ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.127 by root, Sun Nov 18 02:17:57 2007 UTC vs.
Revision 1.263 by root, Wed Oct 1 18:50:03 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
38 51
39# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 53# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
42# endif 55# endif
47# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
49# endif 62# endif
50# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
52# endif 73# endif
53# endif 74# endif
54 75
55# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
56# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
90# else 111# else
91# define EV_USE_PORT 0 112# define EV_USE_PORT 0
92# endif 113# endif
93# endif 114# endif
94 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
95#endif 132#endif
96 133
97#include <math.h> 134#include <math.h>
98#include <stdlib.h> 135#include <stdlib.h>
99#include <fcntl.h> 136#include <fcntl.h>
106#include <sys/types.h> 143#include <sys/types.h>
107#include <time.h> 144#include <time.h>
108 145
109#include <signal.h> 146#include <signal.h>
110 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
111#ifndef _WIN32 154#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 155# include <sys/time.h>
114# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
115#else 158#else
159# include <io.h>
116# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 161# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
120# endif 164# endif
121#endif 165#endif
122 166
123/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
124 168
125#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
126# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
127#endif 175#endif
128 176
129#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
179#endif
180
181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
185# define EV_USE_NANOSLEEP 0
186# endif
131#endif 187#endif
132 188
133#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
134# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
135#endif 191#endif
141# define EV_USE_POLL 1 197# define EV_USE_POLL 1
142# endif 198# endif
143#endif 199#endif
144 200
145#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
146# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
147#endif 207#endif
148 208
149#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
150# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
151#endif 211#endif
152 212
153#ifndef EV_USE_PORT 213#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 214# define EV_USE_PORT 0
155#endif 215#endif
156 216
157/**/ 217#ifndef EV_USE_INOTIFY
158 218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
159/* darwin simply cannot be helped */ 219# define EV_USE_INOTIFY 1
160#ifdef __APPLE__ 220# else
161# undef EV_USE_POLL 221# define EV_USE_INOTIFY 0
162# undef EV_USE_KQUEUE
163#endif 222# endif
223#endif
224
225#ifndef EV_PID_HASHSIZE
226# if EV_MINIMAL
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
230# endif
231#endif
232
233#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif
240
241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
164 268
165#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
166# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
167# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
168#endif 272#endif
170#ifndef CLOCK_REALTIME 274#ifndef CLOCK_REALTIME
171# undef EV_USE_REALTIME 275# undef EV_USE_REALTIME
172# define EV_USE_REALTIME 0 276# define EV_USE_REALTIME 0
173#endif 277#endif
174 278
279#if !EV_STAT_ENABLE
280# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0
282#endif
283
284#if !EV_USE_NANOSLEEP
285# ifndef _WIN32
286# include <sys/select.h>
287# endif
288#endif
289
290#if EV_USE_INOTIFY
291# include <sys/inotify.h>
292/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
293# ifndef IN_DONT_FOLLOW
294# undef EV_USE_INOTIFY
295# define EV_USE_INOTIFY 0
296# endif
297#endif
298
175#if EV_SELECT_IS_WINSOCKET 299#if EV_SELECT_IS_WINSOCKET
176# include <winsock.h> 300# include <winsock.h>
177#endif 301#endif
178 302
303#if EV_USE_EVENTFD
304/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
305# include <stdint.h>
306# ifdef __cplusplus
307extern "C" {
308# endif
309int eventfd (unsigned int initval, int flags);
310# ifdef __cplusplus
311}
312# endif
313#endif
314
179/**/ 315/**/
316
317#if EV_VERIFY >= 3
318# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
319#else
320# define EV_FREQUENT_CHECK do { } while (0)
321#endif
322
323/*
324 * This is used to avoid floating point rounding problems.
325 * It is added to ev_rt_now when scheduling periodics
326 * to ensure progress, time-wise, even when rounding
327 * errors are against us.
328 * This value is good at least till the year 4000.
329 * Better solutions welcome.
330 */
331#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
180 332
181#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 333#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
182#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 334#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
183#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
184/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 335/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
185 336
186#ifdef EV_H
187# include EV_H
188#else
189# include "ev.h"
190#endif
191
192#if __GNUC__ >= 3 337#if __GNUC__ >= 4
193# define expect(expr,value) __builtin_expect ((expr),(value)) 338# define expect(expr,value) __builtin_expect ((expr),(value))
194# define inline static inline 339# define noinline __attribute__ ((noinline))
195#else 340#else
196# define expect(expr,value) (expr) 341# define expect(expr,value) (expr)
197# define inline static 342# define noinline
343# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
344# define inline
345# endif
198#endif 346#endif
199 347
200#define expect_false(expr) expect ((expr) != 0, 0) 348#define expect_false(expr) expect ((expr) != 0, 0)
201#define expect_true(expr) expect ((expr) != 0, 1) 349#define expect_true(expr) expect ((expr) != 0, 1)
350#define inline_size static inline
351
352#if EV_MINIMAL
353# define inline_speed static noinline
354#else
355# define inline_speed static inline
356#endif
202 357
203#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 358#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
204#define ABSPRI(w) ((w)->priority - EV_MINPRI) 359#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
205 360
206#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 361#define EMPTY /* required for microsofts broken pseudo-c compiler */
207#define EMPTY2(a,b) /* used to suppress some warnings */ 362#define EMPTY2(a,b) /* used to suppress some warnings */
208 363
209typedef struct ev_watcher *W; 364typedef ev_watcher *W;
210typedef struct ev_watcher_list *WL; 365typedef ev_watcher_list *WL;
211typedef struct ev_watcher_time *WT; 366typedef ev_watcher_time *WT;
212 367
368#define ev_active(w) ((W)(w))->active
369#define ev_at(w) ((WT)(w))->at
370
371#if EV_USE_MONOTONIC
372/* sig_atomic_t is used to avoid per-thread variables or locking but still */
373/* giving it a reasonably high chance of working on typical architetcures */
213static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 374static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
375#endif
214 376
215#ifdef _WIN32 377#ifdef _WIN32
216# include "ev_win32.c" 378# include "ev_win32.c"
217#endif 379#endif
218 380
219/*****************************************************************************/ 381/*****************************************************************************/
220 382
221static void (*syserr_cb)(const char *msg); 383static void (*syserr_cb)(const char *msg);
222 384
385void
223void ev_set_syserr_cb (void (*cb)(const char *msg)) 386ev_set_syserr_cb (void (*cb)(const char *msg))
224{ 387{
225 syserr_cb = cb; 388 syserr_cb = cb;
226} 389}
227 390
228static void 391static void noinline
229syserr (const char *msg) 392syserr (const char *msg)
230{ 393{
231 if (!msg) 394 if (!msg)
232 msg = "(libev) system error"; 395 msg = "(libev) system error";
233 396
238 perror (msg); 401 perror (msg);
239 abort (); 402 abort ();
240 } 403 }
241} 404}
242 405
406static void *
407ev_realloc_emul (void *ptr, long size)
408{
409 /* some systems, notably openbsd and darwin, fail to properly
410 * implement realloc (x, 0) (as required by both ansi c-98 and
411 * the single unix specification, so work around them here.
412 */
413
414 if (size)
415 return realloc (ptr, size);
416
417 free (ptr);
418 return 0;
419}
420
243static void *(*alloc)(void *ptr, long size); 421static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
244 422
423void
245void ev_set_allocator (void *(*cb)(void *ptr, long size)) 424ev_set_allocator (void *(*cb)(void *ptr, long size))
246{ 425{
247 alloc = cb; 426 alloc = cb;
248} 427}
249 428
250static void * 429inline_speed void *
251ev_realloc (void *ptr, long size) 430ev_realloc (void *ptr, long size)
252{ 431{
253 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 432 ptr = alloc (ptr, size);
254 433
255 if (!ptr && size) 434 if (!ptr && size)
256 { 435 {
257 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 436 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
258 abort (); 437 abort ();
279typedef struct 458typedef struct
280{ 459{
281 W w; 460 W w;
282 int events; 461 int events;
283} ANPENDING; 462} ANPENDING;
463
464#if EV_USE_INOTIFY
465/* hash table entry per inotify-id */
466typedef struct
467{
468 WL head;
469} ANFS;
470#endif
471
472/* Heap Entry */
473#if EV_HEAP_CACHE_AT
474 typedef struct {
475 ev_tstamp at;
476 WT w;
477 } ANHE;
478
479 #define ANHE_w(he) (he).w /* access watcher, read-write */
480 #define ANHE_at(he) (he).at /* access cached at, read-only */
481 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
482#else
483 typedef WT ANHE;
484
485 #define ANHE_w(he) (he)
486 #define ANHE_at(he) (he)->at
487 #define ANHE_at_cache(he)
488#endif
284 489
285#if EV_MULTIPLICITY 490#if EV_MULTIPLICITY
286 491
287 struct ev_loop 492 struct ev_loop
288 { 493 {
322 gettimeofday (&tv, 0); 527 gettimeofday (&tv, 0);
323 return tv.tv_sec + tv.tv_usec * 1e-6; 528 return tv.tv_sec + tv.tv_usec * 1e-6;
324#endif 529#endif
325} 530}
326 531
327inline ev_tstamp 532ev_tstamp inline_size
328get_clock (void) 533get_clock (void)
329{ 534{
330#if EV_USE_MONOTONIC 535#if EV_USE_MONOTONIC
331 if (expect_true (have_monotonic)) 536 if (expect_true (have_monotonic))
332 { 537 {
345{ 550{
346 return ev_rt_now; 551 return ev_rt_now;
347} 552}
348#endif 553#endif
349 554
350#define array_roundsize(type,n) (((n) | 4) & ~3) 555void
556ev_sleep (ev_tstamp delay)
557{
558 if (delay > 0.)
559 {
560#if EV_USE_NANOSLEEP
561 struct timespec ts;
562
563 ts.tv_sec = (time_t)delay;
564 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
565
566 nanosleep (&ts, 0);
567#elif defined(_WIN32)
568 Sleep ((unsigned long)(delay * 1e3));
569#else
570 struct timeval tv;
571
572 tv.tv_sec = (time_t)delay;
573 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
574
575 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
576 /* somehting nto guaranteed by newer posix versions, but guaranteed */
577 /* by older ones */
578 select (0, 0, 0, 0, &tv);
579#endif
580 }
581}
582
583/*****************************************************************************/
584
585#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
586
587int inline_size
588array_nextsize (int elem, int cur, int cnt)
589{
590 int ncur = cur + 1;
591
592 do
593 ncur <<= 1;
594 while (cnt > ncur);
595
596 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
597 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
598 {
599 ncur *= elem;
600 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
601 ncur = ncur - sizeof (void *) * 4;
602 ncur /= elem;
603 }
604
605 return ncur;
606}
607
608static noinline void *
609array_realloc (int elem, void *base, int *cur, int cnt)
610{
611 *cur = array_nextsize (elem, *cur, cnt);
612 return ev_realloc (base, elem * *cur);
613}
351 614
352#define array_needsize(type,base,cur,cnt,init) \ 615#define array_needsize(type,base,cur,cnt,init) \
353 if (expect_false ((cnt) > cur)) \ 616 if (expect_false ((cnt) > (cur))) \
354 { \ 617 { \
355 int newcnt = cur; \ 618 int ocur_ = (cur); \
356 do \ 619 (base) = (type *)array_realloc \
357 { \ 620 (sizeof (type), (base), &(cur), (cnt)); \
358 newcnt = array_roundsize (type, newcnt << 1); \ 621 init ((base) + (ocur_), (cur) - ocur_); \
359 } \
360 while ((cnt) > newcnt); \
361 \
362 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
363 init (base + cur, newcnt - cur); \
364 cur = newcnt; \
365 } 622 }
366 623
624#if 0
367#define array_slim(type,stem) \ 625#define array_slim(type,stem) \
368 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 626 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
369 { \ 627 { \
370 stem ## max = array_roundsize (stem ## cnt >> 1); \ 628 stem ## max = array_roundsize (stem ## cnt >> 1); \
371 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 629 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
372 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 630 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
373 } 631 }
632#endif
374 633
375#define array_free(stem, idx) \ 634#define array_free(stem, idx) \
376 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 635 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
377 636
378/*****************************************************************************/ 637/*****************************************************************************/
379 638
380static void 639void noinline
640ev_feed_event (EV_P_ void *w, int revents)
641{
642 W w_ = (W)w;
643 int pri = ABSPRI (w_);
644
645 if (expect_false (w_->pending))
646 pendings [pri][w_->pending - 1].events |= revents;
647 else
648 {
649 w_->pending = ++pendingcnt [pri];
650 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
651 pendings [pri][w_->pending - 1].w = w_;
652 pendings [pri][w_->pending - 1].events = revents;
653 }
654}
655
656void inline_speed
657queue_events (EV_P_ W *events, int eventcnt, int type)
658{
659 int i;
660
661 for (i = 0; i < eventcnt; ++i)
662 ev_feed_event (EV_A_ events [i], type);
663}
664
665/*****************************************************************************/
666
667void inline_size
381anfds_init (ANFD *base, int count) 668anfds_init (ANFD *base, int count)
382{ 669{
383 while (count--) 670 while (count--)
384 { 671 {
385 base->head = 0; 672 base->head = 0;
388 675
389 ++base; 676 ++base;
390 } 677 }
391} 678}
392 679
393void 680void inline_speed
394ev_feed_event (EV_P_ void *w, int revents)
395{
396 W w_ = (W)w;
397
398 if (expect_false (w_->pending))
399 {
400 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
401 return;
402 }
403
404 w_->pending = ++pendingcnt [ABSPRI (w_)];
405 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
406 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
407 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
408}
409
410static void
411queue_events (EV_P_ W *events, int eventcnt, int type)
412{
413 int i;
414
415 for (i = 0; i < eventcnt; ++i)
416 ev_feed_event (EV_A_ events [i], type);
417}
418
419inline void
420fd_event (EV_P_ int fd, int revents) 681fd_event (EV_P_ int fd, int revents)
421{ 682{
422 ANFD *anfd = anfds + fd; 683 ANFD *anfd = anfds + fd;
423 struct ev_io *w; 684 ev_io *w;
424 685
425 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 686 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
426 { 687 {
427 int ev = w->events & revents; 688 int ev = w->events & revents;
428 689
429 if (ev) 690 if (ev)
430 ev_feed_event (EV_A_ (W)w, ev); 691 ev_feed_event (EV_A_ (W)w, ev);
432} 693}
433 694
434void 695void
435ev_feed_fd_event (EV_P_ int fd, int revents) 696ev_feed_fd_event (EV_P_ int fd, int revents)
436{ 697{
698 if (fd >= 0 && fd < anfdmax)
437 fd_event (EV_A_ fd, revents); 699 fd_event (EV_A_ fd, revents);
438} 700}
439 701
440/*****************************************************************************/ 702void inline_size
441
442inline void
443fd_reify (EV_P) 703fd_reify (EV_P)
444{ 704{
445 int i; 705 int i;
446 706
447 for (i = 0; i < fdchangecnt; ++i) 707 for (i = 0; i < fdchangecnt; ++i)
448 { 708 {
449 int fd = fdchanges [i]; 709 int fd = fdchanges [i];
450 ANFD *anfd = anfds + fd; 710 ANFD *anfd = anfds + fd;
451 struct ev_io *w; 711 ev_io *w;
452 712
453 int events = 0; 713 unsigned char events = 0;
454 714
455 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 715 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
456 events |= w->events; 716 events |= (unsigned char)w->events;
457 717
458#if EV_SELECT_IS_WINSOCKET 718#if EV_SELECT_IS_WINSOCKET
459 if (events) 719 if (events)
460 { 720 {
461 unsigned long argp; 721 unsigned long arg;
722 #ifdef EV_FD_TO_WIN32_HANDLE
723 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
724 #else
462 anfd->handle = _get_osfhandle (fd); 725 anfd->handle = _get_osfhandle (fd);
726 #endif
463 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 727 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
464 } 728 }
465#endif 729#endif
466 730
731 {
732 unsigned char o_events = anfd->events;
733 unsigned char o_reify = anfd->reify;
734
467 anfd->reify = 0; 735 anfd->reify = 0;
468
469 method_modify (EV_A_ fd, anfd->events, events);
470 anfd->events = events; 736 anfd->events = events;
737
738 if (o_events != events || o_reify & EV_IOFDSET)
739 backend_modify (EV_A_ fd, o_events, events);
740 }
471 } 741 }
472 742
473 fdchangecnt = 0; 743 fdchangecnt = 0;
474} 744}
475 745
476static void 746void inline_size
477fd_change (EV_P_ int fd) 747fd_change (EV_P_ int fd, int flags)
478{ 748{
479 if (expect_false (anfds [fd].reify)) 749 unsigned char reify = anfds [fd].reify;
480 return;
481
482 anfds [fd].reify = 1; 750 anfds [fd].reify |= flags;
483 751
752 if (expect_true (!reify))
753 {
484 ++fdchangecnt; 754 ++fdchangecnt;
485 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 755 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
486 fdchanges [fdchangecnt - 1] = fd; 756 fdchanges [fdchangecnt - 1] = fd;
757 }
487} 758}
488 759
489static void 760void inline_speed
490fd_kill (EV_P_ int fd) 761fd_kill (EV_P_ int fd)
491{ 762{
492 struct ev_io *w; 763 ev_io *w;
493 764
494 while ((w = (struct ev_io *)anfds [fd].head)) 765 while ((w = (ev_io *)anfds [fd].head))
495 { 766 {
496 ev_io_stop (EV_A_ w); 767 ev_io_stop (EV_A_ w);
497 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 768 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
498 } 769 }
499} 770}
500 771
501inline int 772int inline_size
502fd_valid (int fd) 773fd_valid (int fd)
503{ 774{
504#ifdef _WIN32 775#ifdef _WIN32
505 return _get_osfhandle (fd) != -1; 776 return _get_osfhandle (fd) != -1;
506#else 777#else
507 return fcntl (fd, F_GETFD) != -1; 778 return fcntl (fd, F_GETFD) != -1;
508#endif 779#endif
509} 780}
510 781
511/* called on EBADF to verify fds */ 782/* called on EBADF to verify fds */
512static void 783static void noinline
513fd_ebadf (EV_P) 784fd_ebadf (EV_P)
514{ 785{
515 int fd; 786 int fd;
516 787
517 for (fd = 0; fd < anfdmax; ++fd) 788 for (fd = 0; fd < anfdmax; ++fd)
518 if (anfds [fd].events) 789 if (anfds [fd].events)
519 if (!fd_valid (fd) == -1 && errno == EBADF) 790 if (!fd_valid (fd) && errno == EBADF)
520 fd_kill (EV_A_ fd); 791 fd_kill (EV_A_ fd);
521} 792}
522 793
523/* called on ENOMEM in select/poll to kill some fds and retry */ 794/* called on ENOMEM in select/poll to kill some fds and retry */
524static void 795static void noinline
525fd_enomem (EV_P) 796fd_enomem (EV_P)
526{ 797{
527 int fd; 798 int fd;
528 799
529 for (fd = anfdmax; fd--; ) 800 for (fd = anfdmax; fd--; )
532 fd_kill (EV_A_ fd); 803 fd_kill (EV_A_ fd);
533 return; 804 return;
534 } 805 }
535} 806}
536 807
537/* usually called after fork if method needs to re-arm all fds from scratch */ 808/* usually called after fork if backend needs to re-arm all fds from scratch */
538static void 809static void noinline
539fd_rearm_all (EV_P) 810fd_rearm_all (EV_P)
540{ 811{
541 int fd; 812 int fd;
542 813
543 /* this should be highly optimised to not do anything but set a flag */
544 for (fd = 0; fd < anfdmax; ++fd) 814 for (fd = 0; fd < anfdmax; ++fd)
545 if (anfds [fd].events) 815 if (anfds [fd].events)
546 { 816 {
547 anfds [fd].events = 0; 817 anfds [fd].events = 0;
548 fd_change (EV_A_ fd); 818 fd_change (EV_A_ fd, EV_IOFDSET | 1);
549 } 819 }
550} 820}
551 821
552/*****************************************************************************/ 822/*****************************************************************************/
553 823
554static void 824/*
555upheap (WT *heap, int k) 825 * the heap functions want a real array index. array index 0 uis guaranteed to not
556{ 826 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
557 WT w = heap [k]; 827 * the branching factor of the d-tree.
828 */
558 829
559 while (k && heap [k >> 1]->at > w->at) 830/*
560 { 831 * at the moment we allow libev the luxury of two heaps,
561 heap [k] = heap [k >> 1]; 832 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
562 ((W)heap [k])->active = k + 1; 833 * which is more cache-efficient.
563 k >>= 1; 834 * the difference is about 5% with 50000+ watchers.
564 } 835 */
836#if EV_USE_4HEAP
565 837
566 heap [k] = w; 838#define DHEAP 4
567 ((W)heap [k])->active = k + 1; 839#define HEAP0 (DHEAP - 1) /* index of first element in heap */
840#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
841#define UPHEAP_DONE(p,k) ((p) == (k))
568 842
569} 843/* away from the root */
570 844void inline_speed
571static void
572downheap (WT *heap, int N, int k) 845downheap (ANHE *heap, int N, int k)
573{ 846{
574 WT w = heap [k]; 847 ANHE he = heap [k];
848 ANHE *E = heap + N + HEAP0;
575 849
576 while (k < (N >> 1)) 850 for (;;)
577 { 851 {
578 int j = k << 1; 852 ev_tstamp minat;
853 ANHE *minpos;
854 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
579 855
580 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 856 /* find minimum child */
857 if (expect_true (pos + DHEAP - 1 < E))
581 ++j; 858 {
582 859 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
583 if (w->at <= heap [j]->at) 860 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
861 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
862 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
863 }
864 else if (pos < E)
865 {
866 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
867 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
868 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
869 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
870 }
871 else
584 break; 872 break;
585 873
874 if (ANHE_at (he) <= minat)
875 break;
876
877 heap [k] = *minpos;
878 ev_active (ANHE_w (*minpos)) = k;
879
880 k = minpos - heap;
881 }
882
883 heap [k] = he;
884 ev_active (ANHE_w (he)) = k;
885}
886
887#else /* 4HEAP */
888
889#define HEAP0 1
890#define HPARENT(k) ((k) >> 1)
891#define UPHEAP_DONE(p,k) (!(p))
892
893/* away from the root */
894void inline_speed
895downheap (ANHE *heap, int N, int k)
896{
897 ANHE he = heap [k];
898
899 for (;;)
900 {
901 int c = k << 1;
902
903 if (c > N + HEAP0 - 1)
904 break;
905
906 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
907 ? 1 : 0;
908
909 if (ANHE_at (he) <= ANHE_at (heap [c]))
910 break;
911
586 heap [k] = heap [j]; 912 heap [k] = heap [c];
587 ((W)heap [k])->active = k + 1; 913 ev_active (ANHE_w (heap [k])) = k;
914
588 k = j; 915 k = c;
589 } 916 }
590 917
591 heap [k] = w; 918 heap [k] = he;
592 ((W)heap [k])->active = k + 1; 919 ev_active (ANHE_w (he)) = k;
593} 920}
921#endif
594 922
595inline void 923/* towards the root */
924void inline_speed
925upheap (ANHE *heap, int k)
926{
927 ANHE he = heap [k];
928
929 for (;;)
930 {
931 int p = HPARENT (k);
932
933 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
934 break;
935
936 heap [k] = heap [p];
937 ev_active (ANHE_w (heap [k])) = k;
938 k = p;
939 }
940
941 heap [k] = he;
942 ev_active (ANHE_w (he)) = k;
943}
944
945void inline_size
596adjustheap (WT *heap, int N, int k) 946adjustheap (ANHE *heap, int N, int k)
597{ 947{
948 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
598 upheap (heap, k); 949 upheap (heap, k);
950 else
599 downheap (heap, N, k); 951 downheap (heap, N, k);
952}
953
954/* rebuild the heap: this function is used only once and executed rarely */
955void inline_size
956reheap (ANHE *heap, int N)
957{
958 int i;
959
960 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
961 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
962 for (i = 0; i < N; ++i)
963 upheap (heap, i + HEAP0);
600} 964}
601 965
602/*****************************************************************************/ 966/*****************************************************************************/
603 967
604typedef struct 968typedef struct
605{ 969{
606 WL head; 970 WL head;
607 sig_atomic_t volatile gotsig; 971 EV_ATOMIC_T gotsig;
608} ANSIG; 972} ANSIG;
609 973
610static ANSIG *signals; 974static ANSIG *signals;
611static int signalmax; 975static int signalmax;
612 976
613static int sigpipe [2]; 977static EV_ATOMIC_T gotsig;
614static sig_atomic_t volatile gotsig;
615static struct ev_io sigev;
616 978
617static void 979void inline_size
618signals_init (ANSIG *base, int count) 980signals_init (ANSIG *base, int count)
619{ 981{
620 while (count--) 982 while (count--)
621 { 983 {
622 base->head = 0; 984 base->head = 0;
624 986
625 ++base; 987 ++base;
626 } 988 }
627} 989}
628 990
629static void 991/*****************************************************************************/
630sighandler (int signum)
631{
632#if _WIN32
633 signal (signum, sighandler);
634#endif
635 992
636 signals [signum - 1].gotsig = 1; 993void inline_speed
637
638 if (!gotsig)
639 {
640 int old_errno = errno;
641 gotsig = 1;
642 write (sigpipe [1], &signum, 1);
643 errno = old_errno;
644 }
645}
646
647void
648ev_feed_signal_event (EV_P_ int signum)
649{
650 WL w;
651
652#if EV_MULTIPLICITY
653 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
654#endif
655
656 --signum;
657
658 if (signum < 0 || signum >= signalmax)
659 return;
660
661 signals [signum].gotsig = 0;
662
663 for (w = signals [signum].head; w; w = w->next)
664 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
665}
666
667static void
668sigcb (EV_P_ struct ev_io *iow, int revents)
669{
670 int signum;
671
672 read (sigpipe [0], &revents, 1);
673 gotsig = 0;
674
675 for (signum = signalmax; signum--; )
676 if (signals [signum].gotsig)
677 ev_feed_signal_event (EV_A_ signum + 1);
678}
679
680static void
681fd_intern (int fd) 994fd_intern (int fd)
682{ 995{
683#ifdef _WIN32 996#ifdef _WIN32
684 int arg = 1; 997 unsigned long arg = 1;
685 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 998 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
686#else 999#else
687 fcntl (fd, F_SETFD, FD_CLOEXEC); 1000 fcntl (fd, F_SETFD, FD_CLOEXEC);
688 fcntl (fd, F_SETFL, O_NONBLOCK); 1001 fcntl (fd, F_SETFL, O_NONBLOCK);
689#endif 1002#endif
690} 1003}
691 1004
1005static void noinline
1006evpipe_init (EV_P)
1007{
1008 if (!ev_is_active (&pipeev))
1009 {
1010#if EV_USE_EVENTFD
1011 if ((evfd = eventfd (0, 0)) >= 0)
1012 {
1013 evpipe [0] = -1;
1014 fd_intern (evfd);
1015 ev_io_set (&pipeev, evfd, EV_READ);
1016 }
1017 else
1018#endif
1019 {
1020 while (pipe (evpipe))
1021 syserr ("(libev) error creating signal/async pipe");
1022
1023 fd_intern (evpipe [0]);
1024 fd_intern (evpipe [1]);
1025 ev_io_set (&pipeev, evpipe [0], EV_READ);
1026 }
1027
1028 ev_io_start (EV_A_ &pipeev);
1029 ev_unref (EV_A); /* watcher should not keep loop alive */
1030 }
1031}
1032
1033void inline_size
1034evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1035{
1036 if (!*flag)
1037 {
1038 int old_errno = errno; /* save errno because write might clobber it */
1039
1040 *flag = 1;
1041
1042#if EV_USE_EVENTFD
1043 if (evfd >= 0)
1044 {
1045 uint64_t counter = 1;
1046 write (evfd, &counter, sizeof (uint64_t));
1047 }
1048 else
1049#endif
1050 write (evpipe [1], &old_errno, 1);
1051
1052 errno = old_errno;
1053 }
1054}
1055
692static void 1056static void
693siginit (EV_P) 1057pipecb (EV_P_ ev_io *iow, int revents)
694{ 1058{
695 fd_intern (sigpipe [0]); 1059#if EV_USE_EVENTFD
696 fd_intern (sigpipe [1]); 1060 if (evfd >= 0)
1061 {
1062 uint64_t counter;
1063 read (evfd, &counter, sizeof (uint64_t));
1064 }
1065 else
1066#endif
1067 {
1068 char dummy;
1069 read (evpipe [0], &dummy, 1);
1070 }
697 1071
698 ev_io_set (&sigev, sigpipe [0], EV_READ); 1072 if (gotsig && ev_is_default_loop (EV_A))
699 ev_io_start (EV_A_ &sigev); 1073 {
700 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1074 int signum;
1075 gotsig = 0;
1076
1077 for (signum = signalmax; signum--; )
1078 if (signals [signum].gotsig)
1079 ev_feed_signal_event (EV_A_ signum + 1);
1080 }
1081
1082#if EV_ASYNC_ENABLE
1083 if (gotasync)
1084 {
1085 int i;
1086 gotasync = 0;
1087
1088 for (i = asynccnt; i--; )
1089 if (asyncs [i]->sent)
1090 {
1091 asyncs [i]->sent = 0;
1092 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1093 }
1094 }
1095#endif
701} 1096}
702 1097
703/*****************************************************************************/ 1098/*****************************************************************************/
704 1099
705static struct ev_child *childs [PID_HASHSIZE]; 1100static void
1101ev_sighandler (int signum)
1102{
1103#if EV_MULTIPLICITY
1104 struct ev_loop *loop = &default_loop_struct;
1105#endif
1106
1107#if _WIN32
1108 signal (signum, ev_sighandler);
1109#endif
1110
1111 signals [signum - 1].gotsig = 1;
1112 evpipe_write (EV_A_ &gotsig);
1113}
1114
1115void noinline
1116ev_feed_signal_event (EV_P_ int signum)
1117{
1118 WL w;
1119
1120#if EV_MULTIPLICITY
1121 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1122#endif
1123
1124 --signum;
1125
1126 if (signum < 0 || signum >= signalmax)
1127 return;
1128
1129 signals [signum].gotsig = 0;
1130
1131 for (w = signals [signum].head; w; w = w->next)
1132 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1133}
1134
1135/*****************************************************************************/
1136
1137static WL childs [EV_PID_HASHSIZE];
706 1138
707#ifndef _WIN32 1139#ifndef _WIN32
708 1140
709static struct ev_signal childev; 1141static ev_signal childev;
1142
1143#ifndef WIFCONTINUED
1144# define WIFCONTINUED(status) 0
1145#endif
1146
1147void inline_speed
1148child_reap (EV_P_ int chain, int pid, int status)
1149{
1150 ev_child *w;
1151 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1152
1153 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1154 {
1155 if ((w->pid == pid || !w->pid)
1156 && (!traced || (w->flags & 1)))
1157 {
1158 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1159 w->rpid = pid;
1160 w->rstatus = status;
1161 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1162 }
1163 }
1164}
710 1165
711#ifndef WCONTINUED 1166#ifndef WCONTINUED
712# define WCONTINUED 0 1167# define WCONTINUED 0
713#endif 1168#endif
714 1169
715static void 1170static void
716child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
717{
718 struct ev_child *w;
719
720 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
721 if (w->pid == pid || !w->pid)
722 {
723 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
724 w->rpid = pid;
725 w->rstatus = status;
726 ev_feed_event (EV_A_ (W)w, EV_CHILD);
727 }
728}
729
730static void
731childcb (EV_P_ struct ev_signal *sw, int revents) 1171childcb (EV_P_ ev_signal *sw, int revents)
732{ 1172{
733 int pid, status; 1173 int pid, status;
734 1174
1175 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
735 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1176 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
736 { 1177 if (!WCONTINUED
1178 || errno != EINVAL
1179 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1180 return;
1181
737 /* make sure we are called again until all childs have been reaped */ 1182 /* make sure we are called again until all children have been reaped */
1183 /* we need to do it this way so that the callback gets called before we continue */
738 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1184 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
739 1185
740 child_reap (EV_A_ sw, pid, pid, status); 1186 child_reap (EV_A_ pid, pid, status);
1187 if (EV_PID_HASHSIZE > 1)
741 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1188 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
742 }
743} 1189}
744 1190
745#endif 1191#endif
746 1192
747/*****************************************************************************/ 1193/*****************************************************************************/
773{ 1219{
774 return EV_VERSION_MINOR; 1220 return EV_VERSION_MINOR;
775} 1221}
776 1222
777/* return true if we are running with elevated privileges and should ignore env variables */ 1223/* return true if we are running with elevated privileges and should ignore env variables */
778static int 1224int inline_size
779enable_secure (void) 1225enable_secure (void)
780{ 1226{
781#ifdef _WIN32 1227#ifdef _WIN32
782 return 0; 1228 return 0;
783#else 1229#else
785 || getgid () != getegid (); 1231 || getgid () != getegid ();
786#endif 1232#endif
787} 1233}
788 1234
789unsigned int 1235unsigned int
790ev_method (EV_P) 1236ev_supported_backends (void)
791{ 1237{
792 return method; 1238 unsigned int flags = 0;
793}
794 1239
795static void 1240 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1241 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1242 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1243 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1244 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1245
1246 return flags;
1247}
1248
1249unsigned int
1250ev_recommended_backends (void)
1251{
1252 unsigned int flags = ev_supported_backends ();
1253
1254#ifndef __NetBSD__
1255 /* kqueue is borked on everything but netbsd apparently */
1256 /* it usually doesn't work correctly on anything but sockets and pipes */
1257 flags &= ~EVBACKEND_KQUEUE;
1258#endif
1259#ifdef __APPLE__
1260 // flags &= ~EVBACKEND_KQUEUE; for documentation
1261 flags &= ~EVBACKEND_POLL;
1262#endif
1263
1264 return flags;
1265}
1266
1267unsigned int
1268ev_embeddable_backends (void)
1269{
1270 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1271
1272 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1273 /* please fix it and tell me how to detect the fix */
1274 flags &= ~EVBACKEND_EPOLL;
1275
1276 return flags;
1277}
1278
1279unsigned int
1280ev_backend (EV_P)
1281{
1282 return backend;
1283}
1284
1285unsigned int
1286ev_loop_count (EV_P)
1287{
1288 return loop_count;
1289}
1290
1291void
1292ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1293{
1294 io_blocktime = interval;
1295}
1296
1297void
1298ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1299{
1300 timeout_blocktime = interval;
1301}
1302
1303static void noinline
796loop_init (EV_P_ unsigned int flags) 1304loop_init (EV_P_ unsigned int flags)
797{ 1305{
798 if (!method) 1306 if (!backend)
799 { 1307 {
800#if EV_USE_MONOTONIC 1308#if EV_USE_MONOTONIC
801 { 1309 {
802 struct timespec ts; 1310 struct timespec ts;
803 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1311 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
804 have_monotonic = 1; 1312 have_monotonic = 1;
805 } 1313 }
806#endif 1314#endif
807 1315
808 ev_rt_now = ev_time (); 1316 ev_rt_now = ev_time ();
809 mn_now = get_clock (); 1317 mn_now = get_clock ();
810 now_floor = mn_now; 1318 now_floor = mn_now;
811 rtmn_diff = ev_rt_now - mn_now; 1319 rtmn_diff = ev_rt_now - mn_now;
812 1320
813 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1321 io_blocktime = 0.;
1322 timeout_blocktime = 0.;
1323 backend = 0;
1324 backend_fd = -1;
1325 gotasync = 0;
1326#if EV_USE_INOTIFY
1327 fs_fd = -2;
1328#endif
1329
1330 /* pid check not overridable via env */
1331#ifndef _WIN32
1332 if (flags & EVFLAG_FORKCHECK)
1333 curpid = getpid ();
1334#endif
1335
1336 if (!(flags & EVFLAG_NOENV)
1337 && !enable_secure ()
1338 && getenv ("LIBEV_FLAGS"))
814 flags = atoi (getenv ("LIBEV_FLAGS")); 1339 flags = atoi (getenv ("LIBEV_FLAGS"));
815 1340
816 if (!(flags & 0x0000ffff)) 1341 if (!(flags & 0x0000ffffU))
817 flags |= 0x0000ffff; 1342 flags |= ev_recommended_backends ();
818 1343
819 method = 0;
820#if EV_USE_PORT 1344#if EV_USE_PORT
821 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags); 1345 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
822#endif 1346#endif
823#if EV_USE_KQUEUE 1347#if EV_USE_KQUEUE
824 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 1348 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
825#endif 1349#endif
826#if EV_USE_EPOLL 1350#if EV_USE_EPOLL
827 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 1351 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
828#endif 1352#endif
829#if EV_USE_POLL 1353#if EV_USE_POLL
830 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 1354 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
831#endif 1355#endif
832#if EV_USE_SELECT 1356#if EV_USE_SELECT
833 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 1357 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
834#endif 1358#endif
835 1359
836 ev_init (&sigev, sigcb); 1360 ev_init (&pipeev, pipecb);
837 ev_set_priority (&sigev, EV_MAXPRI); 1361 ev_set_priority (&pipeev, EV_MAXPRI);
838 } 1362 }
839} 1363}
840 1364
841static void 1365static void noinline
842loop_destroy (EV_P) 1366loop_destroy (EV_P)
843{ 1367{
844 int i; 1368 int i;
845 1369
1370 if (ev_is_active (&pipeev))
1371 {
1372 ev_ref (EV_A); /* signal watcher */
1373 ev_io_stop (EV_A_ &pipeev);
1374
1375#if EV_USE_EVENTFD
1376 if (evfd >= 0)
1377 close (evfd);
1378#endif
1379
1380 if (evpipe [0] >= 0)
1381 {
1382 close (evpipe [0]);
1383 close (evpipe [1]);
1384 }
1385 }
1386
1387#if EV_USE_INOTIFY
1388 if (fs_fd >= 0)
1389 close (fs_fd);
1390#endif
1391
1392 if (backend_fd >= 0)
1393 close (backend_fd);
1394
846#if EV_USE_PORT 1395#if EV_USE_PORT
847 if (method == EVMETHOD_PORT ) port_destroy (EV_A); 1396 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
848#endif 1397#endif
849#if EV_USE_KQUEUE 1398#if EV_USE_KQUEUE
850 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1399 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
851#endif 1400#endif
852#if EV_USE_EPOLL 1401#if EV_USE_EPOLL
853 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1402 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
854#endif 1403#endif
855#if EV_USE_POLL 1404#if EV_USE_POLL
856 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1405 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
857#endif 1406#endif
858#if EV_USE_SELECT 1407#if EV_USE_SELECT
859 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1408 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
860#endif 1409#endif
861 1410
862 for (i = NUMPRI; i--; ) 1411 for (i = NUMPRI; i--; )
1412 {
863 array_free (pending, [i]); 1413 array_free (pending, [i]);
1414#if EV_IDLE_ENABLE
1415 array_free (idle, [i]);
1416#endif
1417 }
1418
1419 ev_free (anfds); anfdmax = 0;
864 1420
865 /* have to use the microsoft-never-gets-it-right macro */ 1421 /* have to use the microsoft-never-gets-it-right macro */
866 array_free (fdchange, EMPTY0); 1422 array_free (fdchange, EMPTY);
867 array_free (timer, EMPTY0); 1423 array_free (timer, EMPTY);
868#if EV_PERIODICS 1424#if EV_PERIODIC_ENABLE
869 array_free (periodic, EMPTY0); 1425 array_free (periodic, EMPTY);
870#endif 1426#endif
1427#if EV_FORK_ENABLE
871 array_free (idle, EMPTY0); 1428 array_free (fork, EMPTY);
1429#endif
872 array_free (prepare, EMPTY0); 1430 array_free (prepare, EMPTY);
873 array_free (check, EMPTY0); 1431 array_free (check, EMPTY);
1432#if EV_ASYNC_ENABLE
1433 array_free (async, EMPTY);
1434#endif
874 1435
875 method = 0; 1436 backend = 0;
876} 1437}
877 1438
878static void 1439#if EV_USE_INOTIFY
1440void inline_size infy_fork (EV_P);
1441#endif
1442
1443void inline_size
879loop_fork (EV_P) 1444loop_fork (EV_P)
880{ 1445{
881#if EV_USE_PORT 1446#if EV_USE_PORT
882 if (method == EVMETHOD_PORT ) port_fork (EV_A); 1447 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
883#endif 1448#endif
884#if EV_USE_KQUEUE 1449#if EV_USE_KQUEUE
885 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1450 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
886#endif 1451#endif
887#if EV_USE_EPOLL 1452#if EV_USE_EPOLL
888 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1453 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
889#endif 1454#endif
1455#if EV_USE_INOTIFY
1456 infy_fork (EV_A);
1457#endif
890 1458
891 if (ev_is_active (&sigev)) 1459 if (ev_is_active (&pipeev))
892 { 1460 {
893 /* default loop */ 1461 /* this "locks" the handlers against writing to the pipe */
1462 /* while we modify the fd vars */
1463 gotsig = 1;
1464#if EV_ASYNC_ENABLE
1465 gotasync = 1;
1466#endif
894 1467
895 ev_ref (EV_A); 1468 ev_ref (EV_A);
896 ev_io_stop (EV_A_ &sigev); 1469 ev_io_stop (EV_A_ &pipeev);
1470
1471#if EV_USE_EVENTFD
1472 if (evfd >= 0)
1473 close (evfd);
1474#endif
1475
1476 if (evpipe [0] >= 0)
1477 {
897 close (sigpipe [0]); 1478 close (evpipe [0]);
898 close (sigpipe [1]); 1479 close (evpipe [1]);
1480 }
899 1481
900 while (pipe (sigpipe))
901 syserr ("(libev) error creating pipe");
902
903 siginit (EV_A); 1482 evpipe_init (EV_A);
1483 /* now iterate over everything, in case we missed something */
1484 pipecb (EV_A_ &pipeev, EV_READ);
904 } 1485 }
905 1486
906 postfork = 0; 1487 postfork = 0;
907} 1488}
908 1489
909#if EV_MULTIPLICITY 1490#if EV_MULTIPLICITY
1491
910struct ev_loop * 1492struct ev_loop *
911ev_loop_new (unsigned int flags) 1493ev_loop_new (unsigned int flags)
912{ 1494{
913 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1495 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
914 1496
915 memset (loop, 0, sizeof (struct ev_loop)); 1497 memset (loop, 0, sizeof (struct ev_loop));
916 1498
917 loop_init (EV_A_ flags); 1499 loop_init (EV_A_ flags);
918 1500
919 if (ev_method (EV_A)) 1501 if (ev_backend (EV_A))
920 return loop; 1502 return loop;
921 1503
922 return 0; 1504 return 0;
923} 1505}
924 1506
930} 1512}
931 1513
932void 1514void
933ev_loop_fork (EV_P) 1515ev_loop_fork (EV_P)
934{ 1516{
935 postfork = 1; 1517 postfork = 1; /* must be in line with ev_default_fork */
936} 1518}
937 1519
1520#if EV_VERIFY
1521static void noinline
1522verify_watcher (EV_P_ W w)
1523{
1524 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1525
1526 if (w->pending)
1527 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1528}
1529
1530static void noinline
1531verify_heap (EV_P_ ANHE *heap, int N)
1532{
1533 int i;
1534
1535 for (i = HEAP0; i < N + HEAP0; ++i)
1536 {
1537 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1538 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1539 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1540
1541 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1542 }
1543}
1544
1545static void noinline
1546array_verify (EV_P_ W *ws, int cnt)
1547{
1548 while (cnt--)
1549 {
1550 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1551 verify_watcher (EV_A_ ws [cnt]);
1552 }
1553}
1554#endif
1555
1556void
1557ev_loop_verify (EV_P)
1558{
1559#if EV_VERIFY
1560 int i;
1561 WL w;
1562
1563 assert (activecnt >= -1);
1564
1565 assert (fdchangemax >= fdchangecnt);
1566 for (i = 0; i < fdchangecnt; ++i)
1567 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1568
1569 assert (anfdmax >= 0);
1570 for (i = 0; i < anfdmax; ++i)
1571 for (w = anfds [i].head; w; w = w->next)
1572 {
1573 verify_watcher (EV_A_ (W)w);
1574 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1575 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1576 }
1577
1578 assert (timermax >= timercnt);
1579 verify_heap (EV_A_ timers, timercnt);
1580
1581#if EV_PERIODIC_ENABLE
1582 assert (periodicmax >= periodiccnt);
1583 verify_heap (EV_A_ periodics, periodiccnt);
1584#endif
1585
1586 for (i = NUMPRI; i--; )
1587 {
1588 assert (pendingmax [i] >= pendingcnt [i]);
1589#if EV_IDLE_ENABLE
1590 assert (idleall >= 0);
1591 assert (idlemax [i] >= idlecnt [i]);
1592 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1593#endif
1594 }
1595
1596#if EV_FORK_ENABLE
1597 assert (forkmax >= forkcnt);
1598 array_verify (EV_A_ (W *)forks, forkcnt);
1599#endif
1600
1601#if EV_ASYNC_ENABLE
1602 assert (asyncmax >= asynccnt);
1603 array_verify (EV_A_ (W *)asyncs, asynccnt);
1604#endif
1605
1606 assert (preparemax >= preparecnt);
1607 array_verify (EV_A_ (W *)prepares, preparecnt);
1608
1609 assert (checkmax >= checkcnt);
1610 array_verify (EV_A_ (W *)checks, checkcnt);
1611
1612# if 0
1613 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1614 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
938#endif 1615# endif
1616#endif
1617}
1618
1619#endif /* multiplicity */
939 1620
940#if EV_MULTIPLICITY 1621#if EV_MULTIPLICITY
941struct ev_loop * 1622struct ev_loop *
942ev_default_loop_init (unsigned int flags) 1623ev_default_loop_init (unsigned int flags)
943#else 1624#else
944int 1625int
945ev_default_loop (unsigned int flags) 1626ev_default_loop (unsigned int flags)
946#endif 1627#endif
947{ 1628{
948 if (sigpipe [0] == sigpipe [1])
949 if (pipe (sigpipe))
950 return 0;
951
952 if (!ev_default_loop_ptr) 1629 if (!ev_default_loop_ptr)
953 { 1630 {
954#if EV_MULTIPLICITY 1631#if EV_MULTIPLICITY
955 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1632 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
956#else 1633#else
957 ev_default_loop_ptr = 1; 1634 ev_default_loop_ptr = 1;
958#endif 1635#endif
959 1636
960 loop_init (EV_A_ flags); 1637 loop_init (EV_A_ flags);
961 1638
962 if (ev_method (EV_A)) 1639 if (ev_backend (EV_A))
963 { 1640 {
964 siginit (EV_A);
965
966#ifndef _WIN32 1641#ifndef _WIN32
967 ev_signal_init (&childev, childcb, SIGCHLD); 1642 ev_signal_init (&childev, childcb, SIGCHLD);
968 ev_set_priority (&childev, EV_MAXPRI); 1643 ev_set_priority (&childev, EV_MAXPRI);
969 ev_signal_start (EV_A_ &childev); 1644 ev_signal_start (EV_A_ &childev);
970 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1645 ev_unref (EV_A); /* child watcher should not keep loop alive */
987#ifndef _WIN32 1662#ifndef _WIN32
988 ev_ref (EV_A); /* child watcher */ 1663 ev_ref (EV_A); /* child watcher */
989 ev_signal_stop (EV_A_ &childev); 1664 ev_signal_stop (EV_A_ &childev);
990#endif 1665#endif
991 1666
992 ev_ref (EV_A); /* signal watcher */
993 ev_io_stop (EV_A_ &sigev);
994
995 close (sigpipe [0]); sigpipe [0] = 0;
996 close (sigpipe [1]); sigpipe [1] = 0;
997
998 loop_destroy (EV_A); 1667 loop_destroy (EV_A);
999} 1668}
1000 1669
1001void 1670void
1002ev_default_fork (void) 1671ev_default_fork (void)
1003{ 1672{
1004#if EV_MULTIPLICITY 1673#if EV_MULTIPLICITY
1005 struct ev_loop *loop = ev_default_loop_ptr; 1674 struct ev_loop *loop = ev_default_loop_ptr;
1006#endif 1675#endif
1007 1676
1008 if (method) 1677 if (backend)
1009 postfork = 1; 1678 postfork = 1; /* must be in line with ev_loop_fork */
1010} 1679}
1011 1680
1012/*****************************************************************************/ 1681/*****************************************************************************/
1013 1682
1014static int 1683void
1015any_pending (EV_P) 1684ev_invoke (EV_P_ void *w, int revents)
1016{ 1685{
1017 int pri; 1686 EV_CB_INVOKE ((W)w, revents);
1018
1019 for (pri = NUMPRI; pri--; )
1020 if (pendingcnt [pri])
1021 return 1;
1022
1023 return 0;
1024} 1687}
1025 1688
1026inline void 1689void inline_speed
1027call_pending (EV_P) 1690call_pending (EV_P)
1028{ 1691{
1029 int pri; 1692 int pri;
1030 1693
1031 for (pri = NUMPRI; pri--; ) 1694 for (pri = NUMPRI; pri--; )
1033 { 1696 {
1034 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1697 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1035 1698
1036 if (expect_true (p->w)) 1699 if (expect_true (p->w))
1037 { 1700 {
1701 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1702
1038 p->w->pending = 0; 1703 p->w->pending = 0;
1039 EV_CB_INVOKE (p->w, p->events); 1704 EV_CB_INVOKE (p->w, p->events);
1705 EV_FREQUENT_CHECK;
1040 } 1706 }
1041 } 1707 }
1042} 1708}
1043 1709
1044inline void 1710#if EV_IDLE_ENABLE
1711void inline_size
1712idle_reify (EV_P)
1713{
1714 if (expect_false (idleall))
1715 {
1716 int pri;
1717
1718 for (pri = NUMPRI; pri--; )
1719 {
1720 if (pendingcnt [pri])
1721 break;
1722
1723 if (idlecnt [pri])
1724 {
1725 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1726 break;
1727 }
1728 }
1729 }
1730}
1731#endif
1732
1733void inline_size
1045timers_reify (EV_P) 1734timers_reify (EV_P)
1046{ 1735{
1736 EV_FREQUENT_CHECK;
1737
1047 while (timercnt && ((WT)timers [0])->at <= mn_now) 1738 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1048 { 1739 {
1049 struct ev_timer *w = timers [0]; 1740 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1050 1741
1051 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1742 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1052 1743
1053 /* first reschedule or stop timer */ 1744 /* first reschedule or stop timer */
1054 if (w->repeat) 1745 if (w->repeat)
1055 { 1746 {
1747 ev_at (w) += w->repeat;
1748 if (ev_at (w) < mn_now)
1749 ev_at (w) = mn_now;
1750
1056 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1751 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1057 1752
1058 ((WT)w)->at += w->repeat; 1753 ANHE_at_cache (timers [HEAP0]);
1059 if (((WT)w)->at < mn_now)
1060 ((WT)w)->at = mn_now;
1061
1062 downheap ((WT *)timers, timercnt, 0); 1754 downheap (timers, timercnt, HEAP0);
1063 } 1755 }
1064 else 1756 else
1065 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1757 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1066 1758
1759 EV_FREQUENT_CHECK;
1067 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1760 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1068 } 1761 }
1069} 1762}
1070 1763
1071#if EV_PERIODICS 1764#if EV_PERIODIC_ENABLE
1072inline void 1765void inline_size
1073periodics_reify (EV_P) 1766periodics_reify (EV_P)
1074{ 1767{
1768 EV_FREQUENT_CHECK;
1769
1075 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1770 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1076 { 1771 {
1077 struct ev_periodic *w = periodics [0]; 1772 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1078 1773
1079 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1774 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1080 1775
1081 /* first reschedule or stop timer */ 1776 /* first reschedule or stop timer */
1082 if (w->reschedule_cb) 1777 if (w->reschedule_cb)
1083 { 1778 {
1084 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1779 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1780
1085 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1781 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1782
1783 ANHE_at_cache (periodics [HEAP0]);
1086 downheap ((WT *)periodics, periodiccnt, 0); 1784 downheap (periodics, periodiccnt, HEAP0);
1087 } 1785 }
1088 else if (w->interval) 1786 else if (w->interval)
1089 { 1787 {
1090 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1788 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1091 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1789 /* if next trigger time is not sufficiently in the future, put it there */
1790 /* this might happen because of floating point inexactness */
1791 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1792 {
1793 ev_at (w) += w->interval;
1794
1795 /* if interval is unreasonably low we might still have a time in the past */
1796 /* so correct this. this will make the periodic very inexact, but the user */
1797 /* has effectively asked to get triggered more often than possible */
1798 if (ev_at (w) < ev_rt_now)
1799 ev_at (w) = ev_rt_now;
1800 }
1801
1802 ANHE_at_cache (periodics [HEAP0]);
1092 downheap ((WT *)periodics, periodiccnt, 0); 1803 downheap (periodics, periodiccnt, HEAP0);
1093 } 1804 }
1094 else 1805 else
1095 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1806 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1096 1807
1808 EV_FREQUENT_CHECK;
1097 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1809 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1098 } 1810 }
1099} 1811}
1100 1812
1101static void 1813static void noinline
1102periodics_reschedule (EV_P) 1814periodics_reschedule (EV_P)
1103{ 1815{
1104 int i; 1816 int i;
1105 1817
1106 /* adjust periodics after time jump */ 1818 /* adjust periodics after time jump */
1107 for (i = 0; i < periodiccnt; ++i) 1819 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1108 { 1820 {
1109 struct ev_periodic *w = periodics [i]; 1821 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1110 1822
1111 if (w->reschedule_cb) 1823 if (w->reschedule_cb)
1112 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1824 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1113 else if (w->interval) 1825 else if (w->interval)
1114 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1826 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1827
1828 ANHE_at_cache (periodics [i]);
1829 }
1830
1831 reheap (periodics, periodiccnt);
1832}
1833#endif
1834
1835void inline_speed
1836time_update (EV_P_ ev_tstamp max_block)
1837{
1838 int i;
1839
1840#if EV_USE_MONOTONIC
1841 if (expect_true (have_monotonic))
1115 } 1842 {
1843 ev_tstamp odiff = rtmn_diff;
1116 1844
1117 /* now rebuild the heap */
1118 for (i = periodiccnt >> 1; i--; )
1119 downheap ((WT *)periodics, periodiccnt, i);
1120}
1121#endif
1122
1123inline int
1124time_update_monotonic (EV_P)
1125{
1126 mn_now = get_clock (); 1845 mn_now = get_clock ();
1127 1846
1847 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1848 /* interpolate in the meantime */
1128 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1849 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1129 { 1850 {
1130 ev_rt_now = rtmn_diff + mn_now; 1851 ev_rt_now = rtmn_diff + mn_now;
1131 return 0; 1852 return;
1132 } 1853 }
1133 else 1854
1134 {
1135 now_floor = mn_now; 1855 now_floor = mn_now;
1136 ev_rt_now = ev_time (); 1856 ev_rt_now = ev_time ();
1137 return 1;
1138 }
1139}
1140 1857
1141inline void 1858 /* loop a few times, before making important decisions.
1142time_update (EV_P) 1859 * on the choice of "4": one iteration isn't enough,
1143{ 1860 * in case we get preempted during the calls to
1144 int i; 1861 * ev_time and get_clock. a second call is almost guaranteed
1145 1862 * to succeed in that case, though. and looping a few more times
1146#if EV_USE_MONOTONIC 1863 * doesn't hurt either as we only do this on time-jumps or
1147 if (expect_true (have_monotonic)) 1864 * in the unlikely event of having been preempted here.
1148 { 1865 */
1149 if (time_update_monotonic (EV_A)) 1866 for (i = 4; --i; )
1150 { 1867 {
1151 ev_tstamp odiff = rtmn_diff; 1868 rtmn_diff = ev_rt_now - mn_now;
1152 1869
1153 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1870 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1871 return; /* all is well */
1872
1873 ev_rt_now = ev_time ();
1874 mn_now = get_clock ();
1875 now_floor = mn_now;
1876 }
1877
1878# if EV_PERIODIC_ENABLE
1879 periodics_reschedule (EV_A);
1880# endif
1881 /* no timer adjustment, as the monotonic clock doesn't jump */
1882 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1883 }
1884 else
1885#endif
1886 {
1887 ev_rt_now = ev_time ();
1888
1889 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1890 {
1891#if EV_PERIODIC_ENABLE
1892 periodics_reschedule (EV_A);
1893#endif
1894 /* adjust timers. this is easy, as the offset is the same for all of them */
1895 for (i = 0; i < timercnt; ++i)
1154 { 1896 {
1155 rtmn_diff = ev_rt_now - mn_now; 1897 ANHE *he = timers + i + HEAP0;
1156 1898 ANHE_w (*he)->at += ev_rt_now - mn_now;
1157 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1899 ANHE_at_cache (*he);
1158 return; /* all is well */
1159
1160 ev_rt_now = ev_time ();
1161 mn_now = get_clock ();
1162 now_floor = mn_now;
1163 } 1900 }
1164
1165# if EV_PERIODICS
1166 periodics_reschedule (EV_A);
1167# endif
1168 /* no timer adjustment, as the monotonic clock doesn't jump */
1169 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1170 } 1901 }
1171 }
1172 else
1173#endif
1174 {
1175 ev_rt_now = ev_time ();
1176
1177 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1178 {
1179#if EV_PERIODICS
1180 periodics_reschedule (EV_A);
1181#endif
1182
1183 /* adjust timers. this is easy, as the offset is the same for all */
1184 for (i = 0; i < timercnt; ++i)
1185 ((WT)timers [i])->at += ev_rt_now - mn_now;
1186 }
1187 1902
1188 mn_now = ev_rt_now; 1903 mn_now = ev_rt_now;
1189 } 1904 }
1190} 1905}
1191 1906
1199ev_unref (EV_P) 1914ev_unref (EV_P)
1200{ 1915{
1201 --activecnt; 1916 --activecnt;
1202} 1917}
1203 1918
1919void
1920ev_now_update (EV_P)
1921{
1922 time_update (EV_A_ 1e100);
1923}
1924
1204static int loop_done; 1925static int loop_done;
1205 1926
1206void 1927void
1207ev_loop (EV_P_ int flags) 1928ev_loop (EV_P_ int flags)
1208{ 1929{
1209 double block; 1930 loop_done = EVUNLOOP_CANCEL;
1210 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1211 1931
1212 while (activecnt) 1932 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1933
1934 do
1213 { 1935 {
1936#if EV_VERIFY >= 2
1937 ev_loop_verify (EV_A);
1938#endif
1939
1940#ifndef _WIN32
1941 if (expect_false (curpid)) /* penalise the forking check even more */
1942 if (expect_false (getpid () != curpid))
1943 {
1944 curpid = getpid ();
1945 postfork = 1;
1946 }
1947#endif
1948
1949#if EV_FORK_ENABLE
1950 /* we might have forked, so queue fork handlers */
1951 if (expect_false (postfork))
1952 if (forkcnt)
1953 {
1954 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1955 call_pending (EV_A);
1956 }
1957#endif
1958
1214 /* queue check watchers (and execute them) */ 1959 /* queue prepare watchers (and execute them) */
1215 if (expect_false (preparecnt)) 1960 if (expect_false (preparecnt))
1216 { 1961 {
1217 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1962 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1218 call_pending (EV_A); 1963 call_pending (EV_A);
1219 } 1964 }
1220 1965
1966 if (expect_false (!activecnt))
1967 break;
1968
1221 /* we might have forked, so reify kernel state if necessary */ 1969 /* we might have forked, so reify kernel state if necessary */
1222 if (expect_false (postfork)) 1970 if (expect_false (postfork))
1223 loop_fork (EV_A); 1971 loop_fork (EV_A);
1224 1972
1225 /* update fd-related kernel structures */ 1973 /* update fd-related kernel structures */
1226 fd_reify (EV_A); 1974 fd_reify (EV_A);
1227 1975
1228 /* calculate blocking time */ 1976 /* calculate blocking time */
1977 {
1978 ev_tstamp waittime = 0.;
1979 ev_tstamp sleeptime = 0.;
1229 1980
1230 /* we only need this for !monotonic clock or timers, but as we basically 1981 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1231 always have timers, we just calculate it always */
1232#if EV_USE_MONOTONIC
1233 if (expect_true (have_monotonic))
1234 time_update_monotonic (EV_A);
1235 else
1236#endif
1237 { 1982 {
1238 ev_rt_now = ev_time (); 1983 /* update time to cancel out callback processing overhead */
1239 mn_now = ev_rt_now; 1984 time_update (EV_A_ 1e100);
1240 }
1241 1985
1242 if (flags & EVLOOP_NONBLOCK || idlecnt)
1243 block = 0.;
1244 else
1245 {
1246 block = MAX_BLOCKTIME; 1986 waittime = MAX_BLOCKTIME;
1247 1987
1248 if (timercnt) 1988 if (timercnt)
1249 { 1989 {
1250 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1990 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1251 if (block > to) block = to; 1991 if (waittime > to) waittime = to;
1252 } 1992 }
1253 1993
1254#if EV_PERIODICS 1994#if EV_PERIODIC_ENABLE
1255 if (periodiccnt) 1995 if (periodiccnt)
1256 { 1996 {
1257 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1997 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1258 if (block > to) block = to; 1998 if (waittime > to) waittime = to;
1259 } 1999 }
1260#endif 2000#endif
1261 2001
1262 if (expect_false (block < 0.)) block = 0.; 2002 if (expect_false (waittime < timeout_blocktime))
2003 waittime = timeout_blocktime;
2004
2005 sleeptime = waittime - backend_fudge;
2006
2007 if (expect_true (sleeptime > io_blocktime))
2008 sleeptime = io_blocktime;
2009
2010 if (sleeptime)
2011 {
2012 ev_sleep (sleeptime);
2013 waittime -= sleeptime;
2014 }
1263 } 2015 }
1264 2016
1265 method_poll (EV_A_ block); 2017 ++loop_count;
2018 backend_poll (EV_A_ waittime);
1266 2019
1267 /* update ev_rt_now, do magic */ 2020 /* update ev_rt_now, do magic */
1268 time_update (EV_A); 2021 time_update (EV_A_ waittime + sleeptime);
2022 }
1269 2023
1270 /* queue pending timers and reschedule them */ 2024 /* queue pending timers and reschedule them */
1271 timers_reify (EV_A); /* relative timers called last */ 2025 timers_reify (EV_A); /* relative timers called last */
1272#if EV_PERIODICS 2026#if EV_PERIODIC_ENABLE
1273 periodics_reify (EV_A); /* absolute timers called first */ 2027 periodics_reify (EV_A); /* absolute timers called first */
1274#endif 2028#endif
1275 2029
2030#if EV_IDLE_ENABLE
1276 /* queue idle watchers unless io or timers are pending */ 2031 /* queue idle watchers unless other events are pending */
1277 if (idlecnt && !any_pending (EV_A)) 2032 idle_reify (EV_A);
1278 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2033#endif
1279 2034
1280 /* queue check watchers, to be executed first */ 2035 /* queue check watchers, to be executed first */
1281 if (expect_false (checkcnt)) 2036 if (expect_false (checkcnt))
1282 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2037 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1283 2038
1284 call_pending (EV_A); 2039 call_pending (EV_A);
1285
1286 if (expect_false (loop_done))
1287 break;
1288 } 2040 }
2041 while (expect_true (
2042 activecnt
2043 && !loop_done
2044 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2045 ));
1289 2046
1290 if (loop_done != 2) 2047 if (loop_done == EVUNLOOP_ONE)
1291 loop_done = 0; 2048 loop_done = EVUNLOOP_CANCEL;
1292} 2049}
1293 2050
1294void 2051void
1295ev_unloop (EV_P_ int how) 2052ev_unloop (EV_P_ int how)
1296{ 2053{
1297 loop_done = how; 2054 loop_done = how;
1298} 2055}
1299 2056
1300/*****************************************************************************/ 2057/*****************************************************************************/
1301 2058
1302inline void 2059void inline_size
1303wlist_add (WL *head, WL elem) 2060wlist_add (WL *head, WL elem)
1304{ 2061{
1305 elem->next = *head; 2062 elem->next = *head;
1306 *head = elem; 2063 *head = elem;
1307} 2064}
1308 2065
1309inline void 2066void inline_size
1310wlist_del (WL *head, WL elem) 2067wlist_del (WL *head, WL elem)
1311{ 2068{
1312 while (*head) 2069 while (*head)
1313 { 2070 {
1314 if (*head == elem) 2071 if (*head == elem)
1319 2076
1320 head = &(*head)->next; 2077 head = &(*head)->next;
1321 } 2078 }
1322} 2079}
1323 2080
1324inline void 2081void inline_speed
1325ev_clear_pending (EV_P_ W w) 2082clear_pending (EV_P_ W w)
1326{ 2083{
1327 if (w->pending) 2084 if (w->pending)
1328 { 2085 {
1329 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2086 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1330 w->pending = 0; 2087 w->pending = 0;
1331 } 2088 }
1332} 2089}
1333 2090
1334inline void 2091int
2092ev_clear_pending (EV_P_ void *w)
2093{
2094 W w_ = (W)w;
2095 int pending = w_->pending;
2096
2097 if (expect_true (pending))
2098 {
2099 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2100 w_->pending = 0;
2101 p->w = 0;
2102 return p->events;
2103 }
2104 else
2105 return 0;
2106}
2107
2108void inline_size
2109pri_adjust (EV_P_ W w)
2110{
2111 int pri = w->priority;
2112 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2113 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2114 w->priority = pri;
2115}
2116
2117void inline_speed
1335ev_start (EV_P_ W w, int active) 2118ev_start (EV_P_ W w, int active)
1336{ 2119{
1337 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2120 pri_adjust (EV_A_ w);
1338 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1339
1340 w->active = active; 2121 w->active = active;
1341 ev_ref (EV_A); 2122 ev_ref (EV_A);
1342} 2123}
1343 2124
1344inline void 2125void inline_size
1345ev_stop (EV_P_ W w) 2126ev_stop (EV_P_ W w)
1346{ 2127{
1347 ev_unref (EV_A); 2128 ev_unref (EV_A);
1348 w->active = 0; 2129 w->active = 0;
1349} 2130}
1350 2131
1351/*****************************************************************************/ 2132/*****************************************************************************/
1352 2133
1353void 2134void noinline
1354ev_io_start (EV_P_ struct ev_io *w) 2135ev_io_start (EV_P_ ev_io *w)
1355{ 2136{
1356 int fd = w->fd; 2137 int fd = w->fd;
1357 2138
1358 if (expect_false (ev_is_active (w))) 2139 if (expect_false (ev_is_active (w)))
1359 return; 2140 return;
1360 2141
1361 assert (("ev_io_start called with negative fd", fd >= 0)); 2142 assert (("ev_io_start called with negative fd", fd >= 0));
1362 2143
2144 EV_FREQUENT_CHECK;
2145
1363 ev_start (EV_A_ (W)w, 1); 2146 ev_start (EV_A_ (W)w, 1);
1364 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2147 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1365 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2148 wlist_add (&anfds[fd].head, (WL)w);
1366 2149
1367 fd_change (EV_A_ fd); 2150 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1368} 2151 w->events &= ~EV_IOFDSET;
1369 2152
1370void 2153 EV_FREQUENT_CHECK;
2154}
2155
2156void noinline
1371ev_io_stop (EV_P_ struct ev_io *w) 2157ev_io_stop (EV_P_ ev_io *w)
1372{ 2158{
1373 ev_clear_pending (EV_A_ (W)w); 2159 clear_pending (EV_A_ (W)w);
1374 if (expect_false (!ev_is_active (w))) 2160 if (expect_false (!ev_is_active (w)))
1375 return; 2161 return;
1376 2162
1377 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2163 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1378 2164
2165 EV_FREQUENT_CHECK;
2166
1379 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2167 wlist_del (&anfds[w->fd].head, (WL)w);
1380 ev_stop (EV_A_ (W)w); 2168 ev_stop (EV_A_ (W)w);
1381 2169
1382 fd_change (EV_A_ w->fd); 2170 fd_change (EV_A_ w->fd, 1);
1383}
1384 2171
1385void 2172 EV_FREQUENT_CHECK;
2173}
2174
2175void noinline
1386ev_timer_start (EV_P_ struct ev_timer *w) 2176ev_timer_start (EV_P_ ev_timer *w)
1387{ 2177{
1388 if (expect_false (ev_is_active (w))) 2178 if (expect_false (ev_is_active (w)))
1389 return; 2179 return;
1390 2180
1391 ((WT)w)->at += mn_now; 2181 ev_at (w) += mn_now;
1392 2182
1393 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2183 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1394 2184
2185 EV_FREQUENT_CHECK;
2186
2187 ++timercnt;
1395 ev_start (EV_A_ (W)w, ++timercnt); 2188 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1396 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2189 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1397 timers [timercnt - 1] = w; 2190 ANHE_w (timers [ev_active (w)]) = (WT)w;
1398 upheap ((WT *)timers, timercnt - 1); 2191 ANHE_at_cache (timers [ev_active (w)]);
2192 upheap (timers, ev_active (w));
1399 2193
2194 EV_FREQUENT_CHECK;
2195
1400 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2196 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1401} 2197}
1402 2198
1403void 2199void noinline
1404ev_timer_stop (EV_P_ struct ev_timer *w) 2200ev_timer_stop (EV_P_ ev_timer *w)
1405{ 2201{
1406 ev_clear_pending (EV_A_ (W)w); 2202 clear_pending (EV_A_ (W)w);
1407 if (expect_false (!ev_is_active (w))) 2203 if (expect_false (!ev_is_active (w)))
1408 return; 2204 return;
1409 2205
2206 EV_FREQUENT_CHECK;
2207
2208 {
2209 int active = ev_active (w);
2210
1410 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2211 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1411 2212
2213 --timercnt;
2214
1412 if (expect_true (((W)w)->active < timercnt--)) 2215 if (expect_true (active < timercnt + HEAP0))
1413 { 2216 {
1414 timers [((W)w)->active - 1] = timers [timercnt]; 2217 timers [active] = timers [timercnt + HEAP0];
1415 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2218 adjustheap (timers, timercnt, active);
1416 } 2219 }
2220 }
1417 2221
1418 ((WT)w)->at -= mn_now; 2222 EV_FREQUENT_CHECK;
2223
2224 ev_at (w) -= mn_now;
1419 2225
1420 ev_stop (EV_A_ (W)w); 2226 ev_stop (EV_A_ (W)w);
1421} 2227}
1422 2228
1423void 2229void noinline
1424ev_timer_again (EV_P_ struct ev_timer *w) 2230ev_timer_again (EV_P_ ev_timer *w)
1425{ 2231{
2232 EV_FREQUENT_CHECK;
2233
1426 if (ev_is_active (w)) 2234 if (ev_is_active (w))
1427 { 2235 {
1428 if (w->repeat) 2236 if (w->repeat)
1429 { 2237 {
1430 ((WT)w)->at = mn_now + w->repeat; 2238 ev_at (w) = mn_now + w->repeat;
2239 ANHE_at_cache (timers [ev_active (w)]);
1431 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2240 adjustheap (timers, timercnt, ev_active (w));
1432 } 2241 }
1433 else 2242 else
1434 ev_timer_stop (EV_A_ w); 2243 ev_timer_stop (EV_A_ w);
1435 } 2244 }
1436 else if (w->repeat) 2245 else if (w->repeat)
1437 { 2246 {
1438 w->at = w->repeat; 2247 ev_at (w) = w->repeat;
1439 ev_timer_start (EV_A_ w); 2248 ev_timer_start (EV_A_ w);
1440 } 2249 }
1441}
1442 2250
2251 EV_FREQUENT_CHECK;
2252}
2253
1443#if EV_PERIODICS 2254#if EV_PERIODIC_ENABLE
1444void 2255void noinline
1445ev_periodic_start (EV_P_ struct ev_periodic *w) 2256ev_periodic_start (EV_P_ ev_periodic *w)
1446{ 2257{
1447 if (expect_false (ev_is_active (w))) 2258 if (expect_false (ev_is_active (w)))
1448 return; 2259 return;
1449 2260
1450 if (w->reschedule_cb) 2261 if (w->reschedule_cb)
1451 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2262 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1452 else if (w->interval) 2263 else if (w->interval)
1453 { 2264 {
1454 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2265 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1455 /* this formula differs from the one in periodic_reify because we do not always round up */ 2266 /* this formula differs from the one in periodic_reify because we do not always round up */
1456 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2267 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1457 } 2268 }
2269 else
2270 ev_at (w) = w->offset;
1458 2271
2272 EV_FREQUENT_CHECK;
2273
2274 ++periodiccnt;
1459 ev_start (EV_A_ (W)w, ++periodiccnt); 2275 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1460 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2276 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1461 periodics [periodiccnt - 1] = w; 2277 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1462 upheap ((WT *)periodics, periodiccnt - 1); 2278 ANHE_at_cache (periodics [ev_active (w)]);
2279 upheap (periodics, ev_active (w));
1463 2280
2281 EV_FREQUENT_CHECK;
2282
1464 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2283 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1465} 2284}
1466 2285
1467void 2286void noinline
1468ev_periodic_stop (EV_P_ struct ev_periodic *w) 2287ev_periodic_stop (EV_P_ ev_periodic *w)
1469{ 2288{
1470 ev_clear_pending (EV_A_ (W)w); 2289 clear_pending (EV_A_ (W)w);
1471 if (expect_false (!ev_is_active (w))) 2290 if (expect_false (!ev_is_active (w)))
1472 return; 2291 return;
1473 2292
2293 EV_FREQUENT_CHECK;
2294
2295 {
2296 int active = ev_active (w);
2297
1474 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2298 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1475 2299
2300 --periodiccnt;
2301
1476 if (expect_true (((W)w)->active < periodiccnt--)) 2302 if (expect_true (active < periodiccnt + HEAP0))
1477 { 2303 {
1478 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2304 periodics [active] = periodics [periodiccnt + HEAP0];
1479 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2305 adjustheap (periodics, periodiccnt, active);
1480 } 2306 }
2307 }
2308
2309 EV_FREQUENT_CHECK;
1481 2310
1482 ev_stop (EV_A_ (W)w); 2311 ev_stop (EV_A_ (W)w);
1483} 2312}
1484 2313
1485void 2314void noinline
1486ev_periodic_again (EV_P_ struct ev_periodic *w) 2315ev_periodic_again (EV_P_ ev_periodic *w)
1487{ 2316{
1488 /* TODO: use adjustheap and recalculation */ 2317 /* TODO: use adjustheap and recalculation */
1489 ev_periodic_stop (EV_A_ w); 2318 ev_periodic_stop (EV_A_ w);
1490 ev_periodic_start (EV_A_ w); 2319 ev_periodic_start (EV_A_ w);
1491} 2320}
1492#endif 2321#endif
1493 2322
1494void 2323#ifndef SA_RESTART
1495ev_idle_start (EV_P_ struct ev_idle *w) 2324# define SA_RESTART 0
2325#endif
2326
2327void noinline
2328ev_signal_start (EV_P_ ev_signal *w)
1496{ 2329{
2330#if EV_MULTIPLICITY
2331 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2332#endif
1497 if (expect_false (ev_is_active (w))) 2333 if (expect_false (ev_is_active (w)))
1498 return; 2334 return;
1499 2335
1500 ev_start (EV_A_ (W)w, ++idlecnt);
1501 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1502 idles [idlecnt - 1] = w;
1503}
1504
1505void
1506ev_idle_stop (EV_P_ struct ev_idle *w)
1507{
1508 ev_clear_pending (EV_A_ (W)w);
1509 if (expect_false (!ev_is_active (w)))
1510 return;
1511
1512 idles [((W)w)->active - 1] = idles [--idlecnt];
1513 ev_stop (EV_A_ (W)w);
1514}
1515
1516void
1517ev_prepare_start (EV_P_ struct ev_prepare *w)
1518{
1519 if (expect_false (ev_is_active (w)))
1520 return;
1521
1522 ev_start (EV_A_ (W)w, ++preparecnt);
1523 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1524 prepares [preparecnt - 1] = w;
1525}
1526
1527void
1528ev_prepare_stop (EV_P_ struct ev_prepare *w)
1529{
1530 ev_clear_pending (EV_A_ (W)w);
1531 if (expect_false (!ev_is_active (w)))
1532 return;
1533
1534 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1535 ev_stop (EV_A_ (W)w);
1536}
1537
1538void
1539ev_check_start (EV_P_ struct ev_check *w)
1540{
1541 if (expect_false (ev_is_active (w)))
1542 return;
1543
1544 ev_start (EV_A_ (W)w, ++checkcnt);
1545 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1546 checks [checkcnt - 1] = w;
1547}
1548
1549void
1550ev_check_stop (EV_P_ struct ev_check *w)
1551{
1552 ev_clear_pending (EV_A_ (W)w);
1553 if (expect_false (!ev_is_active (w)))
1554 return;
1555
1556 checks [((W)w)->active - 1] = checks [--checkcnt];
1557 ev_stop (EV_A_ (W)w);
1558}
1559
1560#ifndef SA_RESTART
1561# define SA_RESTART 0
1562#endif
1563
1564void
1565ev_signal_start (EV_P_ struct ev_signal *w)
1566{
1567#if EV_MULTIPLICITY
1568 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1569#endif
1570 if (expect_false (ev_is_active (w)))
1571 return;
1572
1573 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2336 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1574 2337
2338 evpipe_init (EV_A);
2339
2340 EV_FREQUENT_CHECK;
2341
2342 {
2343#ifndef _WIN32
2344 sigset_t full, prev;
2345 sigfillset (&full);
2346 sigprocmask (SIG_SETMASK, &full, &prev);
2347#endif
2348
2349 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2350
2351#ifndef _WIN32
2352 sigprocmask (SIG_SETMASK, &prev, 0);
2353#endif
2354 }
2355
1575 ev_start (EV_A_ (W)w, 1); 2356 ev_start (EV_A_ (W)w, 1);
1576 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1577 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2357 wlist_add (&signals [w->signum - 1].head, (WL)w);
1578 2358
1579 if (!((WL)w)->next) 2359 if (!((WL)w)->next)
1580 { 2360 {
1581#if _WIN32 2361#if _WIN32
1582 signal (w->signum, sighandler); 2362 signal (w->signum, ev_sighandler);
1583#else 2363#else
1584 struct sigaction sa; 2364 struct sigaction sa;
1585 sa.sa_handler = sighandler; 2365 sa.sa_handler = ev_sighandler;
1586 sigfillset (&sa.sa_mask); 2366 sigfillset (&sa.sa_mask);
1587 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2367 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1588 sigaction (w->signum, &sa, 0); 2368 sigaction (w->signum, &sa, 0);
1589#endif 2369#endif
1590 } 2370 }
1591}
1592 2371
1593void 2372 EV_FREQUENT_CHECK;
2373}
2374
2375void noinline
1594ev_signal_stop (EV_P_ struct ev_signal *w) 2376ev_signal_stop (EV_P_ ev_signal *w)
1595{ 2377{
1596 ev_clear_pending (EV_A_ (W)w); 2378 clear_pending (EV_A_ (W)w);
1597 if (expect_false (!ev_is_active (w))) 2379 if (expect_false (!ev_is_active (w)))
1598 return; 2380 return;
1599 2381
2382 EV_FREQUENT_CHECK;
2383
1600 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2384 wlist_del (&signals [w->signum - 1].head, (WL)w);
1601 ev_stop (EV_A_ (W)w); 2385 ev_stop (EV_A_ (W)w);
1602 2386
1603 if (!signals [w->signum - 1].head) 2387 if (!signals [w->signum - 1].head)
1604 signal (w->signum, SIG_DFL); 2388 signal (w->signum, SIG_DFL);
1605}
1606 2389
2390 EV_FREQUENT_CHECK;
2391}
2392
1607void 2393void
1608ev_child_start (EV_P_ struct ev_child *w) 2394ev_child_start (EV_P_ ev_child *w)
1609{ 2395{
1610#if EV_MULTIPLICITY 2396#if EV_MULTIPLICITY
1611 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2397 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1612#endif 2398#endif
1613 if (expect_false (ev_is_active (w))) 2399 if (expect_false (ev_is_active (w)))
1614 return; 2400 return;
1615 2401
2402 EV_FREQUENT_CHECK;
2403
1616 ev_start (EV_A_ (W)w, 1); 2404 ev_start (EV_A_ (W)w, 1);
1617 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2405 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1618}
1619 2406
2407 EV_FREQUENT_CHECK;
2408}
2409
1620void 2410void
1621ev_child_stop (EV_P_ struct ev_child *w) 2411ev_child_stop (EV_P_ ev_child *w)
1622{ 2412{
1623 ev_clear_pending (EV_A_ (W)w); 2413 clear_pending (EV_A_ (W)w);
1624 if (expect_false (!ev_is_active (w))) 2414 if (expect_false (!ev_is_active (w)))
1625 return; 2415 return;
1626 2416
2417 EV_FREQUENT_CHECK;
2418
1627 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2419 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1628 ev_stop (EV_A_ (W)w); 2420 ev_stop (EV_A_ (W)w);
2421
2422 EV_FREQUENT_CHECK;
1629} 2423}
2424
2425#if EV_STAT_ENABLE
2426
2427# ifdef _WIN32
2428# undef lstat
2429# define lstat(a,b) _stati64 (a,b)
2430# endif
2431
2432#define DEF_STAT_INTERVAL 5.0074891
2433#define MIN_STAT_INTERVAL 0.1074891
2434
2435static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2436
2437#if EV_USE_INOTIFY
2438# define EV_INOTIFY_BUFSIZE 8192
2439
2440static void noinline
2441infy_add (EV_P_ ev_stat *w)
2442{
2443 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2444
2445 if (w->wd < 0)
2446 {
2447 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2448
2449 /* monitor some parent directory for speedup hints */
2450 /* note that exceeding the hardcoded limit is not a correctness issue, */
2451 /* but an efficiency issue only */
2452 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2453 {
2454 char path [4096];
2455 strcpy (path, w->path);
2456
2457 do
2458 {
2459 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2460 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2461
2462 char *pend = strrchr (path, '/');
2463
2464 if (!pend)
2465 break; /* whoops, no '/', complain to your admin */
2466
2467 *pend = 0;
2468 w->wd = inotify_add_watch (fs_fd, path, mask);
2469 }
2470 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2471 }
2472 }
2473 else
2474 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2475
2476 if (w->wd >= 0)
2477 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2478}
2479
2480static void noinline
2481infy_del (EV_P_ ev_stat *w)
2482{
2483 int slot;
2484 int wd = w->wd;
2485
2486 if (wd < 0)
2487 return;
2488
2489 w->wd = -2;
2490 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2491 wlist_del (&fs_hash [slot].head, (WL)w);
2492
2493 /* remove this watcher, if others are watching it, they will rearm */
2494 inotify_rm_watch (fs_fd, wd);
2495}
2496
2497static void noinline
2498infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2499{
2500 if (slot < 0)
2501 /* overflow, need to check for all hahs slots */
2502 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2503 infy_wd (EV_A_ slot, wd, ev);
2504 else
2505 {
2506 WL w_;
2507
2508 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2509 {
2510 ev_stat *w = (ev_stat *)w_;
2511 w_ = w_->next; /* lets us remove this watcher and all before it */
2512
2513 if (w->wd == wd || wd == -1)
2514 {
2515 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2516 {
2517 w->wd = -1;
2518 infy_add (EV_A_ w); /* re-add, no matter what */
2519 }
2520
2521 stat_timer_cb (EV_A_ &w->timer, 0);
2522 }
2523 }
2524 }
2525}
2526
2527static void
2528infy_cb (EV_P_ ev_io *w, int revents)
2529{
2530 char buf [EV_INOTIFY_BUFSIZE];
2531 struct inotify_event *ev = (struct inotify_event *)buf;
2532 int ofs;
2533 int len = read (fs_fd, buf, sizeof (buf));
2534
2535 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2536 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2537}
2538
2539void inline_size
2540infy_init (EV_P)
2541{
2542 if (fs_fd != -2)
2543 return;
2544
2545 fs_fd = inotify_init ();
2546
2547 if (fs_fd >= 0)
2548 {
2549 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2550 ev_set_priority (&fs_w, EV_MAXPRI);
2551 ev_io_start (EV_A_ &fs_w);
2552 }
2553}
2554
2555void inline_size
2556infy_fork (EV_P)
2557{
2558 int slot;
2559
2560 if (fs_fd < 0)
2561 return;
2562
2563 close (fs_fd);
2564 fs_fd = inotify_init ();
2565
2566 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2567 {
2568 WL w_ = fs_hash [slot].head;
2569 fs_hash [slot].head = 0;
2570
2571 while (w_)
2572 {
2573 ev_stat *w = (ev_stat *)w_;
2574 w_ = w_->next; /* lets us add this watcher */
2575
2576 w->wd = -1;
2577
2578 if (fs_fd >= 0)
2579 infy_add (EV_A_ w); /* re-add, no matter what */
2580 else
2581 ev_timer_start (EV_A_ &w->timer);
2582 }
2583
2584 }
2585}
2586
2587#endif
2588
2589#ifdef _WIN32
2590# define EV_LSTAT(p,b) _stati64 (p, b)
2591#else
2592# define EV_LSTAT(p,b) lstat (p, b)
2593#endif
2594
2595void
2596ev_stat_stat (EV_P_ ev_stat *w)
2597{
2598 if (lstat (w->path, &w->attr) < 0)
2599 w->attr.st_nlink = 0;
2600 else if (!w->attr.st_nlink)
2601 w->attr.st_nlink = 1;
2602}
2603
2604static void noinline
2605stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2606{
2607 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2608
2609 /* we copy this here each the time so that */
2610 /* prev has the old value when the callback gets invoked */
2611 w->prev = w->attr;
2612 ev_stat_stat (EV_A_ w);
2613
2614 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2615 if (
2616 w->prev.st_dev != w->attr.st_dev
2617 || w->prev.st_ino != w->attr.st_ino
2618 || w->prev.st_mode != w->attr.st_mode
2619 || w->prev.st_nlink != w->attr.st_nlink
2620 || w->prev.st_uid != w->attr.st_uid
2621 || w->prev.st_gid != w->attr.st_gid
2622 || w->prev.st_rdev != w->attr.st_rdev
2623 || w->prev.st_size != w->attr.st_size
2624 || w->prev.st_atime != w->attr.st_atime
2625 || w->prev.st_mtime != w->attr.st_mtime
2626 || w->prev.st_ctime != w->attr.st_ctime
2627 ) {
2628 #if EV_USE_INOTIFY
2629 infy_del (EV_A_ w);
2630 infy_add (EV_A_ w);
2631 ev_stat_stat (EV_A_ w); /* avoid race... */
2632 #endif
2633
2634 ev_feed_event (EV_A_ w, EV_STAT);
2635 }
2636}
2637
2638void
2639ev_stat_start (EV_P_ ev_stat *w)
2640{
2641 if (expect_false (ev_is_active (w)))
2642 return;
2643
2644 /* since we use memcmp, we need to clear any padding data etc. */
2645 memset (&w->prev, 0, sizeof (ev_statdata));
2646 memset (&w->attr, 0, sizeof (ev_statdata));
2647
2648 ev_stat_stat (EV_A_ w);
2649
2650 if (w->interval < MIN_STAT_INTERVAL)
2651 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2652
2653 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2654 ev_set_priority (&w->timer, ev_priority (w));
2655
2656#if EV_USE_INOTIFY
2657 infy_init (EV_A);
2658
2659 if (fs_fd >= 0)
2660 infy_add (EV_A_ w);
2661 else
2662#endif
2663 ev_timer_start (EV_A_ &w->timer);
2664
2665 ev_start (EV_A_ (W)w, 1);
2666
2667 EV_FREQUENT_CHECK;
2668}
2669
2670void
2671ev_stat_stop (EV_P_ ev_stat *w)
2672{
2673 clear_pending (EV_A_ (W)w);
2674 if (expect_false (!ev_is_active (w)))
2675 return;
2676
2677 EV_FREQUENT_CHECK;
2678
2679#if EV_USE_INOTIFY
2680 infy_del (EV_A_ w);
2681#endif
2682 ev_timer_stop (EV_A_ &w->timer);
2683
2684 ev_stop (EV_A_ (W)w);
2685
2686 EV_FREQUENT_CHECK;
2687}
2688#endif
2689
2690#if EV_IDLE_ENABLE
2691void
2692ev_idle_start (EV_P_ ev_idle *w)
2693{
2694 if (expect_false (ev_is_active (w)))
2695 return;
2696
2697 pri_adjust (EV_A_ (W)w);
2698
2699 EV_FREQUENT_CHECK;
2700
2701 {
2702 int active = ++idlecnt [ABSPRI (w)];
2703
2704 ++idleall;
2705 ev_start (EV_A_ (W)w, active);
2706
2707 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2708 idles [ABSPRI (w)][active - 1] = w;
2709 }
2710
2711 EV_FREQUENT_CHECK;
2712}
2713
2714void
2715ev_idle_stop (EV_P_ ev_idle *w)
2716{
2717 clear_pending (EV_A_ (W)w);
2718 if (expect_false (!ev_is_active (w)))
2719 return;
2720
2721 EV_FREQUENT_CHECK;
2722
2723 {
2724 int active = ev_active (w);
2725
2726 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2727 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2728
2729 ev_stop (EV_A_ (W)w);
2730 --idleall;
2731 }
2732
2733 EV_FREQUENT_CHECK;
2734}
2735#endif
2736
2737void
2738ev_prepare_start (EV_P_ ev_prepare *w)
2739{
2740 if (expect_false (ev_is_active (w)))
2741 return;
2742
2743 EV_FREQUENT_CHECK;
2744
2745 ev_start (EV_A_ (W)w, ++preparecnt);
2746 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2747 prepares [preparecnt - 1] = w;
2748
2749 EV_FREQUENT_CHECK;
2750}
2751
2752void
2753ev_prepare_stop (EV_P_ ev_prepare *w)
2754{
2755 clear_pending (EV_A_ (W)w);
2756 if (expect_false (!ev_is_active (w)))
2757 return;
2758
2759 EV_FREQUENT_CHECK;
2760
2761 {
2762 int active = ev_active (w);
2763
2764 prepares [active - 1] = prepares [--preparecnt];
2765 ev_active (prepares [active - 1]) = active;
2766 }
2767
2768 ev_stop (EV_A_ (W)w);
2769
2770 EV_FREQUENT_CHECK;
2771}
2772
2773void
2774ev_check_start (EV_P_ ev_check *w)
2775{
2776 if (expect_false (ev_is_active (w)))
2777 return;
2778
2779 EV_FREQUENT_CHECK;
2780
2781 ev_start (EV_A_ (W)w, ++checkcnt);
2782 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2783 checks [checkcnt - 1] = w;
2784
2785 EV_FREQUENT_CHECK;
2786}
2787
2788void
2789ev_check_stop (EV_P_ ev_check *w)
2790{
2791 clear_pending (EV_A_ (W)w);
2792 if (expect_false (!ev_is_active (w)))
2793 return;
2794
2795 EV_FREQUENT_CHECK;
2796
2797 {
2798 int active = ev_active (w);
2799
2800 checks [active - 1] = checks [--checkcnt];
2801 ev_active (checks [active - 1]) = active;
2802 }
2803
2804 ev_stop (EV_A_ (W)w);
2805
2806 EV_FREQUENT_CHECK;
2807}
2808
2809#if EV_EMBED_ENABLE
2810void noinline
2811ev_embed_sweep (EV_P_ ev_embed *w)
2812{
2813 ev_loop (w->other, EVLOOP_NONBLOCK);
2814}
2815
2816static void
2817embed_io_cb (EV_P_ ev_io *io, int revents)
2818{
2819 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2820
2821 if (ev_cb (w))
2822 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2823 else
2824 ev_loop (w->other, EVLOOP_NONBLOCK);
2825}
2826
2827static void
2828embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2829{
2830 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2831
2832 {
2833 struct ev_loop *loop = w->other;
2834
2835 while (fdchangecnt)
2836 {
2837 fd_reify (EV_A);
2838 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2839 }
2840 }
2841}
2842
2843static void
2844embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2845{
2846 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2847
2848 {
2849 struct ev_loop *loop = w->other;
2850
2851 ev_loop_fork (EV_A);
2852 }
2853}
2854
2855#if 0
2856static void
2857embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2858{
2859 ev_idle_stop (EV_A_ idle);
2860}
2861#endif
2862
2863void
2864ev_embed_start (EV_P_ ev_embed *w)
2865{
2866 if (expect_false (ev_is_active (w)))
2867 return;
2868
2869 {
2870 struct ev_loop *loop = w->other;
2871 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2872 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2873 }
2874
2875 EV_FREQUENT_CHECK;
2876
2877 ev_set_priority (&w->io, ev_priority (w));
2878 ev_io_start (EV_A_ &w->io);
2879
2880 ev_prepare_init (&w->prepare, embed_prepare_cb);
2881 ev_set_priority (&w->prepare, EV_MINPRI);
2882 ev_prepare_start (EV_A_ &w->prepare);
2883
2884 ev_fork_init (&w->fork, embed_fork_cb);
2885 ev_fork_start (EV_A_ &w->fork);
2886
2887 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2888
2889 ev_start (EV_A_ (W)w, 1);
2890
2891 EV_FREQUENT_CHECK;
2892}
2893
2894void
2895ev_embed_stop (EV_P_ ev_embed *w)
2896{
2897 clear_pending (EV_A_ (W)w);
2898 if (expect_false (!ev_is_active (w)))
2899 return;
2900
2901 EV_FREQUENT_CHECK;
2902
2903 ev_io_stop (EV_A_ &w->io);
2904 ev_prepare_stop (EV_A_ &w->prepare);
2905 ev_fork_stop (EV_A_ &w->fork);
2906
2907 EV_FREQUENT_CHECK;
2908}
2909#endif
2910
2911#if EV_FORK_ENABLE
2912void
2913ev_fork_start (EV_P_ ev_fork *w)
2914{
2915 if (expect_false (ev_is_active (w)))
2916 return;
2917
2918 EV_FREQUENT_CHECK;
2919
2920 ev_start (EV_A_ (W)w, ++forkcnt);
2921 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2922 forks [forkcnt - 1] = w;
2923
2924 EV_FREQUENT_CHECK;
2925}
2926
2927void
2928ev_fork_stop (EV_P_ ev_fork *w)
2929{
2930 clear_pending (EV_A_ (W)w);
2931 if (expect_false (!ev_is_active (w)))
2932 return;
2933
2934 EV_FREQUENT_CHECK;
2935
2936 {
2937 int active = ev_active (w);
2938
2939 forks [active - 1] = forks [--forkcnt];
2940 ev_active (forks [active - 1]) = active;
2941 }
2942
2943 ev_stop (EV_A_ (W)w);
2944
2945 EV_FREQUENT_CHECK;
2946}
2947#endif
2948
2949#if EV_ASYNC_ENABLE
2950void
2951ev_async_start (EV_P_ ev_async *w)
2952{
2953 if (expect_false (ev_is_active (w)))
2954 return;
2955
2956 evpipe_init (EV_A);
2957
2958 EV_FREQUENT_CHECK;
2959
2960 ev_start (EV_A_ (W)w, ++asynccnt);
2961 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2962 asyncs [asynccnt - 1] = w;
2963
2964 EV_FREQUENT_CHECK;
2965}
2966
2967void
2968ev_async_stop (EV_P_ ev_async *w)
2969{
2970 clear_pending (EV_A_ (W)w);
2971 if (expect_false (!ev_is_active (w)))
2972 return;
2973
2974 EV_FREQUENT_CHECK;
2975
2976 {
2977 int active = ev_active (w);
2978
2979 asyncs [active - 1] = asyncs [--asynccnt];
2980 ev_active (asyncs [active - 1]) = active;
2981 }
2982
2983 ev_stop (EV_A_ (W)w);
2984
2985 EV_FREQUENT_CHECK;
2986}
2987
2988void
2989ev_async_send (EV_P_ ev_async *w)
2990{
2991 w->sent = 1;
2992 evpipe_write (EV_A_ &gotasync);
2993}
2994#endif
1630 2995
1631/*****************************************************************************/ 2996/*****************************************************************************/
1632 2997
1633struct ev_once 2998struct ev_once
1634{ 2999{
1635 struct ev_io io; 3000 ev_io io;
1636 struct ev_timer to; 3001 ev_timer to;
1637 void (*cb)(int revents, void *arg); 3002 void (*cb)(int revents, void *arg);
1638 void *arg; 3003 void *arg;
1639}; 3004};
1640 3005
1641static void 3006static void
1642once_cb (EV_P_ struct ev_once *once, int revents) 3007once_cb (EV_P_ struct ev_once *once, int revents)
1643{ 3008{
1644 void (*cb)(int revents, void *arg) = once->cb; 3009 void (*cb)(int revents, void *arg) = once->cb;
1645 void *arg = once->arg; 3010 void *arg = once->arg;
1646 3011
1647 ev_io_stop (EV_A_ &once->io); 3012 ev_io_stop (EV_A_ &once->io);
1648 ev_timer_stop (EV_A_ &once->to); 3013 ev_timer_stop (EV_A_ &once->to);
1649 ev_free (once); 3014 ev_free (once);
1650 3015
1651 cb (revents, arg); 3016 cb (revents, arg);
1652} 3017}
1653 3018
1654static void 3019static void
1655once_cb_io (EV_P_ struct ev_io *w, int revents) 3020once_cb_io (EV_P_ ev_io *w, int revents)
1656{ 3021{
1657 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3022 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3023
3024 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1658} 3025}
1659 3026
1660static void 3027static void
1661once_cb_to (EV_P_ struct ev_timer *w, int revents) 3028once_cb_to (EV_P_ ev_timer *w, int revents)
1662{ 3029{
1663 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3030 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3031
3032 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1664} 3033}
1665 3034
1666void 3035void
1667ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3036ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1668{ 3037{
1690 ev_timer_set (&once->to, timeout, 0.); 3059 ev_timer_set (&once->to, timeout, 0.);
1691 ev_timer_start (EV_A_ &once->to); 3060 ev_timer_start (EV_A_ &once->to);
1692 } 3061 }
1693} 3062}
1694 3063
3064#if EV_MULTIPLICITY
3065 #include "ev_wrap.h"
3066#endif
3067
1695#ifdef __cplusplus 3068#ifdef __cplusplus
1696} 3069}
1697#endif 3070#endif
1698 3071

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines