ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.176 by root, Tue Dec 11 04:31:55 2007 UTC vs.
Revision 1.263 by root, Wed Oct 1 18:50:03 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
129#ifndef _WIN32 154#ifndef _WIN32
130# include <sys/time.h> 155# include <sys/time.h>
131# include <sys/wait.h> 156# include <sys/wait.h>
132# include <unistd.h> 157# include <unistd.h>
133#else 158#else
159# include <io.h>
134# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 161# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
138# endif 164# endif
139#endif 165#endif
140 166
141/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
142 168
143#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
144# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
145#endif 175#endif
146 176
147#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
179#endif
180
181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
185# define EV_USE_NANOSLEEP 0
186# endif
149#endif 187#endif
150 188
151#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
153#endif 191#endif
159# define EV_USE_POLL 1 197# define EV_USE_POLL 1
160# endif 198# endif
161#endif 199#endif
162 200
163#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
164# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
165#endif 207#endif
166 208
167#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
169#endif 211#endif
171#ifndef EV_USE_PORT 213#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 214# define EV_USE_PORT 0
173#endif 215#endif
174 216
175#ifndef EV_USE_INOTIFY 217#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1
220# else
176# define EV_USE_INOTIFY 0 221# define EV_USE_INOTIFY 0
222# endif
177#endif 223#endif
178 224
179#ifndef EV_PID_HASHSIZE 225#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 226# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 227# define EV_PID_HASHSIZE 1
190# else 236# else
191# define EV_INOTIFY_HASHSIZE 16 237# define EV_INOTIFY_HASHSIZE 16
192# endif 238# endif
193#endif 239#endif
194 240
195/**/ 241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 268
197#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
200#endif 272#endif
202#ifndef CLOCK_REALTIME 274#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 275# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 276# define EV_USE_REALTIME 0
205#endif 277#endif
206 278
279#if !EV_STAT_ENABLE
280# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0
282#endif
283
284#if !EV_USE_NANOSLEEP
285# ifndef _WIN32
286# include <sys/select.h>
287# endif
288#endif
289
290#if EV_USE_INOTIFY
291# include <sys/inotify.h>
292/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
293# ifndef IN_DONT_FOLLOW
294# undef EV_USE_INOTIFY
295# define EV_USE_INOTIFY 0
296# endif
297#endif
298
207#if EV_SELECT_IS_WINSOCKET 299#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 300# include <winsock.h>
209#endif 301#endif
210 302
211#if !EV_STAT_ENABLE 303#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 304/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
305# include <stdint.h>
306# ifdef __cplusplus
307extern "C" {
213#endif 308# endif
214 309int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 310# ifdef __cplusplus
216# include <sys/inotify.h> 311}
312# endif
217#endif 313#endif
218 314
219/**/ 315/**/
316
317#if EV_VERIFY >= 3
318# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
319#else
320# define EV_FREQUENT_CHECK do { } while (0)
321#endif
220 322
221/* 323/*
222 * This is used to avoid floating point rounding problems. 324 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics 325 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding 326 * to ensure progress, time-wise, even when rounding
225 * errors are against us. 327 * errors are against us.
226 * This value is good at least till the year 4000 328 * This value is good at least till the year 4000.
227 * and intervals up to 20 years.
228 * Better solutions welcome. 329 * Better solutions welcome.
229 */ 330 */
230#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 331#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
231 332
232#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 333#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
233#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 334#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
234/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 335/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
235 336
236#if __GNUC__ >= 3 337#if __GNUC__ >= 4
237# define expect(expr,value) __builtin_expect ((expr),(value)) 338# define expect(expr,value) __builtin_expect ((expr),(value))
238# define noinline __attribute__ ((noinline)) 339# define noinline __attribute__ ((noinline))
239#else 340#else
240# define expect(expr,value) (expr) 341# define expect(expr,value) (expr)
241# define noinline 342# define noinline
242# if __STDC_VERSION__ < 199901L 343# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
243# define inline 344# define inline
244# endif 345# endif
245#endif 346#endif
246 347
247#define expect_false(expr) expect ((expr) != 0, 0) 348#define expect_false(expr) expect ((expr) != 0, 0)
262 363
263typedef ev_watcher *W; 364typedef ev_watcher *W;
264typedef ev_watcher_list *WL; 365typedef ev_watcher_list *WL;
265typedef ev_watcher_time *WT; 366typedef ev_watcher_time *WT;
266 367
368#define ev_active(w) ((W)(w))->active
369#define ev_at(w) ((WT)(w))->at
370
371#if EV_USE_MONOTONIC
372/* sig_atomic_t is used to avoid per-thread variables or locking but still */
373/* giving it a reasonably high chance of working on typical architetcures */
267static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 374static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
375#endif
268 376
269#ifdef _WIN32 377#ifdef _WIN32
270# include "ev_win32.c" 378# include "ev_win32.c"
271#endif 379#endif
272 380
293 perror (msg); 401 perror (msg);
294 abort (); 402 abort ();
295 } 403 }
296} 404}
297 405
406static void *
407ev_realloc_emul (void *ptr, long size)
408{
409 /* some systems, notably openbsd and darwin, fail to properly
410 * implement realloc (x, 0) (as required by both ansi c-98 and
411 * the single unix specification, so work around them here.
412 */
413
414 if (size)
415 return realloc (ptr, size);
416
417 free (ptr);
418 return 0;
419}
420
298static void *(*alloc)(void *ptr, long size); 421static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
299 422
300void 423void
301ev_set_allocator (void *(*cb)(void *ptr, long size)) 424ev_set_allocator (void *(*cb)(void *ptr, long size))
302{ 425{
303 alloc = cb; 426 alloc = cb;
304} 427}
305 428
306inline_speed void * 429inline_speed void *
307ev_realloc (void *ptr, long size) 430ev_realloc (void *ptr, long size)
308{ 431{
309 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 432 ptr = alloc (ptr, size);
310 433
311 if (!ptr && size) 434 if (!ptr && size)
312 { 435 {
313 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 436 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
314 abort (); 437 abort ();
337 W w; 460 W w;
338 int events; 461 int events;
339} ANPENDING; 462} ANPENDING;
340 463
341#if EV_USE_INOTIFY 464#if EV_USE_INOTIFY
465/* hash table entry per inotify-id */
342typedef struct 466typedef struct
343{ 467{
344 WL head; 468 WL head;
345} ANFS; 469} ANFS;
470#endif
471
472/* Heap Entry */
473#if EV_HEAP_CACHE_AT
474 typedef struct {
475 ev_tstamp at;
476 WT w;
477 } ANHE;
478
479 #define ANHE_w(he) (he).w /* access watcher, read-write */
480 #define ANHE_at(he) (he).at /* access cached at, read-only */
481 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
482#else
483 typedef WT ANHE;
484
485 #define ANHE_w(he) (he)
486 #define ANHE_at(he) (he)->at
487 #define ANHE_at_cache(he)
346#endif 488#endif
347 489
348#if EV_MULTIPLICITY 490#if EV_MULTIPLICITY
349 491
350 struct ev_loop 492 struct ev_loop
408{ 550{
409 return ev_rt_now; 551 return ev_rt_now;
410} 552}
411#endif 553#endif
412 554
555void
556ev_sleep (ev_tstamp delay)
557{
558 if (delay > 0.)
559 {
560#if EV_USE_NANOSLEEP
561 struct timespec ts;
562
563 ts.tv_sec = (time_t)delay;
564 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
565
566 nanosleep (&ts, 0);
567#elif defined(_WIN32)
568 Sleep ((unsigned long)(delay * 1e3));
569#else
570 struct timeval tv;
571
572 tv.tv_sec = (time_t)delay;
573 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
574
575 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
576 /* somehting nto guaranteed by newer posix versions, but guaranteed */
577 /* by older ones */
578 select (0, 0, 0, 0, &tv);
579#endif
580 }
581}
582
583/*****************************************************************************/
584
585#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
586
413int inline_size 587int inline_size
414array_nextsize (int elem, int cur, int cnt) 588array_nextsize (int elem, int cur, int cnt)
415{ 589{
416 int ncur = cur + 1; 590 int ncur = cur + 1;
417 591
418 do 592 do
419 ncur <<= 1; 593 ncur <<= 1;
420 while (cnt > ncur); 594 while (cnt > ncur);
421 595
422 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 596 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
423 if (elem * ncur > 4096) 597 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
424 { 598 {
425 ncur *= elem; 599 ncur *= elem;
426 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 600 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
427 ncur = ncur - sizeof (void *) * 4; 601 ncur = ncur - sizeof (void *) * 4;
428 ncur /= elem; 602 ncur /= elem;
429 } 603 }
430 604
431 return ncur; 605 return ncur;
477 pendings [pri][w_->pending - 1].w = w_; 651 pendings [pri][w_->pending - 1].w = w_;
478 pendings [pri][w_->pending - 1].events = revents; 652 pendings [pri][w_->pending - 1].events = revents;
479 } 653 }
480} 654}
481 655
482void inline_size 656void inline_speed
483queue_events (EV_P_ W *events, int eventcnt, int type) 657queue_events (EV_P_ W *events, int eventcnt, int type)
484{ 658{
485 int i; 659 int i;
486 660
487 for (i = 0; i < eventcnt; ++i) 661 for (i = 0; i < eventcnt; ++i)
534 { 708 {
535 int fd = fdchanges [i]; 709 int fd = fdchanges [i];
536 ANFD *anfd = anfds + fd; 710 ANFD *anfd = anfds + fd;
537 ev_io *w; 711 ev_io *w;
538 712
539 int events = 0; 713 unsigned char events = 0;
540 714
541 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 715 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
542 events |= w->events; 716 events |= (unsigned char)w->events;
543 717
544#if EV_SELECT_IS_WINSOCKET 718#if EV_SELECT_IS_WINSOCKET
545 if (events) 719 if (events)
546 { 720 {
547 unsigned long argp; 721 unsigned long arg;
722 #ifdef EV_FD_TO_WIN32_HANDLE
723 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
724 #else
548 anfd->handle = _get_osfhandle (fd); 725 anfd->handle = _get_osfhandle (fd);
726 #endif
549 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 727 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
550 } 728 }
551#endif 729#endif
552 730
731 {
732 unsigned char o_events = anfd->events;
733 unsigned char o_reify = anfd->reify;
734
553 anfd->reify = 0; 735 anfd->reify = 0;
554
555 backend_modify (EV_A_ fd, anfd->events, events);
556 anfd->events = events; 736 anfd->events = events;
737
738 if (o_events != events || o_reify & EV_IOFDSET)
739 backend_modify (EV_A_ fd, o_events, events);
740 }
557 } 741 }
558 742
559 fdchangecnt = 0; 743 fdchangecnt = 0;
560} 744}
561 745
562void inline_size 746void inline_size
563fd_change (EV_P_ int fd) 747fd_change (EV_P_ int fd, int flags)
564{ 748{
565 if (expect_false (anfds [fd].reify)) 749 unsigned char reify = anfds [fd].reify;
566 return;
567
568 anfds [fd].reify = 1; 750 anfds [fd].reify |= flags;
569 751
752 if (expect_true (!reify))
753 {
570 ++fdchangecnt; 754 ++fdchangecnt;
571 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 755 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
572 fdchanges [fdchangecnt - 1] = fd; 756 fdchanges [fdchangecnt - 1] = fd;
757 }
573} 758}
574 759
575void inline_speed 760void inline_speed
576fd_kill (EV_P_ int fd) 761fd_kill (EV_P_ int fd)
577{ 762{
600{ 785{
601 int fd; 786 int fd;
602 787
603 for (fd = 0; fd < anfdmax; ++fd) 788 for (fd = 0; fd < anfdmax; ++fd)
604 if (anfds [fd].events) 789 if (anfds [fd].events)
605 if (!fd_valid (fd) == -1 && errno == EBADF) 790 if (!fd_valid (fd) && errno == EBADF)
606 fd_kill (EV_A_ fd); 791 fd_kill (EV_A_ fd);
607} 792}
608 793
609/* called on ENOMEM in select/poll to kill some fds and retry */ 794/* called on ENOMEM in select/poll to kill some fds and retry */
610static void noinline 795static void noinline
628 813
629 for (fd = 0; fd < anfdmax; ++fd) 814 for (fd = 0; fd < anfdmax; ++fd)
630 if (anfds [fd].events) 815 if (anfds [fd].events)
631 { 816 {
632 anfds [fd].events = 0; 817 anfds [fd].events = 0;
633 fd_change (EV_A_ fd); 818 fd_change (EV_A_ fd, EV_IOFDSET | 1);
634 } 819 }
635} 820}
636 821
637/*****************************************************************************/ 822/*****************************************************************************/
638 823
824/*
825 * the heap functions want a real array index. array index 0 uis guaranteed to not
826 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
827 * the branching factor of the d-tree.
828 */
829
830/*
831 * at the moment we allow libev the luxury of two heaps,
832 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
833 * which is more cache-efficient.
834 * the difference is about 5% with 50000+ watchers.
835 */
836#if EV_USE_4HEAP
837
838#define DHEAP 4
839#define HEAP0 (DHEAP - 1) /* index of first element in heap */
840#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
841#define UPHEAP_DONE(p,k) ((p) == (k))
842
843/* away from the root */
639void inline_speed 844void inline_speed
640upheap (WT *heap, int k) 845downheap (ANHE *heap, int N, int k)
641{ 846{
642 WT w = heap [k]; 847 ANHE he = heap [k];
848 ANHE *E = heap + N + HEAP0;
643 849
644 while (k && heap [k >> 1]->at > w->at) 850 for (;;)
645 {
646 heap [k] = heap [k >> 1];
647 ((W)heap [k])->active = k + 1;
648 k >>= 1;
649 } 851 {
852 ev_tstamp minat;
853 ANHE *minpos;
854 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
650 855
856 /* find minimum child */
857 if (expect_true (pos + DHEAP - 1 < E))
858 {
859 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
860 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
861 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
862 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
863 }
864 else if (pos < E)
865 {
866 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
867 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
868 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
869 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
870 }
871 else
872 break;
873
874 if (ANHE_at (he) <= minat)
875 break;
876
877 heap [k] = *minpos;
878 ev_active (ANHE_w (*minpos)) = k;
879
880 k = minpos - heap;
881 }
882
651 heap [k] = w; 883 heap [k] = he;
652 ((W)heap [k])->active = k + 1; 884 ev_active (ANHE_w (he)) = k;
653
654} 885}
655 886
887#else /* 4HEAP */
888
889#define HEAP0 1
890#define HPARENT(k) ((k) >> 1)
891#define UPHEAP_DONE(p,k) (!(p))
892
893/* away from the root */
656void inline_speed 894void inline_speed
657downheap (WT *heap, int N, int k) 895downheap (ANHE *heap, int N, int k)
658{ 896{
659 WT w = heap [k]; 897 ANHE he = heap [k];
660 898
661 while (k < (N >> 1)) 899 for (;;)
662 { 900 {
663 int j = k << 1; 901 int c = k << 1;
664 902
665 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 903 if (c > N + HEAP0 - 1)
666 ++j;
667
668 if (w->at <= heap [j]->at)
669 break; 904 break;
670 905
906 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
907 ? 1 : 0;
908
909 if (ANHE_at (he) <= ANHE_at (heap [c]))
910 break;
911
671 heap [k] = heap [j]; 912 heap [k] = heap [c];
672 ((W)heap [k])->active = k + 1; 913 ev_active (ANHE_w (heap [k])) = k;
914
673 k = j; 915 k = c;
674 } 916 }
675 917
676 heap [k] = w; 918 heap [k] = he;
677 ((W)heap [k])->active = k + 1; 919 ev_active (ANHE_w (he)) = k;
920}
921#endif
922
923/* towards the root */
924void inline_speed
925upheap (ANHE *heap, int k)
926{
927 ANHE he = heap [k];
928
929 for (;;)
930 {
931 int p = HPARENT (k);
932
933 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
934 break;
935
936 heap [k] = heap [p];
937 ev_active (ANHE_w (heap [k])) = k;
938 k = p;
939 }
940
941 heap [k] = he;
942 ev_active (ANHE_w (he)) = k;
678} 943}
679 944
680void inline_size 945void inline_size
681adjustheap (WT *heap, int N, int k) 946adjustheap (ANHE *heap, int N, int k)
682{ 947{
948 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
683 upheap (heap, k); 949 upheap (heap, k);
950 else
684 downheap (heap, N, k); 951 downheap (heap, N, k);
952}
953
954/* rebuild the heap: this function is used only once and executed rarely */
955void inline_size
956reheap (ANHE *heap, int N)
957{
958 int i;
959
960 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
961 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
962 for (i = 0; i < N; ++i)
963 upheap (heap, i + HEAP0);
685} 964}
686 965
687/*****************************************************************************/ 966/*****************************************************************************/
688 967
689typedef struct 968typedef struct
690{ 969{
691 WL head; 970 WL head;
692 sig_atomic_t volatile gotsig; 971 EV_ATOMIC_T gotsig;
693} ANSIG; 972} ANSIG;
694 973
695static ANSIG *signals; 974static ANSIG *signals;
696static int signalmax; 975static int signalmax;
697 976
698static int sigpipe [2]; 977static EV_ATOMIC_T gotsig;
699static sig_atomic_t volatile gotsig;
700static ev_io sigev;
701 978
702void inline_size 979void inline_size
703signals_init (ANSIG *base, int count) 980signals_init (ANSIG *base, int count)
704{ 981{
705 while (count--) 982 while (count--)
709 986
710 ++base; 987 ++base;
711 } 988 }
712} 989}
713 990
714static void 991/*****************************************************************************/
715sighandler (int signum)
716{
717#if _WIN32
718 signal (signum, sighandler);
719#endif
720
721 signals [signum - 1].gotsig = 1;
722
723 if (!gotsig)
724 {
725 int old_errno = errno;
726 gotsig = 1;
727 write (sigpipe [1], &signum, 1);
728 errno = old_errno;
729 }
730}
731
732void noinline
733ev_feed_signal_event (EV_P_ int signum)
734{
735 WL w;
736
737#if EV_MULTIPLICITY
738 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
739#endif
740
741 --signum;
742
743 if (signum < 0 || signum >= signalmax)
744 return;
745
746 signals [signum].gotsig = 0;
747
748 for (w = signals [signum].head; w; w = w->next)
749 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
750}
751
752static void
753sigcb (EV_P_ ev_io *iow, int revents)
754{
755 int signum;
756
757 read (sigpipe [0], &revents, 1);
758 gotsig = 0;
759
760 for (signum = signalmax; signum--; )
761 if (signals [signum].gotsig)
762 ev_feed_signal_event (EV_A_ signum + 1);
763}
764 992
765void inline_speed 993void inline_speed
766fd_intern (int fd) 994fd_intern (int fd)
767{ 995{
768#ifdef _WIN32 996#ifdef _WIN32
769 int arg = 1; 997 unsigned long arg = 1;
770 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 998 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
771#else 999#else
772 fcntl (fd, F_SETFD, FD_CLOEXEC); 1000 fcntl (fd, F_SETFD, FD_CLOEXEC);
773 fcntl (fd, F_SETFL, O_NONBLOCK); 1001 fcntl (fd, F_SETFL, O_NONBLOCK);
774#endif 1002#endif
775} 1003}
776 1004
777static void noinline 1005static void noinline
778siginit (EV_P) 1006evpipe_init (EV_P)
779{ 1007{
1008 if (!ev_is_active (&pipeev))
1009 {
1010#if EV_USE_EVENTFD
1011 if ((evfd = eventfd (0, 0)) >= 0)
1012 {
1013 evpipe [0] = -1;
1014 fd_intern (evfd);
1015 ev_io_set (&pipeev, evfd, EV_READ);
1016 }
1017 else
1018#endif
1019 {
1020 while (pipe (evpipe))
1021 syserr ("(libev) error creating signal/async pipe");
1022
780 fd_intern (sigpipe [0]); 1023 fd_intern (evpipe [0]);
781 fd_intern (sigpipe [1]); 1024 fd_intern (evpipe [1]);
1025 ev_io_set (&pipeev, evpipe [0], EV_READ);
1026 }
782 1027
783 ev_io_set (&sigev, sigpipe [0], EV_READ);
784 ev_io_start (EV_A_ &sigev); 1028 ev_io_start (EV_A_ &pipeev);
785 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1029 ev_unref (EV_A); /* watcher should not keep loop alive */
1030 }
1031}
1032
1033void inline_size
1034evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1035{
1036 if (!*flag)
1037 {
1038 int old_errno = errno; /* save errno because write might clobber it */
1039
1040 *flag = 1;
1041
1042#if EV_USE_EVENTFD
1043 if (evfd >= 0)
1044 {
1045 uint64_t counter = 1;
1046 write (evfd, &counter, sizeof (uint64_t));
1047 }
1048 else
1049#endif
1050 write (evpipe [1], &old_errno, 1);
1051
1052 errno = old_errno;
1053 }
1054}
1055
1056static void
1057pipecb (EV_P_ ev_io *iow, int revents)
1058{
1059#if EV_USE_EVENTFD
1060 if (evfd >= 0)
1061 {
1062 uint64_t counter;
1063 read (evfd, &counter, sizeof (uint64_t));
1064 }
1065 else
1066#endif
1067 {
1068 char dummy;
1069 read (evpipe [0], &dummy, 1);
1070 }
1071
1072 if (gotsig && ev_is_default_loop (EV_A))
1073 {
1074 int signum;
1075 gotsig = 0;
1076
1077 for (signum = signalmax; signum--; )
1078 if (signals [signum].gotsig)
1079 ev_feed_signal_event (EV_A_ signum + 1);
1080 }
1081
1082#if EV_ASYNC_ENABLE
1083 if (gotasync)
1084 {
1085 int i;
1086 gotasync = 0;
1087
1088 for (i = asynccnt; i--; )
1089 if (asyncs [i]->sent)
1090 {
1091 asyncs [i]->sent = 0;
1092 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1093 }
1094 }
1095#endif
786} 1096}
787 1097
788/*****************************************************************************/ 1098/*****************************************************************************/
789 1099
1100static void
1101ev_sighandler (int signum)
1102{
1103#if EV_MULTIPLICITY
1104 struct ev_loop *loop = &default_loop_struct;
1105#endif
1106
1107#if _WIN32
1108 signal (signum, ev_sighandler);
1109#endif
1110
1111 signals [signum - 1].gotsig = 1;
1112 evpipe_write (EV_A_ &gotsig);
1113}
1114
1115void noinline
1116ev_feed_signal_event (EV_P_ int signum)
1117{
1118 WL w;
1119
1120#if EV_MULTIPLICITY
1121 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1122#endif
1123
1124 --signum;
1125
1126 if (signum < 0 || signum >= signalmax)
1127 return;
1128
1129 signals [signum].gotsig = 0;
1130
1131 for (w = signals [signum].head; w; w = w->next)
1132 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1133}
1134
1135/*****************************************************************************/
1136
790static ev_child *childs [EV_PID_HASHSIZE]; 1137static WL childs [EV_PID_HASHSIZE];
791 1138
792#ifndef _WIN32 1139#ifndef _WIN32
793 1140
794static ev_signal childev; 1141static ev_signal childev;
795 1142
1143#ifndef WIFCONTINUED
1144# define WIFCONTINUED(status) 0
1145#endif
1146
796void inline_speed 1147void inline_speed
797child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1148child_reap (EV_P_ int chain, int pid, int status)
798{ 1149{
799 ev_child *w; 1150 ev_child *w;
1151 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
800 1152
801 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1153 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1154 {
802 if (w->pid == pid || !w->pid) 1155 if ((w->pid == pid || !w->pid)
1156 && (!traced || (w->flags & 1)))
803 { 1157 {
804 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1158 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
805 w->rpid = pid; 1159 w->rpid = pid;
806 w->rstatus = status; 1160 w->rstatus = status;
807 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1161 ev_feed_event (EV_A_ (W)w, EV_CHILD);
808 } 1162 }
1163 }
809} 1164}
810 1165
811#ifndef WCONTINUED 1166#ifndef WCONTINUED
812# define WCONTINUED 0 1167# define WCONTINUED 0
813#endif 1168#endif
822 if (!WCONTINUED 1177 if (!WCONTINUED
823 || errno != EINVAL 1178 || errno != EINVAL
824 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1179 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
825 return; 1180 return;
826 1181
827 /* make sure we are called again until all childs have been reaped */ 1182 /* make sure we are called again until all children have been reaped */
828 /* we need to do it this way so that the callback gets called before we continue */ 1183 /* we need to do it this way so that the callback gets called before we continue */
829 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1184 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
830 1185
831 child_reap (EV_A_ sw, pid, pid, status); 1186 child_reap (EV_A_ pid, pid, status);
832 if (EV_PID_HASHSIZE > 1) 1187 if (EV_PID_HASHSIZE > 1)
833 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1188 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
834} 1189}
835 1190
836#endif 1191#endif
837 1192
838/*****************************************************************************/ 1193/*****************************************************************************/
910} 1265}
911 1266
912unsigned int 1267unsigned int
913ev_embeddable_backends (void) 1268ev_embeddable_backends (void)
914{ 1269{
915 return EVBACKEND_EPOLL 1270 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
916 | EVBACKEND_KQUEUE 1271
917 | EVBACKEND_PORT; 1272 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1273 /* please fix it and tell me how to detect the fix */
1274 flags &= ~EVBACKEND_EPOLL;
1275
1276 return flags;
918} 1277}
919 1278
920unsigned int 1279unsigned int
921ev_backend (EV_P) 1280ev_backend (EV_P)
922{ 1281{
925 1284
926unsigned int 1285unsigned int
927ev_loop_count (EV_P) 1286ev_loop_count (EV_P)
928{ 1287{
929 return loop_count; 1288 return loop_count;
1289}
1290
1291void
1292ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1293{
1294 io_blocktime = interval;
1295}
1296
1297void
1298ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1299{
1300 timeout_blocktime = interval;
930} 1301}
931 1302
932static void noinline 1303static void noinline
933loop_init (EV_P_ unsigned int flags) 1304loop_init (EV_P_ unsigned int flags)
934{ 1305{
940 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1311 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
941 have_monotonic = 1; 1312 have_monotonic = 1;
942 } 1313 }
943#endif 1314#endif
944 1315
945 ev_rt_now = ev_time (); 1316 ev_rt_now = ev_time ();
946 mn_now = get_clock (); 1317 mn_now = get_clock ();
947 now_floor = mn_now; 1318 now_floor = mn_now;
948 rtmn_diff = ev_rt_now - mn_now; 1319 rtmn_diff = ev_rt_now - mn_now;
1320
1321 io_blocktime = 0.;
1322 timeout_blocktime = 0.;
1323 backend = 0;
1324 backend_fd = -1;
1325 gotasync = 0;
1326#if EV_USE_INOTIFY
1327 fs_fd = -2;
1328#endif
949 1329
950 /* pid check not overridable via env */ 1330 /* pid check not overridable via env */
951#ifndef _WIN32 1331#ifndef _WIN32
952 if (flags & EVFLAG_FORKCHECK) 1332 if (flags & EVFLAG_FORKCHECK)
953 curpid = getpid (); 1333 curpid = getpid ();
956 if (!(flags & EVFLAG_NOENV) 1336 if (!(flags & EVFLAG_NOENV)
957 && !enable_secure () 1337 && !enable_secure ()
958 && getenv ("LIBEV_FLAGS")) 1338 && getenv ("LIBEV_FLAGS"))
959 flags = atoi (getenv ("LIBEV_FLAGS")); 1339 flags = atoi (getenv ("LIBEV_FLAGS"));
960 1340
961 if (!(flags & 0x0000ffffUL)) 1341 if (!(flags & 0x0000ffffU))
962 flags |= ev_recommended_backends (); 1342 flags |= ev_recommended_backends ();
963
964 backend = 0;
965 backend_fd = -1;
966#if EV_USE_INOTIFY
967 fs_fd = -2;
968#endif
969 1343
970#if EV_USE_PORT 1344#if EV_USE_PORT
971 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1345 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
972#endif 1346#endif
973#if EV_USE_KQUEUE 1347#if EV_USE_KQUEUE
981#endif 1355#endif
982#if EV_USE_SELECT 1356#if EV_USE_SELECT
983 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1357 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
984#endif 1358#endif
985 1359
986 ev_init (&sigev, sigcb); 1360 ev_init (&pipeev, pipecb);
987 ev_set_priority (&sigev, EV_MAXPRI); 1361 ev_set_priority (&pipeev, EV_MAXPRI);
988 } 1362 }
989} 1363}
990 1364
991static void noinline 1365static void noinline
992loop_destroy (EV_P) 1366loop_destroy (EV_P)
993{ 1367{
994 int i; 1368 int i;
1369
1370 if (ev_is_active (&pipeev))
1371 {
1372 ev_ref (EV_A); /* signal watcher */
1373 ev_io_stop (EV_A_ &pipeev);
1374
1375#if EV_USE_EVENTFD
1376 if (evfd >= 0)
1377 close (evfd);
1378#endif
1379
1380 if (evpipe [0] >= 0)
1381 {
1382 close (evpipe [0]);
1383 close (evpipe [1]);
1384 }
1385 }
995 1386
996#if EV_USE_INOTIFY 1387#if EV_USE_INOTIFY
997 if (fs_fd >= 0) 1388 if (fs_fd >= 0)
998 close (fs_fd); 1389 close (fs_fd);
999#endif 1390#endif
1022 array_free (pending, [i]); 1413 array_free (pending, [i]);
1023#if EV_IDLE_ENABLE 1414#if EV_IDLE_ENABLE
1024 array_free (idle, [i]); 1415 array_free (idle, [i]);
1025#endif 1416#endif
1026 } 1417 }
1418
1419 ev_free (anfds); anfdmax = 0;
1027 1420
1028 /* have to use the microsoft-never-gets-it-right macro */ 1421 /* have to use the microsoft-never-gets-it-right macro */
1029 array_free (fdchange, EMPTY); 1422 array_free (fdchange, EMPTY);
1030 array_free (timer, EMPTY); 1423 array_free (timer, EMPTY);
1031#if EV_PERIODIC_ENABLE 1424#if EV_PERIODIC_ENABLE
1032 array_free (periodic, EMPTY); 1425 array_free (periodic, EMPTY);
1033#endif 1426#endif
1427#if EV_FORK_ENABLE
1428 array_free (fork, EMPTY);
1429#endif
1034 array_free (prepare, EMPTY); 1430 array_free (prepare, EMPTY);
1035 array_free (check, EMPTY); 1431 array_free (check, EMPTY);
1432#if EV_ASYNC_ENABLE
1433 array_free (async, EMPTY);
1434#endif
1036 1435
1037 backend = 0; 1436 backend = 0;
1038} 1437}
1039 1438
1439#if EV_USE_INOTIFY
1040void inline_size infy_fork (EV_P); 1440void inline_size infy_fork (EV_P);
1441#endif
1041 1442
1042void inline_size 1443void inline_size
1043loop_fork (EV_P) 1444loop_fork (EV_P)
1044{ 1445{
1045#if EV_USE_PORT 1446#if EV_USE_PORT
1053#endif 1454#endif
1054#if EV_USE_INOTIFY 1455#if EV_USE_INOTIFY
1055 infy_fork (EV_A); 1456 infy_fork (EV_A);
1056#endif 1457#endif
1057 1458
1058 if (ev_is_active (&sigev)) 1459 if (ev_is_active (&pipeev))
1059 { 1460 {
1060 /* default loop */ 1461 /* this "locks" the handlers against writing to the pipe */
1462 /* while we modify the fd vars */
1463 gotsig = 1;
1464#if EV_ASYNC_ENABLE
1465 gotasync = 1;
1466#endif
1061 1467
1062 ev_ref (EV_A); 1468 ev_ref (EV_A);
1063 ev_io_stop (EV_A_ &sigev); 1469 ev_io_stop (EV_A_ &pipeev);
1470
1471#if EV_USE_EVENTFD
1472 if (evfd >= 0)
1473 close (evfd);
1474#endif
1475
1476 if (evpipe [0] >= 0)
1477 {
1064 close (sigpipe [0]); 1478 close (evpipe [0]);
1065 close (sigpipe [1]); 1479 close (evpipe [1]);
1480 }
1066 1481
1067 while (pipe (sigpipe))
1068 syserr ("(libev) error creating pipe");
1069
1070 siginit (EV_A); 1482 evpipe_init (EV_A);
1483 /* now iterate over everything, in case we missed something */
1484 pipecb (EV_A_ &pipeev, EV_READ);
1071 } 1485 }
1072 1486
1073 postfork = 0; 1487 postfork = 0;
1074} 1488}
1075 1489
1076#if EV_MULTIPLICITY 1490#if EV_MULTIPLICITY
1491
1077struct ev_loop * 1492struct ev_loop *
1078ev_loop_new (unsigned int flags) 1493ev_loop_new (unsigned int flags)
1079{ 1494{
1080 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1495 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1081 1496
1097} 1512}
1098 1513
1099void 1514void
1100ev_loop_fork (EV_P) 1515ev_loop_fork (EV_P)
1101{ 1516{
1102 postfork = 1; 1517 postfork = 1; /* must be in line with ev_default_fork */
1103} 1518}
1104 1519
1520#if EV_VERIFY
1521static void noinline
1522verify_watcher (EV_P_ W w)
1523{
1524 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1525
1526 if (w->pending)
1527 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1528}
1529
1530static void noinline
1531verify_heap (EV_P_ ANHE *heap, int N)
1532{
1533 int i;
1534
1535 for (i = HEAP0; i < N + HEAP0; ++i)
1536 {
1537 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1538 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1539 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1540
1541 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1542 }
1543}
1544
1545static void noinline
1546array_verify (EV_P_ W *ws, int cnt)
1547{
1548 while (cnt--)
1549 {
1550 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1551 verify_watcher (EV_A_ ws [cnt]);
1552 }
1553}
1554#endif
1555
1556void
1557ev_loop_verify (EV_P)
1558{
1559#if EV_VERIFY
1560 int i;
1561 WL w;
1562
1563 assert (activecnt >= -1);
1564
1565 assert (fdchangemax >= fdchangecnt);
1566 for (i = 0; i < fdchangecnt; ++i)
1567 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1568
1569 assert (anfdmax >= 0);
1570 for (i = 0; i < anfdmax; ++i)
1571 for (w = anfds [i].head; w; w = w->next)
1572 {
1573 verify_watcher (EV_A_ (W)w);
1574 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1575 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1576 }
1577
1578 assert (timermax >= timercnt);
1579 verify_heap (EV_A_ timers, timercnt);
1580
1581#if EV_PERIODIC_ENABLE
1582 assert (periodicmax >= periodiccnt);
1583 verify_heap (EV_A_ periodics, periodiccnt);
1584#endif
1585
1586 for (i = NUMPRI; i--; )
1587 {
1588 assert (pendingmax [i] >= pendingcnt [i]);
1589#if EV_IDLE_ENABLE
1590 assert (idleall >= 0);
1591 assert (idlemax [i] >= idlecnt [i]);
1592 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1593#endif
1594 }
1595
1596#if EV_FORK_ENABLE
1597 assert (forkmax >= forkcnt);
1598 array_verify (EV_A_ (W *)forks, forkcnt);
1599#endif
1600
1601#if EV_ASYNC_ENABLE
1602 assert (asyncmax >= asynccnt);
1603 array_verify (EV_A_ (W *)asyncs, asynccnt);
1604#endif
1605
1606 assert (preparemax >= preparecnt);
1607 array_verify (EV_A_ (W *)prepares, preparecnt);
1608
1609 assert (checkmax >= checkcnt);
1610 array_verify (EV_A_ (W *)checks, checkcnt);
1611
1612# if 0
1613 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1614 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1105#endif 1615# endif
1616#endif
1617}
1618
1619#endif /* multiplicity */
1106 1620
1107#if EV_MULTIPLICITY 1621#if EV_MULTIPLICITY
1108struct ev_loop * 1622struct ev_loop *
1109ev_default_loop_init (unsigned int flags) 1623ev_default_loop_init (unsigned int flags)
1110#else 1624#else
1111int 1625int
1112ev_default_loop (unsigned int flags) 1626ev_default_loop (unsigned int flags)
1113#endif 1627#endif
1114{ 1628{
1115 if (sigpipe [0] == sigpipe [1])
1116 if (pipe (sigpipe))
1117 return 0;
1118
1119 if (!ev_default_loop_ptr) 1629 if (!ev_default_loop_ptr)
1120 { 1630 {
1121#if EV_MULTIPLICITY 1631#if EV_MULTIPLICITY
1122 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1632 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1123#else 1633#else
1126 1636
1127 loop_init (EV_A_ flags); 1637 loop_init (EV_A_ flags);
1128 1638
1129 if (ev_backend (EV_A)) 1639 if (ev_backend (EV_A))
1130 { 1640 {
1131 siginit (EV_A);
1132
1133#ifndef _WIN32 1641#ifndef _WIN32
1134 ev_signal_init (&childev, childcb, SIGCHLD); 1642 ev_signal_init (&childev, childcb, SIGCHLD);
1135 ev_set_priority (&childev, EV_MAXPRI); 1643 ev_set_priority (&childev, EV_MAXPRI);
1136 ev_signal_start (EV_A_ &childev); 1644 ev_signal_start (EV_A_ &childev);
1137 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1645 ev_unref (EV_A); /* child watcher should not keep loop alive */
1154#ifndef _WIN32 1662#ifndef _WIN32
1155 ev_ref (EV_A); /* child watcher */ 1663 ev_ref (EV_A); /* child watcher */
1156 ev_signal_stop (EV_A_ &childev); 1664 ev_signal_stop (EV_A_ &childev);
1157#endif 1665#endif
1158 1666
1159 ev_ref (EV_A); /* signal watcher */
1160 ev_io_stop (EV_A_ &sigev);
1161
1162 close (sigpipe [0]); sigpipe [0] = 0;
1163 close (sigpipe [1]); sigpipe [1] = 0;
1164
1165 loop_destroy (EV_A); 1667 loop_destroy (EV_A);
1166} 1668}
1167 1669
1168void 1670void
1169ev_default_fork (void) 1671ev_default_fork (void)
1171#if EV_MULTIPLICITY 1673#if EV_MULTIPLICITY
1172 struct ev_loop *loop = ev_default_loop_ptr; 1674 struct ev_loop *loop = ev_default_loop_ptr;
1173#endif 1675#endif
1174 1676
1175 if (backend) 1677 if (backend)
1176 postfork = 1; 1678 postfork = 1; /* must be in line with ev_loop_fork */
1177} 1679}
1178 1680
1179/*****************************************************************************/ 1681/*****************************************************************************/
1180 1682
1181void 1683void
1198 { 1700 {
1199 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1701 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1200 1702
1201 p->w->pending = 0; 1703 p->w->pending = 0;
1202 EV_CB_INVOKE (p->w, p->events); 1704 EV_CB_INVOKE (p->w, p->events);
1705 EV_FREQUENT_CHECK;
1203 } 1706 }
1204 } 1707 }
1205} 1708}
1206
1207void inline_size
1208timers_reify (EV_P)
1209{
1210 while (timercnt && ((WT)timers [0])->at <= mn_now)
1211 {
1212 ev_timer *w = timers [0];
1213
1214 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1215
1216 /* first reschedule or stop timer */
1217 if (w->repeat)
1218 {
1219 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1220
1221 ((WT)w)->at += w->repeat;
1222 if (((WT)w)->at < mn_now)
1223 ((WT)w)->at = mn_now;
1224
1225 downheap ((WT *)timers, timercnt, 0);
1226 }
1227 else
1228 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1229
1230 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1231 }
1232}
1233
1234#if EV_PERIODIC_ENABLE
1235void inline_size
1236periodics_reify (EV_P)
1237{
1238 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1239 {
1240 ev_periodic *w = periodics [0];
1241
1242 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1243
1244 /* first reschedule or stop timer */
1245 if (w->reschedule_cb)
1246 {
1247 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1248 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1249 downheap ((WT *)periodics, periodiccnt, 0);
1250 }
1251 else if (w->interval)
1252 {
1253 ((WT)w)->at = w->offset + floor ((ev_rt_now + TIME_EPSILON - w->offset) / w->interval + 1.) * w->interval;
1254 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1255 downheap ((WT *)periodics, periodiccnt, 0);
1256 }
1257 else
1258 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1259
1260 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1261 }
1262}
1263
1264static void noinline
1265periodics_reschedule (EV_P)
1266{
1267 int i;
1268
1269 /* adjust periodics after time jump */
1270 for (i = 0; i < periodiccnt; ++i)
1271 {
1272 ev_periodic *w = periodics [i];
1273
1274 if (w->reschedule_cb)
1275 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1276 else if (w->interval)
1277 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1278 }
1279
1280 /* now rebuild the heap */
1281 for (i = periodiccnt >> 1; i--; )
1282 downheap ((WT *)periodics, periodiccnt, i);
1283}
1284#endif
1285 1709
1286#if EV_IDLE_ENABLE 1710#if EV_IDLE_ENABLE
1287void inline_size 1711void inline_size
1288idle_reify (EV_P) 1712idle_reify (EV_P)
1289{ 1713{
1304 } 1728 }
1305 } 1729 }
1306} 1730}
1307#endif 1731#endif
1308 1732
1309int inline_size 1733void inline_size
1310time_update_monotonic (EV_P) 1734timers_reify (EV_P)
1311{ 1735{
1736 EV_FREQUENT_CHECK;
1737
1738 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1739 {
1740 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1741
1742 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1743
1744 /* first reschedule or stop timer */
1745 if (w->repeat)
1746 {
1747 ev_at (w) += w->repeat;
1748 if (ev_at (w) < mn_now)
1749 ev_at (w) = mn_now;
1750
1751 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1752
1753 ANHE_at_cache (timers [HEAP0]);
1754 downheap (timers, timercnt, HEAP0);
1755 }
1756 else
1757 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1758
1759 EV_FREQUENT_CHECK;
1760 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1761 }
1762}
1763
1764#if EV_PERIODIC_ENABLE
1765void inline_size
1766periodics_reify (EV_P)
1767{
1768 EV_FREQUENT_CHECK;
1769
1770 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1771 {
1772 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1773
1774 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1775
1776 /* first reschedule or stop timer */
1777 if (w->reschedule_cb)
1778 {
1779 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1780
1781 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1782
1783 ANHE_at_cache (periodics [HEAP0]);
1784 downheap (periodics, periodiccnt, HEAP0);
1785 }
1786 else if (w->interval)
1787 {
1788 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1789 /* if next trigger time is not sufficiently in the future, put it there */
1790 /* this might happen because of floating point inexactness */
1791 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1792 {
1793 ev_at (w) += w->interval;
1794
1795 /* if interval is unreasonably low we might still have a time in the past */
1796 /* so correct this. this will make the periodic very inexact, but the user */
1797 /* has effectively asked to get triggered more often than possible */
1798 if (ev_at (w) < ev_rt_now)
1799 ev_at (w) = ev_rt_now;
1800 }
1801
1802 ANHE_at_cache (periodics [HEAP0]);
1803 downheap (periodics, periodiccnt, HEAP0);
1804 }
1805 else
1806 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1807
1808 EV_FREQUENT_CHECK;
1809 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1810 }
1811}
1812
1813static void noinline
1814periodics_reschedule (EV_P)
1815{
1816 int i;
1817
1818 /* adjust periodics after time jump */
1819 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1820 {
1821 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1822
1823 if (w->reschedule_cb)
1824 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1825 else if (w->interval)
1826 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1827
1828 ANHE_at_cache (periodics [i]);
1829 }
1830
1831 reheap (periodics, periodiccnt);
1832}
1833#endif
1834
1835void inline_speed
1836time_update (EV_P_ ev_tstamp max_block)
1837{
1838 int i;
1839
1840#if EV_USE_MONOTONIC
1841 if (expect_true (have_monotonic))
1842 {
1843 ev_tstamp odiff = rtmn_diff;
1844
1312 mn_now = get_clock (); 1845 mn_now = get_clock ();
1313 1846
1847 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1848 /* interpolate in the meantime */
1314 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1849 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1315 { 1850 {
1316 ev_rt_now = rtmn_diff + mn_now; 1851 ev_rt_now = rtmn_diff + mn_now;
1317 return 0; 1852 return;
1318 } 1853 }
1319 else 1854
1320 {
1321 now_floor = mn_now; 1855 now_floor = mn_now;
1322 ev_rt_now = ev_time (); 1856 ev_rt_now = ev_time ();
1323 return 1;
1324 }
1325}
1326 1857
1327void inline_size 1858 /* loop a few times, before making important decisions.
1328time_update (EV_P) 1859 * on the choice of "4": one iteration isn't enough,
1329{ 1860 * in case we get preempted during the calls to
1330 int i; 1861 * ev_time and get_clock. a second call is almost guaranteed
1331 1862 * to succeed in that case, though. and looping a few more times
1332#if EV_USE_MONOTONIC 1863 * doesn't hurt either as we only do this on time-jumps or
1333 if (expect_true (have_monotonic)) 1864 * in the unlikely event of having been preempted here.
1334 { 1865 */
1335 if (time_update_monotonic (EV_A)) 1866 for (i = 4; --i; )
1336 { 1867 {
1337 ev_tstamp odiff = rtmn_diff;
1338
1339 /* loop a few times, before making important decisions.
1340 * on the choice of "4": one iteration isn't enough,
1341 * in case we get preempted during the calls to
1342 * ev_time and get_clock. a second call is almost guaranteed
1343 * to succeed in that case, though. and looping a few more times
1344 * doesn't hurt either as we only do this on time-jumps or
1345 * in the unlikely event of having been preempted here.
1346 */
1347 for (i = 4; --i; )
1348 {
1349 rtmn_diff = ev_rt_now - mn_now; 1868 rtmn_diff = ev_rt_now - mn_now;
1350 1869
1351 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1870 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1352 return; /* all is well */ 1871 return; /* all is well */
1353 1872
1354 ev_rt_now = ev_time (); 1873 ev_rt_now = ev_time ();
1355 mn_now = get_clock (); 1874 mn_now = get_clock ();
1356 now_floor = mn_now; 1875 now_floor = mn_now;
1357 } 1876 }
1358 1877
1359# if EV_PERIODIC_ENABLE 1878# if EV_PERIODIC_ENABLE
1360 periodics_reschedule (EV_A); 1879 periodics_reschedule (EV_A);
1361# endif 1880# endif
1362 /* no timer adjustment, as the monotonic clock doesn't jump */ 1881 /* no timer adjustment, as the monotonic clock doesn't jump */
1363 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1882 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1364 }
1365 } 1883 }
1366 else 1884 else
1367#endif 1885#endif
1368 { 1886 {
1369 ev_rt_now = ev_time (); 1887 ev_rt_now = ev_time ();
1370 1888
1371 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1889 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1372 { 1890 {
1373#if EV_PERIODIC_ENABLE 1891#if EV_PERIODIC_ENABLE
1374 periodics_reschedule (EV_A); 1892 periodics_reschedule (EV_A);
1375#endif 1893#endif
1376
1377 /* adjust timers. this is easy, as the offset is the same for all of them */ 1894 /* adjust timers. this is easy, as the offset is the same for all of them */
1378 for (i = 0; i < timercnt; ++i) 1895 for (i = 0; i < timercnt; ++i)
1896 {
1897 ANHE *he = timers + i + HEAP0;
1379 ((WT)timers [i])->at += ev_rt_now - mn_now; 1898 ANHE_w (*he)->at += ev_rt_now - mn_now;
1899 ANHE_at_cache (*he);
1900 }
1380 } 1901 }
1381 1902
1382 mn_now = ev_rt_now; 1903 mn_now = ev_rt_now;
1383 } 1904 }
1384} 1905}
1393ev_unref (EV_P) 1914ev_unref (EV_P)
1394{ 1915{
1395 --activecnt; 1916 --activecnt;
1396} 1917}
1397 1918
1919void
1920ev_now_update (EV_P)
1921{
1922 time_update (EV_A_ 1e100);
1923}
1924
1398static int loop_done; 1925static int loop_done;
1399 1926
1400void 1927void
1401ev_loop (EV_P_ int flags) 1928ev_loop (EV_P_ int flags)
1402{ 1929{
1403 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1930 loop_done = EVUNLOOP_CANCEL;
1404 ? EVUNLOOP_ONE
1405 : EVUNLOOP_CANCEL;
1406 1931
1407 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1932 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1408 1933
1409 do 1934 do
1410 { 1935 {
1936#if EV_VERIFY >= 2
1937 ev_loop_verify (EV_A);
1938#endif
1939
1411#ifndef _WIN32 1940#ifndef _WIN32
1412 if (expect_false (curpid)) /* penalise the forking check even more */ 1941 if (expect_false (curpid)) /* penalise the forking check even more */
1413 if (expect_false (getpid () != curpid)) 1942 if (expect_false (getpid () != curpid))
1414 { 1943 {
1415 curpid = getpid (); 1944 curpid = getpid ();
1444 /* update fd-related kernel structures */ 1973 /* update fd-related kernel structures */
1445 fd_reify (EV_A); 1974 fd_reify (EV_A);
1446 1975
1447 /* calculate blocking time */ 1976 /* calculate blocking time */
1448 { 1977 {
1449 ev_tstamp block; 1978 ev_tstamp waittime = 0.;
1979 ev_tstamp sleeptime = 0.;
1450 1980
1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1981 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1452 block = 0.; /* do not block at all */
1453 else
1454 { 1982 {
1455 /* update time to cancel out callback processing overhead */ 1983 /* update time to cancel out callback processing overhead */
1456#if EV_USE_MONOTONIC
1457 if (expect_true (have_monotonic))
1458 time_update_monotonic (EV_A); 1984 time_update (EV_A_ 1e100);
1459 else
1460#endif
1461 {
1462 ev_rt_now = ev_time ();
1463 mn_now = ev_rt_now;
1464 }
1465 1985
1466 block = MAX_BLOCKTIME; 1986 waittime = MAX_BLOCKTIME;
1467 1987
1468 if (timercnt) 1988 if (timercnt)
1469 { 1989 {
1470 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1990 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1471 if (block > to) block = to; 1991 if (waittime > to) waittime = to;
1472 } 1992 }
1473 1993
1474#if EV_PERIODIC_ENABLE 1994#if EV_PERIODIC_ENABLE
1475 if (periodiccnt) 1995 if (periodiccnt)
1476 { 1996 {
1477 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1997 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1478 if (block > to) block = to; 1998 if (waittime > to) waittime = to;
1479 } 1999 }
1480#endif 2000#endif
1481 2001
1482 if (expect_false (block < 0.)) block = 0.; 2002 if (expect_false (waittime < timeout_blocktime))
2003 waittime = timeout_blocktime;
2004
2005 sleeptime = waittime - backend_fudge;
2006
2007 if (expect_true (sleeptime > io_blocktime))
2008 sleeptime = io_blocktime;
2009
2010 if (sleeptime)
2011 {
2012 ev_sleep (sleeptime);
2013 waittime -= sleeptime;
2014 }
1483 } 2015 }
1484 2016
1485 ++loop_count; 2017 ++loop_count;
1486 backend_poll (EV_A_ block); 2018 backend_poll (EV_A_ waittime);
2019
2020 /* update ev_rt_now, do magic */
2021 time_update (EV_A_ waittime + sleeptime);
1487 } 2022 }
1488
1489 /* update ev_rt_now, do magic */
1490 time_update (EV_A);
1491 2023
1492 /* queue pending timers and reschedule them */ 2024 /* queue pending timers and reschedule them */
1493 timers_reify (EV_A); /* relative timers called last */ 2025 timers_reify (EV_A); /* relative timers called last */
1494#if EV_PERIODIC_ENABLE 2026#if EV_PERIODIC_ENABLE
1495 periodics_reify (EV_A); /* absolute timers called first */ 2027 periodics_reify (EV_A); /* absolute timers called first */
1503 /* queue check watchers, to be executed first */ 2035 /* queue check watchers, to be executed first */
1504 if (expect_false (checkcnt)) 2036 if (expect_false (checkcnt))
1505 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2037 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1506 2038
1507 call_pending (EV_A); 2039 call_pending (EV_A);
1508
1509 } 2040 }
1510 while (expect_true (activecnt && !loop_done)); 2041 while (expect_true (
2042 activecnt
2043 && !loop_done
2044 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2045 ));
1511 2046
1512 if (loop_done == EVUNLOOP_ONE) 2047 if (loop_done == EVUNLOOP_ONE)
1513 loop_done = EVUNLOOP_CANCEL; 2048 loop_done = EVUNLOOP_CANCEL;
1514} 2049}
1515 2050
1604 if (expect_false (ev_is_active (w))) 2139 if (expect_false (ev_is_active (w)))
1605 return; 2140 return;
1606 2141
1607 assert (("ev_io_start called with negative fd", fd >= 0)); 2142 assert (("ev_io_start called with negative fd", fd >= 0));
1608 2143
2144 EV_FREQUENT_CHECK;
2145
1609 ev_start (EV_A_ (W)w, 1); 2146 ev_start (EV_A_ (W)w, 1);
1610 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2147 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1611 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2148 wlist_add (&anfds[fd].head, (WL)w);
1612 2149
1613 fd_change (EV_A_ fd); 2150 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
2151 w->events &= ~EV_IOFDSET;
2152
2153 EV_FREQUENT_CHECK;
1614} 2154}
1615 2155
1616void noinline 2156void noinline
1617ev_io_stop (EV_P_ ev_io *w) 2157ev_io_stop (EV_P_ ev_io *w)
1618{ 2158{
1619 clear_pending (EV_A_ (W)w); 2159 clear_pending (EV_A_ (W)w);
1620 if (expect_false (!ev_is_active (w))) 2160 if (expect_false (!ev_is_active (w)))
1621 return; 2161 return;
1622 2162
1623 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2163 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1624 2164
2165 EV_FREQUENT_CHECK;
2166
1625 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2167 wlist_del (&anfds[w->fd].head, (WL)w);
1626 ev_stop (EV_A_ (W)w); 2168 ev_stop (EV_A_ (W)w);
1627 2169
1628 fd_change (EV_A_ w->fd); 2170 fd_change (EV_A_ w->fd, 1);
2171
2172 EV_FREQUENT_CHECK;
1629} 2173}
1630 2174
1631void noinline 2175void noinline
1632ev_timer_start (EV_P_ ev_timer *w) 2176ev_timer_start (EV_P_ ev_timer *w)
1633{ 2177{
1634 if (expect_false (ev_is_active (w))) 2178 if (expect_false (ev_is_active (w)))
1635 return; 2179 return;
1636 2180
1637 ((WT)w)->at += mn_now; 2181 ev_at (w) += mn_now;
1638 2182
1639 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2183 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1640 2184
2185 EV_FREQUENT_CHECK;
2186
2187 ++timercnt;
1641 ev_start (EV_A_ (W)w, ++timercnt); 2188 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1642 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2189 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1643 timers [timercnt - 1] = w; 2190 ANHE_w (timers [ev_active (w)]) = (WT)w;
1644 upheap ((WT *)timers, timercnt - 1); 2191 ANHE_at_cache (timers [ev_active (w)]);
2192 upheap (timers, ev_active (w));
1645 2193
2194 EV_FREQUENT_CHECK;
2195
1646 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2196 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1647} 2197}
1648 2198
1649void noinline 2199void noinline
1650ev_timer_stop (EV_P_ ev_timer *w) 2200ev_timer_stop (EV_P_ ev_timer *w)
1651{ 2201{
1652 clear_pending (EV_A_ (W)w); 2202 clear_pending (EV_A_ (W)w);
1653 if (expect_false (!ev_is_active (w))) 2203 if (expect_false (!ev_is_active (w)))
1654 return; 2204 return;
1655 2205
1656 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2206 EV_FREQUENT_CHECK;
1657 2207
1658 { 2208 {
1659 int active = ((W)w)->active; 2209 int active = ev_active (w);
1660 2210
2211 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2212
2213 --timercnt;
2214
1661 if (expect_true (--active < --timercnt)) 2215 if (expect_true (active < timercnt + HEAP0))
1662 { 2216 {
1663 timers [active] = timers [timercnt]; 2217 timers [active] = timers [timercnt + HEAP0];
1664 adjustheap ((WT *)timers, timercnt, active); 2218 adjustheap (timers, timercnt, active);
1665 } 2219 }
1666 } 2220 }
1667 2221
1668 ((WT)w)->at -= mn_now; 2222 EV_FREQUENT_CHECK;
2223
2224 ev_at (w) -= mn_now;
1669 2225
1670 ev_stop (EV_A_ (W)w); 2226 ev_stop (EV_A_ (W)w);
1671} 2227}
1672 2228
1673void noinline 2229void noinline
1674ev_timer_again (EV_P_ ev_timer *w) 2230ev_timer_again (EV_P_ ev_timer *w)
1675{ 2231{
2232 EV_FREQUENT_CHECK;
2233
1676 if (ev_is_active (w)) 2234 if (ev_is_active (w))
1677 { 2235 {
1678 if (w->repeat) 2236 if (w->repeat)
1679 { 2237 {
1680 ((WT)w)->at = mn_now + w->repeat; 2238 ev_at (w) = mn_now + w->repeat;
2239 ANHE_at_cache (timers [ev_active (w)]);
1681 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2240 adjustheap (timers, timercnt, ev_active (w));
1682 } 2241 }
1683 else 2242 else
1684 ev_timer_stop (EV_A_ w); 2243 ev_timer_stop (EV_A_ w);
1685 } 2244 }
1686 else if (w->repeat) 2245 else if (w->repeat)
1687 { 2246 {
1688 w->at = w->repeat; 2247 ev_at (w) = w->repeat;
1689 ev_timer_start (EV_A_ w); 2248 ev_timer_start (EV_A_ w);
1690 } 2249 }
2250
2251 EV_FREQUENT_CHECK;
1691} 2252}
1692 2253
1693#if EV_PERIODIC_ENABLE 2254#if EV_PERIODIC_ENABLE
1694void noinline 2255void noinline
1695ev_periodic_start (EV_P_ ev_periodic *w) 2256ev_periodic_start (EV_P_ ev_periodic *w)
1696{ 2257{
1697 if (expect_false (ev_is_active (w))) 2258 if (expect_false (ev_is_active (w)))
1698 return; 2259 return;
1699 2260
1700 if (w->reschedule_cb) 2261 if (w->reschedule_cb)
1701 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2262 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1702 else if (w->interval) 2263 else if (w->interval)
1703 { 2264 {
1704 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2265 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1705 /* this formula differs from the one in periodic_reify because we do not always round up */ 2266 /* this formula differs from the one in periodic_reify because we do not always round up */
1706 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2267 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1707 } 2268 }
1708 else 2269 else
1709 ((WT)w)->at = w->offset; 2270 ev_at (w) = w->offset;
1710 2271
2272 EV_FREQUENT_CHECK;
2273
2274 ++periodiccnt;
1711 ev_start (EV_A_ (W)w, ++periodiccnt); 2275 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1712 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2276 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1713 periodics [periodiccnt - 1] = w; 2277 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1714 upheap ((WT *)periodics, periodiccnt - 1); 2278 ANHE_at_cache (periodics [ev_active (w)]);
2279 upheap (periodics, ev_active (w));
1715 2280
2281 EV_FREQUENT_CHECK;
2282
1716 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2283 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1717} 2284}
1718 2285
1719void noinline 2286void noinline
1720ev_periodic_stop (EV_P_ ev_periodic *w) 2287ev_periodic_stop (EV_P_ ev_periodic *w)
1721{ 2288{
1722 clear_pending (EV_A_ (W)w); 2289 clear_pending (EV_A_ (W)w);
1723 if (expect_false (!ev_is_active (w))) 2290 if (expect_false (!ev_is_active (w)))
1724 return; 2291 return;
1725 2292
1726 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2293 EV_FREQUENT_CHECK;
1727 2294
1728 { 2295 {
1729 int active = ((W)w)->active; 2296 int active = ev_active (w);
1730 2297
2298 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2299
2300 --periodiccnt;
2301
1731 if (expect_true (--active < --periodiccnt)) 2302 if (expect_true (active < periodiccnt + HEAP0))
1732 { 2303 {
1733 periodics [active] = periodics [periodiccnt]; 2304 periodics [active] = periodics [periodiccnt + HEAP0];
1734 adjustheap ((WT *)periodics, periodiccnt, active); 2305 adjustheap (periodics, periodiccnt, active);
1735 } 2306 }
1736 } 2307 }
2308
2309 EV_FREQUENT_CHECK;
1737 2310
1738 ev_stop (EV_A_ (W)w); 2311 ev_stop (EV_A_ (W)w);
1739} 2312}
1740 2313
1741void noinline 2314void noinline
1760 if (expect_false (ev_is_active (w))) 2333 if (expect_false (ev_is_active (w)))
1761 return; 2334 return;
1762 2335
1763 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2336 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1764 2337
2338 evpipe_init (EV_A);
2339
2340 EV_FREQUENT_CHECK;
2341
2342 {
2343#ifndef _WIN32
2344 sigset_t full, prev;
2345 sigfillset (&full);
2346 sigprocmask (SIG_SETMASK, &full, &prev);
2347#endif
2348
2349 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2350
2351#ifndef _WIN32
2352 sigprocmask (SIG_SETMASK, &prev, 0);
2353#endif
2354 }
2355
1765 ev_start (EV_A_ (W)w, 1); 2356 ev_start (EV_A_ (W)w, 1);
1766 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1767 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2357 wlist_add (&signals [w->signum - 1].head, (WL)w);
1768 2358
1769 if (!((WL)w)->next) 2359 if (!((WL)w)->next)
1770 { 2360 {
1771#if _WIN32 2361#if _WIN32
1772 signal (w->signum, sighandler); 2362 signal (w->signum, ev_sighandler);
1773#else 2363#else
1774 struct sigaction sa; 2364 struct sigaction sa;
1775 sa.sa_handler = sighandler; 2365 sa.sa_handler = ev_sighandler;
1776 sigfillset (&sa.sa_mask); 2366 sigfillset (&sa.sa_mask);
1777 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2367 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1778 sigaction (w->signum, &sa, 0); 2368 sigaction (w->signum, &sa, 0);
1779#endif 2369#endif
1780 } 2370 }
2371
2372 EV_FREQUENT_CHECK;
1781} 2373}
1782 2374
1783void noinline 2375void noinline
1784ev_signal_stop (EV_P_ ev_signal *w) 2376ev_signal_stop (EV_P_ ev_signal *w)
1785{ 2377{
1786 clear_pending (EV_A_ (W)w); 2378 clear_pending (EV_A_ (W)w);
1787 if (expect_false (!ev_is_active (w))) 2379 if (expect_false (!ev_is_active (w)))
1788 return; 2380 return;
1789 2381
2382 EV_FREQUENT_CHECK;
2383
1790 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2384 wlist_del (&signals [w->signum - 1].head, (WL)w);
1791 ev_stop (EV_A_ (W)w); 2385 ev_stop (EV_A_ (W)w);
1792 2386
1793 if (!signals [w->signum - 1].head) 2387 if (!signals [w->signum - 1].head)
1794 signal (w->signum, SIG_DFL); 2388 signal (w->signum, SIG_DFL);
2389
2390 EV_FREQUENT_CHECK;
1795} 2391}
1796 2392
1797void 2393void
1798ev_child_start (EV_P_ ev_child *w) 2394ev_child_start (EV_P_ ev_child *w)
1799{ 2395{
1801 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2397 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1802#endif 2398#endif
1803 if (expect_false (ev_is_active (w))) 2399 if (expect_false (ev_is_active (w)))
1804 return; 2400 return;
1805 2401
2402 EV_FREQUENT_CHECK;
2403
1806 ev_start (EV_A_ (W)w, 1); 2404 ev_start (EV_A_ (W)w, 1);
1807 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2405 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2406
2407 EV_FREQUENT_CHECK;
1808} 2408}
1809 2409
1810void 2410void
1811ev_child_stop (EV_P_ ev_child *w) 2411ev_child_stop (EV_P_ ev_child *w)
1812{ 2412{
1813 clear_pending (EV_A_ (W)w); 2413 clear_pending (EV_A_ (W)w);
1814 if (expect_false (!ev_is_active (w))) 2414 if (expect_false (!ev_is_active (w)))
1815 return; 2415 return;
1816 2416
2417 EV_FREQUENT_CHECK;
2418
1817 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2419 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1818 ev_stop (EV_A_ (W)w); 2420 ev_stop (EV_A_ (W)w);
2421
2422 EV_FREQUENT_CHECK;
1819} 2423}
1820 2424
1821#if EV_STAT_ENABLE 2425#if EV_STAT_ENABLE
1822 2426
1823# ifdef _WIN32 2427# ifdef _WIN32
1841 if (w->wd < 0) 2445 if (w->wd < 0)
1842 { 2446 {
1843 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2447 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1844 2448
1845 /* monitor some parent directory for speedup hints */ 2449 /* monitor some parent directory for speedup hints */
2450 /* note that exceeding the hardcoded limit is not a correctness issue, */
2451 /* but an efficiency issue only */
1846 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2452 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1847 { 2453 {
1848 char path [4096]; 2454 char path [4096];
1849 strcpy (path, w->path); 2455 strcpy (path, w->path);
1850 2456
1976 } 2582 }
1977 2583
1978 } 2584 }
1979} 2585}
1980 2586
2587#endif
2588
2589#ifdef _WIN32
2590# define EV_LSTAT(p,b) _stati64 (p, b)
2591#else
2592# define EV_LSTAT(p,b) lstat (p, b)
1981#endif 2593#endif
1982 2594
1983void 2595void
1984ev_stat_stat (EV_P_ ev_stat *w) 2596ev_stat_stat (EV_P_ ev_stat *w)
1985{ 2597{
2049 else 2661 else
2050#endif 2662#endif
2051 ev_timer_start (EV_A_ &w->timer); 2663 ev_timer_start (EV_A_ &w->timer);
2052 2664
2053 ev_start (EV_A_ (W)w, 1); 2665 ev_start (EV_A_ (W)w, 1);
2666
2667 EV_FREQUENT_CHECK;
2054} 2668}
2055 2669
2056void 2670void
2057ev_stat_stop (EV_P_ ev_stat *w) 2671ev_stat_stop (EV_P_ ev_stat *w)
2058{ 2672{
2059 clear_pending (EV_A_ (W)w); 2673 clear_pending (EV_A_ (W)w);
2060 if (expect_false (!ev_is_active (w))) 2674 if (expect_false (!ev_is_active (w)))
2061 return; 2675 return;
2062 2676
2677 EV_FREQUENT_CHECK;
2678
2063#if EV_USE_INOTIFY 2679#if EV_USE_INOTIFY
2064 infy_del (EV_A_ w); 2680 infy_del (EV_A_ w);
2065#endif 2681#endif
2066 ev_timer_stop (EV_A_ &w->timer); 2682 ev_timer_stop (EV_A_ &w->timer);
2067 2683
2068 ev_stop (EV_A_ (W)w); 2684 ev_stop (EV_A_ (W)w);
2685
2686 EV_FREQUENT_CHECK;
2069} 2687}
2070#endif 2688#endif
2071 2689
2072#if EV_IDLE_ENABLE 2690#if EV_IDLE_ENABLE
2073void 2691void
2075{ 2693{
2076 if (expect_false (ev_is_active (w))) 2694 if (expect_false (ev_is_active (w)))
2077 return; 2695 return;
2078 2696
2079 pri_adjust (EV_A_ (W)w); 2697 pri_adjust (EV_A_ (W)w);
2698
2699 EV_FREQUENT_CHECK;
2080 2700
2081 { 2701 {
2082 int active = ++idlecnt [ABSPRI (w)]; 2702 int active = ++idlecnt [ABSPRI (w)];
2083 2703
2084 ++idleall; 2704 ++idleall;
2085 ev_start (EV_A_ (W)w, active); 2705 ev_start (EV_A_ (W)w, active);
2086 2706
2087 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2707 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2088 idles [ABSPRI (w)][active - 1] = w; 2708 idles [ABSPRI (w)][active - 1] = w;
2089 } 2709 }
2710
2711 EV_FREQUENT_CHECK;
2090} 2712}
2091 2713
2092void 2714void
2093ev_idle_stop (EV_P_ ev_idle *w) 2715ev_idle_stop (EV_P_ ev_idle *w)
2094{ 2716{
2095 clear_pending (EV_A_ (W)w); 2717 clear_pending (EV_A_ (W)w);
2096 if (expect_false (!ev_is_active (w))) 2718 if (expect_false (!ev_is_active (w)))
2097 return; 2719 return;
2098 2720
2721 EV_FREQUENT_CHECK;
2722
2099 { 2723 {
2100 int active = ((W)w)->active; 2724 int active = ev_active (w);
2101 2725
2102 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2726 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2103 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2727 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2104 2728
2105 ev_stop (EV_A_ (W)w); 2729 ev_stop (EV_A_ (W)w);
2106 --idleall; 2730 --idleall;
2107 } 2731 }
2732
2733 EV_FREQUENT_CHECK;
2108} 2734}
2109#endif 2735#endif
2110 2736
2111void 2737void
2112ev_prepare_start (EV_P_ ev_prepare *w) 2738ev_prepare_start (EV_P_ ev_prepare *w)
2113{ 2739{
2114 if (expect_false (ev_is_active (w))) 2740 if (expect_false (ev_is_active (w)))
2115 return; 2741 return;
2742
2743 EV_FREQUENT_CHECK;
2116 2744
2117 ev_start (EV_A_ (W)w, ++preparecnt); 2745 ev_start (EV_A_ (W)w, ++preparecnt);
2118 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2746 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2119 prepares [preparecnt - 1] = w; 2747 prepares [preparecnt - 1] = w;
2748
2749 EV_FREQUENT_CHECK;
2120} 2750}
2121 2751
2122void 2752void
2123ev_prepare_stop (EV_P_ ev_prepare *w) 2753ev_prepare_stop (EV_P_ ev_prepare *w)
2124{ 2754{
2125 clear_pending (EV_A_ (W)w); 2755 clear_pending (EV_A_ (W)w);
2126 if (expect_false (!ev_is_active (w))) 2756 if (expect_false (!ev_is_active (w)))
2127 return; 2757 return;
2128 2758
2759 EV_FREQUENT_CHECK;
2760
2129 { 2761 {
2130 int active = ((W)w)->active; 2762 int active = ev_active (w);
2763
2131 prepares [active - 1] = prepares [--preparecnt]; 2764 prepares [active - 1] = prepares [--preparecnt];
2132 ((W)prepares [active - 1])->active = active; 2765 ev_active (prepares [active - 1]) = active;
2133 } 2766 }
2134 2767
2135 ev_stop (EV_A_ (W)w); 2768 ev_stop (EV_A_ (W)w);
2769
2770 EV_FREQUENT_CHECK;
2136} 2771}
2137 2772
2138void 2773void
2139ev_check_start (EV_P_ ev_check *w) 2774ev_check_start (EV_P_ ev_check *w)
2140{ 2775{
2141 if (expect_false (ev_is_active (w))) 2776 if (expect_false (ev_is_active (w)))
2142 return; 2777 return;
2778
2779 EV_FREQUENT_CHECK;
2143 2780
2144 ev_start (EV_A_ (W)w, ++checkcnt); 2781 ev_start (EV_A_ (W)w, ++checkcnt);
2145 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2782 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2146 checks [checkcnt - 1] = w; 2783 checks [checkcnt - 1] = w;
2784
2785 EV_FREQUENT_CHECK;
2147} 2786}
2148 2787
2149void 2788void
2150ev_check_stop (EV_P_ ev_check *w) 2789ev_check_stop (EV_P_ ev_check *w)
2151{ 2790{
2152 clear_pending (EV_A_ (W)w); 2791 clear_pending (EV_A_ (W)w);
2153 if (expect_false (!ev_is_active (w))) 2792 if (expect_false (!ev_is_active (w)))
2154 return; 2793 return;
2155 2794
2795 EV_FREQUENT_CHECK;
2796
2156 { 2797 {
2157 int active = ((W)w)->active; 2798 int active = ev_active (w);
2799
2158 checks [active - 1] = checks [--checkcnt]; 2800 checks [active - 1] = checks [--checkcnt];
2159 ((W)checks [active - 1])->active = active; 2801 ev_active (checks [active - 1]) = active;
2160 } 2802 }
2161 2803
2162 ev_stop (EV_A_ (W)w); 2804 ev_stop (EV_A_ (W)w);
2805
2806 EV_FREQUENT_CHECK;
2163} 2807}
2164 2808
2165#if EV_EMBED_ENABLE 2809#if EV_EMBED_ENABLE
2166void noinline 2810void noinline
2167ev_embed_sweep (EV_P_ ev_embed *w) 2811ev_embed_sweep (EV_P_ ev_embed *w)
2168{ 2812{
2169 ev_loop (w->loop, EVLOOP_NONBLOCK); 2813 ev_loop (w->other, EVLOOP_NONBLOCK);
2170} 2814}
2171 2815
2172static void 2816static void
2173embed_cb (EV_P_ ev_io *io, int revents) 2817embed_io_cb (EV_P_ ev_io *io, int revents)
2174{ 2818{
2175 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2819 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2176 2820
2177 if (ev_cb (w)) 2821 if (ev_cb (w))
2178 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2822 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2179 else 2823 else
2180 ev_embed_sweep (loop, w); 2824 ev_loop (w->other, EVLOOP_NONBLOCK);
2181} 2825}
2826
2827static void
2828embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2829{
2830 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2831
2832 {
2833 struct ev_loop *loop = w->other;
2834
2835 while (fdchangecnt)
2836 {
2837 fd_reify (EV_A);
2838 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2839 }
2840 }
2841}
2842
2843static void
2844embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2845{
2846 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2847
2848 {
2849 struct ev_loop *loop = w->other;
2850
2851 ev_loop_fork (EV_A);
2852 }
2853}
2854
2855#if 0
2856static void
2857embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2858{
2859 ev_idle_stop (EV_A_ idle);
2860}
2861#endif
2182 2862
2183void 2863void
2184ev_embed_start (EV_P_ ev_embed *w) 2864ev_embed_start (EV_P_ ev_embed *w)
2185{ 2865{
2186 if (expect_false (ev_is_active (w))) 2866 if (expect_false (ev_is_active (w)))
2187 return; 2867 return;
2188 2868
2189 { 2869 {
2190 struct ev_loop *loop = w->loop; 2870 struct ev_loop *loop = w->other;
2191 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2871 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2192 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2872 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2193 } 2873 }
2874
2875 EV_FREQUENT_CHECK;
2194 2876
2195 ev_set_priority (&w->io, ev_priority (w)); 2877 ev_set_priority (&w->io, ev_priority (w));
2196 ev_io_start (EV_A_ &w->io); 2878 ev_io_start (EV_A_ &w->io);
2197 2879
2880 ev_prepare_init (&w->prepare, embed_prepare_cb);
2881 ev_set_priority (&w->prepare, EV_MINPRI);
2882 ev_prepare_start (EV_A_ &w->prepare);
2883
2884 ev_fork_init (&w->fork, embed_fork_cb);
2885 ev_fork_start (EV_A_ &w->fork);
2886
2887 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2888
2198 ev_start (EV_A_ (W)w, 1); 2889 ev_start (EV_A_ (W)w, 1);
2890
2891 EV_FREQUENT_CHECK;
2199} 2892}
2200 2893
2201void 2894void
2202ev_embed_stop (EV_P_ ev_embed *w) 2895ev_embed_stop (EV_P_ ev_embed *w)
2203{ 2896{
2204 clear_pending (EV_A_ (W)w); 2897 clear_pending (EV_A_ (W)w);
2205 if (expect_false (!ev_is_active (w))) 2898 if (expect_false (!ev_is_active (w)))
2206 return; 2899 return;
2207 2900
2901 EV_FREQUENT_CHECK;
2902
2208 ev_io_stop (EV_A_ &w->io); 2903 ev_io_stop (EV_A_ &w->io);
2904 ev_prepare_stop (EV_A_ &w->prepare);
2905 ev_fork_stop (EV_A_ &w->fork);
2209 2906
2210 ev_stop (EV_A_ (W)w); 2907 EV_FREQUENT_CHECK;
2211} 2908}
2212#endif 2909#endif
2213 2910
2214#if EV_FORK_ENABLE 2911#if EV_FORK_ENABLE
2215void 2912void
2216ev_fork_start (EV_P_ ev_fork *w) 2913ev_fork_start (EV_P_ ev_fork *w)
2217{ 2914{
2218 if (expect_false (ev_is_active (w))) 2915 if (expect_false (ev_is_active (w)))
2219 return; 2916 return;
2917
2918 EV_FREQUENT_CHECK;
2220 2919
2221 ev_start (EV_A_ (W)w, ++forkcnt); 2920 ev_start (EV_A_ (W)w, ++forkcnt);
2222 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2921 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2223 forks [forkcnt - 1] = w; 2922 forks [forkcnt - 1] = w;
2923
2924 EV_FREQUENT_CHECK;
2224} 2925}
2225 2926
2226void 2927void
2227ev_fork_stop (EV_P_ ev_fork *w) 2928ev_fork_stop (EV_P_ ev_fork *w)
2228{ 2929{
2229 clear_pending (EV_A_ (W)w); 2930 clear_pending (EV_A_ (W)w);
2230 if (expect_false (!ev_is_active (w))) 2931 if (expect_false (!ev_is_active (w)))
2231 return; 2932 return;
2232 2933
2934 EV_FREQUENT_CHECK;
2935
2233 { 2936 {
2234 int active = ((W)w)->active; 2937 int active = ev_active (w);
2938
2235 forks [active - 1] = forks [--forkcnt]; 2939 forks [active - 1] = forks [--forkcnt];
2236 ((W)forks [active - 1])->active = active; 2940 ev_active (forks [active - 1]) = active;
2237 } 2941 }
2238 2942
2239 ev_stop (EV_A_ (W)w); 2943 ev_stop (EV_A_ (W)w);
2944
2945 EV_FREQUENT_CHECK;
2946}
2947#endif
2948
2949#if EV_ASYNC_ENABLE
2950void
2951ev_async_start (EV_P_ ev_async *w)
2952{
2953 if (expect_false (ev_is_active (w)))
2954 return;
2955
2956 evpipe_init (EV_A);
2957
2958 EV_FREQUENT_CHECK;
2959
2960 ev_start (EV_A_ (W)w, ++asynccnt);
2961 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2962 asyncs [asynccnt - 1] = w;
2963
2964 EV_FREQUENT_CHECK;
2965}
2966
2967void
2968ev_async_stop (EV_P_ ev_async *w)
2969{
2970 clear_pending (EV_A_ (W)w);
2971 if (expect_false (!ev_is_active (w)))
2972 return;
2973
2974 EV_FREQUENT_CHECK;
2975
2976 {
2977 int active = ev_active (w);
2978
2979 asyncs [active - 1] = asyncs [--asynccnt];
2980 ev_active (asyncs [active - 1]) = active;
2981 }
2982
2983 ev_stop (EV_A_ (W)w);
2984
2985 EV_FREQUENT_CHECK;
2986}
2987
2988void
2989ev_async_send (EV_P_ ev_async *w)
2990{
2991 w->sent = 1;
2992 evpipe_write (EV_A_ &gotasync);
2240} 2993}
2241#endif 2994#endif
2242 2995
2243/*****************************************************************************/ 2996/*****************************************************************************/
2244 2997
2254once_cb (EV_P_ struct ev_once *once, int revents) 3007once_cb (EV_P_ struct ev_once *once, int revents)
2255{ 3008{
2256 void (*cb)(int revents, void *arg) = once->cb; 3009 void (*cb)(int revents, void *arg) = once->cb;
2257 void *arg = once->arg; 3010 void *arg = once->arg;
2258 3011
2259 ev_io_stop (EV_A_ &once->io); 3012 ev_io_stop (EV_A_ &once->io);
2260 ev_timer_stop (EV_A_ &once->to); 3013 ev_timer_stop (EV_A_ &once->to);
2261 ev_free (once); 3014 ev_free (once);
2262 3015
2263 cb (revents, arg); 3016 cb (revents, arg);
2264} 3017}
2265 3018
2266static void 3019static void
2267once_cb_io (EV_P_ ev_io *w, int revents) 3020once_cb_io (EV_P_ ev_io *w, int revents)
2268{ 3021{
2269 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3022 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3023
3024 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2270} 3025}
2271 3026
2272static void 3027static void
2273once_cb_to (EV_P_ ev_timer *w, int revents) 3028once_cb_to (EV_P_ ev_timer *w, int revents)
2274{ 3029{
2275 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3030 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3031
3032 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2276} 3033}
2277 3034
2278void 3035void
2279ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3036ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2280{ 3037{
2302 ev_timer_set (&once->to, timeout, 0.); 3059 ev_timer_set (&once->to, timeout, 0.);
2303 ev_timer_start (EV_A_ &once->to); 3060 ev_timer_start (EV_A_ &once->to);
2304 } 3061 }
2305} 3062}
2306 3063
3064#if EV_MULTIPLICITY
3065 #include "ev_wrap.h"
3066#endif
3067
2307#ifdef __cplusplus 3068#ifdef __cplusplus
2308} 3069}
2309#endif 3070#endif
2310 3071

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines