ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.159 by root, Sat Dec 1 19:48:36 2007 UTC vs.
Revision 1.263 by root, Wed Oct 1 18:50:03 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
129#ifndef _WIN32 154#ifndef _WIN32
130# include <sys/time.h> 155# include <sys/time.h>
131# include <sys/wait.h> 156# include <sys/wait.h>
132# include <unistd.h> 157# include <unistd.h>
133#else 158#else
159# include <io.h>
134# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 161# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
138# endif 164# endif
139#endif 165#endif
140 166
141/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
142 168
143#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
144# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
145#endif 175#endif
146 176
147#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
179#endif
180
181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
185# define EV_USE_NANOSLEEP 0
186# endif
149#endif 187#endif
150 188
151#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
153#endif 191#endif
159# define EV_USE_POLL 1 197# define EV_USE_POLL 1
160# endif 198# endif
161#endif 199#endif
162 200
163#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
164# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
165#endif 207#endif
166 208
167#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
169#endif 211#endif
171#ifndef EV_USE_PORT 213#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 214# define EV_USE_PORT 0
173#endif 215#endif
174 216
175#ifndef EV_USE_INOTIFY 217#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1
220# else
176# define EV_USE_INOTIFY 0 221# define EV_USE_INOTIFY 0
222# endif
177#endif 223#endif
178 224
179#ifndef EV_PID_HASHSIZE 225#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 226# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 227# define EV_PID_HASHSIZE 1
190# else 236# else
191# define EV_INOTIFY_HASHSIZE 16 237# define EV_INOTIFY_HASHSIZE 16
192# endif 238# endif
193#endif 239#endif
194 240
195/**/ 241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 268
197#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
200#endif 272#endif
202#ifndef CLOCK_REALTIME 274#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 275# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 276# define EV_USE_REALTIME 0
205#endif 277#endif
206 278
279#if !EV_STAT_ENABLE
280# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0
282#endif
283
284#if !EV_USE_NANOSLEEP
285# ifndef _WIN32
286# include <sys/select.h>
287# endif
288#endif
289
290#if EV_USE_INOTIFY
291# include <sys/inotify.h>
292/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
293# ifndef IN_DONT_FOLLOW
294# undef EV_USE_INOTIFY
295# define EV_USE_INOTIFY 0
296# endif
297#endif
298
207#if EV_SELECT_IS_WINSOCKET 299#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 300# include <winsock.h>
209#endif 301#endif
210 302
211#if !EV_STAT_ENABLE 303#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 304/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
305# include <stdint.h>
306# ifdef __cplusplus
307extern "C" {
213#endif 308# endif
214 309int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 310# ifdef __cplusplus
216# include <sys/inotify.h> 311}
312# endif
217#endif 313#endif
218 314
219/**/ 315/**/
316
317#if EV_VERIFY >= 3
318# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
319#else
320# define EV_FREQUENT_CHECK do { } while (0)
321#endif
322
323/*
324 * This is used to avoid floating point rounding problems.
325 * It is added to ev_rt_now when scheduling periodics
326 * to ensure progress, time-wise, even when rounding
327 * errors are against us.
328 * This value is good at least till the year 4000.
329 * Better solutions welcome.
330 */
331#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 332
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 333#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 334#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 335/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 336
225#if __GNUC__ >= 3 337#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 338# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 339# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 340#else
236# define expect(expr,value) (expr) 341# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 342# define noinline
343# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
344# define inline
345# endif
240#endif 346#endif
241 347
242#define expect_false(expr) expect ((expr) != 0, 0) 348#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 349#define expect_true(expr) expect ((expr) != 0, 1)
350#define inline_size static inline
351
352#if EV_MINIMAL
353# define inline_speed static noinline
354#else
355# define inline_speed static inline
356#endif
244 357
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 358#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 359#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 360
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 361#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 362#define EMPTY2(a,b) /* used to suppress some warnings */
250 363
251typedef ev_watcher *W; 364typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 365typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 366typedef ev_watcher_time *WT;
254 367
368#define ev_active(w) ((W)(w))->active
369#define ev_at(w) ((WT)(w))->at
370
371#if EV_USE_MONOTONIC
372/* sig_atomic_t is used to avoid per-thread variables or locking but still */
373/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 374static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
375#endif
256 376
257#ifdef _WIN32 377#ifdef _WIN32
258# include "ev_win32.c" 378# include "ev_win32.c"
259#endif 379#endif
260 380
281 perror (msg); 401 perror (msg);
282 abort (); 402 abort ();
283 } 403 }
284} 404}
285 405
406static void *
407ev_realloc_emul (void *ptr, long size)
408{
409 /* some systems, notably openbsd and darwin, fail to properly
410 * implement realloc (x, 0) (as required by both ansi c-98 and
411 * the single unix specification, so work around them here.
412 */
413
414 if (size)
415 return realloc (ptr, size);
416
417 free (ptr);
418 return 0;
419}
420
286static void *(*alloc)(void *ptr, long size); 421static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 422
288void 423void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 424ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 425{
291 alloc = cb; 426 alloc = cb;
292} 427}
293 428
294inline_speed void * 429inline_speed void *
295ev_realloc (void *ptr, long size) 430ev_realloc (void *ptr, long size)
296{ 431{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 432 ptr = alloc (ptr, size);
298 433
299 if (!ptr && size) 434 if (!ptr && size)
300 { 435 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 436 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 437 abort ();
325 W w; 460 W w;
326 int events; 461 int events;
327} ANPENDING; 462} ANPENDING;
328 463
329#if EV_USE_INOTIFY 464#if EV_USE_INOTIFY
465/* hash table entry per inotify-id */
330typedef struct 466typedef struct
331{ 467{
332 WL head; 468 WL head;
333} ANFS; 469} ANFS;
470#endif
471
472/* Heap Entry */
473#if EV_HEAP_CACHE_AT
474 typedef struct {
475 ev_tstamp at;
476 WT w;
477 } ANHE;
478
479 #define ANHE_w(he) (he).w /* access watcher, read-write */
480 #define ANHE_at(he) (he).at /* access cached at, read-only */
481 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
482#else
483 typedef WT ANHE;
484
485 #define ANHE_w(he) (he)
486 #define ANHE_at(he) (he)->at
487 #define ANHE_at_cache(he)
334#endif 488#endif
335 489
336#if EV_MULTIPLICITY 490#if EV_MULTIPLICITY
337 491
338 struct ev_loop 492 struct ev_loop
396{ 550{
397 return ev_rt_now; 551 return ev_rt_now;
398} 552}
399#endif 553#endif
400 554
401#define array_roundsize(type,n) (((n) | 4) & ~3) 555void
556ev_sleep (ev_tstamp delay)
557{
558 if (delay > 0.)
559 {
560#if EV_USE_NANOSLEEP
561 struct timespec ts;
562
563 ts.tv_sec = (time_t)delay;
564 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
565
566 nanosleep (&ts, 0);
567#elif defined(_WIN32)
568 Sleep ((unsigned long)(delay * 1e3));
569#else
570 struct timeval tv;
571
572 tv.tv_sec = (time_t)delay;
573 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
574
575 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
576 /* somehting nto guaranteed by newer posix versions, but guaranteed */
577 /* by older ones */
578 select (0, 0, 0, 0, &tv);
579#endif
580 }
581}
582
583/*****************************************************************************/
584
585#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
586
587int inline_size
588array_nextsize (int elem, int cur, int cnt)
589{
590 int ncur = cur + 1;
591
592 do
593 ncur <<= 1;
594 while (cnt > ncur);
595
596 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
597 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
598 {
599 ncur *= elem;
600 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
601 ncur = ncur - sizeof (void *) * 4;
602 ncur /= elem;
603 }
604
605 return ncur;
606}
607
608static noinline void *
609array_realloc (int elem, void *base, int *cur, int cnt)
610{
611 *cur = array_nextsize (elem, *cur, cnt);
612 return ev_realloc (base, elem * *cur);
613}
402 614
403#define array_needsize(type,base,cur,cnt,init) \ 615#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 616 if (expect_false ((cnt) > (cur))) \
405 { \ 617 { \
406 int newcnt = cur; \ 618 int ocur_ = (cur); \
407 do \ 619 (base) = (type *)array_realloc \
408 { \ 620 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 621 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 622 }
417 623
624#if 0
418#define array_slim(type,stem) \ 625#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 626 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 627 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 628 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 629 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 630 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 631 }
632#endif
425 633
426#define array_free(stem, idx) \ 634#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 635 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
428 636
429/*****************************************************************************/ 637/*****************************************************************************/
430 638
431void noinline 639void noinline
432ev_feed_event (EV_P_ void *w, int revents) 640ev_feed_event (EV_P_ void *w, int revents)
433{ 641{
434 W w_ = (W)w; 642 W w_ = (W)w;
643 int pri = ABSPRI (w_);
435 644
436 if (expect_false (w_->pending)) 645 if (expect_false (w_->pending))
646 pendings [pri][w_->pending - 1].events |= revents;
647 else
437 { 648 {
649 w_->pending = ++pendingcnt [pri];
650 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
651 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 652 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 653 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 654}
447 655
448void inline_size 656void inline_speed
449queue_events (EV_P_ W *events, int eventcnt, int type) 657queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 658{
451 int i; 659 int i;
452 660
453 for (i = 0; i < eventcnt; ++i) 661 for (i = 0; i < eventcnt; ++i)
485} 693}
486 694
487void 695void
488ev_feed_fd_event (EV_P_ int fd, int revents) 696ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 697{
698 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 699 fd_event (EV_A_ fd, revents);
491} 700}
492 701
493void inline_size 702void inline_size
494fd_reify (EV_P) 703fd_reify (EV_P)
495{ 704{
499 { 708 {
500 int fd = fdchanges [i]; 709 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 710 ANFD *anfd = anfds + fd;
502 ev_io *w; 711 ev_io *w;
503 712
504 int events = 0; 713 unsigned char events = 0;
505 714
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 715 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 716 events |= (unsigned char)w->events;
508 717
509#if EV_SELECT_IS_WINSOCKET 718#if EV_SELECT_IS_WINSOCKET
510 if (events) 719 if (events)
511 { 720 {
512 unsigned long argp; 721 unsigned long arg;
722 #ifdef EV_FD_TO_WIN32_HANDLE
723 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
724 #else
513 anfd->handle = _get_osfhandle (fd); 725 anfd->handle = _get_osfhandle (fd);
726 #endif
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 727 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
515 } 728 }
516#endif 729#endif
517 730
731 {
732 unsigned char o_events = anfd->events;
733 unsigned char o_reify = anfd->reify;
734
518 anfd->reify = 0; 735 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 736 anfd->events = events;
737
738 if (o_events != events || o_reify & EV_IOFDSET)
739 backend_modify (EV_A_ fd, o_events, events);
740 }
522 } 741 }
523 742
524 fdchangecnt = 0; 743 fdchangecnt = 0;
525} 744}
526 745
527void inline_size 746void inline_size
528fd_change (EV_P_ int fd) 747fd_change (EV_P_ int fd, int flags)
529{ 748{
530 if (expect_false (anfds [fd].reify)) 749 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 750 anfds [fd].reify |= flags;
534 751
752 if (expect_true (!reify))
753 {
535 ++fdchangecnt; 754 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 755 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 756 fdchanges [fdchangecnt - 1] = fd;
757 }
538} 758}
539 759
540void inline_speed 760void inline_speed
541fd_kill (EV_P_ int fd) 761fd_kill (EV_P_ int fd)
542{ 762{
565{ 785{
566 int fd; 786 int fd;
567 787
568 for (fd = 0; fd < anfdmax; ++fd) 788 for (fd = 0; fd < anfdmax; ++fd)
569 if (anfds [fd].events) 789 if (anfds [fd].events)
570 if (!fd_valid (fd) == -1 && errno == EBADF) 790 if (!fd_valid (fd) && errno == EBADF)
571 fd_kill (EV_A_ fd); 791 fd_kill (EV_A_ fd);
572} 792}
573 793
574/* called on ENOMEM in select/poll to kill some fds and retry */ 794/* called on ENOMEM in select/poll to kill some fds and retry */
575static void noinline 795static void noinline
593 813
594 for (fd = 0; fd < anfdmax; ++fd) 814 for (fd = 0; fd < anfdmax; ++fd)
595 if (anfds [fd].events) 815 if (anfds [fd].events)
596 { 816 {
597 anfds [fd].events = 0; 817 anfds [fd].events = 0;
598 fd_change (EV_A_ fd); 818 fd_change (EV_A_ fd, EV_IOFDSET | 1);
599 } 819 }
600} 820}
601 821
602/*****************************************************************************/ 822/*****************************************************************************/
603 823
824/*
825 * the heap functions want a real array index. array index 0 uis guaranteed to not
826 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
827 * the branching factor of the d-tree.
828 */
829
830/*
831 * at the moment we allow libev the luxury of two heaps,
832 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
833 * which is more cache-efficient.
834 * the difference is about 5% with 50000+ watchers.
835 */
836#if EV_USE_4HEAP
837
838#define DHEAP 4
839#define HEAP0 (DHEAP - 1) /* index of first element in heap */
840#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
841#define UPHEAP_DONE(p,k) ((p) == (k))
842
843/* away from the root */
604void inline_speed 844void inline_speed
605upheap (WT *heap, int k) 845downheap (ANHE *heap, int N, int k)
606{ 846{
607 WT w = heap [k]; 847 ANHE he = heap [k];
848 ANHE *E = heap + N + HEAP0;
608 849
609 while (k && heap [k >> 1]->at > w->at) 850 for (;;)
610 {
611 heap [k] = heap [k >> 1];
612 ((W)heap [k])->active = k + 1;
613 k >>= 1;
614 } 851 {
852 ev_tstamp minat;
853 ANHE *minpos;
854 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
615 855
856 /* find minimum child */
857 if (expect_true (pos + DHEAP - 1 < E))
858 {
859 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
860 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
861 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
862 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
863 }
864 else if (pos < E)
865 {
866 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
867 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
868 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
869 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
870 }
871 else
872 break;
873
874 if (ANHE_at (he) <= minat)
875 break;
876
877 heap [k] = *minpos;
878 ev_active (ANHE_w (*minpos)) = k;
879
880 k = minpos - heap;
881 }
882
616 heap [k] = w; 883 heap [k] = he;
617 ((W)heap [k])->active = k + 1; 884 ev_active (ANHE_w (he)) = k;
618
619} 885}
620 886
887#else /* 4HEAP */
888
889#define HEAP0 1
890#define HPARENT(k) ((k) >> 1)
891#define UPHEAP_DONE(p,k) (!(p))
892
893/* away from the root */
621void inline_speed 894void inline_speed
622downheap (WT *heap, int N, int k) 895downheap (ANHE *heap, int N, int k)
623{ 896{
624 WT w = heap [k]; 897 ANHE he = heap [k];
625 898
626 while (k < (N >> 1)) 899 for (;;)
627 { 900 {
628 int j = k << 1; 901 int c = k << 1;
629 902
630 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 903 if (c > N + HEAP0 - 1)
631 ++j;
632
633 if (w->at <= heap [j]->at)
634 break; 904 break;
635 905
906 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
907 ? 1 : 0;
908
909 if (ANHE_at (he) <= ANHE_at (heap [c]))
910 break;
911
636 heap [k] = heap [j]; 912 heap [k] = heap [c];
637 ((W)heap [k])->active = k + 1; 913 ev_active (ANHE_w (heap [k])) = k;
914
638 k = j; 915 k = c;
639 } 916 }
640 917
641 heap [k] = w; 918 heap [k] = he;
642 ((W)heap [k])->active = k + 1; 919 ev_active (ANHE_w (he)) = k;
920}
921#endif
922
923/* towards the root */
924void inline_speed
925upheap (ANHE *heap, int k)
926{
927 ANHE he = heap [k];
928
929 for (;;)
930 {
931 int p = HPARENT (k);
932
933 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
934 break;
935
936 heap [k] = heap [p];
937 ev_active (ANHE_w (heap [k])) = k;
938 k = p;
939 }
940
941 heap [k] = he;
942 ev_active (ANHE_w (he)) = k;
643} 943}
644 944
645void inline_size 945void inline_size
646adjustheap (WT *heap, int N, int k) 946adjustheap (ANHE *heap, int N, int k)
647{ 947{
948 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
648 upheap (heap, k); 949 upheap (heap, k);
950 else
649 downheap (heap, N, k); 951 downheap (heap, N, k);
952}
953
954/* rebuild the heap: this function is used only once and executed rarely */
955void inline_size
956reheap (ANHE *heap, int N)
957{
958 int i;
959
960 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
961 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
962 for (i = 0; i < N; ++i)
963 upheap (heap, i + HEAP0);
650} 964}
651 965
652/*****************************************************************************/ 966/*****************************************************************************/
653 967
654typedef struct 968typedef struct
655{ 969{
656 WL head; 970 WL head;
657 sig_atomic_t volatile gotsig; 971 EV_ATOMIC_T gotsig;
658} ANSIG; 972} ANSIG;
659 973
660static ANSIG *signals; 974static ANSIG *signals;
661static int signalmax; 975static int signalmax;
662 976
663static int sigpipe [2]; 977static EV_ATOMIC_T gotsig;
664static sig_atomic_t volatile gotsig;
665static ev_io sigev;
666 978
667void inline_size 979void inline_size
668signals_init (ANSIG *base, int count) 980signals_init (ANSIG *base, int count)
669{ 981{
670 while (count--) 982 while (count--)
674 986
675 ++base; 987 ++base;
676 } 988 }
677} 989}
678 990
679static void 991/*****************************************************************************/
680sighandler (int signum)
681{
682#if _WIN32
683 signal (signum, sighandler);
684#endif
685 992
686 signals [signum - 1].gotsig = 1;
687
688 if (!gotsig)
689 {
690 int old_errno = errno;
691 gotsig = 1;
692 write (sigpipe [1], &signum, 1);
693 errno = old_errno;
694 }
695}
696
697void noinline
698ev_feed_signal_event (EV_P_ int signum)
699{
700 WL w;
701
702#if EV_MULTIPLICITY
703 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
704#endif
705
706 --signum;
707
708 if (signum < 0 || signum >= signalmax)
709 return;
710
711 signals [signum].gotsig = 0;
712
713 for (w = signals [signum].head; w; w = w->next)
714 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
715}
716
717static void
718sigcb (EV_P_ ev_io *iow, int revents)
719{
720 int signum;
721
722 read (sigpipe [0], &revents, 1);
723 gotsig = 0;
724
725 for (signum = signalmax; signum--; )
726 if (signals [signum].gotsig)
727 ev_feed_signal_event (EV_A_ signum + 1);
728}
729
730void inline_size 993void inline_speed
731fd_intern (int fd) 994fd_intern (int fd)
732{ 995{
733#ifdef _WIN32 996#ifdef _WIN32
734 int arg = 1; 997 unsigned long arg = 1;
735 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 998 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
736#else 999#else
737 fcntl (fd, F_SETFD, FD_CLOEXEC); 1000 fcntl (fd, F_SETFD, FD_CLOEXEC);
738 fcntl (fd, F_SETFL, O_NONBLOCK); 1001 fcntl (fd, F_SETFL, O_NONBLOCK);
739#endif 1002#endif
740} 1003}
741 1004
742static void noinline 1005static void noinline
743siginit (EV_P) 1006evpipe_init (EV_P)
744{ 1007{
1008 if (!ev_is_active (&pipeev))
1009 {
1010#if EV_USE_EVENTFD
1011 if ((evfd = eventfd (0, 0)) >= 0)
1012 {
1013 evpipe [0] = -1;
1014 fd_intern (evfd);
1015 ev_io_set (&pipeev, evfd, EV_READ);
1016 }
1017 else
1018#endif
1019 {
1020 while (pipe (evpipe))
1021 syserr ("(libev) error creating signal/async pipe");
1022
745 fd_intern (sigpipe [0]); 1023 fd_intern (evpipe [0]);
746 fd_intern (sigpipe [1]); 1024 fd_intern (evpipe [1]);
1025 ev_io_set (&pipeev, evpipe [0], EV_READ);
1026 }
747 1027
748 ev_io_set (&sigev, sigpipe [0], EV_READ);
749 ev_io_start (EV_A_ &sigev); 1028 ev_io_start (EV_A_ &pipeev);
750 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1029 ev_unref (EV_A); /* watcher should not keep loop alive */
1030 }
1031}
1032
1033void inline_size
1034evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1035{
1036 if (!*flag)
1037 {
1038 int old_errno = errno; /* save errno because write might clobber it */
1039
1040 *flag = 1;
1041
1042#if EV_USE_EVENTFD
1043 if (evfd >= 0)
1044 {
1045 uint64_t counter = 1;
1046 write (evfd, &counter, sizeof (uint64_t));
1047 }
1048 else
1049#endif
1050 write (evpipe [1], &old_errno, 1);
1051
1052 errno = old_errno;
1053 }
1054}
1055
1056static void
1057pipecb (EV_P_ ev_io *iow, int revents)
1058{
1059#if EV_USE_EVENTFD
1060 if (evfd >= 0)
1061 {
1062 uint64_t counter;
1063 read (evfd, &counter, sizeof (uint64_t));
1064 }
1065 else
1066#endif
1067 {
1068 char dummy;
1069 read (evpipe [0], &dummy, 1);
1070 }
1071
1072 if (gotsig && ev_is_default_loop (EV_A))
1073 {
1074 int signum;
1075 gotsig = 0;
1076
1077 for (signum = signalmax; signum--; )
1078 if (signals [signum].gotsig)
1079 ev_feed_signal_event (EV_A_ signum + 1);
1080 }
1081
1082#if EV_ASYNC_ENABLE
1083 if (gotasync)
1084 {
1085 int i;
1086 gotasync = 0;
1087
1088 for (i = asynccnt; i--; )
1089 if (asyncs [i]->sent)
1090 {
1091 asyncs [i]->sent = 0;
1092 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1093 }
1094 }
1095#endif
751} 1096}
752 1097
753/*****************************************************************************/ 1098/*****************************************************************************/
754 1099
1100static void
1101ev_sighandler (int signum)
1102{
1103#if EV_MULTIPLICITY
1104 struct ev_loop *loop = &default_loop_struct;
1105#endif
1106
1107#if _WIN32
1108 signal (signum, ev_sighandler);
1109#endif
1110
1111 signals [signum - 1].gotsig = 1;
1112 evpipe_write (EV_A_ &gotsig);
1113}
1114
1115void noinline
1116ev_feed_signal_event (EV_P_ int signum)
1117{
1118 WL w;
1119
1120#if EV_MULTIPLICITY
1121 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1122#endif
1123
1124 --signum;
1125
1126 if (signum < 0 || signum >= signalmax)
1127 return;
1128
1129 signals [signum].gotsig = 0;
1130
1131 for (w = signals [signum].head; w; w = w->next)
1132 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1133}
1134
1135/*****************************************************************************/
1136
755static ev_child *childs [EV_PID_HASHSIZE]; 1137static WL childs [EV_PID_HASHSIZE];
756 1138
757#ifndef _WIN32 1139#ifndef _WIN32
758 1140
759static ev_signal childev; 1141static ev_signal childev;
760 1142
1143#ifndef WIFCONTINUED
1144# define WIFCONTINUED(status) 0
1145#endif
1146
761void inline_speed 1147void inline_speed
762child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1148child_reap (EV_P_ int chain, int pid, int status)
763{ 1149{
764 ev_child *w; 1150 ev_child *w;
1151 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
765 1152
766 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1153 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1154 {
767 if (w->pid == pid || !w->pid) 1155 if ((w->pid == pid || !w->pid)
1156 && (!traced || (w->flags & 1)))
768 { 1157 {
769 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1158 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
770 w->rpid = pid; 1159 w->rpid = pid;
771 w->rstatus = status; 1160 w->rstatus = status;
772 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1161 ev_feed_event (EV_A_ (W)w, EV_CHILD);
773 } 1162 }
1163 }
774} 1164}
775 1165
776#ifndef WCONTINUED 1166#ifndef WCONTINUED
777# define WCONTINUED 0 1167# define WCONTINUED 0
778#endif 1168#endif
787 if (!WCONTINUED 1177 if (!WCONTINUED
788 || errno != EINVAL 1178 || errno != EINVAL
789 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1179 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
790 return; 1180 return;
791 1181
792 /* make sure we are called again until all childs have been reaped */ 1182 /* make sure we are called again until all children have been reaped */
793 /* we need to do it this way so that the callback gets called before we continue */ 1183 /* we need to do it this way so that the callback gets called before we continue */
794 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1184 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
795 1185
796 child_reap (EV_A_ sw, pid, pid, status); 1186 child_reap (EV_A_ pid, pid, status);
797 if (EV_PID_HASHSIZE > 1) 1187 if (EV_PID_HASHSIZE > 1)
798 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1188 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
799} 1189}
800 1190
801#endif 1191#endif
802 1192
803/*****************************************************************************/ 1193/*****************************************************************************/
875} 1265}
876 1266
877unsigned int 1267unsigned int
878ev_embeddable_backends (void) 1268ev_embeddable_backends (void)
879{ 1269{
880 return EVBACKEND_EPOLL 1270 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
881 | EVBACKEND_KQUEUE 1271
882 | EVBACKEND_PORT; 1272 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1273 /* please fix it and tell me how to detect the fix */
1274 flags &= ~EVBACKEND_EPOLL;
1275
1276 return flags;
883} 1277}
884 1278
885unsigned int 1279unsigned int
886ev_backend (EV_P) 1280ev_backend (EV_P)
887{ 1281{
888 return backend; 1282 return backend;
1283}
1284
1285unsigned int
1286ev_loop_count (EV_P)
1287{
1288 return loop_count;
1289}
1290
1291void
1292ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1293{
1294 io_blocktime = interval;
1295}
1296
1297void
1298ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1299{
1300 timeout_blocktime = interval;
889} 1301}
890 1302
891static void noinline 1303static void noinline
892loop_init (EV_P_ unsigned int flags) 1304loop_init (EV_P_ unsigned int flags)
893{ 1305{
899 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1311 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
900 have_monotonic = 1; 1312 have_monotonic = 1;
901 } 1313 }
902#endif 1314#endif
903 1315
904 ev_rt_now = ev_time (); 1316 ev_rt_now = ev_time ();
905 mn_now = get_clock (); 1317 mn_now = get_clock ();
906 now_floor = mn_now; 1318 now_floor = mn_now;
907 rtmn_diff = ev_rt_now - mn_now; 1319 rtmn_diff = ev_rt_now - mn_now;
1320
1321 io_blocktime = 0.;
1322 timeout_blocktime = 0.;
1323 backend = 0;
1324 backend_fd = -1;
1325 gotasync = 0;
1326#if EV_USE_INOTIFY
1327 fs_fd = -2;
1328#endif
908 1329
909 /* pid check not overridable via env */ 1330 /* pid check not overridable via env */
910#ifndef _WIN32 1331#ifndef _WIN32
911 if (flags & EVFLAG_FORKCHECK) 1332 if (flags & EVFLAG_FORKCHECK)
912 curpid = getpid (); 1333 curpid = getpid ();
915 if (!(flags & EVFLAG_NOENV) 1336 if (!(flags & EVFLAG_NOENV)
916 && !enable_secure () 1337 && !enable_secure ()
917 && getenv ("LIBEV_FLAGS")) 1338 && getenv ("LIBEV_FLAGS"))
918 flags = atoi (getenv ("LIBEV_FLAGS")); 1339 flags = atoi (getenv ("LIBEV_FLAGS"));
919 1340
920 if (!(flags & 0x0000ffffUL)) 1341 if (!(flags & 0x0000ffffU))
921 flags |= ev_recommended_backends (); 1342 flags |= ev_recommended_backends ();
922
923 backend = 0;
924 backend_fd = -1;
925#if EV_USE_INOTIFY
926 fs_fd = -2;
927#endif
928 1343
929#if EV_USE_PORT 1344#if EV_USE_PORT
930 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1345 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
931#endif 1346#endif
932#if EV_USE_KQUEUE 1347#if EV_USE_KQUEUE
940#endif 1355#endif
941#if EV_USE_SELECT 1356#if EV_USE_SELECT
942 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1357 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
943#endif 1358#endif
944 1359
945 ev_init (&sigev, sigcb); 1360 ev_init (&pipeev, pipecb);
946 ev_set_priority (&sigev, EV_MAXPRI); 1361 ev_set_priority (&pipeev, EV_MAXPRI);
947 } 1362 }
948} 1363}
949 1364
950static void noinline 1365static void noinline
951loop_destroy (EV_P) 1366loop_destroy (EV_P)
952{ 1367{
953 int i; 1368 int i;
1369
1370 if (ev_is_active (&pipeev))
1371 {
1372 ev_ref (EV_A); /* signal watcher */
1373 ev_io_stop (EV_A_ &pipeev);
1374
1375#if EV_USE_EVENTFD
1376 if (evfd >= 0)
1377 close (evfd);
1378#endif
1379
1380 if (evpipe [0] >= 0)
1381 {
1382 close (evpipe [0]);
1383 close (evpipe [1]);
1384 }
1385 }
954 1386
955#if EV_USE_INOTIFY 1387#if EV_USE_INOTIFY
956 if (fs_fd >= 0) 1388 if (fs_fd >= 0)
957 close (fs_fd); 1389 close (fs_fd);
958#endif 1390#endif
975#if EV_USE_SELECT 1407#if EV_USE_SELECT
976 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1408 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
977#endif 1409#endif
978 1410
979 for (i = NUMPRI; i--; ) 1411 for (i = NUMPRI; i--; )
1412 {
980 array_free (pending, [i]); 1413 array_free (pending, [i]);
1414#if EV_IDLE_ENABLE
1415 array_free (idle, [i]);
1416#endif
1417 }
1418
1419 ev_free (anfds); anfdmax = 0;
981 1420
982 /* have to use the microsoft-never-gets-it-right macro */ 1421 /* have to use the microsoft-never-gets-it-right macro */
983 array_free (fdchange, EMPTY0); 1422 array_free (fdchange, EMPTY);
984 array_free (timer, EMPTY0); 1423 array_free (timer, EMPTY);
985#if EV_PERIODIC_ENABLE 1424#if EV_PERIODIC_ENABLE
986 array_free (periodic, EMPTY0); 1425 array_free (periodic, EMPTY);
987#endif 1426#endif
1427#if EV_FORK_ENABLE
988 array_free (idle, EMPTY0); 1428 array_free (fork, EMPTY);
1429#endif
989 array_free (prepare, EMPTY0); 1430 array_free (prepare, EMPTY);
990 array_free (check, EMPTY0); 1431 array_free (check, EMPTY);
1432#if EV_ASYNC_ENABLE
1433 array_free (async, EMPTY);
1434#endif
991 1435
992 backend = 0; 1436 backend = 0;
993} 1437}
994 1438
1439#if EV_USE_INOTIFY
995void inline_size infy_fork (EV_P); 1440void inline_size infy_fork (EV_P);
1441#endif
996 1442
997void inline_size 1443void inline_size
998loop_fork (EV_P) 1444loop_fork (EV_P)
999{ 1445{
1000#if EV_USE_PORT 1446#if EV_USE_PORT
1008#endif 1454#endif
1009#if EV_USE_INOTIFY 1455#if EV_USE_INOTIFY
1010 infy_fork (EV_A); 1456 infy_fork (EV_A);
1011#endif 1457#endif
1012 1458
1013 if (ev_is_active (&sigev)) 1459 if (ev_is_active (&pipeev))
1014 { 1460 {
1015 /* default loop */ 1461 /* this "locks" the handlers against writing to the pipe */
1462 /* while we modify the fd vars */
1463 gotsig = 1;
1464#if EV_ASYNC_ENABLE
1465 gotasync = 1;
1466#endif
1016 1467
1017 ev_ref (EV_A); 1468 ev_ref (EV_A);
1018 ev_io_stop (EV_A_ &sigev); 1469 ev_io_stop (EV_A_ &pipeev);
1470
1471#if EV_USE_EVENTFD
1472 if (evfd >= 0)
1473 close (evfd);
1474#endif
1475
1476 if (evpipe [0] >= 0)
1477 {
1019 close (sigpipe [0]); 1478 close (evpipe [0]);
1020 close (sigpipe [1]); 1479 close (evpipe [1]);
1480 }
1021 1481
1022 while (pipe (sigpipe))
1023 syserr ("(libev) error creating pipe");
1024
1025 siginit (EV_A); 1482 evpipe_init (EV_A);
1483 /* now iterate over everything, in case we missed something */
1484 pipecb (EV_A_ &pipeev, EV_READ);
1026 } 1485 }
1027 1486
1028 postfork = 0; 1487 postfork = 0;
1029} 1488}
1030 1489
1031#if EV_MULTIPLICITY 1490#if EV_MULTIPLICITY
1491
1032struct ev_loop * 1492struct ev_loop *
1033ev_loop_new (unsigned int flags) 1493ev_loop_new (unsigned int flags)
1034{ 1494{
1035 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1495 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1036 1496
1052} 1512}
1053 1513
1054void 1514void
1055ev_loop_fork (EV_P) 1515ev_loop_fork (EV_P)
1056{ 1516{
1057 postfork = 1; 1517 postfork = 1; /* must be in line with ev_default_fork */
1058} 1518}
1059 1519
1520#if EV_VERIFY
1521static void noinline
1522verify_watcher (EV_P_ W w)
1523{
1524 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1525
1526 if (w->pending)
1527 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1528}
1529
1530static void noinline
1531verify_heap (EV_P_ ANHE *heap, int N)
1532{
1533 int i;
1534
1535 for (i = HEAP0; i < N + HEAP0; ++i)
1536 {
1537 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1538 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1539 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1540
1541 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1542 }
1543}
1544
1545static void noinline
1546array_verify (EV_P_ W *ws, int cnt)
1547{
1548 while (cnt--)
1549 {
1550 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1551 verify_watcher (EV_A_ ws [cnt]);
1552 }
1553}
1554#endif
1555
1556void
1557ev_loop_verify (EV_P)
1558{
1559#if EV_VERIFY
1560 int i;
1561 WL w;
1562
1563 assert (activecnt >= -1);
1564
1565 assert (fdchangemax >= fdchangecnt);
1566 for (i = 0; i < fdchangecnt; ++i)
1567 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1568
1569 assert (anfdmax >= 0);
1570 for (i = 0; i < anfdmax; ++i)
1571 for (w = anfds [i].head; w; w = w->next)
1572 {
1573 verify_watcher (EV_A_ (W)w);
1574 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1575 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1576 }
1577
1578 assert (timermax >= timercnt);
1579 verify_heap (EV_A_ timers, timercnt);
1580
1581#if EV_PERIODIC_ENABLE
1582 assert (periodicmax >= periodiccnt);
1583 verify_heap (EV_A_ periodics, periodiccnt);
1584#endif
1585
1586 for (i = NUMPRI; i--; )
1587 {
1588 assert (pendingmax [i] >= pendingcnt [i]);
1589#if EV_IDLE_ENABLE
1590 assert (idleall >= 0);
1591 assert (idlemax [i] >= idlecnt [i]);
1592 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1593#endif
1594 }
1595
1596#if EV_FORK_ENABLE
1597 assert (forkmax >= forkcnt);
1598 array_verify (EV_A_ (W *)forks, forkcnt);
1599#endif
1600
1601#if EV_ASYNC_ENABLE
1602 assert (asyncmax >= asynccnt);
1603 array_verify (EV_A_ (W *)asyncs, asynccnt);
1604#endif
1605
1606 assert (preparemax >= preparecnt);
1607 array_verify (EV_A_ (W *)prepares, preparecnt);
1608
1609 assert (checkmax >= checkcnt);
1610 array_verify (EV_A_ (W *)checks, checkcnt);
1611
1612# if 0
1613 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1614 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1060#endif 1615# endif
1616#endif
1617}
1618
1619#endif /* multiplicity */
1061 1620
1062#if EV_MULTIPLICITY 1621#if EV_MULTIPLICITY
1063struct ev_loop * 1622struct ev_loop *
1064ev_default_loop_init (unsigned int flags) 1623ev_default_loop_init (unsigned int flags)
1065#else 1624#else
1066int 1625int
1067ev_default_loop (unsigned int flags) 1626ev_default_loop (unsigned int flags)
1068#endif 1627#endif
1069{ 1628{
1070 if (sigpipe [0] == sigpipe [1])
1071 if (pipe (sigpipe))
1072 return 0;
1073
1074 if (!ev_default_loop_ptr) 1629 if (!ev_default_loop_ptr)
1075 { 1630 {
1076#if EV_MULTIPLICITY 1631#if EV_MULTIPLICITY
1077 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1632 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1078#else 1633#else
1081 1636
1082 loop_init (EV_A_ flags); 1637 loop_init (EV_A_ flags);
1083 1638
1084 if (ev_backend (EV_A)) 1639 if (ev_backend (EV_A))
1085 { 1640 {
1086 siginit (EV_A);
1087
1088#ifndef _WIN32 1641#ifndef _WIN32
1089 ev_signal_init (&childev, childcb, SIGCHLD); 1642 ev_signal_init (&childev, childcb, SIGCHLD);
1090 ev_set_priority (&childev, EV_MAXPRI); 1643 ev_set_priority (&childev, EV_MAXPRI);
1091 ev_signal_start (EV_A_ &childev); 1644 ev_signal_start (EV_A_ &childev);
1092 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1645 ev_unref (EV_A); /* child watcher should not keep loop alive */
1109#ifndef _WIN32 1662#ifndef _WIN32
1110 ev_ref (EV_A); /* child watcher */ 1663 ev_ref (EV_A); /* child watcher */
1111 ev_signal_stop (EV_A_ &childev); 1664 ev_signal_stop (EV_A_ &childev);
1112#endif 1665#endif
1113 1666
1114 ev_ref (EV_A); /* signal watcher */
1115 ev_io_stop (EV_A_ &sigev);
1116
1117 close (sigpipe [0]); sigpipe [0] = 0;
1118 close (sigpipe [1]); sigpipe [1] = 0;
1119
1120 loop_destroy (EV_A); 1667 loop_destroy (EV_A);
1121} 1668}
1122 1669
1123void 1670void
1124ev_default_fork (void) 1671ev_default_fork (void)
1126#if EV_MULTIPLICITY 1673#if EV_MULTIPLICITY
1127 struct ev_loop *loop = ev_default_loop_ptr; 1674 struct ev_loop *loop = ev_default_loop_ptr;
1128#endif 1675#endif
1129 1676
1130 if (backend) 1677 if (backend)
1131 postfork = 1; 1678 postfork = 1; /* must be in line with ev_loop_fork */
1132} 1679}
1133 1680
1134/*****************************************************************************/ 1681/*****************************************************************************/
1135 1682
1136int inline_size 1683void
1137any_pending (EV_P) 1684ev_invoke (EV_P_ void *w, int revents)
1138{ 1685{
1139 int pri; 1686 EV_CB_INVOKE ((W)w, revents);
1140
1141 for (pri = NUMPRI; pri--; )
1142 if (pendingcnt [pri])
1143 return 1;
1144
1145 return 0;
1146} 1687}
1147 1688
1148void inline_speed 1689void inline_speed
1149call_pending (EV_P) 1690call_pending (EV_P)
1150{ 1691{
1159 { 1700 {
1160 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1701 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1161 1702
1162 p->w->pending = 0; 1703 p->w->pending = 0;
1163 EV_CB_INVOKE (p->w, p->events); 1704 EV_CB_INVOKE (p->w, p->events);
1705 EV_FREQUENT_CHECK;
1164 } 1706 }
1165 } 1707 }
1166} 1708}
1167 1709
1710#if EV_IDLE_ENABLE
1711void inline_size
1712idle_reify (EV_P)
1713{
1714 if (expect_false (idleall))
1715 {
1716 int pri;
1717
1718 for (pri = NUMPRI; pri--; )
1719 {
1720 if (pendingcnt [pri])
1721 break;
1722
1723 if (idlecnt [pri])
1724 {
1725 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1726 break;
1727 }
1728 }
1729 }
1730}
1731#endif
1732
1168void inline_size 1733void inline_size
1169timers_reify (EV_P) 1734timers_reify (EV_P)
1170{ 1735{
1736 EV_FREQUENT_CHECK;
1737
1171 while (timercnt && ((WT)timers [0])->at <= mn_now) 1738 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1172 { 1739 {
1173 ev_timer *w = timers [0]; 1740 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1174 1741
1175 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1742 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1176 1743
1177 /* first reschedule or stop timer */ 1744 /* first reschedule or stop timer */
1178 if (w->repeat) 1745 if (w->repeat)
1179 { 1746 {
1747 ev_at (w) += w->repeat;
1748 if (ev_at (w) < mn_now)
1749 ev_at (w) = mn_now;
1750
1180 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1751 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1181 1752
1182 ((WT)w)->at += w->repeat; 1753 ANHE_at_cache (timers [HEAP0]);
1183 if (((WT)w)->at < mn_now)
1184 ((WT)w)->at = mn_now;
1185
1186 downheap ((WT *)timers, timercnt, 0); 1754 downheap (timers, timercnt, HEAP0);
1187 } 1755 }
1188 else 1756 else
1189 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1757 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1190 1758
1759 EV_FREQUENT_CHECK;
1191 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1760 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1192 } 1761 }
1193} 1762}
1194 1763
1195#if EV_PERIODIC_ENABLE 1764#if EV_PERIODIC_ENABLE
1196void inline_size 1765void inline_size
1197periodics_reify (EV_P) 1766periodics_reify (EV_P)
1198{ 1767{
1768 EV_FREQUENT_CHECK;
1769
1199 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1770 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1200 { 1771 {
1201 ev_periodic *w = periodics [0]; 1772 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1202 1773
1203 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1774 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1204 1775
1205 /* first reschedule or stop timer */ 1776 /* first reschedule or stop timer */
1206 if (w->reschedule_cb) 1777 if (w->reschedule_cb)
1207 { 1778 {
1208 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1779 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1780
1209 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1781 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1782
1783 ANHE_at_cache (periodics [HEAP0]);
1210 downheap ((WT *)periodics, periodiccnt, 0); 1784 downheap (periodics, periodiccnt, HEAP0);
1211 } 1785 }
1212 else if (w->interval) 1786 else if (w->interval)
1213 { 1787 {
1214 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1788 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1215 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1789 /* if next trigger time is not sufficiently in the future, put it there */
1790 /* this might happen because of floating point inexactness */
1791 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1792 {
1793 ev_at (w) += w->interval;
1794
1795 /* if interval is unreasonably low we might still have a time in the past */
1796 /* so correct this. this will make the periodic very inexact, but the user */
1797 /* has effectively asked to get triggered more often than possible */
1798 if (ev_at (w) < ev_rt_now)
1799 ev_at (w) = ev_rt_now;
1800 }
1801
1802 ANHE_at_cache (periodics [HEAP0]);
1216 downheap ((WT *)periodics, periodiccnt, 0); 1803 downheap (periodics, periodiccnt, HEAP0);
1217 } 1804 }
1218 else 1805 else
1219 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1806 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1220 1807
1808 EV_FREQUENT_CHECK;
1221 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1809 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1222 } 1810 }
1223} 1811}
1224 1812
1225static void noinline 1813static void noinline
1226periodics_reschedule (EV_P) 1814periodics_reschedule (EV_P)
1227{ 1815{
1228 int i; 1816 int i;
1229 1817
1230 /* adjust periodics after time jump */ 1818 /* adjust periodics after time jump */
1231 for (i = 0; i < periodiccnt; ++i) 1819 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1232 { 1820 {
1233 ev_periodic *w = periodics [i]; 1821 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1234 1822
1235 if (w->reschedule_cb) 1823 if (w->reschedule_cb)
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1824 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1237 else if (w->interval) 1825 else if (w->interval)
1238 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1826 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1827
1828 ANHE_at_cache (periodics [i]);
1829 }
1830
1831 reheap (periodics, periodiccnt);
1832}
1833#endif
1834
1835void inline_speed
1836time_update (EV_P_ ev_tstamp max_block)
1837{
1838 int i;
1839
1840#if EV_USE_MONOTONIC
1841 if (expect_true (have_monotonic))
1239 } 1842 {
1843 ev_tstamp odiff = rtmn_diff;
1240 1844
1241 /* now rebuild the heap */
1242 for (i = periodiccnt >> 1; i--; )
1243 downheap ((WT *)periodics, periodiccnt, i);
1244}
1245#endif
1246
1247int inline_size
1248time_update_monotonic (EV_P)
1249{
1250 mn_now = get_clock (); 1845 mn_now = get_clock ();
1251 1846
1847 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1848 /* interpolate in the meantime */
1252 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1849 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1253 { 1850 {
1254 ev_rt_now = rtmn_diff + mn_now; 1851 ev_rt_now = rtmn_diff + mn_now;
1255 return 0; 1852 return;
1256 } 1853 }
1257 else 1854
1258 {
1259 now_floor = mn_now; 1855 now_floor = mn_now;
1260 ev_rt_now = ev_time (); 1856 ev_rt_now = ev_time ();
1261 return 1;
1262 }
1263}
1264 1857
1265void inline_size 1858 /* loop a few times, before making important decisions.
1266time_update (EV_P) 1859 * on the choice of "4": one iteration isn't enough,
1267{ 1860 * in case we get preempted during the calls to
1268 int i; 1861 * ev_time and get_clock. a second call is almost guaranteed
1269 1862 * to succeed in that case, though. and looping a few more times
1270#if EV_USE_MONOTONIC 1863 * doesn't hurt either as we only do this on time-jumps or
1271 if (expect_true (have_monotonic)) 1864 * in the unlikely event of having been preempted here.
1272 { 1865 */
1273 if (time_update_monotonic (EV_A)) 1866 for (i = 4; --i; )
1274 { 1867 {
1275 ev_tstamp odiff = rtmn_diff;
1276
1277 /* loop a few times, before making important decisions.
1278 * on the choice of "4": one iteration isn't enough,
1279 * in case we get preempted during the calls to
1280 * ev_time and get_clock. a second call is almost guaranteed
1281 * to succeed in that case, though. and looping a few more times
1282 * doesn't hurt either as we only do this on time-jumps or
1283 * in the unlikely event of having been preempted here.
1284 */
1285 for (i = 4; --i; )
1286 {
1287 rtmn_diff = ev_rt_now - mn_now; 1868 rtmn_diff = ev_rt_now - mn_now;
1288 1869
1289 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1870 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1290 return; /* all is well */ 1871 return; /* all is well */
1291 1872
1292 ev_rt_now = ev_time (); 1873 ev_rt_now = ev_time ();
1293 mn_now = get_clock (); 1874 mn_now = get_clock ();
1294 now_floor = mn_now; 1875 now_floor = mn_now;
1295 } 1876 }
1296 1877
1297# if EV_PERIODIC_ENABLE 1878# if EV_PERIODIC_ENABLE
1298 periodics_reschedule (EV_A); 1879 periodics_reschedule (EV_A);
1299# endif 1880# endif
1300 /* no timer adjustment, as the monotonic clock doesn't jump */ 1881 /* no timer adjustment, as the monotonic clock doesn't jump */
1301 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1882 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1302 }
1303 } 1883 }
1304 else 1884 else
1305#endif 1885#endif
1306 { 1886 {
1307 ev_rt_now = ev_time (); 1887 ev_rt_now = ev_time ();
1308 1888
1309 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1889 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1310 { 1890 {
1311#if EV_PERIODIC_ENABLE 1891#if EV_PERIODIC_ENABLE
1312 periodics_reschedule (EV_A); 1892 periodics_reschedule (EV_A);
1313#endif 1893#endif
1314
1315 /* adjust timers. this is easy, as the offset is the same for all of them */ 1894 /* adjust timers. this is easy, as the offset is the same for all of them */
1316 for (i = 0; i < timercnt; ++i) 1895 for (i = 0; i < timercnt; ++i)
1896 {
1897 ANHE *he = timers + i + HEAP0;
1317 ((WT)timers [i])->at += ev_rt_now - mn_now; 1898 ANHE_w (*he)->at += ev_rt_now - mn_now;
1899 ANHE_at_cache (*he);
1900 }
1318 } 1901 }
1319 1902
1320 mn_now = ev_rt_now; 1903 mn_now = ev_rt_now;
1321 } 1904 }
1322} 1905}
1331ev_unref (EV_P) 1914ev_unref (EV_P)
1332{ 1915{
1333 --activecnt; 1916 --activecnt;
1334} 1917}
1335 1918
1919void
1920ev_now_update (EV_P)
1921{
1922 time_update (EV_A_ 1e100);
1923}
1924
1336static int loop_done; 1925static int loop_done;
1337 1926
1338void 1927void
1339ev_loop (EV_P_ int flags) 1928ev_loop (EV_P_ int flags)
1340{ 1929{
1341 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1930 loop_done = EVUNLOOP_CANCEL;
1342 ? EVUNLOOP_ONE
1343 : EVUNLOOP_CANCEL;
1344 1931
1345 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1932 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1346 1933
1347 for (;;) 1934 do
1348 { 1935 {
1936#if EV_VERIFY >= 2
1937 ev_loop_verify (EV_A);
1938#endif
1939
1349#ifndef _WIN32 1940#ifndef _WIN32
1350 if (expect_false (curpid)) /* penalise the forking check even more */ 1941 if (expect_false (curpid)) /* penalise the forking check even more */
1351 if (expect_false (getpid () != curpid)) 1942 if (expect_false (getpid () != curpid))
1352 { 1943 {
1353 curpid = getpid (); 1944 curpid = getpid ();
1363 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1954 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1364 call_pending (EV_A); 1955 call_pending (EV_A);
1365 } 1956 }
1366#endif 1957#endif
1367 1958
1368 /* queue check watchers (and execute them) */ 1959 /* queue prepare watchers (and execute them) */
1369 if (expect_false (preparecnt)) 1960 if (expect_false (preparecnt))
1370 { 1961 {
1371 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1962 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1372 call_pending (EV_A); 1963 call_pending (EV_A);
1373 } 1964 }
1382 /* update fd-related kernel structures */ 1973 /* update fd-related kernel structures */
1383 fd_reify (EV_A); 1974 fd_reify (EV_A);
1384 1975
1385 /* calculate blocking time */ 1976 /* calculate blocking time */
1386 { 1977 {
1387 ev_tstamp block; 1978 ev_tstamp waittime = 0.;
1979 ev_tstamp sleeptime = 0.;
1388 1980
1389 if (flags & EVLOOP_NONBLOCK || idlecnt) 1981 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1390 block = 0.; /* do not block at all */
1391 else
1392 { 1982 {
1393 /* update time to cancel out callback processing overhead */ 1983 /* update time to cancel out callback processing overhead */
1394#if EV_USE_MONOTONIC
1395 if (expect_true (have_monotonic))
1396 time_update_monotonic (EV_A); 1984 time_update (EV_A_ 1e100);
1397 else
1398#endif
1399 {
1400 ev_rt_now = ev_time ();
1401 mn_now = ev_rt_now;
1402 }
1403 1985
1404 block = MAX_BLOCKTIME; 1986 waittime = MAX_BLOCKTIME;
1405 1987
1406 if (timercnt) 1988 if (timercnt)
1407 { 1989 {
1408 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1990 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1409 if (block > to) block = to; 1991 if (waittime > to) waittime = to;
1410 } 1992 }
1411 1993
1412#if EV_PERIODIC_ENABLE 1994#if EV_PERIODIC_ENABLE
1413 if (periodiccnt) 1995 if (periodiccnt)
1414 { 1996 {
1415 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1997 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1416 if (block > to) block = to; 1998 if (waittime > to) waittime = to;
1417 } 1999 }
1418#endif 2000#endif
1419 2001
1420 if (expect_false (block < 0.)) block = 0.; 2002 if (expect_false (waittime < timeout_blocktime))
2003 waittime = timeout_blocktime;
2004
2005 sleeptime = waittime - backend_fudge;
2006
2007 if (expect_true (sleeptime > io_blocktime))
2008 sleeptime = io_blocktime;
2009
2010 if (sleeptime)
2011 {
2012 ev_sleep (sleeptime);
2013 waittime -= sleeptime;
2014 }
1421 } 2015 }
1422 2016
2017 ++loop_count;
1423 backend_poll (EV_A_ block); 2018 backend_poll (EV_A_ waittime);
2019
2020 /* update ev_rt_now, do magic */
2021 time_update (EV_A_ waittime + sleeptime);
1424 } 2022 }
1425
1426 /* update ev_rt_now, do magic */
1427 time_update (EV_A);
1428 2023
1429 /* queue pending timers and reschedule them */ 2024 /* queue pending timers and reschedule them */
1430 timers_reify (EV_A); /* relative timers called last */ 2025 timers_reify (EV_A); /* relative timers called last */
1431#if EV_PERIODIC_ENABLE 2026#if EV_PERIODIC_ENABLE
1432 periodics_reify (EV_A); /* absolute timers called first */ 2027 periodics_reify (EV_A); /* absolute timers called first */
1433#endif 2028#endif
1434 2029
2030#if EV_IDLE_ENABLE
1435 /* queue idle watchers unless other events are pending */ 2031 /* queue idle watchers unless other events are pending */
1436 if (idlecnt && !any_pending (EV_A)) 2032 idle_reify (EV_A);
1437 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2033#endif
1438 2034
1439 /* queue check watchers, to be executed first */ 2035 /* queue check watchers, to be executed first */
1440 if (expect_false (checkcnt)) 2036 if (expect_false (checkcnt))
1441 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2037 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1442 2038
1443 call_pending (EV_A); 2039 call_pending (EV_A);
1444
1445 if (expect_false (loop_done))
1446 break;
1447 } 2040 }
2041 while (expect_true (
2042 activecnt
2043 && !loop_done
2044 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2045 ));
1448 2046
1449 if (loop_done == EVUNLOOP_ONE) 2047 if (loop_done == EVUNLOOP_ONE)
1450 loop_done = EVUNLOOP_CANCEL; 2048 loop_done = EVUNLOOP_CANCEL;
1451} 2049}
1452 2050
1479 head = &(*head)->next; 2077 head = &(*head)->next;
1480 } 2078 }
1481} 2079}
1482 2080
1483void inline_speed 2081void inline_speed
1484ev_clear_pending (EV_P_ W w) 2082clear_pending (EV_P_ W w)
1485{ 2083{
1486 if (w->pending) 2084 if (w->pending)
1487 { 2085 {
1488 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2086 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1489 w->pending = 0; 2087 w->pending = 0;
1490 } 2088 }
1491} 2089}
1492 2090
2091int
2092ev_clear_pending (EV_P_ void *w)
2093{
2094 W w_ = (W)w;
2095 int pending = w_->pending;
2096
2097 if (expect_true (pending))
2098 {
2099 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2100 w_->pending = 0;
2101 p->w = 0;
2102 return p->events;
2103 }
2104 else
2105 return 0;
2106}
2107
2108void inline_size
2109pri_adjust (EV_P_ W w)
2110{
2111 int pri = w->priority;
2112 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2113 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2114 w->priority = pri;
2115}
2116
1493void inline_speed 2117void inline_speed
1494ev_start (EV_P_ W w, int active) 2118ev_start (EV_P_ W w, int active)
1495{ 2119{
1496 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2120 pri_adjust (EV_A_ w);
1497 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1498
1499 w->active = active; 2121 w->active = active;
1500 ev_ref (EV_A); 2122 ev_ref (EV_A);
1501} 2123}
1502 2124
1503void inline_size 2125void inline_size
1507 w->active = 0; 2129 w->active = 0;
1508} 2130}
1509 2131
1510/*****************************************************************************/ 2132/*****************************************************************************/
1511 2133
1512void 2134void noinline
1513ev_io_start (EV_P_ ev_io *w) 2135ev_io_start (EV_P_ ev_io *w)
1514{ 2136{
1515 int fd = w->fd; 2137 int fd = w->fd;
1516 2138
1517 if (expect_false (ev_is_active (w))) 2139 if (expect_false (ev_is_active (w)))
1518 return; 2140 return;
1519 2141
1520 assert (("ev_io_start called with negative fd", fd >= 0)); 2142 assert (("ev_io_start called with negative fd", fd >= 0));
1521 2143
2144 EV_FREQUENT_CHECK;
2145
1522 ev_start (EV_A_ (W)w, 1); 2146 ev_start (EV_A_ (W)w, 1);
1523 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2147 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1524 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2148 wlist_add (&anfds[fd].head, (WL)w);
1525 2149
1526 fd_change (EV_A_ fd); 2150 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1527} 2151 w->events &= ~EV_IOFDSET;
1528 2152
1529void 2153 EV_FREQUENT_CHECK;
2154}
2155
2156void noinline
1530ev_io_stop (EV_P_ ev_io *w) 2157ev_io_stop (EV_P_ ev_io *w)
1531{ 2158{
1532 ev_clear_pending (EV_A_ (W)w); 2159 clear_pending (EV_A_ (W)w);
1533 if (expect_false (!ev_is_active (w))) 2160 if (expect_false (!ev_is_active (w)))
1534 return; 2161 return;
1535 2162
1536 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2163 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1537 2164
2165 EV_FREQUENT_CHECK;
2166
1538 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2167 wlist_del (&anfds[w->fd].head, (WL)w);
1539 ev_stop (EV_A_ (W)w); 2168 ev_stop (EV_A_ (W)w);
1540 2169
1541 fd_change (EV_A_ w->fd); 2170 fd_change (EV_A_ w->fd, 1);
1542}
1543 2171
1544void 2172 EV_FREQUENT_CHECK;
2173}
2174
2175void noinline
1545ev_timer_start (EV_P_ ev_timer *w) 2176ev_timer_start (EV_P_ ev_timer *w)
1546{ 2177{
1547 if (expect_false (ev_is_active (w))) 2178 if (expect_false (ev_is_active (w)))
1548 return; 2179 return;
1549 2180
1550 ((WT)w)->at += mn_now; 2181 ev_at (w) += mn_now;
1551 2182
1552 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2183 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1553 2184
2185 EV_FREQUENT_CHECK;
2186
2187 ++timercnt;
1554 ev_start (EV_A_ (W)w, ++timercnt); 2188 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1555 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2189 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1556 timers [timercnt - 1] = w; 2190 ANHE_w (timers [ev_active (w)]) = (WT)w;
1557 upheap ((WT *)timers, timercnt - 1); 2191 ANHE_at_cache (timers [ev_active (w)]);
2192 upheap (timers, ev_active (w));
1558 2193
2194 EV_FREQUENT_CHECK;
2195
1559 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2196 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1560} 2197}
1561 2198
1562void 2199void noinline
1563ev_timer_stop (EV_P_ ev_timer *w) 2200ev_timer_stop (EV_P_ ev_timer *w)
1564{ 2201{
1565 ev_clear_pending (EV_A_ (W)w); 2202 clear_pending (EV_A_ (W)w);
1566 if (expect_false (!ev_is_active (w))) 2203 if (expect_false (!ev_is_active (w)))
1567 return; 2204 return;
1568 2205
1569 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2206 EV_FREQUENT_CHECK;
1570 2207
1571 { 2208 {
1572 int active = ((W)w)->active; 2209 int active = ev_active (w);
1573 2210
2211 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2212
2213 --timercnt;
2214
1574 if (expect_true (--active < --timercnt)) 2215 if (expect_true (active < timercnt + HEAP0))
1575 { 2216 {
1576 timers [active] = timers [timercnt]; 2217 timers [active] = timers [timercnt + HEAP0];
1577 adjustheap ((WT *)timers, timercnt, active); 2218 adjustheap (timers, timercnt, active);
1578 } 2219 }
1579 } 2220 }
1580 2221
1581 ((WT)w)->at -= mn_now; 2222 EV_FREQUENT_CHECK;
2223
2224 ev_at (w) -= mn_now;
1582 2225
1583 ev_stop (EV_A_ (W)w); 2226 ev_stop (EV_A_ (W)w);
1584} 2227}
1585 2228
1586void 2229void noinline
1587ev_timer_again (EV_P_ ev_timer *w) 2230ev_timer_again (EV_P_ ev_timer *w)
1588{ 2231{
2232 EV_FREQUENT_CHECK;
2233
1589 if (ev_is_active (w)) 2234 if (ev_is_active (w))
1590 { 2235 {
1591 if (w->repeat) 2236 if (w->repeat)
1592 { 2237 {
1593 ((WT)w)->at = mn_now + w->repeat; 2238 ev_at (w) = mn_now + w->repeat;
2239 ANHE_at_cache (timers [ev_active (w)]);
1594 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2240 adjustheap (timers, timercnt, ev_active (w));
1595 } 2241 }
1596 else 2242 else
1597 ev_timer_stop (EV_A_ w); 2243 ev_timer_stop (EV_A_ w);
1598 } 2244 }
1599 else if (w->repeat) 2245 else if (w->repeat)
1600 { 2246 {
1601 w->at = w->repeat; 2247 ev_at (w) = w->repeat;
1602 ev_timer_start (EV_A_ w); 2248 ev_timer_start (EV_A_ w);
1603 } 2249 }
2250
2251 EV_FREQUENT_CHECK;
1604} 2252}
1605 2253
1606#if EV_PERIODIC_ENABLE 2254#if EV_PERIODIC_ENABLE
1607void 2255void noinline
1608ev_periodic_start (EV_P_ ev_periodic *w) 2256ev_periodic_start (EV_P_ ev_periodic *w)
1609{ 2257{
1610 if (expect_false (ev_is_active (w))) 2258 if (expect_false (ev_is_active (w)))
1611 return; 2259 return;
1612 2260
1613 if (w->reschedule_cb) 2261 if (w->reschedule_cb)
1614 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2262 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1615 else if (w->interval) 2263 else if (w->interval)
1616 { 2264 {
1617 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2265 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1618 /* this formula differs from the one in periodic_reify because we do not always round up */ 2266 /* this formula differs from the one in periodic_reify because we do not always round up */
1619 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2267 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1620 } 2268 }
2269 else
2270 ev_at (w) = w->offset;
1621 2271
2272 EV_FREQUENT_CHECK;
2273
2274 ++periodiccnt;
1622 ev_start (EV_A_ (W)w, ++periodiccnt); 2275 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1623 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2276 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1624 periodics [periodiccnt - 1] = w; 2277 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1625 upheap ((WT *)periodics, periodiccnt - 1); 2278 ANHE_at_cache (periodics [ev_active (w)]);
2279 upheap (periodics, ev_active (w));
1626 2280
2281 EV_FREQUENT_CHECK;
2282
1627 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2283 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1628} 2284}
1629 2285
1630void 2286void noinline
1631ev_periodic_stop (EV_P_ ev_periodic *w) 2287ev_periodic_stop (EV_P_ ev_periodic *w)
1632{ 2288{
1633 ev_clear_pending (EV_A_ (W)w); 2289 clear_pending (EV_A_ (W)w);
1634 if (expect_false (!ev_is_active (w))) 2290 if (expect_false (!ev_is_active (w)))
1635 return; 2291 return;
1636 2292
1637 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2293 EV_FREQUENT_CHECK;
1638 2294
1639 { 2295 {
1640 int active = ((W)w)->active; 2296 int active = ev_active (w);
1641 2297
2298 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2299
2300 --periodiccnt;
2301
1642 if (expect_true (--active < --periodiccnt)) 2302 if (expect_true (active < periodiccnt + HEAP0))
1643 { 2303 {
1644 periodics [active] = periodics [periodiccnt]; 2304 periodics [active] = periodics [periodiccnt + HEAP0];
1645 adjustheap ((WT *)periodics, periodiccnt, active); 2305 adjustheap (periodics, periodiccnt, active);
1646 } 2306 }
1647 } 2307 }
1648 2308
2309 EV_FREQUENT_CHECK;
2310
1649 ev_stop (EV_A_ (W)w); 2311 ev_stop (EV_A_ (W)w);
1650} 2312}
1651 2313
1652void 2314void noinline
1653ev_periodic_again (EV_P_ ev_periodic *w) 2315ev_periodic_again (EV_P_ ev_periodic *w)
1654{ 2316{
1655 /* TODO: use adjustheap and recalculation */ 2317 /* TODO: use adjustheap and recalculation */
1656 ev_periodic_stop (EV_A_ w); 2318 ev_periodic_stop (EV_A_ w);
1657 ev_periodic_start (EV_A_ w); 2319 ev_periodic_start (EV_A_ w);
1660 2322
1661#ifndef SA_RESTART 2323#ifndef SA_RESTART
1662# define SA_RESTART 0 2324# define SA_RESTART 0
1663#endif 2325#endif
1664 2326
1665void 2327void noinline
1666ev_signal_start (EV_P_ ev_signal *w) 2328ev_signal_start (EV_P_ ev_signal *w)
1667{ 2329{
1668#if EV_MULTIPLICITY 2330#if EV_MULTIPLICITY
1669 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2331 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1670#endif 2332#endif
1671 if (expect_false (ev_is_active (w))) 2333 if (expect_false (ev_is_active (w)))
1672 return; 2334 return;
1673 2335
1674 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2336 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1675 2337
2338 evpipe_init (EV_A);
2339
2340 EV_FREQUENT_CHECK;
2341
2342 {
2343#ifndef _WIN32
2344 sigset_t full, prev;
2345 sigfillset (&full);
2346 sigprocmask (SIG_SETMASK, &full, &prev);
2347#endif
2348
2349 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2350
2351#ifndef _WIN32
2352 sigprocmask (SIG_SETMASK, &prev, 0);
2353#endif
2354 }
2355
1676 ev_start (EV_A_ (W)w, 1); 2356 ev_start (EV_A_ (W)w, 1);
1677 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1678 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2357 wlist_add (&signals [w->signum - 1].head, (WL)w);
1679 2358
1680 if (!((WL)w)->next) 2359 if (!((WL)w)->next)
1681 { 2360 {
1682#if _WIN32 2361#if _WIN32
1683 signal (w->signum, sighandler); 2362 signal (w->signum, ev_sighandler);
1684#else 2363#else
1685 struct sigaction sa; 2364 struct sigaction sa;
1686 sa.sa_handler = sighandler; 2365 sa.sa_handler = ev_sighandler;
1687 sigfillset (&sa.sa_mask); 2366 sigfillset (&sa.sa_mask);
1688 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2367 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1689 sigaction (w->signum, &sa, 0); 2368 sigaction (w->signum, &sa, 0);
1690#endif 2369#endif
1691 } 2370 }
1692}
1693 2371
1694void 2372 EV_FREQUENT_CHECK;
2373}
2374
2375void noinline
1695ev_signal_stop (EV_P_ ev_signal *w) 2376ev_signal_stop (EV_P_ ev_signal *w)
1696{ 2377{
1697 ev_clear_pending (EV_A_ (W)w); 2378 clear_pending (EV_A_ (W)w);
1698 if (expect_false (!ev_is_active (w))) 2379 if (expect_false (!ev_is_active (w)))
1699 return; 2380 return;
1700 2381
2382 EV_FREQUENT_CHECK;
2383
1701 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2384 wlist_del (&signals [w->signum - 1].head, (WL)w);
1702 ev_stop (EV_A_ (W)w); 2385 ev_stop (EV_A_ (W)w);
1703 2386
1704 if (!signals [w->signum - 1].head) 2387 if (!signals [w->signum - 1].head)
1705 signal (w->signum, SIG_DFL); 2388 signal (w->signum, SIG_DFL);
2389
2390 EV_FREQUENT_CHECK;
1706} 2391}
1707 2392
1708void 2393void
1709ev_child_start (EV_P_ ev_child *w) 2394ev_child_start (EV_P_ ev_child *w)
1710{ 2395{
1712 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2397 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1713#endif 2398#endif
1714 if (expect_false (ev_is_active (w))) 2399 if (expect_false (ev_is_active (w)))
1715 return; 2400 return;
1716 2401
2402 EV_FREQUENT_CHECK;
2403
1717 ev_start (EV_A_ (W)w, 1); 2404 ev_start (EV_A_ (W)w, 1);
1718 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2405 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2406
2407 EV_FREQUENT_CHECK;
1719} 2408}
1720 2409
1721void 2410void
1722ev_child_stop (EV_P_ ev_child *w) 2411ev_child_stop (EV_P_ ev_child *w)
1723{ 2412{
1724 ev_clear_pending (EV_A_ (W)w); 2413 clear_pending (EV_A_ (W)w);
1725 if (expect_false (!ev_is_active (w))) 2414 if (expect_false (!ev_is_active (w)))
1726 return; 2415 return;
1727 2416
2417 EV_FREQUENT_CHECK;
2418
1728 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2419 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1729 ev_stop (EV_A_ (W)w); 2420 ev_stop (EV_A_ (W)w);
2421
2422 EV_FREQUENT_CHECK;
1730} 2423}
1731 2424
1732#if EV_STAT_ENABLE 2425#if EV_STAT_ENABLE
1733 2426
1734# ifdef _WIN32 2427# ifdef _WIN32
1752 if (w->wd < 0) 2445 if (w->wd < 0)
1753 { 2446 {
1754 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2447 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1755 2448
1756 /* monitor some parent directory for speedup hints */ 2449 /* monitor some parent directory for speedup hints */
2450 /* note that exceeding the hardcoded limit is not a correctness issue, */
2451 /* but an efficiency issue only */
1757 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2452 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1758 { 2453 {
1759 char path [4096]; 2454 char path [4096];
1760 strcpy (path, w->path); 2455 strcpy (path, w->path);
1761 2456
1887 } 2582 }
1888 2583
1889 } 2584 }
1890} 2585}
1891 2586
2587#endif
2588
2589#ifdef _WIN32
2590# define EV_LSTAT(p,b) _stati64 (p, b)
2591#else
2592# define EV_LSTAT(p,b) lstat (p, b)
1892#endif 2593#endif
1893 2594
1894void 2595void
1895ev_stat_stat (EV_P_ ev_stat *w) 2596ev_stat_stat (EV_P_ ev_stat *w)
1896{ 2597{
1960 else 2661 else
1961#endif 2662#endif
1962 ev_timer_start (EV_A_ &w->timer); 2663 ev_timer_start (EV_A_ &w->timer);
1963 2664
1964 ev_start (EV_A_ (W)w, 1); 2665 ev_start (EV_A_ (W)w, 1);
2666
2667 EV_FREQUENT_CHECK;
1965} 2668}
1966 2669
1967void 2670void
1968ev_stat_stop (EV_P_ ev_stat *w) 2671ev_stat_stop (EV_P_ ev_stat *w)
1969{ 2672{
1970 ev_clear_pending (EV_A_ (W)w); 2673 clear_pending (EV_A_ (W)w);
1971 if (expect_false (!ev_is_active (w))) 2674 if (expect_false (!ev_is_active (w)))
1972 return; 2675 return;
1973 2676
2677 EV_FREQUENT_CHECK;
2678
1974#if EV_USE_INOTIFY 2679#if EV_USE_INOTIFY
1975 infy_del (EV_A_ w); 2680 infy_del (EV_A_ w);
1976#endif 2681#endif
1977 ev_timer_stop (EV_A_ &w->timer); 2682 ev_timer_stop (EV_A_ &w->timer);
1978 2683
1979 ev_stop (EV_A_ (W)w); 2684 ev_stop (EV_A_ (W)w);
1980}
1981#endif
1982 2685
2686 EV_FREQUENT_CHECK;
2687}
2688#endif
2689
2690#if EV_IDLE_ENABLE
1983void 2691void
1984ev_idle_start (EV_P_ ev_idle *w) 2692ev_idle_start (EV_P_ ev_idle *w)
1985{ 2693{
1986 if (expect_false (ev_is_active (w))) 2694 if (expect_false (ev_is_active (w)))
1987 return; 2695 return;
1988 2696
2697 pri_adjust (EV_A_ (W)w);
2698
2699 EV_FREQUENT_CHECK;
2700
2701 {
2702 int active = ++idlecnt [ABSPRI (w)];
2703
2704 ++idleall;
1989 ev_start (EV_A_ (W)w, ++idlecnt); 2705 ev_start (EV_A_ (W)w, active);
2706
1990 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2707 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1991 idles [idlecnt - 1] = w; 2708 idles [ABSPRI (w)][active - 1] = w;
2709 }
2710
2711 EV_FREQUENT_CHECK;
1992} 2712}
1993 2713
1994void 2714void
1995ev_idle_stop (EV_P_ ev_idle *w) 2715ev_idle_stop (EV_P_ ev_idle *w)
1996{ 2716{
1997 ev_clear_pending (EV_A_ (W)w); 2717 clear_pending (EV_A_ (W)w);
1998 if (expect_false (!ev_is_active (w))) 2718 if (expect_false (!ev_is_active (w)))
1999 return; 2719 return;
2000 2720
2721 EV_FREQUENT_CHECK;
2722
2001 { 2723 {
2002 int active = ((W)w)->active; 2724 int active = ev_active (w);
2003 idles [active - 1] = idles [--idlecnt]; 2725
2004 ((W)idles [active - 1])->active = active; 2726 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2727 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2728
2729 ev_stop (EV_A_ (W)w);
2730 --idleall;
2005 } 2731 }
2006 2732
2007 ev_stop (EV_A_ (W)w); 2733 EV_FREQUENT_CHECK;
2008} 2734}
2735#endif
2009 2736
2010void 2737void
2011ev_prepare_start (EV_P_ ev_prepare *w) 2738ev_prepare_start (EV_P_ ev_prepare *w)
2012{ 2739{
2013 if (expect_false (ev_is_active (w))) 2740 if (expect_false (ev_is_active (w)))
2014 return; 2741 return;
2742
2743 EV_FREQUENT_CHECK;
2015 2744
2016 ev_start (EV_A_ (W)w, ++preparecnt); 2745 ev_start (EV_A_ (W)w, ++preparecnt);
2017 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2746 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2018 prepares [preparecnt - 1] = w; 2747 prepares [preparecnt - 1] = w;
2748
2749 EV_FREQUENT_CHECK;
2019} 2750}
2020 2751
2021void 2752void
2022ev_prepare_stop (EV_P_ ev_prepare *w) 2753ev_prepare_stop (EV_P_ ev_prepare *w)
2023{ 2754{
2024 ev_clear_pending (EV_A_ (W)w); 2755 clear_pending (EV_A_ (W)w);
2025 if (expect_false (!ev_is_active (w))) 2756 if (expect_false (!ev_is_active (w)))
2026 return; 2757 return;
2027 2758
2759 EV_FREQUENT_CHECK;
2760
2028 { 2761 {
2029 int active = ((W)w)->active; 2762 int active = ev_active (w);
2763
2030 prepares [active - 1] = prepares [--preparecnt]; 2764 prepares [active - 1] = prepares [--preparecnt];
2031 ((W)prepares [active - 1])->active = active; 2765 ev_active (prepares [active - 1]) = active;
2032 } 2766 }
2033 2767
2034 ev_stop (EV_A_ (W)w); 2768 ev_stop (EV_A_ (W)w);
2769
2770 EV_FREQUENT_CHECK;
2035} 2771}
2036 2772
2037void 2773void
2038ev_check_start (EV_P_ ev_check *w) 2774ev_check_start (EV_P_ ev_check *w)
2039{ 2775{
2040 if (expect_false (ev_is_active (w))) 2776 if (expect_false (ev_is_active (w)))
2041 return; 2777 return;
2778
2779 EV_FREQUENT_CHECK;
2042 2780
2043 ev_start (EV_A_ (W)w, ++checkcnt); 2781 ev_start (EV_A_ (W)w, ++checkcnt);
2044 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2782 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2045 checks [checkcnt - 1] = w; 2783 checks [checkcnt - 1] = w;
2784
2785 EV_FREQUENT_CHECK;
2046} 2786}
2047 2787
2048void 2788void
2049ev_check_stop (EV_P_ ev_check *w) 2789ev_check_stop (EV_P_ ev_check *w)
2050{ 2790{
2051 ev_clear_pending (EV_A_ (W)w); 2791 clear_pending (EV_A_ (W)w);
2052 if (expect_false (!ev_is_active (w))) 2792 if (expect_false (!ev_is_active (w)))
2053 return; 2793 return;
2054 2794
2795 EV_FREQUENT_CHECK;
2796
2055 { 2797 {
2056 int active = ((W)w)->active; 2798 int active = ev_active (w);
2799
2057 checks [active - 1] = checks [--checkcnt]; 2800 checks [active - 1] = checks [--checkcnt];
2058 ((W)checks [active - 1])->active = active; 2801 ev_active (checks [active - 1]) = active;
2059 } 2802 }
2060 2803
2061 ev_stop (EV_A_ (W)w); 2804 ev_stop (EV_A_ (W)w);
2805
2806 EV_FREQUENT_CHECK;
2062} 2807}
2063 2808
2064#if EV_EMBED_ENABLE 2809#if EV_EMBED_ENABLE
2065void noinline 2810void noinline
2066ev_embed_sweep (EV_P_ ev_embed *w) 2811ev_embed_sweep (EV_P_ ev_embed *w)
2067{ 2812{
2068 ev_loop (w->loop, EVLOOP_NONBLOCK); 2813 ev_loop (w->other, EVLOOP_NONBLOCK);
2069} 2814}
2070 2815
2071static void 2816static void
2072embed_cb (EV_P_ ev_io *io, int revents) 2817embed_io_cb (EV_P_ ev_io *io, int revents)
2073{ 2818{
2074 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2819 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2075 2820
2076 if (ev_cb (w)) 2821 if (ev_cb (w))
2077 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2822 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2078 else 2823 else
2079 ev_embed_sweep (loop, w); 2824 ev_loop (w->other, EVLOOP_NONBLOCK);
2080} 2825}
2826
2827static void
2828embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2829{
2830 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2831
2832 {
2833 struct ev_loop *loop = w->other;
2834
2835 while (fdchangecnt)
2836 {
2837 fd_reify (EV_A);
2838 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2839 }
2840 }
2841}
2842
2843static void
2844embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2845{
2846 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2847
2848 {
2849 struct ev_loop *loop = w->other;
2850
2851 ev_loop_fork (EV_A);
2852 }
2853}
2854
2855#if 0
2856static void
2857embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2858{
2859 ev_idle_stop (EV_A_ idle);
2860}
2861#endif
2081 2862
2082void 2863void
2083ev_embed_start (EV_P_ ev_embed *w) 2864ev_embed_start (EV_P_ ev_embed *w)
2084{ 2865{
2085 if (expect_false (ev_is_active (w))) 2866 if (expect_false (ev_is_active (w)))
2086 return; 2867 return;
2087 2868
2088 { 2869 {
2089 struct ev_loop *loop = w->loop; 2870 struct ev_loop *loop = w->other;
2090 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2871 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2091 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2872 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2092 } 2873 }
2874
2875 EV_FREQUENT_CHECK;
2093 2876
2094 ev_set_priority (&w->io, ev_priority (w)); 2877 ev_set_priority (&w->io, ev_priority (w));
2095 ev_io_start (EV_A_ &w->io); 2878 ev_io_start (EV_A_ &w->io);
2096 2879
2880 ev_prepare_init (&w->prepare, embed_prepare_cb);
2881 ev_set_priority (&w->prepare, EV_MINPRI);
2882 ev_prepare_start (EV_A_ &w->prepare);
2883
2884 ev_fork_init (&w->fork, embed_fork_cb);
2885 ev_fork_start (EV_A_ &w->fork);
2886
2887 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2888
2097 ev_start (EV_A_ (W)w, 1); 2889 ev_start (EV_A_ (W)w, 1);
2890
2891 EV_FREQUENT_CHECK;
2098} 2892}
2099 2893
2100void 2894void
2101ev_embed_stop (EV_P_ ev_embed *w) 2895ev_embed_stop (EV_P_ ev_embed *w)
2102{ 2896{
2103 ev_clear_pending (EV_A_ (W)w); 2897 clear_pending (EV_A_ (W)w);
2104 if (expect_false (!ev_is_active (w))) 2898 if (expect_false (!ev_is_active (w)))
2105 return; 2899 return;
2106 2900
2901 EV_FREQUENT_CHECK;
2902
2107 ev_io_stop (EV_A_ &w->io); 2903 ev_io_stop (EV_A_ &w->io);
2904 ev_prepare_stop (EV_A_ &w->prepare);
2905 ev_fork_stop (EV_A_ &w->fork);
2108 2906
2109 ev_stop (EV_A_ (W)w); 2907 EV_FREQUENT_CHECK;
2110} 2908}
2111#endif 2909#endif
2112 2910
2113#if EV_FORK_ENABLE 2911#if EV_FORK_ENABLE
2114void 2912void
2115ev_fork_start (EV_P_ ev_fork *w) 2913ev_fork_start (EV_P_ ev_fork *w)
2116{ 2914{
2117 if (expect_false (ev_is_active (w))) 2915 if (expect_false (ev_is_active (w)))
2118 return; 2916 return;
2917
2918 EV_FREQUENT_CHECK;
2119 2919
2120 ev_start (EV_A_ (W)w, ++forkcnt); 2920 ev_start (EV_A_ (W)w, ++forkcnt);
2121 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2921 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2122 forks [forkcnt - 1] = w; 2922 forks [forkcnt - 1] = w;
2923
2924 EV_FREQUENT_CHECK;
2123} 2925}
2124 2926
2125void 2927void
2126ev_fork_stop (EV_P_ ev_fork *w) 2928ev_fork_stop (EV_P_ ev_fork *w)
2127{ 2929{
2128 ev_clear_pending (EV_A_ (W)w); 2930 clear_pending (EV_A_ (W)w);
2129 if (expect_false (!ev_is_active (w))) 2931 if (expect_false (!ev_is_active (w)))
2130 return; 2932 return;
2131 2933
2934 EV_FREQUENT_CHECK;
2935
2132 { 2936 {
2133 int active = ((W)w)->active; 2937 int active = ev_active (w);
2938
2134 forks [active - 1] = forks [--forkcnt]; 2939 forks [active - 1] = forks [--forkcnt];
2135 ((W)forks [active - 1])->active = active; 2940 ev_active (forks [active - 1]) = active;
2136 } 2941 }
2137 2942
2138 ev_stop (EV_A_ (W)w); 2943 ev_stop (EV_A_ (W)w);
2944
2945 EV_FREQUENT_CHECK;
2946}
2947#endif
2948
2949#if EV_ASYNC_ENABLE
2950void
2951ev_async_start (EV_P_ ev_async *w)
2952{
2953 if (expect_false (ev_is_active (w)))
2954 return;
2955
2956 evpipe_init (EV_A);
2957
2958 EV_FREQUENT_CHECK;
2959
2960 ev_start (EV_A_ (W)w, ++asynccnt);
2961 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2962 asyncs [asynccnt - 1] = w;
2963
2964 EV_FREQUENT_CHECK;
2965}
2966
2967void
2968ev_async_stop (EV_P_ ev_async *w)
2969{
2970 clear_pending (EV_A_ (W)w);
2971 if (expect_false (!ev_is_active (w)))
2972 return;
2973
2974 EV_FREQUENT_CHECK;
2975
2976 {
2977 int active = ev_active (w);
2978
2979 asyncs [active - 1] = asyncs [--asynccnt];
2980 ev_active (asyncs [active - 1]) = active;
2981 }
2982
2983 ev_stop (EV_A_ (W)w);
2984
2985 EV_FREQUENT_CHECK;
2986}
2987
2988void
2989ev_async_send (EV_P_ ev_async *w)
2990{
2991 w->sent = 1;
2992 evpipe_write (EV_A_ &gotasync);
2139} 2993}
2140#endif 2994#endif
2141 2995
2142/*****************************************************************************/ 2996/*****************************************************************************/
2143 2997
2153once_cb (EV_P_ struct ev_once *once, int revents) 3007once_cb (EV_P_ struct ev_once *once, int revents)
2154{ 3008{
2155 void (*cb)(int revents, void *arg) = once->cb; 3009 void (*cb)(int revents, void *arg) = once->cb;
2156 void *arg = once->arg; 3010 void *arg = once->arg;
2157 3011
2158 ev_io_stop (EV_A_ &once->io); 3012 ev_io_stop (EV_A_ &once->io);
2159 ev_timer_stop (EV_A_ &once->to); 3013 ev_timer_stop (EV_A_ &once->to);
2160 ev_free (once); 3014 ev_free (once);
2161 3015
2162 cb (revents, arg); 3016 cb (revents, arg);
2163} 3017}
2164 3018
2165static void 3019static void
2166once_cb_io (EV_P_ ev_io *w, int revents) 3020once_cb_io (EV_P_ ev_io *w, int revents)
2167{ 3021{
2168 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3022 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3023
3024 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2169} 3025}
2170 3026
2171static void 3027static void
2172once_cb_to (EV_P_ ev_timer *w, int revents) 3028once_cb_to (EV_P_ ev_timer *w, int revents)
2173{ 3029{
2174 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3030 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3031
3032 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2175} 3033}
2176 3034
2177void 3035void
2178ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3036ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2179{ 3037{
2201 ev_timer_set (&once->to, timeout, 0.); 3059 ev_timer_set (&once->to, timeout, 0.);
2202 ev_timer_start (EV_A_ &once->to); 3060 ev_timer_start (EV_A_ &once->to);
2203 } 3061 }
2204} 3062}
2205 3063
3064#if EV_MULTIPLICITY
3065 #include "ev_wrap.h"
3066#endif
3067
2206#ifdef __cplusplus 3068#ifdef __cplusplus
2207} 3069}
2208#endif 3070#endif
2209 3071

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines