt,init) \
611 if (expect_false ((cnt) > (cur))) \
612 { \
613 int ocur_ = (cur); \
614 (base) = (type *)array_realloc \
615 (sizeof (type), (base), &(cur), (cnt)); \
616 init ((base) + (ocur_), (cur) - ocur_); \
617 }
618
619#if 0
620#define array_slim(type,stem) \
621 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
622 { \
623 stem ## max = array_roundsize (stem ## cnt >> 1); \
624 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
625 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
626 }
627#endif
628
629#define array_free(stem, idx) \
630 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
631
632/*****************************************************************************/
633
634void noinline
635ev_feed_event (EV_P_ void *w, int revents)
636{
637 W w_ = (W)w;
638 int pri = ABSPRI (w_);
639
640 if (expect_false (w_->pending))
641 pendings [pri][w_->pending - 1].events |= revents;
642 else
643 {
644 w_->pending = ++pendingcnt [pri];
645 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
646 pendings [pri][w_->pending - 1].w = w_;
647 pendings [pri][w_->pending - 1].events = revents;
648 }
649}
650
651void inline_speed
652queue_events (EV_P_ W *events, int eventcnt, int type)
653{
654 int i;
655
656 for (i = 0; i < eventcnt; ++i)
657 ev_feed_event (EV_A_ events [i], type);
658}
659
660/*****************************************************************************/
661
662void inline_size
663anfds_init (ANFD *base, int count)
664{
665 while (count--)
666 {
667 base->head = 0;
668 base->events = EV_NONE;
669 base->reify = 0;
670
671 ++base;
672 }
673}
674
675void inline_speed
676fd_event (EV_P_ int fd, int revents)
677{
678 ANFD *anfd = anfds + fd;
679 ev_io *w;
680
681 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
682 {
683 int ev = w->events & revents;
684
685 if (ev)
686 ev_feed_event (EV_A_ (W)w, ev);
687 }
688}
689
690void
691ev_feed_fd_event (EV_P_ int fd, int revents)
692{
693 if (fd >= 0 && fd < anfdmax)
694 fd_event (EV_A_ fd, revents);
695}
696
697void inline_size
698fd_reify (EV_P)
699{
700 int i;
701
702 for (i = 0; i < fdchangecnt; ++i)
703 {
704 int fd = fdchanges [i];
705 ANFD *anfd = anfds + fd;
706 ev_io *w;
707
708 unsigned char events = 0;
709
710 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
711 events |= (unsigned char)w->events;
712
713#if EV_SELECT_IS_WINSOCKET
714 if (events)
715 {
716 unsigned long arg;
717 #ifdef EV_FD_TO_WIN32_HANDLE
718 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
719 #else
720 anfd->handle = _get_osfhandle (fd);
721 #endif
722 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
723 }
724#endif
725
726 {
727 unsigned char o_events = anfd->events;
728 unsigned char o_reify = anfd->reify;
729
730 anfd->reify = 0;
731 anfd->events = events;
732
733 if (o_events != events || o_reify & EV_IOFDSET)
734 backend_modify (EV_A_ fd, o_events, events);
735 }
736 }
737
738 fdchangecnt = 0;
739}
740
741void inline_size
742fd_change (EV_P_ int fd, int flags)
743{
744 unsigned char reify = anfds [fd].reify;
745 anfds [fd].reify |= flags;
746
747 if (expect_true (!reify))
748 {
749 ++fdchangecnt;
750 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
751 fdchanges [fdchangecnt - 1] = fd;
752 }
753}
754
755void inline_speed
756fd_kill (EV_P_ int fd)
757{
758 ev_io *w;
759
760 while ((w = (ev_io *)anfds [fd].head))
761 {
762 ev_io_stop (EV_A_ w);
763 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
764 }
765}
766
767int inline_size
768fd_valid (int fd)
769{
770#ifdef _WIN32
771 return _get_osfhandle (fd) != -1;
772#else
773 return fcntl (fd, F_GETFD) != -1;
774#endif
775}
776
777/* called on EBADF to verify fds */
778static void noinline
779fd_ebadf (EV_P)
780{
781 int fd;
782
783 for (fd = 0; fd < anfdmax; ++fd)
784 if (anfds [fd].events)
785 if (!fd_valid (fd) && errno == EBADF)
786 fd_kill (EV_A_ fd);
787}
788
789/* called on ENOMEM in select/poll to kill some fds and retry */
790static void noinline
791fd_enomem (EV_P)
792{
793 int fd;
794
795 for (fd = anfdmax; fd--; )
796 if (anfds [fd].events)
797 {
798 fd_kill (EV_A_ fd);
799 return;
800 }
801}
802
803/* usually called after fork if backend needs to re-arm all fds from scratch */
804static void noinline
805fd_rearm_all (EV_P)
806{
807 int fd;
808
809 for (fd = 0; fd < anfdmax; ++fd)
810 if (anfds [fd].events)
811 {
812 anfds [fd].events = 0;
813 fd_change (EV_A_ fd, EV_IOFDSET | 1);
814 }
815}
816
817/*****************************************************************************/
818
819/*
820 * the heap functions want a real array index. array index 0 uis guaranteed to not
821 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
822 * the branching factor of the d-tree.
823 */
824
825/*
826 * at the moment we allow libev the luxury of two heaps,
827 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
828 * which is more cache-efficient.
829 * the difference is about 5% with 50000+ watchers.
830 */
831#if EV_USE_4HEAP
832
833#define DHEAP 4
834#define HEAP0 (DHEAP - 1) /* index of first element in heap */
835#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
836#define UPHEAP_DONE(p,k) ((p) == (k))
837
838/* away from the root */
839void inline_speed
840downheap (ANHE *heap, int N, int k)
841{
842 ANHE he = heap [k];
843 ANHE *E = heap + N + HEAP0;
844
845 for (;;)
846 {
847 ev_tstamp minat;
848 ANHE *minpos;
849 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
850
851 /* find minimum child */
852 if (expect_true (pos + DHEAP - 1 < E))
853 {
854 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
855 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
856 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
857 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
858 }
859 else if (pos < E)
860 {
861 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
862 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
863 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
864 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
865 }
866 else
867 break;
868
869 if (ANHE_at (he) <= minat)
870 break;
871
872 heap [k] = *minpos;
873 ev_active (ANHE_w (*minpos)) = k;
874
875 k = minpos - heap;
876 }
877
878 heap [k] = he;
879 ev_active (ANHE_w (he)) = k;
880}
881
882#else /* 4HEAP */
883
884#define HEAP0 1
885#define HPARENT(k) ((k) >> 1)
886#define UPHEAP_DONE(p,k) (!(p))
887
888/* away from the root */
889void inline_speed
890downheap (ANHE *heap, int N, int k)
891{
892 ANHE he = heap [k];
893
894 for (;;)
895 {
896 int c = k << 1;
897
898 if (c > N + HEAP0 - 1)
899 break;
900
901 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
902 ? 1 : 0;
903
904 if (ANHE_at (he) <= ANHE_at (heap [c]))
905 break;
906
907 heap [k] = heap [c];
908 ev_active (ANHE_w (heap [k])) = k;
909
910 k = c;
911 }
912
913 heap [k] = he;
914 ev_active (ANHE_w (he)) = k;
915}
916#endif
917
918/* towards the root */
919void inline_speed
920upheap (ANHE *heap, int k)
921{
922 ANHE he = heap [k];
923
924 for (;;)
925 {
926 int p = HPARENT (k);
927
928 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
929 break;
930
931 heap [k] = heap [p];
932 ev_active (ANHE_w (heap [k])) = k;
933 k = p;
934 }
935
936 heap [k] = he;
937 ev_active (ANHE_w (he)) = k;
938}
939
940void inline_size
941adjustheap (ANHE *heap, int N, int k)
942{
943 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
944 upheap (heap, k);
945 else
946 downheap (heap, N, k);
947}
948
949/* rebuild the heap: this function is used only once and executed rarely */
950void inline_size
951reheap (ANHE *heap, int N)
952{
953 int i;
954
955 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
956 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
957 for (i = 0; i < N; ++i)
958 upheap (heap, i + HEAP0);
959}
960
961/*****************************************************************************/
962
132typedef struct 963typedef struct
133{ 964{
134 struct ev_io *head; 965 WL head;
135 unsigned char wev, rev; /* want, received event set */ 966 EV_ATOMIC_T gotsig;
136} ANFD;
137
138static ANFD *anfds;
139static int anfdmax;
140
141static int *fdchanges;
142static int fdchangemax, fdchangecnt;
143
144static void
145anfds_init (ANFD *base, int count)
146{
147 while (count--)
148 {
149 base->head = 0;
150 base->wev = base->rev = EV_NONE;
151 ++base;
152 }
153}
154
155typedef struct
156{
157 W w;
158 int events;
159} ANPENDING;
160
161static ANPENDING *pendings;
162static int pendingmax, pendingcnt;
163
164static void
165event (W w, int events)
166{
167 if (w->active)
168 {
169 w->pending = ++pendingcnt;
170 array_needsize (pendings, pendingmax, pendingcnt, );
171 pendings [pendingcnt - 1].w = w;
172 pendings [pendingcnt - 1].events = events;
173 }
174}
175
176static void
177fd_event (int fd, int events)
178{
179 ANFD *anfd = anfds + fd;
180 struct ev_io *w;
181
182 for (w = anfd->head; w; w = w->next)
183 {
184 int ev = w->events & events;
185
186 if (ev)
187 event ((W)w, ev);
188 }
189}
190
191static void
192queue_events (W *events, int eventcnt, int type)
193{
194 int i;
195
196 for (i = 0; i < eventcnt; ++i)
197 event (events [i], type);
198}
199
200/* called on EBADF to verify fds */
201static void
202fd_recheck (void)
203{
204 int fd;
205
206 for (fd = 0; fd < anfdmax; ++fd)
207 if (anfds [fd].wev)
208 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
209 while (anfds [fd].head)
210 {
211 event ((W)anfds [fd].head, EV_ERROR);
212 evio_stop (anfds [fd].head);
213 }
214}
215
216/*****************************************************************************/
217
218static struct ev_timer **timers;
219static int timermax, timercnt;
220
221static struct ev_periodic **periodics;
222static int periodicmax, periodiccnt;
223
224static void
225upheap (WT *timers, int k)
226{
227 WT w = timers [k];
228
229 while (k && timers [k >> 1]->at > w->at)
230 {
231 timers [k] = timers [k >> 1];
232 timers [k]->active = k + 1;
233 k >>= 1;
234 }
235
236 timers [k] = w;
237 timers [k]->active = k + 1;
238
239}
240
241static void
242downheap (WT *timers, int N, int k)
243{
244 WT w = timers [k];
245
246 while (k < (N >> 1))
247 {
248 int j = k << 1;
249
250 if (j + 1 < N && timers [j]->at > timers [j + 1]->at)
251 ++j;
252
253 if (w->at <= timers [j]->at)
254 break;
255
256 timers [k] = timers [j];
257 timers [k]->active = k + 1;
258 k = j;
259 }
260
261 timers [k] = w;
262 timers [k]->active = k + 1;
263}
264
265/*****************************************************************************/
266
267typedef struct
268{
269 struct ev_signal *head;
270 sig_atomic_t gotsig;
271} ANSIG; 967} ANSIG;
272 968
273static ANSIG *signals; 969static ANSIG *signals;
274static int signalmax; 970static int signalmax;
275 971
276static int sigpipe [2]; 972static EV_ATOMIC_T gotsig;
277static sig_atomic_t gotsig;
278static struct ev_io sigev;
279 973
280static void 974void inline_size
281signals_init (ANSIG *base, int count) 975signals_init (ANSIG *base, int count)
282{ 976{
283 while (count--) 977 while (count--)
284 { 978 {
285 base->head = 0; 979 base->head = 0;
286 base->gotsig = 0; 980 base->gotsig = 0;
981
287 ++base; 982 ++base;
288 } 983 }
289} 984}
290 985
986/*****************************************************************************/
987
988void inline_speed
989fd_intern (int fd)
990{
991#ifdef _WIN32
992 unsigned long arg = 1;
993 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
994#else
995 fcntl (fd, F_SETFD, FD_CLOEXEC);
996 fcntl (fd, F_SETFL, O_NONBLOCK);
997#endif
998}
999
1000static void noinline
1001evpipe_init (EV_P)
1002{
1003 if (!ev_is_active (&pipeev))
1004 {
1005#if EV_USE_EVENTFD
1006 if ((evfd = eventfd (0, 0)) >= 0)
1007 {
1008 evpipe [0] = -1;
1009 fd_intern (evfd);
1010 ev_io_set (&pipeev, evfd, EV_READ);
1011 }
1012 else
1013#endif
1014 {
1015 while (pipe (evpipe))
1016 syserr ("(libev) error creating signal/async pipe");
1017
1018 fd_intern (evpipe [0]);
1019 fd_intern (evpipe [1]);
1020 ev_io_set (&pipeev, evpipe [0], EV_READ);
1021 }
1022
1023 ev_io_start (EV_A_ &pipeev);
1024 ev_unref (EV_A); /* watcher should not keep loop alive */
1025 }
1026}
1027
1028void inline_size
1029evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1030{
1031 if (!*flag)
1032 {
1033 int old_errno = errno; /* save errno because write might clobber it */
1034
1035 *flag = 1;
1036
1037#if EV_USE_EVENTFD
1038 if (evfd >= 0)
1039 {
1040 uint64_t counter = 1;
1041 write (evfd, &counter, sizeof (uint64_t));
1042 }
1043 else
1044#endif
1045 write (evpipe [1], &old_errno, 1);
1046
1047 errno = old_errno;
1048 }
1049}
1050
291static void 1051static void
1052pipecb (EV_P_ ev_io *iow, int revents)
1053{
1054#if EV_USE_EVENTFD
1055 if (evfd >= 0)
1056 {
1057 uint64_t counter;
1058 read (evfd, &counter, sizeof (uint64_t));
1059 }
1060 else
1061#endif
1062 {
1063 char dummy;
1064 read (evpipe [0], &dummy, 1);
1065 }
1066
1067 if (gotsig && ev_is_default_loop (EV_A))
1068 {
1069 int signum;
1070 gotsig = 0;
1071
1072 for (signum = signalmax; signum--; )
1073 if (signals [signum].gotsig)
1074 ev_feed_signal_event (EV_A_ signum + 1);
1075 }
1076
1077#if EV_ASYNC_ENABLE
1078 if (gotasync)
1079 {
1080 int i;
1081 gotasync = 0;
1082
1083 for (i = asynccnt; i--; )
1084 if (asyncs [i]->sent)
1085 {
1086 asyncs [i]->sent = 0;
1087 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1088 }
1089 }
1090#endif
1091}
1092
1093/*****************************************************************************/
1094
1095static void
292sighandler (int signum) 1096ev_sighandler (int signum)
293{ 1097{
1098#if EV_MULTIPLICITY
1099 struct ev_loop *loop = &default_loop_struct;
1100#endif
1101
1102#if _WIN32
1103 signal (signum, ev_sighandler);
1104#endif
1105
294 signals [signum - 1].gotsig = 1; 1106 signals [signum - 1].gotsig = 1;
295 1107 evpipe_write (EV_A_ &gotsig);
296 if (!gotsig)
297 {
298 gotsig = 1;
299 write (sigpipe [1], &gotsig, 1);
300 }
301} 1108}
302 1109
303static void 1110void noinline
304sigcb (struct ev_io *iow, int revents) 1111ev_feed_signal_event (EV_P_ int signum)
305{ 1112{
306 struct ev_signal *w; 1113 WL w;
307 int sig;
308 1114
309 gotsig = 0; 1115#if EV_MULTIPLICITY
310 read (sigpipe [0], &revents, 1); 1116 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1117#endif
311 1118
312 for (sig = signalmax; sig--; ) 1119 --signum;
313 if (signals [sig].gotsig) 1120
314 { 1121 if (signum < 0 || signum >= signalmax)
1122 return;
1123
315 signals [sig].gotsig = 0; 1124 signals [signum].gotsig = 0;
316 1125
317 for (w = signals [sig].head; w; w = w->next) 1126 for (w = signals [signum].head; w; w = w->next)
318 event ((W)w, EV_SIGNAL); 1127 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
319 }
320}
321
322static void
323siginit (void)
324{
325 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
326 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
327
328 /* rather than sort out wether we really need nb, set it */
329 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
330 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
331
332 evio_set (&sigev, sigpipe [0], EV_READ);
333 evio_start (&sigev);
334} 1128}
335 1129
336/*****************************************************************************/ 1130/*****************************************************************************/
337 1131
338static struct ev_idle **idles; 1132static WL childs [EV_PID_HASHSIZE];
339static int idlemax, idlecnt;
340 1133
341static struct ev_prepare **prepares; 1134#ifndef _WIN32
342static int preparemax, preparecnt;
343 1135
344static struct ev_check **checks;
345static int checkmax, checkcnt;
346
347/*****************************************************************************/
348
349static struct ev_child *childs [PID_HASHSIZE];
350static struct ev_signal childev; 1136static ev_signal childev;
1137
1138#ifndef WIFCONTINUED
1139# define WIFCONTINUED(status) 0
1140#endif
1141
1142void inline_speed
1143child_reap (EV_P_ int chain, int pid, int status)
1144{
1145 ev_child *w;
1146 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1147
1148 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1149 {
1150 if ((w->pid == pid || !w->pid)
1151 && (!traced || (w->flags & 1)))
1152 {
1153 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1154 w->rpid = pid;
1155 w->rstatus = status;
1156 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1157 }
1158 }
1159}
351 1160
352#ifndef WCONTINUED 1161#ifndef WCONTINUED
353# define WCONTINUED 0 1162# define WCONTINUED 0
354#endif 1163#endif
355 1164
356static void 1165static void
357childcb (struct ev_signal *sw, int revents) 1166childcb (EV_P_ ev_signal *sw, int revents)
358{ 1167{
359 struct ev_child *w;
360 int pid, status; 1168 int pid, status;
361 1169
1170 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
362 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 1171 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
363 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 1172 if (!WCONTINUED
364 if (w->pid == pid || w->pid == -1) 1173 || errno != EINVAL
365 { 1174 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
366 w->status = status; 1175 return;
367 event ((W)w, EV_CHILD); 1176
368 } 1177 /* make sure we are called again until all children have been reaped */
1178 /* we need to do it this way so that the callback gets called before we continue */
1179 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1180
1181 child_reap (EV_A_ pid, pid, status);
1182 if (EV_PID_HASHSIZE > 1)
1183 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
369} 1184}
1185
1186#endif
370 1187
371/*****************************************************************************/ 1188/*****************************************************************************/
372 1189
1190#if EV_USE_PORT
1191# include "ev_port.c"
1192#endif
1193#if EV_USE_KQUEUE
1194# include "ev_kqueue.c"
1195#endif
373#if HAVE_EPOLL 1196#if EV_USE_EPOLL
374# include "ev_epoll.c" 1197# include "ev_epoll.c"
375#endif 1198#endif
1199#if EV_USE_POLL
1200# include "ev_poll.c"
1201#endif
376#if HAVE_SELECT 1202#if EV_USE_SELECT
377# include "ev_select.c" 1203# include "ev_select.c"
378#endif 1204#endif
379 1205
380int 1206int
381ev_version_major (void) 1207ev_version_major (void)
387ev_version_minor (void) 1213ev_version_minor (void)
388{ 1214{
389 return EV_VERSION_MINOR; 1215 return EV_VERSION_MINOR;
390} 1216}
391 1217
392int ev_init (int flags) 1218/* return true if we are running with elevated privileges and should ignore env variables */
1219int inline_size
1220enable_secure (void)
393{ 1221{
394 if (!ev_method) 1222#ifdef _WIN32
1223 return 0;
1224#else
1225 return getuid () != geteuid ()
1226 || getgid () != getegid ();
1227#endif
1228}
1229
1230unsigned int
1231ev_supported_backends (void)
1232{
1233 unsigned int flags = 0;
1234
1235 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1236 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1237 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1238 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1239 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1240
1241 return flags;
1242}
1243
1244unsigned int
1245ev_recommended_backends (void)
1246{
1247 unsigned int flags = ev_supported_backends ();
1248
1249#ifndef __NetBSD__
1250 /* kqueue is borked on everything but netbsd apparently */
1251 /* it usually doesn't work correctly on anything but sockets and pipes */
1252 flags &= ~EVBACKEND_KQUEUE;
1253#endif
1254#ifdef __APPLE__
1255 // flags &= ~EVBACKEND_KQUEUE; for documentation
1256 flags &= ~EVBACKEND_POLL;
1257#endif
1258
1259 return flags;
1260}
1261
1262unsigned int
1263ev_embeddable_backends (void)
1264{
1265 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1266
1267 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1268 /* please fix it and tell me how to detect the fix */
1269 flags &= ~EVBACKEND_EPOLL;
1270
1271 return flags;
1272}
1273
1274unsigned int
1275ev_backend (EV_P)
1276{
1277 return backend;
1278}
1279
1280unsigned int
1281ev_loop_count (EV_P)
1282{
1283 return loop_count;
1284}
1285
1286void
1287ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1288{
1289 io_blocktime = interval;
1290}
1291
1292void
1293ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1294{
1295 timeout_blocktime = interval;
1296}
1297
1298static void noinline
1299loop_init (EV_P_ unsigned int flags)
1300{
1301 if (!backend)
395 { 1302 {
396#if HAVE_MONOTONIC 1303#if EV_USE_MONOTONIC
397 { 1304 {
398 struct timespec ts; 1305 struct timespec ts;
399 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1306 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
400 have_monotonic = 1; 1307 have_monotonic = 1;
401 } 1308 }
402#endif 1309#endif
403 1310
404 ev_now = ev_time (); 1311 ev_rt_now = ev_time ();
405 now = get_clock (); 1312 mn_now = get_clock ();
1313 now_floor = mn_now;
406 diff = ev_now - now; 1314 rtmn_diff = ev_rt_now - mn_now;
407 1315
408 if (pipe (sigpipe)) 1316 io_blocktime = 0.;
409 return 0; 1317 timeout_blocktime = 0.;
1318 backend = 0;
1319 backend_fd = -1;
1320 gotasync = 0;
1321#if EV_USE_INOTIFY
1322 fs_fd = -2;
1323#endif
410 1324
411 ev_method = EVMETHOD_NONE; 1325 /* pid check not overridable via env */
1326#ifndef _WIN32
1327 if (flags & EVFLAG_FORKCHECK)
1328 curpid = getpid ();
1329#endif
1330
1331 if (!(flags & EVFLAG_NOENV)
1332 && !enable_secure ()
1333 && getenv ("LIBEV_FLAGS"))
1334 flags = atoi (getenv ("LIBEV_FLAGS"));
1335
1336 if (!(flags & 0x0000ffffU))
1337 flags |= ev_recommended_backends ();
1338
1339#if EV_USE_PORT
1340 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1341#endif
1342#if EV_USE_KQUEUE
1343 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1344#endif
412#if HAVE_EPOLL 1345#if EV_USE_EPOLL
413 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 1346 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
414#endif 1347#endif
1348#if EV_USE_POLL
1349 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1350#endif
415#if HAVE_SELECT 1351#if EV_USE_SELECT
416 if (ev_method == EVMETHOD_NONE) select_init (flags); 1352 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
417#endif 1353#endif
418 1354
419 if (ev_method) 1355 ev_init (&pipeev, pipecb);
1356 ev_set_priority (&pipeev, EV_MAXPRI);
1357 }
1358}
1359
1360static void noinline
1361loop_destroy (EV_P)
1362{
1363 int i;
1364
1365 if (ev_is_active (&pipeev))
1366 {
1367 ev_ref (EV_A); /* signal watcher */
1368 ev_io_stop (EV_A_ &pipeev);
1369
1370#if EV_USE_EVENTFD
1371 if (evfd >= 0)
1372 close (evfd);
1373#endif
1374
1375 if (evpipe [0] >= 0)
420 { 1376 {
421 evw_init (&sigev, sigcb); 1377 close (evpipe [0]);
422 siginit (); 1378 close (evpipe [1]);
423
424 evsignal_init (&childev, childcb, SIGCHLD);
425 evsignal_start (&childev);
426 } 1379 }
427 } 1380 }
428 1381
429 return ev_method; 1382#if EV_USE_INOTIFY
1383 if (fs_fd >= 0)
1384 close (fs_fd);
1385#endif
1386
1387 if (backend_fd >= 0)
1388 close (backend_fd);
1389
1390#if EV_USE_PORT
1391 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1392#endif
1393#if EV_USE_KQUEUE
1394 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1395#endif
1396#if EV_USE_EPOLL
1397 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1398#endif
1399#if EV_USE_POLL
1400 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1401#endif
1402#if EV_USE_SELECT
1403 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1404#endif
1405
1406 for (i = NUMPRI; i--; )
1407 {
1408 array_free (pending, [i]);
1409#if EV_IDLE_ENABLE
1410 array_free (idle, [i]);
1411#endif
1412 }
1413
1414 ev_free (anfds); anfdmax = 0;
1415
1416 /* have to use the microsoft-never-gets-it-right macro */
1417 array_free (fdchange, EMPTY);
1418 array_free (timer, EMPTY);
1419#if EV_PERIODIC_ENABLE
1420 array_free (periodic, EMPTY);
1421#endif
1422#if EV_FORK_ENABLE
1423 array_free (fork, EMPTY);
1424#endif
1425 array_free (prepare, EMPTY);
1426 array_free (check, EMPTY);
1427#if EV_ASYNC_ENABLE
1428 array_free (async, EMPTY);
1429#endif
1430
1431 backend = 0;
1432}
1433
1434#if EV_USE_INOTIFY
1435void inline_size infy_fork (EV_P);
1436#endif
1437
1438void inline_size
1439loop_fork (EV_P)
1440{
1441#if EV_USE_PORT
1442 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1443#endif
1444#if EV_USE_KQUEUE
1445 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1446#endif
1447#if EV_USE_EPOLL
1448 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1449#endif
1450#if EV_USE_INOTIFY
1451 infy_fork (EV_A);
1452#endif
1453
1454 if (ev_is_active (&pipeev))
1455 {
1456 /* this "locks" the handlers against writing to the pipe */
1457 /* while we modify the fd vars */
1458 gotsig = 1;
1459#if EV_ASYNC_ENABLE
1460 gotasync = 1;
1461#endif
1462
1463 ev_ref (EV_A);
1464 ev_io_stop (EV_A_ &pipeev);
1465
1466#if EV_USE_EVENTFD
1467 if (evfd >= 0)
1468 close (evfd);
1469#endif
1470
1471 if (evpipe [0] >= 0)
1472 {
1473 close (evpipe [0]);
1474 close (evpipe [1]);
1475 }
1476
1477 evpipe_init (EV_A);
1478 /* now iterate over everything, in case we missed something */
1479 pipecb (EV_A_ &pipeev, EV_READ);
1480 }
1481
1482 postfork = 0;
1483}
1484
1485#if EV_MULTIPLICITY
1486
1487struct ev_loop *
1488ev_loop_new (unsigned int flags)
1489{
1490 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1491
1492 memset (loop, 0, sizeof (struct ev_loop));
1493
1494 loop_init (EV_A_ flags);
1495
1496 if (ev_backend (EV_A))
1497 return loop;
1498
1499 return 0;
1500}
1501
1502void
1503ev_loop_destroy (EV_P)
1504{
1505 loop_destroy (EV_A);
1506 ev_free (loop);
1507}
1508
1509void
1510ev_loop_fork (EV_P)
1511{
1512 postfork = 1; /* must be in line with ev_default_fork */
1513}
1514
1515#if EV_VERIFY
1516static void noinline
1517verify_watcher (EV_P_ W w)
1518{
1519 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1520
1521 if (w->pending)
1522 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1523}
1524
1525static void noinline
1526verify_heap (EV_P_ ANHE *heap, int N)
1527{
1528 int i;
1529
1530 for (i = HEAP0; i < N + HEAP0; ++i)
1531 {
1532 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1533 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1534 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1535
1536 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1537 }
1538}
1539
1540static void noinline
1541array_verify (EV_P_ W *ws, int cnt)
1542{
1543 while (cnt--)
1544 {
1545 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1546 verify_watcher (EV_A_ ws [cnt]);
1547 }
1548}
1549#endif
1550
1551void
1552ev_loop_verify (EV_P)
1553{
1554#if EV_VERIFY
1555 int i;
1556 WL w;
1557
1558 assert (activecnt >= -1);
1559
1560 assert (fdchangemax >= fdchangecnt);
1561 for (i = 0; i < fdchangecnt; ++i)
1562 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1563
1564 assert (anfdmax >= 0);
1565 for (i = 0; i < anfdmax; ++i)
1566 for (w = anfds [i].head; w; w = w->next)
1567 {
1568 verify_watcher (EV_A_ (W)w);
1569 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1570 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1571 }
1572
1573 assert (timermax >= timercnt);
1574 verify_heap (EV_A_ timers, timercnt);
1575
1576#if EV_PERIODIC_ENABLE
1577 assert (periodicmax >= periodiccnt);
1578 verify_heap (EV_A_ periodics, periodiccnt);
1579#endif
1580
1581 for (i = NUMPRI; i--; )
1582 {
1583 assert (pendingmax [i] >= pendingcnt [i]);
1584#if EV_IDLE_ENABLE
1585 assert (idleall >= 0);
1586 assert (idlemax [i] >= idlecnt [i]);
1587 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1588#endif
1589 }
1590
1591#if EV_FORK_ENABLE
1592 assert (forkmax >= forkcnt);
1593 array_verify (EV_A_ (W *)forks, forkcnt);
1594#endif
1595
1596#if EV_ASYNC_ENABLE
1597 assert (asyncmax >= asynccnt);
1598 array_verify (EV_A_ (W *)asyncs, asynccnt);
1599#endif
1600
1601 assert (preparemax >= preparecnt);
1602 array_verify (EV_A_ (W *)prepares, preparecnt);
1603
1604 assert (checkmax >= checkcnt);
1605 array_verify (EV_A_ (W *)checks, checkcnt);
1606
1607# if 0
1608 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1609 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1610# endif
1611#endif
1612}
1613
1614#endif /* multiplicity */
1615
1616#if EV_MULTIPLICITY
1617struct ev_loop *
1618ev_default_loop_init (unsigned int flags)
1619#else
1620int
1621ev_default_loop (unsigned int flags)
1622#endif
1623{
1624 if (!ev_default_loop_ptr)
1625 {
1626#if EV_MULTIPLICITY
1627 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1628#else
1629 ev_default_loop_ptr = 1;
1630#endif
1631
1632 loop_init (EV_A_ flags);
1633
1634 if (ev_backend (EV_A))
1635 {
1636#ifndef _WIN32
1637 ev_signal_init (&childev, childcb, SIGCHLD);
1638 ev_set_priority (&childev, EV_MAXPRI);
1639 ev_signal_start (EV_A_ &childev);
1640 ev_unref (EV_A); /* child watcher should not keep loop alive */
1641#endif
1642 }
1643 else
1644 ev_default_loop_ptr = 0;
1645 }
1646
1647 return ev_default_loop_ptr;
1648}
1649
1650void
1651ev_default_destroy (void)
1652{
1653#if EV_MULTIPLICITY
1654 struct ev_loop *loop = ev_default_loop_ptr;
1655#endif
1656
1657#ifndef _WIN32
1658 ev_ref (EV_A); /* child watcher */
1659 ev_signal_stop (EV_A_ &childev);
1660#endif
1661
1662 loop_destroy (EV_A);
1663}
1664
1665void
1666ev_default_fork (void)
1667{
1668#if EV_MULTIPLICITY
1669 struct ev_loop *loop = ev_default_loop_ptr;
1670#endif
1671
1672 if (backend)
1673 postfork = 1; /* must be in line with ev_loop_fork */
430} 1674}
431 1675
432/*****************************************************************************/ 1676/*****************************************************************************/
433 1677
434void 1678void
435ev_prefork (void) 1679ev_invoke (EV_P_ void *w, int revents)
436{ 1680{
437 /* nop */ 1681 EV_CB_INVOKE ((W)w, revents);
438} 1682}
439 1683
440void 1684void inline_speed
441ev_postfork_parent (void) 1685call_pending (EV_P)
442{ 1686{
443 /* nop */
444}
445
446void
447ev_postfork_child (void)
448{
449#if HAVE_EPOLL
450 if (ev_method == EVMETHOD_EPOLL)
451 epoll_postfork_child ();
452#endif
453
454 evio_stop (&sigev);
455 close (sigpipe [0]);
456 close (sigpipe [1]);
457 pipe (sigpipe);
458 siginit ();
459}
460
461/*****************************************************************************/
462
463static void
464fd_reify (void)
465{
466 int i; 1687 int pri;
467 1688
468 for (i = 0; i < fdchangecnt; ++i) 1689 for (pri = NUMPRI; pri--; )
1690 while (pendingcnt [pri])
469 { 1691 {
470 int fd = fdchanges [i]; 1692 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
471 ANFD *anfd = anfds + fd;
472 struct ev_io *w;
473 1693
474 int wev = 0; 1694 if (expect_true (p->w))
1695 {
1696 /*assert (("non-pending watcher on pending list", p->w->pending));*/
475 1697
476 for (w = anfd->head; w; w = w->next) 1698 p->w->pending = 0;
477 wev |= w->events; 1699 EV_CB_INVOKE (p->w, p->events);
1700 EV_FREQUENT_CHECK;
1701 }
1702 }
1703}
478 1704
479 if (anfd->wev != wev) 1705#if EV_IDLE_ENABLE
1706void inline_size
1707idle_reify (EV_P)
1708{
1709 if (expect_false (idleall))
1710 {
1711 int pri;
1712
1713 for (pri = NUMPRI; pri--; )
480 { 1714 {
481 method_modify (fd, anfd->wev, wev); 1715 if (pendingcnt [pri])
482 anfd->wev = wev; 1716 break;
1717
1718 if (idlecnt [pri])
1719 {
1720 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1721 break;
1722 }
483 } 1723 }
484 } 1724 }
485
486 fdchangecnt = 0;
487} 1725}
1726#endif
488 1727
489static void 1728void inline_size
490call_pending (void) 1729timers_reify (EV_P)
491{ 1730{
492 while (pendingcnt) 1731 EV_FREQUENT_CHECK;
493 {
494 ANPENDING *p = pendings + --pendingcnt;
495 1732
496 if (p->w) 1733 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
497 {
498 p->w->pending = 0;
499 p->w->cb (p->w, p->events);
500 }
501 } 1734 {
502} 1735 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
503 1736
504static void 1737 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
505timers_reify (void)
506{
507 while (timercnt && timers [0]->at <= now)
508 {
509 struct ev_timer *w = timers [0];
510
511 event ((W)w, EV_TIMEOUT);
512 1738
513 /* first reschedule or stop timer */ 1739 /* first reschedule or stop timer */
514 if (w->repeat) 1740 if (w->repeat)
515 { 1741 {
516 w->at = now + w->repeat; 1742 ev_at (w) += w->repeat;
517 assert (("timer timeout in the past, negative repeat?", w->at > now)); 1743 if (ev_at (w) < mn_now)
1744 ev_at (w) = mn_now;
1745
1746 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1747
1748 ANHE_at_cache (timers [HEAP0]);
518 downheap ((WT *)timers, timercnt, 0); 1749 downheap (timers, timercnt, HEAP0);
519 } 1750 }
520 else 1751 else
521 evtimer_stop (w); /* nonrepeating: stop timer */ 1752 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
522 }
523}
524 1753
525static void 1754 EV_FREQUENT_CHECK;
1755 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1756 }
1757}
1758
1759#if EV_PERIODIC_ENABLE
1760void inline_size
526periodics_reify (void) 1761periodics_reify (EV_P)
527{ 1762{
1763 EV_FREQUENT_CHECK;
1764
528 while (periodiccnt && periodics [0]->at <= ev_now) 1765 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
529 { 1766 {
530 struct ev_periodic *w = periodics [0]; 1767 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1768
1769 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
531 1770
532 /* first reschedule or stop timer */ 1771 /* first reschedule or stop timer */
533 if (w->interval) 1772 if (w->reschedule_cb)
534 { 1773 {
535 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 1774 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
536 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 1775
1776 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1777
1778 ANHE_at_cache (periodics [HEAP0]);
537 downheap ((WT *)periodics, periodiccnt, 0); 1779 downheap (periodics, periodiccnt, HEAP0);
1780 }
1781 else if (w->interval)
1782 {
1783 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1784 /* if next trigger time is not sufficiently in the future, put it there */
1785 /* this might happen because of floating point inexactness */
1786 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1787 {
1788 ev_at (w) += w->interval;
1789
1790 /* if interval is unreasonably low we might still have a time in the past */
1791 /* so correct this. this will make the periodic very inexact, but the user */
1792 /* has effectively asked to get triggered more often than possible */
1793 if (ev_at (w) < ev_rt_now)
1794 ev_at (w) = ev_rt_now;
1795 }
1796
1797 ANHE_at_cache (periodics [HEAP0]);
1798 downheap (periodics, periodiccnt, HEAP0);
538 } 1799 }
539 else 1800 else
540 evperiodic_stop (w); /* nonrepeating: stop timer */ 1801 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
541 1802
542 event ((W)w, EV_TIMEOUT); 1803 EV_FREQUENT_CHECK;
1804 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
543 } 1805 }
544} 1806}
545 1807
546static void 1808static void noinline
547periodics_reschedule (ev_tstamp diff) 1809periodics_reschedule (EV_P)
548{ 1810{
549 int i; 1811 int i;
550 1812
551 /* adjust periodics after time jump */ 1813 /* adjust periodics after time jump */
552 for (i = 0; i < periodiccnt; ++i) 1814 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
553 { 1815 {
554 struct ev_periodic *w = periodics [i]; 1816 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
555 1817
1818 if (w->reschedule_cb)
1819 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
556 if (w->interval) 1820 else if (w->interval)
1821 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1822
1823 ANHE_at_cache (periodics [i]);
1824 }
1825
1826 reheap (periodics, periodiccnt);
1827}
1828#endif
1829
1830void inline_speed
1831time_update (EV_P_ ev_tstamp max_block)
1832{
1833 int i;
1834
1835#if EV_USE_MONOTONIC
1836 if (expect_true (have_monotonic))
1837 {
1838 ev_tstamp odiff = rtmn_diff;
1839
1840 mn_now = get_clock ();
1841
1842 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1843 /* interpolate in the meantime */
1844 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
557 { 1845 {
558 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 1846 ev_rt_now = rtmn_diff + mn_now;
1847 return;
1848 }
559 1849
560 if (fabs (diff) >= 1e-4) 1850 now_floor = mn_now;
1851 ev_rt_now = ev_time ();
1852
1853 /* loop a few times, before making important decisions.
1854 * on the choice of "4": one iteration isn't enough,
1855 * in case we get preempted during the calls to
1856 * ev_time and get_clock. a second call is almost guaranteed
1857 * to succeed in that case, though. and looping a few more times
1858 * doesn't hurt either as we only do this on time-jumps or
1859 * in the unlikely event of having been preempted here.
1860 */
1861 for (i = 4; --i; )
1862 {
1863 rtmn_diff = ev_rt_now - mn_now;
1864
1865 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1866 return; /* all is well */
1867
1868 ev_rt_now = ev_time ();
1869 mn_now = get_clock ();
1870 now_floor = mn_now;
1871 }
1872
1873# if EV_PERIODIC_ENABLE
1874 periodics_reschedule (EV_A);
1875# endif
1876 /* no timer adjustment, as the monotonic clock doesn't jump */
1877 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1878 }
1879 else
1880#endif
1881 {
1882 ev_rt_now = ev_time ();
1883
1884 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1885 {
1886#if EV_PERIODIC_ENABLE
1887 periodics_reschedule (EV_A);
1888#endif
1889 /* adjust timers. this is easy, as the offset is the same for all of them */
1890 for (i = 0; i < timercnt; ++i)
561 { 1891 {
562 evperiodic_stop (w); 1892 ANHE *he = timers + i + HEAP0;
563 evperiodic_start (w); 1893 ANHE_w (*he)->at += ev_rt_now - mn_now;
564 1894 ANHE_at_cache (*he);
565 i = 0; /* restart loop, inefficient, but time jumps should be rare */
566 } 1895 }
567 } 1896 }
568 }
569}
570 1897
571static void 1898 mn_now = ev_rt_now;
572time_update (void)
573{
574 int i;
575
576 ev_now = ev_time ();
577
578 if (have_monotonic)
579 { 1899 }
580 ev_tstamp odiff = diff; 1900}
581 1901
582 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1902void
1903ev_ref (EV_P)
1904{
1905 ++activecnt;
1906}
1907
1908void
1909ev_unref (EV_P)
1910{
1911 --activecnt;
1912}
1913
1914void
1915ev_now_update (EV_P)
1916{
1917 time_update (EV_A_ 1e100);
1918}
1919
1920static int loop_done;
1921
1922void
1923ev_loop (EV_P_ int flags)
1924{
1925 loop_done = EVUNLOOP_CANCEL;
1926
1927 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1928
1929 do
1930 {
1931#if EV_VERIFY >= 2
1932 ev_loop_verify (EV_A);
1933#endif
1934
1935#ifndef _WIN32
1936 if (expect_false (curpid)) /* penalise the forking check even more */
1937 if (expect_false (getpid () != curpid))
1938 {
1939 curpid = getpid ();
1940 postfork = 1;
1941 }
1942#endif
1943
1944#if EV_FORK_ENABLE
1945 /* we might have forked, so queue fork handlers */
1946 if (expect_false (postfork))
1947 if (forkcnt)
1948 {
1949 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1950 call_pending (EV_A);
1951 }
1952#endif
1953
1954 /* queue prepare watchers (and execute them) */
1955 if (expect_false (preparecnt))
583 { 1956 {
584 now = get_clock (); 1957 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
585 diff = ev_now - now; 1958 call_pending (EV_A);
586
587 if (fabs (odiff - diff) < MIN_TIMEJUMP)
588 return; /* all is well */
589
590 ev_now = ev_time ();
591 } 1959 }
592 1960
593 periodics_reschedule (diff - odiff); 1961 if (expect_false (!activecnt))
594 /* no timer adjustment, as the monotonic clock doesn't jump */ 1962 break;
595 }
596 else
597 {
598 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)
599 {
600 periodics_reschedule (ev_now - now);
601 1963
602 /* adjust timers. this is easy, as the offset is the same for all */ 1964 /* we might have forked, so reify kernel state if necessary */
603 for (i = 0; i < timercnt; ++i) 1965 if (expect_false (postfork))
604 timers [i]->at += diff; 1966 loop_fork (EV_A);
605 }
606
607 now = ev_now;
608 }
609}
610
611int ev_loop_done;
612
613void ev_loop (int flags)
614{
615 double block;
616 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
617
618 do
619 {
620 /* queue check watchers (and execute them) */
621 if (preparecnt)
622 {
623 queue_events ((W *)prepares, preparecnt, EV_PREPARE);
624 call_pending ();
625 }
626 1967
627 /* update fd-related kernel structures */ 1968 /* update fd-related kernel structures */
628 fd_reify (); 1969 fd_reify (EV_A);
629 1970
630 /* calculate blocking time */ 1971 /* calculate blocking time */
1972 {
1973 ev_tstamp waittime = 0.;
1974 ev_tstamp sleeptime = 0.;
631 1975
632 /* we only need this for !monotonic clockor timers, but as we basically 1976 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
633 always have timers, we just calculate it always */
634 ev_now = ev_time ();
635
636 if (flags & EVLOOP_NONBLOCK || idlecnt)
637 block = 0.;
638 else
639 { 1977 {
1978 /* update time to cancel out callback processing overhead */
1979 time_update (EV_A_ 1e100);
1980
640 block = MAX_BLOCKTIME; 1981 waittime = MAX_BLOCKTIME;
641 1982
642 if (timercnt) 1983 if (timercnt)
643 { 1984 {
644 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 1985 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
645 if (block > to) block = to; 1986 if (waittime > to) waittime = to;
646 } 1987 }
647 1988
1989#if EV_PERIODIC_ENABLE
648 if (periodiccnt) 1990 if (periodiccnt)
649 { 1991 {
650 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1992 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
651 if (block > to) block = to; 1993 if (waittime > to) waittime = to;
652 } 1994 }
1995#endif
653 1996
654 if (block < 0.) block = 0.; 1997 if (expect_false (waittime < timeout_blocktime))
1998 waittime = timeout_blocktime;
1999
2000 sleeptime = waittime - backend_fudge;
2001
2002 if (expect_true (sleeptime > io_blocktime))
2003 sleeptime = io_blocktime;
2004
2005 if (sleeptime)
2006 {
2007 ev_sleep (sleeptime);
2008 waittime -= sleeptime;
2009 }
655 } 2010 }
656 2011
657 method_poll (block); 2012 ++loop_count;
2013 backend_poll (EV_A_ waittime);
658 2014
659 /* update ev_now, do magic */ 2015 /* update ev_rt_now, do magic */
660 time_update (); 2016 time_update (EV_A_ waittime + sleeptime);
2017 }
661 2018
662 /* queue pending timers and reschedule them */ 2019 /* queue pending timers and reschedule them */
663 timers_reify (); /* relative timers called last */ 2020 timers_reify (EV_A); /* relative timers called last */
2021#if EV_PERIODIC_ENABLE
664 periodics_reify (); /* absolute timers called first */ 2022 periodics_reify (EV_A); /* absolute timers called first */
2023#endif
665 2024
2025#if EV_IDLE_ENABLE
666 /* queue idle watchers unless io or timers are pending */ 2026 /* queue idle watchers unless other events are pending */
667 if (!pendingcnt) 2027 idle_reify (EV_A);
668 queue_events ((W *)idles, idlecnt, EV_IDLE); 2028#endif
669 2029
670 /* queue check watchers, to be executed first */ 2030 /* queue check watchers, to be executed first */
671 if (checkcnt) 2031 if (expect_false (checkcnt))
672 queue_events ((W *)checks, checkcnt, EV_CHECK); 2032 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
673 2033
674 call_pending (); 2034 call_pending (EV_A);
675 } 2035 }
676 while (!ev_loop_done); 2036 while (expect_true (
2037 activecnt
2038 && !loop_done
2039 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2040 ));
677 2041
678 if (ev_loop_done != 2) 2042 if (loop_done == EVUNLOOP_ONE)
2043 loop_done = EVUNLOOP_CANCEL;
2044}
2045
2046void
2047ev_unloop (EV_P_ int how)
2048{
679 ev_loop_done = 0; 2049 loop_done = how;
680} 2050}
681 2051
682/*****************************************************************************/ 2052/*****************************************************************************/
683 2053
684static void 2054void inline_size
685wlist_add (WL *head, WL elem) 2055wlist_add (WL *head, WL elem)
686{ 2056{
687 elem->next = *head; 2057 elem->next = *head;
688 *head = elem; 2058 *head = elem;
689} 2059}
690 2060
691static void 2061void inline_size
692wlist_del (WL *head, WL elem) 2062wlist_del (WL *head, WL elem)
693{ 2063{
694 while (*head) 2064 while (*head)
695 { 2065 {
696 if (*head == elem) 2066 if (*head == elem)
701 2071
702 head = &(*head)->next; 2072 head = &(*head)->next;
703 } 2073 }
704} 2074}
705 2075
706static void 2076void inline_speed
707ev_clear (W w) 2077clear_pending (EV_P_ W w)
708{ 2078{
709 if (w->pending) 2079 if (w->pending)
710 { 2080 {
711 pendings [w->pending - 1].w = 0; 2081 pendings [ABSPRI (w)][w->pending - 1].w = 0;
712 w->pending = 0; 2082 w->pending = 0;
713 } 2083 }
714} 2084}
715 2085
716static void 2086int
2087ev_clear_pending (EV_P_ void *w)
2088{
2089 W w_ = (W)w;
2090 int pending = w_->pending;
2091
2092 if (expect_true (pending))
2093 {
2094 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2095 w_->pending = 0;
2096 p->w = 0;
2097 return p->events;
2098 }
2099 else
2100 return 0;
2101}
2102
2103void inline_size
2104pri_adjust (EV_P_ W w)
2105{
2106 int pri = w->priority;
2107 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2108 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2109 w->priority = pri;
2110}
2111
2112void inline_speed
717ev_start (W w, int active) 2113ev_start (EV_P_ W w, int active)
718{ 2114{
2115 pri_adjust (EV_A_ w);
719 w->active = active; 2116 w->active = active;
2117 ev_ref (EV_A);
720} 2118}
721 2119
722static void 2120void inline_size
723ev_stop (W w) 2121ev_stop (EV_P_ W w)
724{ 2122{
2123 ev_unref (EV_A);
725 w->active = 0; 2124 w->active = 0;
726} 2125}
727 2126
728/*****************************************************************************/ 2127/*****************************************************************************/
729 2128
730void 2129void noinline
731evio_start (struct ev_io *w) 2130ev_io_start (EV_P_ ev_io *w)
732{ 2131{
2132 int fd = w->fd;
2133
733 if (ev_is_active (w)) 2134 if (expect_false (ev_is_active (w)))
734 return; 2135 return;
735 2136
736 int fd = w->fd; 2137 assert (("ev_io_start called with negative fd", fd >= 0));
737 2138
2139 EV_FREQUENT_CHECK;
2140
738 ev_start ((W)w, 1); 2141 ev_start (EV_A_ (W)w, 1);
739 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 2142 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
740 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2143 wlist_add (&anfds[fd].head, (WL)w);
741 2144
742 ++fdchangecnt; 2145 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
743 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 2146 w->events &= ~EV_IOFDSET;
744 fdchanges [fdchangecnt - 1] = fd;
745 2147
746 if (w->fd == 9) 2148 EV_FREQUENT_CHECK;
747 printf ("start %p:%x\n", w, w->events);//D
748} 2149}
749 2150
750void 2151void noinline
751evio_stop (struct ev_io *w) 2152ev_io_stop (EV_P_ ev_io *w)
752{ 2153{
753 if (w->fd == 9) 2154 clear_pending (EV_A_ (W)w);
754 printf ("stop %p:%x\n", w, w->events);//D
755 ev_clear ((W)w);
756 if (!ev_is_active (w)) 2155 if (expect_false (!ev_is_active (w)))
757 return; 2156 return;
758 2157
2158 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2159
2160 EV_FREQUENT_CHECK;
2161
759 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2162 wlist_del (&anfds[w->fd].head, (WL)w);
760 ev_stop ((W)w); 2163 ev_stop (EV_A_ (W)w);
761 2164
762 ++fdchangecnt; 2165 fd_change (EV_A_ w->fd, 1);
763 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
764 fdchanges [fdchangecnt - 1] = w->fd;
765}
766 2166
767void 2167 EV_FREQUENT_CHECK;
2168}
2169
2170void noinline
768evtimer_start (struct ev_timer *w) 2171ev_timer_start (EV_P_ ev_timer *w)
769{ 2172{
770 if (ev_is_active (w)) 2173 if (expect_false (ev_is_active (w)))
771 return; 2174 return;
772 2175
773 w->at += now; 2176 ev_at (w) += mn_now;
774 2177
775 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 2178 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
776 2179
777 ev_start ((W)w, ++timercnt); 2180 EV_FREQUENT_CHECK;
778 array_needsize (timers, timermax, timercnt, );
779 timers [timercnt - 1] = w;
780 upheap ((WT *)timers, timercnt - 1);
781}
782 2181
783void 2182 ++timercnt;
2183 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2184 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2185 ANHE_w (timers [ev_active (w)]) = (WT)w;
2186 ANHE_at_cache (timers [ev_active (w)]);
2187 upheap (timers, ev_active (w));
2188
2189 EV_FREQUENT_CHECK;
2190
2191 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2192}
2193
2194void noinline
784evtimer_stop (struct ev_timer *w) 2195ev_timer_stop (EV_P_ ev_timer *w)
785{ 2196{
786 ev_clear ((W)w); 2197 clear_pending (EV_A_ (W)w);
787 if (!ev_is_active (w)) 2198 if (expect_false (!ev_is_active (w)))
788 return; 2199 return;
789 2200
790 if (w->active < timercnt--) 2201 EV_FREQUENT_CHECK;
2202
2203 {
2204 int active = ev_active (w);
2205
2206 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2207
2208 --timercnt;
2209
2210 if (expect_true (active < timercnt + HEAP0))
791 { 2211 {
792 timers [w->active - 1] = timers [timercnt]; 2212 timers [active] = timers [timercnt + HEAP0];
793 downheap ((WT *)timers, timercnt, w->active - 1); 2213 adjustheap (timers, timercnt, active);
794 } 2214 }
2215 }
795 2216
796 w->at = w->repeat; 2217 EV_FREQUENT_CHECK;
797 2218
2219 ev_at (w) -= mn_now;
2220
798 ev_stop ((W)w); 2221 ev_stop (EV_A_ (W)w);
799} 2222}
800 2223
801void 2224void noinline
802evtimer_again (struct ev_timer *w) 2225ev_timer_again (EV_P_ ev_timer *w)
803{ 2226{
2227 EV_FREQUENT_CHECK;
2228
804 if (ev_is_active (w)) 2229 if (ev_is_active (w))
805 { 2230 {
806 if (w->repeat) 2231 if (w->repeat)
807 { 2232 {
808 w->at = now + w->repeat; 2233 ev_at (w) = mn_now + w->repeat;
2234 ANHE_at_cache (timers [ev_active (w)]);
809 downheap ((WT *)timers, timercnt, w->active - 1); 2235 adjustheap (timers, timercnt, ev_active (w));
810 } 2236 }
811 else 2237 else
812 evtimer_stop (w); 2238 ev_timer_stop (EV_A_ w);
813 } 2239 }
814 else if (w->repeat) 2240 else if (w->repeat)
2241 {
2242 ev_at (w) = w->repeat;
815 evtimer_start (w); 2243 ev_timer_start (EV_A_ w);
816} 2244 }
817 2245
818void 2246 EV_FREQUENT_CHECK;
2247}
2248
2249#if EV_PERIODIC_ENABLE
2250void noinline
819evperiodic_start (struct ev_periodic *w) 2251ev_periodic_start (EV_P_ ev_periodic *w)
820{ 2252{
821 if (ev_is_active (w)) 2253 if (expect_false (ev_is_active (w)))
822 return; 2254 return;
823 2255
824 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 2256 if (w->reschedule_cb)
825 2257 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2258 else if (w->interval)
2259 {
2260 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
826 /* this formula differs from the one in periodic_reify because we do not always round up */ 2261 /* this formula differs from the one in periodic_reify because we do not always round up */
827 if (w->interval)
828 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 2262 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2263 }
2264 else
2265 ev_at (w) = w->offset;
829 2266
2267 EV_FREQUENT_CHECK;
2268
2269 ++periodiccnt;
830 ev_start ((W)w, ++periodiccnt); 2270 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
831 array_needsize (periodics, periodicmax, periodiccnt, ); 2271 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
832 periodics [periodiccnt - 1] = w; 2272 ANHE_w (periodics [ev_active (w)]) = (WT)w;
833 upheap ((WT *)periodics, periodiccnt - 1); 2273 ANHE_at_cache (periodics [ev_active (w)]);
834} 2274 upheap (periodics, ev_active (w));
835 2275
836void 2276 EV_FREQUENT_CHECK;
2277
2278 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2279}
2280
2281void noinline
837evperiodic_stop (struct ev_periodic *w) 2282ev_periodic_stop (EV_P_ ev_periodic *w)
838{ 2283{
839 ev_clear ((W)w); 2284 clear_pending (EV_A_ (W)w);
840 if (!ev_is_active (w)) 2285 if (expect_false (!ev_is_active (w)))
841 return; 2286 return;
842 2287
843 if (w->active < periodiccnt--) 2288 EV_FREQUENT_CHECK;
2289
2290 {
2291 int active = ev_active (w);
2292
2293 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2294
2295 --periodiccnt;
2296
2297 if (expect_true (active < periodiccnt + HEAP0))
844 { 2298 {
845 periodics [w->active - 1] = periodics [periodiccnt]; 2299 periodics [active] = periodics [periodiccnt + HEAP0];
846 downheap ((WT *)periodics, periodiccnt, w->active - 1); 2300 adjustheap (periodics, periodiccnt, active);
847 } 2301 }
2302 }
848 2303
2304 EV_FREQUENT_CHECK;
2305
849 ev_stop ((W)w); 2306 ev_stop (EV_A_ (W)w);
850} 2307}
851 2308
852void 2309void noinline
2310ev_periodic_again (EV_P_ ev_periodic *w)
2311{
2312 /* TODO: use adjustheap and recalculation */
2313 ev_periodic_stop (EV_A_ w);
2314 ev_periodic_start (EV_A_ w);
2315}
2316#endif
2317
2318#ifndef SA_RESTART
2319# define SA_RESTART 0
2320#endif
2321
2322void noinline
853evsignal_start (struct ev_signal *w) 2323ev_signal_start (EV_P_ ev_signal *w)
854{ 2324{
2325#if EV_MULTIPLICITY
2326 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2327#endif
855 if (ev_is_active (w)) 2328 if (expect_false (ev_is_active (w)))
856 return; 2329 return;
857 2330
858 ev_start ((W)w, 1); 2331 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2332
2333 evpipe_init (EV_A);
2334
2335 EV_FREQUENT_CHECK;
2336
2337 {
2338#ifndef _WIN32
2339 sigset_t full, prev;
2340 sigfillset (&full);
2341 sigprocmask (SIG_SETMASK, &full, &prev);
2342#endif
2343
859 array_needsize (signals, signalmax, w->signum, signals_init); 2344 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2345
2346#ifndef _WIN32
2347 sigprocmask (SIG_SETMASK, &prev, 0);
2348#endif
2349 }
2350
2351 ev_start (EV_A_ (W)w, 1);
860 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2352 wlist_add (&signals [w->signum - 1].head, (WL)w);
861 2353
862 if (!w->next) 2354 if (!((WL)w)->next)
863 { 2355 {
2356#if _WIN32
2357 signal (w->signum, ev_sighandler);
2358#else
864 struct sigaction sa; 2359 struct sigaction sa;
865 sa.sa_handler = sighandler; 2360 sa.sa_handler = ev_sighandler;
866 sigfillset (&sa.sa_mask); 2361 sigfillset (&sa.sa_mask);
867 sa.sa_flags = 0; 2362 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
868 sigaction (w->signum, &sa, 0); 2363 sigaction (w->signum, &sa, 0);
2364#endif
869 } 2365 }
870}
871 2366
872void 2367 EV_FREQUENT_CHECK;
2368}
2369
2370void noinline
873evsignal_stop (struct ev_signal *w) 2371ev_signal_stop (EV_P_ ev_signal *w)
874{ 2372{
875 ev_clear ((W)w); 2373 clear_pending (EV_A_ (W)w);
876 if (!ev_is_active (w)) 2374 if (expect_false (!ev_is_active (w)))
877 return; 2375 return;
878 2376
2377 EV_FREQUENT_CHECK;
2378
879 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2379 wlist_del (&signals [w->signum - 1].head, (WL)w);
880 ev_stop ((W)w); 2380 ev_stop (EV_A_ (W)w);
881 2381
882 if (!signals [w->signum - 1].head) 2382 if (!signals [w->signum - 1].head)
883 signal (w->signum, SIG_DFL); 2383 signal (w->signum, SIG_DFL);
884}
885 2384
886void evidle_start (struct ev_idle *w) 2385 EV_FREQUENT_CHECK;
2386}
2387
2388void
2389ev_child_start (EV_P_ ev_child *w)
887{ 2390{
2391#if EV_MULTIPLICITY
2392 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2393#endif
888 if (ev_is_active (w)) 2394 if (expect_false (ev_is_active (w)))
889 return; 2395 return;
890 2396
891 ev_start ((W)w, ++idlecnt); 2397 EV_FREQUENT_CHECK;
892 array_needsize (idles, idlemax, idlecnt, );
893 idles [idlecnt - 1] = w;
894}
895 2398
896void evidle_stop (struct ev_idle *w) 2399 ev_start (EV_A_ (W)w, 1);
2400 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2401
2402 EV_FREQUENT_CHECK;
2403}
2404
2405void
2406ev_child_stop (EV_P_ ev_child *w)
897{ 2407{
898 ev_clear ((W)w); 2408 clear_pending (EV_A_ (W)w);
899 if (ev_is_active (w)) 2409 if (expect_false (!ev_is_active (w)))
900 return; 2410 return;
901 2411
902 idles [w->active - 1] = idles [--idlecnt]; 2412 EV_FREQUENT_CHECK;
2413
2414 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
903 ev_stop ((W)w); 2415 ev_stop (EV_A_ (W)w);
904}
905 2416
906void evprepare_start (struct ev_prepare *w) 2417 EV_FREQUENT_CHECK;
2418}
2419
2420#if EV_STAT_ENABLE
2421
2422# ifdef _WIN32
2423# undef lstat
2424# define lstat(a,b) _stati64 (a,b)
2425# endif
2426
2427#define DEF_STAT_INTERVAL 5.0074891
2428#define MIN_STAT_INTERVAL 0.1074891
2429
2430static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2431
2432#if EV_USE_INOTIFY
2433# define EV_INOTIFY_BUFSIZE 8192
2434
2435static void noinline
2436infy_add (EV_P_ ev_stat *w)
907{ 2437{
908 if (ev_is_active (w)) 2438 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2439
2440 if (w->wd < 0)
2441 {
2442 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2443
2444 /* monitor some parent directory for speedup hints */
2445 /* note that exceeding the hardcoded limit is not a correctness issue, */
2446 /* but an efficiency issue only */
2447 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2448 {
2449 char path [4096];
2450 strcpy (path, w->path);
2451
2452 do
2453 {
2454 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2455 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2456
2457 char *pend = strrchr (path, '/');
2458
2459 if (!pend)
2460 break; /* whoops, no '/', complain to your admin */
2461
2462 *pend = 0;
2463 w->wd = inotify_add_watch (fs_fd, path, mask);
2464 }
2465 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2466 }
2467 }
2468 else
2469 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2470
2471 if (w->wd >= 0)
2472 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2473}
2474
2475static void noinline
2476infy_del (EV_P_ ev_stat *w)
2477{
2478 int slot;
2479 int wd = w->wd;
2480
2481 if (wd < 0)
909 return; 2482 return;
910 2483
2484 w->wd = -2;
2485 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2486 wlist_del (&fs_hash [slot].head, (WL)w);
2487
2488 /* remove this watcher, if others are watching it, they will rearm */
2489 inotify_rm_watch (fs_fd, wd);
2490}
2491
2492static void noinline
2493infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2494{
2495 if (slot < 0)
2496 /* overflow, need to check for all hahs slots */
2497 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2498 infy_wd (EV_A_ slot, wd, ev);
2499 else
2500 {
2501 WL w_;
2502
2503 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2504 {
2505 ev_stat *w = (ev_stat *)w_;
2506 w_ = w_->next; /* lets us remove this watcher and all before it */
2507
2508 if (w->wd == wd || wd == -1)
2509 {
2510 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2511 {
2512 w->wd = -1;
2513 infy_add (EV_A_ w); /* re-add, no matter what */
2514 }
2515
2516 stat_timer_cb (EV_A_ &w->timer, 0);
2517 }
2518 }
2519 }
2520}
2521
2522static void
2523infy_cb (EV_P_ ev_io *w, int revents)
2524{
2525 char buf [EV_INOTIFY_BUFSIZE];
2526 struct inotify_event *ev = (struct inotify_event *)buf;
2527 int ofs;
2528 int len = read (fs_fd, buf, sizeof (buf));
2529
2530 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2531 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2532}
2533
2534void inline_size
2535infy_init (EV_P)
2536{
2537 if (fs_fd != -2)
2538 return;
2539
2540 fs_fd = inotify_init ();
2541
2542 if (fs_fd >= 0)
2543 {
2544 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2545 ev_set_priority (&fs_w, EV_MAXPRI);
2546 ev_io_start (EV_A_ &fs_w);
2547 }
2548}
2549
2550void inline_size
2551infy_fork (EV_P)
2552{
2553 int slot;
2554
2555 if (fs_fd < 0)
2556 return;
2557
2558 close (fs_fd);
2559 fs_fd = inotify_init ();
2560
2561 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2562 {
2563 WL w_ = fs_hash [slot].head;
2564 fs_hash [slot].head = 0;
2565
2566 while (w_)
2567 {
2568 ev_stat *w = (ev_stat *)w_;
2569 w_ = w_->next; /* lets us add this watcher */
2570
2571 w->wd = -1;
2572
2573 if (fs_fd >= 0)
2574 infy_add (EV_A_ w); /* re-add, no matter what */
2575 else
2576 ev_timer_start (EV_A_ &w->timer);
2577 }
2578
2579 }
2580}
2581
2582#endif
2583
2584#ifdef _WIN32
2585# define EV_LSTAT(p,b) _stati64 (p, b)
2586#else
2587# define EV_LSTAT(p,b) lstat (p, b)
2588#endif
2589
2590void
2591ev_stat_stat (EV_P_ ev_stat *w)
2592{
2593 if (lstat (w->path, &w->attr) < 0)
2594 w->attr.st_nlink = 0;
2595 else if (!w->attr.st_nlink)
2596 w->attr.st_nlink = 1;
2597}
2598
2599static void noinline
2600stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2601{
2602 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2603
2604 /* we copy this here each the time so that */
2605 /* prev has the old value when the callback gets invoked */
2606 w->prev = w->attr;
2607 ev_stat_stat (EV_A_ w);
2608
2609 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2610 if (
2611 w->prev.st_dev != w->attr.st_dev
2612 || w->prev.st_ino != w->attr.st_ino
2613 || w->prev.st_mode != w->attr.st_mode
2614 || w->prev.st_nlink != w->attr.st_nlink
2615 || w->prev.st_uid != w->attr.st_uid
2616 || w->prev.st_gid != w->attr.st_gid
2617 || w->prev.st_rdev != w->attr.st_rdev
2618 || w->prev.st_size != w->attr.st_size
2619 || w->prev.st_atime != w->attr.st_atime
2620 || w->prev.st_mtime != w->attr.st_mtime
2621 || w->prev.st_ctime != w->attr.st_ctime
2622 ) {
2623 #if EV_USE_INOTIFY
2624 infy_del (EV_A_ w);
2625 infy_add (EV_A_ w);
2626 ev_stat_stat (EV_A_ w); /* avoid race... */
2627 #endif
2628
2629 ev_feed_event (EV_A_ w, EV_STAT);
2630 }
2631}
2632
2633void
2634ev_stat_start (EV_P_ ev_stat *w)
2635{
2636 if (expect_false (ev_is_active (w)))
2637 return;
2638
2639 /* since we use memcmp, we need to clear any padding data etc. */
2640 memset (&w->prev, 0, sizeof (ev_statdata));
2641 memset (&w->attr, 0, sizeof (ev_statdata));
2642
2643 ev_stat_stat (EV_A_ w);
2644
2645 if (w->interval < MIN_STAT_INTERVAL)
2646 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2647
2648 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2649 ev_set_priority (&w->timer, ev_priority (w));
2650
2651#if EV_USE_INOTIFY
2652 infy_init (EV_A);
2653
2654 if (fs_fd >= 0)
2655 infy_add (EV_A_ w);
2656 else
2657#endif
2658 ev_timer_start (EV_A_ &w->timer);
2659
2660 ev_start (EV_A_ (W)w, 1);
2661
2662 EV_FREQUENT_CHECK;
2663}
2664
2665void
2666ev_stat_stop (EV_P_ ev_stat *w)
2667{
2668 clear_pending (EV_A_ (W)w);
2669 if (expect_false (!ev_is_active (w)))
2670 return;
2671
2672 EV_FREQUENT_CHECK;
2673
2674#if EV_USE_INOTIFY
2675 infy_del (EV_A_ w);
2676#endif
2677 ev_timer_stop (EV_A_ &w->timer);
2678
2679 ev_stop (EV_A_ (W)w);
2680
2681 EV_FREQUENT_CHECK;
2682}
2683#endif
2684
2685#if EV_IDLE_ENABLE
2686void
2687ev_idle_start (EV_P_ ev_idle *w)
2688{
2689 if (expect_false (ev_is_active (w)))
2690 return;
2691
2692 pri_adjust (EV_A_ (W)w);
2693
2694 EV_FREQUENT_CHECK;
2695
2696 {
2697 int active = ++idlecnt [ABSPRI (w)];
2698
2699 ++idleall;
2700 ev_start (EV_A_ (W)w, active);
2701
2702 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2703 idles [ABSPRI (w)][active - 1] = w;
2704 }
2705
2706 EV_FREQUENT_CHECK;
2707}
2708
2709void
2710ev_idle_stop (EV_P_ ev_idle *w)
2711{
2712 clear_pending (EV_A_ (W)w);
2713 if (expect_false (!ev_is_active (w)))
2714 return;
2715
2716 EV_FREQUENT_CHECK;
2717
2718 {
2719 int active = ev_active (w);
2720
2721 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2722 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2723
2724 ev_stop (EV_A_ (W)w);
2725 --idleall;
2726 }
2727
2728 EV_FREQUENT_CHECK;
2729}
2730#endif
2731
2732void
2733ev_prepare_start (EV_P_ ev_prepare *w)
2734{
2735 if (expect_false (ev_is_active (w)))
2736 return;
2737
2738 EV_FREQUENT_CHECK;
2739
911 ev_start ((W)w, ++preparecnt); 2740 ev_start (EV_A_ (W)w, ++preparecnt);
912 array_needsize (prepares, preparemax, preparecnt, ); 2741 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
913 prepares [preparecnt - 1] = w; 2742 prepares [preparecnt - 1] = w;
914}
915 2743
2744 EV_FREQUENT_CHECK;
2745}
2746
2747void
916void evprepare_stop (struct ev_prepare *w) 2748ev_prepare_stop (EV_P_ ev_prepare *w)
917{ 2749{
918 ev_clear ((W)w); 2750 clear_pending (EV_A_ (W)w);
919 if (ev_is_active (w)) 2751 if (expect_false (!ev_is_active (w)))
920 return; 2752 return;
921 2753
2754 EV_FREQUENT_CHECK;
2755
2756 {
2757 int active = ev_active (w);
2758
922 prepares [w->active - 1] = prepares [--preparecnt]; 2759 prepares [active - 1] = prepares [--preparecnt];
2760 ev_active (prepares [active - 1]) = active;
2761 }
2762
923 ev_stop ((W)w); 2763 ev_stop (EV_A_ (W)w);
924}
925 2764
2765 EV_FREQUENT_CHECK;
2766}
2767
2768void
926void evcheck_start (struct ev_check *w) 2769ev_check_start (EV_P_ ev_check *w)
927{ 2770{
928 if (ev_is_active (w)) 2771 if (expect_false (ev_is_active (w)))
929 return; 2772 return;
930 2773
2774 EV_FREQUENT_CHECK;
2775
931 ev_start ((W)w, ++checkcnt); 2776 ev_start (EV_A_ (W)w, ++checkcnt);
932 array_needsize (checks, checkmax, checkcnt, ); 2777 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
933 checks [checkcnt - 1] = w; 2778 checks [checkcnt - 1] = w;
934}
935 2779
2780 EV_FREQUENT_CHECK;
2781}
2782
2783void
936void evcheck_stop (struct ev_check *w) 2784ev_check_stop (EV_P_ ev_check *w)
937{ 2785{
938 ev_clear ((W)w); 2786 clear_pending (EV_A_ (W)w);
939 if (ev_is_active (w)) 2787 if (expect_false (!ev_is_active (w)))
940 return; 2788 return;
941 2789
2790 EV_FREQUENT_CHECK;
2791
2792 {
2793 int active = ev_active (w);
2794
942 checks [w->active - 1] = checks [--checkcnt]; 2795 checks [active - 1] = checks [--checkcnt];
2796 ev_active (checks [active - 1]) = active;
2797 }
2798
943 ev_stop ((W)w); 2799 ev_stop (EV_A_ (W)w);
944}
945 2800
946void evchild_start (struct ev_child *w) 2801 EV_FREQUENT_CHECK;
2802}
2803
2804#if EV_EMBED_ENABLE
2805void noinline
2806ev_embed_sweep (EV_P_ ev_embed *w)
947{ 2807{
2808 ev_loop (w->other, EVLOOP_NONBLOCK);
2809}
2810
2811static void
2812embed_io_cb (EV_P_ ev_io *io, int revents)
2813{
2814 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2815
948 if (ev_is_active (w)) 2816 if (ev_cb (w))
2817 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2818 else
2819 ev_loop (w->other, EVLOOP_NONBLOCK);
2820}
2821
2822static void
2823embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2824{
2825 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2826
2827 {
2828 struct ev_loop *loop = w->other;
2829
2830 while (fdchangecnt)
2831 {
2832 fd_reify (EV_A);
2833 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2834 }
2835 }
2836}
2837
2838#if 0
2839static void
2840embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2841{
2842 ev_idle_stop (EV_A_ idle);
2843}
2844#endif
2845
2846void
2847ev_embed_start (EV_P_ ev_embed *w)
2848{
2849 if (expect_false (ev_is_active (w)))
949 return; 2850 return;
950 2851
2852 {
2853 struct ev_loop *loop = w->other;
2854 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2855 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2856 }
2857
2858 EV_FREQUENT_CHECK;
2859
2860 ev_set_priority (&w->io, ev_priority (w));
2861 ev_io_start (EV_A_ &w->io);
2862
2863 ev_prepare_init (&w->prepare, embed_prepare_cb);
2864 ev_set_priority (&w->prepare, EV_MINPRI);
2865 ev_prepare_start (EV_A_ &w->prepare);
2866
2867 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2868
951 ev_start ((W)w, 1); 2869 ev_start (EV_A_ (W)w, 1);
952 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
953}
954 2870
955void evchild_stop (struct ev_child *w) 2871 EV_FREQUENT_CHECK;
2872}
2873
2874void
2875ev_embed_stop (EV_P_ ev_embed *w)
956{ 2876{
957 ev_clear ((W)w); 2877 clear_pending (EV_A_ (W)w);
958 if (ev_is_active (w)) 2878 if (expect_false (!ev_is_active (w)))
959 return; 2879 return;
960 2880
961 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2881 EV_FREQUENT_CHECK;
2882
2883 ev_io_stop (EV_A_ &w->io);
2884 ev_prepare_stop (EV_A_ &w->prepare);
2885
962 ev_stop ((W)w); 2886 ev_stop (EV_A_ (W)w);
2887
2888 EV_FREQUENT_CHECK;
963} 2889}
2890#endif
2891
2892#if EV_FORK_ENABLE
2893void
2894ev_fork_start (EV_P_ ev_fork *w)
2895{
2896 if (expect_false (ev_is_active (w)))
2897 return;
2898
2899 EV_FREQUENT_CHECK;
2900
2901 ev_start (EV_A_ (W)w, ++forkcnt);
2902 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2903 forks [forkcnt - 1] = w;
2904
2905 EV_FREQUENT_CHECK;
2906}
2907
2908void
2909ev_fork_stop (EV_P_ ev_fork *w)
2910{
2911 clear_pending (EV_A_ (W)w);
2912 if (expect_false (!ev_is_active (w)))
2913 return;
2914
2915 EV_FREQUENT_CHECK;
2916
2917 {
2918 int active = ev_active (w);
2919
2920 forks [active - 1] = forks [--forkcnt];
2921 ev_active (forks [active - 1]) = active;
2922 }
2923
2924 ev_stop (EV_A_ (W)w);
2925
2926 EV_FREQUENT_CHECK;
2927}
2928#endif
2929
2930#if EV_ASYNC_ENABLE
2931void
2932ev_async_start (EV_P_ ev_async *w)
2933{
2934 if (expect_false (ev_is_active (w)))
2935 return;
2936
2937 evpipe_init (EV_A);
2938
2939 EV_FREQUENT_CHECK;
2940
2941 ev_start (EV_A_ (W)w, ++asynccnt);
2942 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2943 asyncs [asynccnt - 1] = w;
2944
2945 EV_FREQUENT_CHECK;
2946}
2947
2948void
2949ev_async_stop (EV_P_ ev_async *w)
2950{
2951 clear_pending (EV_A_ (W)w);
2952 if (expect_false (!ev_is_active (w)))
2953 return;
2954
2955 EV_FREQUENT_CHECK;
2956
2957 {
2958 int active = ev_active (w);
2959
2960 asyncs [active - 1] = asyncs [--asynccnt];
2961 ev_active (asyncs [active - 1]) = active;
2962 }
2963
2964 ev_stop (EV_A_ (W)w);
2965
2966 EV_FREQUENT_CHECK;
2967}
2968
2969void
2970ev_async_send (EV_P_ ev_async *w)
2971{
2972 w->sent = 1;
2973 evpipe_write (EV_A_ &gotasync);
2974}
2975#endif
964 2976
965/*****************************************************************************/ 2977/*****************************************************************************/
966 2978
967struct ev_once 2979struct ev_once
968{ 2980{
969 struct ev_io io; 2981 ev_io io;
970 struct ev_timer to; 2982 ev_timer to;
971 void (*cb)(int revents, void *arg); 2983 void (*cb)(int revents, void *arg);
972 void *arg; 2984 void *arg;
973}; 2985};
974 2986
975static void 2987static void
976once_cb (struct ev_once *once, int revents) 2988once_cb (EV_P_ struct ev_once *once, int revents)
977{ 2989{
978 void (*cb)(int revents, void *arg) = once->cb; 2990 void (*cb)(int revents, void *arg) = once->cb;
979 void *arg = once->arg; 2991 void *arg = once->arg;
980 2992
981 evio_stop (&once->io); 2993 ev_io_stop (EV_A_ &once->io);
982 evtimer_stop (&once->to); 2994 ev_timer_stop (EV_A_ &once->to);
983 free (once); 2995 ev_free (once);
984 2996
985 cb (revents, arg); 2997 cb (revents, arg);
986} 2998}
987 2999
988static void 3000static void
989once_cb_io (struct ev_io *w, int revents) 3001once_cb_io (EV_P_ ev_io *w, int revents)
990{ 3002{
991 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3003 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
992} 3004}
993 3005
994static void 3006static void
995once_cb_to (struct ev_timer *w, int revents) 3007once_cb_to (EV_P_ ev_timer *w, int revents)
996{ 3008{
997 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3009 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
998} 3010}
999 3011
1000void 3012void
1001ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3013ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1002{ 3014{
1003 struct ev_once *once = malloc (sizeof (struct ev_once)); 3015 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1004 3016
1005 if (!once) 3017 if (expect_false (!once))
1006 cb (EV_ERROR, arg); 3018 {
1007 else 3019 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
3020 return;
1008 { 3021 }
3022
1009 once->cb = cb; 3023 once->cb = cb;
1010 once->arg = arg; 3024 once->arg = arg;
1011 3025
1012 evw_init (&once->io, once_cb_io); 3026 ev_init (&once->io, once_cb_io);
1013
1014 if (fd >= 0) 3027 if (fd >= 0)
1015 { 3028 {
1016 evio_set (&once->io, fd, events); 3029 ev_io_set (&once->io, fd, events);
1017 evio_start (&once->io); 3030 ev_io_start (EV_A_ &once->io);
1018 } 3031 }
1019 3032
1020 evw_init (&once->to, once_cb_to); 3033 ev_init (&once->to, once_cb_to);
1021
1022 if (timeout >= 0.) 3034 if (timeout >= 0.)
1023 { 3035 {
1024 evtimer_set (&once->to, timeout, 0.); 3036 ev_timer_set (&once->to, timeout, 0.);
1025 evtimer_start (&once->to); 3037 ev_timer_start (EV_A_ &once->to);
1026 }
1027 }
1028}
1029
1030/*****************************************************************************/
1031
1032#if 0
1033
1034struct ev_io wio;
1035
1036static void
1037sin_cb (struct ev_io *w, int revents)
1038{
1039 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1040}
1041
1042static void
1043ocb (struct ev_timer *w, int revents)
1044{
1045 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1046 evtimer_stop (w);
1047 evtimer_start (w);
1048}
1049
1050static void
1051scb (struct ev_signal *w, int revents)
1052{
1053 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1054 evio_stop (&wio);
1055 evio_start (&wio);
1056}
1057
1058static void
1059gcb (struct ev_signal *w, int revents)
1060{
1061 fprintf (stderr, "generic %x\n", revents);
1062
1063}
1064
1065int main (void)
1066{
1067 ev_init (0);
1068
1069 evio_init (&wio, sin_cb, 0, EV_READ);
1070 evio_start (&wio);
1071
1072 struct ev_timer t[10000];
1073
1074#if 0
1075 int i;
1076 for (i = 0; i < 10000; ++i)
1077 { 3038 }
1078 struct ev_timer *w = t + i;
1079 evw_init (w, ocb, i);
1080 evtimer_init_abs (w, ocb, drand48 (), 0.99775533);
1081 evtimer_start (w);
1082 if (drand48 () < 0.5)
1083 evtimer_stop (w);
1084 }
1085#endif
1086
1087 struct ev_timer t1;
1088 evtimer_init (&t1, ocb, 5, 10);
1089 evtimer_start (&t1);
1090
1091 struct ev_signal sig;
1092 evsignal_init (&sig, scb, SIGQUIT);
1093 evsignal_start (&sig);
1094
1095 struct ev_check cw;
1096 evcheck_init (&cw, gcb);
1097 evcheck_start (&cw);
1098
1099 struct ev_idle iw;
1100 evidle_init (&iw, gcb);
1101 evidle_start (&iw);
1102
1103 ev_loop (0);
1104
1105 return 0;
1106} 3039}
1107 3040
3041#if EV_MULTIPLICITY
3042 #include "ev_wrap.h"
1108#endif 3043#endif
1109 3044
3045#ifdef __cplusplus
3046}
3047#endif
1110 3048
1111
1112

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines