ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.168 by root, Sat Dec 8 14:12:07 2007 UTC vs.
Revision 1.261 by root, Mon Sep 29 03:31:14 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
129#ifndef _WIN32 154#ifndef _WIN32
130# include <sys/time.h> 155# include <sys/time.h>
131# include <sys/wait.h> 156# include <sys/wait.h>
132# include <unistd.h> 157# include <unistd.h>
133#else 158#else
159# include <io.h>
134# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 161# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
138# endif 164# endif
139#endif 165#endif
140 166
141/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
142 168
143#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
144# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
145#endif 175#endif
146 176
147#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
179#endif
180
181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
185# define EV_USE_NANOSLEEP 0
186# endif
149#endif 187#endif
150 188
151#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
153#endif 191#endif
159# define EV_USE_POLL 1 197# define EV_USE_POLL 1
160# endif 198# endif
161#endif 199#endif
162 200
163#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
164# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
165#endif 207#endif
166 208
167#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
169#endif 211#endif
171#ifndef EV_USE_PORT 213#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 214# define EV_USE_PORT 0
173#endif 215#endif
174 216
175#ifndef EV_USE_INOTIFY 217#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1
220# else
176# define EV_USE_INOTIFY 0 221# define EV_USE_INOTIFY 0
222# endif
177#endif 223#endif
178 224
179#ifndef EV_PID_HASHSIZE 225#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 226# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 227# define EV_PID_HASHSIZE 1
190# else 236# else
191# define EV_INOTIFY_HASHSIZE 16 237# define EV_INOTIFY_HASHSIZE 16
192# endif 238# endif
193#endif 239#endif
194 240
195/**/ 241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 268
197#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
200#endif 272#endif
202#ifndef CLOCK_REALTIME 274#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 275# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 276# define EV_USE_REALTIME 0
205#endif 277#endif
206 278
279#if !EV_STAT_ENABLE
280# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0
282#endif
283
284#if !EV_USE_NANOSLEEP
285# ifndef _WIN32
286# include <sys/select.h>
287# endif
288#endif
289
290#if EV_USE_INOTIFY
291# include <sys/inotify.h>
292#endif
293
207#if EV_SELECT_IS_WINSOCKET 294#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 295# include <winsock.h>
209#endif 296#endif
210 297
211#if !EV_STAT_ENABLE 298#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 299/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
300# include <stdint.h>
301# ifdef __cplusplus
302extern "C" {
213#endif 303# endif
214 304int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 305# ifdef __cplusplus
216# include <sys/inotify.h> 306}
307# endif
217#endif 308#endif
218 309
219/**/ 310/**/
311
312#if EV_VERIFY >= 3
313# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
314#else
315# define EV_FREQUENT_CHECK do { } while (0)
316#endif
317
318/*
319 * This is used to avoid floating point rounding problems.
320 * It is added to ev_rt_now when scheduling periodics
321 * to ensure progress, time-wise, even when rounding
322 * errors are against us.
323 * This value is good at least till the year 4000.
324 * Better solutions welcome.
325 */
326#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 327
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 328#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 329#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 330/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 331
225#if __GNUC__ >= 3 332#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 333# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 334# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 335#else
236# define expect(expr,value) (expr) 336# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 337# define noinline
338# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
339# define inline
340# endif
240#endif 341#endif
241 342
242#define expect_false(expr) expect ((expr) != 0, 0) 343#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 344#define expect_true(expr) expect ((expr) != 0, 1)
345#define inline_size static inline
346
347#if EV_MINIMAL
348# define inline_speed static noinline
349#else
350# define inline_speed static inline
351#endif
244 352
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 353#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 354#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 355
248#define EMPTY /* required for microsofts broken pseudo-c compiler */ 356#define EMPTY /* required for microsofts broken pseudo-c compiler */
250 358
251typedef ev_watcher *W; 359typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 360typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 361typedef ev_watcher_time *WT;
254 362
363#define ev_active(w) ((W)(w))->active
364#define ev_at(w) ((WT)(w))->at
365
366#if EV_USE_MONOTONIC
367/* sig_atomic_t is used to avoid per-thread variables or locking but still */
368/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 369static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
370#endif
256 371
257#ifdef _WIN32 372#ifdef _WIN32
258# include "ev_win32.c" 373# include "ev_win32.c"
259#endif 374#endif
260 375
281 perror (msg); 396 perror (msg);
282 abort (); 397 abort ();
283 } 398 }
284} 399}
285 400
401static void *
402ev_realloc_emul (void *ptr, long size)
403{
404 /* some systems, notably openbsd and darwin, fail to properly
405 * implement realloc (x, 0) (as required by both ansi c-98 and
406 * the single unix specification, so work around them here.
407 */
408
409 if (size)
410 return realloc (ptr, size);
411
412 free (ptr);
413 return 0;
414}
415
286static void *(*alloc)(void *ptr, long size); 416static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 417
288void 418void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 419ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 420{
291 alloc = cb; 421 alloc = cb;
292} 422}
293 423
294inline_speed void * 424inline_speed void *
295ev_realloc (void *ptr, long size) 425ev_realloc (void *ptr, long size)
296{ 426{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 427 ptr = alloc (ptr, size);
298 428
299 if (!ptr && size) 429 if (!ptr && size)
300 { 430 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 431 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 432 abort ();
325 W w; 455 W w;
326 int events; 456 int events;
327} ANPENDING; 457} ANPENDING;
328 458
329#if EV_USE_INOTIFY 459#if EV_USE_INOTIFY
460/* hash table entry per inotify-id */
330typedef struct 461typedef struct
331{ 462{
332 WL head; 463 WL head;
333} ANFS; 464} ANFS;
465#endif
466
467/* Heap Entry */
468#if EV_HEAP_CACHE_AT
469 typedef struct {
470 ev_tstamp at;
471 WT w;
472 } ANHE;
473
474 #define ANHE_w(he) (he).w /* access watcher, read-write */
475 #define ANHE_at(he) (he).at /* access cached at, read-only */
476 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
477#else
478 typedef WT ANHE;
479
480 #define ANHE_w(he) (he)
481 #define ANHE_at(he) (he)->at
482 #define ANHE_at_cache(he)
334#endif 483#endif
335 484
336#if EV_MULTIPLICITY 485#if EV_MULTIPLICITY
337 486
338 struct ev_loop 487 struct ev_loop
396{ 545{
397 return ev_rt_now; 546 return ev_rt_now;
398} 547}
399#endif 548#endif
400 549
550void
551ev_sleep (ev_tstamp delay)
552{
553 if (delay > 0.)
554 {
555#if EV_USE_NANOSLEEP
556 struct timespec ts;
557
558 ts.tv_sec = (time_t)delay;
559 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
560
561 nanosleep (&ts, 0);
562#elif defined(_WIN32)
563 Sleep ((unsigned long)(delay * 1e3));
564#else
565 struct timeval tv;
566
567 tv.tv_sec = (time_t)delay;
568 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
569
570 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
571 /* somehting nto guaranteed by newer posix versions, but guaranteed */
572 /* by older ones */
573 select (0, 0, 0, 0, &tv);
574#endif
575 }
576}
577
578/*****************************************************************************/
579
580#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
581
401int inline_size 582int inline_size
402array_nextsize (int elem, int cur, int cnt) 583array_nextsize (int elem, int cur, int cnt)
403{ 584{
404 int ncur = cur + 1; 585 int ncur = cur + 1;
405 586
406 do 587 do
407 ncur <<= 1; 588 ncur <<= 1;
408 while (cnt > ncur); 589 while (cnt > ncur);
409 590
410 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 591 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
411 if (elem * ncur > 4096) 592 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
412 { 593 {
413 ncur *= elem; 594 ncur *= elem;
414 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 595 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
415 ncur = ncur - sizeof (void *) * 4; 596 ncur = ncur - sizeof (void *) * 4;
416 ncur /= elem; 597 ncur /= elem;
417 } 598 }
418 599
419 return ncur; 600 return ncur;
420} 601}
421 602
422inline_speed void * 603static noinline void *
423array_realloc (int elem, void *base, int *cur, int cnt) 604array_realloc (int elem, void *base, int *cur, int cnt)
424{ 605{
425 *cur = array_nextsize (elem, *cur, cnt); 606 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 607 return ev_realloc (base, elem * *cur);
427} 608}
452 633
453void noinline 634void noinline
454ev_feed_event (EV_P_ void *w, int revents) 635ev_feed_event (EV_P_ void *w, int revents)
455{ 636{
456 W w_ = (W)w; 637 W w_ = (W)w;
638 int pri = ABSPRI (w_);
457 639
458 if (expect_false (w_->pending)) 640 if (expect_false (w_->pending))
641 pendings [pri][w_->pending - 1].events |= revents;
642 else
459 { 643 {
644 w_->pending = ++pendingcnt [pri];
645 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
646 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 647 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 648 }
463
464 w_->pending = ++pendingcnt [ABSPRI (w_)];
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 649}
469 650
470void inline_size 651void inline_speed
471queue_events (EV_P_ W *events, int eventcnt, int type) 652queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 653{
473 int i; 654 int i;
474 655
475 for (i = 0; i < eventcnt; ++i) 656 for (i = 0; i < eventcnt; ++i)
522 { 703 {
523 int fd = fdchanges [i]; 704 int fd = fdchanges [i];
524 ANFD *anfd = anfds + fd; 705 ANFD *anfd = anfds + fd;
525 ev_io *w; 706 ev_io *w;
526 707
527 int events = 0; 708 unsigned char events = 0;
528 709
529 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 710 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
530 events |= w->events; 711 events |= (unsigned char)w->events;
531 712
532#if EV_SELECT_IS_WINSOCKET 713#if EV_SELECT_IS_WINSOCKET
533 if (events) 714 if (events)
534 { 715 {
535 unsigned long argp; 716 unsigned long arg;
717 #ifdef EV_FD_TO_WIN32_HANDLE
718 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
719 #else
536 anfd->handle = _get_osfhandle (fd); 720 anfd->handle = _get_osfhandle (fd);
721 #endif
537 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 722 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
538 } 723 }
539#endif 724#endif
540 725
726 {
727 unsigned char o_events = anfd->events;
728 unsigned char o_reify = anfd->reify;
729
541 anfd->reify = 0; 730 anfd->reify = 0;
542
543 backend_modify (EV_A_ fd, anfd->events, events);
544 anfd->events = events; 731 anfd->events = events;
732
733 if (o_events != events || o_reify & EV_IOFDSET)
734 backend_modify (EV_A_ fd, o_events, events);
735 }
545 } 736 }
546 737
547 fdchangecnt = 0; 738 fdchangecnt = 0;
548} 739}
549 740
550void inline_size 741void inline_size
551fd_change (EV_P_ int fd) 742fd_change (EV_P_ int fd, int flags)
552{ 743{
553 if (expect_false (anfds [fd].reify)) 744 unsigned char reify = anfds [fd].reify;
554 return;
555
556 anfds [fd].reify = 1; 745 anfds [fd].reify |= flags;
557 746
747 if (expect_true (!reify))
748 {
558 ++fdchangecnt; 749 ++fdchangecnt;
559 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 750 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
560 fdchanges [fdchangecnt - 1] = fd; 751 fdchanges [fdchangecnt - 1] = fd;
752 }
561} 753}
562 754
563void inline_speed 755void inline_speed
564fd_kill (EV_P_ int fd) 756fd_kill (EV_P_ int fd)
565{ 757{
588{ 780{
589 int fd; 781 int fd;
590 782
591 for (fd = 0; fd < anfdmax; ++fd) 783 for (fd = 0; fd < anfdmax; ++fd)
592 if (anfds [fd].events) 784 if (anfds [fd].events)
593 if (!fd_valid (fd) == -1 && errno == EBADF) 785 if (!fd_valid (fd) && errno == EBADF)
594 fd_kill (EV_A_ fd); 786 fd_kill (EV_A_ fd);
595} 787}
596 788
597/* called on ENOMEM in select/poll to kill some fds and retry */ 789/* called on ENOMEM in select/poll to kill some fds and retry */
598static void noinline 790static void noinline
616 808
617 for (fd = 0; fd < anfdmax; ++fd) 809 for (fd = 0; fd < anfdmax; ++fd)
618 if (anfds [fd].events) 810 if (anfds [fd].events)
619 { 811 {
620 anfds [fd].events = 0; 812 anfds [fd].events = 0;
621 fd_change (EV_A_ fd); 813 fd_change (EV_A_ fd, EV_IOFDSET | 1);
622 } 814 }
623} 815}
624 816
625/*****************************************************************************/ 817/*****************************************************************************/
626 818
819/*
820 * the heap functions want a real array index. array index 0 uis guaranteed to not
821 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
822 * the branching factor of the d-tree.
823 */
824
825/*
826 * at the moment we allow libev the luxury of two heaps,
827 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
828 * which is more cache-efficient.
829 * the difference is about 5% with 50000+ watchers.
830 */
831#if EV_USE_4HEAP
832
833#define DHEAP 4
834#define HEAP0 (DHEAP - 1) /* index of first element in heap */
835#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
836#define UPHEAP_DONE(p,k) ((p) == (k))
837
838/* away from the root */
627void inline_speed 839void inline_speed
628upheap (WT *heap, int k) 840downheap (ANHE *heap, int N, int k)
629{ 841{
630 WT w = heap [k]; 842 ANHE he = heap [k];
843 ANHE *E = heap + N + HEAP0;
631 844
632 while (k && heap [k >> 1]->at > w->at) 845 for (;;)
633 {
634 heap [k] = heap [k >> 1];
635 ((W)heap [k])->active = k + 1;
636 k >>= 1;
637 } 846 {
847 ev_tstamp minat;
848 ANHE *minpos;
849 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
638 850
851 /* find minimum child */
852 if (expect_true (pos + DHEAP - 1 < E))
853 {
854 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
855 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
856 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
857 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
858 }
859 else if (pos < E)
860 {
861 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
862 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
863 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
864 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
865 }
866 else
867 break;
868
869 if (ANHE_at (he) <= minat)
870 break;
871
872 heap [k] = *minpos;
873 ev_active (ANHE_w (*minpos)) = k;
874
875 k = minpos - heap;
876 }
877
639 heap [k] = w; 878 heap [k] = he;
640 ((W)heap [k])->active = k + 1; 879 ev_active (ANHE_w (he)) = k;
641
642} 880}
643 881
882#else /* 4HEAP */
883
884#define HEAP0 1
885#define HPARENT(k) ((k) >> 1)
886#define UPHEAP_DONE(p,k) (!(p))
887
888/* away from the root */
644void inline_speed 889void inline_speed
645downheap (WT *heap, int N, int k) 890downheap (ANHE *heap, int N, int k)
646{ 891{
647 WT w = heap [k]; 892 ANHE he = heap [k];
648 893
649 while (k < (N >> 1)) 894 for (;;)
650 { 895 {
651 int j = k << 1; 896 int c = k << 1;
652 897
653 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 898 if (c > N + HEAP0 - 1)
654 ++j;
655
656 if (w->at <= heap [j]->at)
657 break; 899 break;
658 900
901 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
902 ? 1 : 0;
903
904 if (ANHE_at (he) <= ANHE_at (heap [c]))
905 break;
906
659 heap [k] = heap [j]; 907 heap [k] = heap [c];
660 ((W)heap [k])->active = k + 1; 908 ev_active (ANHE_w (heap [k])) = k;
909
661 k = j; 910 k = c;
662 } 911 }
663 912
664 heap [k] = w; 913 heap [k] = he;
665 ((W)heap [k])->active = k + 1; 914 ev_active (ANHE_w (he)) = k;
915}
916#endif
917
918/* towards the root */
919void inline_speed
920upheap (ANHE *heap, int k)
921{
922 ANHE he = heap [k];
923
924 for (;;)
925 {
926 int p = HPARENT (k);
927
928 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
929 break;
930
931 heap [k] = heap [p];
932 ev_active (ANHE_w (heap [k])) = k;
933 k = p;
934 }
935
936 heap [k] = he;
937 ev_active (ANHE_w (he)) = k;
666} 938}
667 939
668void inline_size 940void inline_size
669adjustheap (WT *heap, int N, int k) 941adjustheap (ANHE *heap, int N, int k)
670{ 942{
943 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
671 upheap (heap, k); 944 upheap (heap, k);
945 else
672 downheap (heap, N, k); 946 downheap (heap, N, k);
947}
948
949/* rebuild the heap: this function is used only once and executed rarely */
950void inline_size
951reheap (ANHE *heap, int N)
952{
953 int i;
954
955 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
956 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
957 for (i = 0; i < N; ++i)
958 upheap (heap, i + HEAP0);
673} 959}
674 960
675/*****************************************************************************/ 961/*****************************************************************************/
676 962
677typedef struct 963typedef struct
678{ 964{
679 WL head; 965 WL head;
680 sig_atomic_t volatile gotsig; 966 EV_ATOMIC_T gotsig;
681} ANSIG; 967} ANSIG;
682 968
683static ANSIG *signals; 969static ANSIG *signals;
684static int signalmax; 970static int signalmax;
685 971
686static int sigpipe [2]; 972static EV_ATOMIC_T gotsig;
687static sig_atomic_t volatile gotsig;
688static ev_io sigev;
689 973
690void inline_size 974void inline_size
691signals_init (ANSIG *base, int count) 975signals_init (ANSIG *base, int count)
692{ 976{
693 while (count--) 977 while (count--)
697 981
698 ++base; 982 ++base;
699 } 983 }
700} 984}
701 985
702static void 986/*****************************************************************************/
703sighandler (int signum)
704{
705#if _WIN32
706 signal (signum, sighandler);
707#endif
708 987
709 signals [signum - 1].gotsig = 1;
710
711 if (!gotsig)
712 {
713 int old_errno = errno;
714 gotsig = 1;
715 write (sigpipe [1], &signum, 1);
716 errno = old_errno;
717 }
718}
719
720void noinline
721ev_feed_signal_event (EV_P_ int signum)
722{
723 WL w;
724
725#if EV_MULTIPLICITY
726 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
727#endif
728
729 --signum;
730
731 if (signum < 0 || signum >= signalmax)
732 return;
733
734 signals [signum].gotsig = 0;
735
736 for (w = signals [signum].head; w; w = w->next)
737 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
738}
739
740static void
741sigcb (EV_P_ ev_io *iow, int revents)
742{
743 int signum;
744
745 read (sigpipe [0], &revents, 1);
746 gotsig = 0;
747
748 for (signum = signalmax; signum--; )
749 if (signals [signum].gotsig)
750 ev_feed_signal_event (EV_A_ signum + 1);
751}
752
753void inline_size 988void inline_speed
754fd_intern (int fd) 989fd_intern (int fd)
755{ 990{
756#ifdef _WIN32 991#ifdef _WIN32
757 int arg = 1; 992 unsigned long arg = 1;
758 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 993 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
759#else 994#else
760 fcntl (fd, F_SETFD, FD_CLOEXEC); 995 fcntl (fd, F_SETFD, FD_CLOEXEC);
761 fcntl (fd, F_SETFL, O_NONBLOCK); 996 fcntl (fd, F_SETFL, O_NONBLOCK);
762#endif 997#endif
763} 998}
764 999
765static void noinline 1000static void noinline
766siginit (EV_P) 1001evpipe_init (EV_P)
767{ 1002{
1003 if (!ev_is_active (&pipeev))
1004 {
1005#if EV_USE_EVENTFD
1006 if ((evfd = eventfd (0, 0)) >= 0)
1007 {
1008 evpipe [0] = -1;
1009 fd_intern (evfd);
1010 ev_io_set (&pipeev, evfd, EV_READ);
1011 }
1012 else
1013#endif
1014 {
1015 while (pipe (evpipe))
1016 syserr ("(libev) error creating signal/async pipe");
1017
768 fd_intern (sigpipe [0]); 1018 fd_intern (evpipe [0]);
769 fd_intern (sigpipe [1]); 1019 fd_intern (evpipe [1]);
1020 ev_io_set (&pipeev, evpipe [0], EV_READ);
1021 }
770 1022
771 ev_io_set (&sigev, sigpipe [0], EV_READ);
772 ev_io_start (EV_A_ &sigev); 1023 ev_io_start (EV_A_ &pipeev);
773 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1024 ev_unref (EV_A); /* watcher should not keep loop alive */
1025 }
1026}
1027
1028void inline_size
1029evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1030{
1031 if (!*flag)
1032 {
1033 int old_errno = errno; /* save errno because write might clobber it */
1034
1035 *flag = 1;
1036
1037#if EV_USE_EVENTFD
1038 if (evfd >= 0)
1039 {
1040 uint64_t counter = 1;
1041 write (evfd, &counter, sizeof (uint64_t));
1042 }
1043 else
1044#endif
1045 write (evpipe [1], &old_errno, 1);
1046
1047 errno = old_errno;
1048 }
1049}
1050
1051static void
1052pipecb (EV_P_ ev_io *iow, int revents)
1053{
1054#if EV_USE_EVENTFD
1055 if (evfd >= 0)
1056 {
1057 uint64_t counter;
1058 read (evfd, &counter, sizeof (uint64_t));
1059 }
1060 else
1061#endif
1062 {
1063 char dummy;
1064 read (evpipe [0], &dummy, 1);
1065 }
1066
1067 if (gotsig && ev_is_default_loop (EV_A))
1068 {
1069 int signum;
1070 gotsig = 0;
1071
1072 for (signum = signalmax; signum--; )
1073 if (signals [signum].gotsig)
1074 ev_feed_signal_event (EV_A_ signum + 1);
1075 }
1076
1077#if EV_ASYNC_ENABLE
1078 if (gotasync)
1079 {
1080 int i;
1081 gotasync = 0;
1082
1083 for (i = asynccnt; i--; )
1084 if (asyncs [i]->sent)
1085 {
1086 asyncs [i]->sent = 0;
1087 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1088 }
1089 }
1090#endif
774} 1091}
775 1092
776/*****************************************************************************/ 1093/*****************************************************************************/
777 1094
1095static void
1096ev_sighandler (int signum)
1097{
1098#if EV_MULTIPLICITY
1099 struct ev_loop *loop = &default_loop_struct;
1100#endif
1101
1102#if _WIN32
1103 signal (signum, ev_sighandler);
1104#endif
1105
1106 signals [signum - 1].gotsig = 1;
1107 evpipe_write (EV_A_ &gotsig);
1108}
1109
1110void noinline
1111ev_feed_signal_event (EV_P_ int signum)
1112{
1113 WL w;
1114
1115#if EV_MULTIPLICITY
1116 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1117#endif
1118
1119 --signum;
1120
1121 if (signum < 0 || signum >= signalmax)
1122 return;
1123
1124 signals [signum].gotsig = 0;
1125
1126 for (w = signals [signum].head; w; w = w->next)
1127 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1128}
1129
1130/*****************************************************************************/
1131
778static ev_child *childs [EV_PID_HASHSIZE]; 1132static WL childs [EV_PID_HASHSIZE];
779 1133
780#ifndef _WIN32 1134#ifndef _WIN32
781 1135
782static ev_signal childev; 1136static ev_signal childev;
783 1137
1138#ifndef WIFCONTINUED
1139# define WIFCONTINUED(status) 0
1140#endif
1141
784void inline_speed 1142void inline_speed
785child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1143child_reap (EV_P_ int chain, int pid, int status)
786{ 1144{
787 ev_child *w; 1145 ev_child *w;
1146 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
788 1147
789 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1148 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1149 {
790 if (w->pid == pid || !w->pid) 1150 if ((w->pid == pid || !w->pid)
1151 && (!traced || (w->flags & 1)))
791 { 1152 {
792 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1153 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
793 w->rpid = pid; 1154 w->rpid = pid;
794 w->rstatus = status; 1155 w->rstatus = status;
795 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1156 ev_feed_event (EV_A_ (W)w, EV_CHILD);
796 } 1157 }
1158 }
797} 1159}
798 1160
799#ifndef WCONTINUED 1161#ifndef WCONTINUED
800# define WCONTINUED 0 1162# define WCONTINUED 0
801#endif 1163#endif
810 if (!WCONTINUED 1172 if (!WCONTINUED
811 || errno != EINVAL 1173 || errno != EINVAL
812 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1174 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
813 return; 1175 return;
814 1176
815 /* make sure we are called again until all childs have been reaped */ 1177 /* make sure we are called again until all children have been reaped */
816 /* we need to do it this way so that the callback gets called before we continue */ 1178 /* we need to do it this way so that the callback gets called before we continue */
817 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1179 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
818 1180
819 child_reap (EV_A_ sw, pid, pid, status); 1181 child_reap (EV_A_ pid, pid, status);
820 if (EV_PID_HASHSIZE > 1) 1182 if (EV_PID_HASHSIZE > 1)
821 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1183 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
822} 1184}
823 1185
824#endif 1186#endif
825 1187
826/*****************************************************************************/ 1188/*****************************************************************************/
898} 1260}
899 1261
900unsigned int 1262unsigned int
901ev_embeddable_backends (void) 1263ev_embeddable_backends (void)
902{ 1264{
903 return EVBACKEND_EPOLL 1265 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
904 | EVBACKEND_KQUEUE 1266
905 | EVBACKEND_PORT; 1267 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1268 /* please fix it and tell me how to detect the fix */
1269 flags &= ~EVBACKEND_EPOLL;
1270
1271 return flags;
906} 1272}
907 1273
908unsigned int 1274unsigned int
909ev_backend (EV_P) 1275ev_backend (EV_P)
910{ 1276{
913 1279
914unsigned int 1280unsigned int
915ev_loop_count (EV_P) 1281ev_loop_count (EV_P)
916{ 1282{
917 return loop_count; 1283 return loop_count;
1284}
1285
1286void
1287ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1288{
1289 io_blocktime = interval;
1290}
1291
1292void
1293ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1294{
1295 timeout_blocktime = interval;
918} 1296}
919 1297
920static void noinline 1298static void noinline
921loop_init (EV_P_ unsigned int flags) 1299loop_init (EV_P_ unsigned int flags)
922{ 1300{
928 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1306 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
929 have_monotonic = 1; 1307 have_monotonic = 1;
930 } 1308 }
931#endif 1309#endif
932 1310
933 ev_rt_now = ev_time (); 1311 ev_rt_now = ev_time ();
934 mn_now = get_clock (); 1312 mn_now = get_clock ();
935 now_floor = mn_now; 1313 now_floor = mn_now;
936 rtmn_diff = ev_rt_now - mn_now; 1314 rtmn_diff = ev_rt_now - mn_now;
1315
1316 io_blocktime = 0.;
1317 timeout_blocktime = 0.;
1318 backend = 0;
1319 backend_fd = -1;
1320 gotasync = 0;
1321#if EV_USE_INOTIFY
1322 fs_fd = -2;
1323#endif
937 1324
938 /* pid check not overridable via env */ 1325 /* pid check not overridable via env */
939#ifndef _WIN32 1326#ifndef _WIN32
940 if (flags & EVFLAG_FORKCHECK) 1327 if (flags & EVFLAG_FORKCHECK)
941 curpid = getpid (); 1328 curpid = getpid ();
944 if (!(flags & EVFLAG_NOENV) 1331 if (!(flags & EVFLAG_NOENV)
945 && !enable_secure () 1332 && !enable_secure ()
946 && getenv ("LIBEV_FLAGS")) 1333 && getenv ("LIBEV_FLAGS"))
947 flags = atoi (getenv ("LIBEV_FLAGS")); 1334 flags = atoi (getenv ("LIBEV_FLAGS"));
948 1335
949 if (!(flags & 0x0000ffffUL)) 1336 if (!(flags & 0x0000ffffU))
950 flags |= ev_recommended_backends (); 1337 flags |= ev_recommended_backends ();
951
952 backend = 0;
953 backend_fd = -1;
954#if EV_USE_INOTIFY
955 fs_fd = -2;
956#endif
957 1338
958#if EV_USE_PORT 1339#if EV_USE_PORT
959 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1340 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
960#endif 1341#endif
961#if EV_USE_KQUEUE 1342#if EV_USE_KQUEUE
969#endif 1350#endif
970#if EV_USE_SELECT 1351#if EV_USE_SELECT
971 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1352 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
972#endif 1353#endif
973 1354
974 ev_init (&sigev, sigcb); 1355 ev_init (&pipeev, pipecb);
975 ev_set_priority (&sigev, EV_MAXPRI); 1356 ev_set_priority (&pipeev, EV_MAXPRI);
976 } 1357 }
977} 1358}
978 1359
979static void noinline 1360static void noinline
980loop_destroy (EV_P) 1361loop_destroy (EV_P)
981{ 1362{
982 int i; 1363 int i;
1364
1365 if (ev_is_active (&pipeev))
1366 {
1367 ev_ref (EV_A); /* signal watcher */
1368 ev_io_stop (EV_A_ &pipeev);
1369
1370#if EV_USE_EVENTFD
1371 if (evfd >= 0)
1372 close (evfd);
1373#endif
1374
1375 if (evpipe [0] >= 0)
1376 {
1377 close (evpipe [0]);
1378 close (evpipe [1]);
1379 }
1380 }
983 1381
984#if EV_USE_INOTIFY 1382#if EV_USE_INOTIFY
985 if (fs_fd >= 0) 1383 if (fs_fd >= 0)
986 close (fs_fd); 1384 close (fs_fd);
987#endif 1385#endif
1010 array_free (pending, [i]); 1408 array_free (pending, [i]);
1011#if EV_IDLE_ENABLE 1409#if EV_IDLE_ENABLE
1012 array_free (idle, [i]); 1410 array_free (idle, [i]);
1013#endif 1411#endif
1014 } 1412 }
1413
1414 ev_free (anfds); anfdmax = 0;
1015 1415
1016 /* have to use the microsoft-never-gets-it-right macro */ 1416 /* have to use the microsoft-never-gets-it-right macro */
1017 array_free (fdchange, EMPTY); 1417 array_free (fdchange, EMPTY);
1018 array_free (timer, EMPTY); 1418 array_free (timer, EMPTY);
1019#if EV_PERIODIC_ENABLE 1419#if EV_PERIODIC_ENABLE
1020 array_free (periodic, EMPTY); 1420 array_free (periodic, EMPTY);
1021#endif 1421#endif
1422#if EV_FORK_ENABLE
1423 array_free (fork, EMPTY);
1424#endif
1022 array_free (prepare, EMPTY); 1425 array_free (prepare, EMPTY);
1023 array_free (check, EMPTY); 1426 array_free (check, EMPTY);
1427#if EV_ASYNC_ENABLE
1428 array_free (async, EMPTY);
1429#endif
1024 1430
1025 backend = 0; 1431 backend = 0;
1026} 1432}
1027 1433
1434#if EV_USE_INOTIFY
1028void inline_size infy_fork (EV_P); 1435void inline_size infy_fork (EV_P);
1436#endif
1029 1437
1030void inline_size 1438void inline_size
1031loop_fork (EV_P) 1439loop_fork (EV_P)
1032{ 1440{
1033#if EV_USE_PORT 1441#if EV_USE_PORT
1041#endif 1449#endif
1042#if EV_USE_INOTIFY 1450#if EV_USE_INOTIFY
1043 infy_fork (EV_A); 1451 infy_fork (EV_A);
1044#endif 1452#endif
1045 1453
1046 if (ev_is_active (&sigev)) 1454 if (ev_is_active (&pipeev))
1047 { 1455 {
1048 /* default loop */ 1456 /* this "locks" the handlers against writing to the pipe */
1457 /* while we modify the fd vars */
1458 gotsig = 1;
1459#if EV_ASYNC_ENABLE
1460 gotasync = 1;
1461#endif
1049 1462
1050 ev_ref (EV_A); 1463 ev_ref (EV_A);
1051 ev_io_stop (EV_A_ &sigev); 1464 ev_io_stop (EV_A_ &pipeev);
1465
1466#if EV_USE_EVENTFD
1467 if (evfd >= 0)
1468 close (evfd);
1469#endif
1470
1471 if (evpipe [0] >= 0)
1472 {
1052 close (sigpipe [0]); 1473 close (evpipe [0]);
1053 close (sigpipe [1]); 1474 close (evpipe [1]);
1475 }
1054 1476
1055 while (pipe (sigpipe))
1056 syserr ("(libev) error creating pipe");
1057
1058 siginit (EV_A); 1477 evpipe_init (EV_A);
1478 /* now iterate over everything, in case we missed something */
1479 pipecb (EV_A_ &pipeev, EV_READ);
1059 } 1480 }
1060 1481
1061 postfork = 0; 1482 postfork = 0;
1062} 1483}
1063 1484
1064#if EV_MULTIPLICITY 1485#if EV_MULTIPLICITY
1486
1065struct ev_loop * 1487struct ev_loop *
1066ev_loop_new (unsigned int flags) 1488ev_loop_new (unsigned int flags)
1067{ 1489{
1068 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1490 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1069 1491
1085} 1507}
1086 1508
1087void 1509void
1088ev_loop_fork (EV_P) 1510ev_loop_fork (EV_P)
1089{ 1511{
1090 postfork = 1; 1512 postfork = 1; /* must be in line with ev_default_fork */
1091} 1513}
1092 1514
1515#if EV_VERIFY
1516static void noinline
1517verify_watcher (EV_P_ W w)
1518{
1519 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1520
1521 if (w->pending)
1522 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1523}
1524
1525static void noinline
1526verify_heap (EV_P_ ANHE *heap, int N)
1527{
1528 int i;
1529
1530 for (i = HEAP0; i < N + HEAP0; ++i)
1531 {
1532 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1533 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1534 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1535
1536 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1537 }
1538}
1539
1540static void noinline
1541array_verify (EV_P_ W *ws, int cnt)
1542{
1543 while (cnt--)
1544 {
1545 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1546 verify_watcher (EV_A_ ws [cnt]);
1547 }
1548}
1549#endif
1550
1551void
1552ev_loop_verify (EV_P)
1553{
1554#if EV_VERIFY
1555 int i;
1556 WL w;
1557
1558 assert (activecnt >= -1);
1559
1560 assert (fdchangemax >= fdchangecnt);
1561 for (i = 0; i < fdchangecnt; ++i)
1562 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1563
1564 assert (anfdmax >= 0);
1565 for (i = 0; i < anfdmax; ++i)
1566 for (w = anfds [i].head; w; w = w->next)
1567 {
1568 verify_watcher (EV_A_ (W)w);
1569 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1570 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1571 }
1572
1573 assert (timermax >= timercnt);
1574 verify_heap (EV_A_ timers, timercnt);
1575
1576#if EV_PERIODIC_ENABLE
1577 assert (periodicmax >= periodiccnt);
1578 verify_heap (EV_A_ periodics, periodiccnt);
1579#endif
1580
1581 for (i = NUMPRI; i--; )
1582 {
1583 assert (pendingmax [i] >= pendingcnt [i]);
1584#if EV_IDLE_ENABLE
1585 assert (idleall >= 0);
1586 assert (idlemax [i] >= idlecnt [i]);
1587 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1588#endif
1589 }
1590
1591#if EV_FORK_ENABLE
1592 assert (forkmax >= forkcnt);
1593 array_verify (EV_A_ (W *)forks, forkcnt);
1594#endif
1595
1596#if EV_ASYNC_ENABLE
1597 assert (asyncmax >= asynccnt);
1598 array_verify (EV_A_ (W *)asyncs, asynccnt);
1599#endif
1600
1601 assert (preparemax >= preparecnt);
1602 array_verify (EV_A_ (W *)prepares, preparecnt);
1603
1604 assert (checkmax >= checkcnt);
1605 array_verify (EV_A_ (W *)checks, checkcnt);
1606
1607# if 0
1608 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1609 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1093#endif 1610# endif
1611#endif
1612}
1613
1614#endif /* multiplicity */
1094 1615
1095#if EV_MULTIPLICITY 1616#if EV_MULTIPLICITY
1096struct ev_loop * 1617struct ev_loop *
1097ev_default_loop_init (unsigned int flags) 1618ev_default_loop_init (unsigned int flags)
1098#else 1619#else
1099int 1620int
1100ev_default_loop (unsigned int flags) 1621ev_default_loop (unsigned int flags)
1101#endif 1622#endif
1102{ 1623{
1103 if (sigpipe [0] == sigpipe [1])
1104 if (pipe (sigpipe))
1105 return 0;
1106
1107 if (!ev_default_loop_ptr) 1624 if (!ev_default_loop_ptr)
1108 { 1625 {
1109#if EV_MULTIPLICITY 1626#if EV_MULTIPLICITY
1110 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1627 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1111#else 1628#else
1114 1631
1115 loop_init (EV_A_ flags); 1632 loop_init (EV_A_ flags);
1116 1633
1117 if (ev_backend (EV_A)) 1634 if (ev_backend (EV_A))
1118 { 1635 {
1119 siginit (EV_A);
1120
1121#ifndef _WIN32 1636#ifndef _WIN32
1122 ev_signal_init (&childev, childcb, SIGCHLD); 1637 ev_signal_init (&childev, childcb, SIGCHLD);
1123 ev_set_priority (&childev, EV_MAXPRI); 1638 ev_set_priority (&childev, EV_MAXPRI);
1124 ev_signal_start (EV_A_ &childev); 1639 ev_signal_start (EV_A_ &childev);
1125 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1640 ev_unref (EV_A); /* child watcher should not keep loop alive */
1142#ifndef _WIN32 1657#ifndef _WIN32
1143 ev_ref (EV_A); /* child watcher */ 1658 ev_ref (EV_A); /* child watcher */
1144 ev_signal_stop (EV_A_ &childev); 1659 ev_signal_stop (EV_A_ &childev);
1145#endif 1660#endif
1146 1661
1147 ev_ref (EV_A); /* signal watcher */
1148 ev_io_stop (EV_A_ &sigev);
1149
1150 close (sigpipe [0]); sigpipe [0] = 0;
1151 close (sigpipe [1]); sigpipe [1] = 0;
1152
1153 loop_destroy (EV_A); 1662 loop_destroy (EV_A);
1154} 1663}
1155 1664
1156void 1665void
1157ev_default_fork (void) 1666ev_default_fork (void)
1159#if EV_MULTIPLICITY 1668#if EV_MULTIPLICITY
1160 struct ev_loop *loop = ev_default_loop_ptr; 1669 struct ev_loop *loop = ev_default_loop_ptr;
1161#endif 1670#endif
1162 1671
1163 if (backend) 1672 if (backend)
1164 postfork = 1; 1673 postfork = 1; /* must be in line with ev_loop_fork */
1165} 1674}
1166 1675
1167/*****************************************************************************/ 1676/*****************************************************************************/
1168 1677
1169void 1678void
1186 { 1695 {
1187 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1696 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1188 1697
1189 p->w->pending = 0; 1698 p->w->pending = 0;
1190 EV_CB_INVOKE (p->w, p->events); 1699 EV_CB_INVOKE (p->w, p->events);
1700 EV_FREQUENT_CHECK;
1191 } 1701 }
1192 } 1702 }
1193} 1703}
1194
1195void inline_size
1196timers_reify (EV_P)
1197{
1198 while (timercnt && ((WT)timers [0])->at <= mn_now)
1199 {
1200 ev_timer *w = timers [0];
1201
1202 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1203
1204 /* first reschedule or stop timer */
1205 if (w->repeat)
1206 {
1207 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1208
1209 ((WT)w)->at += w->repeat;
1210 if (((WT)w)->at < mn_now)
1211 ((WT)w)->at = mn_now;
1212
1213 downheap ((WT *)timers, timercnt, 0);
1214 }
1215 else
1216 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1217
1218 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1219 }
1220}
1221
1222#if EV_PERIODIC_ENABLE
1223void inline_size
1224periodics_reify (EV_P)
1225{
1226 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1227 {
1228 ev_periodic *w = periodics [0];
1229
1230 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1231
1232 /* first reschedule or stop timer */
1233 if (w->reschedule_cb)
1234 {
1235 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1236 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1237 downheap ((WT *)periodics, periodiccnt, 0);
1238 }
1239 else if (w->interval)
1240 {
1241 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1242 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1243 downheap ((WT *)periodics, periodiccnt, 0);
1244 }
1245 else
1246 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1247
1248 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1249 }
1250}
1251
1252static void noinline
1253periodics_reschedule (EV_P)
1254{
1255 int i;
1256
1257 /* adjust periodics after time jump */
1258 for (i = 0; i < periodiccnt; ++i)
1259 {
1260 ev_periodic *w = periodics [i];
1261
1262 if (w->reschedule_cb)
1263 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1264 else if (w->interval)
1265 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1266 }
1267
1268 /* now rebuild the heap */
1269 for (i = periodiccnt >> 1; i--; )
1270 downheap ((WT *)periodics, periodiccnt, i);
1271}
1272#endif
1273 1704
1274#if EV_IDLE_ENABLE 1705#if EV_IDLE_ENABLE
1275void inline_size 1706void inline_size
1276idle_reify (EV_P) 1707idle_reify (EV_P)
1277{ 1708{
1292 } 1723 }
1293 } 1724 }
1294} 1725}
1295#endif 1726#endif
1296 1727
1297int inline_size 1728void inline_size
1298time_update_monotonic (EV_P) 1729timers_reify (EV_P)
1299{ 1730{
1731 EV_FREQUENT_CHECK;
1732
1733 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1734 {
1735 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1736
1737 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1738
1739 /* first reschedule or stop timer */
1740 if (w->repeat)
1741 {
1742 ev_at (w) += w->repeat;
1743 if (ev_at (w) < mn_now)
1744 ev_at (w) = mn_now;
1745
1746 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1747
1748 ANHE_at_cache (timers [HEAP0]);
1749 downheap (timers, timercnt, HEAP0);
1750 }
1751 else
1752 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1753
1754 EV_FREQUENT_CHECK;
1755 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1756 }
1757}
1758
1759#if EV_PERIODIC_ENABLE
1760void inline_size
1761periodics_reify (EV_P)
1762{
1763 EV_FREQUENT_CHECK;
1764
1765 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1766 {
1767 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1768
1769 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1770
1771 /* first reschedule or stop timer */
1772 if (w->reschedule_cb)
1773 {
1774 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1775
1776 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1777
1778 ANHE_at_cache (periodics [HEAP0]);
1779 downheap (periodics, periodiccnt, HEAP0);
1780 }
1781 else if (w->interval)
1782 {
1783 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1784 /* if next trigger time is not sufficiently in the future, put it there */
1785 /* this might happen because of floating point inexactness */
1786 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1787 {
1788 ev_at (w) += w->interval;
1789
1790 /* if interval is unreasonably low we might still have a time in the past */
1791 /* so correct this. this will make the periodic very inexact, but the user */
1792 /* has effectively asked to get triggered more often than possible */
1793 if (ev_at (w) < ev_rt_now)
1794 ev_at (w) = ev_rt_now;
1795 }
1796
1797 ANHE_at_cache (periodics [HEAP0]);
1798 downheap (periodics, periodiccnt, HEAP0);
1799 }
1800 else
1801 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1802
1803 EV_FREQUENT_CHECK;
1804 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1805 }
1806}
1807
1808static void noinline
1809periodics_reschedule (EV_P)
1810{
1811 int i;
1812
1813 /* adjust periodics after time jump */
1814 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1815 {
1816 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1817
1818 if (w->reschedule_cb)
1819 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1820 else if (w->interval)
1821 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1822
1823 ANHE_at_cache (periodics [i]);
1824 }
1825
1826 reheap (periodics, periodiccnt);
1827}
1828#endif
1829
1830void inline_speed
1831time_update (EV_P_ ev_tstamp max_block)
1832{
1833 int i;
1834
1835#if EV_USE_MONOTONIC
1836 if (expect_true (have_monotonic))
1837 {
1838 ev_tstamp odiff = rtmn_diff;
1839
1300 mn_now = get_clock (); 1840 mn_now = get_clock ();
1301 1841
1842 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1843 /* interpolate in the meantime */
1302 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1844 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1303 { 1845 {
1304 ev_rt_now = rtmn_diff + mn_now; 1846 ev_rt_now = rtmn_diff + mn_now;
1305 return 0; 1847 return;
1306 } 1848 }
1307 else 1849
1308 {
1309 now_floor = mn_now; 1850 now_floor = mn_now;
1310 ev_rt_now = ev_time (); 1851 ev_rt_now = ev_time ();
1311 return 1;
1312 }
1313}
1314 1852
1315void inline_size 1853 /* loop a few times, before making important decisions.
1316time_update (EV_P) 1854 * on the choice of "4": one iteration isn't enough,
1317{ 1855 * in case we get preempted during the calls to
1318 int i; 1856 * ev_time and get_clock. a second call is almost guaranteed
1319 1857 * to succeed in that case, though. and looping a few more times
1320#if EV_USE_MONOTONIC 1858 * doesn't hurt either as we only do this on time-jumps or
1321 if (expect_true (have_monotonic)) 1859 * in the unlikely event of having been preempted here.
1322 { 1860 */
1323 if (time_update_monotonic (EV_A)) 1861 for (i = 4; --i; )
1324 { 1862 {
1325 ev_tstamp odiff = rtmn_diff;
1326
1327 /* loop a few times, before making important decisions.
1328 * on the choice of "4": one iteration isn't enough,
1329 * in case we get preempted during the calls to
1330 * ev_time and get_clock. a second call is almost guaranteed
1331 * to succeed in that case, though. and looping a few more times
1332 * doesn't hurt either as we only do this on time-jumps or
1333 * in the unlikely event of having been preempted here.
1334 */
1335 for (i = 4; --i; )
1336 {
1337 rtmn_diff = ev_rt_now - mn_now; 1863 rtmn_diff = ev_rt_now - mn_now;
1338 1864
1339 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1865 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1340 return; /* all is well */ 1866 return; /* all is well */
1341 1867
1342 ev_rt_now = ev_time (); 1868 ev_rt_now = ev_time ();
1343 mn_now = get_clock (); 1869 mn_now = get_clock ();
1344 now_floor = mn_now; 1870 now_floor = mn_now;
1345 } 1871 }
1346 1872
1347# if EV_PERIODIC_ENABLE 1873# if EV_PERIODIC_ENABLE
1348 periodics_reschedule (EV_A); 1874 periodics_reschedule (EV_A);
1349# endif 1875# endif
1350 /* no timer adjustment, as the monotonic clock doesn't jump */ 1876 /* no timer adjustment, as the monotonic clock doesn't jump */
1351 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1877 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1352 }
1353 } 1878 }
1354 else 1879 else
1355#endif 1880#endif
1356 { 1881 {
1357 ev_rt_now = ev_time (); 1882 ev_rt_now = ev_time ();
1358 1883
1359 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1884 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1360 { 1885 {
1361#if EV_PERIODIC_ENABLE 1886#if EV_PERIODIC_ENABLE
1362 periodics_reschedule (EV_A); 1887 periodics_reschedule (EV_A);
1363#endif 1888#endif
1364
1365 /* adjust timers. this is easy, as the offset is the same for all of them */ 1889 /* adjust timers. this is easy, as the offset is the same for all of them */
1366 for (i = 0; i < timercnt; ++i) 1890 for (i = 0; i < timercnt; ++i)
1891 {
1892 ANHE *he = timers + i + HEAP0;
1367 ((WT)timers [i])->at += ev_rt_now - mn_now; 1893 ANHE_w (*he)->at += ev_rt_now - mn_now;
1894 ANHE_at_cache (*he);
1895 }
1368 } 1896 }
1369 1897
1370 mn_now = ev_rt_now; 1898 mn_now = ev_rt_now;
1371 } 1899 }
1372} 1900}
1381ev_unref (EV_P) 1909ev_unref (EV_P)
1382{ 1910{
1383 --activecnt; 1911 --activecnt;
1384} 1912}
1385 1913
1914void
1915ev_now_update (EV_P)
1916{
1917 time_update (EV_A_ 1e100);
1918}
1919
1386static int loop_done; 1920static int loop_done;
1387 1921
1388void 1922void
1389ev_loop (EV_P_ int flags) 1923ev_loop (EV_P_ int flags)
1390{ 1924{
1391 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1925 loop_done = EVUNLOOP_CANCEL;
1392 ? EVUNLOOP_ONE
1393 : EVUNLOOP_CANCEL;
1394 1926
1395 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1927 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1396 1928
1397 do 1929 do
1398 { 1930 {
1931#if EV_VERIFY >= 2
1932 ev_loop_verify (EV_A);
1933#endif
1934
1399#ifndef _WIN32 1935#ifndef _WIN32
1400 if (expect_false (curpid)) /* penalise the forking check even more */ 1936 if (expect_false (curpid)) /* penalise the forking check even more */
1401 if (expect_false (getpid () != curpid)) 1937 if (expect_false (getpid () != curpid))
1402 { 1938 {
1403 curpid = getpid (); 1939 curpid = getpid ();
1413 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1949 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1414 call_pending (EV_A); 1950 call_pending (EV_A);
1415 } 1951 }
1416#endif 1952#endif
1417 1953
1418 /* queue check watchers (and execute them) */ 1954 /* queue prepare watchers (and execute them) */
1419 if (expect_false (preparecnt)) 1955 if (expect_false (preparecnt))
1420 { 1956 {
1421 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1957 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1422 call_pending (EV_A); 1958 call_pending (EV_A);
1423 } 1959 }
1432 /* update fd-related kernel structures */ 1968 /* update fd-related kernel structures */
1433 fd_reify (EV_A); 1969 fd_reify (EV_A);
1434 1970
1435 /* calculate blocking time */ 1971 /* calculate blocking time */
1436 { 1972 {
1437 ev_tstamp block; 1973 ev_tstamp waittime = 0.;
1974 ev_tstamp sleeptime = 0.;
1438 1975
1439 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1976 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1440 block = 0.; /* do not block at all */
1441 else
1442 { 1977 {
1443 /* update time to cancel out callback processing overhead */ 1978 /* update time to cancel out callback processing overhead */
1444#if EV_USE_MONOTONIC
1445 if (expect_true (have_monotonic))
1446 time_update_monotonic (EV_A); 1979 time_update (EV_A_ 1e100);
1447 else
1448#endif
1449 {
1450 ev_rt_now = ev_time ();
1451 mn_now = ev_rt_now;
1452 }
1453 1980
1454 block = MAX_BLOCKTIME; 1981 waittime = MAX_BLOCKTIME;
1455 1982
1456 if (timercnt) 1983 if (timercnt)
1457 { 1984 {
1458 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1985 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1459 if (block > to) block = to; 1986 if (waittime > to) waittime = to;
1460 } 1987 }
1461 1988
1462#if EV_PERIODIC_ENABLE 1989#if EV_PERIODIC_ENABLE
1463 if (periodiccnt) 1990 if (periodiccnt)
1464 { 1991 {
1465 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1992 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1466 if (block > to) block = to; 1993 if (waittime > to) waittime = to;
1467 } 1994 }
1468#endif 1995#endif
1469 1996
1470 if (expect_false (block < 0.)) block = 0.; 1997 if (expect_false (waittime < timeout_blocktime))
1998 waittime = timeout_blocktime;
1999
2000 sleeptime = waittime - backend_fudge;
2001
2002 if (expect_true (sleeptime > io_blocktime))
2003 sleeptime = io_blocktime;
2004
2005 if (sleeptime)
2006 {
2007 ev_sleep (sleeptime);
2008 waittime -= sleeptime;
2009 }
1471 } 2010 }
1472 2011
1473 ++loop_count; 2012 ++loop_count;
1474 backend_poll (EV_A_ block); 2013 backend_poll (EV_A_ waittime);
2014
2015 /* update ev_rt_now, do magic */
2016 time_update (EV_A_ waittime + sleeptime);
1475 } 2017 }
1476
1477 /* update ev_rt_now, do magic */
1478 time_update (EV_A);
1479 2018
1480 /* queue pending timers and reschedule them */ 2019 /* queue pending timers and reschedule them */
1481 timers_reify (EV_A); /* relative timers called last */ 2020 timers_reify (EV_A); /* relative timers called last */
1482#if EV_PERIODIC_ENABLE 2021#if EV_PERIODIC_ENABLE
1483 periodics_reify (EV_A); /* absolute timers called first */ 2022 periodics_reify (EV_A); /* absolute timers called first */
1491 /* queue check watchers, to be executed first */ 2030 /* queue check watchers, to be executed first */
1492 if (expect_false (checkcnt)) 2031 if (expect_false (checkcnt))
1493 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2032 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1494 2033
1495 call_pending (EV_A); 2034 call_pending (EV_A);
1496
1497 } 2035 }
1498 while (expect_true (activecnt && !loop_done)); 2036 while (expect_true (
2037 activecnt
2038 && !loop_done
2039 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2040 ));
1499 2041
1500 if (loop_done == EVUNLOOP_ONE) 2042 if (loop_done == EVUNLOOP_ONE)
1501 loop_done = EVUNLOOP_CANCEL; 2043 loop_done = EVUNLOOP_CANCEL;
1502} 2044}
1503 2045
1545ev_clear_pending (EV_P_ void *w) 2087ev_clear_pending (EV_P_ void *w)
1546{ 2088{
1547 W w_ = (W)w; 2089 W w_ = (W)w;
1548 int pending = w_->pending; 2090 int pending = w_->pending;
1549 2091
1550 if (!pending) 2092 if (expect_true (pending))
2093 {
2094 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2095 w_->pending = 0;
2096 p->w = 0;
2097 return p->events;
2098 }
2099 else
1551 return 0; 2100 return 0;
1552
1553 w_->pending = 0;
1554 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1555 p->w = 0;
1556
1557 return p->events;
1558} 2101}
1559 2102
1560void inline_size 2103void inline_size
1561pri_adjust (EV_P_ W w) 2104pri_adjust (EV_P_ W w)
1562{ 2105{
1581 w->active = 0; 2124 w->active = 0;
1582} 2125}
1583 2126
1584/*****************************************************************************/ 2127/*****************************************************************************/
1585 2128
1586void 2129void noinline
1587ev_io_start (EV_P_ ev_io *w) 2130ev_io_start (EV_P_ ev_io *w)
1588{ 2131{
1589 int fd = w->fd; 2132 int fd = w->fd;
1590 2133
1591 if (expect_false (ev_is_active (w))) 2134 if (expect_false (ev_is_active (w)))
1592 return; 2135 return;
1593 2136
1594 assert (("ev_io_start called with negative fd", fd >= 0)); 2137 assert (("ev_io_start called with negative fd", fd >= 0));
1595 2138
2139 EV_FREQUENT_CHECK;
2140
1596 ev_start (EV_A_ (W)w, 1); 2141 ev_start (EV_A_ (W)w, 1);
1597 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2142 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1598 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2143 wlist_add (&anfds[fd].head, (WL)w);
1599 2144
1600 fd_change (EV_A_ fd); 2145 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1601} 2146 w->events &= ~EV_IOFDSET;
1602 2147
1603void 2148 EV_FREQUENT_CHECK;
2149}
2150
2151void noinline
1604ev_io_stop (EV_P_ ev_io *w) 2152ev_io_stop (EV_P_ ev_io *w)
1605{ 2153{
1606 clear_pending (EV_A_ (W)w); 2154 clear_pending (EV_A_ (W)w);
1607 if (expect_false (!ev_is_active (w))) 2155 if (expect_false (!ev_is_active (w)))
1608 return; 2156 return;
1609 2157
1610 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2158 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1611 2159
2160 EV_FREQUENT_CHECK;
2161
1612 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2162 wlist_del (&anfds[w->fd].head, (WL)w);
1613 ev_stop (EV_A_ (W)w); 2163 ev_stop (EV_A_ (W)w);
1614 2164
1615 fd_change (EV_A_ w->fd); 2165 fd_change (EV_A_ w->fd, 1);
1616}
1617 2166
1618void 2167 EV_FREQUENT_CHECK;
2168}
2169
2170void noinline
1619ev_timer_start (EV_P_ ev_timer *w) 2171ev_timer_start (EV_P_ ev_timer *w)
1620{ 2172{
1621 if (expect_false (ev_is_active (w))) 2173 if (expect_false (ev_is_active (w)))
1622 return; 2174 return;
1623 2175
1624 ((WT)w)->at += mn_now; 2176 ev_at (w) += mn_now;
1625 2177
1626 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2178 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1627 2179
2180 EV_FREQUENT_CHECK;
2181
2182 ++timercnt;
1628 ev_start (EV_A_ (W)w, ++timercnt); 2183 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1629 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2184 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1630 timers [timercnt - 1] = w; 2185 ANHE_w (timers [ev_active (w)]) = (WT)w;
1631 upheap ((WT *)timers, timercnt - 1); 2186 ANHE_at_cache (timers [ev_active (w)]);
2187 upheap (timers, ev_active (w));
1632 2188
2189 EV_FREQUENT_CHECK;
2190
1633 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2191 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1634} 2192}
1635 2193
1636void 2194void noinline
1637ev_timer_stop (EV_P_ ev_timer *w) 2195ev_timer_stop (EV_P_ ev_timer *w)
1638{ 2196{
1639 clear_pending (EV_A_ (W)w); 2197 clear_pending (EV_A_ (W)w);
1640 if (expect_false (!ev_is_active (w))) 2198 if (expect_false (!ev_is_active (w)))
1641 return; 2199 return;
1642 2200
1643 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2201 EV_FREQUENT_CHECK;
1644 2202
1645 { 2203 {
1646 int active = ((W)w)->active; 2204 int active = ev_active (w);
1647 2205
2206 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2207
2208 --timercnt;
2209
1648 if (expect_true (--active < --timercnt)) 2210 if (expect_true (active < timercnt + HEAP0))
1649 { 2211 {
1650 timers [active] = timers [timercnt]; 2212 timers [active] = timers [timercnt + HEAP0];
1651 adjustheap ((WT *)timers, timercnt, active); 2213 adjustheap (timers, timercnt, active);
1652 } 2214 }
1653 } 2215 }
1654 2216
1655 ((WT)w)->at -= mn_now; 2217 EV_FREQUENT_CHECK;
2218
2219 ev_at (w) -= mn_now;
1656 2220
1657 ev_stop (EV_A_ (W)w); 2221 ev_stop (EV_A_ (W)w);
1658} 2222}
1659 2223
1660void 2224void noinline
1661ev_timer_again (EV_P_ ev_timer *w) 2225ev_timer_again (EV_P_ ev_timer *w)
1662{ 2226{
2227 EV_FREQUENT_CHECK;
2228
1663 if (ev_is_active (w)) 2229 if (ev_is_active (w))
1664 { 2230 {
1665 if (w->repeat) 2231 if (w->repeat)
1666 { 2232 {
1667 ((WT)w)->at = mn_now + w->repeat; 2233 ev_at (w) = mn_now + w->repeat;
2234 ANHE_at_cache (timers [ev_active (w)]);
1668 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2235 adjustheap (timers, timercnt, ev_active (w));
1669 } 2236 }
1670 else 2237 else
1671 ev_timer_stop (EV_A_ w); 2238 ev_timer_stop (EV_A_ w);
1672 } 2239 }
1673 else if (w->repeat) 2240 else if (w->repeat)
1674 { 2241 {
1675 w->at = w->repeat; 2242 ev_at (w) = w->repeat;
1676 ev_timer_start (EV_A_ w); 2243 ev_timer_start (EV_A_ w);
1677 } 2244 }
2245
2246 EV_FREQUENT_CHECK;
1678} 2247}
1679 2248
1680#if EV_PERIODIC_ENABLE 2249#if EV_PERIODIC_ENABLE
1681void 2250void noinline
1682ev_periodic_start (EV_P_ ev_periodic *w) 2251ev_periodic_start (EV_P_ ev_periodic *w)
1683{ 2252{
1684 if (expect_false (ev_is_active (w))) 2253 if (expect_false (ev_is_active (w)))
1685 return; 2254 return;
1686 2255
1687 if (w->reschedule_cb) 2256 if (w->reschedule_cb)
1688 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2257 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1689 else if (w->interval) 2258 else if (w->interval)
1690 { 2259 {
1691 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2260 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1692 /* this formula differs from the one in periodic_reify because we do not always round up */ 2261 /* this formula differs from the one in periodic_reify because we do not always round up */
1693 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2262 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1694 } 2263 }
2264 else
2265 ev_at (w) = w->offset;
1695 2266
2267 EV_FREQUENT_CHECK;
2268
2269 ++periodiccnt;
1696 ev_start (EV_A_ (W)w, ++periodiccnt); 2270 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1697 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2271 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1698 periodics [periodiccnt - 1] = w; 2272 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1699 upheap ((WT *)periodics, periodiccnt - 1); 2273 ANHE_at_cache (periodics [ev_active (w)]);
2274 upheap (periodics, ev_active (w));
1700 2275
2276 EV_FREQUENT_CHECK;
2277
1701 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2278 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1702} 2279}
1703 2280
1704void 2281void noinline
1705ev_periodic_stop (EV_P_ ev_periodic *w) 2282ev_periodic_stop (EV_P_ ev_periodic *w)
1706{ 2283{
1707 clear_pending (EV_A_ (W)w); 2284 clear_pending (EV_A_ (W)w);
1708 if (expect_false (!ev_is_active (w))) 2285 if (expect_false (!ev_is_active (w)))
1709 return; 2286 return;
1710 2287
1711 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2288 EV_FREQUENT_CHECK;
1712 2289
1713 { 2290 {
1714 int active = ((W)w)->active; 2291 int active = ev_active (w);
1715 2292
2293 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2294
2295 --periodiccnt;
2296
1716 if (expect_true (--active < --periodiccnt)) 2297 if (expect_true (active < periodiccnt + HEAP0))
1717 { 2298 {
1718 periodics [active] = periodics [periodiccnt]; 2299 periodics [active] = periodics [periodiccnt + HEAP0];
1719 adjustheap ((WT *)periodics, periodiccnt, active); 2300 adjustheap (periodics, periodiccnt, active);
1720 } 2301 }
1721 } 2302 }
1722 2303
2304 EV_FREQUENT_CHECK;
2305
1723 ev_stop (EV_A_ (W)w); 2306 ev_stop (EV_A_ (W)w);
1724} 2307}
1725 2308
1726void 2309void noinline
1727ev_periodic_again (EV_P_ ev_periodic *w) 2310ev_periodic_again (EV_P_ ev_periodic *w)
1728{ 2311{
1729 /* TODO: use adjustheap and recalculation */ 2312 /* TODO: use adjustheap and recalculation */
1730 ev_periodic_stop (EV_A_ w); 2313 ev_periodic_stop (EV_A_ w);
1731 ev_periodic_start (EV_A_ w); 2314 ev_periodic_start (EV_A_ w);
1734 2317
1735#ifndef SA_RESTART 2318#ifndef SA_RESTART
1736# define SA_RESTART 0 2319# define SA_RESTART 0
1737#endif 2320#endif
1738 2321
1739void 2322void noinline
1740ev_signal_start (EV_P_ ev_signal *w) 2323ev_signal_start (EV_P_ ev_signal *w)
1741{ 2324{
1742#if EV_MULTIPLICITY 2325#if EV_MULTIPLICITY
1743 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2326 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1744#endif 2327#endif
1745 if (expect_false (ev_is_active (w))) 2328 if (expect_false (ev_is_active (w)))
1746 return; 2329 return;
1747 2330
1748 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2331 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1749 2332
2333 evpipe_init (EV_A);
2334
2335 EV_FREQUENT_CHECK;
2336
2337 {
2338#ifndef _WIN32
2339 sigset_t full, prev;
2340 sigfillset (&full);
2341 sigprocmask (SIG_SETMASK, &full, &prev);
2342#endif
2343
2344 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2345
2346#ifndef _WIN32
2347 sigprocmask (SIG_SETMASK, &prev, 0);
2348#endif
2349 }
2350
1750 ev_start (EV_A_ (W)w, 1); 2351 ev_start (EV_A_ (W)w, 1);
1751 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1752 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2352 wlist_add (&signals [w->signum - 1].head, (WL)w);
1753 2353
1754 if (!((WL)w)->next) 2354 if (!((WL)w)->next)
1755 { 2355 {
1756#if _WIN32 2356#if _WIN32
1757 signal (w->signum, sighandler); 2357 signal (w->signum, ev_sighandler);
1758#else 2358#else
1759 struct sigaction sa; 2359 struct sigaction sa;
1760 sa.sa_handler = sighandler; 2360 sa.sa_handler = ev_sighandler;
1761 sigfillset (&sa.sa_mask); 2361 sigfillset (&sa.sa_mask);
1762 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2362 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1763 sigaction (w->signum, &sa, 0); 2363 sigaction (w->signum, &sa, 0);
1764#endif 2364#endif
1765 } 2365 }
1766}
1767 2366
1768void 2367 EV_FREQUENT_CHECK;
2368}
2369
2370void noinline
1769ev_signal_stop (EV_P_ ev_signal *w) 2371ev_signal_stop (EV_P_ ev_signal *w)
1770{ 2372{
1771 clear_pending (EV_A_ (W)w); 2373 clear_pending (EV_A_ (W)w);
1772 if (expect_false (!ev_is_active (w))) 2374 if (expect_false (!ev_is_active (w)))
1773 return; 2375 return;
1774 2376
2377 EV_FREQUENT_CHECK;
2378
1775 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2379 wlist_del (&signals [w->signum - 1].head, (WL)w);
1776 ev_stop (EV_A_ (W)w); 2380 ev_stop (EV_A_ (W)w);
1777 2381
1778 if (!signals [w->signum - 1].head) 2382 if (!signals [w->signum - 1].head)
1779 signal (w->signum, SIG_DFL); 2383 signal (w->signum, SIG_DFL);
2384
2385 EV_FREQUENT_CHECK;
1780} 2386}
1781 2387
1782void 2388void
1783ev_child_start (EV_P_ ev_child *w) 2389ev_child_start (EV_P_ ev_child *w)
1784{ 2390{
1786 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2392 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1787#endif 2393#endif
1788 if (expect_false (ev_is_active (w))) 2394 if (expect_false (ev_is_active (w)))
1789 return; 2395 return;
1790 2396
2397 EV_FREQUENT_CHECK;
2398
1791 ev_start (EV_A_ (W)w, 1); 2399 ev_start (EV_A_ (W)w, 1);
1792 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2400 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2401
2402 EV_FREQUENT_CHECK;
1793} 2403}
1794 2404
1795void 2405void
1796ev_child_stop (EV_P_ ev_child *w) 2406ev_child_stop (EV_P_ ev_child *w)
1797{ 2407{
1798 clear_pending (EV_A_ (W)w); 2408 clear_pending (EV_A_ (W)w);
1799 if (expect_false (!ev_is_active (w))) 2409 if (expect_false (!ev_is_active (w)))
1800 return; 2410 return;
1801 2411
2412 EV_FREQUENT_CHECK;
2413
1802 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2414 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1803 ev_stop (EV_A_ (W)w); 2415 ev_stop (EV_A_ (W)w);
2416
2417 EV_FREQUENT_CHECK;
1804} 2418}
1805 2419
1806#if EV_STAT_ENABLE 2420#if EV_STAT_ENABLE
1807 2421
1808# ifdef _WIN32 2422# ifdef _WIN32
1826 if (w->wd < 0) 2440 if (w->wd < 0)
1827 { 2441 {
1828 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2442 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1829 2443
1830 /* monitor some parent directory for speedup hints */ 2444 /* monitor some parent directory for speedup hints */
2445 /* note that exceeding the hardcoded limit is not a correctness issue, */
2446 /* but an efficiency issue only */
1831 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2447 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1832 { 2448 {
1833 char path [4096]; 2449 char path [4096];
1834 strcpy (path, w->path); 2450 strcpy (path, w->path);
1835 2451
1961 } 2577 }
1962 2578
1963 } 2579 }
1964} 2580}
1965 2581
2582#endif
2583
2584#ifdef _WIN32
2585# define EV_LSTAT(p,b) _stati64 (p, b)
2586#else
2587# define EV_LSTAT(p,b) lstat (p, b)
1966#endif 2588#endif
1967 2589
1968void 2590void
1969ev_stat_stat (EV_P_ ev_stat *w) 2591ev_stat_stat (EV_P_ ev_stat *w)
1970{ 2592{
2034 else 2656 else
2035#endif 2657#endif
2036 ev_timer_start (EV_A_ &w->timer); 2658 ev_timer_start (EV_A_ &w->timer);
2037 2659
2038 ev_start (EV_A_ (W)w, 1); 2660 ev_start (EV_A_ (W)w, 1);
2661
2662 EV_FREQUENT_CHECK;
2039} 2663}
2040 2664
2041void 2665void
2042ev_stat_stop (EV_P_ ev_stat *w) 2666ev_stat_stop (EV_P_ ev_stat *w)
2043{ 2667{
2044 clear_pending (EV_A_ (W)w); 2668 clear_pending (EV_A_ (W)w);
2045 if (expect_false (!ev_is_active (w))) 2669 if (expect_false (!ev_is_active (w)))
2046 return; 2670 return;
2047 2671
2672 EV_FREQUENT_CHECK;
2673
2048#if EV_USE_INOTIFY 2674#if EV_USE_INOTIFY
2049 infy_del (EV_A_ w); 2675 infy_del (EV_A_ w);
2050#endif 2676#endif
2051 ev_timer_stop (EV_A_ &w->timer); 2677 ev_timer_stop (EV_A_ &w->timer);
2052 2678
2053 ev_stop (EV_A_ (W)w); 2679 ev_stop (EV_A_ (W)w);
2680
2681 EV_FREQUENT_CHECK;
2054} 2682}
2055#endif 2683#endif
2056 2684
2057#if EV_IDLE_ENABLE 2685#if EV_IDLE_ENABLE
2058void 2686void
2060{ 2688{
2061 if (expect_false (ev_is_active (w))) 2689 if (expect_false (ev_is_active (w)))
2062 return; 2690 return;
2063 2691
2064 pri_adjust (EV_A_ (W)w); 2692 pri_adjust (EV_A_ (W)w);
2693
2694 EV_FREQUENT_CHECK;
2065 2695
2066 { 2696 {
2067 int active = ++idlecnt [ABSPRI (w)]; 2697 int active = ++idlecnt [ABSPRI (w)];
2068 2698
2069 ++idleall; 2699 ++idleall;
2070 ev_start (EV_A_ (W)w, active); 2700 ev_start (EV_A_ (W)w, active);
2071 2701
2072 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2702 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2073 idles [ABSPRI (w)][active - 1] = w; 2703 idles [ABSPRI (w)][active - 1] = w;
2074 } 2704 }
2705
2706 EV_FREQUENT_CHECK;
2075} 2707}
2076 2708
2077void 2709void
2078ev_idle_stop (EV_P_ ev_idle *w) 2710ev_idle_stop (EV_P_ ev_idle *w)
2079{ 2711{
2080 clear_pending (EV_A_ (W)w); 2712 clear_pending (EV_A_ (W)w);
2081 if (expect_false (!ev_is_active (w))) 2713 if (expect_false (!ev_is_active (w)))
2082 return; 2714 return;
2083 2715
2716 EV_FREQUENT_CHECK;
2717
2084 { 2718 {
2085 int active = ((W)w)->active; 2719 int active = ev_active (w);
2086 2720
2087 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2721 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2088 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2722 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2089 2723
2090 ev_stop (EV_A_ (W)w); 2724 ev_stop (EV_A_ (W)w);
2091 --idleall; 2725 --idleall;
2092 } 2726 }
2727
2728 EV_FREQUENT_CHECK;
2093} 2729}
2094#endif 2730#endif
2095 2731
2096void 2732void
2097ev_prepare_start (EV_P_ ev_prepare *w) 2733ev_prepare_start (EV_P_ ev_prepare *w)
2098{ 2734{
2099 if (expect_false (ev_is_active (w))) 2735 if (expect_false (ev_is_active (w)))
2100 return; 2736 return;
2737
2738 EV_FREQUENT_CHECK;
2101 2739
2102 ev_start (EV_A_ (W)w, ++preparecnt); 2740 ev_start (EV_A_ (W)w, ++preparecnt);
2103 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2741 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2104 prepares [preparecnt - 1] = w; 2742 prepares [preparecnt - 1] = w;
2743
2744 EV_FREQUENT_CHECK;
2105} 2745}
2106 2746
2107void 2747void
2108ev_prepare_stop (EV_P_ ev_prepare *w) 2748ev_prepare_stop (EV_P_ ev_prepare *w)
2109{ 2749{
2110 clear_pending (EV_A_ (W)w); 2750 clear_pending (EV_A_ (W)w);
2111 if (expect_false (!ev_is_active (w))) 2751 if (expect_false (!ev_is_active (w)))
2112 return; 2752 return;
2113 2753
2754 EV_FREQUENT_CHECK;
2755
2114 { 2756 {
2115 int active = ((W)w)->active; 2757 int active = ev_active (w);
2758
2116 prepares [active - 1] = prepares [--preparecnt]; 2759 prepares [active - 1] = prepares [--preparecnt];
2117 ((W)prepares [active - 1])->active = active; 2760 ev_active (prepares [active - 1]) = active;
2118 } 2761 }
2119 2762
2120 ev_stop (EV_A_ (W)w); 2763 ev_stop (EV_A_ (W)w);
2764
2765 EV_FREQUENT_CHECK;
2121} 2766}
2122 2767
2123void 2768void
2124ev_check_start (EV_P_ ev_check *w) 2769ev_check_start (EV_P_ ev_check *w)
2125{ 2770{
2126 if (expect_false (ev_is_active (w))) 2771 if (expect_false (ev_is_active (w)))
2127 return; 2772 return;
2773
2774 EV_FREQUENT_CHECK;
2128 2775
2129 ev_start (EV_A_ (W)w, ++checkcnt); 2776 ev_start (EV_A_ (W)w, ++checkcnt);
2130 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2777 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2131 checks [checkcnt - 1] = w; 2778 checks [checkcnt - 1] = w;
2779
2780 EV_FREQUENT_CHECK;
2132} 2781}
2133 2782
2134void 2783void
2135ev_check_stop (EV_P_ ev_check *w) 2784ev_check_stop (EV_P_ ev_check *w)
2136{ 2785{
2137 clear_pending (EV_A_ (W)w); 2786 clear_pending (EV_A_ (W)w);
2138 if (expect_false (!ev_is_active (w))) 2787 if (expect_false (!ev_is_active (w)))
2139 return; 2788 return;
2140 2789
2790 EV_FREQUENT_CHECK;
2791
2141 { 2792 {
2142 int active = ((W)w)->active; 2793 int active = ev_active (w);
2794
2143 checks [active - 1] = checks [--checkcnt]; 2795 checks [active - 1] = checks [--checkcnt];
2144 ((W)checks [active - 1])->active = active; 2796 ev_active (checks [active - 1]) = active;
2145 } 2797 }
2146 2798
2147 ev_stop (EV_A_ (W)w); 2799 ev_stop (EV_A_ (W)w);
2800
2801 EV_FREQUENT_CHECK;
2148} 2802}
2149 2803
2150#if EV_EMBED_ENABLE 2804#if EV_EMBED_ENABLE
2151void noinline 2805void noinline
2152ev_embed_sweep (EV_P_ ev_embed *w) 2806ev_embed_sweep (EV_P_ ev_embed *w)
2153{ 2807{
2154 ev_loop (w->loop, EVLOOP_NONBLOCK); 2808 ev_loop (w->other, EVLOOP_NONBLOCK);
2155} 2809}
2156 2810
2157static void 2811static void
2158embed_cb (EV_P_ ev_io *io, int revents) 2812embed_io_cb (EV_P_ ev_io *io, int revents)
2159{ 2813{
2160 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2814 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2161 2815
2162 if (ev_cb (w)) 2816 if (ev_cb (w))
2163 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2817 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2164 else 2818 else
2165 ev_embed_sweep (loop, w); 2819 ev_loop (w->other, EVLOOP_NONBLOCK);
2166} 2820}
2821
2822static void
2823embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2824{
2825 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2826
2827 {
2828 struct ev_loop *loop = w->other;
2829
2830 while (fdchangecnt)
2831 {
2832 fd_reify (EV_A);
2833 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2834 }
2835 }
2836}
2837
2838static void
2839embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2840{
2841 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2842
2843 {
2844 struct ev_loop *loop = w->other;
2845
2846 ev_loop_fork (EV_A);
2847 }
2848}
2849
2850#if 0
2851static void
2852embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2853{
2854 ev_idle_stop (EV_A_ idle);
2855}
2856#endif
2167 2857
2168void 2858void
2169ev_embed_start (EV_P_ ev_embed *w) 2859ev_embed_start (EV_P_ ev_embed *w)
2170{ 2860{
2171 if (expect_false (ev_is_active (w))) 2861 if (expect_false (ev_is_active (w)))
2172 return; 2862 return;
2173 2863
2174 { 2864 {
2175 struct ev_loop *loop = w->loop; 2865 struct ev_loop *loop = w->other;
2176 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2866 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2177 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2867 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2178 } 2868 }
2869
2870 EV_FREQUENT_CHECK;
2179 2871
2180 ev_set_priority (&w->io, ev_priority (w)); 2872 ev_set_priority (&w->io, ev_priority (w));
2181 ev_io_start (EV_A_ &w->io); 2873 ev_io_start (EV_A_ &w->io);
2182 2874
2875 ev_prepare_init (&w->prepare, embed_prepare_cb);
2876 ev_set_priority (&w->prepare, EV_MINPRI);
2877 ev_prepare_start (EV_A_ &w->prepare);
2878
2879 ev_fork_init (&w->fork, embed_fork_cb);
2880 ev_fork_start (EV_A_ &w->fork);
2881
2882 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2883
2183 ev_start (EV_A_ (W)w, 1); 2884 ev_start (EV_A_ (W)w, 1);
2885
2886 EV_FREQUENT_CHECK;
2184} 2887}
2185 2888
2186void 2889void
2187ev_embed_stop (EV_P_ ev_embed *w) 2890ev_embed_stop (EV_P_ ev_embed *w)
2188{ 2891{
2189 clear_pending (EV_A_ (W)w); 2892 clear_pending (EV_A_ (W)w);
2190 if (expect_false (!ev_is_active (w))) 2893 if (expect_false (!ev_is_active (w)))
2191 return; 2894 return;
2192 2895
2896 EV_FREQUENT_CHECK;
2897
2193 ev_io_stop (EV_A_ &w->io); 2898 ev_io_stop (EV_A_ &w->io);
2899 ev_prepare_stop (EV_A_ &w->prepare);
2900 ev_fork_stop (EV_A_ &w->fork);
2194 2901
2195 ev_stop (EV_A_ (W)w); 2902 EV_FREQUENT_CHECK;
2196} 2903}
2197#endif 2904#endif
2198 2905
2199#if EV_FORK_ENABLE 2906#if EV_FORK_ENABLE
2200void 2907void
2201ev_fork_start (EV_P_ ev_fork *w) 2908ev_fork_start (EV_P_ ev_fork *w)
2202{ 2909{
2203 if (expect_false (ev_is_active (w))) 2910 if (expect_false (ev_is_active (w)))
2204 return; 2911 return;
2912
2913 EV_FREQUENT_CHECK;
2205 2914
2206 ev_start (EV_A_ (W)w, ++forkcnt); 2915 ev_start (EV_A_ (W)w, ++forkcnt);
2207 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2916 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2208 forks [forkcnt - 1] = w; 2917 forks [forkcnt - 1] = w;
2918
2919 EV_FREQUENT_CHECK;
2209} 2920}
2210 2921
2211void 2922void
2212ev_fork_stop (EV_P_ ev_fork *w) 2923ev_fork_stop (EV_P_ ev_fork *w)
2213{ 2924{
2214 clear_pending (EV_A_ (W)w); 2925 clear_pending (EV_A_ (W)w);
2215 if (expect_false (!ev_is_active (w))) 2926 if (expect_false (!ev_is_active (w)))
2216 return; 2927 return;
2217 2928
2929 EV_FREQUENT_CHECK;
2930
2218 { 2931 {
2219 int active = ((W)w)->active; 2932 int active = ev_active (w);
2933
2220 forks [active - 1] = forks [--forkcnt]; 2934 forks [active - 1] = forks [--forkcnt];
2221 ((W)forks [active - 1])->active = active; 2935 ev_active (forks [active - 1]) = active;
2222 } 2936 }
2223 2937
2224 ev_stop (EV_A_ (W)w); 2938 ev_stop (EV_A_ (W)w);
2939
2940 EV_FREQUENT_CHECK;
2941}
2942#endif
2943
2944#if EV_ASYNC_ENABLE
2945void
2946ev_async_start (EV_P_ ev_async *w)
2947{
2948 if (expect_false (ev_is_active (w)))
2949 return;
2950
2951 evpipe_init (EV_A);
2952
2953 EV_FREQUENT_CHECK;
2954
2955 ev_start (EV_A_ (W)w, ++asynccnt);
2956 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2957 asyncs [asynccnt - 1] = w;
2958
2959 EV_FREQUENT_CHECK;
2960}
2961
2962void
2963ev_async_stop (EV_P_ ev_async *w)
2964{
2965 clear_pending (EV_A_ (W)w);
2966 if (expect_false (!ev_is_active (w)))
2967 return;
2968
2969 EV_FREQUENT_CHECK;
2970
2971 {
2972 int active = ev_active (w);
2973
2974 asyncs [active - 1] = asyncs [--asynccnt];
2975 ev_active (asyncs [active - 1]) = active;
2976 }
2977
2978 ev_stop (EV_A_ (W)w);
2979
2980 EV_FREQUENT_CHECK;
2981}
2982
2983void
2984ev_async_send (EV_P_ ev_async *w)
2985{
2986 w->sent = 1;
2987 evpipe_write (EV_A_ &gotasync);
2225} 2988}
2226#endif 2989#endif
2227 2990
2228/*****************************************************************************/ 2991/*****************************************************************************/
2229 2992
2239once_cb (EV_P_ struct ev_once *once, int revents) 3002once_cb (EV_P_ struct ev_once *once, int revents)
2240{ 3003{
2241 void (*cb)(int revents, void *arg) = once->cb; 3004 void (*cb)(int revents, void *arg) = once->cb;
2242 void *arg = once->arg; 3005 void *arg = once->arg;
2243 3006
2244 ev_io_stop (EV_A_ &once->io); 3007 ev_io_stop (EV_A_ &once->io);
2245 ev_timer_stop (EV_A_ &once->to); 3008 ev_timer_stop (EV_A_ &once->to);
2246 ev_free (once); 3009 ev_free (once);
2247 3010
2248 cb (revents, arg); 3011 cb (revents, arg);
2249} 3012}
2287 ev_timer_set (&once->to, timeout, 0.); 3050 ev_timer_set (&once->to, timeout, 0.);
2288 ev_timer_start (EV_A_ &once->to); 3051 ev_timer_start (EV_A_ &once->to);
2289 } 3052 }
2290} 3053}
2291 3054
3055#if EV_MULTIPLICITY
3056 #include "ev_wrap.h"
3057#endif
3058
2292#ifdef __cplusplus 3059#ifdef __cplusplus
2293} 3060}
2294#endif 3061#endif
2295 3062

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines