ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.198 by root, Sun Dec 23 04:45:51 2007 UTC vs.
Revision 1.263 by root, Wed Oct 1 18:50:03 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
110# else 119# else
111# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
112# endif 121# endif
113# endif 122# endif
114 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
115#endif 132#endif
116 133
117#include <math.h> 134#include <math.h>
118#include <stdlib.h> 135#include <stdlib.h>
119#include <fcntl.h> 136#include <fcntl.h>
137#ifndef _WIN32 154#ifndef _WIN32
138# include <sys/time.h> 155# include <sys/time.h>
139# include <sys/wait.h> 156# include <sys/wait.h>
140# include <unistd.h> 157# include <unistd.h>
141#else 158#else
159# include <io.h>
142# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
143# include <windows.h> 161# include <windows.h>
144# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
146# endif 164# endif
147#endif 165#endif
148 166
149/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
150 168
151#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
152# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
153#endif 175#endif
154 176
155#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
156# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
157#endif 179#endif
158 180
159#ifndef EV_USE_NANOSLEEP 181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
160# define EV_USE_NANOSLEEP 0 185# define EV_USE_NANOSLEEP 0
186# endif
161#endif 187#endif
162 188
163#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
164# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
165#endif 191#endif
171# define EV_USE_POLL 1 197# define EV_USE_POLL 1
172# endif 198# endif
173#endif 199#endif
174 200
175#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
176# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
177#endif 207#endif
178 208
179#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
180# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
181#endif 211#endif
183#ifndef EV_USE_PORT 213#ifndef EV_USE_PORT
184# define EV_USE_PORT 0 214# define EV_USE_PORT 0
185#endif 215#endif
186 216
187#ifndef EV_USE_INOTIFY 217#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1
220# else
188# define EV_USE_INOTIFY 0 221# define EV_USE_INOTIFY 0
222# endif
189#endif 223#endif
190 224
191#ifndef EV_PID_HASHSIZE 225#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL 226# if EV_MINIMAL
193# define EV_PID_HASHSIZE 1 227# define EV_PID_HASHSIZE 1
202# else 236# else
203# define EV_INOTIFY_HASHSIZE 16 237# define EV_INOTIFY_HASHSIZE 16
204# endif 238# endif
205#endif 239#endif
206 240
207/**/ 241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
208 268
209#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
210# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
211# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
212#endif 272#endif
227# endif 287# endif
228#endif 288#endif
229 289
230#if EV_USE_INOTIFY 290#if EV_USE_INOTIFY
231# include <sys/inotify.h> 291# include <sys/inotify.h>
292/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
293# ifndef IN_DONT_FOLLOW
294# undef EV_USE_INOTIFY
295# define EV_USE_INOTIFY 0
296# endif
232#endif 297#endif
233 298
234#if EV_SELECT_IS_WINSOCKET 299#if EV_SELECT_IS_WINSOCKET
235# include <winsock.h> 300# include <winsock.h>
236#endif 301#endif
237 302
303#if EV_USE_EVENTFD
304/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
305# include <stdint.h>
306# ifdef __cplusplus
307extern "C" {
308# endif
309int eventfd (unsigned int initval, int flags);
310# ifdef __cplusplus
311}
312# endif
313#endif
314
238/**/ 315/**/
316
317#if EV_VERIFY >= 3
318# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
319#else
320# define EV_FREQUENT_CHECK do { } while (0)
321#endif
239 322
240/* 323/*
241 * This is used to avoid floating point rounding problems. 324 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics 325 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding 326 * to ensure progress, time-wise, even when rounding
255# define expect(expr,value) __builtin_expect ((expr),(value)) 338# define expect(expr,value) __builtin_expect ((expr),(value))
256# define noinline __attribute__ ((noinline)) 339# define noinline __attribute__ ((noinline))
257#else 340#else
258# define expect(expr,value) (expr) 341# define expect(expr,value) (expr)
259# define noinline 342# define noinline
260# if __STDC_VERSION__ < 199901L 343# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
261# define inline 344# define inline
262# endif 345# endif
263#endif 346#endif
264 347
265#define expect_false(expr) expect ((expr) != 0, 0) 348#define expect_false(expr) expect ((expr) != 0, 0)
280 363
281typedef ev_watcher *W; 364typedef ev_watcher *W;
282typedef ev_watcher_list *WL; 365typedef ev_watcher_list *WL;
283typedef ev_watcher_time *WT; 366typedef ev_watcher_time *WT;
284 367
368#define ev_active(w) ((W)(w))->active
369#define ev_at(w) ((WT)(w))->at
370
285#if EV_USE_MONOTONIC 371#if EV_USE_MONOTONIC
286/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 372/* sig_atomic_t is used to avoid per-thread variables or locking but still */
287/* giving it a reasonably high chance of working on typical architetcures */ 373/* giving it a reasonably high chance of working on typical architetcures */
288static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 374static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
289#endif 375#endif
290 376
291#ifdef _WIN32 377#ifdef _WIN32
292# include "ev_win32.c" 378# include "ev_win32.c"
293#endif 379#endif
315 perror (msg); 401 perror (msg);
316 abort (); 402 abort ();
317 } 403 }
318} 404}
319 405
406static void *
407ev_realloc_emul (void *ptr, long size)
408{
409 /* some systems, notably openbsd and darwin, fail to properly
410 * implement realloc (x, 0) (as required by both ansi c-98 and
411 * the single unix specification, so work around them here.
412 */
413
414 if (size)
415 return realloc (ptr, size);
416
417 free (ptr);
418 return 0;
419}
420
320static void *(*alloc)(void *ptr, long size); 421static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
321 422
322void 423void
323ev_set_allocator (void *(*cb)(void *ptr, long size)) 424ev_set_allocator (void *(*cb)(void *ptr, long size))
324{ 425{
325 alloc = cb; 426 alloc = cb;
326} 427}
327 428
328inline_speed void * 429inline_speed void *
329ev_realloc (void *ptr, long size) 430ev_realloc (void *ptr, long size)
330{ 431{
331 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 432 ptr = alloc (ptr, size);
332 433
333 if (!ptr && size) 434 if (!ptr && size)
334 { 435 {
335 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 436 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
336 abort (); 437 abort ();
359 W w; 460 W w;
360 int events; 461 int events;
361} ANPENDING; 462} ANPENDING;
362 463
363#if EV_USE_INOTIFY 464#if EV_USE_INOTIFY
465/* hash table entry per inotify-id */
364typedef struct 466typedef struct
365{ 467{
366 WL head; 468 WL head;
367} ANFS; 469} ANFS;
470#endif
471
472/* Heap Entry */
473#if EV_HEAP_CACHE_AT
474 typedef struct {
475 ev_tstamp at;
476 WT w;
477 } ANHE;
478
479 #define ANHE_w(he) (he).w /* access watcher, read-write */
480 #define ANHE_at(he) (he).at /* access cached at, read-only */
481 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
482#else
483 typedef WT ANHE;
484
485 #define ANHE_w(he) (he)
486 #define ANHE_at(he) (he)->at
487 #define ANHE_at_cache(he)
368#endif 488#endif
369 489
370#if EV_MULTIPLICITY 490#if EV_MULTIPLICITY
371 491
372 struct ev_loop 492 struct ev_loop
443 ts.tv_sec = (time_t)delay; 563 ts.tv_sec = (time_t)delay;
444 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 564 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
445 565
446 nanosleep (&ts, 0); 566 nanosleep (&ts, 0);
447#elif defined(_WIN32) 567#elif defined(_WIN32)
448 Sleep (delay * 1e3); 568 Sleep ((unsigned long)(delay * 1e3));
449#else 569#else
450 struct timeval tv; 570 struct timeval tv;
451 571
452 tv.tv_sec = (time_t)delay; 572 tv.tv_sec = (time_t)delay;
453 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 573 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
454 574
575 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
576 /* somehting nto guaranteed by newer posix versions, but guaranteed */
577 /* by older ones */
455 select (0, 0, 0, 0, &tv); 578 select (0, 0, 0, 0, &tv);
456#endif 579#endif
457 } 580 }
458} 581}
459 582
460/*****************************************************************************/ 583/*****************************************************************************/
584
585#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
461 586
462int inline_size 587int inline_size
463array_nextsize (int elem, int cur, int cnt) 588array_nextsize (int elem, int cur, int cnt)
464{ 589{
465 int ncur = cur + 1; 590 int ncur = cur + 1;
466 591
467 do 592 do
468 ncur <<= 1; 593 ncur <<= 1;
469 while (cnt > ncur); 594 while (cnt > ncur);
470 595
471 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 596 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
472 if (elem * ncur > 4096) 597 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
473 { 598 {
474 ncur *= elem; 599 ncur *= elem;
475 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 600 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
476 ncur = ncur - sizeof (void *) * 4; 601 ncur = ncur - sizeof (void *) * 4;
477 ncur /= elem; 602 ncur /= elem;
478 } 603 }
479 604
480 return ncur; 605 return ncur;
591 events |= (unsigned char)w->events; 716 events |= (unsigned char)w->events;
592 717
593#if EV_SELECT_IS_WINSOCKET 718#if EV_SELECT_IS_WINSOCKET
594 if (events) 719 if (events)
595 { 720 {
596 unsigned long argp; 721 unsigned long arg;
722 #ifdef EV_FD_TO_WIN32_HANDLE
723 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
724 #else
597 anfd->handle = _get_osfhandle (fd); 725 anfd->handle = _get_osfhandle (fd);
726 #endif
598 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 727 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
599 } 728 }
600#endif 729#endif
601 730
602 { 731 {
603 unsigned char o_events = anfd->events; 732 unsigned char o_events = anfd->events;
656{ 785{
657 int fd; 786 int fd;
658 787
659 for (fd = 0; fd < anfdmax; ++fd) 788 for (fd = 0; fd < anfdmax; ++fd)
660 if (anfds [fd].events) 789 if (anfds [fd].events)
661 if (!fd_valid (fd) == -1 && errno == EBADF) 790 if (!fd_valid (fd) && errno == EBADF)
662 fd_kill (EV_A_ fd); 791 fd_kill (EV_A_ fd);
663} 792}
664 793
665/* called on ENOMEM in select/poll to kill some fds and retry */ 794/* called on ENOMEM in select/poll to kill some fds and retry */
666static void noinline 795static void noinline
690 } 819 }
691} 820}
692 821
693/*****************************************************************************/ 822/*****************************************************************************/
694 823
824/*
825 * the heap functions want a real array index. array index 0 uis guaranteed to not
826 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
827 * the branching factor of the d-tree.
828 */
829
830/*
831 * at the moment we allow libev the luxury of two heaps,
832 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
833 * which is more cache-efficient.
834 * the difference is about 5% with 50000+ watchers.
835 */
836#if EV_USE_4HEAP
837
838#define DHEAP 4
839#define HEAP0 (DHEAP - 1) /* index of first element in heap */
840#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
841#define UPHEAP_DONE(p,k) ((p) == (k))
842
843/* away from the root */
695void inline_speed 844void inline_speed
696upheap (WT *heap, int k) 845downheap (ANHE *heap, int N, int k)
697{ 846{
698 WT w = heap [k]; 847 ANHE he = heap [k];
848 ANHE *E = heap + N + HEAP0;
699 849
700 while (k) 850 for (;;)
701 { 851 {
702 int p = (k - 1) >> 1; 852 ev_tstamp minat;
853 ANHE *minpos;
854 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
703 855
704 if (heap [p]->at <= w->at) 856 /* find minimum child */
857 if (expect_true (pos + DHEAP - 1 < E))
858 {
859 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
860 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
861 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
862 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
863 }
864 else if (pos < E)
865 {
866 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
867 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
868 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
869 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
870 }
871 else
705 break; 872 break;
706 873
874 if (ANHE_at (he) <= minat)
875 break;
876
877 heap [k] = *minpos;
878 ev_active (ANHE_w (*minpos)) = k;
879
880 k = minpos - heap;
881 }
882
883 heap [k] = he;
884 ev_active (ANHE_w (he)) = k;
885}
886
887#else /* 4HEAP */
888
889#define HEAP0 1
890#define HPARENT(k) ((k) >> 1)
891#define UPHEAP_DONE(p,k) (!(p))
892
893/* away from the root */
894void inline_speed
895downheap (ANHE *heap, int N, int k)
896{
897 ANHE he = heap [k];
898
899 for (;;)
900 {
901 int c = k << 1;
902
903 if (c > N + HEAP0 - 1)
904 break;
905
906 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
907 ? 1 : 0;
908
909 if (ANHE_at (he) <= ANHE_at (heap [c]))
910 break;
911
912 heap [k] = heap [c];
913 ev_active (ANHE_w (heap [k])) = k;
914
915 k = c;
916 }
917
918 heap [k] = he;
919 ev_active (ANHE_w (he)) = k;
920}
921#endif
922
923/* towards the root */
924void inline_speed
925upheap (ANHE *heap, int k)
926{
927 ANHE he = heap [k];
928
929 for (;;)
930 {
931 int p = HPARENT (k);
932
933 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
934 break;
935
707 heap [k] = heap [p]; 936 heap [k] = heap [p];
708 ((W)heap [k])->active = k + 1; 937 ev_active (ANHE_w (heap [k])) = k;
709 k = p; 938 k = p;
710 } 939 }
711 940
712 heap [k] = w; 941 heap [k] = he;
713 ((W)heap [k])->active = k + 1; 942 ev_active (ANHE_w (he)) = k;
714}
715
716void inline_speed
717downheap (WT *heap, int N, int k)
718{
719 WT w = heap [k];
720
721 for (;;)
722 {
723 int c = (k << 1) + 1;
724
725 if (c >= N)
726 break;
727
728 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
729 ? 1 : 0;
730
731 if (w->at <= heap [c]->at)
732 break;
733
734 heap [k] = heap [c];
735 ((W)heap [k])->active = k + 1;
736
737 k = c;
738 }
739
740 heap [k] = w;
741 ((W)heap [k])->active = k + 1;
742} 943}
743 944
744void inline_size 945void inline_size
745adjustheap (WT *heap, int N, int k) 946adjustheap (ANHE *heap, int N, int k)
746{ 947{
948 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
747 upheap (heap, k); 949 upheap (heap, k);
950 else
748 downheap (heap, N, k); 951 downheap (heap, N, k);
952}
953
954/* rebuild the heap: this function is used only once and executed rarely */
955void inline_size
956reheap (ANHE *heap, int N)
957{
958 int i;
959
960 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
961 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
962 for (i = 0; i < N; ++i)
963 upheap (heap, i + HEAP0);
749} 964}
750 965
751/*****************************************************************************/ 966/*****************************************************************************/
752 967
753typedef struct 968typedef struct
754{ 969{
755 WL head; 970 WL head;
756 sig_atomic_t volatile gotsig; 971 EV_ATOMIC_T gotsig;
757} ANSIG; 972} ANSIG;
758 973
759static ANSIG *signals; 974static ANSIG *signals;
760static int signalmax; 975static int signalmax;
761 976
762static int sigpipe [2]; 977static EV_ATOMIC_T gotsig;
763static sig_atomic_t volatile gotsig;
764static ev_io sigev;
765 978
766void inline_size 979void inline_size
767signals_init (ANSIG *base, int count) 980signals_init (ANSIG *base, int count)
768{ 981{
769 while (count--) 982 while (count--)
773 986
774 ++base; 987 ++base;
775 } 988 }
776} 989}
777 990
778static void 991/*****************************************************************************/
779sighandler (int signum)
780{
781#if _WIN32
782 signal (signum, sighandler);
783#endif
784
785 signals [signum - 1].gotsig = 1;
786
787 if (!gotsig)
788 {
789 int old_errno = errno;
790 gotsig = 1;
791 write (sigpipe [1], &signum, 1);
792 errno = old_errno;
793 }
794}
795
796void noinline
797ev_feed_signal_event (EV_P_ int signum)
798{
799 WL w;
800
801#if EV_MULTIPLICITY
802 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
803#endif
804
805 --signum;
806
807 if (signum < 0 || signum >= signalmax)
808 return;
809
810 signals [signum].gotsig = 0;
811
812 for (w = signals [signum].head; w; w = w->next)
813 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
814}
815
816static void
817sigcb (EV_P_ ev_io *iow, int revents)
818{
819 int signum;
820
821 read (sigpipe [0], &revents, 1);
822 gotsig = 0;
823
824 for (signum = signalmax; signum--; )
825 if (signals [signum].gotsig)
826 ev_feed_signal_event (EV_A_ signum + 1);
827}
828 992
829void inline_speed 993void inline_speed
830fd_intern (int fd) 994fd_intern (int fd)
831{ 995{
832#ifdef _WIN32 996#ifdef _WIN32
833 int arg = 1; 997 unsigned long arg = 1;
834 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 998 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
835#else 999#else
836 fcntl (fd, F_SETFD, FD_CLOEXEC); 1000 fcntl (fd, F_SETFD, FD_CLOEXEC);
837 fcntl (fd, F_SETFL, O_NONBLOCK); 1001 fcntl (fd, F_SETFL, O_NONBLOCK);
838#endif 1002#endif
839} 1003}
840 1004
841static void noinline 1005static void noinline
842siginit (EV_P) 1006evpipe_init (EV_P)
843{ 1007{
1008 if (!ev_is_active (&pipeev))
1009 {
1010#if EV_USE_EVENTFD
1011 if ((evfd = eventfd (0, 0)) >= 0)
1012 {
1013 evpipe [0] = -1;
1014 fd_intern (evfd);
1015 ev_io_set (&pipeev, evfd, EV_READ);
1016 }
1017 else
1018#endif
1019 {
1020 while (pipe (evpipe))
1021 syserr ("(libev) error creating signal/async pipe");
1022
844 fd_intern (sigpipe [0]); 1023 fd_intern (evpipe [0]);
845 fd_intern (sigpipe [1]); 1024 fd_intern (evpipe [1]);
1025 ev_io_set (&pipeev, evpipe [0], EV_READ);
1026 }
846 1027
847 ev_io_set (&sigev, sigpipe [0], EV_READ);
848 ev_io_start (EV_A_ &sigev); 1028 ev_io_start (EV_A_ &pipeev);
849 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1029 ev_unref (EV_A); /* watcher should not keep loop alive */
1030 }
1031}
1032
1033void inline_size
1034evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1035{
1036 if (!*flag)
1037 {
1038 int old_errno = errno; /* save errno because write might clobber it */
1039
1040 *flag = 1;
1041
1042#if EV_USE_EVENTFD
1043 if (evfd >= 0)
1044 {
1045 uint64_t counter = 1;
1046 write (evfd, &counter, sizeof (uint64_t));
1047 }
1048 else
1049#endif
1050 write (evpipe [1], &old_errno, 1);
1051
1052 errno = old_errno;
1053 }
1054}
1055
1056static void
1057pipecb (EV_P_ ev_io *iow, int revents)
1058{
1059#if EV_USE_EVENTFD
1060 if (evfd >= 0)
1061 {
1062 uint64_t counter;
1063 read (evfd, &counter, sizeof (uint64_t));
1064 }
1065 else
1066#endif
1067 {
1068 char dummy;
1069 read (evpipe [0], &dummy, 1);
1070 }
1071
1072 if (gotsig && ev_is_default_loop (EV_A))
1073 {
1074 int signum;
1075 gotsig = 0;
1076
1077 for (signum = signalmax; signum--; )
1078 if (signals [signum].gotsig)
1079 ev_feed_signal_event (EV_A_ signum + 1);
1080 }
1081
1082#if EV_ASYNC_ENABLE
1083 if (gotasync)
1084 {
1085 int i;
1086 gotasync = 0;
1087
1088 for (i = asynccnt; i--; )
1089 if (asyncs [i]->sent)
1090 {
1091 asyncs [i]->sent = 0;
1092 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1093 }
1094 }
1095#endif
850} 1096}
851 1097
852/*****************************************************************************/ 1098/*****************************************************************************/
853 1099
1100static void
1101ev_sighandler (int signum)
1102{
1103#if EV_MULTIPLICITY
1104 struct ev_loop *loop = &default_loop_struct;
1105#endif
1106
1107#if _WIN32
1108 signal (signum, ev_sighandler);
1109#endif
1110
1111 signals [signum - 1].gotsig = 1;
1112 evpipe_write (EV_A_ &gotsig);
1113}
1114
1115void noinline
1116ev_feed_signal_event (EV_P_ int signum)
1117{
1118 WL w;
1119
1120#if EV_MULTIPLICITY
1121 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1122#endif
1123
1124 --signum;
1125
1126 if (signum < 0 || signum >= signalmax)
1127 return;
1128
1129 signals [signum].gotsig = 0;
1130
1131 for (w = signals [signum].head; w; w = w->next)
1132 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1133}
1134
1135/*****************************************************************************/
1136
854static WL childs [EV_PID_HASHSIZE]; 1137static WL childs [EV_PID_HASHSIZE];
855 1138
856#ifndef _WIN32 1139#ifndef _WIN32
857 1140
858static ev_signal childev; 1141static ev_signal childev;
859 1142
1143#ifndef WIFCONTINUED
1144# define WIFCONTINUED(status) 0
1145#endif
1146
860void inline_speed 1147void inline_speed
861child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1148child_reap (EV_P_ int chain, int pid, int status)
862{ 1149{
863 ev_child *w; 1150 ev_child *w;
1151 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
864 1152
865 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1153 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1154 {
866 if (w->pid == pid || !w->pid) 1155 if ((w->pid == pid || !w->pid)
1156 && (!traced || (w->flags & 1)))
867 { 1157 {
868 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1158 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
869 w->rpid = pid; 1159 w->rpid = pid;
870 w->rstatus = status; 1160 w->rstatus = status;
871 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1161 ev_feed_event (EV_A_ (W)w, EV_CHILD);
872 } 1162 }
1163 }
873} 1164}
874 1165
875#ifndef WCONTINUED 1166#ifndef WCONTINUED
876# define WCONTINUED 0 1167# define WCONTINUED 0
877#endif 1168#endif
886 if (!WCONTINUED 1177 if (!WCONTINUED
887 || errno != EINVAL 1178 || errno != EINVAL
888 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1179 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
889 return; 1180 return;
890 1181
891 /* make sure we are called again until all childs have been reaped */ 1182 /* make sure we are called again until all children have been reaped */
892 /* we need to do it this way so that the callback gets called before we continue */ 1183 /* we need to do it this way so that the callback gets called before we continue */
893 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1184 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
894 1185
895 child_reap (EV_A_ sw, pid, pid, status); 1186 child_reap (EV_A_ pid, pid, status);
896 if (EV_PID_HASHSIZE > 1) 1187 if (EV_PID_HASHSIZE > 1)
897 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1188 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
898} 1189}
899 1190
900#endif 1191#endif
901 1192
902/*****************************************************************************/ 1193/*****************************************************************************/
1020 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1311 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1021 have_monotonic = 1; 1312 have_monotonic = 1;
1022 } 1313 }
1023#endif 1314#endif
1024 1315
1025 ev_rt_now = ev_time (); 1316 ev_rt_now = ev_time ();
1026 mn_now = get_clock (); 1317 mn_now = get_clock ();
1027 now_floor = mn_now; 1318 now_floor = mn_now;
1028 rtmn_diff = ev_rt_now - mn_now; 1319 rtmn_diff = ev_rt_now - mn_now;
1029 1320
1030 io_blocktime = 0.; 1321 io_blocktime = 0.;
1031 timeout_blocktime = 0.; 1322 timeout_blocktime = 0.;
1323 backend = 0;
1324 backend_fd = -1;
1325 gotasync = 0;
1326#if EV_USE_INOTIFY
1327 fs_fd = -2;
1328#endif
1032 1329
1033 /* pid check not overridable via env */ 1330 /* pid check not overridable via env */
1034#ifndef _WIN32 1331#ifndef _WIN32
1035 if (flags & EVFLAG_FORKCHECK) 1332 if (flags & EVFLAG_FORKCHECK)
1036 curpid = getpid (); 1333 curpid = getpid ();
1039 if (!(flags & EVFLAG_NOENV) 1336 if (!(flags & EVFLAG_NOENV)
1040 && !enable_secure () 1337 && !enable_secure ()
1041 && getenv ("LIBEV_FLAGS")) 1338 && getenv ("LIBEV_FLAGS"))
1042 flags = atoi (getenv ("LIBEV_FLAGS")); 1339 flags = atoi (getenv ("LIBEV_FLAGS"));
1043 1340
1044 if (!(flags & 0x0000ffffUL)) 1341 if (!(flags & 0x0000ffffU))
1045 flags |= ev_recommended_backends (); 1342 flags |= ev_recommended_backends ();
1046
1047 backend = 0;
1048 backend_fd = -1;
1049#if EV_USE_INOTIFY
1050 fs_fd = -2;
1051#endif
1052 1343
1053#if EV_USE_PORT 1344#if EV_USE_PORT
1054 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1345 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1055#endif 1346#endif
1056#if EV_USE_KQUEUE 1347#if EV_USE_KQUEUE
1064#endif 1355#endif
1065#if EV_USE_SELECT 1356#if EV_USE_SELECT
1066 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1357 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1067#endif 1358#endif
1068 1359
1069 ev_init (&sigev, sigcb); 1360 ev_init (&pipeev, pipecb);
1070 ev_set_priority (&sigev, EV_MAXPRI); 1361 ev_set_priority (&pipeev, EV_MAXPRI);
1071 } 1362 }
1072} 1363}
1073 1364
1074static void noinline 1365static void noinline
1075loop_destroy (EV_P) 1366loop_destroy (EV_P)
1076{ 1367{
1077 int i; 1368 int i;
1369
1370 if (ev_is_active (&pipeev))
1371 {
1372 ev_ref (EV_A); /* signal watcher */
1373 ev_io_stop (EV_A_ &pipeev);
1374
1375#if EV_USE_EVENTFD
1376 if (evfd >= 0)
1377 close (evfd);
1378#endif
1379
1380 if (evpipe [0] >= 0)
1381 {
1382 close (evpipe [0]);
1383 close (evpipe [1]);
1384 }
1385 }
1078 1386
1079#if EV_USE_INOTIFY 1387#if EV_USE_INOTIFY
1080 if (fs_fd >= 0) 1388 if (fs_fd >= 0)
1081 close (fs_fd); 1389 close (fs_fd);
1082#endif 1390#endif
1119#if EV_FORK_ENABLE 1427#if EV_FORK_ENABLE
1120 array_free (fork, EMPTY); 1428 array_free (fork, EMPTY);
1121#endif 1429#endif
1122 array_free (prepare, EMPTY); 1430 array_free (prepare, EMPTY);
1123 array_free (check, EMPTY); 1431 array_free (check, EMPTY);
1432#if EV_ASYNC_ENABLE
1433 array_free (async, EMPTY);
1434#endif
1124 1435
1125 backend = 0; 1436 backend = 0;
1126} 1437}
1127 1438
1439#if EV_USE_INOTIFY
1128void inline_size infy_fork (EV_P); 1440void inline_size infy_fork (EV_P);
1441#endif
1129 1442
1130void inline_size 1443void inline_size
1131loop_fork (EV_P) 1444loop_fork (EV_P)
1132{ 1445{
1133#if EV_USE_PORT 1446#if EV_USE_PORT
1141#endif 1454#endif
1142#if EV_USE_INOTIFY 1455#if EV_USE_INOTIFY
1143 infy_fork (EV_A); 1456 infy_fork (EV_A);
1144#endif 1457#endif
1145 1458
1146 if (ev_is_active (&sigev)) 1459 if (ev_is_active (&pipeev))
1147 { 1460 {
1148 /* default loop */ 1461 /* this "locks" the handlers against writing to the pipe */
1462 /* while we modify the fd vars */
1463 gotsig = 1;
1464#if EV_ASYNC_ENABLE
1465 gotasync = 1;
1466#endif
1149 1467
1150 ev_ref (EV_A); 1468 ev_ref (EV_A);
1151 ev_io_stop (EV_A_ &sigev); 1469 ev_io_stop (EV_A_ &pipeev);
1470
1471#if EV_USE_EVENTFD
1472 if (evfd >= 0)
1473 close (evfd);
1474#endif
1475
1476 if (evpipe [0] >= 0)
1477 {
1152 close (sigpipe [0]); 1478 close (evpipe [0]);
1153 close (sigpipe [1]); 1479 close (evpipe [1]);
1480 }
1154 1481
1155 while (pipe (sigpipe))
1156 syserr ("(libev) error creating pipe");
1157
1158 siginit (EV_A); 1482 evpipe_init (EV_A);
1483 /* now iterate over everything, in case we missed something */
1484 pipecb (EV_A_ &pipeev, EV_READ);
1159 } 1485 }
1160 1486
1161 postfork = 0; 1487 postfork = 0;
1162} 1488}
1163 1489
1164#if EV_MULTIPLICITY 1490#if EV_MULTIPLICITY
1491
1165struct ev_loop * 1492struct ev_loop *
1166ev_loop_new (unsigned int flags) 1493ev_loop_new (unsigned int flags)
1167{ 1494{
1168 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1495 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1169 1496
1185} 1512}
1186 1513
1187void 1514void
1188ev_loop_fork (EV_P) 1515ev_loop_fork (EV_P)
1189{ 1516{
1190 postfork = 1; 1517 postfork = 1; /* must be in line with ev_default_fork */
1191} 1518}
1192 1519
1520#if EV_VERIFY
1521static void noinline
1522verify_watcher (EV_P_ W w)
1523{
1524 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1525
1526 if (w->pending)
1527 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1528}
1529
1530static void noinline
1531verify_heap (EV_P_ ANHE *heap, int N)
1532{
1533 int i;
1534
1535 for (i = HEAP0; i < N + HEAP0; ++i)
1536 {
1537 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1538 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1539 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1540
1541 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1542 }
1543}
1544
1545static void noinline
1546array_verify (EV_P_ W *ws, int cnt)
1547{
1548 while (cnt--)
1549 {
1550 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1551 verify_watcher (EV_A_ ws [cnt]);
1552 }
1553}
1554#endif
1555
1556void
1557ev_loop_verify (EV_P)
1558{
1559#if EV_VERIFY
1560 int i;
1561 WL w;
1562
1563 assert (activecnt >= -1);
1564
1565 assert (fdchangemax >= fdchangecnt);
1566 for (i = 0; i < fdchangecnt; ++i)
1567 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1568
1569 assert (anfdmax >= 0);
1570 for (i = 0; i < anfdmax; ++i)
1571 for (w = anfds [i].head; w; w = w->next)
1572 {
1573 verify_watcher (EV_A_ (W)w);
1574 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1575 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1576 }
1577
1578 assert (timermax >= timercnt);
1579 verify_heap (EV_A_ timers, timercnt);
1580
1581#if EV_PERIODIC_ENABLE
1582 assert (periodicmax >= periodiccnt);
1583 verify_heap (EV_A_ periodics, periodiccnt);
1584#endif
1585
1586 for (i = NUMPRI; i--; )
1587 {
1588 assert (pendingmax [i] >= pendingcnt [i]);
1589#if EV_IDLE_ENABLE
1590 assert (idleall >= 0);
1591 assert (idlemax [i] >= idlecnt [i]);
1592 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1593#endif
1594 }
1595
1596#if EV_FORK_ENABLE
1597 assert (forkmax >= forkcnt);
1598 array_verify (EV_A_ (W *)forks, forkcnt);
1599#endif
1600
1601#if EV_ASYNC_ENABLE
1602 assert (asyncmax >= asynccnt);
1603 array_verify (EV_A_ (W *)asyncs, asynccnt);
1604#endif
1605
1606 assert (preparemax >= preparecnt);
1607 array_verify (EV_A_ (W *)prepares, preparecnt);
1608
1609 assert (checkmax >= checkcnt);
1610 array_verify (EV_A_ (W *)checks, checkcnt);
1611
1612# if 0
1613 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1614 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1193#endif 1615# endif
1616#endif
1617}
1618
1619#endif /* multiplicity */
1194 1620
1195#if EV_MULTIPLICITY 1621#if EV_MULTIPLICITY
1196struct ev_loop * 1622struct ev_loop *
1197ev_default_loop_init (unsigned int flags) 1623ev_default_loop_init (unsigned int flags)
1198#else 1624#else
1199int 1625int
1200ev_default_loop (unsigned int flags) 1626ev_default_loop (unsigned int flags)
1201#endif 1627#endif
1202{ 1628{
1203 if (sigpipe [0] == sigpipe [1])
1204 if (pipe (sigpipe))
1205 return 0;
1206
1207 if (!ev_default_loop_ptr) 1629 if (!ev_default_loop_ptr)
1208 { 1630 {
1209#if EV_MULTIPLICITY 1631#if EV_MULTIPLICITY
1210 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1632 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1211#else 1633#else
1214 1636
1215 loop_init (EV_A_ flags); 1637 loop_init (EV_A_ flags);
1216 1638
1217 if (ev_backend (EV_A)) 1639 if (ev_backend (EV_A))
1218 { 1640 {
1219 siginit (EV_A);
1220
1221#ifndef _WIN32 1641#ifndef _WIN32
1222 ev_signal_init (&childev, childcb, SIGCHLD); 1642 ev_signal_init (&childev, childcb, SIGCHLD);
1223 ev_set_priority (&childev, EV_MAXPRI); 1643 ev_set_priority (&childev, EV_MAXPRI);
1224 ev_signal_start (EV_A_ &childev); 1644 ev_signal_start (EV_A_ &childev);
1225 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1645 ev_unref (EV_A); /* child watcher should not keep loop alive */
1242#ifndef _WIN32 1662#ifndef _WIN32
1243 ev_ref (EV_A); /* child watcher */ 1663 ev_ref (EV_A); /* child watcher */
1244 ev_signal_stop (EV_A_ &childev); 1664 ev_signal_stop (EV_A_ &childev);
1245#endif 1665#endif
1246 1666
1247 ev_ref (EV_A); /* signal watcher */
1248 ev_io_stop (EV_A_ &sigev);
1249
1250 close (sigpipe [0]); sigpipe [0] = 0;
1251 close (sigpipe [1]); sigpipe [1] = 0;
1252
1253 loop_destroy (EV_A); 1667 loop_destroy (EV_A);
1254} 1668}
1255 1669
1256void 1670void
1257ev_default_fork (void) 1671ev_default_fork (void)
1259#if EV_MULTIPLICITY 1673#if EV_MULTIPLICITY
1260 struct ev_loop *loop = ev_default_loop_ptr; 1674 struct ev_loop *loop = ev_default_loop_ptr;
1261#endif 1675#endif
1262 1676
1263 if (backend) 1677 if (backend)
1264 postfork = 1; 1678 postfork = 1; /* must be in line with ev_loop_fork */
1265} 1679}
1266 1680
1267/*****************************************************************************/ 1681/*****************************************************************************/
1268 1682
1269void 1683void
1286 { 1700 {
1287 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1701 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1288 1702
1289 p->w->pending = 0; 1703 p->w->pending = 0;
1290 EV_CB_INVOKE (p->w, p->events); 1704 EV_CB_INVOKE (p->w, p->events);
1705 EV_FREQUENT_CHECK;
1291 } 1706 }
1292 } 1707 }
1293} 1708}
1294
1295void inline_size
1296timers_reify (EV_P)
1297{
1298 while (timercnt && ((WT)timers [0])->at <= mn_now)
1299 {
1300 ev_timer *w = (ev_timer *)timers [0];
1301
1302 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1303
1304 /* first reschedule or stop timer */
1305 if (w->repeat)
1306 {
1307 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1308
1309 ((WT)w)->at += w->repeat;
1310 if (((WT)w)->at < mn_now)
1311 ((WT)w)->at = mn_now;
1312
1313 downheap (timers, timercnt, 0);
1314 }
1315 else
1316 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1317
1318 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1319 }
1320}
1321
1322#if EV_PERIODIC_ENABLE
1323void inline_size
1324periodics_reify (EV_P)
1325{
1326 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1327 {
1328 ev_periodic *w = (ev_periodic *)periodics [0];
1329
1330 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1331
1332 /* first reschedule or stop timer */
1333 if (w->reschedule_cb)
1334 {
1335 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1336 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1337 downheap (periodics, periodiccnt, 0);
1338 }
1339 else if (w->interval)
1340 {
1341 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1342 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1343 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1344 downheap (periodics, periodiccnt, 0);
1345 }
1346 else
1347 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1348
1349 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1350 }
1351}
1352
1353static void noinline
1354periodics_reschedule (EV_P)
1355{
1356 int i;
1357
1358 /* adjust periodics after time jump */
1359 for (i = 0; i < periodiccnt; ++i)
1360 {
1361 ev_periodic *w = (ev_periodic *)periodics [i];
1362
1363 if (w->reschedule_cb)
1364 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1365 else if (w->interval)
1366 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1367 }
1368
1369 /* now rebuild the heap */
1370 for (i = periodiccnt >> 1; i--; )
1371 downheap (periodics, periodiccnt, i);
1372}
1373#endif
1374 1709
1375#if EV_IDLE_ENABLE 1710#if EV_IDLE_ENABLE
1376void inline_size 1711void inline_size
1377idle_reify (EV_P) 1712idle_reify (EV_P)
1378{ 1713{
1390 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1725 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1391 break; 1726 break;
1392 } 1727 }
1393 } 1728 }
1394 } 1729 }
1730}
1731#endif
1732
1733void inline_size
1734timers_reify (EV_P)
1735{
1736 EV_FREQUENT_CHECK;
1737
1738 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1739 {
1740 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1741
1742 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1743
1744 /* first reschedule or stop timer */
1745 if (w->repeat)
1746 {
1747 ev_at (w) += w->repeat;
1748 if (ev_at (w) < mn_now)
1749 ev_at (w) = mn_now;
1750
1751 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1752
1753 ANHE_at_cache (timers [HEAP0]);
1754 downheap (timers, timercnt, HEAP0);
1755 }
1756 else
1757 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1758
1759 EV_FREQUENT_CHECK;
1760 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1761 }
1762}
1763
1764#if EV_PERIODIC_ENABLE
1765void inline_size
1766periodics_reify (EV_P)
1767{
1768 EV_FREQUENT_CHECK;
1769
1770 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1771 {
1772 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1773
1774 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1775
1776 /* first reschedule or stop timer */
1777 if (w->reschedule_cb)
1778 {
1779 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1780
1781 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1782
1783 ANHE_at_cache (periodics [HEAP0]);
1784 downheap (periodics, periodiccnt, HEAP0);
1785 }
1786 else if (w->interval)
1787 {
1788 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1789 /* if next trigger time is not sufficiently in the future, put it there */
1790 /* this might happen because of floating point inexactness */
1791 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1792 {
1793 ev_at (w) += w->interval;
1794
1795 /* if interval is unreasonably low we might still have a time in the past */
1796 /* so correct this. this will make the periodic very inexact, but the user */
1797 /* has effectively asked to get triggered more often than possible */
1798 if (ev_at (w) < ev_rt_now)
1799 ev_at (w) = ev_rt_now;
1800 }
1801
1802 ANHE_at_cache (periodics [HEAP0]);
1803 downheap (periodics, periodiccnt, HEAP0);
1804 }
1805 else
1806 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1807
1808 EV_FREQUENT_CHECK;
1809 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1810 }
1811}
1812
1813static void noinline
1814periodics_reschedule (EV_P)
1815{
1816 int i;
1817
1818 /* adjust periodics after time jump */
1819 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1820 {
1821 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1822
1823 if (w->reschedule_cb)
1824 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1825 else if (w->interval)
1826 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1827
1828 ANHE_at_cache (periodics [i]);
1829 }
1830
1831 reheap (periodics, periodiccnt);
1395} 1832}
1396#endif 1833#endif
1397 1834
1398void inline_speed 1835void inline_speed
1399time_update (EV_P_ ev_tstamp max_block) 1836time_update (EV_P_ ev_tstamp max_block)
1428 */ 1865 */
1429 for (i = 4; --i; ) 1866 for (i = 4; --i; )
1430 { 1867 {
1431 rtmn_diff = ev_rt_now - mn_now; 1868 rtmn_diff = ev_rt_now - mn_now;
1432 1869
1433 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1870 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1434 return; /* all is well */ 1871 return; /* all is well */
1435 1872
1436 ev_rt_now = ev_time (); 1873 ev_rt_now = ev_time ();
1437 mn_now = get_clock (); 1874 mn_now = get_clock ();
1438 now_floor = mn_now; 1875 now_floor = mn_now;
1454#if EV_PERIODIC_ENABLE 1891#if EV_PERIODIC_ENABLE
1455 periodics_reschedule (EV_A); 1892 periodics_reschedule (EV_A);
1456#endif 1893#endif
1457 /* adjust timers. this is easy, as the offset is the same for all of them */ 1894 /* adjust timers. this is easy, as the offset is the same for all of them */
1458 for (i = 0; i < timercnt; ++i) 1895 for (i = 0; i < timercnt; ++i)
1896 {
1897 ANHE *he = timers + i + HEAP0;
1459 ((WT)timers [i])->at += ev_rt_now - mn_now; 1898 ANHE_w (*he)->at += ev_rt_now - mn_now;
1899 ANHE_at_cache (*he);
1900 }
1460 } 1901 }
1461 1902
1462 mn_now = ev_rt_now; 1903 mn_now = ev_rt_now;
1463 } 1904 }
1464} 1905}
1473ev_unref (EV_P) 1914ev_unref (EV_P)
1474{ 1915{
1475 --activecnt; 1916 --activecnt;
1476} 1917}
1477 1918
1919void
1920ev_now_update (EV_P)
1921{
1922 time_update (EV_A_ 1e100);
1923}
1924
1478static int loop_done; 1925static int loop_done;
1479 1926
1480void 1927void
1481ev_loop (EV_P_ int flags) 1928ev_loop (EV_P_ int flags)
1482{ 1929{
1483 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1930 loop_done = EVUNLOOP_CANCEL;
1484 ? EVUNLOOP_ONE
1485 : EVUNLOOP_CANCEL;
1486 1931
1487 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1932 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1488 1933
1489 do 1934 do
1490 { 1935 {
1936#if EV_VERIFY >= 2
1937 ev_loop_verify (EV_A);
1938#endif
1939
1491#ifndef _WIN32 1940#ifndef _WIN32
1492 if (expect_false (curpid)) /* penalise the forking check even more */ 1941 if (expect_false (curpid)) /* penalise the forking check even more */
1493 if (expect_false (getpid () != curpid)) 1942 if (expect_false (getpid () != curpid))
1494 { 1943 {
1495 curpid = getpid (); 1944 curpid = getpid ();
1536 1985
1537 waittime = MAX_BLOCKTIME; 1986 waittime = MAX_BLOCKTIME;
1538 1987
1539 if (timercnt) 1988 if (timercnt)
1540 { 1989 {
1541 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1990 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1542 if (waittime > to) waittime = to; 1991 if (waittime > to) waittime = to;
1543 } 1992 }
1544 1993
1545#if EV_PERIODIC_ENABLE 1994#if EV_PERIODIC_ENABLE
1546 if (periodiccnt) 1995 if (periodiccnt)
1547 { 1996 {
1548 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1997 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1549 if (waittime > to) waittime = to; 1998 if (waittime > to) waittime = to;
1550 } 1999 }
1551#endif 2000#endif
1552 2001
1553 if (expect_false (waittime < timeout_blocktime)) 2002 if (expect_false (waittime < timeout_blocktime))
1586 /* queue check watchers, to be executed first */ 2035 /* queue check watchers, to be executed first */
1587 if (expect_false (checkcnt)) 2036 if (expect_false (checkcnt))
1588 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2037 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1589 2038
1590 call_pending (EV_A); 2039 call_pending (EV_A);
1591
1592 } 2040 }
1593 while (expect_true (activecnt && !loop_done)); 2041 while (expect_true (
2042 activecnt
2043 && !loop_done
2044 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2045 ));
1594 2046
1595 if (loop_done == EVUNLOOP_ONE) 2047 if (loop_done == EVUNLOOP_ONE)
1596 loop_done = EVUNLOOP_CANCEL; 2048 loop_done = EVUNLOOP_CANCEL;
1597} 2049}
1598 2050
1687 if (expect_false (ev_is_active (w))) 2139 if (expect_false (ev_is_active (w)))
1688 return; 2140 return;
1689 2141
1690 assert (("ev_io_start called with negative fd", fd >= 0)); 2142 assert (("ev_io_start called with negative fd", fd >= 0));
1691 2143
2144 EV_FREQUENT_CHECK;
2145
1692 ev_start (EV_A_ (W)w, 1); 2146 ev_start (EV_A_ (W)w, 1);
1693 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2147 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1694 wlist_add (&anfds[fd].head, (WL)w); 2148 wlist_add (&anfds[fd].head, (WL)w);
1695 2149
1696 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2150 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1697 w->events &= ~EV_IOFDSET; 2151 w->events &= ~EV_IOFDSET;
2152
2153 EV_FREQUENT_CHECK;
1698} 2154}
1699 2155
1700void noinline 2156void noinline
1701ev_io_stop (EV_P_ ev_io *w) 2157ev_io_stop (EV_P_ ev_io *w)
1702{ 2158{
1703 clear_pending (EV_A_ (W)w); 2159 clear_pending (EV_A_ (W)w);
1704 if (expect_false (!ev_is_active (w))) 2160 if (expect_false (!ev_is_active (w)))
1705 return; 2161 return;
1706 2162
1707 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2163 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2164
2165 EV_FREQUENT_CHECK;
1708 2166
1709 wlist_del (&anfds[w->fd].head, (WL)w); 2167 wlist_del (&anfds[w->fd].head, (WL)w);
1710 ev_stop (EV_A_ (W)w); 2168 ev_stop (EV_A_ (W)w);
1711 2169
1712 fd_change (EV_A_ w->fd, 1); 2170 fd_change (EV_A_ w->fd, 1);
2171
2172 EV_FREQUENT_CHECK;
1713} 2173}
1714 2174
1715void noinline 2175void noinline
1716ev_timer_start (EV_P_ ev_timer *w) 2176ev_timer_start (EV_P_ ev_timer *w)
1717{ 2177{
1718 if (expect_false (ev_is_active (w))) 2178 if (expect_false (ev_is_active (w)))
1719 return; 2179 return;
1720 2180
1721 ((WT)w)->at += mn_now; 2181 ev_at (w) += mn_now;
1722 2182
1723 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2183 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1724 2184
2185 EV_FREQUENT_CHECK;
2186
2187 ++timercnt;
1725 ev_start (EV_A_ (W)w, ++timercnt); 2188 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1726 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2189 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1727 timers [timercnt - 1] = (WT)w; 2190 ANHE_w (timers [ev_active (w)]) = (WT)w;
1728 upheap (timers, timercnt - 1); 2191 ANHE_at_cache (timers [ev_active (w)]);
2192 upheap (timers, ev_active (w));
1729 2193
2194 EV_FREQUENT_CHECK;
2195
1730 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2196 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1731} 2197}
1732 2198
1733void noinline 2199void noinline
1734ev_timer_stop (EV_P_ ev_timer *w) 2200ev_timer_stop (EV_P_ ev_timer *w)
1735{ 2201{
1736 clear_pending (EV_A_ (W)w); 2202 clear_pending (EV_A_ (W)w);
1737 if (expect_false (!ev_is_active (w))) 2203 if (expect_false (!ev_is_active (w)))
1738 return; 2204 return;
1739 2205
1740 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2206 EV_FREQUENT_CHECK;
1741 2207
1742 { 2208 {
1743 int active = ((W)w)->active; 2209 int active = ev_active (w);
1744 2210
2211 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2212
2213 --timercnt;
2214
1745 if (expect_true (--active < --timercnt)) 2215 if (expect_true (active < timercnt + HEAP0))
1746 { 2216 {
1747 timers [active] = timers [timercnt]; 2217 timers [active] = timers [timercnt + HEAP0];
1748 adjustheap (timers, timercnt, active); 2218 adjustheap (timers, timercnt, active);
1749 } 2219 }
1750 } 2220 }
1751 2221
1752 ((WT)w)->at -= mn_now; 2222 EV_FREQUENT_CHECK;
2223
2224 ev_at (w) -= mn_now;
1753 2225
1754 ev_stop (EV_A_ (W)w); 2226 ev_stop (EV_A_ (W)w);
1755} 2227}
1756 2228
1757void noinline 2229void noinline
1758ev_timer_again (EV_P_ ev_timer *w) 2230ev_timer_again (EV_P_ ev_timer *w)
1759{ 2231{
2232 EV_FREQUENT_CHECK;
2233
1760 if (ev_is_active (w)) 2234 if (ev_is_active (w))
1761 { 2235 {
1762 if (w->repeat) 2236 if (w->repeat)
1763 { 2237 {
1764 ((WT)w)->at = mn_now + w->repeat; 2238 ev_at (w) = mn_now + w->repeat;
2239 ANHE_at_cache (timers [ev_active (w)]);
1765 adjustheap (timers, timercnt, ((W)w)->active - 1); 2240 adjustheap (timers, timercnt, ev_active (w));
1766 } 2241 }
1767 else 2242 else
1768 ev_timer_stop (EV_A_ w); 2243 ev_timer_stop (EV_A_ w);
1769 } 2244 }
1770 else if (w->repeat) 2245 else if (w->repeat)
1771 { 2246 {
1772 w->at = w->repeat; 2247 ev_at (w) = w->repeat;
1773 ev_timer_start (EV_A_ w); 2248 ev_timer_start (EV_A_ w);
1774 } 2249 }
2250
2251 EV_FREQUENT_CHECK;
1775} 2252}
1776 2253
1777#if EV_PERIODIC_ENABLE 2254#if EV_PERIODIC_ENABLE
1778void noinline 2255void noinline
1779ev_periodic_start (EV_P_ ev_periodic *w) 2256ev_periodic_start (EV_P_ ev_periodic *w)
1780{ 2257{
1781 if (expect_false (ev_is_active (w))) 2258 if (expect_false (ev_is_active (w)))
1782 return; 2259 return;
1783 2260
1784 if (w->reschedule_cb) 2261 if (w->reschedule_cb)
1785 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2262 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1786 else if (w->interval) 2263 else if (w->interval)
1787 { 2264 {
1788 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2265 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1789 /* this formula differs from the one in periodic_reify because we do not always round up */ 2266 /* this formula differs from the one in periodic_reify because we do not always round up */
1790 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2267 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1791 } 2268 }
1792 else 2269 else
1793 ((WT)w)->at = w->offset; 2270 ev_at (w) = w->offset;
1794 2271
2272 EV_FREQUENT_CHECK;
2273
2274 ++periodiccnt;
1795 ev_start (EV_A_ (W)w, ++periodiccnt); 2275 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1796 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2276 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1797 periodics [periodiccnt - 1] = (WT)w; 2277 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1798 upheap (periodics, periodiccnt - 1); 2278 ANHE_at_cache (periodics [ev_active (w)]);
2279 upheap (periodics, ev_active (w));
1799 2280
2281 EV_FREQUENT_CHECK;
2282
1800 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2283 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1801} 2284}
1802 2285
1803void noinline 2286void noinline
1804ev_periodic_stop (EV_P_ ev_periodic *w) 2287ev_periodic_stop (EV_P_ ev_periodic *w)
1805{ 2288{
1806 clear_pending (EV_A_ (W)w); 2289 clear_pending (EV_A_ (W)w);
1807 if (expect_false (!ev_is_active (w))) 2290 if (expect_false (!ev_is_active (w)))
1808 return; 2291 return;
1809 2292
1810 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2293 EV_FREQUENT_CHECK;
1811 2294
1812 { 2295 {
1813 int active = ((W)w)->active; 2296 int active = ev_active (w);
1814 2297
2298 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2299
2300 --periodiccnt;
2301
1815 if (expect_true (--active < --periodiccnt)) 2302 if (expect_true (active < periodiccnt + HEAP0))
1816 { 2303 {
1817 periodics [active] = periodics [periodiccnt]; 2304 periodics [active] = periodics [periodiccnt + HEAP0];
1818 adjustheap (periodics, periodiccnt, active); 2305 adjustheap (periodics, periodiccnt, active);
1819 } 2306 }
1820 } 2307 }
1821 2308
2309 EV_FREQUENT_CHECK;
2310
1822 ev_stop (EV_A_ (W)w); 2311 ev_stop (EV_A_ (W)w);
1823} 2312}
1824 2313
1825void noinline 2314void noinline
1826ev_periodic_again (EV_P_ ev_periodic *w) 2315ev_periodic_again (EV_P_ ev_periodic *w)
1843#endif 2332#endif
1844 if (expect_false (ev_is_active (w))) 2333 if (expect_false (ev_is_active (w)))
1845 return; 2334 return;
1846 2335
1847 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2336 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2337
2338 evpipe_init (EV_A);
2339
2340 EV_FREQUENT_CHECK;
1848 2341
1849 { 2342 {
1850#ifndef _WIN32 2343#ifndef _WIN32
1851 sigset_t full, prev; 2344 sigset_t full, prev;
1852 sigfillset (&full); 2345 sigfillset (&full);
1864 wlist_add (&signals [w->signum - 1].head, (WL)w); 2357 wlist_add (&signals [w->signum - 1].head, (WL)w);
1865 2358
1866 if (!((WL)w)->next) 2359 if (!((WL)w)->next)
1867 { 2360 {
1868#if _WIN32 2361#if _WIN32
1869 signal (w->signum, sighandler); 2362 signal (w->signum, ev_sighandler);
1870#else 2363#else
1871 struct sigaction sa; 2364 struct sigaction sa;
1872 sa.sa_handler = sighandler; 2365 sa.sa_handler = ev_sighandler;
1873 sigfillset (&sa.sa_mask); 2366 sigfillset (&sa.sa_mask);
1874 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2367 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1875 sigaction (w->signum, &sa, 0); 2368 sigaction (w->signum, &sa, 0);
1876#endif 2369#endif
1877 } 2370 }
2371
2372 EV_FREQUENT_CHECK;
1878} 2373}
1879 2374
1880void noinline 2375void noinline
1881ev_signal_stop (EV_P_ ev_signal *w) 2376ev_signal_stop (EV_P_ ev_signal *w)
1882{ 2377{
1883 clear_pending (EV_A_ (W)w); 2378 clear_pending (EV_A_ (W)w);
1884 if (expect_false (!ev_is_active (w))) 2379 if (expect_false (!ev_is_active (w)))
1885 return; 2380 return;
1886 2381
2382 EV_FREQUENT_CHECK;
2383
1887 wlist_del (&signals [w->signum - 1].head, (WL)w); 2384 wlist_del (&signals [w->signum - 1].head, (WL)w);
1888 ev_stop (EV_A_ (W)w); 2385 ev_stop (EV_A_ (W)w);
1889 2386
1890 if (!signals [w->signum - 1].head) 2387 if (!signals [w->signum - 1].head)
1891 signal (w->signum, SIG_DFL); 2388 signal (w->signum, SIG_DFL);
2389
2390 EV_FREQUENT_CHECK;
1892} 2391}
1893 2392
1894void 2393void
1895ev_child_start (EV_P_ ev_child *w) 2394ev_child_start (EV_P_ ev_child *w)
1896{ 2395{
1898 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2397 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1899#endif 2398#endif
1900 if (expect_false (ev_is_active (w))) 2399 if (expect_false (ev_is_active (w)))
1901 return; 2400 return;
1902 2401
2402 EV_FREQUENT_CHECK;
2403
1903 ev_start (EV_A_ (W)w, 1); 2404 ev_start (EV_A_ (W)w, 1);
1904 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2405 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2406
2407 EV_FREQUENT_CHECK;
1905} 2408}
1906 2409
1907void 2410void
1908ev_child_stop (EV_P_ ev_child *w) 2411ev_child_stop (EV_P_ ev_child *w)
1909{ 2412{
1910 clear_pending (EV_A_ (W)w); 2413 clear_pending (EV_A_ (W)w);
1911 if (expect_false (!ev_is_active (w))) 2414 if (expect_false (!ev_is_active (w)))
1912 return; 2415 return;
1913 2416
2417 EV_FREQUENT_CHECK;
2418
1914 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2419 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1915 ev_stop (EV_A_ (W)w); 2420 ev_stop (EV_A_ (W)w);
2421
2422 EV_FREQUENT_CHECK;
1916} 2423}
1917 2424
1918#if EV_STAT_ENABLE 2425#if EV_STAT_ENABLE
1919 2426
1920# ifdef _WIN32 2427# ifdef _WIN32
1938 if (w->wd < 0) 2445 if (w->wd < 0)
1939 { 2446 {
1940 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2447 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1941 2448
1942 /* monitor some parent directory for speedup hints */ 2449 /* monitor some parent directory for speedup hints */
2450 /* note that exceeding the hardcoded limit is not a correctness issue, */
2451 /* but an efficiency issue only */
1943 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2452 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1944 { 2453 {
1945 char path [4096]; 2454 char path [4096];
1946 strcpy (path, w->path); 2455 strcpy (path, w->path);
1947 2456
2073 } 2582 }
2074 2583
2075 } 2584 }
2076} 2585}
2077 2586
2587#endif
2588
2589#ifdef _WIN32
2590# define EV_LSTAT(p,b) _stati64 (p, b)
2591#else
2592# define EV_LSTAT(p,b) lstat (p, b)
2078#endif 2593#endif
2079 2594
2080void 2595void
2081ev_stat_stat (EV_P_ ev_stat *w) 2596ev_stat_stat (EV_P_ ev_stat *w)
2082{ 2597{
2146 else 2661 else
2147#endif 2662#endif
2148 ev_timer_start (EV_A_ &w->timer); 2663 ev_timer_start (EV_A_ &w->timer);
2149 2664
2150 ev_start (EV_A_ (W)w, 1); 2665 ev_start (EV_A_ (W)w, 1);
2666
2667 EV_FREQUENT_CHECK;
2151} 2668}
2152 2669
2153void 2670void
2154ev_stat_stop (EV_P_ ev_stat *w) 2671ev_stat_stop (EV_P_ ev_stat *w)
2155{ 2672{
2156 clear_pending (EV_A_ (W)w); 2673 clear_pending (EV_A_ (W)w);
2157 if (expect_false (!ev_is_active (w))) 2674 if (expect_false (!ev_is_active (w)))
2158 return; 2675 return;
2159 2676
2677 EV_FREQUENT_CHECK;
2678
2160#if EV_USE_INOTIFY 2679#if EV_USE_INOTIFY
2161 infy_del (EV_A_ w); 2680 infy_del (EV_A_ w);
2162#endif 2681#endif
2163 ev_timer_stop (EV_A_ &w->timer); 2682 ev_timer_stop (EV_A_ &w->timer);
2164 2683
2165 ev_stop (EV_A_ (W)w); 2684 ev_stop (EV_A_ (W)w);
2685
2686 EV_FREQUENT_CHECK;
2166} 2687}
2167#endif 2688#endif
2168 2689
2169#if EV_IDLE_ENABLE 2690#if EV_IDLE_ENABLE
2170void 2691void
2172{ 2693{
2173 if (expect_false (ev_is_active (w))) 2694 if (expect_false (ev_is_active (w)))
2174 return; 2695 return;
2175 2696
2176 pri_adjust (EV_A_ (W)w); 2697 pri_adjust (EV_A_ (W)w);
2698
2699 EV_FREQUENT_CHECK;
2177 2700
2178 { 2701 {
2179 int active = ++idlecnt [ABSPRI (w)]; 2702 int active = ++idlecnt [ABSPRI (w)];
2180 2703
2181 ++idleall; 2704 ++idleall;
2182 ev_start (EV_A_ (W)w, active); 2705 ev_start (EV_A_ (W)w, active);
2183 2706
2184 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2707 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2185 idles [ABSPRI (w)][active - 1] = w; 2708 idles [ABSPRI (w)][active - 1] = w;
2186 } 2709 }
2710
2711 EV_FREQUENT_CHECK;
2187} 2712}
2188 2713
2189void 2714void
2190ev_idle_stop (EV_P_ ev_idle *w) 2715ev_idle_stop (EV_P_ ev_idle *w)
2191{ 2716{
2192 clear_pending (EV_A_ (W)w); 2717 clear_pending (EV_A_ (W)w);
2193 if (expect_false (!ev_is_active (w))) 2718 if (expect_false (!ev_is_active (w)))
2194 return; 2719 return;
2195 2720
2721 EV_FREQUENT_CHECK;
2722
2196 { 2723 {
2197 int active = ((W)w)->active; 2724 int active = ev_active (w);
2198 2725
2199 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2726 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2200 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2727 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2201 2728
2202 ev_stop (EV_A_ (W)w); 2729 ev_stop (EV_A_ (W)w);
2203 --idleall; 2730 --idleall;
2204 } 2731 }
2732
2733 EV_FREQUENT_CHECK;
2205} 2734}
2206#endif 2735#endif
2207 2736
2208void 2737void
2209ev_prepare_start (EV_P_ ev_prepare *w) 2738ev_prepare_start (EV_P_ ev_prepare *w)
2210{ 2739{
2211 if (expect_false (ev_is_active (w))) 2740 if (expect_false (ev_is_active (w)))
2212 return; 2741 return;
2742
2743 EV_FREQUENT_CHECK;
2213 2744
2214 ev_start (EV_A_ (W)w, ++preparecnt); 2745 ev_start (EV_A_ (W)w, ++preparecnt);
2215 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2746 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2216 prepares [preparecnt - 1] = w; 2747 prepares [preparecnt - 1] = w;
2748
2749 EV_FREQUENT_CHECK;
2217} 2750}
2218 2751
2219void 2752void
2220ev_prepare_stop (EV_P_ ev_prepare *w) 2753ev_prepare_stop (EV_P_ ev_prepare *w)
2221{ 2754{
2222 clear_pending (EV_A_ (W)w); 2755 clear_pending (EV_A_ (W)w);
2223 if (expect_false (!ev_is_active (w))) 2756 if (expect_false (!ev_is_active (w)))
2224 return; 2757 return;
2225 2758
2759 EV_FREQUENT_CHECK;
2760
2226 { 2761 {
2227 int active = ((W)w)->active; 2762 int active = ev_active (w);
2763
2228 prepares [active - 1] = prepares [--preparecnt]; 2764 prepares [active - 1] = prepares [--preparecnt];
2229 ((W)prepares [active - 1])->active = active; 2765 ev_active (prepares [active - 1]) = active;
2230 } 2766 }
2231 2767
2232 ev_stop (EV_A_ (W)w); 2768 ev_stop (EV_A_ (W)w);
2769
2770 EV_FREQUENT_CHECK;
2233} 2771}
2234 2772
2235void 2773void
2236ev_check_start (EV_P_ ev_check *w) 2774ev_check_start (EV_P_ ev_check *w)
2237{ 2775{
2238 if (expect_false (ev_is_active (w))) 2776 if (expect_false (ev_is_active (w)))
2239 return; 2777 return;
2778
2779 EV_FREQUENT_CHECK;
2240 2780
2241 ev_start (EV_A_ (W)w, ++checkcnt); 2781 ev_start (EV_A_ (W)w, ++checkcnt);
2242 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2782 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2243 checks [checkcnt - 1] = w; 2783 checks [checkcnt - 1] = w;
2784
2785 EV_FREQUENT_CHECK;
2244} 2786}
2245 2787
2246void 2788void
2247ev_check_stop (EV_P_ ev_check *w) 2789ev_check_stop (EV_P_ ev_check *w)
2248{ 2790{
2249 clear_pending (EV_A_ (W)w); 2791 clear_pending (EV_A_ (W)w);
2250 if (expect_false (!ev_is_active (w))) 2792 if (expect_false (!ev_is_active (w)))
2251 return; 2793 return;
2252 2794
2795 EV_FREQUENT_CHECK;
2796
2253 { 2797 {
2254 int active = ((W)w)->active; 2798 int active = ev_active (w);
2799
2255 checks [active - 1] = checks [--checkcnt]; 2800 checks [active - 1] = checks [--checkcnt];
2256 ((W)checks [active - 1])->active = active; 2801 ev_active (checks [active - 1]) = active;
2257 } 2802 }
2258 2803
2259 ev_stop (EV_A_ (W)w); 2804 ev_stop (EV_A_ (W)w);
2805
2806 EV_FREQUENT_CHECK;
2260} 2807}
2261 2808
2262#if EV_EMBED_ENABLE 2809#if EV_EMBED_ENABLE
2263void noinline 2810void noinline
2264ev_embed_sweep (EV_P_ ev_embed *w) 2811ev_embed_sweep (EV_P_ ev_embed *w)
2291 ev_loop (EV_A_ EVLOOP_NONBLOCK); 2838 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2292 } 2839 }
2293 } 2840 }
2294} 2841}
2295 2842
2843static void
2844embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2845{
2846 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2847
2848 {
2849 struct ev_loop *loop = w->other;
2850
2851 ev_loop_fork (EV_A);
2852 }
2853}
2854
2296#if 0 2855#if 0
2297static void 2856static void
2298embed_idle_cb (EV_P_ ev_idle *idle, int revents) 2857embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2299{ 2858{
2300 ev_idle_stop (EV_A_ idle); 2859 ev_idle_stop (EV_A_ idle);
2311 struct ev_loop *loop = w->other; 2870 struct ev_loop *loop = w->other;
2312 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2871 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2313 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2872 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2314 } 2873 }
2315 2874
2875 EV_FREQUENT_CHECK;
2876
2316 ev_set_priority (&w->io, ev_priority (w)); 2877 ev_set_priority (&w->io, ev_priority (w));
2317 ev_io_start (EV_A_ &w->io); 2878 ev_io_start (EV_A_ &w->io);
2318 2879
2319 ev_prepare_init (&w->prepare, embed_prepare_cb); 2880 ev_prepare_init (&w->prepare, embed_prepare_cb);
2320 ev_set_priority (&w->prepare, EV_MINPRI); 2881 ev_set_priority (&w->prepare, EV_MINPRI);
2321 ev_prepare_start (EV_A_ &w->prepare); 2882 ev_prepare_start (EV_A_ &w->prepare);
2322 2883
2884 ev_fork_init (&w->fork, embed_fork_cb);
2885 ev_fork_start (EV_A_ &w->fork);
2886
2323 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2887 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2324 2888
2325 ev_start (EV_A_ (W)w, 1); 2889 ev_start (EV_A_ (W)w, 1);
2890
2891 EV_FREQUENT_CHECK;
2326} 2892}
2327 2893
2328void 2894void
2329ev_embed_stop (EV_P_ ev_embed *w) 2895ev_embed_stop (EV_P_ ev_embed *w)
2330{ 2896{
2331 clear_pending (EV_A_ (W)w); 2897 clear_pending (EV_A_ (W)w);
2332 if (expect_false (!ev_is_active (w))) 2898 if (expect_false (!ev_is_active (w)))
2333 return; 2899 return;
2334 2900
2901 EV_FREQUENT_CHECK;
2902
2335 ev_io_stop (EV_A_ &w->io); 2903 ev_io_stop (EV_A_ &w->io);
2336 ev_prepare_stop (EV_A_ &w->prepare); 2904 ev_prepare_stop (EV_A_ &w->prepare);
2905 ev_fork_stop (EV_A_ &w->fork);
2337 2906
2338 ev_stop (EV_A_ (W)w); 2907 EV_FREQUENT_CHECK;
2339} 2908}
2340#endif 2909#endif
2341 2910
2342#if EV_FORK_ENABLE 2911#if EV_FORK_ENABLE
2343void 2912void
2344ev_fork_start (EV_P_ ev_fork *w) 2913ev_fork_start (EV_P_ ev_fork *w)
2345{ 2914{
2346 if (expect_false (ev_is_active (w))) 2915 if (expect_false (ev_is_active (w)))
2347 return; 2916 return;
2917
2918 EV_FREQUENT_CHECK;
2348 2919
2349 ev_start (EV_A_ (W)w, ++forkcnt); 2920 ev_start (EV_A_ (W)w, ++forkcnt);
2350 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2921 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2351 forks [forkcnt - 1] = w; 2922 forks [forkcnt - 1] = w;
2923
2924 EV_FREQUENT_CHECK;
2352} 2925}
2353 2926
2354void 2927void
2355ev_fork_stop (EV_P_ ev_fork *w) 2928ev_fork_stop (EV_P_ ev_fork *w)
2356{ 2929{
2357 clear_pending (EV_A_ (W)w); 2930 clear_pending (EV_A_ (W)w);
2358 if (expect_false (!ev_is_active (w))) 2931 if (expect_false (!ev_is_active (w)))
2359 return; 2932 return;
2360 2933
2934 EV_FREQUENT_CHECK;
2935
2361 { 2936 {
2362 int active = ((W)w)->active; 2937 int active = ev_active (w);
2938
2363 forks [active - 1] = forks [--forkcnt]; 2939 forks [active - 1] = forks [--forkcnt];
2364 ((W)forks [active - 1])->active = active; 2940 ev_active (forks [active - 1]) = active;
2365 } 2941 }
2366 2942
2367 ev_stop (EV_A_ (W)w); 2943 ev_stop (EV_A_ (W)w);
2944
2945 EV_FREQUENT_CHECK;
2946}
2947#endif
2948
2949#if EV_ASYNC_ENABLE
2950void
2951ev_async_start (EV_P_ ev_async *w)
2952{
2953 if (expect_false (ev_is_active (w)))
2954 return;
2955
2956 evpipe_init (EV_A);
2957
2958 EV_FREQUENT_CHECK;
2959
2960 ev_start (EV_A_ (W)w, ++asynccnt);
2961 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2962 asyncs [asynccnt - 1] = w;
2963
2964 EV_FREQUENT_CHECK;
2965}
2966
2967void
2968ev_async_stop (EV_P_ ev_async *w)
2969{
2970 clear_pending (EV_A_ (W)w);
2971 if (expect_false (!ev_is_active (w)))
2972 return;
2973
2974 EV_FREQUENT_CHECK;
2975
2976 {
2977 int active = ev_active (w);
2978
2979 asyncs [active - 1] = asyncs [--asynccnt];
2980 ev_active (asyncs [active - 1]) = active;
2981 }
2982
2983 ev_stop (EV_A_ (W)w);
2984
2985 EV_FREQUENT_CHECK;
2986}
2987
2988void
2989ev_async_send (EV_P_ ev_async *w)
2990{
2991 w->sent = 1;
2992 evpipe_write (EV_A_ &gotasync);
2368} 2993}
2369#endif 2994#endif
2370 2995
2371/*****************************************************************************/ 2996/*****************************************************************************/
2372 2997
2382once_cb (EV_P_ struct ev_once *once, int revents) 3007once_cb (EV_P_ struct ev_once *once, int revents)
2383{ 3008{
2384 void (*cb)(int revents, void *arg) = once->cb; 3009 void (*cb)(int revents, void *arg) = once->cb;
2385 void *arg = once->arg; 3010 void *arg = once->arg;
2386 3011
2387 ev_io_stop (EV_A_ &once->io); 3012 ev_io_stop (EV_A_ &once->io);
2388 ev_timer_stop (EV_A_ &once->to); 3013 ev_timer_stop (EV_A_ &once->to);
2389 ev_free (once); 3014 ev_free (once);
2390 3015
2391 cb (revents, arg); 3016 cb (revents, arg);
2392} 3017}
2393 3018
2394static void 3019static void
2395once_cb_io (EV_P_ ev_io *w, int revents) 3020once_cb_io (EV_P_ ev_io *w, int revents)
2396{ 3021{
2397 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3022 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3023
3024 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2398} 3025}
2399 3026
2400static void 3027static void
2401once_cb_to (EV_P_ ev_timer *w, int revents) 3028once_cb_to (EV_P_ ev_timer *w, int revents)
2402{ 3029{
2403 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3030 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3031
3032 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2404} 3033}
2405 3034
2406void 3035void
2407ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3036ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2408{ 3037{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines