ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.220 by root, Sun Apr 6 09:53:17 2008 UTC vs.
Revision 1.261 by root, Mon Sep 29 03:31:14 2008 UTC

126# define EV_USE_EVENTFD 1 126# define EV_USE_EVENTFD 1
127# else 127# else
128# define EV_USE_EVENTFD 0 128# define EV_USE_EVENTFD 0
129# endif 129# endif
130# endif 130# endif
131 131
132#endif 132#endif
133 133
134#include <math.h> 134#include <math.h>
135#include <stdlib.h> 135#include <stdlib.h>
136#include <fcntl.h> 136#include <fcntl.h>
154#ifndef _WIN32 154#ifndef _WIN32
155# include <sys/time.h> 155# include <sys/time.h>
156# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h> 157# include <unistd.h>
158#else 158#else
159# include <io.h>
159# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 161# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
163# endif 164# endif
164#endif 165#endif
165 166
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
167 168
168#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
169# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
170#endif 175#endif
171 176
172#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
174#endif 179#endif
175 180
176#ifndef EV_USE_NANOSLEEP 181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
177# define EV_USE_NANOSLEEP 0 185# define EV_USE_NANOSLEEP 0
186# endif
178#endif 187#endif
179 188
180#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
182#endif 191#endif
235# else 244# else
236# define EV_USE_EVENTFD 0 245# define EV_USE_EVENTFD 0
237# endif 246# endif
238#endif 247#endif
239 248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 268
242#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
268# include <winsock.h> 295# include <winsock.h>
269#endif 296#endif
270 297
271#if EV_USE_EVENTFD 298#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 299/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
300# include <stdint.h>
301# ifdef __cplusplus
302extern "C" {
303# endif
273int eventfd (unsigned int initval, int flags); 304int eventfd (unsigned int initval, int flags);
305# ifdef __cplusplus
306}
307# endif
274#endif 308#endif
275 309
276/**/ 310/**/
311
312#if EV_VERIFY >= 3
313# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
314#else
315# define EV_FREQUENT_CHECK do { } while (0)
316#endif
277 317
278/* 318/*
279 * This is used to avoid floating point rounding problems. 319 * This is used to avoid floating point rounding problems.
280 * It is added to ev_rt_now when scheduling periodics 320 * It is added to ev_rt_now when scheduling periodics
281 * to ensure progress, time-wise, even when rounding 321 * to ensure progress, time-wise, even when rounding
293# define expect(expr,value) __builtin_expect ((expr),(value)) 333# define expect(expr,value) __builtin_expect ((expr),(value))
294# define noinline __attribute__ ((noinline)) 334# define noinline __attribute__ ((noinline))
295#else 335#else
296# define expect(expr,value) (expr) 336# define expect(expr,value) (expr)
297# define noinline 337# define noinline
298# if __STDC_VERSION__ < 199901L 338# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
299# define inline 339# define inline
300# endif 340# endif
301#endif 341#endif
302 342
303#define expect_false(expr) expect ((expr) != 0, 0) 343#define expect_false(expr) expect ((expr) != 0, 0)
318 358
319typedef ev_watcher *W; 359typedef ev_watcher *W;
320typedef ev_watcher_list *WL; 360typedef ev_watcher_list *WL;
321typedef ev_watcher_time *WT; 361typedef ev_watcher_time *WT;
322 362
363#define ev_active(w) ((W)(w))->active
364#define ev_at(w) ((WT)(w))->at
365
323#if EV_USE_MONOTONIC 366#if EV_USE_MONOTONIC
324/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 367/* sig_atomic_t is used to avoid per-thread variables or locking but still */
325/* giving it a reasonably high chance of working on typical architetcures */ 368/* giving it a reasonably high chance of working on typical architetcures */
326static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 369static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
327#endif 370#endif
353 perror (msg); 396 perror (msg);
354 abort (); 397 abort ();
355 } 398 }
356} 399}
357 400
401static void *
402ev_realloc_emul (void *ptr, long size)
403{
404 /* some systems, notably openbsd and darwin, fail to properly
405 * implement realloc (x, 0) (as required by both ansi c-98 and
406 * the single unix specification, so work around them here.
407 */
408
409 if (size)
410 return realloc (ptr, size);
411
412 free (ptr);
413 return 0;
414}
415
358static void *(*alloc)(void *ptr, long size); 416static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
359 417
360void 418void
361ev_set_allocator (void *(*cb)(void *ptr, long size)) 419ev_set_allocator (void *(*cb)(void *ptr, long size))
362{ 420{
363 alloc = cb; 421 alloc = cb;
364} 422}
365 423
366inline_speed void * 424inline_speed void *
367ev_realloc (void *ptr, long size) 425ev_realloc (void *ptr, long size)
368{ 426{
369 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 427 ptr = alloc (ptr, size);
370 428
371 if (!ptr && size) 429 if (!ptr && size)
372 { 430 {
373 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 431 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
374 abort (); 432 abort ();
397 W w; 455 W w;
398 int events; 456 int events;
399} ANPENDING; 457} ANPENDING;
400 458
401#if EV_USE_INOTIFY 459#if EV_USE_INOTIFY
460/* hash table entry per inotify-id */
402typedef struct 461typedef struct
403{ 462{
404 WL head; 463 WL head;
405} ANFS; 464} ANFS;
465#endif
466
467/* Heap Entry */
468#if EV_HEAP_CACHE_AT
469 typedef struct {
470 ev_tstamp at;
471 WT w;
472 } ANHE;
473
474 #define ANHE_w(he) (he).w /* access watcher, read-write */
475 #define ANHE_at(he) (he).at /* access cached at, read-only */
476 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
477#else
478 typedef WT ANHE;
479
480 #define ANHE_w(he) (he)
481 #define ANHE_at(he) (he)->at
482 #define ANHE_at_cache(he)
406#endif 483#endif
407 484
408#if EV_MULTIPLICITY 485#if EV_MULTIPLICITY
409 486
410 struct ev_loop 487 struct ev_loop
488 struct timeval tv; 565 struct timeval tv;
489 566
490 tv.tv_sec = (time_t)delay; 567 tv.tv_sec = (time_t)delay;
491 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 568 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
492 569
570 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
571 /* somehting nto guaranteed by newer posix versions, but guaranteed */
572 /* by older ones */
493 select (0, 0, 0, 0, &tv); 573 select (0, 0, 0, 0, &tv);
494#endif 574#endif
495 } 575 }
496} 576}
497 577
498/*****************************************************************************/ 578/*****************************************************************************/
579
580#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
499 581
500int inline_size 582int inline_size
501array_nextsize (int elem, int cur, int cnt) 583array_nextsize (int elem, int cur, int cnt)
502{ 584{
503 int ncur = cur + 1; 585 int ncur = cur + 1;
504 586
505 do 587 do
506 ncur <<= 1; 588 ncur <<= 1;
507 while (cnt > ncur); 589 while (cnt > ncur);
508 590
509 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 591 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
510 if (elem * ncur > 4096) 592 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
511 { 593 {
512 ncur *= elem; 594 ncur *= elem;
513 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 595 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
514 ncur = ncur - sizeof (void *) * 4; 596 ncur = ncur - sizeof (void *) * 4;
515 ncur /= elem; 597 ncur /= elem;
516 } 598 }
517 599
518 return ncur; 600 return ncur;
629 events |= (unsigned char)w->events; 711 events |= (unsigned char)w->events;
630 712
631#if EV_SELECT_IS_WINSOCKET 713#if EV_SELECT_IS_WINSOCKET
632 if (events) 714 if (events)
633 { 715 {
634 unsigned long argp; 716 unsigned long arg;
635 #ifdef EV_FD_TO_WIN32_HANDLE 717 #ifdef EV_FD_TO_WIN32_HANDLE
636 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 718 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
637 #else 719 #else
638 anfd->handle = _get_osfhandle (fd); 720 anfd->handle = _get_osfhandle (fd);
639 #endif 721 #endif
640 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 722 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
641 } 723 }
642#endif 724#endif
643 725
644 { 726 {
645 unsigned char o_events = anfd->events; 727 unsigned char o_events = anfd->events;
698{ 780{
699 int fd; 781 int fd;
700 782
701 for (fd = 0; fd < anfdmax; ++fd) 783 for (fd = 0; fd < anfdmax; ++fd)
702 if (anfds [fd].events) 784 if (anfds [fd].events)
703 if (!fd_valid (fd) == -1 && errno == EBADF) 785 if (!fd_valid (fd) && errno == EBADF)
704 fd_kill (EV_A_ fd); 786 fd_kill (EV_A_ fd);
705} 787}
706 788
707/* called on ENOMEM in select/poll to kill some fds and retry */ 789/* called on ENOMEM in select/poll to kill some fds and retry */
708static void noinline 790static void noinline
732 } 814 }
733} 815}
734 816
735/*****************************************************************************/ 817/*****************************************************************************/
736 818
819/*
820 * the heap functions want a real array index. array index 0 uis guaranteed to not
821 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
822 * the branching factor of the d-tree.
823 */
824
825/*
826 * at the moment we allow libev the luxury of two heaps,
827 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
828 * which is more cache-efficient.
829 * the difference is about 5% with 50000+ watchers.
830 */
831#if EV_USE_4HEAP
832
833#define DHEAP 4
834#define HEAP0 (DHEAP - 1) /* index of first element in heap */
835#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
836#define UPHEAP_DONE(p,k) ((p) == (k))
837
838/* away from the root */
737void inline_speed 839void inline_speed
738upheap (WT *heap, int k) 840downheap (ANHE *heap, int N, int k)
739{ 841{
740 WT w = heap [k]; 842 ANHE he = heap [k];
843 ANHE *E = heap + N + HEAP0;
741 844
742 while (k) 845 for (;;)
743 { 846 {
744 int p = (k - 1) >> 1; 847 ev_tstamp minat;
848 ANHE *minpos;
849 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
745 850
746 if (heap [p]->at <= w->at) 851 /* find minimum child */
852 if (expect_true (pos + DHEAP - 1 < E))
853 {
854 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
855 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
856 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
857 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
858 }
859 else if (pos < E)
860 {
861 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
862 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
863 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
864 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
865 }
866 else
747 break; 867 break;
748 868
869 if (ANHE_at (he) <= minat)
870 break;
871
872 heap [k] = *minpos;
873 ev_active (ANHE_w (*minpos)) = k;
874
875 k = minpos - heap;
876 }
877
878 heap [k] = he;
879 ev_active (ANHE_w (he)) = k;
880}
881
882#else /* 4HEAP */
883
884#define HEAP0 1
885#define HPARENT(k) ((k) >> 1)
886#define UPHEAP_DONE(p,k) (!(p))
887
888/* away from the root */
889void inline_speed
890downheap (ANHE *heap, int N, int k)
891{
892 ANHE he = heap [k];
893
894 for (;;)
895 {
896 int c = k << 1;
897
898 if (c > N + HEAP0 - 1)
899 break;
900
901 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
902 ? 1 : 0;
903
904 if (ANHE_at (he) <= ANHE_at (heap [c]))
905 break;
906
907 heap [k] = heap [c];
908 ev_active (ANHE_w (heap [k])) = k;
909
910 k = c;
911 }
912
913 heap [k] = he;
914 ev_active (ANHE_w (he)) = k;
915}
916#endif
917
918/* towards the root */
919void inline_speed
920upheap (ANHE *heap, int k)
921{
922 ANHE he = heap [k];
923
924 for (;;)
925 {
926 int p = HPARENT (k);
927
928 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
929 break;
930
749 heap [k] = heap [p]; 931 heap [k] = heap [p];
750 ((W)heap [k])->active = k + 1; 932 ev_active (ANHE_w (heap [k])) = k;
751 k = p; 933 k = p;
752 } 934 }
753 935
754 heap [k] = w; 936 heap [k] = he;
755 ((W)heap [k])->active = k + 1; 937 ev_active (ANHE_w (he)) = k;
756}
757
758void inline_speed
759downheap (WT *heap, int N, int k)
760{
761 WT w = heap [k];
762
763 for (;;)
764 {
765 int c = (k << 1) + 1;
766
767 if (c >= N)
768 break;
769
770 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
771 ? 1 : 0;
772
773 if (w->at <= heap [c]->at)
774 break;
775
776 heap [k] = heap [c];
777 ((W)heap [k])->active = k + 1;
778
779 k = c;
780 }
781
782 heap [k] = w;
783 ((W)heap [k])->active = k + 1;
784} 938}
785 939
786void inline_size 940void inline_size
787adjustheap (WT *heap, int N, int k) 941adjustheap (ANHE *heap, int N, int k)
788{ 942{
943 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
789 upheap (heap, k); 944 upheap (heap, k);
945 else
790 downheap (heap, N, k); 946 downheap (heap, N, k);
947}
948
949/* rebuild the heap: this function is used only once and executed rarely */
950void inline_size
951reheap (ANHE *heap, int N)
952{
953 int i;
954
955 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
956 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
957 for (i = 0; i < N; ++i)
958 upheap (heap, i + HEAP0);
791} 959}
792 960
793/*****************************************************************************/ 961/*****************************************************************************/
794 962
795typedef struct 963typedef struct
819 987
820void inline_speed 988void inline_speed
821fd_intern (int fd) 989fd_intern (int fd)
822{ 990{
823#ifdef _WIN32 991#ifdef _WIN32
824 int arg = 1; 992 unsigned long arg = 1;
825 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 993 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
826#else 994#else
827 fcntl (fd, F_SETFD, FD_CLOEXEC); 995 fcntl (fd, F_SETFD, FD_CLOEXEC);
828 fcntl (fd, F_SETFL, O_NONBLOCK); 996 fcntl (fd, F_SETFL, O_NONBLOCK);
829#endif 997#endif
884pipecb (EV_P_ ev_io *iow, int revents) 1052pipecb (EV_P_ ev_io *iow, int revents)
885{ 1053{
886#if EV_USE_EVENTFD 1054#if EV_USE_EVENTFD
887 if (evfd >= 0) 1055 if (evfd >= 0)
888 { 1056 {
889 uint64_t counter = 1; 1057 uint64_t counter;
890 read (evfd, &counter, sizeof (uint64_t)); 1058 read (evfd, &counter, sizeof (uint64_t));
891 } 1059 }
892 else 1060 else
893#endif 1061#endif
894 { 1062 {
1163 if (!(flags & EVFLAG_NOENV) 1331 if (!(flags & EVFLAG_NOENV)
1164 && !enable_secure () 1332 && !enable_secure ()
1165 && getenv ("LIBEV_FLAGS")) 1333 && getenv ("LIBEV_FLAGS"))
1166 flags = atoi (getenv ("LIBEV_FLAGS")); 1334 flags = atoi (getenv ("LIBEV_FLAGS"));
1167 1335
1168 if (!(flags & 0x0000ffffUL)) 1336 if (!(flags & 0x0000ffffU))
1169 flags |= ev_recommended_backends (); 1337 flags |= ev_recommended_backends ();
1170 1338
1171#if EV_USE_PORT 1339#if EV_USE_PORT
1172 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1340 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1173#endif 1341#endif
1261#endif 1429#endif
1262 1430
1263 backend = 0; 1431 backend = 0;
1264} 1432}
1265 1433
1434#if EV_USE_INOTIFY
1266void inline_size infy_fork (EV_P); 1435void inline_size infy_fork (EV_P);
1436#endif
1267 1437
1268void inline_size 1438void inline_size
1269loop_fork (EV_P) 1439loop_fork (EV_P)
1270{ 1440{
1271#if EV_USE_PORT 1441#if EV_USE_PORT
1311 1481
1312 postfork = 0; 1482 postfork = 0;
1313} 1483}
1314 1484
1315#if EV_MULTIPLICITY 1485#if EV_MULTIPLICITY
1486
1316struct ev_loop * 1487struct ev_loop *
1317ev_loop_new (unsigned int flags) 1488ev_loop_new (unsigned int flags)
1318{ 1489{
1319 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1490 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1320 1491
1339ev_loop_fork (EV_P) 1510ev_loop_fork (EV_P)
1340{ 1511{
1341 postfork = 1; /* must be in line with ev_default_fork */ 1512 postfork = 1; /* must be in line with ev_default_fork */
1342} 1513}
1343 1514
1515#if EV_VERIFY
1516static void noinline
1517verify_watcher (EV_P_ W w)
1518{
1519 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1520
1521 if (w->pending)
1522 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1523}
1524
1525static void noinline
1526verify_heap (EV_P_ ANHE *heap, int N)
1527{
1528 int i;
1529
1530 for (i = HEAP0; i < N + HEAP0; ++i)
1531 {
1532 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1533 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1534 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1535
1536 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1537 }
1538}
1539
1540static void noinline
1541array_verify (EV_P_ W *ws, int cnt)
1542{
1543 while (cnt--)
1544 {
1545 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1546 verify_watcher (EV_A_ ws [cnt]);
1547 }
1548}
1549#endif
1550
1551void
1552ev_loop_verify (EV_P)
1553{
1554#if EV_VERIFY
1555 int i;
1556 WL w;
1557
1558 assert (activecnt >= -1);
1559
1560 assert (fdchangemax >= fdchangecnt);
1561 for (i = 0; i < fdchangecnt; ++i)
1562 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1563
1564 assert (anfdmax >= 0);
1565 for (i = 0; i < anfdmax; ++i)
1566 for (w = anfds [i].head; w; w = w->next)
1567 {
1568 verify_watcher (EV_A_ (W)w);
1569 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1570 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1571 }
1572
1573 assert (timermax >= timercnt);
1574 verify_heap (EV_A_ timers, timercnt);
1575
1576#if EV_PERIODIC_ENABLE
1577 assert (periodicmax >= periodiccnt);
1578 verify_heap (EV_A_ periodics, periodiccnt);
1579#endif
1580
1581 for (i = NUMPRI; i--; )
1582 {
1583 assert (pendingmax [i] >= pendingcnt [i]);
1584#if EV_IDLE_ENABLE
1585 assert (idleall >= 0);
1586 assert (idlemax [i] >= idlecnt [i]);
1587 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1588#endif
1589 }
1590
1591#if EV_FORK_ENABLE
1592 assert (forkmax >= forkcnt);
1593 array_verify (EV_A_ (W *)forks, forkcnt);
1594#endif
1595
1596#if EV_ASYNC_ENABLE
1597 assert (asyncmax >= asynccnt);
1598 array_verify (EV_A_ (W *)asyncs, asynccnt);
1599#endif
1600
1601 assert (preparemax >= preparecnt);
1602 array_verify (EV_A_ (W *)prepares, preparecnt);
1603
1604 assert (checkmax >= checkcnt);
1605 array_verify (EV_A_ (W *)checks, checkcnt);
1606
1607# if 0
1608 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1609 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1344#endif 1610# endif
1611#endif
1612}
1613
1614#endif /* multiplicity */
1345 1615
1346#if EV_MULTIPLICITY 1616#if EV_MULTIPLICITY
1347struct ev_loop * 1617struct ev_loop *
1348ev_default_loop_init (unsigned int flags) 1618ev_default_loop_init (unsigned int flags)
1349#else 1619#else
1425 { 1695 {
1426 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1696 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1427 1697
1428 p->w->pending = 0; 1698 p->w->pending = 0;
1429 EV_CB_INVOKE (p->w, p->events); 1699 EV_CB_INVOKE (p->w, p->events);
1700 EV_FREQUENT_CHECK;
1430 } 1701 }
1431 } 1702 }
1432} 1703}
1433
1434void inline_size
1435timers_reify (EV_P)
1436{
1437 while (timercnt && ((WT)timers [0])->at <= mn_now)
1438 {
1439 ev_timer *w = (ev_timer *)timers [0];
1440
1441 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1442
1443 /* first reschedule or stop timer */
1444 if (w->repeat)
1445 {
1446 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1447
1448 ((WT)w)->at += w->repeat;
1449 if (((WT)w)->at < mn_now)
1450 ((WT)w)->at = mn_now;
1451
1452 downheap (timers, timercnt, 0);
1453 }
1454 else
1455 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1456
1457 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1458 }
1459}
1460
1461#if EV_PERIODIC_ENABLE
1462void inline_size
1463periodics_reify (EV_P)
1464{
1465 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1466 {
1467 ev_periodic *w = (ev_periodic *)periodics [0];
1468
1469 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1470
1471 /* first reschedule or stop timer */
1472 if (w->reschedule_cb)
1473 {
1474 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1475 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1476 downheap (periodics, periodiccnt, 0);
1477 }
1478 else if (w->interval)
1479 {
1480 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1481 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1482 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1483 downheap (periodics, periodiccnt, 0);
1484 }
1485 else
1486 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1487
1488 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1489 }
1490}
1491
1492static void noinline
1493periodics_reschedule (EV_P)
1494{
1495 int i;
1496
1497 /* adjust periodics after time jump */
1498 for (i = 0; i < periodiccnt; ++i)
1499 {
1500 ev_periodic *w = (ev_periodic *)periodics [i];
1501
1502 if (w->reschedule_cb)
1503 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1504 else if (w->interval)
1505 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1506 }
1507
1508 /* now rebuild the heap */
1509 for (i = periodiccnt >> 1; i--; )
1510 downheap (periodics, periodiccnt, i);
1511}
1512#endif
1513 1704
1514#if EV_IDLE_ENABLE 1705#if EV_IDLE_ENABLE
1515void inline_size 1706void inline_size
1516idle_reify (EV_P) 1707idle_reify (EV_P)
1517{ 1708{
1529 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1720 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1530 break; 1721 break;
1531 } 1722 }
1532 } 1723 }
1533 } 1724 }
1725}
1726#endif
1727
1728void inline_size
1729timers_reify (EV_P)
1730{
1731 EV_FREQUENT_CHECK;
1732
1733 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1734 {
1735 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1736
1737 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1738
1739 /* first reschedule or stop timer */
1740 if (w->repeat)
1741 {
1742 ev_at (w) += w->repeat;
1743 if (ev_at (w) < mn_now)
1744 ev_at (w) = mn_now;
1745
1746 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1747
1748 ANHE_at_cache (timers [HEAP0]);
1749 downheap (timers, timercnt, HEAP0);
1750 }
1751 else
1752 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1753
1754 EV_FREQUENT_CHECK;
1755 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1756 }
1757}
1758
1759#if EV_PERIODIC_ENABLE
1760void inline_size
1761periodics_reify (EV_P)
1762{
1763 EV_FREQUENT_CHECK;
1764
1765 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1766 {
1767 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1768
1769 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1770
1771 /* first reschedule or stop timer */
1772 if (w->reschedule_cb)
1773 {
1774 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1775
1776 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1777
1778 ANHE_at_cache (periodics [HEAP0]);
1779 downheap (periodics, periodiccnt, HEAP0);
1780 }
1781 else if (w->interval)
1782 {
1783 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1784 /* if next trigger time is not sufficiently in the future, put it there */
1785 /* this might happen because of floating point inexactness */
1786 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1787 {
1788 ev_at (w) += w->interval;
1789
1790 /* if interval is unreasonably low we might still have a time in the past */
1791 /* so correct this. this will make the periodic very inexact, but the user */
1792 /* has effectively asked to get triggered more often than possible */
1793 if (ev_at (w) < ev_rt_now)
1794 ev_at (w) = ev_rt_now;
1795 }
1796
1797 ANHE_at_cache (periodics [HEAP0]);
1798 downheap (periodics, periodiccnt, HEAP0);
1799 }
1800 else
1801 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1802
1803 EV_FREQUENT_CHECK;
1804 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1805 }
1806}
1807
1808static void noinline
1809periodics_reschedule (EV_P)
1810{
1811 int i;
1812
1813 /* adjust periodics after time jump */
1814 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1815 {
1816 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1817
1818 if (w->reschedule_cb)
1819 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1820 else if (w->interval)
1821 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1822
1823 ANHE_at_cache (periodics [i]);
1824 }
1825
1826 reheap (periodics, periodiccnt);
1534} 1827}
1535#endif 1828#endif
1536 1829
1537void inline_speed 1830void inline_speed
1538time_update (EV_P_ ev_tstamp max_block) 1831time_update (EV_P_ ev_tstamp max_block)
1567 */ 1860 */
1568 for (i = 4; --i; ) 1861 for (i = 4; --i; )
1569 { 1862 {
1570 rtmn_diff = ev_rt_now - mn_now; 1863 rtmn_diff = ev_rt_now - mn_now;
1571 1864
1572 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1865 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1573 return; /* all is well */ 1866 return; /* all is well */
1574 1867
1575 ev_rt_now = ev_time (); 1868 ev_rt_now = ev_time ();
1576 mn_now = get_clock (); 1869 mn_now = get_clock ();
1577 now_floor = mn_now; 1870 now_floor = mn_now;
1593#if EV_PERIODIC_ENABLE 1886#if EV_PERIODIC_ENABLE
1594 periodics_reschedule (EV_A); 1887 periodics_reschedule (EV_A);
1595#endif 1888#endif
1596 /* adjust timers. this is easy, as the offset is the same for all of them */ 1889 /* adjust timers. this is easy, as the offset is the same for all of them */
1597 for (i = 0; i < timercnt; ++i) 1890 for (i = 0; i < timercnt; ++i)
1891 {
1892 ANHE *he = timers + i + HEAP0;
1598 ((WT)timers [i])->at += ev_rt_now - mn_now; 1893 ANHE_w (*he)->at += ev_rt_now - mn_now;
1894 ANHE_at_cache (*he);
1895 }
1599 } 1896 }
1600 1897
1601 mn_now = ev_rt_now; 1898 mn_now = ev_rt_now;
1602 } 1899 }
1603} 1900}
1612ev_unref (EV_P) 1909ev_unref (EV_P)
1613{ 1910{
1614 --activecnt; 1911 --activecnt;
1615} 1912}
1616 1913
1914void
1915ev_now_update (EV_P)
1916{
1917 time_update (EV_A_ 1e100);
1918}
1919
1617static int loop_done; 1920static int loop_done;
1618 1921
1619void 1922void
1620ev_loop (EV_P_ int flags) 1923ev_loop (EV_P_ int flags)
1621{ 1924{
1623 1926
1624 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1927 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1625 1928
1626 do 1929 do
1627 { 1930 {
1931#if EV_VERIFY >= 2
1932 ev_loop_verify (EV_A);
1933#endif
1934
1628#ifndef _WIN32 1935#ifndef _WIN32
1629 if (expect_false (curpid)) /* penalise the forking check even more */ 1936 if (expect_false (curpid)) /* penalise the forking check even more */
1630 if (expect_false (getpid () != curpid)) 1937 if (expect_false (getpid () != curpid))
1631 { 1938 {
1632 curpid = getpid (); 1939 curpid = getpid ();
1673 1980
1674 waittime = MAX_BLOCKTIME; 1981 waittime = MAX_BLOCKTIME;
1675 1982
1676 if (timercnt) 1983 if (timercnt)
1677 { 1984 {
1678 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1985 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1679 if (waittime > to) waittime = to; 1986 if (waittime > to) waittime = to;
1680 } 1987 }
1681 1988
1682#if EV_PERIODIC_ENABLE 1989#if EV_PERIODIC_ENABLE
1683 if (periodiccnt) 1990 if (periodiccnt)
1684 { 1991 {
1685 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1992 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1686 if (waittime > to) waittime = to; 1993 if (waittime > to) waittime = to;
1687 } 1994 }
1688#endif 1995#endif
1689 1996
1690 if (expect_false (waittime < timeout_blocktime)) 1997 if (expect_false (waittime < timeout_blocktime))
1827 if (expect_false (ev_is_active (w))) 2134 if (expect_false (ev_is_active (w)))
1828 return; 2135 return;
1829 2136
1830 assert (("ev_io_start called with negative fd", fd >= 0)); 2137 assert (("ev_io_start called with negative fd", fd >= 0));
1831 2138
2139 EV_FREQUENT_CHECK;
2140
1832 ev_start (EV_A_ (W)w, 1); 2141 ev_start (EV_A_ (W)w, 1);
1833 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2142 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1834 wlist_add (&anfds[fd].head, (WL)w); 2143 wlist_add (&anfds[fd].head, (WL)w);
1835 2144
1836 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2145 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1837 w->events &= ~EV_IOFDSET; 2146 w->events &= ~EV_IOFDSET;
2147
2148 EV_FREQUENT_CHECK;
1838} 2149}
1839 2150
1840void noinline 2151void noinline
1841ev_io_stop (EV_P_ ev_io *w) 2152ev_io_stop (EV_P_ ev_io *w)
1842{ 2153{
1843 clear_pending (EV_A_ (W)w); 2154 clear_pending (EV_A_ (W)w);
1844 if (expect_false (!ev_is_active (w))) 2155 if (expect_false (!ev_is_active (w)))
1845 return; 2156 return;
1846 2157
1847 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2158 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2159
2160 EV_FREQUENT_CHECK;
1848 2161
1849 wlist_del (&anfds[w->fd].head, (WL)w); 2162 wlist_del (&anfds[w->fd].head, (WL)w);
1850 ev_stop (EV_A_ (W)w); 2163 ev_stop (EV_A_ (W)w);
1851 2164
1852 fd_change (EV_A_ w->fd, 1); 2165 fd_change (EV_A_ w->fd, 1);
2166
2167 EV_FREQUENT_CHECK;
1853} 2168}
1854 2169
1855void noinline 2170void noinline
1856ev_timer_start (EV_P_ ev_timer *w) 2171ev_timer_start (EV_P_ ev_timer *w)
1857{ 2172{
1858 if (expect_false (ev_is_active (w))) 2173 if (expect_false (ev_is_active (w)))
1859 return; 2174 return;
1860 2175
1861 ((WT)w)->at += mn_now; 2176 ev_at (w) += mn_now;
1862 2177
1863 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2178 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1864 2179
2180 EV_FREQUENT_CHECK;
2181
2182 ++timercnt;
1865 ev_start (EV_A_ (W)w, ++timercnt); 2183 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1866 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2184 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1867 timers [timercnt - 1] = (WT)w; 2185 ANHE_w (timers [ev_active (w)]) = (WT)w;
1868 upheap (timers, timercnt - 1); 2186 ANHE_at_cache (timers [ev_active (w)]);
2187 upheap (timers, ev_active (w));
1869 2188
2189 EV_FREQUENT_CHECK;
2190
1870 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2191 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1871} 2192}
1872 2193
1873void noinline 2194void noinline
1874ev_timer_stop (EV_P_ ev_timer *w) 2195ev_timer_stop (EV_P_ ev_timer *w)
1875{ 2196{
1876 clear_pending (EV_A_ (W)w); 2197 clear_pending (EV_A_ (W)w);
1877 if (expect_false (!ev_is_active (w))) 2198 if (expect_false (!ev_is_active (w)))
1878 return; 2199 return;
1879 2200
1880 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2201 EV_FREQUENT_CHECK;
1881 2202
1882 { 2203 {
1883 int active = ((W)w)->active; 2204 int active = ev_active (w);
1884 2205
2206 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2207
2208 --timercnt;
2209
1885 if (expect_true (--active < --timercnt)) 2210 if (expect_true (active < timercnt + HEAP0))
1886 { 2211 {
1887 timers [active] = timers [timercnt]; 2212 timers [active] = timers [timercnt + HEAP0];
1888 adjustheap (timers, timercnt, active); 2213 adjustheap (timers, timercnt, active);
1889 } 2214 }
1890 } 2215 }
1891 2216
1892 ((WT)w)->at -= mn_now; 2217 EV_FREQUENT_CHECK;
2218
2219 ev_at (w) -= mn_now;
1893 2220
1894 ev_stop (EV_A_ (W)w); 2221 ev_stop (EV_A_ (W)w);
1895} 2222}
1896 2223
1897void noinline 2224void noinline
1898ev_timer_again (EV_P_ ev_timer *w) 2225ev_timer_again (EV_P_ ev_timer *w)
1899{ 2226{
2227 EV_FREQUENT_CHECK;
2228
1900 if (ev_is_active (w)) 2229 if (ev_is_active (w))
1901 { 2230 {
1902 if (w->repeat) 2231 if (w->repeat)
1903 { 2232 {
1904 ((WT)w)->at = mn_now + w->repeat; 2233 ev_at (w) = mn_now + w->repeat;
2234 ANHE_at_cache (timers [ev_active (w)]);
1905 adjustheap (timers, timercnt, ((W)w)->active - 1); 2235 adjustheap (timers, timercnt, ev_active (w));
1906 } 2236 }
1907 else 2237 else
1908 ev_timer_stop (EV_A_ w); 2238 ev_timer_stop (EV_A_ w);
1909 } 2239 }
1910 else if (w->repeat) 2240 else if (w->repeat)
1911 { 2241 {
1912 w->at = w->repeat; 2242 ev_at (w) = w->repeat;
1913 ev_timer_start (EV_A_ w); 2243 ev_timer_start (EV_A_ w);
1914 } 2244 }
2245
2246 EV_FREQUENT_CHECK;
1915} 2247}
1916 2248
1917#if EV_PERIODIC_ENABLE 2249#if EV_PERIODIC_ENABLE
1918void noinline 2250void noinline
1919ev_periodic_start (EV_P_ ev_periodic *w) 2251ev_periodic_start (EV_P_ ev_periodic *w)
1920{ 2252{
1921 if (expect_false (ev_is_active (w))) 2253 if (expect_false (ev_is_active (w)))
1922 return; 2254 return;
1923 2255
1924 if (w->reschedule_cb) 2256 if (w->reschedule_cb)
1925 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2257 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1926 else if (w->interval) 2258 else if (w->interval)
1927 { 2259 {
1928 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2260 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1929 /* this formula differs from the one in periodic_reify because we do not always round up */ 2261 /* this formula differs from the one in periodic_reify because we do not always round up */
1930 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2262 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1931 } 2263 }
1932 else 2264 else
1933 ((WT)w)->at = w->offset; 2265 ev_at (w) = w->offset;
1934 2266
2267 EV_FREQUENT_CHECK;
2268
2269 ++periodiccnt;
1935 ev_start (EV_A_ (W)w, ++periodiccnt); 2270 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1936 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2271 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1937 periodics [periodiccnt - 1] = (WT)w; 2272 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1938 upheap (periodics, periodiccnt - 1); 2273 ANHE_at_cache (periodics [ev_active (w)]);
2274 upheap (periodics, ev_active (w));
1939 2275
2276 EV_FREQUENT_CHECK;
2277
1940 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2278 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1941} 2279}
1942 2280
1943void noinline 2281void noinline
1944ev_periodic_stop (EV_P_ ev_periodic *w) 2282ev_periodic_stop (EV_P_ ev_periodic *w)
1945{ 2283{
1946 clear_pending (EV_A_ (W)w); 2284 clear_pending (EV_A_ (W)w);
1947 if (expect_false (!ev_is_active (w))) 2285 if (expect_false (!ev_is_active (w)))
1948 return; 2286 return;
1949 2287
1950 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2288 EV_FREQUENT_CHECK;
1951 2289
1952 { 2290 {
1953 int active = ((W)w)->active; 2291 int active = ev_active (w);
1954 2292
2293 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2294
2295 --periodiccnt;
2296
1955 if (expect_true (--active < --periodiccnt)) 2297 if (expect_true (active < periodiccnt + HEAP0))
1956 { 2298 {
1957 periodics [active] = periodics [periodiccnt]; 2299 periodics [active] = periodics [periodiccnt + HEAP0];
1958 adjustheap (periodics, periodiccnt, active); 2300 adjustheap (periodics, periodiccnt, active);
1959 } 2301 }
1960 } 2302 }
1961 2303
2304 EV_FREQUENT_CHECK;
2305
1962 ev_stop (EV_A_ (W)w); 2306 ev_stop (EV_A_ (W)w);
1963} 2307}
1964 2308
1965void noinline 2309void noinline
1966ev_periodic_again (EV_P_ ev_periodic *w) 2310ev_periodic_again (EV_P_ ev_periodic *w)
1985 return; 2329 return;
1986 2330
1987 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2331 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1988 2332
1989 evpipe_init (EV_A); 2333 evpipe_init (EV_A);
2334
2335 EV_FREQUENT_CHECK;
1990 2336
1991 { 2337 {
1992#ifndef _WIN32 2338#ifndef _WIN32
1993 sigset_t full, prev; 2339 sigset_t full, prev;
1994 sigfillset (&full); 2340 sigfillset (&full);
2015 sigfillset (&sa.sa_mask); 2361 sigfillset (&sa.sa_mask);
2016 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2362 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2017 sigaction (w->signum, &sa, 0); 2363 sigaction (w->signum, &sa, 0);
2018#endif 2364#endif
2019 } 2365 }
2366
2367 EV_FREQUENT_CHECK;
2020} 2368}
2021 2369
2022void noinline 2370void noinline
2023ev_signal_stop (EV_P_ ev_signal *w) 2371ev_signal_stop (EV_P_ ev_signal *w)
2024{ 2372{
2025 clear_pending (EV_A_ (W)w); 2373 clear_pending (EV_A_ (W)w);
2026 if (expect_false (!ev_is_active (w))) 2374 if (expect_false (!ev_is_active (w)))
2027 return; 2375 return;
2028 2376
2377 EV_FREQUENT_CHECK;
2378
2029 wlist_del (&signals [w->signum - 1].head, (WL)w); 2379 wlist_del (&signals [w->signum - 1].head, (WL)w);
2030 ev_stop (EV_A_ (W)w); 2380 ev_stop (EV_A_ (W)w);
2031 2381
2032 if (!signals [w->signum - 1].head) 2382 if (!signals [w->signum - 1].head)
2033 signal (w->signum, SIG_DFL); 2383 signal (w->signum, SIG_DFL);
2384
2385 EV_FREQUENT_CHECK;
2034} 2386}
2035 2387
2036void 2388void
2037ev_child_start (EV_P_ ev_child *w) 2389ev_child_start (EV_P_ ev_child *w)
2038{ 2390{
2040 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2392 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2041#endif 2393#endif
2042 if (expect_false (ev_is_active (w))) 2394 if (expect_false (ev_is_active (w)))
2043 return; 2395 return;
2044 2396
2397 EV_FREQUENT_CHECK;
2398
2045 ev_start (EV_A_ (W)w, 1); 2399 ev_start (EV_A_ (W)w, 1);
2046 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2400 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2401
2402 EV_FREQUENT_CHECK;
2047} 2403}
2048 2404
2049void 2405void
2050ev_child_stop (EV_P_ ev_child *w) 2406ev_child_stop (EV_P_ ev_child *w)
2051{ 2407{
2052 clear_pending (EV_A_ (W)w); 2408 clear_pending (EV_A_ (W)w);
2053 if (expect_false (!ev_is_active (w))) 2409 if (expect_false (!ev_is_active (w)))
2054 return; 2410 return;
2055 2411
2412 EV_FREQUENT_CHECK;
2413
2056 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2414 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2057 ev_stop (EV_A_ (W)w); 2415 ev_stop (EV_A_ (W)w);
2416
2417 EV_FREQUENT_CHECK;
2058} 2418}
2059 2419
2060#if EV_STAT_ENABLE 2420#if EV_STAT_ENABLE
2061 2421
2062# ifdef _WIN32 2422# ifdef _WIN32
2080 if (w->wd < 0) 2440 if (w->wd < 0)
2081 { 2441 {
2082 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2442 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2083 2443
2084 /* monitor some parent directory for speedup hints */ 2444 /* monitor some parent directory for speedup hints */
2445 /* note that exceeding the hardcoded limit is not a correctness issue, */
2446 /* but an efficiency issue only */
2085 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2447 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2086 { 2448 {
2087 char path [4096]; 2449 char path [4096];
2088 strcpy (path, w->path); 2450 strcpy (path, w->path);
2089 2451
2215 } 2577 }
2216 2578
2217 } 2579 }
2218} 2580}
2219 2581
2582#endif
2583
2584#ifdef _WIN32
2585# define EV_LSTAT(p,b) _stati64 (p, b)
2586#else
2587# define EV_LSTAT(p,b) lstat (p, b)
2220#endif 2588#endif
2221 2589
2222void 2590void
2223ev_stat_stat (EV_P_ ev_stat *w) 2591ev_stat_stat (EV_P_ ev_stat *w)
2224{ 2592{
2288 else 2656 else
2289#endif 2657#endif
2290 ev_timer_start (EV_A_ &w->timer); 2658 ev_timer_start (EV_A_ &w->timer);
2291 2659
2292 ev_start (EV_A_ (W)w, 1); 2660 ev_start (EV_A_ (W)w, 1);
2661
2662 EV_FREQUENT_CHECK;
2293} 2663}
2294 2664
2295void 2665void
2296ev_stat_stop (EV_P_ ev_stat *w) 2666ev_stat_stop (EV_P_ ev_stat *w)
2297{ 2667{
2298 clear_pending (EV_A_ (W)w); 2668 clear_pending (EV_A_ (W)w);
2299 if (expect_false (!ev_is_active (w))) 2669 if (expect_false (!ev_is_active (w)))
2300 return; 2670 return;
2301 2671
2672 EV_FREQUENT_CHECK;
2673
2302#if EV_USE_INOTIFY 2674#if EV_USE_INOTIFY
2303 infy_del (EV_A_ w); 2675 infy_del (EV_A_ w);
2304#endif 2676#endif
2305 ev_timer_stop (EV_A_ &w->timer); 2677 ev_timer_stop (EV_A_ &w->timer);
2306 2678
2307 ev_stop (EV_A_ (W)w); 2679 ev_stop (EV_A_ (W)w);
2680
2681 EV_FREQUENT_CHECK;
2308} 2682}
2309#endif 2683#endif
2310 2684
2311#if EV_IDLE_ENABLE 2685#if EV_IDLE_ENABLE
2312void 2686void
2314{ 2688{
2315 if (expect_false (ev_is_active (w))) 2689 if (expect_false (ev_is_active (w)))
2316 return; 2690 return;
2317 2691
2318 pri_adjust (EV_A_ (W)w); 2692 pri_adjust (EV_A_ (W)w);
2693
2694 EV_FREQUENT_CHECK;
2319 2695
2320 { 2696 {
2321 int active = ++idlecnt [ABSPRI (w)]; 2697 int active = ++idlecnt [ABSPRI (w)];
2322 2698
2323 ++idleall; 2699 ++idleall;
2324 ev_start (EV_A_ (W)w, active); 2700 ev_start (EV_A_ (W)w, active);
2325 2701
2326 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2702 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2327 idles [ABSPRI (w)][active - 1] = w; 2703 idles [ABSPRI (w)][active - 1] = w;
2328 } 2704 }
2705
2706 EV_FREQUENT_CHECK;
2329} 2707}
2330 2708
2331void 2709void
2332ev_idle_stop (EV_P_ ev_idle *w) 2710ev_idle_stop (EV_P_ ev_idle *w)
2333{ 2711{
2334 clear_pending (EV_A_ (W)w); 2712 clear_pending (EV_A_ (W)w);
2335 if (expect_false (!ev_is_active (w))) 2713 if (expect_false (!ev_is_active (w)))
2336 return; 2714 return;
2337 2715
2716 EV_FREQUENT_CHECK;
2717
2338 { 2718 {
2339 int active = ((W)w)->active; 2719 int active = ev_active (w);
2340 2720
2341 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2721 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2342 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2722 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2343 2723
2344 ev_stop (EV_A_ (W)w); 2724 ev_stop (EV_A_ (W)w);
2345 --idleall; 2725 --idleall;
2346 } 2726 }
2727
2728 EV_FREQUENT_CHECK;
2347} 2729}
2348#endif 2730#endif
2349 2731
2350void 2732void
2351ev_prepare_start (EV_P_ ev_prepare *w) 2733ev_prepare_start (EV_P_ ev_prepare *w)
2352{ 2734{
2353 if (expect_false (ev_is_active (w))) 2735 if (expect_false (ev_is_active (w)))
2354 return; 2736 return;
2737
2738 EV_FREQUENT_CHECK;
2355 2739
2356 ev_start (EV_A_ (W)w, ++preparecnt); 2740 ev_start (EV_A_ (W)w, ++preparecnt);
2357 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2741 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2358 prepares [preparecnt - 1] = w; 2742 prepares [preparecnt - 1] = w;
2743
2744 EV_FREQUENT_CHECK;
2359} 2745}
2360 2746
2361void 2747void
2362ev_prepare_stop (EV_P_ ev_prepare *w) 2748ev_prepare_stop (EV_P_ ev_prepare *w)
2363{ 2749{
2364 clear_pending (EV_A_ (W)w); 2750 clear_pending (EV_A_ (W)w);
2365 if (expect_false (!ev_is_active (w))) 2751 if (expect_false (!ev_is_active (w)))
2366 return; 2752 return;
2367 2753
2754 EV_FREQUENT_CHECK;
2755
2368 { 2756 {
2369 int active = ((W)w)->active; 2757 int active = ev_active (w);
2758
2370 prepares [active - 1] = prepares [--preparecnt]; 2759 prepares [active - 1] = prepares [--preparecnt];
2371 ((W)prepares [active - 1])->active = active; 2760 ev_active (prepares [active - 1]) = active;
2372 } 2761 }
2373 2762
2374 ev_stop (EV_A_ (W)w); 2763 ev_stop (EV_A_ (W)w);
2764
2765 EV_FREQUENT_CHECK;
2375} 2766}
2376 2767
2377void 2768void
2378ev_check_start (EV_P_ ev_check *w) 2769ev_check_start (EV_P_ ev_check *w)
2379{ 2770{
2380 if (expect_false (ev_is_active (w))) 2771 if (expect_false (ev_is_active (w)))
2381 return; 2772 return;
2773
2774 EV_FREQUENT_CHECK;
2382 2775
2383 ev_start (EV_A_ (W)w, ++checkcnt); 2776 ev_start (EV_A_ (W)w, ++checkcnt);
2384 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2777 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2385 checks [checkcnt - 1] = w; 2778 checks [checkcnt - 1] = w;
2779
2780 EV_FREQUENT_CHECK;
2386} 2781}
2387 2782
2388void 2783void
2389ev_check_stop (EV_P_ ev_check *w) 2784ev_check_stop (EV_P_ ev_check *w)
2390{ 2785{
2391 clear_pending (EV_A_ (W)w); 2786 clear_pending (EV_A_ (W)w);
2392 if (expect_false (!ev_is_active (w))) 2787 if (expect_false (!ev_is_active (w)))
2393 return; 2788 return;
2394 2789
2790 EV_FREQUENT_CHECK;
2791
2395 { 2792 {
2396 int active = ((W)w)->active; 2793 int active = ev_active (w);
2794
2397 checks [active - 1] = checks [--checkcnt]; 2795 checks [active - 1] = checks [--checkcnt];
2398 ((W)checks [active - 1])->active = active; 2796 ev_active (checks [active - 1]) = active;
2399 } 2797 }
2400 2798
2401 ev_stop (EV_A_ (W)w); 2799 ev_stop (EV_A_ (W)w);
2800
2801 EV_FREQUENT_CHECK;
2402} 2802}
2403 2803
2404#if EV_EMBED_ENABLE 2804#if EV_EMBED_ENABLE
2405void noinline 2805void noinline
2406ev_embed_sweep (EV_P_ ev_embed *w) 2806ev_embed_sweep (EV_P_ ev_embed *w)
2433 ev_loop (EV_A_ EVLOOP_NONBLOCK); 2833 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2434 } 2834 }
2435 } 2835 }
2436} 2836}
2437 2837
2838static void
2839embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2840{
2841 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2842
2843 {
2844 struct ev_loop *loop = w->other;
2845
2846 ev_loop_fork (EV_A);
2847 }
2848}
2849
2438#if 0 2850#if 0
2439static void 2851static void
2440embed_idle_cb (EV_P_ ev_idle *idle, int revents) 2852embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2441{ 2853{
2442 ev_idle_stop (EV_A_ idle); 2854 ev_idle_stop (EV_A_ idle);
2453 struct ev_loop *loop = w->other; 2865 struct ev_loop *loop = w->other;
2454 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2866 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2455 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2867 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2456 } 2868 }
2457 2869
2870 EV_FREQUENT_CHECK;
2871
2458 ev_set_priority (&w->io, ev_priority (w)); 2872 ev_set_priority (&w->io, ev_priority (w));
2459 ev_io_start (EV_A_ &w->io); 2873 ev_io_start (EV_A_ &w->io);
2460 2874
2461 ev_prepare_init (&w->prepare, embed_prepare_cb); 2875 ev_prepare_init (&w->prepare, embed_prepare_cb);
2462 ev_set_priority (&w->prepare, EV_MINPRI); 2876 ev_set_priority (&w->prepare, EV_MINPRI);
2463 ev_prepare_start (EV_A_ &w->prepare); 2877 ev_prepare_start (EV_A_ &w->prepare);
2464 2878
2879 ev_fork_init (&w->fork, embed_fork_cb);
2880 ev_fork_start (EV_A_ &w->fork);
2881
2465 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2882 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2466 2883
2467 ev_start (EV_A_ (W)w, 1); 2884 ev_start (EV_A_ (W)w, 1);
2885
2886 EV_FREQUENT_CHECK;
2468} 2887}
2469 2888
2470void 2889void
2471ev_embed_stop (EV_P_ ev_embed *w) 2890ev_embed_stop (EV_P_ ev_embed *w)
2472{ 2891{
2473 clear_pending (EV_A_ (W)w); 2892 clear_pending (EV_A_ (W)w);
2474 if (expect_false (!ev_is_active (w))) 2893 if (expect_false (!ev_is_active (w)))
2475 return; 2894 return;
2476 2895
2896 EV_FREQUENT_CHECK;
2897
2477 ev_io_stop (EV_A_ &w->io); 2898 ev_io_stop (EV_A_ &w->io);
2478 ev_prepare_stop (EV_A_ &w->prepare); 2899 ev_prepare_stop (EV_A_ &w->prepare);
2900 ev_fork_stop (EV_A_ &w->fork);
2479 2901
2480 ev_stop (EV_A_ (W)w); 2902 EV_FREQUENT_CHECK;
2481} 2903}
2482#endif 2904#endif
2483 2905
2484#if EV_FORK_ENABLE 2906#if EV_FORK_ENABLE
2485void 2907void
2486ev_fork_start (EV_P_ ev_fork *w) 2908ev_fork_start (EV_P_ ev_fork *w)
2487{ 2909{
2488 if (expect_false (ev_is_active (w))) 2910 if (expect_false (ev_is_active (w)))
2489 return; 2911 return;
2912
2913 EV_FREQUENT_CHECK;
2490 2914
2491 ev_start (EV_A_ (W)w, ++forkcnt); 2915 ev_start (EV_A_ (W)w, ++forkcnt);
2492 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2916 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2493 forks [forkcnt - 1] = w; 2917 forks [forkcnt - 1] = w;
2918
2919 EV_FREQUENT_CHECK;
2494} 2920}
2495 2921
2496void 2922void
2497ev_fork_stop (EV_P_ ev_fork *w) 2923ev_fork_stop (EV_P_ ev_fork *w)
2498{ 2924{
2499 clear_pending (EV_A_ (W)w); 2925 clear_pending (EV_A_ (W)w);
2500 if (expect_false (!ev_is_active (w))) 2926 if (expect_false (!ev_is_active (w)))
2501 return; 2927 return;
2502 2928
2929 EV_FREQUENT_CHECK;
2930
2503 { 2931 {
2504 int active = ((W)w)->active; 2932 int active = ev_active (w);
2933
2505 forks [active - 1] = forks [--forkcnt]; 2934 forks [active - 1] = forks [--forkcnt];
2506 ((W)forks [active - 1])->active = active; 2935 ev_active (forks [active - 1]) = active;
2507 } 2936 }
2508 2937
2509 ev_stop (EV_A_ (W)w); 2938 ev_stop (EV_A_ (W)w);
2939
2940 EV_FREQUENT_CHECK;
2510} 2941}
2511#endif 2942#endif
2512 2943
2513#if EV_ASYNC_ENABLE 2944#if EV_ASYNC_ENABLE
2514void 2945void
2516{ 2947{
2517 if (expect_false (ev_is_active (w))) 2948 if (expect_false (ev_is_active (w)))
2518 return; 2949 return;
2519 2950
2520 evpipe_init (EV_A); 2951 evpipe_init (EV_A);
2952
2953 EV_FREQUENT_CHECK;
2521 2954
2522 ev_start (EV_A_ (W)w, ++asynccnt); 2955 ev_start (EV_A_ (W)w, ++asynccnt);
2523 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2956 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2524 asyncs [asynccnt - 1] = w; 2957 asyncs [asynccnt - 1] = w;
2958
2959 EV_FREQUENT_CHECK;
2525} 2960}
2526 2961
2527void 2962void
2528ev_async_stop (EV_P_ ev_async *w) 2963ev_async_stop (EV_P_ ev_async *w)
2529{ 2964{
2530 clear_pending (EV_A_ (W)w); 2965 clear_pending (EV_A_ (W)w);
2531 if (expect_false (!ev_is_active (w))) 2966 if (expect_false (!ev_is_active (w)))
2532 return; 2967 return;
2533 2968
2969 EV_FREQUENT_CHECK;
2970
2534 { 2971 {
2535 int active = ((W)w)->active; 2972 int active = ev_active (w);
2973
2536 asyncs [active - 1] = asyncs [--asynccnt]; 2974 asyncs [active - 1] = asyncs [--asynccnt];
2537 ((W)asyncs [active - 1])->active = active; 2975 ev_active (asyncs [active - 1]) = active;
2538 } 2976 }
2539 2977
2540 ev_stop (EV_A_ (W)w); 2978 ev_stop (EV_A_ (W)w);
2979
2980 EV_FREQUENT_CHECK;
2541} 2981}
2542 2982
2543void 2983void
2544ev_async_send (EV_P_ ev_async *w) 2984ev_async_send (EV_P_ ev_async *w)
2545{ 2985{
2562once_cb (EV_P_ struct ev_once *once, int revents) 3002once_cb (EV_P_ struct ev_once *once, int revents)
2563{ 3003{
2564 void (*cb)(int revents, void *arg) = once->cb; 3004 void (*cb)(int revents, void *arg) = once->cb;
2565 void *arg = once->arg; 3005 void *arg = once->arg;
2566 3006
2567 ev_io_stop (EV_A_ &once->io); 3007 ev_io_stop (EV_A_ &once->io);
2568 ev_timer_stop (EV_A_ &once->to); 3008 ev_timer_stop (EV_A_ &once->to);
2569 ev_free (once); 3009 ev_free (once);
2570 3010
2571 cb (revents, arg); 3011 cb (revents, arg);
2572} 3012}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines