ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.193 by root, Sat Dec 22 05:47:58 2007 UTC vs.
Revision 1.262 by root, Wed Oct 1 04:25:25 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
110# else 119# else
111# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
112# endif 121# endif
113# endif 122# endif
114 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
115#endif 132#endif
116 133
117#include <math.h> 134#include <math.h>
118#include <stdlib.h> 135#include <stdlib.h>
119#include <fcntl.h> 136#include <fcntl.h>
137#ifndef _WIN32 154#ifndef _WIN32
138# include <sys/time.h> 155# include <sys/time.h>
139# include <sys/wait.h> 156# include <sys/wait.h>
140# include <unistd.h> 157# include <unistd.h>
141#else 158#else
159# include <io.h>
142# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
143# include <windows.h> 161# include <windows.h>
144# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
146# endif 164# endif
147#endif 165#endif
148 166
149/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
150 168
151#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
152# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
153#endif 175#endif
154 176
155#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
156# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
157#endif 179#endif
158 180
159#ifndef EV_USE_NANOSLEEP 181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
160# define EV_USE_NANOSLEEP 0 185# define EV_USE_NANOSLEEP 0
186# endif
161#endif 187#endif
162 188
163#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
164# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
165#endif 191#endif
171# define EV_USE_POLL 1 197# define EV_USE_POLL 1
172# endif 198# endif
173#endif 199#endif
174 200
175#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
176# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
177#endif 207#endif
178 208
179#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
180# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
181#endif 211#endif
183#ifndef EV_USE_PORT 213#ifndef EV_USE_PORT
184# define EV_USE_PORT 0 214# define EV_USE_PORT 0
185#endif 215#endif
186 216
187#ifndef EV_USE_INOTIFY 217#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1
220# else
188# define EV_USE_INOTIFY 0 221# define EV_USE_INOTIFY 0
222# endif
189#endif 223#endif
190 224
191#ifndef EV_PID_HASHSIZE 225#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL 226# if EV_MINIMAL
193# define EV_PID_HASHSIZE 1 227# define EV_PID_HASHSIZE 1
202# else 236# else
203# define EV_INOTIFY_HASHSIZE 16 237# define EV_INOTIFY_HASHSIZE 16
204# endif 238# endif
205#endif 239#endif
206 240
207/**/ 241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
208 268
209#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
210# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
211# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
212#endif 272#endif
233 293
234#if EV_SELECT_IS_WINSOCKET 294#if EV_SELECT_IS_WINSOCKET
235# include <winsock.h> 295# include <winsock.h>
236#endif 296#endif
237 297
298#if EV_USE_EVENTFD
299/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
300# include <stdint.h>
301# ifdef __cplusplus
302extern "C" {
303# endif
304int eventfd (unsigned int initval, int flags);
305# ifdef __cplusplus
306}
307# endif
308#endif
309
238/**/ 310/**/
311
312#if EV_VERIFY >= 3
313# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
314#else
315# define EV_FREQUENT_CHECK do { } while (0)
316#endif
239 317
240/* 318/*
241 * This is used to avoid floating point rounding problems. 319 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics 320 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding 321 * to ensure progress, time-wise, even when rounding
255# define expect(expr,value) __builtin_expect ((expr),(value)) 333# define expect(expr,value) __builtin_expect ((expr),(value))
256# define noinline __attribute__ ((noinline)) 334# define noinline __attribute__ ((noinline))
257#else 335#else
258# define expect(expr,value) (expr) 336# define expect(expr,value) (expr)
259# define noinline 337# define noinline
260# if __STDC_VERSION__ < 199901L 338# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
261# define inline 339# define inline
262# endif 340# endif
263#endif 341#endif
264 342
265#define expect_false(expr) expect ((expr) != 0, 0) 343#define expect_false(expr) expect ((expr) != 0, 0)
280 358
281typedef ev_watcher *W; 359typedef ev_watcher *W;
282typedef ev_watcher_list *WL; 360typedef ev_watcher_list *WL;
283typedef ev_watcher_time *WT; 361typedef ev_watcher_time *WT;
284 362
363#define ev_active(w) ((W)(w))->active
364#define ev_at(w) ((WT)(w))->at
365
366#if EV_USE_MONOTONIC
367/* sig_atomic_t is used to avoid per-thread variables or locking but still */
368/* giving it a reasonably high chance of working on typical architetcures */
285static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 369static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
370#endif
286 371
287#ifdef _WIN32 372#ifdef _WIN32
288# include "ev_win32.c" 373# include "ev_win32.c"
289#endif 374#endif
290 375
311 perror (msg); 396 perror (msg);
312 abort (); 397 abort ();
313 } 398 }
314} 399}
315 400
401static void *
402ev_realloc_emul (void *ptr, long size)
403{
404 /* some systems, notably openbsd and darwin, fail to properly
405 * implement realloc (x, 0) (as required by both ansi c-98 and
406 * the single unix specification, so work around them here.
407 */
408
409 if (size)
410 return realloc (ptr, size);
411
412 free (ptr);
413 return 0;
414}
415
316static void *(*alloc)(void *ptr, long size); 416static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
317 417
318void 418void
319ev_set_allocator (void *(*cb)(void *ptr, long size)) 419ev_set_allocator (void *(*cb)(void *ptr, long size))
320{ 420{
321 alloc = cb; 421 alloc = cb;
322} 422}
323 423
324inline_speed void * 424inline_speed void *
325ev_realloc (void *ptr, long size) 425ev_realloc (void *ptr, long size)
326{ 426{
327 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 427 ptr = alloc (ptr, size);
328 428
329 if (!ptr && size) 429 if (!ptr && size)
330 { 430 {
331 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 431 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
332 abort (); 432 abort ();
355 W w; 455 W w;
356 int events; 456 int events;
357} ANPENDING; 457} ANPENDING;
358 458
359#if EV_USE_INOTIFY 459#if EV_USE_INOTIFY
460/* hash table entry per inotify-id */
360typedef struct 461typedef struct
361{ 462{
362 WL head; 463 WL head;
363} ANFS; 464} ANFS;
465#endif
466
467/* Heap Entry */
468#if EV_HEAP_CACHE_AT
469 typedef struct {
470 ev_tstamp at;
471 WT w;
472 } ANHE;
473
474 #define ANHE_w(he) (he).w /* access watcher, read-write */
475 #define ANHE_at(he) (he).at /* access cached at, read-only */
476 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
477#else
478 typedef WT ANHE;
479
480 #define ANHE_w(he) (he)
481 #define ANHE_at(he) (he)->at
482 #define ANHE_at_cache(he)
364#endif 483#endif
365 484
366#if EV_MULTIPLICITY 485#if EV_MULTIPLICITY
367 486
368 struct ev_loop 487 struct ev_loop
439 ts.tv_sec = (time_t)delay; 558 ts.tv_sec = (time_t)delay;
440 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 559 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
441 560
442 nanosleep (&ts, 0); 561 nanosleep (&ts, 0);
443#elif defined(_WIN32) 562#elif defined(_WIN32)
444 Sleep (delay * 1e3); 563 Sleep ((unsigned long)(delay * 1e3));
445#else 564#else
446 struct timeval tv; 565 struct timeval tv;
447 566
448 tv.tv_sec = (time_t)delay; 567 tv.tv_sec = (time_t)delay;
449 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 568 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
450 569
570 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
571 /* somehting nto guaranteed by newer posix versions, but guaranteed */
572 /* by older ones */
451 select (0, 0, 0, 0, &tv); 573 select (0, 0, 0, 0, &tv);
452#endif 574#endif
453 } 575 }
454} 576}
455 577
456/*****************************************************************************/ 578/*****************************************************************************/
579
580#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
457 581
458int inline_size 582int inline_size
459array_nextsize (int elem, int cur, int cnt) 583array_nextsize (int elem, int cur, int cnt)
460{ 584{
461 int ncur = cur + 1; 585 int ncur = cur + 1;
462 586
463 do 587 do
464 ncur <<= 1; 588 ncur <<= 1;
465 while (cnt > ncur); 589 while (cnt > ncur);
466 590
467 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 591 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
468 if (elem * ncur > 4096) 592 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
469 { 593 {
470 ncur *= elem; 594 ncur *= elem;
471 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 595 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
472 ncur = ncur - sizeof (void *) * 4; 596 ncur = ncur - sizeof (void *) * 4;
473 ncur /= elem; 597 ncur /= elem;
474 } 598 }
475 599
476 return ncur; 600 return ncur;
587 events |= (unsigned char)w->events; 711 events |= (unsigned char)w->events;
588 712
589#if EV_SELECT_IS_WINSOCKET 713#if EV_SELECT_IS_WINSOCKET
590 if (events) 714 if (events)
591 { 715 {
592 unsigned long argp; 716 unsigned long arg;
717 #ifdef EV_FD_TO_WIN32_HANDLE
718 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
719 #else
593 anfd->handle = _get_osfhandle (fd); 720 anfd->handle = _get_osfhandle (fd);
721 #endif
594 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 722 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
595 } 723 }
596#endif 724#endif
597 725
598 { 726 {
599 unsigned char o_events = anfd->events; 727 unsigned char o_events = anfd->events;
652{ 780{
653 int fd; 781 int fd;
654 782
655 for (fd = 0; fd < anfdmax; ++fd) 783 for (fd = 0; fd < anfdmax; ++fd)
656 if (anfds [fd].events) 784 if (anfds [fd].events)
657 if (!fd_valid (fd) == -1 && errno == EBADF) 785 if (!fd_valid (fd) && errno == EBADF)
658 fd_kill (EV_A_ fd); 786 fd_kill (EV_A_ fd);
659} 787}
660 788
661/* called on ENOMEM in select/poll to kill some fds and retry */ 789/* called on ENOMEM in select/poll to kill some fds and retry */
662static void noinline 790static void noinline
686 } 814 }
687} 815}
688 816
689/*****************************************************************************/ 817/*****************************************************************************/
690 818
819/*
820 * the heap functions want a real array index. array index 0 uis guaranteed to not
821 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
822 * the branching factor of the d-tree.
823 */
824
825/*
826 * at the moment we allow libev the luxury of two heaps,
827 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
828 * which is more cache-efficient.
829 * the difference is about 5% with 50000+ watchers.
830 */
831#if EV_USE_4HEAP
832
833#define DHEAP 4
834#define HEAP0 (DHEAP - 1) /* index of first element in heap */
835#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
836#define UPHEAP_DONE(p,k) ((p) == (k))
837
838/* away from the root */
691void inline_speed 839void inline_speed
692upheap (WT *heap, int k) 840downheap (ANHE *heap, int N, int k)
693{ 841{
694 WT w = heap [k]; 842 ANHE he = heap [k];
843 ANHE *E = heap + N + HEAP0;
695 844
696 while (k) 845 for (;;)
697 { 846 {
698 int p = (k - 1) >> 1; 847 ev_tstamp minat;
848 ANHE *minpos;
849 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
699 850
700 if (heap [p]->at <= w->at) 851 /* find minimum child */
852 if (expect_true (pos + DHEAP - 1 < E))
853 {
854 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
855 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
856 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
857 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
858 }
859 else if (pos < E)
860 {
861 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
862 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
863 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
864 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
865 }
866 else
701 break; 867 break;
702 868
869 if (ANHE_at (he) <= minat)
870 break;
871
872 heap [k] = *minpos;
873 ev_active (ANHE_w (*minpos)) = k;
874
875 k = minpos - heap;
876 }
877
878 heap [k] = he;
879 ev_active (ANHE_w (he)) = k;
880}
881
882#else /* 4HEAP */
883
884#define HEAP0 1
885#define HPARENT(k) ((k) >> 1)
886#define UPHEAP_DONE(p,k) (!(p))
887
888/* away from the root */
889void inline_speed
890downheap (ANHE *heap, int N, int k)
891{
892 ANHE he = heap [k];
893
894 for (;;)
895 {
896 int c = k << 1;
897
898 if (c > N + HEAP0 - 1)
899 break;
900
901 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
902 ? 1 : 0;
903
904 if (ANHE_at (he) <= ANHE_at (heap [c]))
905 break;
906
907 heap [k] = heap [c];
908 ev_active (ANHE_w (heap [k])) = k;
909
910 k = c;
911 }
912
913 heap [k] = he;
914 ev_active (ANHE_w (he)) = k;
915}
916#endif
917
918/* towards the root */
919void inline_speed
920upheap (ANHE *heap, int k)
921{
922 ANHE he = heap [k];
923
924 for (;;)
925 {
926 int p = HPARENT (k);
927
928 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
929 break;
930
703 heap [k] = heap [p]; 931 heap [k] = heap [p];
704 ((W)heap [k])->active = k + 1; 932 ev_active (ANHE_w (heap [k])) = k;
705 k = p; 933 k = p;
706 } 934 }
707 935
708 heap [k] = w; 936 heap [k] = he;
709 ((W)heap [k])->active = k + 1; 937 ev_active (ANHE_w (he)) = k;
710}
711
712void inline_speed
713downheap (WT *heap, int N, int k)
714{
715 WT w = heap [k];
716
717 for (;;)
718 {
719 int c = (k << 1) + 1;
720
721 if (c >= N)
722 break;
723
724 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
725 ? 1 : 0;
726
727 if (w->at <= heap [c]->at)
728 break;
729
730 heap [k] = heap [c];
731 ((W)heap [k])->active = k + 1;
732
733 k = c;
734 }
735
736 heap [k] = w;
737 ((W)heap [k])->active = k + 1;
738} 938}
739 939
740void inline_size 940void inline_size
741adjustheap (WT *heap, int N, int k) 941adjustheap (ANHE *heap, int N, int k)
742{ 942{
943 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
743 upheap (heap, k); 944 upheap (heap, k);
945 else
744 downheap (heap, N, k); 946 downheap (heap, N, k);
947}
948
949/* rebuild the heap: this function is used only once and executed rarely */
950void inline_size
951reheap (ANHE *heap, int N)
952{
953 int i;
954
955 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
956 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
957 for (i = 0; i < N; ++i)
958 upheap (heap, i + HEAP0);
745} 959}
746 960
747/*****************************************************************************/ 961/*****************************************************************************/
748 962
749typedef struct 963typedef struct
750{ 964{
751 WL head; 965 WL head;
752 sig_atomic_t volatile gotsig; 966 EV_ATOMIC_T gotsig;
753} ANSIG; 967} ANSIG;
754 968
755static ANSIG *signals; 969static ANSIG *signals;
756static int signalmax; 970static int signalmax;
757 971
758static int sigpipe [2]; 972static EV_ATOMIC_T gotsig;
759static sig_atomic_t volatile gotsig;
760static ev_io sigev;
761 973
762void inline_size 974void inline_size
763signals_init (ANSIG *base, int count) 975signals_init (ANSIG *base, int count)
764{ 976{
765 while (count--) 977 while (count--)
769 981
770 ++base; 982 ++base;
771 } 983 }
772} 984}
773 985
774static void 986/*****************************************************************************/
775sighandler (int signum)
776{
777#if _WIN32
778 signal (signum, sighandler);
779#endif
780
781 signals [signum - 1].gotsig = 1;
782
783 if (!gotsig)
784 {
785 int old_errno = errno;
786 gotsig = 1;
787 write (sigpipe [1], &signum, 1);
788 errno = old_errno;
789 }
790}
791
792void noinline
793ev_feed_signal_event (EV_P_ int signum)
794{
795 WL w;
796
797#if EV_MULTIPLICITY
798 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
799#endif
800
801 --signum;
802
803 if (signum < 0 || signum >= signalmax)
804 return;
805
806 signals [signum].gotsig = 0;
807
808 for (w = signals [signum].head; w; w = w->next)
809 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
810}
811
812static void
813sigcb (EV_P_ ev_io *iow, int revents)
814{
815 int signum;
816
817 read (sigpipe [0], &revents, 1);
818 gotsig = 0;
819
820 for (signum = signalmax; signum--; )
821 if (signals [signum].gotsig)
822 ev_feed_signal_event (EV_A_ signum + 1);
823}
824 987
825void inline_speed 988void inline_speed
826fd_intern (int fd) 989fd_intern (int fd)
827{ 990{
828#ifdef _WIN32 991#ifdef _WIN32
829 int arg = 1; 992 unsigned long arg = 1;
830 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 993 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
831#else 994#else
832 fcntl (fd, F_SETFD, FD_CLOEXEC); 995 fcntl (fd, F_SETFD, FD_CLOEXEC);
833 fcntl (fd, F_SETFL, O_NONBLOCK); 996 fcntl (fd, F_SETFL, O_NONBLOCK);
834#endif 997#endif
835} 998}
836 999
837static void noinline 1000static void noinline
838siginit (EV_P) 1001evpipe_init (EV_P)
839{ 1002{
1003 if (!ev_is_active (&pipeev))
1004 {
1005#if EV_USE_EVENTFD
1006 if ((evfd = eventfd (0, 0)) >= 0)
1007 {
1008 evpipe [0] = -1;
1009 fd_intern (evfd);
1010 ev_io_set (&pipeev, evfd, EV_READ);
1011 }
1012 else
1013#endif
1014 {
1015 while (pipe (evpipe))
1016 syserr ("(libev) error creating signal/async pipe");
1017
840 fd_intern (sigpipe [0]); 1018 fd_intern (evpipe [0]);
841 fd_intern (sigpipe [1]); 1019 fd_intern (evpipe [1]);
1020 ev_io_set (&pipeev, evpipe [0], EV_READ);
1021 }
842 1022
843 ev_io_set (&sigev, sigpipe [0], EV_READ);
844 ev_io_start (EV_A_ &sigev); 1023 ev_io_start (EV_A_ &pipeev);
845 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1024 ev_unref (EV_A); /* watcher should not keep loop alive */
1025 }
1026}
1027
1028void inline_size
1029evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1030{
1031 if (!*flag)
1032 {
1033 int old_errno = errno; /* save errno because write might clobber it */
1034
1035 *flag = 1;
1036
1037#if EV_USE_EVENTFD
1038 if (evfd >= 0)
1039 {
1040 uint64_t counter = 1;
1041 write (evfd, &counter, sizeof (uint64_t));
1042 }
1043 else
1044#endif
1045 write (evpipe [1], &old_errno, 1);
1046
1047 errno = old_errno;
1048 }
1049}
1050
1051static void
1052pipecb (EV_P_ ev_io *iow, int revents)
1053{
1054#if EV_USE_EVENTFD
1055 if (evfd >= 0)
1056 {
1057 uint64_t counter;
1058 read (evfd, &counter, sizeof (uint64_t));
1059 }
1060 else
1061#endif
1062 {
1063 char dummy;
1064 read (evpipe [0], &dummy, 1);
1065 }
1066
1067 if (gotsig && ev_is_default_loop (EV_A))
1068 {
1069 int signum;
1070 gotsig = 0;
1071
1072 for (signum = signalmax; signum--; )
1073 if (signals [signum].gotsig)
1074 ev_feed_signal_event (EV_A_ signum + 1);
1075 }
1076
1077#if EV_ASYNC_ENABLE
1078 if (gotasync)
1079 {
1080 int i;
1081 gotasync = 0;
1082
1083 for (i = asynccnt; i--; )
1084 if (asyncs [i]->sent)
1085 {
1086 asyncs [i]->sent = 0;
1087 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1088 }
1089 }
1090#endif
846} 1091}
847 1092
848/*****************************************************************************/ 1093/*****************************************************************************/
849 1094
1095static void
1096ev_sighandler (int signum)
1097{
1098#if EV_MULTIPLICITY
1099 struct ev_loop *loop = &default_loop_struct;
1100#endif
1101
1102#if _WIN32
1103 signal (signum, ev_sighandler);
1104#endif
1105
1106 signals [signum - 1].gotsig = 1;
1107 evpipe_write (EV_A_ &gotsig);
1108}
1109
1110void noinline
1111ev_feed_signal_event (EV_P_ int signum)
1112{
1113 WL w;
1114
1115#if EV_MULTIPLICITY
1116 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1117#endif
1118
1119 --signum;
1120
1121 if (signum < 0 || signum >= signalmax)
1122 return;
1123
1124 signals [signum].gotsig = 0;
1125
1126 for (w = signals [signum].head; w; w = w->next)
1127 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1128}
1129
1130/*****************************************************************************/
1131
850static WL childs [EV_PID_HASHSIZE]; 1132static WL childs [EV_PID_HASHSIZE];
851 1133
852#ifndef _WIN32 1134#ifndef _WIN32
853 1135
854static ev_signal childev; 1136static ev_signal childev;
855 1137
1138#ifndef WIFCONTINUED
1139# define WIFCONTINUED(status) 0
1140#endif
1141
856void inline_speed 1142void inline_speed
857child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1143child_reap (EV_P_ int chain, int pid, int status)
858{ 1144{
859 ev_child *w; 1145 ev_child *w;
1146 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
860 1147
861 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1148 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1149 {
862 if (w->pid == pid || !w->pid) 1150 if ((w->pid == pid || !w->pid)
1151 && (!traced || (w->flags & 1)))
863 { 1152 {
864 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1153 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
865 w->rpid = pid; 1154 w->rpid = pid;
866 w->rstatus = status; 1155 w->rstatus = status;
867 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1156 ev_feed_event (EV_A_ (W)w, EV_CHILD);
868 } 1157 }
1158 }
869} 1159}
870 1160
871#ifndef WCONTINUED 1161#ifndef WCONTINUED
872# define WCONTINUED 0 1162# define WCONTINUED 0
873#endif 1163#endif
882 if (!WCONTINUED 1172 if (!WCONTINUED
883 || errno != EINVAL 1173 || errno != EINVAL
884 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1174 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
885 return; 1175 return;
886 1176
887 /* make sure we are called again until all childs have been reaped */ 1177 /* make sure we are called again until all children have been reaped */
888 /* we need to do it this way so that the callback gets called before we continue */ 1178 /* we need to do it this way so that the callback gets called before we continue */
889 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1179 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
890 1180
891 child_reap (EV_A_ sw, pid, pid, status); 1181 child_reap (EV_A_ pid, pid, status);
892 if (EV_PID_HASHSIZE > 1) 1182 if (EV_PID_HASHSIZE > 1)
893 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1183 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
894} 1184}
895 1185
896#endif 1186#endif
897 1187
898/*****************************************************************************/ 1188/*****************************************************************************/
970} 1260}
971 1261
972unsigned int 1262unsigned int
973ev_embeddable_backends (void) 1263ev_embeddable_backends (void)
974{ 1264{
1265 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1266
975 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1267 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
976 return EVBACKEND_KQUEUE 1268 /* please fix it and tell me how to detect the fix */
977 | EVBACKEND_PORT; 1269 flags &= ~EVBACKEND_EPOLL;
1270
1271 return flags;
978} 1272}
979 1273
980unsigned int 1274unsigned int
981ev_backend (EV_P) 1275ev_backend (EV_P)
982{ 1276{
1012 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1306 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1013 have_monotonic = 1; 1307 have_monotonic = 1;
1014 } 1308 }
1015#endif 1309#endif
1016 1310
1017 ev_rt_now = ev_time (); 1311 ev_rt_now = ev_time ();
1018 mn_now = get_clock (); 1312 mn_now = get_clock ();
1019 now_floor = mn_now; 1313 now_floor = mn_now;
1020 rtmn_diff = ev_rt_now - mn_now; 1314 rtmn_diff = ev_rt_now - mn_now;
1021 1315
1022 io_blocktime = 0.; 1316 io_blocktime = 0.;
1023 timeout_blocktime = 0.; 1317 timeout_blocktime = 0.;
1318 backend = 0;
1319 backend_fd = -1;
1320 gotasync = 0;
1321#if EV_USE_INOTIFY
1322 fs_fd = -2;
1323#endif
1024 1324
1025 /* pid check not overridable via env */ 1325 /* pid check not overridable via env */
1026#ifndef _WIN32 1326#ifndef _WIN32
1027 if (flags & EVFLAG_FORKCHECK) 1327 if (flags & EVFLAG_FORKCHECK)
1028 curpid = getpid (); 1328 curpid = getpid ();
1031 if (!(flags & EVFLAG_NOENV) 1331 if (!(flags & EVFLAG_NOENV)
1032 && !enable_secure () 1332 && !enable_secure ()
1033 && getenv ("LIBEV_FLAGS")) 1333 && getenv ("LIBEV_FLAGS"))
1034 flags = atoi (getenv ("LIBEV_FLAGS")); 1334 flags = atoi (getenv ("LIBEV_FLAGS"));
1035 1335
1036 if (!(flags & 0x0000ffffUL)) 1336 if (!(flags & 0x0000ffffU))
1037 flags |= ev_recommended_backends (); 1337 flags |= ev_recommended_backends ();
1038
1039 backend = 0;
1040 backend_fd = -1;
1041#if EV_USE_INOTIFY
1042 fs_fd = -2;
1043#endif
1044 1338
1045#if EV_USE_PORT 1339#if EV_USE_PORT
1046 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1340 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1047#endif 1341#endif
1048#if EV_USE_KQUEUE 1342#if EV_USE_KQUEUE
1056#endif 1350#endif
1057#if EV_USE_SELECT 1351#if EV_USE_SELECT
1058 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1352 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1059#endif 1353#endif
1060 1354
1061 ev_init (&sigev, sigcb); 1355 ev_init (&pipeev, pipecb);
1062 ev_set_priority (&sigev, EV_MAXPRI); 1356 ev_set_priority (&pipeev, EV_MAXPRI);
1063 } 1357 }
1064} 1358}
1065 1359
1066static void noinline 1360static void noinline
1067loop_destroy (EV_P) 1361loop_destroy (EV_P)
1068{ 1362{
1069 int i; 1363 int i;
1364
1365 if (ev_is_active (&pipeev))
1366 {
1367 ev_ref (EV_A); /* signal watcher */
1368 ev_io_stop (EV_A_ &pipeev);
1369
1370#if EV_USE_EVENTFD
1371 if (evfd >= 0)
1372 close (evfd);
1373#endif
1374
1375 if (evpipe [0] >= 0)
1376 {
1377 close (evpipe [0]);
1378 close (evpipe [1]);
1379 }
1380 }
1070 1381
1071#if EV_USE_INOTIFY 1382#if EV_USE_INOTIFY
1072 if (fs_fd >= 0) 1383 if (fs_fd >= 0)
1073 close (fs_fd); 1384 close (fs_fd);
1074#endif 1385#endif
1111#if EV_FORK_ENABLE 1422#if EV_FORK_ENABLE
1112 array_free (fork, EMPTY); 1423 array_free (fork, EMPTY);
1113#endif 1424#endif
1114 array_free (prepare, EMPTY); 1425 array_free (prepare, EMPTY);
1115 array_free (check, EMPTY); 1426 array_free (check, EMPTY);
1427#if EV_ASYNC_ENABLE
1428 array_free (async, EMPTY);
1429#endif
1116 1430
1117 backend = 0; 1431 backend = 0;
1118} 1432}
1119 1433
1434#if EV_USE_INOTIFY
1120void inline_size infy_fork (EV_P); 1435void inline_size infy_fork (EV_P);
1436#endif
1121 1437
1122void inline_size 1438void inline_size
1123loop_fork (EV_P) 1439loop_fork (EV_P)
1124{ 1440{
1125#if EV_USE_PORT 1441#if EV_USE_PORT
1133#endif 1449#endif
1134#if EV_USE_INOTIFY 1450#if EV_USE_INOTIFY
1135 infy_fork (EV_A); 1451 infy_fork (EV_A);
1136#endif 1452#endif
1137 1453
1138 if (ev_is_active (&sigev)) 1454 if (ev_is_active (&pipeev))
1139 { 1455 {
1140 /* default loop */ 1456 /* this "locks" the handlers against writing to the pipe */
1457 /* while we modify the fd vars */
1458 gotsig = 1;
1459#if EV_ASYNC_ENABLE
1460 gotasync = 1;
1461#endif
1141 1462
1142 ev_ref (EV_A); 1463 ev_ref (EV_A);
1143 ev_io_stop (EV_A_ &sigev); 1464 ev_io_stop (EV_A_ &pipeev);
1465
1466#if EV_USE_EVENTFD
1467 if (evfd >= 0)
1468 close (evfd);
1469#endif
1470
1471 if (evpipe [0] >= 0)
1472 {
1144 close (sigpipe [0]); 1473 close (evpipe [0]);
1145 close (sigpipe [1]); 1474 close (evpipe [1]);
1475 }
1146 1476
1147 while (pipe (sigpipe))
1148 syserr ("(libev) error creating pipe");
1149
1150 siginit (EV_A); 1477 evpipe_init (EV_A);
1478 /* now iterate over everything, in case we missed something */
1479 pipecb (EV_A_ &pipeev, EV_READ);
1151 } 1480 }
1152 1481
1153 postfork = 0; 1482 postfork = 0;
1154} 1483}
1155 1484
1156#if EV_MULTIPLICITY 1485#if EV_MULTIPLICITY
1486
1157struct ev_loop * 1487struct ev_loop *
1158ev_loop_new (unsigned int flags) 1488ev_loop_new (unsigned int flags)
1159{ 1489{
1160 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1490 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1161 1491
1177} 1507}
1178 1508
1179void 1509void
1180ev_loop_fork (EV_P) 1510ev_loop_fork (EV_P)
1181{ 1511{
1182 postfork = 1; 1512 postfork = 1; /* must be in line with ev_default_fork */
1183} 1513}
1184 1514
1515#if EV_VERIFY
1516static void noinline
1517verify_watcher (EV_P_ W w)
1518{
1519 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1520
1521 if (w->pending)
1522 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1523}
1524
1525static void noinline
1526verify_heap (EV_P_ ANHE *heap, int N)
1527{
1528 int i;
1529
1530 for (i = HEAP0; i < N + HEAP0; ++i)
1531 {
1532 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1533 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1534 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1535
1536 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1537 }
1538}
1539
1540static void noinline
1541array_verify (EV_P_ W *ws, int cnt)
1542{
1543 while (cnt--)
1544 {
1545 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1546 verify_watcher (EV_A_ ws [cnt]);
1547 }
1548}
1549#endif
1550
1551void
1552ev_loop_verify (EV_P)
1553{
1554#if EV_VERIFY
1555 int i;
1556 WL w;
1557
1558 assert (activecnt >= -1);
1559
1560 assert (fdchangemax >= fdchangecnt);
1561 for (i = 0; i < fdchangecnt; ++i)
1562 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1563
1564 assert (anfdmax >= 0);
1565 for (i = 0; i < anfdmax; ++i)
1566 for (w = anfds [i].head; w; w = w->next)
1567 {
1568 verify_watcher (EV_A_ (W)w);
1569 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1570 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1571 }
1572
1573 assert (timermax >= timercnt);
1574 verify_heap (EV_A_ timers, timercnt);
1575
1576#if EV_PERIODIC_ENABLE
1577 assert (periodicmax >= periodiccnt);
1578 verify_heap (EV_A_ periodics, periodiccnt);
1579#endif
1580
1581 for (i = NUMPRI; i--; )
1582 {
1583 assert (pendingmax [i] >= pendingcnt [i]);
1584#if EV_IDLE_ENABLE
1585 assert (idleall >= 0);
1586 assert (idlemax [i] >= idlecnt [i]);
1587 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1588#endif
1589 }
1590
1591#if EV_FORK_ENABLE
1592 assert (forkmax >= forkcnt);
1593 array_verify (EV_A_ (W *)forks, forkcnt);
1594#endif
1595
1596#if EV_ASYNC_ENABLE
1597 assert (asyncmax >= asynccnt);
1598 array_verify (EV_A_ (W *)asyncs, asynccnt);
1599#endif
1600
1601 assert (preparemax >= preparecnt);
1602 array_verify (EV_A_ (W *)prepares, preparecnt);
1603
1604 assert (checkmax >= checkcnt);
1605 array_verify (EV_A_ (W *)checks, checkcnt);
1606
1607# if 0
1608 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1609 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1185#endif 1610# endif
1611#endif
1612}
1613
1614#endif /* multiplicity */
1186 1615
1187#if EV_MULTIPLICITY 1616#if EV_MULTIPLICITY
1188struct ev_loop * 1617struct ev_loop *
1189ev_default_loop_init (unsigned int flags) 1618ev_default_loop_init (unsigned int flags)
1190#else 1619#else
1191int 1620int
1192ev_default_loop (unsigned int flags) 1621ev_default_loop (unsigned int flags)
1193#endif 1622#endif
1194{ 1623{
1195 if (sigpipe [0] == sigpipe [1])
1196 if (pipe (sigpipe))
1197 return 0;
1198
1199 if (!ev_default_loop_ptr) 1624 if (!ev_default_loop_ptr)
1200 { 1625 {
1201#if EV_MULTIPLICITY 1626#if EV_MULTIPLICITY
1202 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1627 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1203#else 1628#else
1206 1631
1207 loop_init (EV_A_ flags); 1632 loop_init (EV_A_ flags);
1208 1633
1209 if (ev_backend (EV_A)) 1634 if (ev_backend (EV_A))
1210 { 1635 {
1211 siginit (EV_A);
1212
1213#ifndef _WIN32 1636#ifndef _WIN32
1214 ev_signal_init (&childev, childcb, SIGCHLD); 1637 ev_signal_init (&childev, childcb, SIGCHLD);
1215 ev_set_priority (&childev, EV_MAXPRI); 1638 ev_set_priority (&childev, EV_MAXPRI);
1216 ev_signal_start (EV_A_ &childev); 1639 ev_signal_start (EV_A_ &childev);
1217 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1640 ev_unref (EV_A); /* child watcher should not keep loop alive */
1234#ifndef _WIN32 1657#ifndef _WIN32
1235 ev_ref (EV_A); /* child watcher */ 1658 ev_ref (EV_A); /* child watcher */
1236 ev_signal_stop (EV_A_ &childev); 1659 ev_signal_stop (EV_A_ &childev);
1237#endif 1660#endif
1238 1661
1239 ev_ref (EV_A); /* signal watcher */
1240 ev_io_stop (EV_A_ &sigev);
1241
1242 close (sigpipe [0]); sigpipe [0] = 0;
1243 close (sigpipe [1]); sigpipe [1] = 0;
1244
1245 loop_destroy (EV_A); 1662 loop_destroy (EV_A);
1246} 1663}
1247 1664
1248void 1665void
1249ev_default_fork (void) 1666ev_default_fork (void)
1251#if EV_MULTIPLICITY 1668#if EV_MULTIPLICITY
1252 struct ev_loop *loop = ev_default_loop_ptr; 1669 struct ev_loop *loop = ev_default_loop_ptr;
1253#endif 1670#endif
1254 1671
1255 if (backend) 1672 if (backend)
1256 postfork = 1; 1673 postfork = 1; /* must be in line with ev_loop_fork */
1257} 1674}
1258 1675
1259/*****************************************************************************/ 1676/*****************************************************************************/
1260 1677
1261void 1678void
1278 { 1695 {
1279 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1696 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1280 1697
1281 p->w->pending = 0; 1698 p->w->pending = 0;
1282 EV_CB_INVOKE (p->w, p->events); 1699 EV_CB_INVOKE (p->w, p->events);
1700 EV_FREQUENT_CHECK;
1283 } 1701 }
1284 } 1702 }
1285} 1703}
1286
1287void inline_size
1288timers_reify (EV_P)
1289{
1290 while (timercnt && ((WT)timers [0])->at <= mn_now)
1291 {
1292 ev_timer *w = (ev_timer *)timers [0];
1293
1294 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1295
1296 /* first reschedule or stop timer */
1297 if (w->repeat)
1298 {
1299 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1300
1301 ((WT)w)->at += w->repeat;
1302 if (((WT)w)->at < mn_now)
1303 ((WT)w)->at = mn_now;
1304
1305 downheap (timers, timercnt, 0);
1306 }
1307 else
1308 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1309
1310 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1311 }
1312}
1313
1314#if EV_PERIODIC_ENABLE
1315void inline_size
1316periodics_reify (EV_P)
1317{
1318 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1319 {
1320 ev_periodic *w = (ev_periodic *)periodics [0];
1321
1322 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1323
1324 /* first reschedule or stop timer */
1325 if (w->reschedule_cb)
1326 {
1327 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1328 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1329 downheap (periodics, periodiccnt, 0);
1330 }
1331 else if (w->interval)
1332 {
1333 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1334 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1335 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1336 downheap (periodics, periodiccnt, 0);
1337 }
1338 else
1339 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1340
1341 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1342 }
1343}
1344
1345static void noinline
1346periodics_reschedule (EV_P)
1347{
1348 int i;
1349
1350 /* adjust periodics after time jump */
1351 for (i = 0; i < periodiccnt; ++i)
1352 {
1353 ev_periodic *w = (ev_periodic *)periodics [i];
1354
1355 if (w->reschedule_cb)
1356 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1357 else if (w->interval)
1358 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1359 }
1360
1361 /* now rebuild the heap */
1362 for (i = periodiccnt >> 1; i--; )
1363 downheap (periodics, periodiccnt, i);
1364}
1365#endif
1366 1704
1367#if EV_IDLE_ENABLE 1705#if EV_IDLE_ENABLE
1368void inline_size 1706void inline_size
1369idle_reify (EV_P) 1707idle_reify (EV_P)
1370{ 1708{
1382 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1720 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1383 break; 1721 break;
1384 } 1722 }
1385 } 1723 }
1386 } 1724 }
1725}
1726#endif
1727
1728void inline_size
1729timers_reify (EV_P)
1730{
1731 EV_FREQUENT_CHECK;
1732
1733 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1734 {
1735 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1736
1737 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1738
1739 /* first reschedule or stop timer */
1740 if (w->repeat)
1741 {
1742 ev_at (w) += w->repeat;
1743 if (ev_at (w) < mn_now)
1744 ev_at (w) = mn_now;
1745
1746 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1747
1748 ANHE_at_cache (timers [HEAP0]);
1749 downheap (timers, timercnt, HEAP0);
1750 }
1751 else
1752 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1753
1754 EV_FREQUENT_CHECK;
1755 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1756 }
1757}
1758
1759#if EV_PERIODIC_ENABLE
1760void inline_size
1761periodics_reify (EV_P)
1762{
1763 EV_FREQUENT_CHECK;
1764
1765 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1766 {
1767 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1768
1769 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1770
1771 /* first reschedule or stop timer */
1772 if (w->reschedule_cb)
1773 {
1774 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1775
1776 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1777
1778 ANHE_at_cache (periodics [HEAP0]);
1779 downheap (periodics, periodiccnt, HEAP0);
1780 }
1781 else if (w->interval)
1782 {
1783 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1784 /* if next trigger time is not sufficiently in the future, put it there */
1785 /* this might happen because of floating point inexactness */
1786 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1787 {
1788 ev_at (w) += w->interval;
1789
1790 /* if interval is unreasonably low we might still have a time in the past */
1791 /* so correct this. this will make the periodic very inexact, but the user */
1792 /* has effectively asked to get triggered more often than possible */
1793 if (ev_at (w) < ev_rt_now)
1794 ev_at (w) = ev_rt_now;
1795 }
1796
1797 ANHE_at_cache (periodics [HEAP0]);
1798 downheap (periodics, periodiccnt, HEAP0);
1799 }
1800 else
1801 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1802
1803 EV_FREQUENT_CHECK;
1804 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1805 }
1806}
1807
1808static void noinline
1809periodics_reschedule (EV_P)
1810{
1811 int i;
1812
1813 /* adjust periodics after time jump */
1814 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1815 {
1816 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1817
1818 if (w->reschedule_cb)
1819 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1820 else if (w->interval)
1821 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1822
1823 ANHE_at_cache (periodics [i]);
1824 }
1825
1826 reheap (periodics, periodiccnt);
1387} 1827}
1388#endif 1828#endif
1389 1829
1390void inline_speed 1830void inline_speed
1391time_update (EV_P_ ev_tstamp max_block) 1831time_update (EV_P_ ev_tstamp max_block)
1420 */ 1860 */
1421 for (i = 4; --i; ) 1861 for (i = 4; --i; )
1422 { 1862 {
1423 rtmn_diff = ev_rt_now - mn_now; 1863 rtmn_diff = ev_rt_now - mn_now;
1424 1864
1425 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1865 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1426 return; /* all is well */ 1866 return; /* all is well */
1427 1867
1428 ev_rt_now = ev_time (); 1868 ev_rt_now = ev_time ();
1429 mn_now = get_clock (); 1869 mn_now = get_clock ();
1430 now_floor = mn_now; 1870 now_floor = mn_now;
1446#if EV_PERIODIC_ENABLE 1886#if EV_PERIODIC_ENABLE
1447 periodics_reschedule (EV_A); 1887 periodics_reschedule (EV_A);
1448#endif 1888#endif
1449 /* adjust timers. this is easy, as the offset is the same for all of them */ 1889 /* adjust timers. this is easy, as the offset is the same for all of them */
1450 for (i = 0; i < timercnt; ++i) 1890 for (i = 0; i < timercnt; ++i)
1891 {
1892 ANHE *he = timers + i + HEAP0;
1451 ((WT)timers [i])->at += ev_rt_now - mn_now; 1893 ANHE_w (*he)->at += ev_rt_now - mn_now;
1894 ANHE_at_cache (*he);
1895 }
1452 } 1896 }
1453 1897
1454 mn_now = ev_rt_now; 1898 mn_now = ev_rt_now;
1455 } 1899 }
1456} 1900}
1465ev_unref (EV_P) 1909ev_unref (EV_P)
1466{ 1910{
1467 --activecnt; 1911 --activecnt;
1468} 1912}
1469 1913
1914void
1915ev_now_update (EV_P)
1916{
1917 time_update (EV_A_ 1e100);
1918}
1919
1470static int loop_done; 1920static int loop_done;
1471 1921
1472void 1922void
1473ev_loop (EV_P_ int flags) 1923ev_loop (EV_P_ int flags)
1474{ 1924{
1475 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1925 loop_done = EVUNLOOP_CANCEL;
1476 ? EVUNLOOP_ONE
1477 : EVUNLOOP_CANCEL;
1478 1926
1479 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1927 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1480 1928
1481 do 1929 do
1482 { 1930 {
1931#if EV_VERIFY >= 2
1932 ev_loop_verify (EV_A);
1933#endif
1934
1483#ifndef _WIN32 1935#ifndef _WIN32
1484 if (expect_false (curpid)) /* penalise the forking check even more */ 1936 if (expect_false (curpid)) /* penalise the forking check even more */
1485 if (expect_false (getpid () != curpid)) 1937 if (expect_false (getpid () != curpid))
1486 { 1938 {
1487 curpid = getpid (); 1939 curpid = getpid ();
1528 1980
1529 waittime = MAX_BLOCKTIME; 1981 waittime = MAX_BLOCKTIME;
1530 1982
1531 if (timercnt) 1983 if (timercnt)
1532 { 1984 {
1533 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1985 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1534 if (waittime > to) waittime = to; 1986 if (waittime > to) waittime = to;
1535 } 1987 }
1536 1988
1537#if EV_PERIODIC_ENABLE 1989#if EV_PERIODIC_ENABLE
1538 if (periodiccnt) 1990 if (periodiccnt)
1539 { 1991 {
1540 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1992 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1541 if (waittime > to) waittime = to; 1993 if (waittime > to) waittime = to;
1542 } 1994 }
1543#endif 1995#endif
1544 1996
1545 if (expect_false (waittime < timeout_blocktime)) 1997 if (expect_false (waittime < timeout_blocktime))
1578 /* queue check watchers, to be executed first */ 2030 /* queue check watchers, to be executed first */
1579 if (expect_false (checkcnt)) 2031 if (expect_false (checkcnt))
1580 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2032 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1581 2033
1582 call_pending (EV_A); 2034 call_pending (EV_A);
1583
1584 } 2035 }
1585 while (expect_true (activecnt && !loop_done)); 2036 while (expect_true (
2037 activecnt
2038 && !loop_done
2039 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2040 ));
1586 2041
1587 if (loop_done == EVUNLOOP_ONE) 2042 if (loop_done == EVUNLOOP_ONE)
1588 loop_done = EVUNLOOP_CANCEL; 2043 loop_done = EVUNLOOP_CANCEL;
1589} 2044}
1590 2045
1679 if (expect_false (ev_is_active (w))) 2134 if (expect_false (ev_is_active (w)))
1680 return; 2135 return;
1681 2136
1682 assert (("ev_io_start called with negative fd", fd >= 0)); 2137 assert (("ev_io_start called with negative fd", fd >= 0));
1683 2138
2139 EV_FREQUENT_CHECK;
2140
1684 ev_start (EV_A_ (W)w, 1); 2141 ev_start (EV_A_ (W)w, 1);
1685 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2142 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1686 wlist_add (&anfds[fd].head, (WL)w); 2143 wlist_add (&anfds[fd].head, (WL)w);
1687 2144
1688 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2145 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1689 w->events &= ~EV_IOFDSET; 2146 w->events &= ~EV_IOFDSET;
2147
2148 EV_FREQUENT_CHECK;
1690} 2149}
1691 2150
1692void noinline 2151void noinline
1693ev_io_stop (EV_P_ ev_io *w) 2152ev_io_stop (EV_P_ ev_io *w)
1694{ 2153{
1695 clear_pending (EV_A_ (W)w); 2154 clear_pending (EV_A_ (W)w);
1696 if (expect_false (!ev_is_active (w))) 2155 if (expect_false (!ev_is_active (w)))
1697 return; 2156 return;
1698 2157
1699 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2158 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2159
2160 EV_FREQUENT_CHECK;
1700 2161
1701 wlist_del (&anfds[w->fd].head, (WL)w); 2162 wlist_del (&anfds[w->fd].head, (WL)w);
1702 ev_stop (EV_A_ (W)w); 2163 ev_stop (EV_A_ (W)w);
1703 2164
1704 fd_change (EV_A_ w->fd, 1); 2165 fd_change (EV_A_ w->fd, 1);
2166
2167 EV_FREQUENT_CHECK;
1705} 2168}
1706 2169
1707void noinline 2170void noinline
1708ev_timer_start (EV_P_ ev_timer *w) 2171ev_timer_start (EV_P_ ev_timer *w)
1709{ 2172{
1710 if (expect_false (ev_is_active (w))) 2173 if (expect_false (ev_is_active (w)))
1711 return; 2174 return;
1712 2175
1713 ((WT)w)->at += mn_now; 2176 ev_at (w) += mn_now;
1714 2177
1715 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2178 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1716 2179
2180 EV_FREQUENT_CHECK;
2181
2182 ++timercnt;
1717 ev_start (EV_A_ (W)w, ++timercnt); 2183 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1718 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2184 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1719 timers [timercnt - 1] = (WT)w; 2185 ANHE_w (timers [ev_active (w)]) = (WT)w;
1720 upheap (timers, timercnt - 1); 2186 ANHE_at_cache (timers [ev_active (w)]);
2187 upheap (timers, ev_active (w));
1721 2188
2189 EV_FREQUENT_CHECK;
2190
1722 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2191 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1723} 2192}
1724 2193
1725void noinline 2194void noinline
1726ev_timer_stop (EV_P_ ev_timer *w) 2195ev_timer_stop (EV_P_ ev_timer *w)
1727{ 2196{
1728 clear_pending (EV_A_ (W)w); 2197 clear_pending (EV_A_ (W)w);
1729 if (expect_false (!ev_is_active (w))) 2198 if (expect_false (!ev_is_active (w)))
1730 return; 2199 return;
1731 2200
1732 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2201 EV_FREQUENT_CHECK;
1733 2202
1734 { 2203 {
1735 int active = ((W)w)->active; 2204 int active = ev_active (w);
1736 2205
2206 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2207
2208 --timercnt;
2209
1737 if (expect_true (--active < --timercnt)) 2210 if (expect_true (active < timercnt + HEAP0))
1738 { 2211 {
1739 timers [active] = timers [timercnt]; 2212 timers [active] = timers [timercnt + HEAP0];
1740 adjustheap (timers, timercnt, active); 2213 adjustheap (timers, timercnt, active);
1741 } 2214 }
1742 } 2215 }
1743 2216
1744 ((WT)w)->at -= mn_now; 2217 EV_FREQUENT_CHECK;
2218
2219 ev_at (w) -= mn_now;
1745 2220
1746 ev_stop (EV_A_ (W)w); 2221 ev_stop (EV_A_ (W)w);
1747} 2222}
1748 2223
1749void noinline 2224void noinline
1750ev_timer_again (EV_P_ ev_timer *w) 2225ev_timer_again (EV_P_ ev_timer *w)
1751{ 2226{
2227 EV_FREQUENT_CHECK;
2228
1752 if (ev_is_active (w)) 2229 if (ev_is_active (w))
1753 { 2230 {
1754 if (w->repeat) 2231 if (w->repeat)
1755 { 2232 {
1756 ((WT)w)->at = mn_now + w->repeat; 2233 ev_at (w) = mn_now + w->repeat;
2234 ANHE_at_cache (timers [ev_active (w)]);
1757 adjustheap (timers, timercnt, ((W)w)->active - 1); 2235 adjustheap (timers, timercnt, ev_active (w));
1758 } 2236 }
1759 else 2237 else
1760 ev_timer_stop (EV_A_ w); 2238 ev_timer_stop (EV_A_ w);
1761 } 2239 }
1762 else if (w->repeat) 2240 else if (w->repeat)
1763 { 2241 {
1764 w->at = w->repeat; 2242 ev_at (w) = w->repeat;
1765 ev_timer_start (EV_A_ w); 2243 ev_timer_start (EV_A_ w);
1766 } 2244 }
2245
2246 EV_FREQUENT_CHECK;
1767} 2247}
1768 2248
1769#if EV_PERIODIC_ENABLE 2249#if EV_PERIODIC_ENABLE
1770void noinline 2250void noinline
1771ev_periodic_start (EV_P_ ev_periodic *w) 2251ev_periodic_start (EV_P_ ev_periodic *w)
1772{ 2252{
1773 if (expect_false (ev_is_active (w))) 2253 if (expect_false (ev_is_active (w)))
1774 return; 2254 return;
1775 2255
1776 if (w->reschedule_cb) 2256 if (w->reschedule_cb)
1777 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2257 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1778 else if (w->interval) 2258 else if (w->interval)
1779 { 2259 {
1780 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2260 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1781 /* this formula differs from the one in periodic_reify because we do not always round up */ 2261 /* this formula differs from the one in periodic_reify because we do not always round up */
1782 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2262 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1783 } 2263 }
1784 else 2264 else
1785 ((WT)w)->at = w->offset; 2265 ev_at (w) = w->offset;
1786 2266
2267 EV_FREQUENT_CHECK;
2268
2269 ++periodiccnt;
1787 ev_start (EV_A_ (W)w, ++periodiccnt); 2270 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1788 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2271 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1789 periodics [periodiccnt - 1] = (WT)w; 2272 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1790 upheap (periodics, periodiccnt - 1); 2273 ANHE_at_cache (periodics [ev_active (w)]);
2274 upheap (periodics, ev_active (w));
1791 2275
2276 EV_FREQUENT_CHECK;
2277
1792 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2278 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1793} 2279}
1794 2280
1795void noinline 2281void noinline
1796ev_periodic_stop (EV_P_ ev_periodic *w) 2282ev_periodic_stop (EV_P_ ev_periodic *w)
1797{ 2283{
1798 clear_pending (EV_A_ (W)w); 2284 clear_pending (EV_A_ (W)w);
1799 if (expect_false (!ev_is_active (w))) 2285 if (expect_false (!ev_is_active (w)))
1800 return; 2286 return;
1801 2287
1802 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2288 EV_FREQUENT_CHECK;
1803 2289
1804 { 2290 {
1805 int active = ((W)w)->active; 2291 int active = ev_active (w);
1806 2292
2293 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2294
2295 --periodiccnt;
2296
1807 if (expect_true (--active < --periodiccnt)) 2297 if (expect_true (active < periodiccnt + HEAP0))
1808 { 2298 {
1809 periodics [active] = periodics [periodiccnt]; 2299 periodics [active] = periodics [periodiccnt + HEAP0];
1810 adjustheap (periodics, periodiccnt, active); 2300 adjustheap (periodics, periodiccnt, active);
1811 } 2301 }
1812 } 2302 }
1813 2303
2304 EV_FREQUENT_CHECK;
2305
1814 ev_stop (EV_A_ (W)w); 2306 ev_stop (EV_A_ (W)w);
1815} 2307}
1816 2308
1817void noinline 2309void noinline
1818ev_periodic_again (EV_P_ ev_periodic *w) 2310ev_periodic_again (EV_P_ ev_periodic *w)
1835#endif 2327#endif
1836 if (expect_false (ev_is_active (w))) 2328 if (expect_false (ev_is_active (w)))
1837 return; 2329 return;
1838 2330
1839 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2331 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2332
2333 evpipe_init (EV_A);
2334
2335 EV_FREQUENT_CHECK;
1840 2336
1841 { 2337 {
1842#ifndef _WIN32 2338#ifndef _WIN32
1843 sigset_t full, prev; 2339 sigset_t full, prev;
1844 sigfillset (&full); 2340 sigfillset (&full);
1856 wlist_add (&signals [w->signum - 1].head, (WL)w); 2352 wlist_add (&signals [w->signum - 1].head, (WL)w);
1857 2353
1858 if (!((WL)w)->next) 2354 if (!((WL)w)->next)
1859 { 2355 {
1860#if _WIN32 2356#if _WIN32
1861 signal (w->signum, sighandler); 2357 signal (w->signum, ev_sighandler);
1862#else 2358#else
1863 struct sigaction sa; 2359 struct sigaction sa;
1864 sa.sa_handler = sighandler; 2360 sa.sa_handler = ev_sighandler;
1865 sigfillset (&sa.sa_mask); 2361 sigfillset (&sa.sa_mask);
1866 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2362 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1867 sigaction (w->signum, &sa, 0); 2363 sigaction (w->signum, &sa, 0);
1868#endif 2364#endif
1869 } 2365 }
2366
2367 EV_FREQUENT_CHECK;
1870} 2368}
1871 2369
1872void noinline 2370void noinline
1873ev_signal_stop (EV_P_ ev_signal *w) 2371ev_signal_stop (EV_P_ ev_signal *w)
1874{ 2372{
1875 clear_pending (EV_A_ (W)w); 2373 clear_pending (EV_A_ (W)w);
1876 if (expect_false (!ev_is_active (w))) 2374 if (expect_false (!ev_is_active (w)))
1877 return; 2375 return;
1878 2376
2377 EV_FREQUENT_CHECK;
2378
1879 wlist_del (&signals [w->signum - 1].head, (WL)w); 2379 wlist_del (&signals [w->signum - 1].head, (WL)w);
1880 ev_stop (EV_A_ (W)w); 2380 ev_stop (EV_A_ (W)w);
1881 2381
1882 if (!signals [w->signum - 1].head) 2382 if (!signals [w->signum - 1].head)
1883 signal (w->signum, SIG_DFL); 2383 signal (w->signum, SIG_DFL);
2384
2385 EV_FREQUENT_CHECK;
1884} 2386}
1885 2387
1886void 2388void
1887ev_child_start (EV_P_ ev_child *w) 2389ev_child_start (EV_P_ ev_child *w)
1888{ 2390{
1890 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2392 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1891#endif 2393#endif
1892 if (expect_false (ev_is_active (w))) 2394 if (expect_false (ev_is_active (w)))
1893 return; 2395 return;
1894 2396
2397 EV_FREQUENT_CHECK;
2398
1895 ev_start (EV_A_ (W)w, 1); 2399 ev_start (EV_A_ (W)w, 1);
1896 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2400 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2401
2402 EV_FREQUENT_CHECK;
1897} 2403}
1898 2404
1899void 2405void
1900ev_child_stop (EV_P_ ev_child *w) 2406ev_child_stop (EV_P_ ev_child *w)
1901{ 2407{
1902 clear_pending (EV_A_ (W)w); 2408 clear_pending (EV_A_ (W)w);
1903 if (expect_false (!ev_is_active (w))) 2409 if (expect_false (!ev_is_active (w)))
1904 return; 2410 return;
1905 2411
2412 EV_FREQUENT_CHECK;
2413
1906 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2414 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1907 ev_stop (EV_A_ (W)w); 2415 ev_stop (EV_A_ (W)w);
2416
2417 EV_FREQUENT_CHECK;
1908} 2418}
1909 2419
1910#if EV_STAT_ENABLE 2420#if EV_STAT_ENABLE
1911 2421
1912# ifdef _WIN32 2422# ifdef _WIN32
1930 if (w->wd < 0) 2440 if (w->wd < 0)
1931 { 2441 {
1932 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2442 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1933 2443
1934 /* monitor some parent directory for speedup hints */ 2444 /* monitor some parent directory for speedup hints */
2445 /* note that exceeding the hardcoded limit is not a correctness issue, */
2446 /* but an efficiency issue only */
1935 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2447 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1936 { 2448 {
1937 char path [4096]; 2449 char path [4096];
1938 strcpy (path, w->path); 2450 strcpy (path, w->path);
1939 2451
2065 } 2577 }
2066 2578
2067 } 2579 }
2068} 2580}
2069 2581
2582#endif
2583
2584#ifdef _WIN32
2585# define EV_LSTAT(p,b) _stati64 (p, b)
2586#else
2587# define EV_LSTAT(p,b) lstat (p, b)
2070#endif 2588#endif
2071 2589
2072void 2590void
2073ev_stat_stat (EV_P_ ev_stat *w) 2591ev_stat_stat (EV_P_ ev_stat *w)
2074{ 2592{
2138 else 2656 else
2139#endif 2657#endif
2140 ev_timer_start (EV_A_ &w->timer); 2658 ev_timer_start (EV_A_ &w->timer);
2141 2659
2142 ev_start (EV_A_ (W)w, 1); 2660 ev_start (EV_A_ (W)w, 1);
2661
2662 EV_FREQUENT_CHECK;
2143} 2663}
2144 2664
2145void 2665void
2146ev_stat_stop (EV_P_ ev_stat *w) 2666ev_stat_stop (EV_P_ ev_stat *w)
2147{ 2667{
2148 clear_pending (EV_A_ (W)w); 2668 clear_pending (EV_A_ (W)w);
2149 if (expect_false (!ev_is_active (w))) 2669 if (expect_false (!ev_is_active (w)))
2150 return; 2670 return;
2151 2671
2672 EV_FREQUENT_CHECK;
2673
2152#if EV_USE_INOTIFY 2674#if EV_USE_INOTIFY
2153 infy_del (EV_A_ w); 2675 infy_del (EV_A_ w);
2154#endif 2676#endif
2155 ev_timer_stop (EV_A_ &w->timer); 2677 ev_timer_stop (EV_A_ &w->timer);
2156 2678
2157 ev_stop (EV_A_ (W)w); 2679 ev_stop (EV_A_ (W)w);
2680
2681 EV_FREQUENT_CHECK;
2158} 2682}
2159#endif 2683#endif
2160 2684
2161#if EV_IDLE_ENABLE 2685#if EV_IDLE_ENABLE
2162void 2686void
2164{ 2688{
2165 if (expect_false (ev_is_active (w))) 2689 if (expect_false (ev_is_active (w)))
2166 return; 2690 return;
2167 2691
2168 pri_adjust (EV_A_ (W)w); 2692 pri_adjust (EV_A_ (W)w);
2693
2694 EV_FREQUENT_CHECK;
2169 2695
2170 { 2696 {
2171 int active = ++idlecnt [ABSPRI (w)]; 2697 int active = ++idlecnt [ABSPRI (w)];
2172 2698
2173 ++idleall; 2699 ++idleall;
2174 ev_start (EV_A_ (W)w, active); 2700 ev_start (EV_A_ (W)w, active);
2175 2701
2176 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2702 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2177 idles [ABSPRI (w)][active - 1] = w; 2703 idles [ABSPRI (w)][active - 1] = w;
2178 } 2704 }
2705
2706 EV_FREQUENT_CHECK;
2179} 2707}
2180 2708
2181void 2709void
2182ev_idle_stop (EV_P_ ev_idle *w) 2710ev_idle_stop (EV_P_ ev_idle *w)
2183{ 2711{
2184 clear_pending (EV_A_ (W)w); 2712 clear_pending (EV_A_ (W)w);
2185 if (expect_false (!ev_is_active (w))) 2713 if (expect_false (!ev_is_active (w)))
2186 return; 2714 return;
2187 2715
2716 EV_FREQUENT_CHECK;
2717
2188 { 2718 {
2189 int active = ((W)w)->active; 2719 int active = ev_active (w);
2190 2720
2191 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2721 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2192 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2722 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2193 2723
2194 ev_stop (EV_A_ (W)w); 2724 ev_stop (EV_A_ (W)w);
2195 --idleall; 2725 --idleall;
2196 } 2726 }
2727
2728 EV_FREQUENT_CHECK;
2197} 2729}
2198#endif 2730#endif
2199 2731
2200void 2732void
2201ev_prepare_start (EV_P_ ev_prepare *w) 2733ev_prepare_start (EV_P_ ev_prepare *w)
2202{ 2734{
2203 if (expect_false (ev_is_active (w))) 2735 if (expect_false (ev_is_active (w)))
2204 return; 2736 return;
2737
2738 EV_FREQUENT_CHECK;
2205 2739
2206 ev_start (EV_A_ (W)w, ++preparecnt); 2740 ev_start (EV_A_ (W)w, ++preparecnt);
2207 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2741 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2208 prepares [preparecnt - 1] = w; 2742 prepares [preparecnt - 1] = w;
2743
2744 EV_FREQUENT_CHECK;
2209} 2745}
2210 2746
2211void 2747void
2212ev_prepare_stop (EV_P_ ev_prepare *w) 2748ev_prepare_stop (EV_P_ ev_prepare *w)
2213{ 2749{
2214 clear_pending (EV_A_ (W)w); 2750 clear_pending (EV_A_ (W)w);
2215 if (expect_false (!ev_is_active (w))) 2751 if (expect_false (!ev_is_active (w)))
2216 return; 2752 return;
2217 2753
2754 EV_FREQUENT_CHECK;
2755
2218 { 2756 {
2219 int active = ((W)w)->active; 2757 int active = ev_active (w);
2758
2220 prepares [active - 1] = prepares [--preparecnt]; 2759 prepares [active - 1] = prepares [--preparecnt];
2221 ((W)prepares [active - 1])->active = active; 2760 ev_active (prepares [active - 1]) = active;
2222 } 2761 }
2223 2762
2224 ev_stop (EV_A_ (W)w); 2763 ev_stop (EV_A_ (W)w);
2764
2765 EV_FREQUENT_CHECK;
2225} 2766}
2226 2767
2227void 2768void
2228ev_check_start (EV_P_ ev_check *w) 2769ev_check_start (EV_P_ ev_check *w)
2229{ 2770{
2230 if (expect_false (ev_is_active (w))) 2771 if (expect_false (ev_is_active (w)))
2231 return; 2772 return;
2773
2774 EV_FREQUENT_CHECK;
2232 2775
2233 ev_start (EV_A_ (W)w, ++checkcnt); 2776 ev_start (EV_A_ (W)w, ++checkcnt);
2234 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2777 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2235 checks [checkcnt - 1] = w; 2778 checks [checkcnt - 1] = w;
2779
2780 EV_FREQUENT_CHECK;
2236} 2781}
2237 2782
2238void 2783void
2239ev_check_stop (EV_P_ ev_check *w) 2784ev_check_stop (EV_P_ ev_check *w)
2240{ 2785{
2241 clear_pending (EV_A_ (W)w); 2786 clear_pending (EV_A_ (W)w);
2242 if (expect_false (!ev_is_active (w))) 2787 if (expect_false (!ev_is_active (w)))
2243 return; 2788 return;
2244 2789
2790 EV_FREQUENT_CHECK;
2791
2245 { 2792 {
2246 int active = ((W)w)->active; 2793 int active = ev_active (w);
2794
2247 checks [active - 1] = checks [--checkcnt]; 2795 checks [active - 1] = checks [--checkcnt];
2248 ((W)checks [active - 1])->active = active; 2796 ev_active (checks [active - 1]) = active;
2249 } 2797 }
2250 2798
2251 ev_stop (EV_A_ (W)w); 2799 ev_stop (EV_A_ (W)w);
2800
2801 EV_FREQUENT_CHECK;
2252} 2802}
2253 2803
2254#if EV_EMBED_ENABLE 2804#if EV_EMBED_ENABLE
2255void noinline 2805void noinline
2256ev_embed_sweep (EV_P_ ev_embed *w) 2806ev_embed_sweep (EV_P_ ev_embed *w)
2264 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2814 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2265 2815
2266 if (ev_cb (w)) 2816 if (ev_cb (w))
2267 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2817 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2268 else 2818 else
2269 ev_embed_sweep (loop, w); 2819 ev_loop (w->other, EVLOOP_NONBLOCK);
2270} 2820}
2271 2821
2272static void 2822static void
2273embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 2823embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2274{ 2824{
2275 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 2825 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2276 2826
2277 fd_reify (w->other); 2827 {
2828 struct ev_loop *loop = w->other;
2829
2830 while (fdchangecnt)
2831 {
2832 fd_reify (EV_A);
2833 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2834 }
2835 }
2278} 2836}
2837
2838static void
2839embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2840{
2841 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2842
2843 {
2844 struct ev_loop *loop = w->other;
2845
2846 ev_loop_fork (EV_A);
2847 }
2848}
2849
2850#if 0
2851static void
2852embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2853{
2854 ev_idle_stop (EV_A_ idle);
2855}
2856#endif
2279 2857
2280void 2858void
2281ev_embed_start (EV_P_ ev_embed *w) 2859ev_embed_start (EV_P_ ev_embed *w)
2282{ 2860{
2283 if (expect_false (ev_is_active (w))) 2861 if (expect_false (ev_is_active (w)))
2287 struct ev_loop *loop = w->other; 2865 struct ev_loop *loop = w->other;
2288 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2866 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2289 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2867 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2290 } 2868 }
2291 2869
2870 EV_FREQUENT_CHECK;
2871
2292 ev_set_priority (&w->io, ev_priority (w)); 2872 ev_set_priority (&w->io, ev_priority (w));
2293 ev_io_start (EV_A_ &w->io); 2873 ev_io_start (EV_A_ &w->io);
2294 2874
2295 ev_prepare_init (&w->prepare, embed_prepare_cb); 2875 ev_prepare_init (&w->prepare, embed_prepare_cb);
2296 ev_set_priority (&w->prepare, EV_MINPRI); 2876 ev_set_priority (&w->prepare, EV_MINPRI);
2297 ev_prepare_start (EV_A_ &w->prepare); 2877 ev_prepare_start (EV_A_ &w->prepare);
2298 2878
2879 ev_fork_init (&w->fork, embed_fork_cb);
2880 ev_fork_start (EV_A_ &w->fork);
2881
2882 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2883
2299 ev_start (EV_A_ (W)w, 1); 2884 ev_start (EV_A_ (W)w, 1);
2885
2886 EV_FREQUENT_CHECK;
2300} 2887}
2301 2888
2302void 2889void
2303ev_embed_stop (EV_P_ ev_embed *w) 2890ev_embed_stop (EV_P_ ev_embed *w)
2304{ 2891{
2305 clear_pending (EV_A_ (W)w); 2892 clear_pending (EV_A_ (W)w);
2306 if (expect_false (!ev_is_active (w))) 2893 if (expect_false (!ev_is_active (w)))
2307 return; 2894 return;
2308 2895
2896 EV_FREQUENT_CHECK;
2897
2309 ev_io_stop (EV_A_ &w->io); 2898 ev_io_stop (EV_A_ &w->io);
2310 ev_prepare_stop (EV_A_ &w->prepare); 2899 ev_prepare_stop (EV_A_ &w->prepare);
2900 ev_fork_stop (EV_A_ &w->fork);
2311 2901
2312 ev_stop (EV_A_ (W)w); 2902 EV_FREQUENT_CHECK;
2313} 2903}
2314#endif 2904#endif
2315 2905
2316#if EV_FORK_ENABLE 2906#if EV_FORK_ENABLE
2317void 2907void
2318ev_fork_start (EV_P_ ev_fork *w) 2908ev_fork_start (EV_P_ ev_fork *w)
2319{ 2909{
2320 if (expect_false (ev_is_active (w))) 2910 if (expect_false (ev_is_active (w)))
2321 return; 2911 return;
2912
2913 EV_FREQUENT_CHECK;
2322 2914
2323 ev_start (EV_A_ (W)w, ++forkcnt); 2915 ev_start (EV_A_ (W)w, ++forkcnt);
2324 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2916 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2325 forks [forkcnt - 1] = w; 2917 forks [forkcnt - 1] = w;
2918
2919 EV_FREQUENT_CHECK;
2326} 2920}
2327 2921
2328void 2922void
2329ev_fork_stop (EV_P_ ev_fork *w) 2923ev_fork_stop (EV_P_ ev_fork *w)
2330{ 2924{
2331 clear_pending (EV_A_ (W)w); 2925 clear_pending (EV_A_ (W)w);
2332 if (expect_false (!ev_is_active (w))) 2926 if (expect_false (!ev_is_active (w)))
2333 return; 2927 return;
2334 2928
2929 EV_FREQUENT_CHECK;
2930
2335 { 2931 {
2336 int active = ((W)w)->active; 2932 int active = ev_active (w);
2933
2337 forks [active - 1] = forks [--forkcnt]; 2934 forks [active - 1] = forks [--forkcnt];
2338 ((W)forks [active - 1])->active = active; 2935 ev_active (forks [active - 1]) = active;
2339 } 2936 }
2340 2937
2341 ev_stop (EV_A_ (W)w); 2938 ev_stop (EV_A_ (W)w);
2939
2940 EV_FREQUENT_CHECK;
2941}
2942#endif
2943
2944#if EV_ASYNC_ENABLE
2945void
2946ev_async_start (EV_P_ ev_async *w)
2947{
2948 if (expect_false (ev_is_active (w)))
2949 return;
2950
2951 evpipe_init (EV_A);
2952
2953 EV_FREQUENT_CHECK;
2954
2955 ev_start (EV_A_ (W)w, ++asynccnt);
2956 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2957 asyncs [asynccnt - 1] = w;
2958
2959 EV_FREQUENT_CHECK;
2960}
2961
2962void
2963ev_async_stop (EV_P_ ev_async *w)
2964{
2965 clear_pending (EV_A_ (W)w);
2966 if (expect_false (!ev_is_active (w)))
2967 return;
2968
2969 EV_FREQUENT_CHECK;
2970
2971 {
2972 int active = ev_active (w);
2973
2974 asyncs [active - 1] = asyncs [--asynccnt];
2975 ev_active (asyncs [active - 1]) = active;
2976 }
2977
2978 ev_stop (EV_A_ (W)w);
2979
2980 EV_FREQUENT_CHECK;
2981}
2982
2983void
2984ev_async_send (EV_P_ ev_async *w)
2985{
2986 w->sent = 1;
2987 evpipe_write (EV_A_ &gotasync);
2342} 2988}
2343#endif 2989#endif
2344 2990
2345/*****************************************************************************/ 2991/*****************************************************************************/
2346 2992
2356once_cb (EV_P_ struct ev_once *once, int revents) 3002once_cb (EV_P_ struct ev_once *once, int revents)
2357{ 3003{
2358 void (*cb)(int revents, void *arg) = once->cb; 3004 void (*cb)(int revents, void *arg) = once->cb;
2359 void *arg = once->arg; 3005 void *arg = once->arg;
2360 3006
2361 ev_io_stop (EV_A_ &once->io); 3007 ev_io_stop (EV_A_ &once->io);
2362 ev_timer_stop (EV_A_ &once->to); 3008 ev_timer_stop (EV_A_ &once->to);
2363 ev_free (once); 3009 ev_free (once);
2364 3010
2365 cb (revents, arg); 3011 cb (revents, arg);
2366} 3012}
2367 3013
2368static void 3014static void
2369once_cb_io (EV_P_ ev_io *w, int revents) 3015once_cb_io (EV_P_ ev_io *w, int revents)
2370{ 3016{
2371 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3017 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3018
3019 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2372} 3020}
2373 3021
2374static void 3022static void
2375once_cb_to (EV_P_ ev_timer *w, int revents) 3023once_cb_to (EV_P_ ev_timer *w, int revents)
2376{ 3024{
2377 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3025 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3026
3027 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2378} 3028}
2379 3029
2380void 3030void
2381ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3031ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2382{ 3032{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines