ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.263 by root, Wed Oct 1 18:50:03 2008 UTC vs.
Revision 1.330 by root, Tue Mar 9 08:46:17 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
96# define EV_USE_EPOLL 0 110# define EV_USE_EPOLL 0
97# endif 111# endif
98# endif 112# endif
99 113
100# ifndef EV_USE_KQUEUE 114# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
102# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
103# else 117# else
104# define EV_USE_KQUEUE 0 118# define EV_USE_KQUEUE 0
105# endif 119# endif
106# endif 120# endif
119# else 133# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
121# endif 135# endif
122# endif 136# endif
123 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
124# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD 147# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1 148# define EV_USE_EVENTFD 1
127# else 149# else
128# define EV_USE_EVENTFD 0 150# define EV_USE_EVENTFD 0
131 153
132#endif 154#endif
133 155
134#include <math.h> 156#include <math.h>
135#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
136#include <fcntl.h> 159#include <fcntl.h>
137#include <stddef.h> 160#include <stddef.h>
138 161
139#include <stdio.h> 162#include <stdio.h>
140 163
141#include <assert.h> 164#include <assert.h>
142#include <errno.h> 165#include <errno.h>
143#include <sys/types.h> 166#include <sys/types.h>
144#include <time.h> 167#include <time.h>
168#include <limits.h>
145 169
146#include <signal.h> 170#include <signal.h>
147 171
148#ifdef EV_H 172#ifdef EV_H
149# include EV_H 173# include EV_H
164# endif 188# endif
165#endif 189#endif
166 190
167/* this block tries to deduce configuration from header-defined symbols and defaults */ 191/* this block tries to deduce configuration from header-defined symbols and defaults */
168 192
193/* try to deduce the maximum number of signals on this platform */
194#if defined (EV_NSIG)
195/* use what's provided */
196#elif defined (NSIG)
197# define EV_NSIG (NSIG)
198#elif defined(_NSIG)
199# define EV_NSIG (_NSIG)
200#elif defined (SIGMAX)
201# define EV_NSIG (SIGMAX+1)
202#elif defined (SIG_MAX)
203# define EV_NSIG (SIG_MAX+1)
204#elif defined (_SIG_MAX)
205# define EV_NSIG (_SIG_MAX+1)
206#elif defined (MAXSIG)
207# define EV_NSIG (MAXSIG+1)
208#elif defined (MAX_SIG)
209# define EV_NSIG (MAX_SIG+1)
210#elif defined (SIGARRAYSIZE)
211# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
212#elif defined (_sys_nsig)
213# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
214#else
215# error "unable to find value for NSIG, please report"
216/* to make it compile regardless, just remove the above line */
217# define EV_NSIG 65
218#endif
219
220#ifndef EV_USE_CLOCK_SYSCALL
221# if __linux && __GLIBC__ >= 2
222# define EV_USE_CLOCK_SYSCALL 1
223# else
224# define EV_USE_CLOCK_SYSCALL 0
225# endif
226#endif
227
169#ifndef EV_USE_MONOTONIC 228#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 229# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1 230# define EV_USE_MONOTONIC 1
172# else 231# else
173# define EV_USE_MONOTONIC 0 232# define EV_USE_MONOTONIC 0
174# endif 233# endif
175#endif 234#endif
176 235
177#ifndef EV_USE_REALTIME 236#ifndef EV_USE_REALTIME
178# define EV_USE_REALTIME 0 237# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
179#endif 238#endif
180 239
181#ifndef EV_USE_NANOSLEEP 240#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L 241# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1 242# define EV_USE_NANOSLEEP 1
244# else 303# else
245# define EV_USE_EVENTFD 0 304# define EV_USE_EVENTFD 0
246# endif 305# endif
247#endif 306#endif
248 307
308#ifndef EV_USE_SIGNALFD
309# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
310# define EV_USE_SIGNALFD 1
311# else
312# define EV_USE_SIGNALFD 0
313# endif
314#endif
315
249#if 0 /* debugging */ 316#if 0 /* debugging */
250# define EV_VERIFY 3 317# define EV_VERIFY 3
251# define EV_USE_4HEAP 1 318# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1 319# define EV_HEAP_CACHE_AT 1
253#endif 320#endif
262 329
263#ifndef EV_HEAP_CACHE_AT 330#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL 331# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif 332#endif
266 333
334/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
335/* which makes programs even slower. might work on other unices, too. */
336#if EV_USE_CLOCK_SYSCALL
337# include <syscall.h>
338# ifdef SYS_clock_gettime
339# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
340# undef EV_USE_MONOTONIC
341# define EV_USE_MONOTONIC 1
342# else
343# undef EV_USE_CLOCK_SYSCALL
344# define EV_USE_CLOCK_SYSCALL 0
345# endif
346#endif
347
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 348/* this block fixes any misconfiguration where we know we run into trouble otherwise */
349
350#ifdef _AIX
351/* AIX has a completely broken poll.h header */
352# undef EV_USE_POLL
353# define EV_USE_POLL 0
354#endif
268 355
269#ifndef CLOCK_MONOTONIC 356#ifndef CLOCK_MONOTONIC
270# undef EV_USE_MONOTONIC 357# undef EV_USE_MONOTONIC
271# define EV_USE_MONOTONIC 0 358# define EV_USE_MONOTONIC 0
272#endif 359#endif
286# include <sys/select.h> 373# include <sys/select.h>
287# endif 374# endif
288#endif 375#endif
289 376
290#if EV_USE_INOTIFY 377#if EV_USE_INOTIFY
378# include <sys/utsname.h>
379# include <sys/statfs.h>
291# include <sys/inotify.h> 380# include <sys/inotify.h>
292/* some very old inotify.h headers don't have IN_DONT_FOLLOW */ 381/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
293# ifndef IN_DONT_FOLLOW 382# ifndef IN_DONT_FOLLOW
294# undef EV_USE_INOTIFY 383# undef EV_USE_INOTIFY
295# define EV_USE_INOTIFY 0 384# define EV_USE_INOTIFY 0
301#endif 390#endif
302 391
303#if EV_USE_EVENTFD 392#if EV_USE_EVENTFD
304/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 393/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
305# include <stdint.h> 394# include <stdint.h>
395# ifndef EFD_NONBLOCK
396# define EFD_NONBLOCK O_NONBLOCK
397# endif
398# ifndef EFD_CLOEXEC
399# ifdef O_CLOEXEC
400# define EFD_CLOEXEC O_CLOEXEC
401# else
402# define EFD_CLOEXEC 02000000
403# endif
404# endif
306# ifdef __cplusplus 405# ifdef __cplusplus
307extern "C" { 406extern "C" {
308# endif 407# endif
309int eventfd (unsigned int initval, int flags); 408int (eventfd) (unsigned int initval, int flags);
310# ifdef __cplusplus 409# ifdef __cplusplus
311} 410}
312# endif 411# endif
313#endif 412#endif
413
414#if EV_USE_SIGNALFD
415/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
416# include <stdint.h>
417# ifndef SFD_NONBLOCK
418# define SFD_NONBLOCK O_NONBLOCK
419# endif
420# ifndef SFD_CLOEXEC
421# ifdef O_CLOEXEC
422# define SFD_CLOEXEC O_CLOEXEC
423# else
424# define SFD_CLOEXEC 02000000
425# endif
426# endif
427# ifdef __cplusplus
428extern "C" {
429# endif
430int signalfd (int fd, const sigset_t *mask, int flags);
431
432struct signalfd_siginfo
433{
434 uint32_t ssi_signo;
435 char pad[128 - sizeof (uint32_t)];
436};
437# ifdef __cplusplus
438}
439# endif
440#endif
441
314 442
315/**/ 443/**/
316 444
317#if EV_VERIFY >= 3 445#if EV_VERIFY >= 3
318# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 446# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
330 */ 458 */
331#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 459#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
332 460
333#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 461#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
334#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 462#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
335/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
336 463
337#if __GNUC__ >= 4 464#if __GNUC__ >= 4
338# define expect(expr,value) __builtin_expect ((expr),(value)) 465# define expect(expr,value) __builtin_expect ((expr),(value))
339# define noinline __attribute__ ((noinline)) 466# define noinline __attribute__ ((noinline))
340#else 467#else
353# define inline_speed static noinline 480# define inline_speed static noinline
354#else 481#else
355# define inline_speed static inline 482# define inline_speed static inline
356#endif 483#endif
357 484
358#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 485#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
486
487#if EV_MINPRI == EV_MAXPRI
488# define ABSPRI(w) (((W)w), 0)
489#else
359#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 490# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
491#endif
360 492
361#define EMPTY /* required for microsofts broken pseudo-c compiler */ 493#define EMPTY /* required for microsofts broken pseudo-c compiler */
362#define EMPTY2(a,b) /* used to suppress some warnings */ 494#define EMPTY2(a,b) /* used to suppress some warnings */
363 495
364typedef ev_watcher *W; 496typedef ev_watcher *W;
366typedef ev_watcher_time *WT; 498typedef ev_watcher_time *WT;
367 499
368#define ev_active(w) ((W)(w))->active 500#define ev_active(w) ((W)(w))->active
369#define ev_at(w) ((WT)(w))->at 501#define ev_at(w) ((WT)(w))->at
370 502
371#if EV_USE_MONOTONIC 503#if EV_USE_REALTIME
372/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 504/* sig_atomic_t is used to avoid per-thread variables or locking but still */
373/* giving it a reasonably high chance of working on typical architetcures */ 505/* giving it a reasonably high chance of working on typical architetcures */
506static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
507#endif
508
509#if EV_USE_MONOTONIC
374static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 510static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
511#endif
512
513#ifndef EV_FD_TO_WIN32_HANDLE
514# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
515#endif
516#ifndef EV_WIN32_HANDLE_TO_FD
517# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
518#endif
519#ifndef EV_WIN32_CLOSE_FD
520# define EV_WIN32_CLOSE_FD(fd) close (fd)
375#endif 521#endif
376 522
377#ifdef _WIN32 523#ifdef _WIN32
378# include "ev_win32.c" 524# include "ev_win32.c"
379#endif 525#endif
387{ 533{
388 syserr_cb = cb; 534 syserr_cb = cb;
389} 535}
390 536
391static void noinline 537static void noinline
392syserr (const char *msg) 538ev_syserr (const char *msg)
393{ 539{
394 if (!msg) 540 if (!msg)
395 msg = "(libev) system error"; 541 msg = "(libev) system error";
396 542
397 if (syserr_cb) 543 if (syserr_cb)
398 syserr_cb (msg); 544 syserr_cb (msg);
399 else 545 else
400 { 546 {
547#if EV_AVOID_STDIO
548 write (STDERR_FILENO, msg, strlen (msg));
549 write (STDERR_FILENO, ": ", 2);
550 msg = strerror (errno);
551 write (STDERR_FILENO, msg, strlen (msg));
552 write (STDERR_FILENO, "\n", 1);
553#else
401 perror (msg); 554 perror (msg);
555#endif
402 abort (); 556 abort ();
403 } 557 }
404} 558}
405 559
406static void * 560static void *
431{ 585{
432 ptr = alloc (ptr, size); 586 ptr = alloc (ptr, size);
433 587
434 if (!ptr && size) 588 if (!ptr && size)
435 { 589 {
590#if EV_AVOID_STDIO
591 write (STDERR_FILENO, "libev: memory allocation failed, aborting.",
592 sizeof ("libev: memory allocation failed, aborting.") - 1);
593#else
436 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 594 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
595#endif
437 abort (); 596 abort ();
438 } 597 }
439 598
440 return ptr; 599 return ptr;
441} 600}
443#define ev_malloc(size) ev_realloc (0, (size)) 602#define ev_malloc(size) ev_realloc (0, (size))
444#define ev_free(ptr) ev_realloc ((ptr), 0) 603#define ev_free(ptr) ev_realloc ((ptr), 0)
445 604
446/*****************************************************************************/ 605/*****************************************************************************/
447 606
607/* set in reify when reification needed */
608#define EV_ANFD_REIFY 1
609
610/* file descriptor info structure */
448typedef struct 611typedef struct
449{ 612{
450 WL head; 613 WL head;
451 unsigned char events; 614 unsigned char events; /* the events watched for */
615 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
616 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
452 unsigned char reify; 617 unsigned char unused;
618#if EV_USE_EPOLL
619 unsigned int egen; /* generation counter to counter epoll bugs */
620#endif
453#if EV_SELECT_IS_WINSOCKET 621#if EV_SELECT_IS_WINSOCKET
454 SOCKET handle; 622 SOCKET handle;
455#endif 623#endif
456} ANFD; 624} ANFD;
457 625
626/* stores the pending event set for a given watcher */
458typedef struct 627typedef struct
459{ 628{
460 W w; 629 W w;
461 int events; 630 int events; /* the pending event set for the given watcher */
462} ANPENDING; 631} ANPENDING;
463 632
464#if EV_USE_INOTIFY 633#if EV_USE_INOTIFY
465/* hash table entry per inotify-id */ 634/* hash table entry per inotify-id */
466typedef struct 635typedef struct
469} ANFS; 638} ANFS;
470#endif 639#endif
471 640
472/* Heap Entry */ 641/* Heap Entry */
473#if EV_HEAP_CACHE_AT 642#if EV_HEAP_CACHE_AT
643 /* a heap element */
474 typedef struct { 644 typedef struct {
475 ev_tstamp at; 645 ev_tstamp at;
476 WT w; 646 WT w;
477 } ANHE; 647 } ANHE;
478 648
479 #define ANHE_w(he) (he).w /* access watcher, read-write */ 649 #define ANHE_w(he) (he).w /* access watcher, read-write */
480 #define ANHE_at(he) (he).at /* access cached at, read-only */ 650 #define ANHE_at(he) (he).at /* access cached at, read-only */
481 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 651 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
482#else 652#else
653 /* a heap element */
483 typedef WT ANHE; 654 typedef WT ANHE;
484 655
485 #define ANHE_w(he) (he) 656 #define ANHE_w(he) (he)
486 #define ANHE_at(he) (he)->at 657 #define ANHE_at(he) (he)->at
487 #define ANHE_at_cache(he) 658 #define ANHE_at_cache(he)
511 682
512 static int ev_default_loop_ptr; 683 static int ev_default_loop_ptr;
513 684
514#endif 685#endif
515 686
687#if EV_MINIMAL < 2
688# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
689# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
690# define EV_INVOKE_PENDING invoke_cb (EV_A)
691#else
692# define EV_RELEASE_CB (void)0
693# define EV_ACQUIRE_CB (void)0
694# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
695#endif
696
697#define EVUNLOOP_RECURSE 0x80
698
516/*****************************************************************************/ 699/*****************************************************************************/
517 700
701#ifndef EV_HAVE_EV_TIME
518ev_tstamp 702ev_tstamp
519ev_time (void) 703ev_time (void)
520{ 704{
521#if EV_USE_REALTIME 705#if EV_USE_REALTIME
706 if (expect_true (have_realtime))
707 {
522 struct timespec ts; 708 struct timespec ts;
523 clock_gettime (CLOCK_REALTIME, &ts); 709 clock_gettime (CLOCK_REALTIME, &ts);
524 return ts.tv_sec + ts.tv_nsec * 1e-9; 710 return ts.tv_sec + ts.tv_nsec * 1e-9;
525#else 711 }
712#endif
713
526 struct timeval tv; 714 struct timeval tv;
527 gettimeofday (&tv, 0); 715 gettimeofday (&tv, 0);
528 return tv.tv_sec + tv.tv_usec * 1e-6; 716 return tv.tv_sec + tv.tv_usec * 1e-6;
529#endif
530} 717}
718#endif
531 719
532ev_tstamp inline_size 720inline_size ev_tstamp
533get_clock (void) 721get_clock (void)
534{ 722{
535#if EV_USE_MONOTONIC 723#if EV_USE_MONOTONIC
536 if (expect_true (have_monotonic)) 724 if (expect_true (have_monotonic))
537 { 725 {
571 759
572 tv.tv_sec = (time_t)delay; 760 tv.tv_sec = (time_t)delay;
573 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 761 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
574 762
575 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 763 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
576 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 764 /* something not guaranteed by newer posix versions, but guaranteed */
577 /* by older ones */ 765 /* by older ones */
578 select (0, 0, 0, 0, &tv); 766 select (0, 0, 0, 0, &tv);
579#endif 767#endif
580 } 768 }
581} 769}
582 770
583/*****************************************************************************/ 771/*****************************************************************************/
584 772
585#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 773#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
586 774
587int inline_size 775/* find a suitable new size for the given array, */
776/* hopefully by rounding to a ncie-to-malloc size */
777inline_size int
588array_nextsize (int elem, int cur, int cnt) 778array_nextsize (int elem, int cur, int cnt)
589{ 779{
590 int ncur = cur + 1; 780 int ncur = cur + 1;
591 781
592 do 782 do
609array_realloc (int elem, void *base, int *cur, int cnt) 799array_realloc (int elem, void *base, int *cur, int cnt)
610{ 800{
611 *cur = array_nextsize (elem, *cur, cnt); 801 *cur = array_nextsize (elem, *cur, cnt);
612 return ev_realloc (base, elem * *cur); 802 return ev_realloc (base, elem * *cur);
613} 803}
804
805#define array_init_zero(base,count) \
806 memset ((void *)(base), 0, sizeof (*(base)) * (count))
614 807
615#define array_needsize(type,base,cur,cnt,init) \ 808#define array_needsize(type,base,cur,cnt,init) \
616 if (expect_false ((cnt) > (cur))) \ 809 if (expect_false ((cnt) > (cur))) \
617 { \ 810 { \
618 int ocur_ = (cur); \ 811 int ocur_ = (cur); \
630 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 823 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
631 } 824 }
632#endif 825#endif
633 826
634#define array_free(stem, idx) \ 827#define array_free(stem, idx) \
635 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 828 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
636 829
637/*****************************************************************************/ 830/*****************************************************************************/
831
832/* dummy callback for pending events */
833static void noinline
834pendingcb (EV_P_ ev_prepare *w, int revents)
835{
836}
638 837
639void noinline 838void noinline
640ev_feed_event (EV_P_ void *w, int revents) 839ev_feed_event (EV_P_ void *w, int revents)
641{ 840{
642 W w_ = (W)w; 841 W w_ = (W)w;
651 pendings [pri][w_->pending - 1].w = w_; 850 pendings [pri][w_->pending - 1].w = w_;
652 pendings [pri][w_->pending - 1].events = revents; 851 pendings [pri][w_->pending - 1].events = revents;
653 } 852 }
654} 853}
655 854
656void inline_speed 855inline_speed void
856feed_reverse (EV_P_ W w)
857{
858 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
859 rfeeds [rfeedcnt++] = w;
860}
861
862inline_size void
863feed_reverse_done (EV_P_ int revents)
864{
865 do
866 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
867 while (rfeedcnt);
868}
869
870inline_speed void
657queue_events (EV_P_ W *events, int eventcnt, int type) 871queue_events (EV_P_ W *events, int eventcnt, int type)
658{ 872{
659 int i; 873 int i;
660 874
661 for (i = 0; i < eventcnt; ++i) 875 for (i = 0; i < eventcnt; ++i)
662 ev_feed_event (EV_A_ events [i], type); 876 ev_feed_event (EV_A_ events [i], type);
663} 877}
664 878
665/*****************************************************************************/ 879/*****************************************************************************/
666 880
667void inline_size 881inline_speed void
668anfds_init (ANFD *base, int count)
669{
670 while (count--)
671 {
672 base->head = 0;
673 base->events = EV_NONE;
674 base->reify = 0;
675
676 ++base;
677 }
678}
679
680void inline_speed
681fd_event (EV_P_ int fd, int revents) 882fd_event_nc (EV_P_ int fd, int revents)
682{ 883{
683 ANFD *anfd = anfds + fd; 884 ANFD *anfd = anfds + fd;
684 ev_io *w; 885 ev_io *w;
685 886
686 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 887 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
690 if (ev) 891 if (ev)
691 ev_feed_event (EV_A_ (W)w, ev); 892 ev_feed_event (EV_A_ (W)w, ev);
692 } 893 }
693} 894}
694 895
896/* do not submit kernel events for fds that have reify set */
897/* because that means they changed while we were polling for new events */
898inline_speed void
899fd_event (EV_P_ int fd, int revents)
900{
901 ANFD *anfd = anfds + fd;
902
903 if (expect_true (!anfd->reify))
904 fd_event_nc (EV_A_ fd, revents);
905}
906
695void 907void
696ev_feed_fd_event (EV_P_ int fd, int revents) 908ev_feed_fd_event (EV_P_ int fd, int revents)
697{ 909{
698 if (fd >= 0 && fd < anfdmax) 910 if (fd >= 0 && fd < anfdmax)
699 fd_event (EV_A_ fd, revents); 911 fd_event_nc (EV_A_ fd, revents);
700} 912}
701 913
702void inline_size 914/* make sure the external fd watch events are in-sync */
915/* with the kernel/libev internal state */
916inline_size void
703fd_reify (EV_P) 917fd_reify (EV_P)
704{ 918{
705 int i; 919 int i;
706 920
707 for (i = 0; i < fdchangecnt; ++i) 921 for (i = 0; i < fdchangecnt; ++i)
717 931
718#if EV_SELECT_IS_WINSOCKET 932#if EV_SELECT_IS_WINSOCKET
719 if (events) 933 if (events)
720 { 934 {
721 unsigned long arg; 935 unsigned long arg;
722 #ifdef EV_FD_TO_WIN32_HANDLE
723 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 936 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
724 #else
725 anfd->handle = _get_osfhandle (fd);
726 #endif
727 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 937 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
728 } 938 }
729#endif 939#endif
730 940
731 { 941 {
732 unsigned char o_events = anfd->events; 942 unsigned char o_events = anfd->events;
733 unsigned char o_reify = anfd->reify; 943 unsigned char o_reify = anfd->reify;
734 944
735 anfd->reify = 0; 945 anfd->reify = 0;
736 anfd->events = events; 946 anfd->events = events;
737 947
738 if (o_events != events || o_reify & EV_IOFDSET) 948 if (o_events != events || o_reify & EV__IOFDSET)
739 backend_modify (EV_A_ fd, o_events, events); 949 backend_modify (EV_A_ fd, o_events, events);
740 } 950 }
741 } 951 }
742 952
743 fdchangecnt = 0; 953 fdchangecnt = 0;
744} 954}
745 955
746void inline_size 956/* something about the given fd changed */
957inline_size void
747fd_change (EV_P_ int fd, int flags) 958fd_change (EV_P_ int fd, int flags)
748{ 959{
749 unsigned char reify = anfds [fd].reify; 960 unsigned char reify = anfds [fd].reify;
750 anfds [fd].reify |= flags; 961 anfds [fd].reify |= flags;
751 962
755 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 966 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
756 fdchanges [fdchangecnt - 1] = fd; 967 fdchanges [fdchangecnt - 1] = fd;
757 } 968 }
758} 969}
759 970
760void inline_speed 971/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
972inline_speed void
761fd_kill (EV_P_ int fd) 973fd_kill (EV_P_ int fd)
762{ 974{
763 ev_io *w; 975 ev_io *w;
764 976
765 while ((w = (ev_io *)anfds [fd].head)) 977 while ((w = (ev_io *)anfds [fd].head))
767 ev_io_stop (EV_A_ w); 979 ev_io_stop (EV_A_ w);
768 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 980 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
769 } 981 }
770} 982}
771 983
772int inline_size 984/* check whether the given fd is atcually valid, for error recovery */
985inline_size int
773fd_valid (int fd) 986fd_valid (int fd)
774{ 987{
775#ifdef _WIN32 988#ifdef _WIN32
776 return _get_osfhandle (fd) != -1; 989 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
777#else 990#else
778 return fcntl (fd, F_GETFD) != -1; 991 return fcntl (fd, F_GETFD) != -1;
779#endif 992#endif
780} 993}
781 994
799 1012
800 for (fd = anfdmax; fd--; ) 1013 for (fd = anfdmax; fd--; )
801 if (anfds [fd].events) 1014 if (anfds [fd].events)
802 { 1015 {
803 fd_kill (EV_A_ fd); 1016 fd_kill (EV_A_ fd);
804 return; 1017 break;
805 } 1018 }
806} 1019}
807 1020
808/* usually called after fork if backend needs to re-arm all fds from scratch */ 1021/* usually called after fork if backend needs to re-arm all fds from scratch */
809static void noinline 1022static void noinline
813 1026
814 for (fd = 0; fd < anfdmax; ++fd) 1027 for (fd = 0; fd < anfdmax; ++fd)
815 if (anfds [fd].events) 1028 if (anfds [fd].events)
816 { 1029 {
817 anfds [fd].events = 0; 1030 anfds [fd].events = 0;
1031 anfds [fd].emask = 0;
818 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1032 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
819 } 1033 }
820} 1034}
821 1035
822/*****************************************************************************/ 1036/*****************************************************************************/
823 1037
839#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1053#define HEAP0 (DHEAP - 1) /* index of first element in heap */
840#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1054#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
841#define UPHEAP_DONE(p,k) ((p) == (k)) 1055#define UPHEAP_DONE(p,k) ((p) == (k))
842 1056
843/* away from the root */ 1057/* away from the root */
844void inline_speed 1058inline_speed void
845downheap (ANHE *heap, int N, int k) 1059downheap (ANHE *heap, int N, int k)
846{ 1060{
847 ANHE he = heap [k]; 1061 ANHE he = heap [k];
848 ANHE *E = heap + N + HEAP0; 1062 ANHE *E = heap + N + HEAP0;
849 1063
889#define HEAP0 1 1103#define HEAP0 1
890#define HPARENT(k) ((k) >> 1) 1104#define HPARENT(k) ((k) >> 1)
891#define UPHEAP_DONE(p,k) (!(p)) 1105#define UPHEAP_DONE(p,k) (!(p))
892 1106
893/* away from the root */ 1107/* away from the root */
894void inline_speed 1108inline_speed void
895downheap (ANHE *heap, int N, int k) 1109downheap (ANHE *heap, int N, int k)
896{ 1110{
897 ANHE he = heap [k]; 1111 ANHE he = heap [k];
898 1112
899 for (;;) 1113 for (;;)
900 { 1114 {
901 int c = k << 1; 1115 int c = k << 1;
902 1116
903 if (c > N + HEAP0 - 1) 1117 if (c >= N + HEAP0)
904 break; 1118 break;
905 1119
906 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1120 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
907 ? 1 : 0; 1121 ? 1 : 0;
908 1122
919 ev_active (ANHE_w (he)) = k; 1133 ev_active (ANHE_w (he)) = k;
920} 1134}
921#endif 1135#endif
922 1136
923/* towards the root */ 1137/* towards the root */
924void inline_speed 1138inline_speed void
925upheap (ANHE *heap, int k) 1139upheap (ANHE *heap, int k)
926{ 1140{
927 ANHE he = heap [k]; 1141 ANHE he = heap [k];
928 1142
929 for (;;) 1143 for (;;)
940 1154
941 heap [k] = he; 1155 heap [k] = he;
942 ev_active (ANHE_w (he)) = k; 1156 ev_active (ANHE_w (he)) = k;
943} 1157}
944 1158
945void inline_size 1159/* move an element suitably so it is in a correct place */
1160inline_size void
946adjustheap (ANHE *heap, int N, int k) 1161adjustheap (ANHE *heap, int N, int k)
947{ 1162{
948 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1163 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
949 upheap (heap, k); 1164 upheap (heap, k);
950 else 1165 else
951 downheap (heap, N, k); 1166 downheap (heap, N, k);
952} 1167}
953 1168
954/* rebuild the heap: this function is used only once and executed rarely */ 1169/* rebuild the heap: this function is used only once and executed rarely */
955void inline_size 1170inline_size void
956reheap (ANHE *heap, int N) 1171reheap (ANHE *heap, int N)
957{ 1172{
958 int i; 1173 int i;
959 1174
960 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1175 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
963 upheap (heap, i + HEAP0); 1178 upheap (heap, i + HEAP0);
964} 1179}
965 1180
966/*****************************************************************************/ 1181/*****************************************************************************/
967 1182
1183/* associate signal watchers to a signal signal */
968typedef struct 1184typedef struct
969{ 1185{
1186 EV_ATOMIC_T pending;
1187#if EV_MULTIPLICITY
1188 EV_P;
1189#endif
970 WL head; 1190 WL head;
971 EV_ATOMIC_T gotsig;
972} ANSIG; 1191} ANSIG;
973 1192
974static ANSIG *signals; 1193static ANSIG signals [EV_NSIG - 1];
975static int signalmax;
976
977static EV_ATOMIC_T gotsig;
978
979void inline_size
980signals_init (ANSIG *base, int count)
981{
982 while (count--)
983 {
984 base->head = 0;
985 base->gotsig = 0;
986
987 ++base;
988 }
989}
990 1194
991/*****************************************************************************/ 1195/*****************************************************************************/
992 1196
993void inline_speed 1197/* used to prepare libev internal fd's */
1198/* this is not fork-safe */
1199inline_speed void
994fd_intern (int fd) 1200fd_intern (int fd)
995{ 1201{
996#ifdef _WIN32 1202#ifdef _WIN32
997 unsigned long arg = 1; 1203 unsigned long arg = 1;
998 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1204 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
999#else 1205#else
1000 fcntl (fd, F_SETFD, FD_CLOEXEC); 1206 fcntl (fd, F_SETFD, FD_CLOEXEC);
1001 fcntl (fd, F_SETFL, O_NONBLOCK); 1207 fcntl (fd, F_SETFL, O_NONBLOCK);
1002#endif 1208#endif
1003} 1209}
1004 1210
1005static void noinline 1211static void noinline
1006evpipe_init (EV_P) 1212evpipe_init (EV_P)
1007{ 1213{
1008 if (!ev_is_active (&pipeev)) 1214 if (!ev_is_active (&pipe_w))
1009 { 1215 {
1010#if EV_USE_EVENTFD 1216#if EV_USE_EVENTFD
1217 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1218 if (evfd < 0 && errno == EINVAL)
1011 if ((evfd = eventfd (0, 0)) >= 0) 1219 evfd = eventfd (0, 0);
1220
1221 if (evfd >= 0)
1012 { 1222 {
1013 evpipe [0] = -1; 1223 evpipe [0] = -1;
1014 fd_intern (evfd); 1224 fd_intern (evfd); /* doing it twice doesn't hurt */
1015 ev_io_set (&pipeev, evfd, EV_READ); 1225 ev_io_set (&pipe_w, evfd, EV_READ);
1016 } 1226 }
1017 else 1227 else
1018#endif 1228#endif
1019 { 1229 {
1020 while (pipe (evpipe)) 1230 while (pipe (evpipe))
1021 syserr ("(libev) error creating signal/async pipe"); 1231 ev_syserr ("(libev) error creating signal/async pipe");
1022 1232
1023 fd_intern (evpipe [0]); 1233 fd_intern (evpipe [0]);
1024 fd_intern (evpipe [1]); 1234 fd_intern (evpipe [1]);
1025 ev_io_set (&pipeev, evpipe [0], EV_READ); 1235 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1026 } 1236 }
1027 1237
1028 ev_io_start (EV_A_ &pipeev); 1238 ev_io_start (EV_A_ &pipe_w);
1029 ev_unref (EV_A); /* watcher should not keep loop alive */ 1239 ev_unref (EV_A); /* watcher should not keep loop alive */
1030 } 1240 }
1031} 1241}
1032 1242
1033void inline_size 1243inline_size void
1034evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1244evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1035{ 1245{
1036 if (!*flag) 1246 if (!*flag)
1037 { 1247 {
1038 int old_errno = errno; /* save errno because write might clobber it */ 1248 int old_errno = errno; /* save errno because write might clobber it */
1051 1261
1052 errno = old_errno; 1262 errno = old_errno;
1053 } 1263 }
1054} 1264}
1055 1265
1266/* called whenever the libev signal pipe */
1267/* got some events (signal, async) */
1056static void 1268static void
1057pipecb (EV_P_ ev_io *iow, int revents) 1269pipecb (EV_P_ ev_io *iow, int revents)
1058{ 1270{
1271 int i;
1272
1059#if EV_USE_EVENTFD 1273#if EV_USE_EVENTFD
1060 if (evfd >= 0) 1274 if (evfd >= 0)
1061 { 1275 {
1062 uint64_t counter; 1276 uint64_t counter;
1063 read (evfd, &counter, sizeof (uint64_t)); 1277 read (evfd, &counter, sizeof (uint64_t));
1067 { 1281 {
1068 char dummy; 1282 char dummy;
1069 read (evpipe [0], &dummy, 1); 1283 read (evpipe [0], &dummy, 1);
1070 } 1284 }
1071 1285
1072 if (gotsig && ev_is_default_loop (EV_A)) 1286 if (sig_pending)
1073 { 1287 {
1074 int signum; 1288 sig_pending = 0;
1075 gotsig = 0;
1076 1289
1077 for (signum = signalmax; signum--; ) 1290 for (i = EV_NSIG - 1; i--; )
1078 if (signals [signum].gotsig) 1291 if (expect_false (signals [i].pending))
1079 ev_feed_signal_event (EV_A_ signum + 1); 1292 ev_feed_signal_event (EV_A_ i + 1);
1080 } 1293 }
1081 1294
1082#if EV_ASYNC_ENABLE 1295#if EV_ASYNC_ENABLE
1083 if (gotasync) 1296 if (async_pending)
1084 { 1297 {
1085 int i; 1298 async_pending = 0;
1086 gotasync = 0;
1087 1299
1088 for (i = asynccnt; i--; ) 1300 for (i = asynccnt; i--; )
1089 if (asyncs [i]->sent) 1301 if (asyncs [i]->sent)
1090 { 1302 {
1091 asyncs [i]->sent = 0; 1303 asyncs [i]->sent = 0;
1099 1311
1100static void 1312static void
1101ev_sighandler (int signum) 1313ev_sighandler (int signum)
1102{ 1314{
1103#if EV_MULTIPLICITY 1315#if EV_MULTIPLICITY
1104 struct ev_loop *loop = &default_loop_struct; 1316 EV_P = signals [signum - 1].loop;
1105#endif 1317#endif
1106 1318
1107#if _WIN32 1319#ifdef _WIN32
1108 signal (signum, ev_sighandler); 1320 signal (signum, ev_sighandler);
1109#endif 1321#endif
1110 1322
1111 signals [signum - 1].gotsig = 1; 1323 signals [signum - 1].pending = 1;
1112 evpipe_write (EV_A_ &gotsig); 1324 evpipe_write (EV_A_ &sig_pending);
1113} 1325}
1114 1326
1115void noinline 1327void noinline
1116ev_feed_signal_event (EV_P_ int signum) 1328ev_feed_signal_event (EV_P_ int signum)
1117{ 1329{
1118 WL w; 1330 WL w;
1119 1331
1332 if (expect_false (signum <= 0 || signum > EV_NSIG))
1333 return;
1334
1335 --signum;
1336
1120#if EV_MULTIPLICITY 1337#if EV_MULTIPLICITY
1121 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1338 /* it is permissible to try to feed a signal to the wrong loop */
1122#endif 1339 /* or, likely more useful, feeding a signal nobody is waiting for */
1123 1340
1124 --signum; 1341 if (expect_false (signals [signum].loop != EV_A))
1125
1126 if (signum < 0 || signum >= signalmax)
1127 return; 1342 return;
1343#endif
1128 1344
1129 signals [signum].gotsig = 0; 1345 signals [signum].pending = 0;
1130 1346
1131 for (w = signals [signum].head; w; w = w->next) 1347 for (w = signals [signum].head; w; w = w->next)
1132 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1348 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1133} 1349}
1134 1350
1351#if EV_USE_SIGNALFD
1352static void
1353sigfdcb (EV_P_ ev_io *iow, int revents)
1354{
1355 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1356
1357 for (;;)
1358 {
1359 ssize_t res = read (sigfd, si, sizeof (si));
1360
1361 /* not ISO-C, as res might be -1, but works with SuS */
1362 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1363 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1364
1365 if (res < (ssize_t)sizeof (si))
1366 break;
1367 }
1368}
1369#endif
1370
1135/*****************************************************************************/ 1371/*****************************************************************************/
1136 1372
1137static WL childs [EV_PID_HASHSIZE]; 1373static WL childs [EV_PID_HASHSIZE];
1138 1374
1139#ifndef _WIN32 1375#ifndef _WIN32
1142 1378
1143#ifndef WIFCONTINUED 1379#ifndef WIFCONTINUED
1144# define WIFCONTINUED(status) 0 1380# define WIFCONTINUED(status) 0
1145#endif 1381#endif
1146 1382
1147void inline_speed 1383/* handle a single child status event */
1384inline_speed void
1148child_reap (EV_P_ int chain, int pid, int status) 1385child_reap (EV_P_ int chain, int pid, int status)
1149{ 1386{
1150 ev_child *w; 1387 ev_child *w;
1151 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1388 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1152 1389
1165 1402
1166#ifndef WCONTINUED 1403#ifndef WCONTINUED
1167# define WCONTINUED 0 1404# define WCONTINUED 0
1168#endif 1405#endif
1169 1406
1407/* called on sigchld etc., calls waitpid */
1170static void 1408static void
1171childcb (EV_P_ ev_signal *sw, int revents) 1409childcb (EV_P_ ev_signal *sw, int revents)
1172{ 1410{
1173 int pid, status; 1411 int pid, status;
1174 1412
1255 /* kqueue is borked on everything but netbsd apparently */ 1493 /* kqueue is borked on everything but netbsd apparently */
1256 /* it usually doesn't work correctly on anything but sockets and pipes */ 1494 /* it usually doesn't work correctly on anything but sockets and pipes */
1257 flags &= ~EVBACKEND_KQUEUE; 1495 flags &= ~EVBACKEND_KQUEUE;
1258#endif 1496#endif
1259#ifdef __APPLE__ 1497#ifdef __APPLE__
1260 // flags &= ~EVBACKEND_KQUEUE; for documentation 1498 /* only select works correctly on that "unix-certified" platform */
1261 flags &= ~EVBACKEND_POLL; 1499 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1500 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1262#endif 1501#endif
1263 1502
1264 return flags; 1503 return flags;
1265} 1504}
1266 1505
1280ev_backend (EV_P) 1519ev_backend (EV_P)
1281{ 1520{
1282 return backend; 1521 return backend;
1283} 1522}
1284 1523
1524#if EV_MINIMAL < 2
1285unsigned int 1525unsigned int
1286ev_loop_count (EV_P) 1526ev_loop_count (EV_P)
1287{ 1527{
1288 return loop_count; 1528 return loop_count;
1289} 1529}
1290 1530
1531unsigned int
1532ev_loop_depth (EV_P)
1533{
1534 return loop_depth;
1535}
1536
1291void 1537void
1292ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1538ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1293{ 1539{
1294 io_blocktime = interval; 1540 io_blocktime = interval;
1295} 1541}
1298ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1544ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1299{ 1545{
1300 timeout_blocktime = interval; 1546 timeout_blocktime = interval;
1301} 1547}
1302 1548
1549void
1550ev_set_userdata (EV_P_ void *data)
1551{
1552 userdata = data;
1553}
1554
1555void *
1556ev_userdata (EV_P)
1557{
1558 return userdata;
1559}
1560
1561void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1562{
1563 invoke_cb = invoke_pending_cb;
1564}
1565
1566void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1567{
1568 release_cb = release;
1569 acquire_cb = acquire;
1570}
1571#endif
1572
1573/* initialise a loop structure, must be zero-initialised */
1303static void noinline 1574static void noinline
1304loop_init (EV_P_ unsigned int flags) 1575loop_init (EV_P_ unsigned int flags)
1305{ 1576{
1306 if (!backend) 1577 if (!backend)
1307 { 1578 {
1579#if EV_USE_REALTIME
1580 if (!have_realtime)
1581 {
1582 struct timespec ts;
1583
1584 if (!clock_gettime (CLOCK_REALTIME, &ts))
1585 have_realtime = 1;
1586 }
1587#endif
1588
1308#if EV_USE_MONOTONIC 1589#if EV_USE_MONOTONIC
1590 if (!have_monotonic)
1309 { 1591 {
1310 struct timespec ts; 1592 struct timespec ts;
1593
1311 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1594 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1312 have_monotonic = 1; 1595 have_monotonic = 1;
1313 } 1596 }
1314#endif 1597#endif
1598
1599 /* pid check not overridable via env */
1600#ifndef _WIN32
1601 if (flags & EVFLAG_FORKCHECK)
1602 curpid = getpid ();
1603#endif
1604
1605 if (!(flags & EVFLAG_NOENV)
1606 && !enable_secure ()
1607 && getenv ("LIBEV_FLAGS"))
1608 flags = atoi (getenv ("LIBEV_FLAGS"));
1315 1609
1316 ev_rt_now = ev_time (); 1610 ev_rt_now = ev_time ();
1317 mn_now = get_clock (); 1611 mn_now = get_clock ();
1318 now_floor = mn_now; 1612 now_floor = mn_now;
1319 rtmn_diff = ev_rt_now - mn_now; 1613 rtmn_diff = ev_rt_now - mn_now;
1614#if EV_MINIMAL < 2
1615 invoke_cb = ev_invoke_pending;
1616#endif
1320 1617
1321 io_blocktime = 0.; 1618 io_blocktime = 0.;
1322 timeout_blocktime = 0.; 1619 timeout_blocktime = 0.;
1323 backend = 0; 1620 backend = 0;
1324 backend_fd = -1; 1621 backend_fd = -1;
1325 gotasync = 0; 1622 sig_pending = 0;
1623#if EV_ASYNC_ENABLE
1624 async_pending = 0;
1625#endif
1326#if EV_USE_INOTIFY 1626#if EV_USE_INOTIFY
1327 fs_fd = -2; 1627 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1328#endif 1628#endif
1329 1629#if EV_USE_SIGNALFD
1330 /* pid check not overridable via env */ 1630 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1331#ifndef _WIN32
1332 if (flags & EVFLAG_FORKCHECK)
1333 curpid = getpid ();
1334#endif 1631#endif
1335
1336 if (!(flags & EVFLAG_NOENV)
1337 && !enable_secure ()
1338 && getenv ("LIBEV_FLAGS"))
1339 flags = atoi (getenv ("LIBEV_FLAGS"));
1340 1632
1341 if (!(flags & 0x0000ffffU)) 1633 if (!(flags & 0x0000ffffU))
1342 flags |= ev_recommended_backends (); 1634 flags |= ev_recommended_backends ();
1343 1635
1344#if EV_USE_PORT 1636#if EV_USE_PORT
1355#endif 1647#endif
1356#if EV_USE_SELECT 1648#if EV_USE_SELECT
1357 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1649 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1358#endif 1650#endif
1359 1651
1652 ev_prepare_init (&pending_w, pendingcb);
1653
1360 ev_init (&pipeev, pipecb); 1654 ev_init (&pipe_w, pipecb);
1361 ev_set_priority (&pipeev, EV_MAXPRI); 1655 ev_set_priority (&pipe_w, EV_MAXPRI);
1362 } 1656 }
1363} 1657}
1364 1658
1659/* free up a loop structure */
1365static void noinline 1660static void noinline
1366loop_destroy (EV_P) 1661loop_destroy (EV_P)
1367{ 1662{
1368 int i; 1663 int i;
1369 1664
1370 if (ev_is_active (&pipeev)) 1665 if (ev_is_active (&pipe_w))
1371 { 1666 {
1372 ev_ref (EV_A); /* signal watcher */ 1667 /*ev_ref (EV_A);*/
1373 ev_io_stop (EV_A_ &pipeev); 1668 /*ev_io_stop (EV_A_ &pipe_w);*/
1374 1669
1375#if EV_USE_EVENTFD 1670#if EV_USE_EVENTFD
1376 if (evfd >= 0) 1671 if (evfd >= 0)
1377 close (evfd); 1672 close (evfd);
1378#endif 1673#endif
1379 1674
1380 if (evpipe [0] >= 0) 1675 if (evpipe [0] >= 0)
1381 { 1676 {
1382 close (evpipe [0]); 1677 EV_WIN32_CLOSE_FD (evpipe [0]);
1383 close (evpipe [1]); 1678 EV_WIN32_CLOSE_FD (evpipe [1]);
1384 } 1679 }
1385 } 1680 }
1681
1682#if EV_USE_SIGNALFD
1683 if (ev_is_active (&sigfd_w))
1684 close (sigfd);
1685#endif
1386 1686
1387#if EV_USE_INOTIFY 1687#if EV_USE_INOTIFY
1388 if (fs_fd >= 0) 1688 if (fs_fd >= 0)
1389 close (fs_fd); 1689 close (fs_fd);
1390#endif 1690#endif
1414#if EV_IDLE_ENABLE 1714#if EV_IDLE_ENABLE
1415 array_free (idle, [i]); 1715 array_free (idle, [i]);
1416#endif 1716#endif
1417 } 1717 }
1418 1718
1419 ev_free (anfds); anfdmax = 0; 1719 ev_free (anfds); anfds = 0; anfdmax = 0;
1420 1720
1421 /* have to use the microsoft-never-gets-it-right macro */ 1721 /* have to use the microsoft-never-gets-it-right macro */
1722 array_free (rfeed, EMPTY);
1422 array_free (fdchange, EMPTY); 1723 array_free (fdchange, EMPTY);
1423 array_free (timer, EMPTY); 1724 array_free (timer, EMPTY);
1424#if EV_PERIODIC_ENABLE 1725#if EV_PERIODIC_ENABLE
1425 array_free (periodic, EMPTY); 1726 array_free (periodic, EMPTY);
1426#endif 1727#endif
1435 1736
1436 backend = 0; 1737 backend = 0;
1437} 1738}
1438 1739
1439#if EV_USE_INOTIFY 1740#if EV_USE_INOTIFY
1440void inline_size infy_fork (EV_P); 1741inline_size void infy_fork (EV_P);
1441#endif 1742#endif
1442 1743
1443void inline_size 1744inline_size void
1444loop_fork (EV_P) 1745loop_fork (EV_P)
1445{ 1746{
1446#if EV_USE_PORT 1747#if EV_USE_PORT
1447 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1748 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1448#endif 1749#endif
1454#endif 1755#endif
1455#if EV_USE_INOTIFY 1756#if EV_USE_INOTIFY
1456 infy_fork (EV_A); 1757 infy_fork (EV_A);
1457#endif 1758#endif
1458 1759
1459 if (ev_is_active (&pipeev)) 1760 if (ev_is_active (&pipe_w))
1460 { 1761 {
1461 /* this "locks" the handlers against writing to the pipe */ 1762 /* this "locks" the handlers against writing to the pipe */
1462 /* while we modify the fd vars */ 1763 /* while we modify the fd vars */
1463 gotsig = 1; 1764 sig_pending = 1;
1464#if EV_ASYNC_ENABLE 1765#if EV_ASYNC_ENABLE
1465 gotasync = 1; 1766 async_pending = 1;
1466#endif 1767#endif
1467 1768
1468 ev_ref (EV_A); 1769 ev_ref (EV_A);
1469 ev_io_stop (EV_A_ &pipeev); 1770 ev_io_stop (EV_A_ &pipe_w);
1470 1771
1471#if EV_USE_EVENTFD 1772#if EV_USE_EVENTFD
1472 if (evfd >= 0) 1773 if (evfd >= 0)
1473 close (evfd); 1774 close (evfd);
1474#endif 1775#endif
1475 1776
1476 if (evpipe [0] >= 0) 1777 if (evpipe [0] >= 0)
1477 { 1778 {
1478 close (evpipe [0]); 1779 EV_WIN32_CLOSE_FD (evpipe [0]);
1479 close (evpipe [1]); 1780 EV_WIN32_CLOSE_FD (evpipe [1]);
1480 } 1781 }
1481 1782
1482 evpipe_init (EV_A); 1783 evpipe_init (EV_A);
1483 /* now iterate over everything, in case we missed something */ 1784 /* now iterate over everything, in case we missed something */
1484 pipecb (EV_A_ &pipeev, EV_READ); 1785 pipecb (EV_A_ &pipe_w, EV_READ);
1485 } 1786 }
1486 1787
1487 postfork = 0; 1788 postfork = 0;
1488} 1789}
1489 1790
1490#if EV_MULTIPLICITY 1791#if EV_MULTIPLICITY
1491 1792
1492struct ev_loop * 1793struct ev_loop *
1493ev_loop_new (unsigned int flags) 1794ev_loop_new (unsigned int flags)
1494{ 1795{
1495 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1796 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1496 1797
1497 memset (loop, 0, sizeof (struct ev_loop)); 1798 memset (EV_A, 0, sizeof (struct ev_loop));
1498
1499 loop_init (EV_A_ flags); 1799 loop_init (EV_A_ flags);
1500 1800
1501 if (ev_backend (EV_A)) 1801 if (ev_backend (EV_A))
1502 return loop; 1802 return EV_A;
1503 1803
1504 return 0; 1804 return 0;
1505} 1805}
1506 1806
1507void 1807void
1514void 1814void
1515ev_loop_fork (EV_P) 1815ev_loop_fork (EV_P)
1516{ 1816{
1517 postfork = 1; /* must be in line with ev_default_fork */ 1817 postfork = 1; /* must be in line with ev_default_fork */
1518} 1818}
1819#endif /* multiplicity */
1519 1820
1520#if EV_VERIFY 1821#if EV_VERIFY
1521static void noinline 1822static void noinline
1522verify_watcher (EV_P_ W w) 1823verify_watcher (EV_P_ W w)
1523{ 1824{
1524 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 1825 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1525 1826
1526 if (w->pending) 1827 if (w->pending)
1527 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 1828 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1528} 1829}
1529 1830
1530static void noinline 1831static void noinline
1531verify_heap (EV_P_ ANHE *heap, int N) 1832verify_heap (EV_P_ ANHE *heap, int N)
1532{ 1833{
1533 int i; 1834 int i;
1534 1835
1535 for (i = HEAP0; i < N + HEAP0; ++i) 1836 for (i = HEAP0; i < N + HEAP0; ++i)
1536 { 1837 {
1537 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 1838 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1538 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 1839 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1539 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 1840 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1540 1841
1541 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 1842 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1542 } 1843 }
1543} 1844}
1544 1845
1545static void noinline 1846static void noinline
1546array_verify (EV_P_ W *ws, int cnt) 1847array_verify (EV_P_ W *ws, int cnt)
1547{ 1848{
1548 while (cnt--) 1849 while (cnt--)
1549 { 1850 {
1550 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 1851 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1551 verify_watcher (EV_A_ ws [cnt]); 1852 verify_watcher (EV_A_ ws [cnt]);
1552 } 1853 }
1553} 1854}
1554#endif 1855#endif
1555 1856
1857#if EV_MINIMAL < 2
1556void 1858void
1557ev_loop_verify (EV_P) 1859ev_loop_verify (EV_P)
1558{ 1860{
1559#if EV_VERIFY 1861#if EV_VERIFY
1560 int i; 1862 int i;
1562 1864
1563 assert (activecnt >= -1); 1865 assert (activecnt >= -1);
1564 1866
1565 assert (fdchangemax >= fdchangecnt); 1867 assert (fdchangemax >= fdchangecnt);
1566 for (i = 0; i < fdchangecnt; ++i) 1868 for (i = 0; i < fdchangecnt; ++i)
1567 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 1869 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1568 1870
1569 assert (anfdmax >= 0); 1871 assert (anfdmax >= 0);
1570 for (i = 0; i < anfdmax; ++i) 1872 for (i = 0; i < anfdmax; ++i)
1571 for (w = anfds [i].head; w; w = w->next) 1873 for (w = anfds [i].head; w; w = w->next)
1572 { 1874 {
1573 verify_watcher (EV_A_ (W)w); 1875 verify_watcher (EV_A_ (W)w);
1574 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 1876 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1575 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 1877 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1576 } 1878 }
1577 1879
1578 assert (timermax >= timercnt); 1880 assert (timermax >= timercnt);
1579 verify_heap (EV_A_ timers, timercnt); 1881 verify_heap (EV_A_ timers, timercnt);
1580 1882
1609 assert (checkmax >= checkcnt); 1911 assert (checkmax >= checkcnt);
1610 array_verify (EV_A_ (W *)checks, checkcnt); 1912 array_verify (EV_A_ (W *)checks, checkcnt);
1611 1913
1612# if 0 1914# if 0
1613 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1915 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1614 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 1916 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1615# endif
1616#endif 1917# endif
1918#endif
1617} 1919}
1618 1920#endif
1619#endif /* multiplicity */
1620 1921
1621#if EV_MULTIPLICITY 1922#if EV_MULTIPLICITY
1622struct ev_loop * 1923struct ev_loop *
1623ev_default_loop_init (unsigned int flags) 1924ev_default_loop_init (unsigned int flags)
1624#else 1925#else
1627#endif 1928#endif
1628{ 1929{
1629 if (!ev_default_loop_ptr) 1930 if (!ev_default_loop_ptr)
1630 { 1931 {
1631#if EV_MULTIPLICITY 1932#if EV_MULTIPLICITY
1632 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1933 EV_P = ev_default_loop_ptr = &default_loop_struct;
1633#else 1934#else
1634 ev_default_loop_ptr = 1; 1935 ev_default_loop_ptr = 1;
1635#endif 1936#endif
1636 1937
1637 loop_init (EV_A_ flags); 1938 loop_init (EV_A_ flags);
1654 1955
1655void 1956void
1656ev_default_destroy (void) 1957ev_default_destroy (void)
1657{ 1958{
1658#if EV_MULTIPLICITY 1959#if EV_MULTIPLICITY
1659 struct ev_loop *loop = ev_default_loop_ptr; 1960 EV_P = ev_default_loop_ptr;
1660#endif 1961#endif
1962
1963 ev_default_loop_ptr = 0;
1661 1964
1662#ifndef _WIN32 1965#ifndef _WIN32
1663 ev_ref (EV_A); /* child watcher */ 1966 ev_ref (EV_A); /* child watcher */
1664 ev_signal_stop (EV_A_ &childev); 1967 ev_signal_stop (EV_A_ &childev);
1665#endif 1968#endif
1669 1972
1670void 1973void
1671ev_default_fork (void) 1974ev_default_fork (void)
1672{ 1975{
1673#if EV_MULTIPLICITY 1976#if EV_MULTIPLICITY
1674 struct ev_loop *loop = ev_default_loop_ptr; 1977 EV_P = ev_default_loop_ptr;
1675#endif 1978#endif
1676 1979
1677 if (backend)
1678 postfork = 1; /* must be in line with ev_loop_fork */ 1980 postfork = 1; /* must be in line with ev_loop_fork */
1679} 1981}
1680 1982
1681/*****************************************************************************/ 1983/*****************************************************************************/
1682 1984
1683void 1985void
1684ev_invoke (EV_P_ void *w, int revents) 1986ev_invoke (EV_P_ void *w, int revents)
1685{ 1987{
1686 EV_CB_INVOKE ((W)w, revents); 1988 EV_CB_INVOKE ((W)w, revents);
1687} 1989}
1688 1990
1689void inline_speed 1991unsigned int
1690call_pending (EV_P) 1992ev_pending_count (EV_P)
1993{
1994 int pri;
1995 unsigned int count = 0;
1996
1997 for (pri = NUMPRI; pri--; )
1998 count += pendingcnt [pri];
1999
2000 return count;
2001}
2002
2003void noinline
2004ev_invoke_pending (EV_P)
1691{ 2005{
1692 int pri; 2006 int pri;
1693 2007
1694 for (pri = NUMPRI; pri--; ) 2008 for (pri = NUMPRI; pri--; )
1695 while (pendingcnt [pri]) 2009 while (pendingcnt [pri])
1696 { 2010 {
1697 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2011 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1698 2012
1699 if (expect_true (p->w))
1700 {
1701 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2013 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2014 /* ^ this is no longer true, as pending_w could be here */
1702 2015
1703 p->w->pending = 0; 2016 p->w->pending = 0;
1704 EV_CB_INVOKE (p->w, p->events); 2017 EV_CB_INVOKE (p->w, p->events);
1705 EV_FREQUENT_CHECK; 2018 EV_FREQUENT_CHECK;
1706 }
1707 } 2019 }
1708} 2020}
1709 2021
1710#if EV_IDLE_ENABLE 2022#if EV_IDLE_ENABLE
1711void inline_size 2023/* make idle watchers pending. this handles the "call-idle */
2024/* only when higher priorities are idle" logic */
2025inline_size void
1712idle_reify (EV_P) 2026idle_reify (EV_P)
1713{ 2027{
1714 if (expect_false (idleall)) 2028 if (expect_false (idleall))
1715 { 2029 {
1716 int pri; 2030 int pri;
1728 } 2042 }
1729 } 2043 }
1730} 2044}
1731#endif 2045#endif
1732 2046
1733void inline_size 2047/* make timers pending */
2048inline_size void
1734timers_reify (EV_P) 2049timers_reify (EV_P)
1735{ 2050{
1736 EV_FREQUENT_CHECK; 2051 EV_FREQUENT_CHECK;
1737 2052
1738 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2053 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1739 { 2054 {
1740 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2055 do
1741
1742 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1743
1744 /* first reschedule or stop timer */
1745 if (w->repeat)
1746 { 2056 {
2057 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2058
2059 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2060
2061 /* first reschedule or stop timer */
2062 if (w->repeat)
2063 {
1747 ev_at (w) += w->repeat; 2064 ev_at (w) += w->repeat;
1748 if (ev_at (w) < mn_now) 2065 if (ev_at (w) < mn_now)
1749 ev_at (w) = mn_now; 2066 ev_at (w) = mn_now;
1750 2067
1751 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2068 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1752 2069
1753 ANHE_at_cache (timers [HEAP0]); 2070 ANHE_at_cache (timers [HEAP0]);
1754 downheap (timers, timercnt, HEAP0); 2071 downheap (timers, timercnt, HEAP0);
2072 }
2073 else
2074 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2075
2076 EV_FREQUENT_CHECK;
2077 feed_reverse (EV_A_ (W)w);
1755 } 2078 }
1756 else 2079 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1757 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1758 2080
1759 EV_FREQUENT_CHECK;
1760 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2081 feed_reverse_done (EV_A_ EV_TIMEOUT);
1761 } 2082 }
1762} 2083}
1763 2084
1764#if EV_PERIODIC_ENABLE 2085#if EV_PERIODIC_ENABLE
1765void inline_size 2086/* make periodics pending */
2087inline_size void
1766periodics_reify (EV_P) 2088periodics_reify (EV_P)
1767{ 2089{
1768 EV_FREQUENT_CHECK; 2090 EV_FREQUENT_CHECK;
1769 2091
1770 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2092 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1771 { 2093 {
1772 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2094 int feed_count = 0;
1773 2095
1774 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2096 do
1775
1776 /* first reschedule or stop timer */
1777 if (w->reschedule_cb)
1778 { 2097 {
2098 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2099
2100 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2101
2102 /* first reschedule or stop timer */
2103 if (w->reschedule_cb)
2104 {
1779 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2105 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1780 2106
1781 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2107 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1782 2108
1783 ANHE_at_cache (periodics [HEAP0]); 2109 ANHE_at_cache (periodics [HEAP0]);
1784 downheap (periodics, periodiccnt, HEAP0); 2110 downheap (periodics, periodiccnt, HEAP0);
2111 }
2112 else if (w->interval)
2113 {
2114 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2115 /* if next trigger time is not sufficiently in the future, put it there */
2116 /* this might happen because of floating point inexactness */
2117 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2118 {
2119 ev_at (w) += w->interval;
2120
2121 /* if interval is unreasonably low we might still have a time in the past */
2122 /* so correct this. this will make the periodic very inexact, but the user */
2123 /* has effectively asked to get triggered more often than possible */
2124 if (ev_at (w) < ev_rt_now)
2125 ev_at (w) = ev_rt_now;
2126 }
2127
2128 ANHE_at_cache (periodics [HEAP0]);
2129 downheap (periodics, periodiccnt, HEAP0);
2130 }
2131 else
2132 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2133
2134 EV_FREQUENT_CHECK;
2135 feed_reverse (EV_A_ (W)w);
1785 } 2136 }
1786 else if (w->interval) 2137 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1787 {
1788 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1789 /* if next trigger time is not sufficiently in the future, put it there */
1790 /* this might happen because of floating point inexactness */
1791 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1792 {
1793 ev_at (w) += w->interval;
1794 2138
1795 /* if interval is unreasonably low we might still have a time in the past */
1796 /* so correct this. this will make the periodic very inexact, but the user */
1797 /* has effectively asked to get triggered more often than possible */
1798 if (ev_at (w) < ev_rt_now)
1799 ev_at (w) = ev_rt_now;
1800 }
1801
1802 ANHE_at_cache (periodics [HEAP0]);
1803 downheap (periodics, periodiccnt, HEAP0);
1804 }
1805 else
1806 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1807
1808 EV_FREQUENT_CHECK;
1809 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2139 feed_reverse_done (EV_A_ EV_PERIODIC);
1810 } 2140 }
1811} 2141}
1812 2142
2143/* simply recalculate all periodics */
2144/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1813static void noinline 2145static void noinline
1814periodics_reschedule (EV_P) 2146periodics_reschedule (EV_P)
1815{ 2147{
1816 int i; 2148 int i;
1817 2149
1830 2162
1831 reheap (periodics, periodiccnt); 2163 reheap (periodics, periodiccnt);
1832} 2164}
1833#endif 2165#endif
1834 2166
1835void inline_speed 2167/* adjust all timers by a given offset */
2168static void noinline
2169timers_reschedule (EV_P_ ev_tstamp adjust)
2170{
2171 int i;
2172
2173 for (i = 0; i < timercnt; ++i)
2174 {
2175 ANHE *he = timers + i + HEAP0;
2176 ANHE_w (*he)->at += adjust;
2177 ANHE_at_cache (*he);
2178 }
2179}
2180
2181/* fetch new monotonic and realtime times from the kernel */
2182/* also detect if there was a timejump, and act accordingly */
2183inline_speed void
1836time_update (EV_P_ ev_tstamp max_block) 2184time_update (EV_P_ ev_tstamp max_block)
1837{ 2185{
1838 int i;
1839
1840#if EV_USE_MONOTONIC 2186#if EV_USE_MONOTONIC
1841 if (expect_true (have_monotonic)) 2187 if (expect_true (have_monotonic))
1842 { 2188 {
2189 int i;
1843 ev_tstamp odiff = rtmn_diff; 2190 ev_tstamp odiff = rtmn_diff;
1844 2191
1845 mn_now = get_clock (); 2192 mn_now = get_clock ();
1846 2193
1847 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2194 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1873 ev_rt_now = ev_time (); 2220 ev_rt_now = ev_time ();
1874 mn_now = get_clock (); 2221 mn_now = get_clock ();
1875 now_floor = mn_now; 2222 now_floor = mn_now;
1876 } 2223 }
1877 2224
2225 /* no timer adjustment, as the monotonic clock doesn't jump */
2226 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1878# if EV_PERIODIC_ENABLE 2227# if EV_PERIODIC_ENABLE
1879 periodics_reschedule (EV_A); 2228 periodics_reschedule (EV_A);
1880# endif 2229# endif
1881 /* no timer adjustment, as the monotonic clock doesn't jump */
1882 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1883 } 2230 }
1884 else 2231 else
1885#endif 2232#endif
1886 { 2233 {
1887 ev_rt_now = ev_time (); 2234 ev_rt_now = ev_time ();
1888 2235
1889 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2236 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1890 { 2237 {
2238 /* adjust timers. this is easy, as the offset is the same for all of them */
2239 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1891#if EV_PERIODIC_ENABLE 2240#if EV_PERIODIC_ENABLE
1892 periodics_reschedule (EV_A); 2241 periodics_reschedule (EV_A);
1893#endif 2242#endif
1894 /* adjust timers. this is easy, as the offset is the same for all of them */
1895 for (i = 0; i < timercnt; ++i)
1896 {
1897 ANHE *he = timers + i + HEAP0;
1898 ANHE_w (*he)->at += ev_rt_now - mn_now;
1899 ANHE_at_cache (*he);
1900 }
1901 } 2243 }
1902 2244
1903 mn_now = ev_rt_now; 2245 mn_now = ev_rt_now;
1904 } 2246 }
1905} 2247}
1906 2248
1907void 2249void
1908ev_ref (EV_P)
1909{
1910 ++activecnt;
1911}
1912
1913void
1914ev_unref (EV_P)
1915{
1916 --activecnt;
1917}
1918
1919void
1920ev_now_update (EV_P)
1921{
1922 time_update (EV_A_ 1e100);
1923}
1924
1925static int loop_done;
1926
1927void
1928ev_loop (EV_P_ int flags) 2250ev_loop (EV_P_ int flags)
1929{ 2251{
2252#if EV_MINIMAL < 2
2253 ++loop_depth;
2254#endif
2255
2256 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2257
1930 loop_done = EVUNLOOP_CANCEL; 2258 loop_done = EVUNLOOP_CANCEL;
1931 2259
1932 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2260 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1933 2261
1934 do 2262 do
1935 { 2263 {
1936#if EV_VERIFY >= 2 2264#if EV_VERIFY >= 2
1937 ev_loop_verify (EV_A); 2265 ev_loop_verify (EV_A);
1950 /* we might have forked, so queue fork handlers */ 2278 /* we might have forked, so queue fork handlers */
1951 if (expect_false (postfork)) 2279 if (expect_false (postfork))
1952 if (forkcnt) 2280 if (forkcnt)
1953 { 2281 {
1954 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2282 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1955 call_pending (EV_A); 2283 EV_INVOKE_PENDING;
1956 } 2284 }
1957#endif 2285#endif
1958 2286
1959 /* queue prepare watchers (and execute them) */ 2287 /* queue prepare watchers (and execute them) */
1960 if (expect_false (preparecnt)) 2288 if (expect_false (preparecnt))
1961 { 2289 {
1962 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2290 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1963 call_pending (EV_A); 2291 EV_INVOKE_PENDING;
1964 } 2292 }
1965 2293
1966 if (expect_false (!activecnt)) 2294 if (expect_false (loop_done))
1967 break; 2295 break;
1968 2296
1969 /* we might have forked, so reify kernel state if necessary */ 2297 /* we might have forked, so reify kernel state if necessary */
1970 if (expect_false (postfork)) 2298 if (expect_false (postfork))
1971 loop_fork (EV_A); 2299 loop_fork (EV_A);
1978 ev_tstamp waittime = 0.; 2306 ev_tstamp waittime = 0.;
1979 ev_tstamp sleeptime = 0.; 2307 ev_tstamp sleeptime = 0.;
1980 2308
1981 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2309 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1982 { 2310 {
2311 /* remember old timestamp for io_blocktime calculation */
2312 ev_tstamp prev_mn_now = mn_now;
2313
1983 /* update time to cancel out callback processing overhead */ 2314 /* update time to cancel out callback processing overhead */
1984 time_update (EV_A_ 1e100); 2315 time_update (EV_A_ 1e100);
1985 2316
1986 waittime = MAX_BLOCKTIME; 2317 waittime = MAX_BLOCKTIME;
1987 2318
1997 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2328 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1998 if (waittime > to) waittime = to; 2329 if (waittime > to) waittime = to;
1999 } 2330 }
2000#endif 2331#endif
2001 2332
2333 /* don't let timeouts decrease the waittime below timeout_blocktime */
2002 if (expect_false (waittime < timeout_blocktime)) 2334 if (expect_false (waittime < timeout_blocktime))
2003 waittime = timeout_blocktime; 2335 waittime = timeout_blocktime;
2004 2336
2005 sleeptime = waittime - backend_fudge; 2337 /* extra check because io_blocktime is commonly 0 */
2006
2007 if (expect_true (sleeptime > io_blocktime)) 2338 if (expect_false (io_blocktime))
2008 sleeptime = io_blocktime;
2009
2010 if (sleeptime)
2011 { 2339 {
2340 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2341
2342 if (sleeptime > waittime - backend_fudge)
2343 sleeptime = waittime - backend_fudge;
2344
2345 if (expect_true (sleeptime > 0.))
2346 {
2012 ev_sleep (sleeptime); 2347 ev_sleep (sleeptime);
2013 waittime -= sleeptime; 2348 waittime -= sleeptime;
2349 }
2014 } 2350 }
2015 } 2351 }
2016 2352
2353#if EV_MINIMAL < 2
2017 ++loop_count; 2354 ++loop_count;
2355#endif
2356 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2018 backend_poll (EV_A_ waittime); 2357 backend_poll (EV_A_ waittime);
2358 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2019 2359
2020 /* update ev_rt_now, do magic */ 2360 /* update ev_rt_now, do magic */
2021 time_update (EV_A_ waittime + sleeptime); 2361 time_update (EV_A_ waittime + sleeptime);
2022 } 2362 }
2023 2363
2034 2374
2035 /* queue check watchers, to be executed first */ 2375 /* queue check watchers, to be executed first */
2036 if (expect_false (checkcnt)) 2376 if (expect_false (checkcnt))
2037 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2377 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2038 2378
2039 call_pending (EV_A); 2379 EV_INVOKE_PENDING;
2040 } 2380 }
2041 while (expect_true ( 2381 while (expect_true (
2042 activecnt 2382 activecnt
2043 && !loop_done 2383 && !loop_done
2044 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2384 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2045 )); 2385 ));
2046 2386
2047 if (loop_done == EVUNLOOP_ONE) 2387 if (loop_done == EVUNLOOP_ONE)
2048 loop_done = EVUNLOOP_CANCEL; 2388 loop_done = EVUNLOOP_CANCEL;
2389
2390#if EV_MINIMAL < 2
2391 --loop_depth;
2392#endif
2049} 2393}
2050 2394
2051void 2395void
2052ev_unloop (EV_P_ int how) 2396ev_unloop (EV_P_ int how)
2053{ 2397{
2054 loop_done = how; 2398 loop_done = how;
2055} 2399}
2056 2400
2401void
2402ev_ref (EV_P)
2403{
2404 ++activecnt;
2405}
2406
2407void
2408ev_unref (EV_P)
2409{
2410 --activecnt;
2411}
2412
2413void
2414ev_now_update (EV_P)
2415{
2416 time_update (EV_A_ 1e100);
2417}
2418
2419void
2420ev_suspend (EV_P)
2421{
2422 ev_now_update (EV_A);
2423}
2424
2425void
2426ev_resume (EV_P)
2427{
2428 ev_tstamp mn_prev = mn_now;
2429
2430 ev_now_update (EV_A);
2431 timers_reschedule (EV_A_ mn_now - mn_prev);
2432#if EV_PERIODIC_ENABLE
2433 /* TODO: really do this? */
2434 periodics_reschedule (EV_A);
2435#endif
2436}
2437
2057/*****************************************************************************/ 2438/*****************************************************************************/
2439/* singly-linked list management, used when the expected list length is short */
2058 2440
2059void inline_size 2441inline_size void
2060wlist_add (WL *head, WL elem) 2442wlist_add (WL *head, WL elem)
2061{ 2443{
2062 elem->next = *head; 2444 elem->next = *head;
2063 *head = elem; 2445 *head = elem;
2064} 2446}
2065 2447
2066void inline_size 2448inline_size void
2067wlist_del (WL *head, WL elem) 2449wlist_del (WL *head, WL elem)
2068{ 2450{
2069 while (*head) 2451 while (*head)
2070 { 2452 {
2071 if (*head == elem) 2453 if (expect_true (*head == elem))
2072 { 2454 {
2073 *head = elem->next; 2455 *head = elem->next;
2074 return; 2456 break;
2075 } 2457 }
2076 2458
2077 head = &(*head)->next; 2459 head = &(*head)->next;
2078 } 2460 }
2079} 2461}
2080 2462
2081void inline_speed 2463/* internal, faster, version of ev_clear_pending */
2464inline_speed void
2082clear_pending (EV_P_ W w) 2465clear_pending (EV_P_ W w)
2083{ 2466{
2084 if (w->pending) 2467 if (w->pending)
2085 { 2468 {
2086 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2469 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2087 w->pending = 0; 2470 w->pending = 0;
2088 } 2471 }
2089} 2472}
2090 2473
2091int 2474int
2095 int pending = w_->pending; 2478 int pending = w_->pending;
2096 2479
2097 if (expect_true (pending)) 2480 if (expect_true (pending))
2098 { 2481 {
2099 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2482 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2483 p->w = (W)&pending_w;
2100 w_->pending = 0; 2484 w_->pending = 0;
2101 p->w = 0;
2102 return p->events; 2485 return p->events;
2103 } 2486 }
2104 else 2487 else
2105 return 0; 2488 return 0;
2106} 2489}
2107 2490
2108void inline_size 2491inline_size void
2109pri_adjust (EV_P_ W w) 2492pri_adjust (EV_P_ W w)
2110{ 2493{
2111 int pri = w->priority; 2494 int pri = ev_priority (w);
2112 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2495 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2113 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2496 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2114 w->priority = pri; 2497 ev_set_priority (w, pri);
2115} 2498}
2116 2499
2117void inline_speed 2500inline_speed void
2118ev_start (EV_P_ W w, int active) 2501ev_start (EV_P_ W w, int active)
2119{ 2502{
2120 pri_adjust (EV_A_ w); 2503 pri_adjust (EV_A_ w);
2121 w->active = active; 2504 w->active = active;
2122 ev_ref (EV_A); 2505 ev_ref (EV_A);
2123} 2506}
2124 2507
2125void inline_size 2508inline_size void
2126ev_stop (EV_P_ W w) 2509ev_stop (EV_P_ W w)
2127{ 2510{
2128 ev_unref (EV_A); 2511 ev_unref (EV_A);
2129 w->active = 0; 2512 w->active = 0;
2130} 2513}
2137 int fd = w->fd; 2520 int fd = w->fd;
2138 2521
2139 if (expect_false (ev_is_active (w))) 2522 if (expect_false (ev_is_active (w)))
2140 return; 2523 return;
2141 2524
2142 assert (("ev_io_start called with negative fd", fd >= 0)); 2525 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2526 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2143 2527
2144 EV_FREQUENT_CHECK; 2528 EV_FREQUENT_CHECK;
2145 2529
2146 ev_start (EV_A_ (W)w, 1); 2530 ev_start (EV_A_ (W)w, 1);
2147 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2531 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2148 wlist_add (&anfds[fd].head, (WL)w); 2532 wlist_add (&anfds[fd].head, (WL)w);
2149 2533
2150 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2534 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2151 w->events &= ~EV_IOFDSET; 2535 w->events &= ~EV__IOFDSET;
2152 2536
2153 EV_FREQUENT_CHECK; 2537 EV_FREQUENT_CHECK;
2154} 2538}
2155 2539
2156void noinline 2540void noinline
2158{ 2542{
2159 clear_pending (EV_A_ (W)w); 2543 clear_pending (EV_A_ (W)w);
2160 if (expect_false (!ev_is_active (w))) 2544 if (expect_false (!ev_is_active (w)))
2161 return; 2545 return;
2162 2546
2163 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2547 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2164 2548
2165 EV_FREQUENT_CHECK; 2549 EV_FREQUENT_CHECK;
2166 2550
2167 wlist_del (&anfds[w->fd].head, (WL)w); 2551 wlist_del (&anfds[w->fd].head, (WL)w);
2168 ev_stop (EV_A_ (W)w); 2552 ev_stop (EV_A_ (W)w);
2178 if (expect_false (ev_is_active (w))) 2562 if (expect_false (ev_is_active (w)))
2179 return; 2563 return;
2180 2564
2181 ev_at (w) += mn_now; 2565 ev_at (w) += mn_now;
2182 2566
2183 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2567 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2184 2568
2185 EV_FREQUENT_CHECK; 2569 EV_FREQUENT_CHECK;
2186 2570
2187 ++timercnt; 2571 ++timercnt;
2188 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 2572 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2191 ANHE_at_cache (timers [ev_active (w)]); 2575 ANHE_at_cache (timers [ev_active (w)]);
2192 upheap (timers, ev_active (w)); 2576 upheap (timers, ev_active (w));
2193 2577
2194 EV_FREQUENT_CHECK; 2578 EV_FREQUENT_CHECK;
2195 2579
2196 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2580 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2197} 2581}
2198 2582
2199void noinline 2583void noinline
2200ev_timer_stop (EV_P_ ev_timer *w) 2584ev_timer_stop (EV_P_ ev_timer *w)
2201{ 2585{
2206 EV_FREQUENT_CHECK; 2590 EV_FREQUENT_CHECK;
2207 2591
2208 { 2592 {
2209 int active = ev_active (w); 2593 int active = ev_active (w);
2210 2594
2211 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2595 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2212 2596
2213 --timercnt; 2597 --timercnt;
2214 2598
2215 if (expect_true (active < timercnt + HEAP0)) 2599 if (expect_true (active < timercnt + HEAP0))
2216 { 2600 {
2217 timers [active] = timers [timercnt + HEAP0]; 2601 timers [active] = timers [timercnt + HEAP0];
2218 adjustheap (timers, timercnt, active); 2602 adjustheap (timers, timercnt, active);
2219 } 2603 }
2220 } 2604 }
2221 2605
2222 EV_FREQUENT_CHECK;
2223
2224 ev_at (w) -= mn_now; 2606 ev_at (w) -= mn_now;
2225 2607
2226 ev_stop (EV_A_ (W)w); 2608 ev_stop (EV_A_ (W)w);
2609
2610 EV_FREQUENT_CHECK;
2227} 2611}
2228 2612
2229void noinline 2613void noinline
2230ev_timer_again (EV_P_ ev_timer *w) 2614ev_timer_again (EV_P_ ev_timer *w)
2231{ 2615{
2249 } 2633 }
2250 2634
2251 EV_FREQUENT_CHECK; 2635 EV_FREQUENT_CHECK;
2252} 2636}
2253 2637
2638ev_tstamp
2639ev_timer_remaining (EV_P_ ev_timer *w)
2640{
2641 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2642}
2643
2254#if EV_PERIODIC_ENABLE 2644#if EV_PERIODIC_ENABLE
2255void noinline 2645void noinline
2256ev_periodic_start (EV_P_ ev_periodic *w) 2646ev_periodic_start (EV_P_ ev_periodic *w)
2257{ 2647{
2258 if (expect_false (ev_is_active (w))) 2648 if (expect_false (ev_is_active (w)))
2260 2650
2261 if (w->reschedule_cb) 2651 if (w->reschedule_cb)
2262 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2652 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2263 else if (w->interval) 2653 else if (w->interval)
2264 { 2654 {
2265 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2655 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2266 /* this formula differs from the one in periodic_reify because we do not always round up */ 2656 /* this formula differs from the one in periodic_reify because we do not always round up */
2267 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2657 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2268 } 2658 }
2269 else 2659 else
2270 ev_at (w) = w->offset; 2660 ev_at (w) = w->offset;
2278 ANHE_at_cache (periodics [ev_active (w)]); 2668 ANHE_at_cache (periodics [ev_active (w)]);
2279 upheap (periodics, ev_active (w)); 2669 upheap (periodics, ev_active (w));
2280 2670
2281 EV_FREQUENT_CHECK; 2671 EV_FREQUENT_CHECK;
2282 2672
2283 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2673 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2284} 2674}
2285 2675
2286void noinline 2676void noinline
2287ev_periodic_stop (EV_P_ ev_periodic *w) 2677ev_periodic_stop (EV_P_ ev_periodic *w)
2288{ 2678{
2293 EV_FREQUENT_CHECK; 2683 EV_FREQUENT_CHECK;
2294 2684
2295 { 2685 {
2296 int active = ev_active (w); 2686 int active = ev_active (w);
2297 2687
2298 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2688 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2299 2689
2300 --periodiccnt; 2690 --periodiccnt;
2301 2691
2302 if (expect_true (active < periodiccnt + HEAP0)) 2692 if (expect_true (active < periodiccnt + HEAP0))
2303 { 2693 {
2304 periodics [active] = periodics [periodiccnt + HEAP0]; 2694 periodics [active] = periodics [periodiccnt + HEAP0];
2305 adjustheap (periodics, periodiccnt, active); 2695 adjustheap (periodics, periodiccnt, active);
2306 } 2696 }
2307 } 2697 }
2308 2698
2309 EV_FREQUENT_CHECK;
2310
2311 ev_stop (EV_A_ (W)w); 2699 ev_stop (EV_A_ (W)w);
2700
2701 EV_FREQUENT_CHECK;
2312} 2702}
2313 2703
2314void noinline 2704void noinline
2315ev_periodic_again (EV_P_ ev_periodic *w) 2705ev_periodic_again (EV_P_ ev_periodic *w)
2316{ 2706{
2325#endif 2715#endif
2326 2716
2327void noinline 2717void noinline
2328ev_signal_start (EV_P_ ev_signal *w) 2718ev_signal_start (EV_P_ ev_signal *w)
2329{ 2719{
2330#if EV_MULTIPLICITY
2331 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2332#endif
2333 if (expect_false (ev_is_active (w))) 2720 if (expect_false (ev_is_active (w)))
2334 return; 2721 return;
2335 2722
2336 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2723 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2337 2724
2338 evpipe_init (EV_A); 2725#if EV_MULTIPLICITY
2726 assert (("libev: a signal must not be attached to two different loops",
2727 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2339 2728
2340 EV_FREQUENT_CHECK; 2729 signals [w->signum - 1].loop = EV_A;
2730#endif
2341 2731
2732 EV_FREQUENT_CHECK;
2733
2734#if EV_USE_SIGNALFD
2735 if (sigfd == -2)
2342 { 2736 {
2343#ifndef _WIN32 2737 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2344 sigset_t full, prev; 2738 if (sigfd < 0 && errno == EINVAL)
2345 sigfillset (&full); 2739 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2346 sigprocmask (SIG_SETMASK, &full, &prev);
2347#endif
2348 2740
2349 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2741 if (sigfd >= 0)
2742 {
2743 fd_intern (sigfd); /* doing it twice will not hurt */
2350 2744
2351#ifndef _WIN32 2745 sigemptyset (&sigfd_set);
2352 sigprocmask (SIG_SETMASK, &prev, 0); 2746
2353#endif 2747 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2748 ev_set_priority (&sigfd_w, EV_MAXPRI);
2749 ev_io_start (EV_A_ &sigfd_w);
2750 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2751 }
2354 } 2752 }
2753
2754 if (sigfd >= 0)
2755 {
2756 /* TODO: check .head */
2757 sigaddset (&sigfd_set, w->signum);
2758 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2759
2760 signalfd (sigfd, &sigfd_set, 0);
2761 }
2762#endif
2355 2763
2356 ev_start (EV_A_ (W)w, 1); 2764 ev_start (EV_A_ (W)w, 1);
2357 wlist_add (&signals [w->signum - 1].head, (WL)w); 2765 wlist_add (&signals [w->signum - 1].head, (WL)w);
2358 2766
2359 if (!((WL)w)->next) 2767 if (!((WL)w)->next)
2768# if EV_USE_SIGNALFD
2769 if (sigfd < 0) /*TODO*/
2770# endif
2360 { 2771 {
2361#if _WIN32 2772# ifdef _WIN32
2773 evpipe_init (EV_A);
2774
2362 signal (w->signum, ev_sighandler); 2775 signal (w->signum, ev_sighandler);
2363#else 2776# else
2364 struct sigaction sa; 2777 struct sigaction sa;
2778
2779 evpipe_init (EV_A);
2780
2365 sa.sa_handler = ev_sighandler; 2781 sa.sa_handler = ev_sighandler;
2366 sigfillset (&sa.sa_mask); 2782 sigfillset (&sa.sa_mask);
2367 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2783 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2368 sigaction (w->signum, &sa, 0); 2784 sigaction (w->signum, &sa, 0);
2785
2786 sigemptyset (&sa.sa_mask);
2787 sigaddset (&sa.sa_mask, w->signum);
2788 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2369#endif 2789#endif
2370 } 2790 }
2371 2791
2372 EV_FREQUENT_CHECK; 2792 EV_FREQUENT_CHECK;
2373} 2793}
2374 2794
2375void noinline 2795void noinline
2383 2803
2384 wlist_del (&signals [w->signum - 1].head, (WL)w); 2804 wlist_del (&signals [w->signum - 1].head, (WL)w);
2385 ev_stop (EV_A_ (W)w); 2805 ev_stop (EV_A_ (W)w);
2386 2806
2387 if (!signals [w->signum - 1].head) 2807 if (!signals [w->signum - 1].head)
2808 {
2809#if EV_MULTIPLICITY
2810 signals [w->signum - 1].loop = 0; /* unattach from signal */
2811#endif
2812#if EV_USE_SIGNALFD
2813 if (sigfd >= 0)
2814 {
2815 sigset_t ss;
2816
2817 sigemptyset (&ss);
2818 sigaddset (&ss, w->signum);
2819 sigdelset (&sigfd_set, w->signum);
2820
2821 signalfd (sigfd, &sigfd_set, 0);
2822 sigprocmask (SIG_UNBLOCK, &ss, 0);
2823 }
2824 else
2825#endif
2388 signal (w->signum, SIG_DFL); 2826 signal (w->signum, SIG_DFL);
2827 }
2389 2828
2390 EV_FREQUENT_CHECK; 2829 EV_FREQUENT_CHECK;
2391} 2830}
2392 2831
2393void 2832void
2394ev_child_start (EV_P_ ev_child *w) 2833ev_child_start (EV_P_ ev_child *w)
2395{ 2834{
2396#if EV_MULTIPLICITY 2835#if EV_MULTIPLICITY
2397 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2836 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2398#endif 2837#endif
2399 if (expect_false (ev_is_active (w))) 2838 if (expect_false (ev_is_active (w)))
2400 return; 2839 return;
2401 2840
2402 EV_FREQUENT_CHECK; 2841 EV_FREQUENT_CHECK;
2427# ifdef _WIN32 2866# ifdef _WIN32
2428# undef lstat 2867# undef lstat
2429# define lstat(a,b) _stati64 (a,b) 2868# define lstat(a,b) _stati64 (a,b)
2430# endif 2869# endif
2431 2870
2432#define DEF_STAT_INTERVAL 5.0074891 2871#define DEF_STAT_INTERVAL 5.0074891
2872#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2433#define MIN_STAT_INTERVAL 0.1074891 2873#define MIN_STAT_INTERVAL 0.1074891
2434 2874
2435static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2875static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2436 2876
2437#if EV_USE_INOTIFY 2877#if EV_USE_INOTIFY
2438# define EV_INOTIFY_BUFSIZE 8192 2878
2879/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2880# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2439 2881
2440static void noinline 2882static void noinline
2441infy_add (EV_P_ ev_stat *w) 2883infy_add (EV_P_ ev_stat *w)
2442{ 2884{
2443 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2885 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2444 2886
2445 if (w->wd < 0) 2887 if (w->wd >= 0)
2888 {
2889 struct statfs sfs;
2890
2891 /* now local changes will be tracked by inotify, but remote changes won't */
2892 /* unless the filesystem is known to be local, we therefore still poll */
2893 /* also do poll on <2.6.25, but with normal frequency */
2894
2895 if (!fs_2625)
2896 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2897 else if (!statfs (w->path, &sfs)
2898 && (sfs.f_type == 0x1373 /* devfs */
2899 || sfs.f_type == 0xEF53 /* ext2/3 */
2900 || sfs.f_type == 0x3153464a /* jfs */
2901 || sfs.f_type == 0x52654973 /* reiser3 */
2902 || sfs.f_type == 0x01021994 /* tempfs */
2903 || sfs.f_type == 0x58465342 /* xfs */))
2904 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2905 else
2906 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2446 { 2907 }
2447 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2908 else
2909 {
2910 /* can't use inotify, continue to stat */
2911 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2448 2912
2449 /* monitor some parent directory for speedup hints */ 2913 /* if path is not there, monitor some parent directory for speedup hints */
2450 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2914 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2451 /* but an efficiency issue only */ 2915 /* but an efficiency issue only */
2452 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2916 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2453 { 2917 {
2454 char path [4096]; 2918 char path [4096];
2455 strcpy (path, w->path); 2919 strcpy (path, w->path);
2459 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2923 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2460 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2924 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2461 2925
2462 char *pend = strrchr (path, '/'); 2926 char *pend = strrchr (path, '/');
2463 2927
2464 if (!pend) 2928 if (!pend || pend == path)
2465 break; /* whoops, no '/', complain to your admin */ 2929 break;
2466 2930
2467 *pend = 0; 2931 *pend = 0;
2468 w->wd = inotify_add_watch (fs_fd, path, mask); 2932 w->wd = inotify_add_watch (fs_fd, path, mask);
2469 } 2933 }
2470 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2934 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2471 } 2935 }
2472 } 2936 }
2473 else
2474 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2475 2937
2476 if (w->wd >= 0) 2938 if (w->wd >= 0)
2477 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2939 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2940
2941 /* now re-arm timer, if required */
2942 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2943 ev_timer_again (EV_A_ &w->timer);
2944 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2478} 2945}
2479 2946
2480static void noinline 2947static void noinline
2481infy_del (EV_P_ ev_stat *w) 2948infy_del (EV_P_ ev_stat *w)
2482{ 2949{
2496 2963
2497static void noinline 2964static void noinline
2498infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2965infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2499{ 2966{
2500 if (slot < 0) 2967 if (slot < 0)
2501 /* overflow, need to check for all hahs slots */ 2968 /* overflow, need to check for all hash slots */
2502 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2969 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2503 infy_wd (EV_A_ slot, wd, ev); 2970 infy_wd (EV_A_ slot, wd, ev);
2504 else 2971 else
2505 { 2972 {
2506 WL w_; 2973 WL w_;
2512 2979
2513 if (w->wd == wd || wd == -1) 2980 if (w->wd == wd || wd == -1)
2514 { 2981 {
2515 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2982 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2516 { 2983 {
2984 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2517 w->wd = -1; 2985 w->wd = -1;
2518 infy_add (EV_A_ w); /* re-add, no matter what */ 2986 infy_add (EV_A_ w); /* re-add, no matter what */
2519 } 2987 }
2520 2988
2521 stat_timer_cb (EV_A_ &w->timer, 0); 2989 stat_timer_cb (EV_A_ &w->timer, 0);
2526 2994
2527static void 2995static void
2528infy_cb (EV_P_ ev_io *w, int revents) 2996infy_cb (EV_P_ ev_io *w, int revents)
2529{ 2997{
2530 char buf [EV_INOTIFY_BUFSIZE]; 2998 char buf [EV_INOTIFY_BUFSIZE];
2531 struct inotify_event *ev = (struct inotify_event *)buf;
2532 int ofs; 2999 int ofs;
2533 int len = read (fs_fd, buf, sizeof (buf)); 3000 int len = read (fs_fd, buf, sizeof (buf));
2534 3001
2535 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3002 for (ofs = 0; ofs < len; )
3003 {
3004 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2536 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3005 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3006 ofs += sizeof (struct inotify_event) + ev->len;
3007 }
2537} 3008}
2538 3009
2539void inline_size 3010inline_size unsigned int
3011ev_linux_version (void)
3012{
3013 struct utsname buf;
3014 unsigned int v;
3015 int i;
3016 char *p = buf.release;
3017
3018 if (uname (&buf))
3019 return 0;
3020
3021 for (i = 3+1; --i; )
3022 {
3023 unsigned int c = 0;
3024
3025 for (;;)
3026 {
3027 if (*p >= '0' && *p <= '9')
3028 c = c * 10 + *p++ - '0';
3029 else
3030 {
3031 p += *p == '.';
3032 break;
3033 }
3034 }
3035
3036 v = (v << 8) | c;
3037 }
3038
3039 return v;
3040}
3041
3042inline_size void
3043ev_check_2625 (EV_P)
3044{
3045 /* kernels < 2.6.25 are borked
3046 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3047 */
3048 if (ev_linux_version () < 0x020619)
3049 return;
3050
3051 fs_2625 = 1;
3052}
3053
3054inline_size int
3055infy_newfd (void)
3056{
3057#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3058 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3059 if (fd >= 0)
3060 return fd;
3061#endif
3062 return inotify_init ();
3063}
3064
3065inline_size void
2540infy_init (EV_P) 3066infy_init (EV_P)
2541{ 3067{
2542 if (fs_fd != -2) 3068 if (fs_fd != -2)
2543 return; 3069 return;
2544 3070
3071 fs_fd = -1;
3072
3073 ev_check_2625 (EV_A);
3074
2545 fs_fd = inotify_init (); 3075 fs_fd = infy_newfd ();
2546 3076
2547 if (fs_fd >= 0) 3077 if (fs_fd >= 0)
2548 { 3078 {
3079 fd_intern (fs_fd);
2549 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3080 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2550 ev_set_priority (&fs_w, EV_MAXPRI); 3081 ev_set_priority (&fs_w, EV_MAXPRI);
2551 ev_io_start (EV_A_ &fs_w); 3082 ev_io_start (EV_A_ &fs_w);
3083 ev_unref (EV_A);
2552 } 3084 }
2553} 3085}
2554 3086
2555void inline_size 3087inline_size void
2556infy_fork (EV_P) 3088infy_fork (EV_P)
2557{ 3089{
2558 int slot; 3090 int slot;
2559 3091
2560 if (fs_fd < 0) 3092 if (fs_fd < 0)
2561 return; 3093 return;
2562 3094
3095 ev_ref (EV_A);
3096 ev_io_stop (EV_A_ &fs_w);
2563 close (fs_fd); 3097 close (fs_fd);
2564 fs_fd = inotify_init (); 3098 fs_fd = infy_newfd ();
3099
3100 if (fs_fd >= 0)
3101 {
3102 fd_intern (fs_fd);
3103 ev_io_set (&fs_w, fs_fd, EV_READ);
3104 ev_io_start (EV_A_ &fs_w);
3105 ev_unref (EV_A);
3106 }
2565 3107
2566 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3108 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2567 { 3109 {
2568 WL w_ = fs_hash [slot].head; 3110 WL w_ = fs_hash [slot].head;
2569 fs_hash [slot].head = 0; 3111 fs_hash [slot].head = 0;
2576 w->wd = -1; 3118 w->wd = -1;
2577 3119
2578 if (fs_fd >= 0) 3120 if (fs_fd >= 0)
2579 infy_add (EV_A_ w); /* re-add, no matter what */ 3121 infy_add (EV_A_ w); /* re-add, no matter what */
2580 else 3122 else
3123 {
3124 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3125 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2581 ev_timer_start (EV_A_ &w->timer); 3126 ev_timer_again (EV_A_ &w->timer);
3127 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3128 }
2582 } 3129 }
2583
2584 } 3130 }
2585} 3131}
2586 3132
2587#endif 3133#endif
2588 3134
2604static void noinline 3150static void noinline
2605stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3151stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2606{ 3152{
2607 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3153 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2608 3154
2609 /* we copy this here each the time so that */ 3155 ev_statdata prev = w->attr;
2610 /* prev has the old value when the callback gets invoked */
2611 w->prev = w->attr;
2612 ev_stat_stat (EV_A_ w); 3156 ev_stat_stat (EV_A_ w);
2613 3157
2614 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3158 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2615 if ( 3159 if (
2616 w->prev.st_dev != w->attr.st_dev 3160 prev.st_dev != w->attr.st_dev
2617 || w->prev.st_ino != w->attr.st_ino 3161 || prev.st_ino != w->attr.st_ino
2618 || w->prev.st_mode != w->attr.st_mode 3162 || prev.st_mode != w->attr.st_mode
2619 || w->prev.st_nlink != w->attr.st_nlink 3163 || prev.st_nlink != w->attr.st_nlink
2620 || w->prev.st_uid != w->attr.st_uid 3164 || prev.st_uid != w->attr.st_uid
2621 || w->prev.st_gid != w->attr.st_gid 3165 || prev.st_gid != w->attr.st_gid
2622 || w->prev.st_rdev != w->attr.st_rdev 3166 || prev.st_rdev != w->attr.st_rdev
2623 || w->prev.st_size != w->attr.st_size 3167 || prev.st_size != w->attr.st_size
2624 || w->prev.st_atime != w->attr.st_atime 3168 || prev.st_atime != w->attr.st_atime
2625 || w->prev.st_mtime != w->attr.st_mtime 3169 || prev.st_mtime != w->attr.st_mtime
2626 || w->prev.st_ctime != w->attr.st_ctime 3170 || prev.st_ctime != w->attr.st_ctime
2627 ) { 3171 ) {
3172 /* we only update w->prev on actual differences */
3173 /* in case we test more often than invoke the callback, */
3174 /* to ensure that prev is always different to attr */
3175 w->prev = prev;
3176
2628 #if EV_USE_INOTIFY 3177 #if EV_USE_INOTIFY
3178 if (fs_fd >= 0)
3179 {
2629 infy_del (EV_A_ w); 3180 infy_del (EV_A_ w);
2630 infy_add (EV_A_ w); 3181 infy_add (EV_A_ w);
2631 ev_stat_stat (EV_A_ w); /* avoid race... */ 3182 ev_stat_stat (EV_A_ w); /* avoid race... */
3183 }
2632 #endif 3184 #endif
2633 3185
2634 ev_feed_event (EV_A_ w, EV_STAT); 3186 ev_feed_event (EV_A_ w, EV_STAT);
2635 } 3187 }
2636} 3188}
2639ev_stat_start (EV_P_ ev_stat *w) 3191ev_stat_start (EV_P_ ev_stat *w)
2640{ 3192{
2641 if (expect_false (ev_is_active (w))) 3193 if (expect_false (ev_is_active (w)))
2642 return; 3194 return;
2643 3195
2644 /* since we use memcmp, we need to clear any padding data etc. */
2645 memset (&w->prev, 0, sizeof (ev_statdata));
2646 memset (&w->attr, 0, sizeof (ev_statdata));
2647
2648 ev_stat_stat (EV_A_ w); 3196 ev_stat_stat (EV_A_ w);
2649 3197
3198 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2650 if (w->interval < MIN_STAT_INTERVAL) 3199 w->interval = MIN_STAT_INTERVAL;
2651 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2652 3200
2653 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3201 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2654 ev_set_priority (&w->timer, ev_priority (w)); 3202 ev_set_priority (&w->timer, ev_priority (w));
2655 3203
2656#if EV_USE_INOTIFY 3204#if EV_USE_INOTIFY
2657 infy_init (EV_A); 3205 infy_init (EV_A);
2658 3206
2659 if (fs_fd >= 0) 3207 if (fs_fd >= 0)
2660 infy_add (EV_A_ w); 3208 infy_add (EV_A_ w);
2661 else 3209 else
2662#endif 3210#endif
3211 {
2663 ev_timer_start (EV_A_ &w->timer); 3212 ev_timer_again (EV_A_ &w->timer);
3213 ev_unref (EV_A);
3214 }
2664 3215
2665 ev_start (EV_A_ (W)w, 1); 3216 ev_start (EV_A_ (W)w, 1);
2666 3217
2667 EV_FREQUENT_CHECK; 3218 EV_FREQUENT_CHECK;
2668} 3219}
2677 EV_FREQUENT_CHECK; 3228 EV_FREQUENT_CHECK;
2678 3229
2679#if EV_USE_INOTIFY 3230#if EV_USE_INOTIFY
2680 infy_del (EV_A_ w); 3231 infy_del (EV_A_ w);
2681#endif 3232#endif
3233
3234 if (ev_is_active (&w->timer))
3235 {
3236 ev_ref (EV_A);
2682 ev_timer_stop (EV_A_ &w->timer); 3237 ev_timer_stop (EV_A_ &w->timer);
3238 }
2683 3239
2684 ev_stop (EV_A_ (W)w); 3240 ev_stop (EV_A_ (W)w);
2685 3241
2686 EV_FREQUENT_CHECK; 3242 EV_FREQUENT_CHECK;
2687} 3243}
2828embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3384embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2829{ 3385{
2830 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3386 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2831 3387
2832 { 3388 {
2833 struct ev_loop *loop = w->other; 3389 EV_P = w->other;
2834 3390
2835 while (fdchangecnt) 3391 while (fdchangecnt)
2836 { 3392 {
2837 fd_reify (EV_A); 3393 fd_reify (EV_A);
2838 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3394 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2843static void 3399static void
2844embed_fork_cb (EV_P_ ev_fork *fork_w, int revents) 3400embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2845{ 3401{
2846 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 3402 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2847 3403
3404 ev_embed_stop (EV_A_ w);
3405
2848 { 3406 {
2849 struct ev_loop *loop = w->other; 3407 EV_P = w->other;
2850 3408
2851 ev_loop_fork (EV_A); 3409 ev_loop_fork (EV_A);
3410 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2852 } 3411 }
3412
3413 ev_embed_start (EV_A_ w);
2853} 3414}
2854 3415
2855#if 0 3416#if 0
2856static void 3417static void
2857embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3418embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2865{ 3426{
2866 if (expect_false (ev_is_active (w))) 3427 if (expect_false (ev_is_active (w)))
2867 return; 3428 return;
2868 3429
2869 { 3430 {
2870 struct ev_loop *loop = w->other; 3431 EV_P = w->other;
2871 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3432 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2872 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3433 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2873 } 3434 }
2874 3435
2875 EV_FREQUENT_CHECK; 3436 EV_FREQUENT_CHECK;
2876 3437
2902 3463
2903 ev_io_stop (EV_A_ &w->io); 3464 ev_io_stop (EV_A_ &w->io);
2904 ev_prepare_stop (EV_A_ &w->prepare); 3465 ev_prepare_stop (EV_A_ &w->prepare);
2905 ev_fork_stop (EV_A_ &w->fork); 3466 ev_fork_stop (EV_A_ &w->fork);
2906 3467
3468 ev_stop (EV_A_ (W)w);
3469
2907 EV_FREQUENT_CHECK; 3470 EV_FREQUENT_CHECK;
2908} 3471}
2909#endif 3472#endif
2910 3473
2911#if EV_FORK_ENABLE 3474#if EV_FORK_ENABLE
2987 3550
2988void 3551void
2989ev_async_send (EV_P_ ev_async *w) 3552ev_async_send (EV_P_ ev_async *w)
2990{ 3553{
2991 w->sent = 1; 3554 w->sent = 1;
2992 evpipe_write (EV_A_ &gotasync); 3555 evpipe_write (EV_A_ &async_pending);
2993} 3556}
2994#endif 3557#endif
2995 3558
2996/*****************************************************************************/ 3559/*****************************************************************************/
2997 3560
3059 ev_timer_set (&once->to, timeout, 0.); 3622 ev_timer_set (&once->to, timeout, 0.);
3060 ev_timer_start (EV_A_ &once->to); 3623 ev_timer_start (EV_A_ &once->to);
3061 } 3624 }
3062} 3625}
3063 3626
3627/*****************************************************************************/
3628
3629#if EV_WALK_ENABLE
3630void
3631ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3632{
3633 int i, j;
3634 ev_watcher_list *wl, *wn;
3635
3636 if (types & (EV_IO | EV_EMBED))
3637 for (i = 0; i < anfdmax; ++i)
3638 for (wl = anfds [i].head; wl; )
3639 {
3640 wn = wl->next;
3641
3642#if EV_EMBED_ENABLE
3643 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3644 {
3645 if (types & EV_EMBED)
3646 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3647 }
3648 else
3649#endif
3650#if EV_USE_INOTIFY
3651 if (ev_cb ((ev_io *)wl) == infy_cb)
3652 ;
3653 else
3654#endif
3655 if ((ev_io *)wl != &pipe_w)
3656 if (types & EV_IO)
3657 cb (EV_A_ EV_IO, wl);
3658
3659 wl = wn;
3660 }
3661
3662 if (types & (EV_TIMER | EV_STAT))
3663 for (i = timercnt + HEAP0; i-- > HEAP0; )
3664#if EV_STAT_ENABLE
3665 /*TODO: timer is not always active*/
3666 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3667 {
3668 if (types & EV_STAT)
3669 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3670 }
3671 else
3672#endif
3673 if (types & EV_TIMER)
3674 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3675
3676#if EV_PERIODIC_ENABLE
3677 if (types & EV_PERIODIC)
3678 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3679 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3680#endif
3681
3682#if EV_IDLE_ENABLE
3683 if (types & EV_IDLE)
3684 for (j = NUMPRI; i--; )
3685 for (i = idlecnt [j]; i--; )
3686 cb (EV_A_ EV_IDLE, idles [j][i]);
3687#endif
3688
3689#if EV_FORK_ENABLE
3690 if (types & EV_FORK)
3691 for (i = forkcnt; i--; )
3692 if (ev_cb (forks [i]) != embed_fork_cb)
3693 cb (EV_A_ EV_FORK, forks [i]);
3694#endif
3695
3696#if EV_ASYNC_ENABLE
3697 if (types & EV_ASYNC)
3698 for (i = asynccnt; i--; )
3699 cb (EV_A_ EV_ASYNC, asyncs [i]);
3700#endif
3701
3702 if (types & EV_PREPARE)
3703 for (i = preparecnt; i--; )
3704#if EV_EMBED_ENABLE
3705 if (ev_cb (prepares [i]) != embed_prepare_cb)
3706#endif
3707 cb (EV_A_ EV_PREPARE, prepares [i]);
3708
3709 if (types & EV_CHECK)
3710 for (i = checkcnt; i--; )
3711 cb (EV_A_ EV_CHECK, checks [i]);
3712
3713 if (types & EV_SIGNAL)
3714 for (i = 0; i < EV_NSIG - 1; ++i)
3715 for (wl = signals [i].head; wl; )
3716 {
3717 wn = wl->next;
3718 cb (EV_A_ EV_SIGNAL, wl);
3719 wl = wn;
3720 }
3721
3722 if (types & EV_CHILD)
3723 for (i = EV_PID_HASHSIZE; i--; )
3724 for (wl = childs [i]; wl; )
3725 {
3726 wn = wl->next;
3727 cb (EV_A_ EV_CHILD, wl);
3728 wl = wn;
3729 }
3730/* EV_STAT 0x00001000 /* stat data changed */
3731/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3732}
3733#endif
3734
3064#if EV_MULTIPLICITY 3735#if EV_MULTIPLICITY
3065 #include "ev_wrap.h" 3736 #include "ev_wrap.h"
3066#endif 3737#endif
3067 3738
3068#ifdef __cplusplus 3739#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines