ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.242 by root, Fri May 9 14:07:19 2008 UTC vs.
Revision 1.262 by root, Wed Oct 1 04:25:25 2008 UTC

126# define EV_USE_EVENTFD 1 126# define EV_USE_EVENTFD 1
127# else 127# else
128# define EV_USE_EVENTFD 0 128# define EV_USE_EVENTFD 0
129# endif 129# endif
130# endif 130# endif
131 131
132#endif 132#endif
133 133
134#include <math.h> 134#include <math.h>
135#include <stdlib.h> 135#include <stdlib.h>
136#include <fcntl.h> 136#include <fcntl.h>
154#ifndef _WIN32 154#ifndef _WIN32
155# include <sys/time.h> 155# include <sys/time.h>
156# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h> 157# include <unistd.h>
158#else 158#else
159# include <io.h>
159# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 161# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
163# endif 164# endif
164#endif 165#endif
165 166
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
167 168
168#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
169# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
170#endif 175#endif
171 176
172#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
174#endif 179#endif
175 180
176#ifndef EV_USE_NANOSLEEP 181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
177# define EV_USE_NANOSLEEP 0 185# define EV_USE_NANOSLEEP 0
186# endif
178#endif 187#endif
179 188
180#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
182#endif 191#endif
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 243# define EV_USE_EVENTFD 1
235# else 244# else
236# define EV_USE_EVENTFD 0 245# define EV_USE_EVENTFD 0
237# endif 246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
238#endif 265#endif
239 266
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 268
242#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
279} 306}
280# endif 307# endif
281#endif 308#endif
282 309
283/**/ 310/**/
311
312#if EV_VERIFY >= 3
313# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
314#else
315# define EV_FREQUENT_CHECK do { } while (0)
316#endif
284 317
285/* 318/*
286 * This is used to avoid floating point rounding problems. 319 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 320 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 321 * to ensure progress, time-wise, even when rounding
430 WL head; 463 WL head;
431} ANFS; 464} ANFS;
432#endif 465#endif
433 466
434/* Heap Entry */ 467/* Heap Entry */
435#define EV_HEAP_CACHE_AT 0
436#if EV_HEAP_CACHE_AT 468#if EV_HEAP_CACHE_AT
437 typedef struct { 469 typedef struct {
470 ev_tstamp at;
438 WT w; 471 WT w;
439 ev_tstamp at;
440 } ANHE; 472 } ANHE;
441 473
442 #define ANHE_w(he) (he).w /* access watcher, read-write */ 474 #define ANHE_w(he) (he).w /* access watcher, read-write */
443 #define ANHE_at(he) (he).at /* access cached at, read-only */ 475 #define ANHE_at(he) (he).at /* access cached at, read-only */
444 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */ 476 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
445#else 477#else
446 typedef WT ANHE; 478 typedef WT ANHE;
447 479
448 #define ANHE_w(he) (he) 480 #define ANHE_w(he) (he)
449 #define ANHE_at(he) (he)->at 481 #define ANHE_at(he) (he)->at
450 #define ANHE_at_set(he) 482 #define ANHE_at_cache(he)
451#endif 483#endif
452 484
453#if EV_MULTIPLICITY 485#if EV_MULTIPLICITY
454 486
455 struct ev_loop 487 struct ev_loop
533 struct timeval tv; 565 struct timeval tv;
534 566
535 tv.tv_sec = (time_t)delay; 567 tv.tv_sec = (time_t)delay;
536 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 568 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
537 569
570 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
571 /* somehting nto guaranteed by newer posix versions, but guaranteed */
572 /* by older ones */
538 select (0, 0, 0, 0, &tv); 573 select (0, 0, 0, 0, &tv);
539#endif 574#endif
540 } 575 }
541} 576}
542 577
676 events |= (unsigned char)w->events; 711 events |= (unsigned char)w->events;
677 712
678#if EV_SELECT_IS_WINSOCKET 713#if EV_SELECT_IS_WINSOCKET
679 if (events) 714 if (events)
680 { 715 {
681 unsigned long argp; 716 unsigned long arg;
682 #ifdef EV_FD_TO_WIN32_HANDLE 717 #ifdef EV_FD_TO_WIN32_HANDLE
683 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 718 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
684 #else 719 #else
685 anfd->handle = _get_osfhandle (fd); 720 anfd->handle = _get_osfhandle (fd);
686 #endif 721 #endif
687 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 722 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
688 } 723 }
689#endif 724#endif
690 725
691 { 726 {
692 unsigned char o_events = anfd->events; 727 unsigned char o_events = anfd->events;
745{ 780{
746 int fd; 781 int fd;
747 782
748 for (fd = 0; fd < anfdmax; ++fd) 783 for (fd = 0; fd < anfdmax; ++fd)
749 if (anfds [fd].events) 784 if (anfds [fd].events)
750 if (!fd_valid (fd) == -1 && errno == EBADF) 785 if (!fd_valid (fd) && errno == EBADF)
751 fd_kill (EV_A_ fd); 786 fd_kill (EV_A_ fd);
752} 787}
753 788
754/* called on ENOMEM in select/poll to kill some fds and retry */ 789/* called on ENOMEM in select/poll to kill some fds and retry */
755static void noinline 790static void noinline
791 * at the moment we allow libev the luxury of two heaps, 826 * at the moment we allow libev the luxury of two heaps,
792 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 827 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
793 * which is more cache-efficient. 828 * which is more cache-efficient.
794 * the difference is about 5% with 50000+ watchers. 829 * the difference is about 5% with 50000+ watchers.
795 */ 830 */
796#define EV_USE_4HEAP !EV_MINIMAL
797#if EV_USE_4HEAP 831#if EV_USE_4HEAP
798 832
799#define DHEAP 4 833#define DHEAP 4
800#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 834#define HEAP0 (DHEAP - 1) /* index of first element in heap */
801 835#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
802/* towards the root */ 836#define UPHEAP_DONE(p,k) ((p) == (k))
803void inline_speed
804upheap (ANHE *heap, int k)
805{
806 ANHE he = heap [k];
807
808 for (;;)
809 {
810 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
811
812 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
813 break;
814
815 heap [k] = heap [p];
816 ev_active (ANHE_w (heap [k])) = k;
817 k = p;
818 }
819
820 ev_active (ANHE_w (he)) = k;
821 heap [k] = he;
822}
823 837
824/* away from the root */ 838/* away from the root */
825void inline_speed 839void inline_speed
826downheap (ANHE *heap, int N, int k) 840downheap (ANHE *heap, int N, int k)
827{ 841{
830 844
831 for (;;) 845 for (;;)
832 { 846 {
833 ev_tstamp minat; 847 ev_tstamp minat;
834 ANHE *minpos; 848 ANHE *minpos;
835 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 849 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
836 850
837 // find minimum child 851 /* find minimum child */
838 if (expect_true (pos + DHEAP - 1 < E)) 852 if (expect_true (pos + DHEAP - 1 < E))
839 { 853 {
840 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 854 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
841 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 855 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
842 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 856 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
843 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 857 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
844 } 858 }
845 else if (pos < E) 859 else if (pos < E)
846 { 860 {
847 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 861 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 862 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
853 break; 867 break;
854 868
855 if (ANHE_at (he) <= minat) 869 if (ANHE_at (he) <= minat)
856 break; 870 break;
857 871
872 heap [k] = *minpos;
858 ev_active (ANHE_w (*minpos)) = k; 873 ev_active (ANHE_w (*minpos)) = k;
859 heap [k] = *minpos;
860 874
861 k = minpos - heap; 875 k = minpos - heap;
862 } 876 }
863 877
878 heap [k] = he;
864 ev_active (ANHE_w (he)) = k; 879 ev_active (ANHE_w (he)) = k;
865 heap [k] = he;
866} 880}
867 881
868#else // 4HEAP 882#else /* 4HEAP */
869 883
870#define HEAP0 1 884#define HEAP0 1
871 885#define HPARENT(k) ((k) >> 1)
872/* towards the root */ 886#define UPHEAP_DONE(p,k) (!(p))
873void inline_speed
874upheap (ANHE *heap, int k)
875{
876 ANHE he = heap [k];
877
878 for (;;)
879 {
880 int p = k >> 1;
881
882 /* maybe we could use a dummy element at heap [0]? */
883 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
884 break;
885
886 heap [k] = heap [p];
887 ev_active (ANHE_w (heap [k])) = k;
888 k = p;
889 }
890
891 heap [k] = w;
892 ev_active (ANHE_w (heap [k])) = k;
893}
894 887
895/* away from the root */ 888/* away from the root */
896void inline_speed 889void inline_speed
897downheap (ANHE *heap, int N, int k) 890downheap (ANHE *heap, int N, int k)
898{ 891{
900 893
901 for (;;) 894 for (;;)
902 { 895 {
903 int c = k << 1; 896 int c = k << 1;
904 897
905 if (c > N) 898 if (c > N + HEAP0 - 1)
906 break; 899 break;
907 900
908 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 901 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
909 ? 1 : 0; 902 ? 1 : 0;
910 903
911 if (w->at <= ANHE_at (heap [c])) 904 if (ANHE_at (he) <= ANHE_at (heap [c]))
912 break; 905 break;
913 906
914 heap [k] = heap [c]; 907 heap [k] = heap [c];
915 ev_active (ANHE_w (heap [k])) = k; 908 ev_active (ANHE_w (heap [k])) = k;
916 909
920 heap [k] = he; 913 heap [k] = he;
921 ev_active (ANHE_w (he)) = k; 914 ev_active (ANHE_w (he)) = k;
922} 915}
923#endif 916#endif
924 917
918/* towards the root */
919void inline_speed
920upheap (ANHE *heap, int k)
921{
922 ANHE he = heap [k];
923
924 for (;;)
925 {
926 int p = HPARENT (k);
927
928 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
929 break;
930
931 heap [k] = heap [p];
932 ev_active (ANHE_w (heap [k])) = k;
933 k = p;
934 }
935
936 heap [k] = he;
937 ev_active (ANHE_w (he)) = k;
938}
939
925void inline_size 940void inline_size
926adjustheap (ANHE *heap, int N, int k) 941adjustheap (ANHE *heap, int N, int k)
927{ 942{
943 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
928 upheap (heap, k); 944 upheap (heap, k);
945 else
929 downheap (heap, N, k); 946 downheap (heap, N, k);
947}
948
949/* rebuild the heap: this function is used only once and executed rarely */
950void inline_size
951reheap (ANHE *heap, int N)
952{
953 int i;
954
955 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
956 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
957 for (i = 0; i < N; ++i)
958 upheap (heap, i + HEAP0);
930} 959}
931 960
932/*****************************************************************************/ 961/*****************************************************************************/
933 962
934typedef struct 963typedef struct
958 987
959void inline_speed 988void inline_speed
960fd_intern (int fd) 989fd_intern (int fd)
961{ 990{
962#ifdef _WIN32 991#ifdef _WIN32
963 int arg = 1; 992 unsigned long arg = 1;
964 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 993 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
965#else 994#else
966 fcntl (fd, F_SETFD, FD_CLOEXEC); 995 fcntl (fd, F_SETFD, FD_CLOEXEC);
967 fcntl (fd, F_SETFL, O_NONBLOCK); 996 fcntl (fd, F_SETFL, O_NONBLOCK);
968#endif 997#endif
1452 1481
1453 postfork = 0; 1482 postfork = 0;
1454} 1483}
1455 1484
1456#if EV_MULTIPLICITY 1485#if EV_MULTIPLICITY
1486
1457struct ev_loop * 1487struct ev_loop *
1458ev_loop_new (unsigned int flags) 1488ev_loop_new (unsigned int flags)
1459{ 1489{
1460 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1490 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1461 1491
1479void 1509void
1480ev_loop_fork (EV_P) 1510ev_loop_fork (EV_P)
1481{ 1511{
1482 postfork = 1; /* must be in line with ev_default_fork */ 1512 postfork = 1; /* must be in line with ev_default_fork */
1483} 1513}
1514
1515#if EV_VERIFY
1516static void noinline
1517verify_watcher (EV_P_ W w)
1518{
1519 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1520
1521 if (w->pending)
1522 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1523}
1524
1525static void noinline
1526verify_heap (EV_P_ ANHE *heap, int N)
1527{
1528 int i;
1529
1530 for (i = HEAP0; i < N + HEAP0; ++i)
1531 {
1532 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1533 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1534 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1535
1536 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1537 }
1538}
1539
1540static void noinline
1541array_verify (EV_P_ W *ws, int cnt)
1542{
1543 while (cnt--)
1544 {
1545 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1546 verify_watcher (EV_A_ ws [cnt]);
1547 }
1548}
1549#endif
1550
1551void
1552ev_loop_verify (EV_P)
1553{
1554#if EV_VERIFY
1555 int i;
1556 WL w;
1557
1558 assert (activecnt >= -1);
1559
1560 assert (fdchangemax >= fdchangecnt);
1561 for (i = 0; i < fdchangecnt; ++i)
1562 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1563
1564 assert (anfdmax >= 0);
1565 for (i = 0; i < anfdmax; ++i)
1566 for (w = anfds [i].head; w; w = w->next)
1567 {
1568 verify_watcher (EV_A_ (W)w);
1569 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1570 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1571 }
1572
1573 assert (timermax >= timercnt);
1574 verify_heap (EV_A_ timers, timercnt);
1575
1576#if EV_PERIODIC_ENABLE
1577 assert (periodicmax >= periodiccnt);
1578 verify_heap (EV_A_ periodics, periodiccnt);
1579#endif
1580
1581 for (i = NUMPRI; i--; )
1582 {
1583 assert (pendingmax [i] >= pendingcnt [i]);
1584#if EV_IDLE_ENABLE
1585 assert (idleall >= 0);
1586 assert (idlemax [i] >= idlecnt [i]);
1587 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1588#endif
1589 }
1590
1591#if EV_FORK_ENABLE
1592 assert (forkmax >= forkcnt);
1593 array_verify (EV_A_ (W *)forks, forkcnt);
1594#endif
1595
1596#if EV_ASYNC_ENABLE
1597 assert (asyncmax >= asynccnt);
1598 array_verify (EV_A_ (W *)asyncs, asynccnt);
1599#endif
1600
1601 assert (preparemax >= preparecnt);
1602 array_verify (EV_A_ (W *)prepares, preparecnt);
1603
1604 assert (checkmax >= checkcnt);
1605 array_verify (EV_A_ (W *)checks, checkcnt);
1606
1607# if 0
1608 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1609 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1484#endif 1610# endif
1611#endif
1612}
1613
1614#endif /* multiplicity */
1485 1615
1486#if EV_MULTIPLICITY 1616#if EV_MULTIPLICITY
1487struct ev_loop * 1617struct ev_loop *
1488ev_default_loop_init (unsigned int flags) 1618ev_default_loop_init (unsigned int flags)
1489#else 1619#else
1565 { 1695 {
1566 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1696 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1567 1697
1568 p->w->pending = 0; 1698 p->w->pending = 0;
1569 EV_CB_INVOKE (p->w, p->events); 1699 EV_CB_INVOKE (p->w, p->events);
1700 EV_FREQUENT_CHECK;
1570 } 1701 }
1571 } 1702 }
1572} 1703}
1573 1704
1574#if EV_IDLE_ENABLE 1705#if EV_IDLE_ENABLE
1595#endif 1726#endif
1596 1727
1597void inline_size 1728void inline_size
1598timers_reify (EV_P) 1729timers_reify (EV_P)
1599{ 1730{
1731 EV_FREQUENT_CHECK;
1732
1600 while (timercnt && ANHE_at (timers [HEAP0]) <= mn_now) 1733 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1601 { 1734 {
1602 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 1735 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1603 1736
1604 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1737 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1605 1738
1606 /* first reschedule or stop timer */ 1739 /* first reschedule or stop timer */
1607 if (w->repeat) 1740 if (w->repeat)
1608 { 1741 {
1609 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1610
1611 ev_at (w) += w->repeat; 1742 ev_at (w) += w->repeat;
1612 if (ev_at (w) < mn_now) 1743 if (ev_at (w) < mn_now)
1613 ev_at (w) = mn_now; 1744 ev_at (w) = mn_now;
1614 1745
1746 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1747
1615 ANHE_at_set (timers [HEAP0]); 1748 ANHE_at_cache (timers [HEAP0]);
1616 downheap (timers, timercnt, HEAP0); 1749 downheap (timers, timercnt, HEAP0);
1617 } 1750 }
1618 else 1751 else
1619 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1752 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1620 1753
1754 EV_FREQUENT_CHECK;
1621 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1755 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1622 } 1756 }
1623} 1757}
1624 1758
1625#if EV_PERIODIC_ENABLE 1759#if EV_PERIODIC_ENABLE
1626void inline_size 1760void inline_size
1627periodics_reify (EV_P) 1761periodics_reify (EV_P)
1628{ 1762{
1763 EV_FREQUENT_CHECK;
1764
1629 while (periodiccnt && ANHE_at (periodics [HEAP0]) <= ev_rt_now) 1765 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1630 { 1766 {
1631 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 1767 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1632 1768
1633 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1769 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1634 1770
1635 /* first reschedule or stop timer */ 1771 /* first reschedule or stop timer */
1636 if (w->reschedule_cb) 1772 if (w->reschedule_cb)
1637 { 1773 {
1638 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 1774 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1775
1639 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 1776 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1777
1640 ANHE_at_set (periodics [HEAP0]); 1778 ANHE_at_cache (periodics [HEAP0]);
1641 downheap (periodics, periodiccnt, HEAP0); 1779 downheap (periodics, periodiccnt, HEAP0);
1642 } 1780 }
1643 else if (w->interval) 1781 else if (w->interval)
1644 { 1782 {
1645 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1783 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1784 /* if next trigger time is not sufficiently in the future, put it there */
1785 /* this might happen because of floating point inexactness */
1646 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval; 1786 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1647 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now)); 1787 {
1788 ev_at (w) += w->interval;
1789
1790 /* if interval is unreasonably low we might still have a time in the past */
1791 /* so correct this. this will make the periodic very inexact, but the user */
1792 /* has effectively asked to get triggered more often than possible */
1793 if (ev_at (w) < ev_rt_now)
1794 ev_at (w) = ev_rt_now;
1795 }
1796
1648 ANHE_at_set (periodics [HEAP0]); 1797 ANHE_at_cache (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0); 1798 downheap (periodics, periodiccnt, HEAP0);
1650 } 1799 }
1651 else 1800 else
1652 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1801 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1653 1802
1803 EV_FREQUENT_CHECK;
1654 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1804 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1655 } 1805 }
1656} 1806}
1657 1807
1658static void noinline 1808static void noinline
1668 if (w->reschedule_cb) 1818 if (w->reschedule_cb)
1669 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1819 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1670 else if (w->interval) 1820 else if (w->interval)
1671 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1821 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1672 1822
1673 ANHE_at_set (periodics [i]); 1823 ANHE_at_cache (periodics [i]);
1674 } 1824 }
1675 1825
1676 /* now rebuild the heap, this for the 2-heap, inefficient for the 4-heap, but correct */
1677 for (i = periodiccnt >> 1; --i; )
1678 downheap (periodics, periodiccnt, i + HEAP0); 1826 reheap (periodics, periodiccnt);
1679} 1827}
1680#endif 1828#endif
1681 1829
1682void inline_speed 1830void inline_speed
1683time_update (EV_P_ ev_tstamp max_block) 1831time_update (EV_P_ ev_tstamp max_block)
1741 /* adjust timers. this is easy, as the offset is the same for all of them */ 1889 /* adjust timers. this is easy, as the offset is the same for all of them */
1742 for (i = 0; i < timercnt; ++i) 1890 for (i = 0; i < timercnt; ++i)
1743 { 1891 {
1744 ANHE *he = timers + i + HEAP0; 1892 ANHE *he = timers + i + HEAP0;
1745 ANHE_w (*he)->at += ev_rt_now - mn_now; 1893 ANHE_w (*he)->at += ev_rt_now - mn_now;
1746 ANHE_at_set (*he); 1894 ANHE_at_cache (*he);
1747 } 1895 }
1748 } 1896 }
1749 1897
1750 mn_now = ev_rt_now; 1898 mn_now = ev_rt_now;
1751 } 1899 }
1761ev_unref (EV_P) 1909ev_unref (EV_P)
1762{ 1910{
1763 --activecnt; 1911 --activecnt;
1764} 1912}
1765 1913
1914void
1915ev_now_update (EV_P)
1916{
1917 time_update (EV_A_ 1e100);
1918}
1919
1766static int loop_done; 1920static int loop_done;
1767 1921
1768void 1922void
1769ev_loop (EV_P_ int flags) 1923ev_loop (EV_P_ int flags)
1770{ 1924{
1772 1926
1773 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1927 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1774 1928
1775 do 1929 do
1776 { 1930 {
1931#if EV_VERIFY >= 2
1932 ev_loop_verify (EV_A);
1933#endif
1934
1777#ifndef _WIN32 1935#ifndef _WIN32
1778 if (expect_false (curpid)) /* penalise the forking check even more */ 1936 if (expect_false (curpid)) /* penalise the forking check even more */
1779 if (expect_false (getpid () != curpid)) 1937 if (expect_false (getpid () != curpid))
1780 { 1938 {
1781 curpid = getpid (); 1939 curpid = getpid ();
1976 if (expect_false (ev_is_active (w))) 2134 if (expect_false (ev_is_active (w)))
1977 return; 2135 return;
1978 2136
1979 assert (("ev_io_start called with negative fd", fd >= 0)); 2137 assert (("ev_io_start called with negative fd", fd >= 0));
1980 2138
2139 EV_FREQUENT_CHECK;
2140
1981 ev_start (EV_A_ (W)w, 1); 2141 ev_start (EV_A_ (W)w, 1);
1982 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2142 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1983 wlist_add (&anfds[fd].head, (WL)w); 2143 wlist_add (&anfds[fd].head, (WL)w);
1984 2144
1985 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2145 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1986 w->events &= ~EV_IOFDSET; 2146 w->events &= ~EV_IOFDSET;
2147
2148 EV_FREQUENT_CHECK;
1987} 2149}
1988 2150
1989void noinline 2151void noinline
1990ev_io_stop (EV_P_ ev_io *w) 2152ev_io_stop (EV_P_ ev_io *w)
1991{ 2153{
1993 if (expect_false (!ev_is_active (w))) 2155 if (expect_false (!ev_is_active (w)))
1994 return; 2156 return;
1995 2157
1996 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2158 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1997 2159
2160 EV_FREQUENT_CHECK;
2161
1998 wlist_del (&anfds[w->fd].head, (WL)w); 2162 wlist_del (&anfds[w->fd].head, (WL)w);
1999 ev_stop (EV_A_ (W)w); 2163 ev_stop (EV_A_ (W)w);
2000 2164
2001 fd_change (EV_A_ w->fd, 1); 2165 fd_change (EV_A_ w->fd, 1);
2166
2167 EV_FREQUENT_CHECK;
2002} 2168}
2003 2169
2004void noinline 2170void noinline
2005ev_timer_start (EV_P_ ev_timer *w) 2171ev_timer_start (EV_P_ ev_timer *w)
2006{ 2172{
2009 2175
2010 ev_at (w) += mn_now; 2176 ev_at (w) += mn_now;
2011 2177
2012 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2178 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2013 2179
2180 EV_FREQUENT_CHECK;
2181
2182 ++timercnt;
2014 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2183 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2015 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 2184 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2016 ANHE_w (timers [ev_active (w)]) = (WT)w; 2185 ANHE_w (timers [ev_active (w)]) = (WT)w;
2017 ANHE_at_set (timers [ev_active (w)]); 2186 ANHE_at_cache (timers [ev_active (w)]);
2018 upheap (timers, ev_active (w)); 2187 upheap (timers, ev_active (w));
2188
2189 EV_FREQUENT_CHECK;
2019 2190
2020 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2191 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2021} 2192}
2022 2193
2023void noinline 2194void noinline
2025{ 2196{
2026 clear_pending (EV_A_ (W)w); 2197 clear_pending (EV_A_ (W)w);
2027 if (expect_false (!ev_is_active (w))) 2198 if (expect_false (!ev_is_active (w)))
2028 return; 2199 return;
2029 2200
2201 EV_FREQUENT_CHECK;
2202
2030 { 2203 {
2031 int active = ev_active (w); 2204 int active = ev_active (w);
2032 2205
2033 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2206 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2034 2207
2208 --timercnt;
2209
2035 if (expect_true (active < timercnt + HEAP0 - 1)) 2210 if (expect_true (active < timercnt + HEAP0))
2036 { 2211 {
2037 timers [active] = timers [timercnt + HEAP0 - 1]; 2212 timers [active] = timers [timercnt + HEAP0];
2038 adjustheap (timers, timercnt, active); 2213 adjustheap (timers, timercnt, active);
2039 } 2214 }
2040
2041 --timercnt;
2042 } 2215 }
2216
2217 EV_FREQUENT_CHECK;
2043 2218
2044 ev_at (w) -= mn_now; 2219 ev_at (w) -= mn_now;
2045 2220
2046 ev_stop (EV_A_ (W)w); 2221 ev_stop (EV_A_ (W)w);
2047} 2222}
2048 2223
2049void noinline 2224void noinline
2050ev_timer_again (EV_P_ ev_timer *w) 2225ev_timer_again (EV_P_ ev_timer *w)
2051{ 2226{
2227 EV_FREQUENT_CHECK;
2228
2052 if (ev_is_active (w)) 2229 if (ev_is_active (w))
2053 { 2230 {
2054 if (w->repeat) 2231 if (w->repeat)
2055 { 2232 {
2056 ev_at (w) = mn_now + w->repeat; 2233 ev_at (w) = mn_now + w->repeat;
2057 ANHE_at_set (timers [ev_active (w)]); 2234 ANHE_at_cache (timers [ev_active (w)]);
2058 adjustheap (timers, timercnt, ev_active (w)); 2235 adjustheap (timers, timercnt, ev_active (w));
2059 } 2236 }
2060 else 2237 else
2061 ev_timer_stop (EV_A_ w); 2238 ev_timer_stop (EV_A_ w);
2062 } 2239 }
2063 else if (w->repeat) 2240 else if (w->repeat)
2064 { 2241 {
2065 ev_at (w) = w->repeat; 2242 ev_at (w) = w->repeat;
2066 ev_timer_start (EV_A_ w); 2243 ev_timer_start (EV_A_ w);
2067 } 2244 }
2245
2246 EV_FREQUENT_CHECK;
2068} 2247}
2069 2248
2070#if EV_PERIODIC_ENABLE 2249#if EV_PERIODIC_ENABLE
2071void noinline 2250void noinline
2072ev_periodic_start (EV_P_ ev_periodic *w) 2251ev_periodic_start (EV_P_ ev_periodic *w)
2083 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2262 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2084 } 2263 }
2085 else 2264 else
2086 ev_at (w) = w->offset; 2265 ev_at (w) = w->offset;
2087 2266
2267 EV_FREQUENT_CHECK;
2268
2269 ++periodiccnt;
2088 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2270 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2089 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 2271 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2090 ANHE_w (periodics [ev_active (w)]) = (WT)w; 2272 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2273 ANHE_at_cache (periodics [ev_active (w)]);
2091 upheap (periodics, ev_active (w)); 2274 upheap (periodics, ev_active (w));
2275
2276 EV_FREQUENT_CHECK;
2092 2277
2093 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2278 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2094} 2279}
2095 2280
2096void noinline 2281void noinline
2098{ 2283{
2099 clear_pending (EV_A_ (W)w); 2284 clear_pending (EV_A_ (W)w);
2100 if (expect_false (!ev_is_active (w))) 2285 if (expect_false (!ev_is_active (w)))
2101 return; 2286 return;
2102 2287
2288 EV_FREQUENT_CHECK;
2289
2103 { 2290 {
2104 int active = ev_active (w); 2291 int active = ev_active (w);
2105 2292
2106 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2293 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2107 2294
2295 --periodiccnt;
2296
2108 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2297 if (expect_true (active < periodiccnt + HEAP0))
2109 { 2298 {
2110 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2299 periodics [active] = periodics [periodiccnt + HEAP0];
2111 adjustheap (periodics, periodiccnt, active); 2300 adjustheap (periodics, periodiccnt, active);
2112 } 2301 }
2113
2114 --periodiccnt;
2115 } 2302 }
2303
2304 EV_FREQUENT_CHECK;
2116 2305
2117 ev_stop (EV_A_ (W)w); 2306 ev_stop (EV_A_ (W)w);
2118} 2307}
2119 2308
2120void noinline 2309void noinline
2140 return; 2329 return;
2141 2330
2142 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2331 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2143 2332
2144 evpipe_init (EV_A); 2333 evpipe_init (EV_A);
2334
2335 EV_FREQUENT_CHECK;
2145 2336
2146 { 2337 {
2147#ifndef _WIN32 2338#ifndef _WIN32
2148 sigset_t full, prev; 2339 sigset_t full, prev;
2149 sigfillset (&full); 2340 sigfillset (&full);
2170 sigfillset (&sa.sa_mask); 2361 sigfillset (&sa.sa_mask);
2171 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2362 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2172 sigaction (w->signum, &sa, 0); 2363 sigaction (w->signum, &sa, 0);
2173#endif 2364#endif
2174 } 2365 }
2366
2367 EV_FREQUENT_CHECK;
2175} 2368}
2176 2369
2177void noinline 2370void noinline
2178ev_signal_stop (EV_P_ ev_signal *w) 2371ev_signal_stop (EV_P_ ev_signal *w)
2179{ 2372{
2180 clear_pending (EV_A_ (W)w); 2373 clear_pending (EV_A_ (W)w);
2181 if (expect_false (!ev_is_active (w))) 2374 if (expect_false (!ev_is_active (w)))
2182 return; 2375 return;
2183 2376
2377 EV_FREQUENT_CHECK;
2378
2184 wlist_del (&signals [w->signum - 1].head, (WL)w); 2379 wlist_del (&signals [w->signum - 1].head, (WL)w);
2185 ev_stop (EV_A_ (W)w); 2380 ev_stop (EV_A_ (W)w);
2186 2381
2187 if (!signals [w->signum - 1].head) 2382 if (!signals [w->signum - 1].head)
2188 signal (w->signum, SIG_DFL); 2383 signal (w->signum, SIG_DFL);
2384
2385 EV_FREQUENT_CHECK;
2189} 2386}
2190 2387
2191void 2388void
2192ev_child_start (EV_P_ ev_child *w) 2389ev_child_start (EV_P_ ev_child *w)
2193{ 2390{
2195 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2392 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2196#endif 2393#endif
2197 if (expect_false (ev_is_active (w))) 2394 if (expect_false (ev_is_active (w)))
2198 return; 2395 return;
2199 2396
2397 EV_FREQUENT_CHECK;
2398
2200 ev_start (EV_A_ (W)w, 1); 2399 ev_start (EV_A_ (W)w, 1);
2201 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2400 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2401
2402 EV_FREQUENT_CHECK;
2202} 2403}
2203 2404
2204void 2405void
2205ev_child_stop (EV_P_ ev_child *w) 2406ev_child_stop (EV_P_ ev_child *w)
2206{ 2407{
2207 clear_pending (EV_A_ (W)w); 2408 clear_pending (EV_A_ (W)w);
2208 if (expect_false (!ev_is_active (w))) 2409 if (expect_false (!ev_is_active (w)))
2209 return; 2410 return;
2210 2411
2412 EV_FREQUENT_CHECK;
2413
2211 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2414 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2212 ev_stop (EV_A_ (W)w); 2415 ev_stop (EV_A_ (W)w);
2416
2417 EV_FREQUENT_CHECK;
2213} 2418}
2214 2419
2215#if EV_STAT_ENABLE 2420#if EV_STAT_ENABLE
2216 2421
2217# ifdef _WIN32 2422# ifdef _WIN32
2372 } 2577 }
2373 2578
2374 } 2579 }
2375} 2580}
2376 2581
2582#endif
2583
2584#ifdef _WIN32
2585# define EV_LSTAT(p,b) _stati64 (p, b)
2586#else
2587# define EV_LSTAT(p,b) lstat (p, b)
2377#endif 2588#endif
2378 2589
2379void 2590void
2380ev_stat_stat (EV_P_ ev_stat *w) 2591ev_stat_stat (EV_P_ ev_stat *w)
2381{ 2592{
2445 else 2656 else
2446#endif 2657#endif
2447 ev_timer_start (EV_A_ &w->timer); 2658 ev_timer_start (EV_A_ &w->timer);
2448 2659
2449 ev_start (EV_A_ (W)w, 1); 2660 ev_start (EV_A_ (W)w, 1);
2661
2662 EV_FREQUENT_CHECK;
2450} 2663}
2451 2664
2452void 2665void
2453ev_stat_stop (EV_P_ ev_stat *w) 2666ev_stat_stop (EV_P_ ev_stat *w)
2454{ 2667{
2455 clear_pending (EV_A_ (W)w); 2668 clear_pending (EV_A_ (W)w);
2456 if (expect_false (!ev_is_active (w))) 2669 if (expect_false (!ev_is_active (w)))
2457 return; 2670 return;
2458 2671
2672 EV_FREQUENT_CHECK;
2673
2459#if EV_USE_INOTIFY 2674#if EV_USE_INOTIFY
2460 infy_del (EV_A_ w); 2675 infy_del (EV_A_ w);
2461#endif 2676#endif
2462 ev_timer_stop (EV_A_ &w->timer); 2677 ev_timer_stop (EV_A_ &w->timer);
2463 2678
2464 ev_stop (EV_A_ (W)w); 2679 ev_stop (EV_A_ (W)w);
2680
2681 EV_FREQUENT_CHECK;
2465} 2682}
2466#endif 2683#endif
2467 2684
2468#if EV_IDLE_ENABLE 2685#if EV_IDLE_ENABLE
2469void 2686void
2471{ 2688{
2472 if (expect_false (ev_is_active (w))) 2689 if (expect_false (ev_is_active (w)))
2473 return; 2690 return;
2474 2691
2475 pri_adjust (EV_A_ (W)w); 2692 pri_adjust (EV_A_ (W)w);
2693
2694 EV_FREQUENT_CHECK;
2476 2695
2477 { 2696 {
2478 int active = ++idlecnt [ABSPRI (w)]; 2697 int active = ++idlecnt [ABSPRI (w)];
2479 2698
2480 ++idleall; 2699 ++idleall;
2481 ev_start (EV_A_ (W)w, active); 2700 ev_start (EV_A_ (W)w, active);
2482 2701
2483 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2702 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2484 idles [ABSPRI (w)][active - 1] = w; 2703 idles [ABSPRI (w)][active - 1] = w;
2485 } 2704 }
2705
2706 EV_FREQUENT_CHECK;
2486} 2707}
2487 2708
2488void 2709void
2489ev_idle_stop (EV_P_ ev_idle *w) 2710ev_idle_stop (EV_P_ ev_idle *w)
2490{ 2711{
2491 clear_pending (EV_A_ (W)w); 2712 clear_pending (EV_A_ (W)w);
2492 if (expect_false (!ev_is_active (w))) 2713 if (expect_false (!ev_is_active (w)))
2493 return; 2714 return;
2494 2715
2716 EV_FREQUENT_CHECK;
2717
2495 { 2718 {
2496 int active = ev_active (w); 2719 int active = ev_active (w);
2497 2720
2498 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2721 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2499 ev_active (idles [ABSPRI (w)][active - 1]) = active; 2722 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2500 2723
2501 ev_stop (EV_A_ (W)w); 2724 ev_stop (EV_A_ (W)w);
2502 --idleall; 2725 --idleall;
2503 } 2726 }
2727
2728 EV_FREQUENT_CHECK;
2504} 2729}
2505#endif 2730#endif
2506 2731
2507void 2732void
2508ev_prepare_start (EV_P_ ev_prepare *w) 2733ev_prepare_start (EV_P_ ev_prepare *w)
2509{ 2734{
2510 if (expect_false (ev_is_active (w))) 2735 if (expect_false (ev_is_active (w)))
2511 return; 2736 return;
2737
2738 EV_FREQUENT_CHECK;
2512 2739
2513 ev_start (EV_A_ (W)w, ++preparecnt); 2740 ev_start (EV_A_ (W)w, ++preparecnt);
2514 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2741 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2515 prepares [preparecnt - 1] = w; 2742 prepares [preparecnt - 1] = w;
2743
2744 EV_FREQUENT_CHECK;
2516} 2745}
2517 2746
2518void 2747void
2519ev_prepare_stop (EV_P_ ev_prepare *w) 2748ev_prepare_stop (EV_P_ ev_prepare *w)
2520{ 2749{
2521 clear_pending (EV_A_ (W)w); 2750 clear_pending (EV_A_ (W)w);
2522 if (expect_false (!ev_is_active (w))) 2751 if (expect_false (!ev_is_active (w)))
2523 return; 2752 return;
2524 2753
2754 EV_FREQUENT_CHECK;
2755
2525 { 2756 {
2526 int active = ev_active (w); 2757 int active = ev_active (w);
2527 2758
2528 prepares [active - 1] = prepares [--preparecnt]; 2759 prepares [active - 1] = prepares [--preparecnt];
2529 ev_active (prepares [active - 1]) = active; 2760 ev_active (prepares [active - 1]) = active;
2530 } 2761 }
2531 2762
2532 ev_stop (EV_A_ (W)w); 2763 ev_stop (EV_A_ (W)w);
2764
2765 EV_FREQUENT_CHECK;
2533} 2766}
2534 2767
2535void 2768void
2536ev_check_start (EV_P_ ev_check *w) 2769ev_check_start (EV_P_ ev_check *w)
2537{ 2770{
2538 if (expect_false (ev_is_active (w))) 2771 if (expect_false (ev_is_active (w)))
2539 return; 2772 return;
2773
2774 EV_FREQUENT_CHECK;
2540 2775
2541 ev_start (EV_A_ (W)w, ++checkcnt); 2776 ev_start (EV_A_ (W)w, ++checkcnt);
2542 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2777 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2543 checks [checkcnt - 1] = w; 2778 checks [checkcnt - 1] = w;
2779
2780 EV_FREQUENT_CHECK;
2544} 2781}
2545 2782
2546void 2783void
2547ev_check_stop (EV_P_ ev_check *w) 2784ev_check_stop (EV_P_ ev_check *w)
2548{ 2785{
2549 clear_pending (EV_A_ (W)w); 2786 clear_pending (EV_A_ (W)w);
2550 if (expect_false (!ev_is_active (w))) 2787 if (expect_false (!ev_is_active (w)))
2551 return; 2788 return;
2552 2789
2790 EV_FREQUENT_CHECK;
2791
2553 { 2792 {
2554 int active = ev_active (w); 2793 int active = ev_active (w);
2555 2794
2556 checks [active - 1] = checks [--checkcnt]; 2795 checks [active - 1] = checks [--checkcnt];
2557 ev_active (checks [active - 1]) = active; 2796 ev_active (checks [active - 1]) = active;
2558 } 2797 }
2559 2798
2560 ev_stop (EV_A_ (W)w); 2799 ev_stop (EV_A_ (W)w);
2800
2801 EV_FREQUENT_CHECK;
2561} 2802}
2562 2803
2563#if EV_EMBED_ENABLE 2804#if EV_EMBED_ENABLE
2564void noinline 2805void noinline
2565ev_embed_sweep (EV_P_ ev_embed *w) 2806ev_embed_sweep (EV_P_ ev_embed *w)
2592 ev_loop (EV_A_ EVLOOP_NONBLOCK); 2833 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2593 } 2834 }
2594 } 2835 }
2595} 2836}
2596 2837
2838static void
2839embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2840{
2841 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2842
2843 {
2844 struct ev_loop *loop = w->other;
2845
2846 ev_loop_fork (EV_A);
2847 }
2848}
2849
2597#if 0 2850#if 0
2598static void 2851static void
2599embed_idle_cb (EV_P_ ev_idle *idle, int revents) 2852embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2600{ 2853{
2601 ev_idle_stop (EV_A_ idle); 2854 ev_idle_stop (EV_A_ idle);
2612 struct ev_loop *loop = w->other; 2865 struct ev_loop *loop = w->other;
2613 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2866 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2614 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2867 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2615 } 2868 }
2616 2869
2870 EV_FREQUENT_CHECK;
2871
2617 ev_set_priority (&w->io, ev_priority (w)); 2872 ev_set_priority (&w->io, ev_priority (w));
2618 ev_io_start (EV_A_ &w->io); 2873 ev_io_start (EV_A_ &w->io);
2619 2874
2620 ev_prepare_init (&w->prepare, embed_prepare_cb); 2875 ev_prepare_init (&w->prepare, embed_prepare_cb);
2621 ev_set_priority (&w->prepare, EV_MINPRI); 2876 ev_set_priority (&w->prepare, EV_MINPRI);
2622 ev_prepare_start (EV_A_ &w->prepare); 2877 ev_prepare_start (EV_A_ &w->prepare);
2623 2878
2879 ev_fork_init (&w->fork, embed_fork_cb);
2880 ev_fork_start (EV_A_ &w->fork);
2881
2624 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2882 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2625 2883
2626 ev_start (EV_A_ (W)w, 1); 2884 ev_start (EV_A_ (W)w, 1);
2885
2886 EV_FREQUENT_CHECK;
2627} 2887}
2628 2888
2629void 2889void
2630ev_embed_stop (EV_P_ ev_embed *w) 2890ev_embed_stop (EV_P_ ev_embed *w)
2631{ 2891{
2632 clear_pending (EV_A_ (W)w); 2892 clear_pending (EV_A_ (W)w);
2633 if (expect_false (!ev_is_active (w))) 2893 if (expect_false (!ev_is_active (w)))
2634 return; 2894 return;
2635 2895
2896 EV_FREQUENT_CHECK;
2897
2636 ev_io_stop (EV_A_ &w->io); 2898 ev_io_stop (EV_A_ &w->io);
2637 ev_prepare_stop (EV_A_ &w->prepare); 2899 ev_prepare_stop (EV_A_ &w->prepare);
2900 ev_fork_stop (EV_A_ &w->fork);
2638 2901
2639 ev_stop (EV_A_ (W)w); 2902 EV_FREQUENT_CHECK;
2640} 2903}
2641#endif 2904#endif
2642 2905
2643#if EV_FORK_ENABLE 2906#if EV_FORK_ENABLE
2644void 2907void
2645ev_fork_start (EV_P_ ev_fork *w) 2908ev_fork_start (EV_P_ ev_fork *w)
2646{ 2909{
2647 if (expect_false (ev_is_active (w))) 2910 if (expect_false (ev_is_active (w)))
2648 return; 2911 return;
2912
2913 EV_FREQUENT_CHECK;
2649 2914
2650 ev_start (EV_A_ (W)w, ++forkcnt); 2915 ev_start (EV_A_ (W)w, ++forkcnt);
2651 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2916 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2652 forks [forkcnt - 1] = w; 2917 forks [forkcnt - 1] = w;
2918
2919 EV_FREQUENT_CHECK;
2653} 2920}
2654 2921
2655void 2922void
2656ev_fork_stop (EV_P_ ev_fork *w) 2923ev_fork_stop (EV_P_ ev_fork *w)
2657{ 2924{
2658 clear_pending (EV_A_ (W)w); 2925 clear_pending (EV_A_ (W)w);
2659 if (expect_false (!ev_is_active (w))) 2926 if (expect_false (!ev_is_active (w)))
2660 return; 2927 return;
2661 2928
2929 EV_FREQUENT_CHECK;
2930
2662 { 2931 {
2663 int active = ev_active (w); 2932 int active = ev_active (w);
2664 2933
2665 forks [active - 1] = forks [--forkcnt]; 2934 forks [active - 1] = forks [--forkcnt];
2666 ev_active (forks [active - 1]) = active; 2935 ev_active (forks [active - 1]) = active;
2667 } 2936 }
2668 2937
2669 ev_stop (EV_A_ (W)w); 2938 ev_stop (EV_A_ (W)w);
2939
2940 EV_FREQUENT_CHECK;
2670} 2941}
2671#endif 2942#endif
2672 2943
2673#if EV_ASYNC_ENABLE 2944#if EV_ASYNC_ENABLE
2674void 2945void
2676{ 2947{
2677 if (expect_false (ev_is_active (w))) 2948 if (expect_false (ev_is_active (w)))
2678 return; 2949 return;
2679 2950
2680 evpipe_init (EV_A); 2951 evpipe_init (EV_A);
2952
2953 EV_FREQUENT_CHECK;
2681 2954
2682 ev_start (EV_A_ (W)w, ++asynccnt); 2955 ev_start (EV_A_ (W)w, ++asynccnt);
2683 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2956 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2684 asyncs [asynccnt - 1] = w; 2957 asyncs [asynccnt - 1] = w;
2958
2959 EV_FREQUENT_CHECK;
2685} 2960}
2686 2961
2687void 2962void
2688ev_async_stop (EV_P_ ev_async *w) 2963ev_async_stop (EV_P_ ev_async *w)
2689{ 2964{
2690 clear_pending (EV_A_ (W)w); 2965 clear_pending (EV_A_ (W)w);
2691 if (expect_false (!ev_is_active (w))) 2966 if (expect_false (!ev_is_active (w)))
2692 return; 2967 return;
2693 2968
2969 EV_FREQUENT_CHECK;
2970
2694 { 2971 {
2695 int active = ev_active (w); 2972 int active = ev_active (w);
2696 2973
2697 asyncs [active - 1] = asyncs [--asynccnt]; 2974 asyncs [active - 1] = asyncs [--asynccnt];
2698 ev_active (asyncs [active - 1]) = active; 2975 ev_active (asyncs [active - 1]) = active;
2699 } 2976 }
2700 2977
2701 ev_stop (EV_A_ (W)w); 2978 ev_stop (EV_A_ (W)w);
2979
2980 EV_FREQUENT_CHECK;
2702} 2981}
2703 2982
2704void 2983void
2705ev_async_send (EV_P_ ev_async *w) 2984ev_async_send (EV_P_ ev_async *w)
2706{ 2985{
2723once_cb (EV_P_ struct ev_once *once, int revents) 3002once_cb (EV_P_ struct ev_once *once, int revents)
2724{ 3003{
2725 void (*cb)(int revents, void *arg) = once->cb; 3004 void (*cb)(int revents, void *arg) = once->cb;
2726 void *arg = once->arg; 3005 void *arg = once->arg;
2727 3006
2728 ev_io_stop (EV_A_ &once->io); 3007 ev_io_stop (EV_A_ &once->io);
2729 ev_timer_stop (EV_A_ &once->to); 3008 ev_timer_stop (EV_A_ &once->to);
2730 ev_free (once); 3009 ev_free (once);
2731 3010
2732 cb (revents, arg); 3011 cb (revents, arg);
2733} 3012}
2734 3013
2735static void 3014static void
2736once_cb_io (EV_P_ ev_io *w, int revents) 3015once_cb_io (EV_P_ ev_io *w, int revents)
2737{ 3016{
2738 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3017 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3018
3019 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2739} 3020}
2740 3021
2741static void 3022static void
2742once_cb_to (EV_P_ ev_timer *w, int revents) 3023once_cb_to (EV_P_ ev_timer *w, int revents)
2743{ 3024{
2744 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3025 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3026
3027 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2745} 3028}
2746 3029
2747void 3030void
2748ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3031ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2749{ 3032{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines