ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.232 by root, Tue May 6 15:29:58 2008 UTC vs.
Revision 1.261 by root, Mon Sep 29 03:31:14 2008 UTC

126# define EV_USE_EVENTFD 1 126# define EV_USE_EVENTFD 1
127# else 127# else
128# define EV_USE_EVENTFD 0 128# define EV_USE_EVENTFD 0
129# endif 129# endif
130# endif 130# endif
131 131
132#endif 132#endif
133 133
134#include <math.h> 134#include <math.h>
135#include <stdlib.h> 135#include <stdlib.h>
136#include <fcntl.h> 136#include <fcntl.h>
154#ifndef _WIN32 154#ifndef _WIN32
155# include <sys/time.h> 155# include <sys/time.h>
156# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h> 157# include <unistd.h>
158#else 158#else
159# include <io.h>
159# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 161# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
163# endif 164# endif
164#endif 165#endif
165 166
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
167 168
168#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
169# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
170#endif 175#endif
171 176
172#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
174#endif 179#endif
175 180
176#ifndef EV_USE_NANOSLEEP 181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
177# define EV_USE_NANOSLEEP 0 185# define EV_USE_NANOSLEEP 0
186# endif
178#endif 187#endif
179 188
180#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
182#endif 191#endif
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 243# define EV_USE_EVENTFD 1
235# else 244# else
236# define EV_USE_EVENTFD 0 245# define EV_USE_EVENTFD 0
237# endif 246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
238#endif 265#endif
239 266
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 268
242#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
279} 306}
280# endif 307# endif
281#endif 308#endif
282 309
283/**/ 310/**/
311
312#if EV_VERIFY >= 3
313# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
314#else
315# define EV_FREQUENT_CHECK do { } while (0)
316#endif
284 317
285/* 318/*
286 * This is used to avoid floating point rounding problems. 319 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 320 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 321 * to ensure progress, time-wise, even when rounding
422 W w; 455 W w;
423 int events; 456 int events;
424} ANPENDING; 457} ANPENDING;
425 458
426#if EV_USE_INOTIFY 459#if EV_USE_INOTIFY
460/* hash table entry per inotify-id */
427typedef struct 461typedef struct
428{ 462{
429 WL head; 463 WL head;
430} ANFS; 464} ANFS;
465#endif
466
467/* Heap Entry */
468#if EV_HEAP_CACHE_AT
469 typedef struct {
470 ev_tstamp at;
471 WT w;
472 } ANHE;
473
474 #define ANHE_w(he) (he).w /* access watcher, read-write */
475 #define ANHE_at(he) (he).at /* access cached at, read-only */
476 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
477#else
478 typedef WT ANHE;
479
480 #define ANHE_w(he) (he)
481 #define ANHE_at(he) (he)->at
482 #define ANHE_at_cache(he)
431#endif 483#endif
432 484
433#if EV_MULTIPLICITY 485#if EV_MULTIPLICITY
434 486
435 struct ev_loop 487 struct ev_loop
513 struct timeval tv; 565 struct timeval tv;
514 566
515 tv.tv_sec = (time_t)delay; 567 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 568 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517 569
570 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
571 /* somehting nto guaranteed by newer posix versions, but guaranteed */
572 /* by older ones */
518 select (0, 0, 0, 0, &tv); 573 select (0, 0, 0, 0, &tv);
519#endif 574#endif
520 } 575 }
521} 576}
522 577
523/*****************************************************************************/ 578/*****************************************************************************/
524 579
525#define MALLOC_ROUND 4096 // prefer to allocate in chunks of this size, must be 2**n and >> 4 longs 580#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
526 581
527int inline_size 582int inline_size
528array_nextsize (int elem, int cur, int cnt) 583array_nextsize (int elem, int cur, int cnt)
529{ 584{
530 int ncur = cur + 1; 585 int ncur = cur + 1;
656 events |= (unsigned char)w->events; 711 events |= (unsigned char)w->events;
657 712
658#if EV_SELECT_IS_WINSOCKET 713#if EV_SELECT_IS_WINSOCKET
659 if (events) 714 if (events)
660 { 715 {
661 unsigned long argp; 716 unsigned long arg;
662 #ifdef EV_FD_TO_WIN32_HANDLE 717 #ifdef EV_FD_TO_WIN32_HANDLE
663 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 718 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
664 #else 719 #else
665 anfd->handle = _get_osfhandle (fd); 720 anfd->handle = _get_osfhandle (fd);
666 #endif 721 #endif
667 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 722 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
668 } 723 }
669#endif 724#endif
670 725
671 { 726 {
672 unsigned char o_events = anfd->events; 727 unsigned char o_events = anfd->events;
725{ 780{
726 int fd; 781 int fd;
727 782
728 for (fd = 0; fd < anfdmax; ++fd) 783 for (fd = 0; fd < anfdmax; ++fd)
729 if (anfds [fd].events) 784 if (anfds [fd].events)
730 if (!fd_valid (fd) == -1 && errno == EBADF) 785 if (!fd_valid (fd) && errno == EBADF)
731 fd_kill (EV_A_ fd); 786 fd_kill (EV_A_ fd);
732} 787}
733 788
734/* called on ENOMEM in select/poll to kill some fds and retry */ 789/* called on ENOMEM in select/poll to kill some fds and retry */
735static void noinline 790static void noinline
759 } 814 }
760} 815}
761 816
762/*****************************************************************************/ 817/*****************************************************************************/
763 818
819/*
820 * the heap functions want a real array index. array index 0 uis guaranteed to not
821 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
822 * the branching factor of the d-tree.
823 */
824
825/*
826 * at the moment we allow libev the luxury of two heaps,
827 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
828 * which is more cache-efficient.
829 * the difference is about 5% with 50000+ watchers.
830 */
831#if EV_USE_4HEAP
832
833#define DHEAP 4
834#define HEAP0 (DHEAP - 1) /* index of first element in heap */
835#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
836#define UPHEAP_DONE(p,k) ((p) == (k))
837
838/* away from the root */
839void inline_speed
840downheap (ANHE *heap, int N, int k)
841{
842 ANHE he = heap [k];
843 ANHE *E = heap + N + HEAP0;
844
845 for (;;)
846 {
847 ev_tstamp minat;
848 ANHE *minpos;
849 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
850
851 /* find minimum child */
852 if (expect_true (pos + DHEAP - 1 < E))
853 {
854 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
855 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
856 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
857 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
858 }
859 else if (pos < E)
860 {
861 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
862 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
863 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
864 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
865 }
866 else
867 break;
868
869 if (ANHE_at (he) <= minat)
870 break;
871
872 heap [k] = *minpos;
873 ev_active (ANHE_w (*minpos)) = k;
874
875 k = minpos - heap;
876 }
877
878 heap [k] = he;
879 ev_active (ANHE_w (he)) = k;
880}
881
882#else /* 4HEAP */
883
884#define HEAP0 1
885#define HPARENT(k) ((k) >> 1)
886#define UPHEAP_DONE(p,k) (!(p))
887
888/* away from the root */
889void inline_speed
890downheap (ANHE *heap, int N, int k)
891{
892 ANHE he = heap [k];
893
894 for (;;)
895 {
896 int c = k << 1;
897
898 if (c > N + HEAP0 - 1)
899 break;
900
901 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
902 ? 1 : 0;
903
904 if (ANHE_at (he) <= ANHE_at (heap [c]))
905 break;
906
907 heap [k] = heap [c];
908 ev_active (ANHE_w (heap [k])) = k;
909
910 k = c;
911 }
912
913 heap [k] = he;
914 ev_active (ANHE_w (he)) = k;
915}
916#endif
917
764/* towards the root */ 918/* towards the root */
765void inline_speed 919void inline_speed
766upheap (WT *heap, int k) 920upheap (ANHE *heap, int k)
767{ 921{
768 WT w = heap [k]; 922 ANHE he = heap [k];
769 923
770 for (;;) 924 for (;;)
771 { 925 {
772 int p = k >> 1; 926 int p = HPARENT (k);
773 927
774 /* maybe we could use a dummy element at heap [0]? */ 928 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
775 if (!p || heap [p]->at <= w->at)
776 break; 929 break;
777 930
778 heap [k] = heap [p]; 931 heap [k] = heap [p];
779 ev_active (heap [k]) = k; 932 ev_active (ANHE_w (heap [k])) = k;
780 k = p; 933 k = p;
781 } 934 }
782 935
783 heap [k] = w; 936 heap [k] = he;
784 ev_active (heap [k]) = k; 937 ev_active (ANHE_w (he)) = k;
785}
786
787/* away from the root */
788void inline_speed
789downheap (WT *heap, int N, int k)
790{
791 WT w = heap [k];
792
793 for (;;)
794 {
795 int c = k << 1;
796
797 if (c > N)
798 break;
799
800 c += c < N && heap [c]->at > heap [c + 1]->at
801 ? 1 : 0;
802
803 if (w->at <= heap [c]->at)
804 break;
805
806 heap [k] = heap [c];
807 ev_active (heap [k]) = k;
808
809 k = c;
810 }
811
812 heap [k] = w;
813 ev_active (heap [k]) = k;
814} 938}
815 939
816void inline_size 940void inline_size
817adjustheap (WT *heap, int N, int k) 941adjustheap (ANHE *heap, int N, int k)
818{ 942{
943 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
819 upheap (heap, k); 944 upheap (heap, k);
945 else
820 downheap (heap, N, k); 946 downheap (heap, N, k);
947}
948
949/* rebuild the heap: this function is used only once and executed rarely */
950void inline_size
951reheap (ANHE *heap, int N)
952{
953 int i;
954
955 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
956 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
957 for (i = 0; i < N; ++i)
958 upheap (heap, i + HEAP0);
821} 959}
822 960
823/*****************************************************************************/ 961/*****************************************************************************/
824 962
825typedef struct 963typedef struct
849 987
850void inline_speed 988void inline_speed
851fd_intern (int fd) 989fd_intern (int fd)
852{ 990{
853#ifdef _WIN32 991#ifdef _WIN32
854 int arg = 1; 992 unsigned long arg = 1;
855 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 993 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
856#else 994#else
857 fcntl (fd, F_SETFD, FD_CLOEXEC); 995 fcntl (fd, F_SETFD, FD_CLOEXEC);
858 fcntl (fd, F_SETFL, O_NONBLOCK); 996 fcntl (fd, F_SETFL, O_NONBLOCK);
859#endif 997#endif
1343 1481
1344 postfork = 0; 1482 postfork = 0;
1345} 1483}
1346 1484
1347#if EV_MULTIPLICITY 1485#if EV_MULTIPLICITY
1486
1348struct ev_loop * 1487struct ev_loop *
1349ev_loop_new (unsigned int flags) 1488ev_loop_new (unsigned int flags)
1350{ 1489{
1351 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1490 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1352 1491
1371ev_loop_fork (EV_P) 1510ev_loop_fork (EV_P)
1372{ 1511{
1373 postfork = 1; /* must be in line with ev_default_fork */ 1512 postfork = 1; /* must be in line with ev_default_fork */
1374} 1513}
1375 1514
1515#if EV_VERIFY
1516static void noinline
1517verify_watcher (EV_P_ W w)
1518{
1519 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1520
1521 if (w->pending)
1522 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1523}
1524
1525static void noinline
1526verify_heap (EV_P_ ANHE *heap, int N)
1527{
1528 int i;
1529
1530 for (i = HEAP0; i < N + HEAP0; ++i)
1531 {
1532 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1533 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1534 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1535
1536 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1537 }
1538}
1539
1540static void noinline
1541array_verify (EV_P_ W *ws, int cnt)
1542{
1543 while (cnt--)
1544 {
1545 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1546 verify_watcher (EV_A_ ws [cnt]);
1547 }
1548}
1549#endif
1550
1551void
1552ev_loop_verify (EV_P)
1553{
1554#if EV_VERIFY
1555 int i;
1556 WL w;
1557
1558 assert (activecnt >= -1);
1559
1560 assert (fdchangemax >= fdchangecnt);
1561 for (i = 0; i < fdchangecnt; ++i)
1562 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1563
1564 assert (anfdmax >= 0);
1565 for (i = 0; i < anfdmax; ++i)
1566 for (w = anfds [i].head; w; w = w->next)
1567 {
1568 verify_watcher (EV_A_ (W)w);
1569 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1570 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1571 }
1572
1573 assert (timermax >= timercnt);
1574 verify_heap (EV_A_ timers, timercnt);
1575
1576#if EV_PERIODIC_ENABLE
1577 assert (periodicmax >= periodiccnt);
1578 verify_heap (EV_A_ periodics, periodiccnt);
1579#endif
1580
1581 for (i = NUMPRI; i--; )
1582 {
1583 assert (pendingmax [i] >= pendingcnt [i]);
1584#if EV_IDLE_ENABLE
1585 assert (idleall >= 0);
1586 assert (idlemax [i] >= idlecnt [i]);
1587 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1588#endif
1589 }
1590
1591#if EV_FORK_ENABLE
1592 assert (forkmax >= forkcnt);
1593 array_verify (EV_A_ (W *)forks, forkcnt);
1594#endif
1595
1596#if EV_ASYNC_ENABLE
1597 assert (asyncmax >= asynccnt);
1598 array_verify (EV_A_ (W *)asyncs, asynccnt);
1599#endif
1600
1601 assert (preparemax >= preparecnt);
1602 array_verify (EV_A_ (W *)prepares, preparecnt);
1603
1604 assert (checkmax >= checkcnt);
1605 array_verify (EV_A_ (W *)checks, checkcnt);
1606
1607# if 0
1608 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1609 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1376#endif 1610# endif
1611#endif
1612}
1613
1614#endif /* multiplicity */
1377 1615
1378#if EV_MULTIPLICITY 1616#if EV_MULTIPLICITY
1379struct ev_loop * 1617struct ev_loop *
1380ev_default_loop_init (unsigned int flags) 1618ev_default_loop_init (unsigned int flags)
1381#else 1619#else
1457 { 1695 {
1458 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1696 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1459 1697
1460 p->w->pending = 0; 1698 p->w->pending = 0;
1461 EV_CB_INVOKE (p->w, p->events); 1699 EV_CB_INVOKE (p->w, p->events);
1700 EV_FREQUENT_CHECK;
1462 } 1701 }
1463 } 1702 }
1464} 1703}
1465
1466void inline_size
1467timers_reify (EV_P)
1468{
1469 while (timercnt && ev_at (timers [1]) <= mn_now)
1470 {
1471 ev_timer *w = (ev_timer *)timers [1];
1472
1473 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1474
1475 /* first reschedule or stop timer */
1476 if (w->repeat)
1477 {
1478 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1479
1480 ev_at (w) += w->repeat;
1481 if (ev_at (w) < mn_now)
1482 ev_at (w) = mn_now;
1483
1484 downheap (timers, timercnt, 1);
1485 }
1486 else
1487 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1488
1489 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1490 }
1491}
1492
1493#if EV_PERIODIC_ENABLE
1494void inline_size
1495periodics_reify (EV_P)
1496{
1497 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
1498 {
1499 ev_periodic *w = (ev_periodic *)periodics [1];
1500
1501 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1502
1503 /* first reschedule or stop timer */
1504 if (w->reschedule_cb)
1505 {
1506 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1507 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1508 downheap (periodics, periodiccnt, 1);
1509 }
1510 else if (w->interval)
1511 {
1512 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1513 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1514 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1515 downheap (periodics, periodiccnt, 1);
1516 }
1517 else
1518 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1519
1520 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1521 }
1522}
1523
1524static void noinline
1525periodics_reschedule (EV_P)
1526{
1527 int i;
1528
1529 /* adjust periodics after time jump */
1530 for (i = 1; i <= periodiccnt; ++i)
1531 {
1532 ev_periodic *w = (ev_periodic *)periodics [i];
1533
1534 if (w->reschedule_cb)
1535 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1536 else if (w->interval)
1537 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1538 }
1539
1540 /* now rebuild the heap */
1541 for (i = periodiccnt >> 1; i--; )
1542 downheap (periodics, periodiccnt, i);
1543}
1544#endif
1545 1704
1546#if EV_IDLE_ENABLE 1705#if EV_IDLE_ENABLE
1547void inline_size 1706void inline_size
1548idle_reify (EV_P) 1707idle_reify (EV_P)
1549{ 1708{
1561 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1720 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1562 break; 1721 break;
1563 } 1722 }
1564 } 1723 }
1565 } 1724 }
1725}
1726#endif
1727
1728void inline_size
1729timers_reify (EV_P)
1730{
1731 EV_FREQUENT_CHECK;
1732
1733 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1734 {
1735 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1736
1737 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1738
1739 /* first reschedule or stop timer */
1740 if (w->repeat)
1741 {
1742 ev_at (w) += w->repeat;
1743 if (ev_at (w) < mn_now)
1744 ev_at (w) = mn_now;
1745
1746 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1747
1748 ANHE_at_cache (timers [HEAP0]);
1749 downheap (timers, timercnt, HEAP0);
1750 }
1751 else
1752 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1753
1754 EV_FREQUENT_CHECK;
1755 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1756 }
1757}
1758
1759#if EV_PERIODIC_ENABLE
1760void inline_size
1761periodics_reify (EV_P)
1762{
1763 EV_FREQUENT_CHECK;
1764
1765 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1766 {
1767 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1768
1769 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1770
1771 /* first reschedule or stop timer */
1772 if (w->reschedule_cb)
1773 {
1774 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1775
1776 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1777
1778 ANHE_at_cache (periodics [HEAP0]);
1779 downheap (periodics, periodiccnt, HEAP0);
1780 }
1781 else if (w->interval)
1782 {
1783 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1784 /* if next trigger time is not sufficiently in the future, put it there */
1785 /* this might happen because of floating point inexactness */
1786 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1787 {
1788 ev_at (w) += w->interval;
1789
1790 /* if interval is unreasonably low we might still have a time in the past */
1791 /* so correct this. this will make the periodic very inexact, but the user */
1792 /* has effectively asked to get triggered more often than possible */
1793 if (ev_at (w) < ev_rt_now)
1794 ev_at (w) = ev_rt_now;
1795 }
1796
1797 ANHE_at_cache (periodics [HEAP0]);
1798 downheap (periodics, periodiccnt, HEAP0);
1799 }
1800 else
1801 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1802
1803 EV_FREQUENT_CHECK;
1804 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1805 }
1806}
1807
1808static void noinline
1809periodics_reschedule (EV_P)
1810{
1811 int i;
1812
1813 /* adjust periodics after time jump */
1814 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1815 {
1816 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1817
1818 if (w->reschedule_cb)
1819 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1820 else if (w->interval)
1821 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1822
1823 ANHE_at_cache (periodics [i]);
1824 }
1825
1826 reheap (periodics, periodiccnt);
1566} 1827}
1567#endif 1828#endif
1568 1829
1569void inline_speed 1830void inline_speed
1570time_update (EV_P_ ev_tstamp max_block) 1831time_update (EV_P_ ev_tstamp max_block)
1599 */ 1860 */
1600 for (i = 4; --i; ) 1861 for (i = 4; --i; )
1601 { 1862 {
1602 rtmn_diff = ev_rt_now - mn_now; 1863 rtmn_diff = ev_rt_now - mn_now;
1603 1864
1604 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1865 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1605 return; /* all is well */ 1866 return; /* all is well */
1606 1867
1607 ev_rt_now = ev_time (); 1868 ev_rt_now = ev_time ();
1608 mn_now = get_clock (); 1869 mn_now = get_clock ();
1609 now_floor = mn_now; 1870 now_floor = mn_now;
1624 { 1885 {
1625#if EV_PERIODIC_ENABLE 1886#if EV_PERIODIC_ENABLE
1626 periodics_reschedule (EV_A); 1887 periodics_reschedule (EV_A);
1627#endif 1888#endif
1628 /* adjust timers. this is easy, as the offset is the same for all of them */ 1889 /* adjust timers. this is easy, as the offset is the same for all of them */
1629 for (i = 1; i <= timercnt; ++i) 1890 for (i = 0; i < timercnt; ++i)
1630 ev_at (timers [i]) += ev_rt_now - mn_now; 1891 {
1892 ANHE *he = timers + i + HEAP0;
1893 ANHE_w (*he)->at += ev_rt_now - mn_now;
1894 ANHE_at_cache (*he);
1895 }
1631 } 1896 }
1632 1897
1633 mn_now = ev_rt_now; 1898 mn_now = ev_rt_now;
1634 } 1899 }
1635} 1900}
1644ev_unref (EV_P) 1909ev_unref (EV_P)
1645{ 1910{
1646 --activecnt; 1911 --activecnt;
1647} 1912}
1648 1913
1914void
1915ev_now_update (EV_P)
1916{
1917 time_update (EV_A_ 1e100);
1918}
1919
1649static int loop_done; 1920static int loop_done;
1650 1921
1651void 1922void
1652ev_loop (EV_P_ int flags) 1923ev_loop (EV_P_ int flags)
1653{ 1924{
1655 1926
1656 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1927 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1657 1928
1658 do 1929 do
1659 { 1930 {
1931#if EV_VERIFY >= 2
1932 ev_loop_verify (EV_A);
1933#endif
1934
1660#ifndef _WIN32 1935#ifndef _WIN32
1661 if (expect_false (curpid)) /* penalise the forking check even more */ 1936 if (expect_false (curpid)) /* penalise the forking check even more */
1662 if (expect_false (getpid () != curpid)) 1937 if (expect_false (getpid () != curpid))
1663 { 1938 {
1664 curpid = getpid (); 1939 curpid = getpid ();
1705 1980
1706 waittime = MAX_BLOCKTIME; 1981 waittime = MAX_BLOCKTIME;
1707 1982
1708 if (timercnt) 1983 if (timercnt)
1709 { 1984 {
1710 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge; 1985 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1711 if (waittime > to) waittime = to; 1986 if (waittime > to) waittime = to;
1712 } 1987 }
1713 1988
1714#if EV_PERIODIC_ENABLE 1989#if EV_PERIODIC_ENABLE
1715 if (periodiccnt) 1990 if (periodiccnt)
1716 { 1991 {
1717 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge; 1992 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1718 if (waittime > to) waittime = to; 1993 if (waittime > to) waittime = to;
1719 } 1994 }
1720#endif 1995#endif
1721 1996
1722 if (expect_false (waittime < timeout_blocktime)) 1997 if (expect_false (waittime < timeout_blocktime))
1859 if (expect_false (ev_is_active (w))) 2134 if (expect_false (ev_is_active (w)))
1860 return; 2135 return;
1861 2136
1862 assert (("ev_io_start called with negative fd", fd >= 0)); 2137 assert (("ev_io_start called with negative fd", fd >= 0));
1863 2138
2139 EV_FREQUENT_CHECK;
2140
1864 ev_start (EV_A_ (W)w, 1); 2141 ev_start (EV_A_ (W)w, 1);
1865 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2142 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1866 wlist_add (&anfds[fd].head, (WL)w); 2143 wlist_add (&anfds[fd].head, (WL)w);
1867 2144
1868 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2145 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1869 w->events &= ~EV_IOFDSET; 2146 w->events &= ~EV_IOFDSET;
2147
2148 EV_FREQUENT_CHECK;
1870} 2149}
1871 2150
1872void noinline 2151void noinline
1873ev_io_stop (EV_P_ ev_io *w) 2152ev_io_stop (EV_P_ ev_io *w)
1874{ 2153{
1875 clear_pending (EV_A_ (W)w); 2154 clear_pending (EV_A_ (W)w);
1876 if (expect_false (!ev_is_active (w))) 2155 if (expect_false (!ev_is_active (w)))
1877 return; 2156 return;
1878 2157
1879 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2158 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2159
2160 EV_FREQUENT_CHECK;
1880 2161
1881 wlist_del (&anfds[w->fd].head, (WL)w); 2162 wlist_del (&anfds[w->fd].head, (WL)w);
1882 ev_stop (EV_A_ (W)w); 2163 ev_stop (EV_A_ (W)w);
1883 2164
1884 fd_change (EV_A_ w->fd, 1); 2165 fd_change (EV_A_ w->fd, 1);
2166
2167 EV_FREQUENT_CHECK;
1885} 2168}
1886 2169
1887void noinline 2170void noinline
1888ev_timer_start (EV_P_ ev_timer *w) 2171ev_timer_start (EV_P_ ev_timer *w)
1889{ 2172{
1892 2175
1893 ev_at (w) += mn_now; 2176 ev_at (w) += mn_now;
1894 2177
1895 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2178 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1896 2179
2180 EV_FREQUENT_CHECK;
2181
2182 ++timercnt;
1897 ev_start (EV_A_ (W)w, ++timercnt); 2183 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1898 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2); 2184 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1899 timers [timercnt] = (WT)w; 2185 ANHE_w (timers [ev_active (w)]) = (WT)w;
2186 ANHE_at_cache (timers [ev_active (w)]);
1900 upheap (timers, timercnt); 2187 upheap (timers, ev_active (w));
1901 2188
2189 EV_FREQUENT_CHECK;
2190
1902 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 2191 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1903} 2192}
1904 2193
1905void noinline 2194void noinline
1906ev_timer_stop (EV_P_ ev_timer *w) 2195ev_timer_stop (EV_P_ ev_timer *w)
1907{ 2196{
1908 clear_pending (EV_A_ (W)w); 2197 clear_pending (EV_A_ (W)w);
1909 if (expect_false (!ev_is_active (w))) 2198 if (expect_false (!ev_is_active (w)))
1910 return; 2199 return;
1911 2200
2201 EV_FREQUENT_CHECK;
2202
1912 { 2203 {
1913 int active = ev_active (w); 2204 int active = ev_active (w);
1914 2205
1915 assert (("internal timer heap corruption", timers [active] == (WT)w)); 2206 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1916 2207
2208 --timercnt;
2209
1917 if (expect_true (active < timercnt)) 2210 if (expect_true (active < timercnt + HEAP0))
1918 { 2211 {
1919 timers [active] = timers [timercnt]; 2212 timers [active] = timers [timercnt + HEAP0];
1920 adjustheap (timers, timercnt, active); 2213 adjustheap (timers, timercnt, active);
1921 } 2214 }
1922
1923 --timercnt;
1924 } 2215 }
2216
2217 EV_FREQUENT_CHECK;
1925 2218
1926 ev_at (w) -= mn_now; 2219 ev_at (w) -= mn_now;
1927 2220
1928 ev_stop (EV_A_ (W)w); 2221 ev_stop (EV_A_ (W)w);
1929} 2222}
1930 2223
1931void noinline 2224void noinline
1932ev_timer_again (EV_P_ ev_timer *w) 2225ev_timer_again (EV_P_ ev_timer *w)
1933{ 2226{
2227 EV_FREQUENT_CHECK;
2228
1934 if (ev_is_active (w)) 2229 if (ev_is_active (w))
1935 { 2230 {
1936 if (w->repeat) 2231 if (w->repeat)
1937 { 2232 {
1938 ev_at (w) = mn_now + w->repeat; 2233 ev_at (w) = mn_now + w->repeat;
2234 ANHE_at_cache (timers [ev_active (w)]);
1939 adjustheap (timers, timercnt, ev_active (w)); 2235 adjustheap (timers, timercnt, ev_active (w));
1940 } 2236 }
1941 else 2237 else
1942 ev_timer_stop (EV_A_ w); 2238 ev_timer_stop (EV_A_ w);
1943 } 2239 }
1944 else if (w->repeat) 2240 else if (w->repeat)
1945 { 2241 {
1946 ev_at (w) = w->repeat; 2242 ev_at (w) = w->repeat;
1947 ev_timer_start (EV_A_ w); 2243 ev_timer_start (EV_A_ w);
1948 } 2244 }
2245
2246 EV_FREQUENT_CHECK;
1949} 2247}
1950 2248
1951#if EV_PERIODIC_ENABLE 2249#if EV_PERIODIC_ENABLE
1952void noinline 2250void noinline
1953ev_periodic_start (EV_P_ ev_periodic *w) 2251ev_periodic_start (EV_P_ ev_periodic *w)
1964 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2262 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1965 } 2263 }
1966 else 2264 else
1967 ev_at (w) = w->offset; 2265 ev_at (w) = w->offset;
1968 2266
2267 EV_FREQUENT_CHECK;
2268
2269 ++periodiccnt;
1969 ev_start (EV_A_ (W)w, ++periodiccnt); 2270 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1970 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2); 2271 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1971 periodics [periodiccnt] = (WT)w; 2272 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1972 upheap (periodics, periodiccnt); 2273 ANHE_at_cache (periodics [ev_active (w)]);
2274 upheap (periodics, ev_active (w));
1973 2275
2276 EV_FREQUENT_CHECK;
2277
1974 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 2278 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1975} 2279}
1976 2280
1977void noinline 2281void noinline
1978ev_periodic_stop (EV_P_ ev_periodic *w) 2282ev_periodic_stop (EV_P_ ev_periodic *w)
1979{ 2283{
1980 clear_pending (EV_A_ (W)w); 2284 clear_pending (EV_A_ (W)w);
1981 if (expect_false (!ev_is_active (w))) 2285 if (expect_false (!ev_is_active (w)))
1982 return; 2286 return;
1983 2287
2288 EV_FREQUENT_CHECK;
2289
1984 { 2290 {
1985 int active = ev_active (w); 2291 int active = ev_active (w);
1986 2292
1987 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 2293 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1988 2294
2295 --periodiccnt;
2296
1989 if (expect_true (active < periodiccnt)) 2297 if (expect_true (active < periodiccnt + HEAP0))
1990 { 2298 {
1991 periodics [active] = periodics [periodiccnt]; 2299 periodics [active] = periodics [periodiccnt + HEAP0];
1992 adjustheap (periodics, periodiccnt, active); 2300 adjustheap (periodics, periodiccnt, active);
1993 } 2301 }
1994
1995 --periodiccnt;
1996 } 2302 }
2303
2304 EV_FREQUENT_CHECK;
1997 2305
1998 ev_stop (EV_A_ (W)w); 2306 ev_stop (EV_A_ (W)w);
1999} 2307}
2000 2308
2001void noinline 2309void noinline
2021 return; 2329 return;
2022 2330
2023 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2331 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2024 2332
2025 evpipe_init (EV_A); 2333 evpipe_init (EV_A);
2334
2335 EV_FREQUENT_CHECK;
2026 2336
2027 { 2337 {
2028#ifndef _WIN32 2338#ifndef _WIN32
2029 sigset_t full, prev; 2339 sigset_t full, prev;
2030 sigfillset (&full); 2340 sigfillset (&full);
2051 sigfillset (&sa.sa_mask); 2361 sigfillset (&sa.sa_mask);
2052 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2362 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2053 sigaction (w->signum, &sa, 0); 2363 sigaction (w->signum, &sa, 0);
2054#endif 2364#endif
2055 } 2365 }
2366
2367 EV_FREQUENT_CHECK;
2056} 2368}
2057 2369
2058void noinline 2370void noinline
2059ev_signal_stop (EV_P_ ev_signal *w) 2371ev_signal_stop (EV_P_ ev_signal *w)
2060{ 2372{
2061 clear_pending (EV_A_ (W)w); 2373 clear_pending (EV_A_ (W)w);
2062 if (expect_false (!ev_is_active (w))) 2374 if (expect_false (!ev_is_active (w)))
2063 return; 2375 return;
2064 2376
2377 EV_FREQUENT_CHECK;
2378
2065 wlist_del (&signals [w->signum - 1].head, (WL)w); 2379 wlist_del (&signals [w->signum - 1].head, (WL)w);
2066 ev_stop (EV_A_ (W)w); 2380 ev_stop (EV_A_ (W)w);
2067 2381
2068 if (!signals [w->signum - 1].head) 2382 if (!signals [w->signum - 1].head)
2069 signal (w->signum, SIG_DFL); 2383 signal (w->signum, SIG_DFL);
2384
2385 EV_FREQUENT_CHECK;
2070} 2386}
2071 2387
2072void 2388void
2073ev_child_start (EV_P_ ev_child *w) 2389ev_child_start (EV_P_ ev_child *w)
2074{ 2390{
2076 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2392 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2077#endif 2393#endif
2078 if (expect_false (ev_is_active (w))) 2394 if (expect_false (ev_is_active (w)))
2079 return; 2395 return;
2080 2396
2397 EV_FREQUENT_CHECK;
2398
2081 ev_start (EV_A_ (W)w, 1); 2399 ev_start (EV_A_ (W)w, 1);
2082 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2400 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2401
2402 EV_FREQUENT_CHECK;
2083} 2403}
2084 2404
2085void 2405void
2086ev_child_stop (EV_P_ ev_child *w) 2406ev_child_stop (EV_P_ ev_child *w)
2087{ 2407{
2088 clear_pending (EV_A_ (W)w); 2408 clear_pending (EV_A_ (W)w);
2089 if (expect_false (!ev_is_active (w))) 2409 if (expect_false (!ev_is_active (w)))
2090 return; 2410 return;
2091 2411
2412 EV_FREQUENT_CHECK;
2413
2092 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2414 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2093 ev_stop (EV_A_ (W)w); 2415 ev_stop (EV_A_ (W)w);
2416
2417 EV_FREQUENT_CHECK;
2094} 2418}
2095 2419
2096#if EV_STAT_ENABLE 2420#if EV_STAT_ENABLE
2097 2421
2098# ifdef _WIN32 2422# ifdef _WIN32
2116 if (w->wd < 0) 2440 if (w->wd < 0)
2117 { 2441 {
2118 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2442 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2119 2443
2120 /* monitor some parent directory for speedup hints */ 2444 /* monitor some parent directory for speedup hints */
2445 /* note that exceeding the hardcoded limit is not a correctness issue, */
2446 /* but an efficiency issue only */
2121 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2447 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2122 { 2448 {
2123 char path [4096]; 2449 char path [4096];
2124 strcpy (path, w->path); 2450 strcpy (path, w->path);
2125 2451
2251 } 2577 }
2252 2578
2253 } 2579 }
2254} 2580}
2255 2581
2582#endif
2583
2584#ifdef _WIN32
2585# define EV_LSTAT(p,b) _stati64 (p, b)
2586#else
2587# define EV_LSTAT(p,b) lstat (p, b)
2256#endif 2588#endif
2257 2589
2258void 2590void
2259ev_stat_stat (EV_P_ ev_stat *w) 2591ev_stat_stat (EV_P_ ev_stat *w)
2260{ 2592{
2324 else 2656 else
2325#endif 2657#endif
2326 ev_timer_start (EV_A_ &w->timer); 2658 ev_timer_start (EV_A_ &w->timer);
2327 2659
2328 ev_start (EV_A_ (W)w, 1); 2660 ev_start (EV_A_ (W)w, 1);
2661
2662 EV_FREQUENT_CHECK;
2329} 2663}
2330 2664
2331void 2665void
2332ev_stat_stop (EV_P_ ev_stat *w) 2666ev_stat_stop (EV_P_ ev_stat *w)
2333{ 2667{
2334 clear_pending (EV_A_ (W)w); 2668 clear_pending (EV_A_ (W)w);
2335 if (expect_false (!ev_is_active (w))) 2669 if (expect_false (!ev_is_active (w)))
2336 return; 2670 return;
2337 2671
2672 EV_FREQUENT_CHECK;
2673
2338#if EV_USE_INOTIFY 2674#if EV_USE_INOTIFY
2339 infy_del (EV_A_ w); 2675 infy_del (EV_A_ w);
2340#endif 2676#endif
2341 ev_timer_stop (EV_A_ &w->timer); 2677 ev_timer_stop (EV_A_ &w->timer);
2342 2678
2343 ev_stop (EV_A_ (W)w); 2679 ev_stop (EV_A_ (W)w);
2680
2681 EV_FREQUENT_CHECK;
2344} 2682}
2345#endif 2683#endif
2346 2684
2347#if EV_IDLE_ENABLE 2685#if EV_IDLE_ENABLE
2348void 2686void
2350{ 2688{
2351 if (expect_false (ev_is_active (w))) 2689 if (expect_false (ev_is_active (w)))
2352 return; 2690 return;
2353 2691
2354 pri_adjust (EV_A_ (W)w); 2692 pri_adjust (EV_A_ (W)w);
2693
2694 EV_FREQUENT_CHECK;
2355 2695
2356 { 2696 {
2357 int active = ++idlecnt [ABSPRI (w)]; 2697 int active = ++idlecnt [ABSPRI (w)];
2358 2698
2359 ++idleall; 2699 ++idleall;
2360 ev_start (EV_A_ (W)w, active); 2700 ev_start (EV_A_ (W)w, active);
2361 2701
2362 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2702 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2363 idles [ABSPRI (w)][active - 1] = w; 2703 idles [ABSPRI (w)][active - 1] = w;
2364 } 2704 }
2705
2706 EV_FREQUENT_CHECK;
2365} 2707}
2366 2708
2367void 2709void
2368ev_idle_stop (EV_P_ ev_idle *w) 2710ev_idle_stop (EV_P_ ev_idle *w)
2369{ 2711{
2370 clear_pending (EV_A_ (W)w); 2712 clear_pending (EV_A_ (W)w);
2371 if (expect_false (!ev_is_active (w))) 2713 if (expect_false (!ev_is_active (w)))
2372 return; 2714 return;
2373 2715
2716 EV_FREQUENT_CHECK;
2717
2374 { 2718 {
2375 int active = ev_active (w); 2719 int active = ev_active (w);
2376 2720
2377 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2721 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2378 ev_active (idles [ABSPRI (w)][active - 1]) = active; 2722 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2379 2723
2380 ev_stop (EV_A_ (W)w); 2724 ev_stop (EV_A_ (W)w);
2381 --idleall; 2725 --idleall;
2382 } 2726 }
2727
2728 EV_FREQUENT_CHECK;
2383} 2729}
2384#endif 2730#endif
2385 2731
2386void 2732void
2387ev_prepare_start (EV_P_ ev_prepare *w) 2733ev_prepare_start (EV_P_ ev_prepare *w)
2388{ 2734{
2389 if (expect_false (ev_is_active (w))) 2735 if (expect_false (ev_is_active (w)))
2390 return; 2736 return;
2737
2738 EV_FREQUENT_CHECK;
2391 2739
2392 ev_start (EV_A_ (W)w, ++preparecnt); 2740 ev_start (EV_A_ (W)w, ++preparecnt);
2393 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2741 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2394 prepares [preparecnt - 1] = w; 2742 prepares [preparecnt - 1] = w;
2743
2744 EV_FREQUENT_CHECK;
2395} 2745}
2396 2746
2397void 2747void
2398ev_prepare_stop (EV_P_ ev_prepare *w) 2748ev_prepare_stop (EV_P_ ev_prepare *w)
2399{ 2749{
2400 clear_pending (EV_A_ (W)w); 2750 clear_pending (EV_A_ (W)w);
2401 if (expect_false (!ev_is_active (w))) 2751 if (expect_false (!ev_is_active (w)))
2402 return; 2752 return;
2403 2753
2754 EV_FREQUENT_CHECK;
2755
2404 { 2756 {
2405 int active = ev_active (w); 2757 int active = ev_active (w);
2406 2758
2407 prepares [active - 1] = prepares [--preparecnt]; 2759 prepares [active - 1] = prepares [--preparecnt];
2408 ev_active (prepares [active - 1]) = active; 2760 ev_active (prepares [active - 1]) = active;
2409 } 2761 }
2410 2762
2411 ev_stop (EV_A_ (W)w); 2763 ev_stop (EV_A_ (W)w);
2764
2765 EV_FREQUENT_CHECK;
2412} 2766}
2413 2767
2414void 2768void
2415ev_check_start (EV_P_ ev_check *w) 2769ev_check_start (EV_P_ ev_check *w)
2416{ 2770{
2417 if (expect_false (ev_is_active (w))) 2771 if (expect_false (ev_is_active (w)))
2418 return; 2772 return;
2773
2774 EV_FREQUENT_CHECK;
2419 2775
2420 ev_start (EV_A_ (W)w, ++checkcnt); 2776 ev_start (EV_A_ (W)w, ++checkcnt);
2421 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2777 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2422 checks [checkcnt - 1] = w; 2778 checks [checkcnt - 1] = w;
2779
2780 EV_FREQUENT_CHECK;
2423} 2781}
2424 2782
2425void 2783void
2426ev_check_stop (EV_P_ ev_check *w) 2784ev_check_stop (EV_P_ ev_check *w)
2427{ 2785{
2428 clear_pending (EV_A_ (W)w); 2786 clear_pending (EV_A_ (W)w);
2429 if (expect_false (!ev_is_active (w))) 2787 if (expect_false (!ev_is_active (w)))
2430 return; 2788 return;
2431 2789
2790 EV_FREQUENT_CHECK;
2791
2432 { 2792 {
2433 int active = ev_active (w); 2793 int active = ev_active (w);
2434 2794
2435 checks [active - 1] = checks [--checkcnt]; 2795 checks [active - 1] = checks [--checkcnt];
2436 ev_active (checks [active - 1]) = active; 2796 ev_active (checks [active - 1]) = active;
2437 } 2797 }
2438 2798
2439 ev_stop (EV_A_ (W)w); 2799 ev_stop (EV_A_ (W)w);
2800
2801 EV_FREQUENT_CHECK;
2440} 2802}
2441 2803
2442#if EV_EMBED_ENABLE 2804#if EV_EMBED_ENABLE
2443void noinline 2805void noinline
2444ev_embed_sweep (EV_P_ ev_embed *w) 2806ev_embed_sweep (EV_P_ ev_embed *w)
2471 ev_loop (EV_A_ EVLOOP_NONBLOCK); 2833 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2472 } 2834 }
2473 } 2835 }
2474} 2836}
2475 2837
2838static void
2839embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2840{
2841 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2842
2843 {
2844 struct ev_loop *loop = w->other;
2845
2846 ev_loop_fork (EV_A);
2847 }
2848}
2849
2476#if 0 2850#if 0
2477static void 2851static void
2478embed_idle_cb (EV_P_ ev_idle *idle, int revents) 2852embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2479{ 2853{
2480 ev_idle_stop (EV_A_ idle); 2854 ev_idle_stop (EV_A_ idle);
2491 struct ev_loop *loop = w->other; 2865 struct ev_loop *loop = w->other;
2492 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2866 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2493 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2867 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2494 } 2868 }
2495 2869
2870 EV_FREQUENT_CHECK;
2871
2496 ev_set_priority (&w->io, ev_priority (w)); 2872 ev_set_priority (&w->io, ev_priority (w));
2497 ev_io_start (EV_A_ &w->io); 2873 ev_io_start (EV_A_ &w->io);
2498 2874
2499 ev_prepare_init (&w->prepare, embed_prepare_cb); 2875 ev_prepare_init (&w->prepare, embed_prepare_cb);
2500 ev_set_priority (&w->prepare, EV_MINPRI); 2876 ev_set_priority (&w->prepare, EV_MINPRI);
2501 ev_prepare_start (EV_A_ &w->prepare); 2877 ev_prepare_start (EV_A_ &w->prepare);
2502 2878
2879 ev_fork_init (&w->fork, embed_fork_cb);
2880 ev_fork_start (EV_A_ &w->fork);
2881
2503 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2882 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2504 2883
2505 ev_start (EV_A_ (W)w, 1); 2884 ev_start (EV_A_ (W)w, 1);
2885
2886 EV_FREQUENT_CHECK;
2506} 2887}
2507 2888
2508void 2889void
2509ev_embed_stop (EV_P_ ev_embed *w) 2890ev_embed_stop (EV_P_ ev_embed *w)
2510{ 2891{
2511 clear_pending (EV_A_ (W)w); 2892 clear_pending (EV_A_ (W)w);
2512 if (expect_false (!ev_is_active (w))) 2893 if (expect_false (!ev_is_active (w)))
2513 return; 2894 return;
2514 2895
2896 EV_FREQUENT_CHECK;
2897
2515 ev_io_stop (EV_A_ &w->io); 2898 ev_io_stop (EV_A_ &w->io);
2516 ev_prepare_stop (EV_A_ &w->prepare); 2899 ev_prepare_stop (EV_A_ &w->prepare);
2900 ev_fork_stop (EV_A_ &w->fork);
2517 2901
2518 ev_stop (EV_A_ (W)w); 2902 EV_FREQUENT_CHECK;
2519} 2903}
2520#endif 2904#endif
2521 2905
2522#if EV_FORK_ENABLE 2906#if EV_FORK_ENABLE
2523void 2907void
2524ev_fork_start (EV_P_ ev_fork *w) 2908ev_fork_start (EV_P_ ev_fork *w)
2525{ 2909{
2526 if (expect_false (ev_is_active (w))) 2910 if (expect_false (ev_is_active (w)))
2527 return; 2911 return;
2912
2913 EV_FREQUENT_CHECK;
2528 2914
2529 ev_start (EV_A_ (W)w, ++forkcnt); 2915 ev_start (EV_A_ (W)w, ++forkcnt);
2530 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2916 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2531 forks [forkcnt - 1] = w; 2917 forks [forkcnt - 1] = w;
2918
2919 EV_FREQUENT_CHECK;
2532} 2920}
2533 2921
2534void 2922void
2535ev_fork_stop (EV_P_ ev_fork *w) 2923ev_fork_stop (EV_P_ ev_fork *w)
2536{ 2924{
2537 clear_pending (EV_A_ (W)w); 2925 clear_pending (EV_A_ (W)w);
2538 if (expect_false (!ev_is_active (w))) 2926 if (expect_false (!ev_is_active (w)))
2539 return; 2927 return;
2540 2928
2929 EV_FREQUENT_CHECK;
2930
2541 { 2931 {
2542 int active = ev_active (w); 2932 int active = ev_active (w);
2543 2933
2544 forks [active - 1] = forks [--forkcnt]; 2934 forks [active - 1] = forks [--forkcnt];
2545 ev_active (forks [active - 1]) = active; 2935 ev_active (forks [active - 1]) = active;
2546 } 2936 }
2547 2937
2548 ev_stop (EV_A_ (W)w); 2938 ev_stop (EV_A_ (W)w);
2939
2940 EV_FREQUENT_CHECK;
2549} 2941}
2550#endif 2942#endif
2551 2943
2552#if EV_ASYNC_ENABLE 2944#if EV_ASYNC_ENABLE
2553void 2945void
2555{ 2947{
2556 if (expect_false (ev_is_active (w))) 2948 if (expect_false (ev_is_active (w)))
2557 return; 2949 return;
2558 2950
2559 evpipe_init (EV_A); 2951 evpipe_init (EV_A);
2952
2953 EV_FREQUENT_CHECK;
2560 2954
2561 ev_start (EV_A_ (W)w, ++asynccnt); 2955 ev_start (EV_A_ (W)w, ++asynccnt);
2562 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2956 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2563 asyncs [asynccnt - 1] = w; 2957 asyncs [asynccnt - 1] = w;
2958
2959 EV_FREQUENT_CHECK;
2564} 2960}
2565 2961
2566void 2962void
2567ev_async_stop (EV_P_ ev_async *w) 2963ev_async_stop (EV_P_ ev_async *w)
2568{ 2964{
2569 clear_pending (EV_A_ (W)w); 2965 clear_pending (EV_A_ (W)w);
2570 if (expect_false (!ev_is_active (w))) 2966 if (expect_false (!ev_is_active (w)))
2571 return; 2967 return;
2572 2968
2969 EV_FREQUENT_CHECK;
2970
2573 { 2971 {
2574 int active = ev_active (w); 2972 int active = ev_active (w);
2575 2973
2576 asyncs [active - 1] = asyncs [--asynccnt]; 2974 asyncs [active - 1] = asyncs [--asynccnt];
2577 ev_active (asyncs [active - 1]) = active; 2975 ev_active (asyncs [active - 1]) = active;
2578 } 2976 }
2579 2977
2580 ev_stop (EV_A_ (W)w); 2978 ev_stop (EV_A_ (W)w);
2979
2980 EV_FREQUENT_CHECK;
2581} 2981}
2582 2982
2583void 2983void
2584ev_async_send (EV_P_ ev_async *w) 2984ev_async_send (EV_P_ ev_async *w)
2585{ 2985{
2602once_cb (EV_P_ struct ev_once *once, int revents) 3002once_cb (EV_P_ struct ev_once *once, int revents)
2603{ 3003{
2604 void (*cb)(int revents, void *arg) = once->cb; 3004 void (*cb)(int revents, void *arg) = once->cb;
2605 void *arg = once->arg; 3005 void *arg = once->arg;
2606 3006
2607 ev_io_stop (EV_A_ &once->io); 3007 ev_io_stop (EV_A_ &once->io);
2608 ev_timer_stop (EV_A_ &once->to); 3008 ev_timer_stop (EV_A_ &once->to);
2609 ev_free (once); 3009 ev_free (once);
2610 3010
2611 cb (revents, arg); 3011 cb (revents, arg);
2612} 3012}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines