ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.263 by root, Wed Oct 1 18:50:03 2008 UTC vs.
Revision 1.427 by root, Sun May 6 19:29:59 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
130# endif 163# endif
131 164
132#endif 165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
152#endif 197#endif
153 198
154#ifndef _WIN32 199#ifndef _WIN32
155# include <sys/time.h> 200# include <sys/time.h>
156# include <sys/wait.h> 201# include <sys/wait.h>
160# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
161# include <windows.h> 206# include <windows.h>
162# ifndef EV_SELECT_IS_WINSOCKET 207# ifndef EV_SELECT_IS_WINSOCKET
163# define EV_SELECT_IS_WINSOCKET 1 208# define EV_SELECT_IS_WINSOCKET 1
164# endif 209# endif
210# undef EV_AVOID_STDIO
165#endif 211#endif
212
213/* OS X, in its infinite idiocy, actually HARDCODES
214 * a limit of 1024 into their select. Where people have brains,
215 * OS X engineers apparently have a vacuum. Or maybe they were
216 * ordered to have a vacuum, or they do anything for money.
217 * This might help. Or not.
218 */
219#define _DARWIN_UNLIMITED_SELECT 1
166 220
167/* this block tries to deduce configuration from header-defined symbols and defaults */ 221/* this block tries to deduce configuration from header-defined symbols and defaults */
168 222
223/* try to deduce the maximum number of signals on this platform */
224#if defined EV_NSIG
225/* use what's provided */
226#elif defined NSIG
227# define EV_NSIG (NSIG)
228#elif defined _NSIG
229# define EV_NSIG (_NSIG)
230#elif defined SIGMAX
231# define EV_NSIG (SIGMAX+1)
232#elif defined SIG_MAX
233# define EV_NSIG (SIG_MAX+1)
234#elif defined _SIG_MAX
235# define EV_NSIG (_SIG_MAX+1)
236#elif defined MAXSIG
237# define EV_NSIG (MAXSIG+1)
238#elif defined MAX_SIG
239# define EV_NSIG (MAX_SIG+1)
240#elif defined SIGARRAYSIZE
241# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
242#elif defined _sys_nsig
243# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
244#else
245# error "unable to find value for NSIG, please report"
246/* to make it compile regardless, just remove the above line, */
247/* but consider reporting it, too! :) */
248# define EV_NSIG 65
249#endif
250
251#ifndef EV_USE_FLOOR
252# define EV_USE_FLOOR 0
253#endif
254
255#ifndef EV_USE_CLOCK_SYSCALL
256# if __linux && __GLIBC__ >= 2
257# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
258# else
259# define EV_USE_CLOCK_SYSCALL 0
260# endif
261#endif
262
169#ifndef EV_USE_MONOTONIC 263#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 264# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1 265# define EV_USE_MONOTONIC EV_FEATURE_OS
172# else 266# else
173# define EV_USE_MONOTONIC 0 267# define EV_USE_MONOTONIC 0
174# endif 268# endif
175#endif 269#endif
176 270
177#ifndef EV_USE_REALTIME 271#ifndef EV_USE_REALTIME
178# define EV_USE_REALTIME 0 272# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
179#endif 273#endif
180 274
181#ifndef EV_USE_NANOSLEEP 275#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L 276# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1 277# define EV_USE_NANOSLEEP EV_FEATURE_OS
184# else 278# else
185# define EV_USE_NANOSLEEP 0 279# define EV_USE_NANOSLEEP 0
186# endif 280# endif
187#endif 281#endif
188 282
189#ifndef EV_USE_SELECT 283#ifndef EV_USE_SELECT
190# define EV_USE_SELECT 1 284# define EV_USE_SELECT EV_FEATURE_BACKENDS
191#endif 285#endif
192 286
193#ifndef EV_USE_POLL 287#ifndef EV_USE_POLL
194# ifdef _WIN32 288# ifdef _WIN32
195# define EV_USE_POLL 0 289# define EV_USE_POLL 0
196# else 290# else
197# define EV_USE_POLL 1 291# define EV_USE_POLL EV_FEATURE_BACKENDS
198# endif 292# endif
199#endif 293#endif
200 294
201#ifndef EV_USE_EPOLL 295#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 296# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1 297# define EV_USE_EPOLL EV_FEATURE_BACKENDS
204# else 298# else
205# define EV_USE_EPOLL 0 299# define EV_USE_EPOLL 0
206# endif 300# endif
207#endif 301#endif
208 302
214# define EV_USE_PORT 0 308# define EV_USE_PORT 0
215#endif 309#endif
216 310
217#ifndef EV_USE_INOTIFY 311#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1 313# define EV_USE_INOTIFY EV_FEATURE_OS
220# else 314# else
221# define EV_USE_INOTIFY 0 315# define EV_USE_INOTIFY 0
222# endif 316# endif
223#endif 317#endif
224 318
225#ifndef EV_PID_HASHSIZE 319#ifndef EV_PID_HASHSIZE
226# if EV_MINIMAL 320# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
230# endif
231#endif 321#endif
232 322
233#ifndef EV_INOTIFY_HASHSIZE 323#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL 324# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif 325#endif
240 326
241#ifndef EV_USE_EVENTFD 327#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 328# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1 329# define EV_USE_EVENTFD EV_FEATURE_OS
244# else 330# else
245# define EV_USE_EVENTFD 0 331# define EV_USE_EVENTFD 0
332# endif
333#endif
334
335#ifndef EV_USE_SIGNALFD
336# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
337# define EV_USE_SIGNALFD EV_FEATURE_OS
338# else
339# define EV_USE_SIGNALFD 0
246# endif 340# endif
247#endif 341#endif
248 342
249#if 0 /* debugging */ 343#if 0 /* debugging */
250# define EV_VERIFY 3 344# define EV_VERIFY 3
251# define EV_USE_4HEAP 1 345# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1 346# define EV_HEAP_CACHE_AT 1
253#endif 347#endif
254 348
255#ifndef EV_VERIFY 349#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL 350# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
257#endif 351#endif
258 352
259#ifndef EV_USE_4HEAP 353#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL 354# define EV_USE_4HEAP EV_FEATURE_DATA
261#endif 355#endif
262 356
263#ifndef EV_HEAP_CACHE_AT 357#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL 358# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
359#endif
360
361/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
362/* which makes programs even slower. might work on other unices, too. */
363#if EV_USE_CLOCK_SYSCALL
364# include <sys/syscall.h>
365# ifdef SYS_clock_gettime
366# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
367# undef EV_USE_MONOTONIC
368# define EV_USE_MONOTONIC 1
369# else
370# undef EV_USE_CLOCK_SYSCALL
371# define EV_USE_CLOCK_SYSCALL 0
372# endif
265#endif 373#endif
266 374
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 375/* this block fixes any misconfiguration where we know we run into trouble otherwise */
376
377#ifdef _AIX
378/* AIX has a completely broken poll.h header */
379# undef EV_USE_POLL
380# define EV_USE_POLL 0
381#endif
268 382
269#ifndef CLOCK_MONOTONIC 383#ifndef CLOCK_MONOTONIC
270# undef EV_USE_MONOTONIC 384# undef EV_USE_MONOTONIC
271# define EV_USE_MONOTONIC 0 385# define EV_USE_MONOTONIC 0
272#endif 386#endif
280# undef EV_USE_INOTIFY 394# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0 395# define EV_USE_INOTIFY 0
282#endif 396#endif
283 397
284#if !EV_USE_NANOSLEEP 398#if !EV_USE_NANOSLEEP
285# ifndef _WIN32 399/* hp-ux has it in sys/time.h, which we unconditionally include above */
400# if !defined _WIN32 && !defined __hpux
286# include <sys/select.h> 401# include <sys/select.h>
287# endif 402# endif
288#endif 403#endif
289 404
290#if EV_USE_INOTIFY 405#if EV_USE_INOTIFY
406# include <sys/statfs.h>
291# include <sys/inotify.h> 407# include <sys/inotify.h>
292/* some very old inotify.h headers don't have IN_DONT_FOLLOW */ 408/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
293# ifndef IN_DONT_FOLLOW 409# ifndef IN_DONT_FOLLOW
294# undef EV_USE_INOTIFY 410# undef EV_USE_INOTIFY
295# define EV_USE_INOTIFY 0 411# define EV_USE_INOTIFY 0
301#endif 417#endif
302 418
303#if EV_USE_EVENTFD 419#if EV_USE_EVENTFD
304/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 420/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
305# include <stdint.h> 421# include <stdint.h>
306# ifdef __cplusplus 422# ifndef EFD_NONBLOCK
307extern "C" { 423# define EFD_NONBLOCK O_NONBLOCK
308# endif 424# endif
309int eventfd (unsigned int initval, int flags); 425# ifndef EFD_CLOEXEC
310# ifdef __cplusplus 426# ifdef O_CLOEXEC
311} 427# define EFD_CLOEXEC O_CLOEXEC
428# else
429# define EFD_CLOEXEC 02000000
430# endif
312# endif 431# endif
432EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
433#endif
434
435#if EV_USE_SIGNALFD
436/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
437# include <stdint.h>
438# ifndef SFD_NONBLOCK
439# define SFD_NONBLOCK O_NONBLOCK
440# endif
441# ifndef SFD_CLOEXEC
442# ifdef O_CLOEXEC
443# define SFD_CLOEXEC O_CLOEXEC
444# else
445# define SFD_CLOEXEC 02000000
446# endif
447# endif
448EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
449
450struct signalfd_siginfo
451{
452 uint32_t ssi_signo;
453 char pad[128 - sizeof (uint32_t)];
454};
313#endif 455#endif
314 456
315/**/ 457/**/
316 458
317#if EV_VERIFY >= 3 459#if EV_VERIFY >= 3
318# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 460# define EV_FREQUENT_CHECK ev_verify (EV_A)
319#else 461#else
320# define EV_FREQUENT_CHECK do { } while (0) 462# define EV_FREQUENT_CHECK do { } while (0)
321#endif 463#endif
322 464
323/* 465/*
324 * This is used to avoid floating point rounding problems. 466 * This is used to work around floating point rounding problems.
325 * It is added to ev_rt_now when scheduling periodics
326 * to ensure progress, time-wise, even when rounding
327 * errors are against us.
328 * This value is good at least till the year 4000. 467 * This value is good at least till the year 4000.
329 * Better solutions welcome.
330 */ 468 */
331#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 469#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
470/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
332 471
333#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 472#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
334#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 473#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
335/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
336 474
475#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
476#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
477
478/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
479/* ECB.H BEGIN */
480/*
481 * libecb - http://software.schmorp.de/pkg/libecb
482 *
483 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
484 * Copyright (©) 2011 Emanuele Giaquinta
485 * All rights reserved.
486 *
487 * Redistribution and use in source and binary forms, with or without modifica-
488 * tion, are permitted provided that the following conditions are met:
489 *
490 * 1. Redistributions of source code must retain the above copyright notice,
491 * this list of conditions and the following disclaimer.
492 *
493 * 2. Redistributions in binary form must reproduce the above copyright
494 * notice, this list of conditions and the following disclaimer in the
495 * documentation and/or other materials provided with the distribution.
496 *
497 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
498 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
499 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
500 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
501 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
502 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
503 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
504 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
505 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
506 * OF THE POSSIBILITY OF SUCH DAMAGE.
507 */
508
509#ifndef ECB_H
510#define ECB_H
511
512#ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
337#if __GNUC__ >= 4 519 #if __GNUC__
338# define expect(expr,value) __builtin_expect ((expr),(value)) 520 typedef signed long long int64_t;
339# define noinline __attribute__ ((noinline)) 521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
340#else 526#else
341# define expect(expr,value) (expr) 527 #include <inttypes.h>
342# define noinline
343# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
344# define inline
345# endif 528#endif
529
530/* many compilers define _GNUC_ to some versions but then only implement
531 * what their idiot authors think are the "more important" extensions,
532 * causing enormous grief in return for some better fake benchmark numbers.
533 * or so.
534 * we try to detect these and simply assume they are not gcc - if they have
535 * an issue with that they should have done it right in the first place.
536 */
537#ifndef ECB_GCC_VERSION
538 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
539 #define ECB_GCC_VERSION(major,minor) 0
540 #else
541 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
346#endif 542 #endif
543#endif
347 544
545/*****************************************************************************/
546
547/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
548/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
549
550#if ECB_NO_THREADS
551# define ECB_NO_SMP 1
552#endif
553
554#if ECB_NO_THREADS || ECB_NO_SMP
555 #define ECB_MEMORY_FENCE do { } while (0)
556#endif
557
558#ifndef ECB_MEMORY_FENCE
559 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
560 #if __i386 || __i386__
561 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
562 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
563 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
564 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
565 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
566 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
567 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
568 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
569 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
570 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
571 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
572 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
573 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
574 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
575 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
576 #elif __sparc || __sparc__
577 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
578 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
579 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
580 #elif defined __s390__ || defined __s390x__
581 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
582 #elif defined __mips__
583 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
584 #elif defined __alpha__
585 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
586 #endif
587 #endif
588#endif
589
590#ifndef ECB_MEMORY_FENCE
591 #if ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
592 #define ECB_MEMORY_FENCE __sync_synchronize ()
593 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
594 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
595 #elif _MSC_VER >= 1400 /* VC++ 2005 */
596 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
597 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
598 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
599 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
600 #elif defined _WIN32
601 #include <WinNT.h>
602 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
603 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
604 #include <mbarrier.h>
605 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
606 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
607 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
608 #elif __xlC__
609 #define ECB_MEMORY_FENCE __sync ()
610 #endif
611#endif
612
613#ifndef ECB_MEMORY_FENCE
614 #if !ECB_AVOID_PTHREADS
615 /*
616 * if you get undefined symbol references to pthread_mutex_lock,
617 * or failure to find pthread.h, then you should implement
618 * the ECB_MEMORY_FENCE operations for your cpu/compiler
619 * OR provide pthread.h and link against the posix thread library
620 * of your system.
621 */
622 #include <pthread.h>
623 #define ECB_NEEDS_PTHREADS 1
624 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
625
626 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
627 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
628 #endif
629#endif
630
631#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
632 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
633#endif
634
635#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
636 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
637#endif
638
639/*****************************************************************************/
640
641#define ECB_C99 (__STDC_VERSION__ >= 199901L)
642
643#if __cplusplus
644 #define ecb_inline static inline
645#elif ECB_GCC_VERSION(2,5)
646 #define ecb_inline static __inline__
647#elif ECB_C99
648 #define ecb_inline static inline
649#else
650 #define ecb_inline static
651#endif
652
653#if ECB_GCC_VERSION(3,3)
654 #define ecb_restrict __restrict__
655#elif ECB_C99
656 #define ecb_restrict restrict
657#else
658 #define ecb_restrict
659#endif
660
661typedef int ecb_bool;
662
663#define ECB_CONCAT_(a, b) a ## b
664#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
665#define ECB_STRINGIFY_(a) # a
666#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
667
668#define ecb_function_ ecb_inline
669
670#if ECB_GCC_VERSION(3,1)
671 #define ecb_attribute(attrlist) __attribute__(attrlist)
672 #define ecb_is_constant(expr) __builtin_constant_p (expr)
673 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
674 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
675#else
676 #define ecb_attribute(attrlist)
677 #define ecb_is_constant(expr) 0
678 #define ecb_expect(expr,value) (expr)
679 #define ecb_prefetch(addr,rw,locality)
680#endif
681
682/* no emulation for ecb_decltype */
683#if ECB_GCC_VERSION(4,5)
684 #define ecb_decltype(x) __decltype(x)
685#elif ECB_GCC_VERSION(3,0)
686 #define ecb_decltype(x) __typeof(x)
687#endif
688
689#define ecb_noinline ecb_attribute ((__noinline__))
690#define ecb_noreturn ecb_attribute ((__noreturn__))
691#define ecb_unused ecb_attribute ((__unused__))
692#define ecb_const ecb_attribute ((__const__))
693#define ecb_pure ecb_attribute ((__pure__))
694
695#if ECB_GCC_VERSION(4,3)
696 #define ecb_artificial ecb_attribute ((__artificial__))
697 #define ecb_hot ecb_attribute ((__hot__))
698 #define ecb_cold ecb_attribute ((__cold__))
699#else
700 #define ecb_artificial
701 #define ecb_hot
702 #define ecb_cold
703#endif
704
705/* put around conditional expressions if you are very sure that the */
706/* expression is mostly true or mostly false. note that these return */
707/* booleans, not the expression. */
348#define expect_false(expr) expect ((expr) != 0, 0) 708#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
349#define expect_true(expr) expect ((expr) != 0, 1) 709#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
710/* for compatibility to the rest of the world */
711#define ecb_likely(expr) ecb_expect_true (expr)
712#define ecb_unlikely(expr) ecb_expect_false (expr)
713
714/* count trailing zero bits and count # of one bits */
715#if ECB_GCC_VERSION(3,4)
716 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
717 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
718 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
719 #define ecb_ctz32(x) __builtin_ctz (x)
720 #define ecb_ctz64(x) __builtin_ctzll (x)
721 #define ecb_popcount32(x) __builtin_popcount (x)
722 /* no popcountll */
723#else
724 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
725 ecb_function_ int
726 ecb_ctz32 (uint32_t x)
727 {
728 int r = 0;
729
730 x &= ~x + 1; /* this isolates the lowest bit */
731
732#if ECB_branchless_on_i386
733 r += !!(x & 0xaaaaaaaa) << 0;
734 r += !!(x & 0xcccccccc) << 1;
735 r += !!(x & 0xf0f0f0f0) << 2;
736 r += !!(x & 0xff00ff00) << 3;
737 r += !!(x & 0xffff0000) << 4;
738#else
739 if (x & 0xaaaaaaaa) r += 1;
740 if (x & 0xcccccccc) r += 2;
741 if (x & 0xf0f0f0f0) r += 4;
742 if (x & 0xff00ff00) r += 8;
743 if (x & 0xffff0000) r += 16;
744#endif
745
746 return r;
747 }
748
749 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
750 ecb_function_ int
751 ecb_ctz64 (uint64_t x)
752 {
753 int shift = x & 0xffffffffU ? 0 : 32;
754 return ecb_ctz32 (x >> shift) + shift;
755 }
756
757 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
758 ecb_function_ int
759 ecb_popcount32 (uint32_t x)
760 {
761 x -= (x >> 1) & 0x55555555;
762 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
763 x = ((x >> 4) + x) & 0x0f0f0f0f;
764 x *= 0x01010101;
765
766 return x >> 24;
767 }
768
769 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
770 ecb_function_ int ecb_ld32 (uint32_t x)
771 {
772 int r = 0;
773
774 if (x >> 16) { x >>= 16; r += 16; }
775 if (x >> 8) { x >>= 8; r += 8; }
776 if (x >> 4) { x >>= 4; r += 4; }
777 if (x >> 2) { x >>= 2; r += 2; }
778 if (x >> 1) { r += 1; }
779
780 return r;
781 }
782
783 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
784 ecb_function_ int ecb_ld64 (uint64_t x)
785 {
786 int r = 0;
787
788 if (x >> 32) { x >>= 32; r += 32; }
789
790 return r + ecb_ld32 (x);
791 }
792#endif
793
794ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
795ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
796{
797 return ( (x * 0x0802U & 0x22110U)
798 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
799}
800
801ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
802ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
803{
804 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
805 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
806 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
807 x = ( x >> 8 ) | ( x << 8);
808
809 return x;
810}
811
812ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
813ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
814{
815 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
816 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
817 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
818 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
819 x = ( x >> 16 ) | ( x << 16);
820
821 return x;
822}
823
824/* popcount64 is only available on 64 bit cpus as gcc builtin */
825/* so for this version we are lazy */
826ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
827ecb_function_ int
828ecb_popcount64 (uint64_t x)
829{
830 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
831}
832
833ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
834ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
835ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
836ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
837ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
838ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
839ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
840ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
841
842ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
843ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
844ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
845ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
846ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
847ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
848ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
849ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
850
851#if ECB_GCC_VERSION(4,3)
852 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
853 #define ecb_bswap32(x) __builtin_bswap32 (x)
854 #define ecb_bswap64(x) __builtin_bswap64 (x)
855#else
856 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
857 ecb_function_ uint16_t
858 ecb_bswap16 (uint16_t x)
859 {
860 return ecb_rotl16 (x, 8);
861 }
862
863 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
864 ecb_function_ uint32_t
865 ecb_bswap32 (uint32_t x)
866 {
867 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
868 }
869
870 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
871 ecb_function_ uint64_t
872 ecb_bswap64 (uint64_t x)
873 {
874 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
875 }
876#endif
877
878#if ECB_GCC_VERSION(4,5)
879 #define ecb_unreachable() __builtin_unreachable ()
880#else
881 /* this seems to work fine, but gcc always emits a warning for it :/ */
882 ecb_inline void ecb_unreachable (void) ecb_noreturn;
883 ecb_inline void ecb_unreachable (void) { }
884#endif
885
886/* try to tell the compiler that some condition is definitely true */
887#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
888
889ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
890ecb_inline unsigned char
891ecb_byteorder_helper (void)
892{
893 const uint32_t u = 0x11223344;
894 return *(unsigned char *)&u;
895}
896
897ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
898ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
899ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
900ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
901
902#if ECB_GCC_VERSION(3,0) || ECB_C99
903 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
904#else
905 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
906#endif
907
908#if __cplusplus
909 template<typename T>
910 static inline T ecb_div_rd (T val, T div)
911 {
912 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
913 }
914 template<typename T>
915 static inline T ecb_div_ru (T val, T div)
916 {
917 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
918 }
919#else
920 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
921 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
922#endif
923
924#if ecb_cplusplus_does_not_suck
925 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
926 template<typename T, int N>
927 static inline int ecb_array_length (const T (&arr)[N])
928 {
929 return N;
930 }
931#else
932 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
933#endif
934
935#endif
936
937/* ECB.H END */
938
939#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
940/* if your architecture doesn't need memory fences, e.g. because it is
941 * single-cpu/core, or if you use libev in a project that doesn't use libev
942 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
943 * libev, in which cases the memory fences become nops.
944 * alternatively, you can remove this #error and link against libpthread,
945 * which will then provide the memory fences.
946 */
947# error "memory fences not defined for your architecture, please report"
948#endif
949
950#ifndef ECB_MEMORY_FENCE
951# define ECB_MEMORY_FENCE do { } while (0)
952# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
953# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
954#endif
955
956#define expect_false(cond) ecb_expect_false (cond)
957#define expect_true(cond) ecb_expect_true (cond)
958#define noinline ecb_noinline
959
350#define inline_size static inline 960#define inline_size ecb_inline
351 961
352#if EV_MINIMAL 962#if EV_FEATURE_CODE
963# define inline_speed ecb_inline
964#else
353# define inline_speed static noinline 965# define inline_speed static noinline
966#endif
967
968#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
969
970#if EV_MINPRI == EV_MAXPRI
971# define ABSPRI(w) (((W)w), 0)
354#else 972#else
355# define inline_speed static inline
356#endif
357
358#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
359#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 973# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
974#endif
360 975
361#define EMPTY /* required for microsofts broken pseudo-c compiler */ 976#define EMPTY /* required for microsofts broken pseudo-c compiler */
362#define EMPTY2(a,b) /* used to suppress some warnings */ 977#define EMPTY2(a,b) /* used to suppress some warnings */
363 978
364typedef ev_watcher *W; 979typedef ev_watcher *W;
366typedef ev_watcher_time *WT; 981typedef ev_watcher_time *WT;
367 982
368#define ev_active(w) ((W)(w))->active 983#define ev_active(w) ((W)(w))->active
369#define ev_at(w) ((WT)(w))->at 984#define ev_at(w) ((WT)(w))->at
370 985
986#if EV_USE_REALTIME
987/* sig_atomic_t is used to avoid per-thread variables or locking but still */
988/* giving it a reasonably high chance of working on typical architectures */
989static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
990#endif
991
371#if EV_USE_MONOTONIC 992#if EV_USE_MONOTONIC
372/* sig_atomic_t is used to avoid per-thread variables or locking but still */
373/* giving it a reasonably high chance of working on typical architetcures */
374static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 993static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
994#endif
995
996#ifndef EV_FD_TO_WIN32_HANDLE
997# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
998#endif
999#ifndef EV_WIN32_HANDLE_TO_FD
1000# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1001#endif
1002#ifndef EV_WIN32_CLOSE_FD
1003# define EV_WIN32_CLOSE_FD(fd) close (fd)
375#endif 1004#endif
376 1005
377#ifdef _WIN32 1006#ifdef _WIN32
378# include "ev_win32.c" 1007# include "ev_win32.c"
379#endif 1008#endif
380 1009
381/*****************************************************************************/ 1010/*****************************************************************************/
382 1011
1012/* define a suitable floor function (only used by periodics atm) */
1013
1014#if EV_USE_FLOOR
1015# include <math.h>
1016# define ev_floor(v) floor (v)
1017#else
1018
1019#include <float.h>
1020
1021/* a floor() replacement function, should be independent of ev_tstamp type */
1022static ev_tstamp noinline
1023ev_floor (ev_tstamp v)
1024{
1025 /* the choice of shift factor is not terribly important */
1026#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1027 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1028#else
1029 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1030#endif
1031
1032 /* argument too large for an unsigned long? */
1033 if (expect_false (v >= shift))
1034 {
1035 ev_tstamp f;
1036
1037 if (v == v - 1.)
1038 return v; /* very large number */
1039
1040 f = shift * ev_floor (v * (1. / shift));
1041 return f + ev_floor (v - f);
1042 }
1043
1044 /* special treatment for negative args? */
1045 if (expect_false (v < 0.))
1046 {
1047 ev_tstamp f = -ev_floor (-v);
1048
1049 return f - (f == v ? 0 : 1);
1050 }
1051
1052 /* fits into an unsigned long */
1053 return (unsigned long)v;
1054}
1055
1056#endif
1057
1058/*****************************************************************************/
1059
1060#ifdef __linux
1061# include <sys/utsname.h>
1062#endif
1063
1064static unsigned int noinline ecb_cold
1065ev_linux_version (void)
1066{
1067#ifdef __linux
1068 unsigned int v = 0;
1069 struct utsname buf;
1070 int i;
1071 char *p = buf.release;
1072
1073 if (uname (&buf))
1074 return 0;
1075
1076 for (i = 3+1; --i; )
1077 {
1078 unsigned int c = 0;
1079
1080 for (;;)
1081 {
1082 if (*p >= '0' && *p <= '9')
1083 c = c * 10 + *p++ - '0';
1084 else
1085 {
1086 p += *p == '.';
1087 break;
1088 }
1089 }
1090
1091 v = (v << 8) | c;
1092 }
1093
1094 return v;
1095#else
1096 return 0;
1097#endif
1098}
1099
1100/*****************************************************************************/
1101
1102#if EV_AVOID_STDIO
1103static void noinline ecb_cold
1104ev_printerr (const char *msg)
1105{
1106 write (STDERR_FILENO, msg, strlen (msg));
1107}
1108#endif
1109
383static void (*syserr_cb)(const char *msg); 1110static void (*syserr_cb)(const char *msg) EV_THROW;
384 1111
385void 1112void ecb_cold
386ev_set_syserr_cb (void (*cb)(const char *msg)) 1113ev_set_syserr_cb (void (*cb)(const char *msg)) EV_THROW
387{ 1114{
388 syserr_cb = cb; 1115 syserr_cb = cb;
389} 1116}
390 1117
391static void noinline 1118static void noinline ecb_cold
392syserr (const char *msg) 1119ev_syserr (const char *msg)
393{ 1120{
394 if (!msg) 1121 if (!msg)
395 msg = "(libev) system error"; 1122 msg = "(libev) system error";
396 1123
397 if (syserr_cb) 1124 if (syserr_cb)
398 syserr_cb (msg); 1125 syserr_cb (msg);
399 else 1126 else
400 { 1127 {
1128#if EV_AVOID_STDIO
1129 ev_printerr (msg);
1130 ev_printerr (": ");
1131 ev_printerr (strerror (errno));
1132 ev_printerr ("\n");
1133#else
401 perror (msg); 1134 perror (msg);
1135#endif
402 abort (); 1136 abort ();
403 } 1137 }
404} 1138}
405 1139
406static void * 1140static void *
407ev_realloc_emul (void *ptr, long size) 1141ev_realloc_emul (void *ptr, long size)
408{ 1142{
1143#if __GLIBC__
1144 return realloc (ptr, size);
1145#else
409 /* some systems, notably openbsd and darwin, fail to properly 1146 /* some systems, notably openbsd and darwin, fail to properly
410 * implement realloc (x, 0) (as required by both ansi c-98 and 1147 * implement realloc (x, 0) (as required by both ansi c-89 and
411 * the single unix specification, so work around them here. 1148 * the single unix specification, so work around them here.
412 */ 1149 */
413 1150
414 if (size) 1151 if (size)
415 return realloc (ptr, size); 1152 return realloc (ptr, size);
416 1153
417 free (ptr); 1154 free (ptr);
418 return 0; 1155 return 0;
1156#endif
419} 1157}
420 1158
421static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1159static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
422 1160
423void 1161void ecb_cold
424ev_set_allocator (void *(*cb)(void *ptr, long size)) 1162ev_set_allocator (void *(*cb)(void *ptr, long size)) EV_THROW
425{ 1163{
426 alloc = cb; 1164 alloc = cb;
427} 1165}
428 1166
429inline_speed void * 1167inline_speed void *
431{ 1169{
432 ptr = alloc (ptr, size); 1170 ptr = alloc (ptr, size);
433 1171
434 if (!ptr && size) 1172 if (!ptr && size)
435 { 1173 {
1174#if EV_AVOID_STDIO
1175 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1176#else
436 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1177 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1178#endif
437 abort (); 1179 abort ();
438 } 1180 }
439 1181
440 return ptr; 1182 return ptr;
441} 1183}
443#define ev_malloc(size) ev_realloc (0, (size)) 1185#define ev_malloc(size) ev_realloc (0, (size))
444#define ev_free(ptr) ev_realloc ((ptr), 0) 1186#define ev_free(ptr) ev_realloc ((ptr), 0)
445 1187
446/*****************************************************************************/ 1188/*****************************************************************************/
447 1189
1190/* set in reify when reification needed */
1191#define EV_ANFD_REIFY 1
1192
1193/* file descriptor info structure */
448typedef struct 1194typedef struct
449{ 1195{
450 WL head; 1196 WL head;
451 unsigned char events; 1197 unsigned char events; /* the events watched for */
1198 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1199 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
452 unsigned char reify; 1200 unsigned char unused;
1201#if EV_USE_EPOLL
1202 unsigned int egen; /* generation counter to counter epoll bugs */
1203#endif
453#if EV_SELECT_IS_WINSOCKET 1204#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
454 SOCKET handle; 1205 SOCKET handle;
455#endif 1206#endif
1207#if EV_USE_IOCP
1208 OVERLAPPED or, ow;
1209#endif
456} ANFD; 1210} ANFD;
457 1211
1212/* stores the pending event set for a given watcher */
458typedef struct 1213typedef struct
459{ 1214{
460 W w; 1215 W w;
461 int events; 1216 int events; /* the pending event set for the given watcher */
462} ANPENDING; 1217} ANPENDING;
463 1218
464#if EV_USE_INOTIFY 1219#if EV_USE_INOTIFY
465/* hash table entry per inotify-id */ 1220/* hash table entry per inotify-id */
466typedef struct 1221typedef struct
469} ANFS; 1224} ANFS;
470#endif 1225#endif
471 1226
472/* Heap Entry */ 1227/* Heap Entry */
473#if EV_HEAP_CACHE_AT 1228#if EV_HEAP_CACHE_AT
1229 /* a heap element */
474 typedef struct { 1230 typedef struct {
475 ev_tstamp at; 1231 ev_tstamp at;
476 WT w; 1232 WT w;
477 } ANHE; 1233 } ANHE;
478 1234
479 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1235 #define ANHE_w(he) (he).w /* access watcher, read-write */
480 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1236 #define ANHE_at(he) (he).at /* access cached at, read-only */
481 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 1237 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
482#else 1238#else
1239 /* a heap element */
483 typedef WT ANHE; 1240 typedef WT ANHE;
484 1241
485 #define ANHE_w(he) (he) 1242 #define ANHE_w(he) (he)
486 #define ANHE_at(he) (he)->at 1243 #define ANHE_at(he) (he)->at
487 #define ANHE_at_cache(he) 1244 #define ANHE_at_cache(he)
498 #undef VAR 1255 #undef VAR
499 }; 1256 };
500 #include "ev_wrap.h" 1257 #include "ev_wrap.h"
501 1258
502 static struct ev_loop default_loop_struct; 1259 static struct ev_loop default_loop_struct;
503 struct ev_loop *ev_default_loop_ptr; 1260 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
504 1261
505#else 1262#else
506 1263
507 ev_tstamp ev_rt_now; 1264 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
508 #define VAR(name,decl) static decl; 1265 #define VAR(name,decl) static decl;
509 #include "ev_vars.h" 1266 #include "ev_vars.h"
510 #undef VAR 1267 #undef VAR
511 1268
512 static int ev_default_loop_ptr; 1269 static int ev_default_loop_ptr;
513 1270
514#endif 1271#endif
515 1272
1273#if EV_FEATURE_API
1274# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1275# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1276# define EV_INVOKE_PENDING invoke_cb (EV_A)
1277#else
1278# define EV_RELEASE_CB (void)0
1279# define EV_ACQUIRE_CB (void)0
1280# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1281#endif
1282
1283#define EVBREAK_RECURSE 0x80
1284
516/*****************************************************************************/ 1285/*****************************************************************************/
517 1286
1287#ifndef EV_HAVE_EV_TIME
518ev_tstamp 1288ev_tstamp
519ev_time (void) 1289ev_time (void) EV_THROW
520{ 1290{
521#if EV_USE_REALTIME 1291#if EV_USE_REALTIME
1292 if (expect_true (have_realtime))
1293 {
522 struct timespec ts; 1294 struct timespec ts;
523 clock_gettime (CLOCK_REALTIME, &ts); 1295 clock_gettime (CLOCK_REALTIME, &ts);
524 return ts.tv_sec + ts.tv_nsec * 1e-9; 1296 return ts.tv_sec + ts.tv_nsec * 1e-9;
525#else 1297 }
1298#endif
1299
526 struct timeval tv; 1300 struct timeval tv;
527 gettimeofday (&tv, 0); 1301 gettimeofday (&tv, 0);
528 return tv.tv_sec + tv.tv_usec * 1e-6; 1302 return tv.tv_sec + tv.tv_usec * 1e-6;
529#endif
530} 1303}
1304#endif
531 1305
532ev_tstamp inline_size 1306inline_size ev_tstamp
533get_clock (void) 1307get_clock (void)
534{ 1308{
535#if EV_USE_MONOTONIC 1309#if EV_USE_MONOTONIC
536 if (expect_true (have_monotonic)) 1310 if (expect_true (have_monotonic))
537 { 1311 {
544 return ev_time (); 1318 return ev_time ();
545} 1319}
546 1320
547#if EV_MULTIPLICITY 1321#if EV_MULTIPLICITY
548ev_tstamp 1322ev_tstamp
549ev_now (EV_P) 1323ev_now (EV_P) EV_THROW
550{ 1324{
551 return ev_rt_now; 1325 return ev_rt_now;
552} 1326}
553#endif 1327#endif
554 1328
555void 1329void
556ev_sleep (ev_tstamp delay) 1330ev_sleep (ev_tstamp delay) EV_THROW
557{ 1331{
558 if (delay > 0.) 1332 if (delay > 0.)
559 { 1333 {
560#if EV_USE_NANOSLEEP 1334#if EV_USE_NANOSLEEP
561 struct timespec ts; 1335 struct timespec ts;
562 1336
563 ts.tv_sec = (time_t)delay; 1337 EV_TS_SET (ts, delay);
564 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
565
566 nanosleep (&ts, 0); 1338 nanosleep (&ts, 0);
567#elif defined(_WIN32) 1339#elif defined _WIN32
568 Sleep ((unsigned long)(delay * 1e3)); 1340 Sleep ((unsigned long)(delay * 1e3));
569#else 1341#else
570 struct timeval tv; 1342 struct timeval tv;
571 1343
572 tv.tv_sec = (time_t)delay;
573 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
574
575 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 1344 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
576 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 1345 /* something not guaranteed by newer posix versions, but guaranteed */
577 /* by older ones */ 1346 /* by older ones */
1347 EV_TV_SET (tv, delay);
578 select (0, 0, 0, 0, &tv); 1348 select (0, 0, 0, 0, &tv);
579#endif 1349#endif
580 } 1350 }
581} 1351}
582 1352
583/*****************************************************************************/ 1353/*****************************************************************************/
584 1354
585#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1355#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
586 1356
587int inline_size 1357/* find a suitable new size for the given array, */
1358/* hopefully by rounding to a nice-to-malloc size */
1359inline_size int
588array_nextsize (int elem, int cur, int cnt) 1360array_nextsize (int elem, int cur, int cnt)
589{ 1361{
590 int ncur = cur + 1; 1362 int ncur = cur + 1;
591 1363
592 do 1364 do
593 ncur <<= 1; 1365 ncur <<= 1;
594 while (cnt > ncur); 1366 while (cnt > ncur);
595 1367
596 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1368 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
597 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1369 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
598 { 1370 {
599 ncur *= elem; 1371 ncur *= elem;
600 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1372 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
601 ncur = ncur - sizeof (void *) * 4; 1373 ncur = ncur - sizeof (void *) * 4;
603 } 1375 }
604 1376
605 return ncur; 1377 return ncur;
606} 1378}
607 1379
608static noinline void * 1380static void * noinline ecb_cold
609array_realloc (int elem, void *base, int *cur, int cnt) 1381array_realloc (int elem, void *base, int *cur, int cnt)
610{ 1382{
611 *cur = array_nextsize (elem, *cur, cnt); 1383 *cur = array_nextsize (elem, *cur, cnt);
612 return ev_realloc (base, elem * *cur); 1384 return ev_realloc (base, elem * *cur);
613} 1385}
1386
1387#define array_init_zero(base,count) \
1388 memset ((void *)(base), 0, sizeof (*(base)) * (count))
614 1389
615#define array_needsize(type,base,cur,cnt,init) \ 1390#define array_needsize(type,base,cur,cnt,init) \
616 if (expect_false ((cnt) > (cur))) \ 1391 if (expect_false ((cnt) > (cur))) \
617 { \ 1392 { \
618 int ocur_ = (cur); \ 1393 int ecb_unused ocur_ = (cur); \
619 (base) = (type *)array_realloc \ 1394 (base) = (type *)array_realloc \
620 (sizeof (type), (base), &(cur), (cnt)); \ 1395 (sizeof (type), (base), &(cur), (cnt)); \
621 init ((base) + (ocur_), (cur) - ocur_); \ 1396 init ((base) + (ocur_), (cur) - ocur_); \
622 } 1397 }
623 1398
630 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1405 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
631 } 1406 }
632#endif 1407#endif
633 1408
634#define array_free(stem, idx) \ 1409#define array_free(stem, idx) \
635 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1410 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
636 1411
637/*****************************************************************************/ 1412/*****************************************************************************/
638 1413
1414/* dummy callback for pending events */
1415static void noinline
1416pendingcb (EV_P_ ev_prepare *w, int revents)
1417{
1418}
1419
639void noinline 1420void noinline
640ev_feed_event (EV_P_ void *w, int revents) 1421ev_feed_event (EV_P_ void *w, int revents) EV_THROW
641{ 1422{
642 W w_ = (W)w; 1423 W w_ = (W)w;
643 int pri = ABSPRI (w_); 1424 int pri = ABSPRI (w_);
644 1425
645 if (expect_false (w_->pending)) 1426 if (expect_false (w_->pending))
649 w_->pending = ++pendingcnt [pri]; 1430 w_->pending = ++pendingcnt [pri];
650 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1431 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
651 pendings [pri][w_->pending - 1].w = w_; 1432 pendings [pri][w_->pending - 1].w = w_;
652 pendings [pri][w_->pending - 1].events = revents; 1433 pendings [pri][w_->pending - 1].events = revents;
653 } 1434 }
654}
655 1435
656void inline_speed 1436 pendingpri = NUMPRI - 1;
1437}
1438
1439inline_speed void
1440feed_reverse (EV_P_ W w)
1441{
1442 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1443 rfeeds [rfeedcnt++] = w;
1444}
1445
1446inline_size void
1447feed_reverse_done (EV_P_ int revents)
1448{
1449 do
1450 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1451 while (rfeedcnt);
1452}
1453
1454inline_speed void
657queue_events (EV_P_ W *events, int eventcnt, int type) 1455queue_events (EV_P_ W *events, int eventcnt, int type)
658{ 1456{
659 int i; 1457 int i;
660 1458
661 for (i = 0; i < eventcnt; ++i) 1459 for (i = 0; i < eventcnt; ++i)
662 ev_feed_event (EV_A_ events [i], type); 1460 ev_feed_event (EV_A_ events [i], type);
663} 1461}
664 1462
665/*****************************************************************************/ 1463/*****************************************************************************/
666 1464
667void inline_size 1465inline_speed void
668anfds_init (ANFD *base, int count)
669{
670 while (count--)
671 {
672 base->head = 0;
673 base->events = EV_NONE;
674 base->reify = 0;
675
676 ++base;
677 }
678}
679
680void inline_speed
681fd_event (EV_P_ int fd, int revents) 1466fd_event_nocheck (EV_P_ int fd, int revents)
682{ 1467{
683 ANFD *anfd = anfds + fd; 1468 ANFD *anfd = anfds + fd;
684 ev_io *w; 1469 ev_io *w;
685 1470
686 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1471 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
690 if (ev) 1475 if (ev)
691 ev_feed_event (EV_A_ (W)w, ev); 1476 ev_feed_event (EV_A_ (W)w, ev);
692 } 1477 }
693} 1478}
694 1479
1480/* do not submit kernel events for fds that have reify set */
1481/* because that means they changed while we were polling for new events */
1482inline_speed void
1483fd_event (EV_P_ int fd, int revents)
1484{
1485 ANFD *anfd = anfds + fd;
1486
1487 if (expect_true (!anfd->reify))
1488 fd_event_nocheck (EV_A_ fd, revents);
1489}
1490
695void 1491void
696ev_feed_fd_event (EV_P_ int fd, int revents) 1492ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
697{ 1493{
698 if (fd >= 0 && fd < anfdmax) 1494 if (fd >= 0 && fd < anfdmax)
699 fd_event (EV_A_ fd, revents); 1495 fd_event_nocheck (EV_A_ fd, revents);
700} 1496}
701 1497
702void inline_size 1498/* make sure the external fd watch events are in-sync */
1499/* with the kernel/libev internal state */
1500inline_size void
703fd_reify (EV_P) 1501fd_reify (EV_P)
704{ 1502{
705 int i; 1503 int i;
1504
1505#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1506 for (i = 0; i < fdchangecnt; ++i)
1507 {
1508 int fd = fdchanges [i];
1509 ANFD *anfd = anfds + fd;
1510
1511 if (anfd->reify & EV__IOFDSET && anfd->head)
1512 {
1513 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1514
1515 if (handle != anfd->handle)
1516 {
1517 unsigned long arg;
1518
1519 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1520
1521 /* handle changed, but fd didn't - we need to do it in two steps */
1522 backend_modify (EV_A_ fd, anfd->events, 0);
1523 anfd->events = 0;
1524 anfd->handle = handle;
1525 }
1526 }
1527 }
1528#endif
706 1529
707 for (i = 0; i < fdchangecnt; ++i) 1530 for (i = 0; i < fdchangecnt; ++i)
708 { 1531 {
709 int fd = fdchanges [i]; 1532 int fd = fdchanges [i];
710 ANFD *anfd = anfds + fd; 1533 ANFD *anfd = anfds + fd;
711 ev_io *w; 1534 ev_io *w;
712 1535
713 unsigned char events = 0; 1536 unsigned char o_events = anfd->events;
1537 unsigned char o_reify = anfd->reify;
714 1538
715 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1539 anfd->reify = 0;
716 events |= (unsigned char)w->events;
717 1540
718#if EV_SELECT_IS_WINSOCKET 1541 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
719 if (events)
720 { 1542 {
721 unsigned long arg; 1543 anfd->events = 0;
722 #ifdef EV_FD_TO_WIN32_HANDLE 1544
723 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1545 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
724 #else 1546 anfd->events |= (unsigned char)w->events;
725 anfd->handle = _get_osfhandle (fd); 1547
726 #endif 1548 if (o_events != anfd->events)
727 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 1549 o_reify = EV__IOFDSET; /* actually |= */
728 } 1550 }
729#endif
730 1551
731 { 1552 if (o_reify & EV__IOFDSET)
732 unsigned char o_events = anfd->events;
733 unsigned char o_reify = anfd->reify;
734
735 anfd->reify = 0;
736 anfd->events = events;
737
738 if (o_events != events || o_reify & EV_IOFDSET)
739 backend_modify (EV_A_ fd, o_events, events); 1553 backend_modify (EV_A_ fd, o_events, anfd->events);
740 }
741 } 1554 }
742 1555
743 fdchangecnt = 0; 1556 fdchangecnt = 0;
744} 1557}
745 1558
746void inline_size 1559/* something about the given fd changed */
1560inline_size void
747fd_change (EV_P_ int fd, int flags) 1561fd_change (EV_P_ int fd, int flags)
748{ 1562{
749 unsigned char reify = anfds [fd].reify; 1563 unsigned char reify = anfds [fd].reify;
750 anfds [fd].reify |= flags; 1564 anfds [fd].reify |= flags;
751 1565
755 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1569 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
756 fdchanges [fdchangecnt - 1] = fd; 1570 fdchanges [fdchangecnt - 1] = fd;
757 } 1571 }
758} 1572}
759 1573
760void inline_speed 1574/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1575inline_speed void ecb_cold
761fd_kill (EV_P_ int fd) 1576fd_kill (EV_P_ int fd)
762{ 1577{
763 ev_io *w; 1578 ev_io *w;
764 1579
765 while ((w = (ev_io *)anfds [fd].head)) 1580 while ((w = (ev_io *)anfds [fd].head))
767 ev_io_stop (EV_A_ w); 1582 ev_io_stop (EV_A_ w);
768 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1583 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
769 } 1584 }
770} 1585}
771 1586
772int inline_size 1587/* check whether the given fd is actually valid, for error recovery */
1588inline_size int ecb_cold
773fd_valid (int fd) 1589fd_valid (int fd)
774{ 1590{
775#ifdef _WIN32 1591#ifdef _WIN32
776 return _get_osfhandle (fd) != -1; 1592 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
777#else 1593#else
778 return fcntl (fd, F_GETFD) != -1; 1594 return fcntl (fd, F_GETFD) != -1;
779#endif 1595#endif
780} 1596}
781 1597
782/* called on EBADF to verify fds */ 1598/* called on EBADF to verify fds */
783static void noinline 1599static void noinline ecb_cold
784fd_ebadf (EV_P) 1600fd_ebadf (EV_P)
785{ 1601{
786 int fd; 1602 int fd;
787 1603
788 for (fd = 0; fd < anfdmax; ++fd) 1604 for (fd = 0; fd < anfdmax; ++fd)
790 if (!fd_valid (fd) && errno == EBADF) 1606 if (!fd_valid (fd) && errno == EBADF)
791 fd_kill (EV_A_ fd); 1607 fd_kill (EV_A_ fd);
792} 1608}
793 1609
794/* called on ENOMEM in select/poll to kill some fds and retry */ 1610/* called on ENOMEM in select/poll to kill some fds and retry */
795static void noinline 1611static void noinline ecb_cold
796fd_enomem (EV_P) 1612fd_enomem (EV_P)
797{ 1613{
798 int fd; 1614 int fd;
799 1615
800 for (fd = anfdmax; fd--; ) 1616 for (fd = anfdmax; fd--; )
801 if (anfds [fd].events) 1617 if (anfds [fd].events)
802 { 1618 {
803 fd_kill (EV_A_ fd); 1619 fd_kill (EV_A_ fd);
804 return; 1620 break;
805 } 1621 }
806} 1622}
807 1623
808/* usually called after fork if backend needs to re-arm all fds from scratch */ 1624/* usually called after fork if backend needs to re-arm all fds from scratch */
809static void noinline 1625static void noinline
813 1629
814 for (fd = 0; fd < anfdmax; ++fd) 1630 for (fd = 0; fd < anfdmax; ++fd)
815 if (anfds [fd].events) 1631 if (anfds [fd].events)
816 { 1632 {
817 anfds [fd].events = 0; 1633 anfds [fd].events = 0;
1634 anfds [fd].emask = 0;
818 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1635 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
819 } 1636 }
820} 1637}
821 1638
1639/* used to prepare libev internal fd's */
1640/* this is not fork-safe */
1641inline_speed void
1642fd_intern (int fd)
1643{
1644#ifdef _WIN32
1645 unsigned long arg = 1;
1646 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1647#else
1648 fcntl (fd, F_SETFD, FD_CLOEXEC);
1649 fcntl (fd, F_SETFL, O_NONBLOCK);
1650#endif
1651}
1652
822/*****************************************************************************/ 1653/*****************************************************************************/
823 1654
824/* 1655/*
825 * the heap functions want a real array index. array index 0 uis guaranteed to not 1656 * the heap functions want a real array index. array index 0 is guaranteed to not
826 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1657 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
827 * the branching factor of the d-tree. 1658 * the branching factor of the d-tree.
828 */ 1659 */
829 1660
830/* 1661/*
839#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1670#define HEAP0 (DHEAP - 1) /* index of first element in heap */
840#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1671#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
841#define UPHEAP_DONE(p,k) ((p) == (k)) 1672#define UPHEAP_DONE(p,k) ((p) == (k))
842 1673
843/* away from the root */ 1674/* away from the root */
844void inline_speed 1675inline_speed void
845downheap (ANHE *heap, int N, int k) 1676downheap (ANHE *heap, int N, int k)
846{ 1677{
847 ANHE he = heap [k]; 1678 ANHE he = heap [k];
848 ANHE *E = heap + N + HEAP0; 1679 ANHE *E = heap + N + HEAP0;
849 1680
889#define HEAP0 1 1720#define HEAP0 1
890#define HPARENT(k) ((k) >> 1) 1721#define HPARENT(k) ((k) >> 1)
891#define UPHEAP_DONE(p,k) (!(p)) 1722#define UPHEAP_DONE(p,k) (!(p))
892 1723
893/* away from the root */ 1724/* away from the root */
894void inline_speed 1725inline_speed void
895downheap (ANHE *heap, int N, int k) 1726downheap (ANHE *heap, int N, int k)
896{ 1727{
897 ANHE he = heap [k]; 1728 ANHE he = heap [k];
898 1729
899 for (;;) 1730 for (;;)
900 { 1731 {
901 int c = k << 1; 1732 int c = k << 1;
902 1733
903 if (c > N + HEAP0 - 1) 1734 if (c >= N + HEAP0)
904 break; 1735 break;
905 1736
906 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1737 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
907 ? 1 : 0; 1738 ? 1 : 0;
908 1739
919 ev_active (ANHE_w (he)) = k; 1750 ev_active (ANHE_w (he)) = k;
920} 1751}
921#endif 1752#endif
922 1753
923/* towards the root */ 1754/* towards the root */
924void inline_speed 1755inline_speed void
925upheap (ANHE *heap, int k) 1756upheap (ANHE *heap, int k)
926{ 1757{
927 ANHE he = heap [k]; 1758 ANHE he = heap [k];
928 1759
929 for (;;) 1760 for (;;)
940 1771
941 heap [k] = he; 1772 heap [k] = he;
942 ev_active (ANHE_w (he)) = k; 1773 ev_active (ANHE_w (he)) = k;
943} 1774}
944 1775
945void inline_size 1776/* move an element suitably so it is in a correct place */
1777inline_size void
946adjustheap (ANHE *heap, int N, int k) 1778adjustheap (ANHE *heap, int N, int k)
947{ 1779{
948 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1780 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
949 upheap (heap, k); 1781 upheap (heap, k);
950 else 1782 else
951 downheap (heap, N, k); 1783 downheap (heap, N, k);
952} 1784}
953 1785
954/* rebuild the heap: this function is used only once and executed rarely */ 1786/* rebuild the heap: this function is used only once and executed rarely */
955void inline_size 1787inline_size void
956reheap (ANHE *heap, int N) 1788reheap (ANHE *heap, int N)
957{ 1789{
958 int i; 1790 int i;
959 1791
960 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1792 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
963 upheap (heap, i + HEAP0); 1795 upheap (heap, i + HEAP0);
964} 1796}
965 1797
966/*****************************************************************************/ 1798/*****************************************************************************/
967 1799
1800/* associate signal watchers to a signal signal */
968typedef struct 1801typedef struct
969{ 1802{
1803 EV_ATOMIC_T pending;
1804#if EV_MULTIPLICITY
1805 EV_P;
1806#endif
970 WL head; 1807 WL head;
971 EV_ATOMIC_T gotsig;
972} ANSIG; 1808} ANSIG;
973 1809
974static ANSIG *signals; 1810static ANSIG signals [EV_NSIG - 1];
975static int signalmax;
976
977static EV_ATOMIC_T gotsig;
978
979void inline_size
980signals_init (ANSIG *base, int count)
981{
982 while (count--)
983 {
984 base->head = 0;
985 base->gotsig = 0;
986
987 ++base;
988 }
989}
990 1811
991/*****************************************************************************/ 1812/*****************************************************************************/
992 1813
993void inline_speed 1814#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
994fd_intern (int fd)
995{
996#ifdef _WIN32
997 unsigned long arg = 1;
998 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
999#else
1000 fcntl (fd, F_SETFD, FD_CLOEXEC);
1001 fcntl (fd, F_SETFL, O_NONBLOCK);
1002#endif
1003}
1004 1815
1005static void noinline 1816static void noinline ecb_cold
1006evpipe_init (EV_P) 1817evpipe_init (EV_P)
1007{ 1818{
1008 if (!ev_is_active (&pipeev)) 1819 if (!ev_is_active (&pipe_w))
1009 { 1820 {
1010#if EV_USE_EVENTFD 1821# if EV_USE_EVENTFD
1822 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1823 if (evfd < 0 && errno == EINVAL)
1011 if ((evfd = eventfd (0, 0)) >= 0) 1824 evfd = eventfd (0, 0);
1825
1826 if (evfd >= 0)
1012 { 1827 {
1013 evpipe [0] = -1; 1828 evpipe [0] = -1;
1014 fd_intern (evfd); 1829 fd_intern (evfd); /* doing it twice doesn't hurt */
1015 ev_io_set (&pipeev, evfd, EV_READ); 1830 ev_io_set (&pipe_w, evfd, EV_READ);
1016 } 1831 }
1017 else 1832 else
1018#endif 1833# endif
1019 { 1834 {
1020 while (pipe (evpipe)) 1835 while (pipe (evpipe))
1021 syserr ("(libev) error creating signal/async pipe"); 1836 ev_syserr ("(libev) error creating signal/async pipe");
1022 1837
1023 fd_intern (evpipe [0]); 1838 fd_intern (evpipe [0]);
1024 fd_intern (evpipe [1]); 1839 fd_intern (evpipe [1]);
1025 ev_io_set (&pipeev, evpipe [0], EV_READ); 1840 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1026 } 1841 }
1027 1842
1028 ev_io_start (EV_A_ &pipeev); 1843 ev_io_start (EV_A_ &pipe_w);
1029 ev_unref (EV_A); /* watcher should not keep loop alive */ 1844 ev_unref (EV_A); /* watcher should not keep loop alive */
1030 } 1845 }
1031} 1846}
1032 1847
1033void inline_size 1848inline_speed void
1034evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1849evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1035{ 1850{
1036 if (!*flag) 1851 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1852
1853 if (expect_true (*flag))
1854 return;
1855
1856 *flag = 1;
1857
1858 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1859
1860 pipe_write_skipped = 1;
1861
1862 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1863
1864 if (pipe_write_wanted)
1037 { 1865 {
1866 int old_errno;
1867
1868 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1869
1038 int old_errno = errno; /* save errno because write might clobber it */ 1870 old_errno = errno; /* save errno because write will clobber it */
1039
1040 *flag = 1;
1041 1871
1042#if EV_USE_EVENTFD 1872#if EV_USE_EVENTFD
1043 if (evfd >= 0) 1873 if (evfd >= 0)
1044 { 1874 {
1045 uint64_t counter = 1; 1875 uint64_t counter = 1;
1046 write (evfd, &counter, sizeof (uint64_t)); 1876 write (evfd, &counter, sizeof (uint64_t));
1047 } 1877 }
1048 else 1878 else
1049#endif 1879#endif
1880 {
1881#ifdef _WIN32
1882 WSABUF buf;
1883 DWORD sent;
1884 buf.buf = &buf;
1885 buf.len = 1;
1886 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
1887#else
1050 write (evpipe [1], &old_errno, 1); 1888 write (evpipe [1], &(evpipe [1]), 1);
1889#endif
1890 }
1051 1891
1052 errno = old_errno; 1892 errno = old_errno;
1053 } 1893 }
1054} 1894}
1055 1895
1896/* called whenever the libev signal pipe */
1897/* got some events (signal, async) */
1056static void 1898static void
1057pipecb (EV_P_ ev_io *iow, int revents) 1899pipecb (EV_P_ ev_io *iow, int revents)
1058{ 1900{
1901 int i;
1902
1903 if (revents & EV_READ)
1904 {
1059#if EV_USE_EVENTFD 1905#if EV_USE_EVENTFD
1060 if (evfd >= 0) 1906 if (evfd >= 0)
1061 { 1907 {
1062 uint64_t counter; 1908 uint64_t counter;
1063 read (evfd, &counter, sizeof (uint64_t)); 1909 read (evfd, &counter, sizeof (uint64_t));
1064 } 1910 }
1065 else 1911 else
1066#endif 1912#endif
1067 { 1913 {
1068 char dummy; 1914 char dummy[4];
1915#ifdef _WIN32
1916 WSABUF buf;
1917 DWORD recvd;
1918 buf.buf = dummy;
1919 buf.len = sizeof (dummy);
1920 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, 0, 0, 0);
1921#else
1069 read (evpipe [0], &dummy, 1); 1922 read (evpipe [0], &dummy, sizeof (dummy));
1923#endif
1924 }
1925 }
1926
1927 pipe_write_skipped = 0;
1928
1929 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
1930
1931#if EV_SIGNAL_ENABLE
1932 if (sig_pending)
1070 } 1933 {
1934 sig_pending = 0;
1071 1935
1072 if (gotsig && ev_is_default_loop (EV_A)) 1936 ECB_MEMORY_FENCE_RELEASE;
1073 {
1074 int signum;
1075 gotsig = 0;
1076 1937
1077 for (signum = signalmax; signum--; ) 1938 for (i = EV_NSIG - 1; i--; )
1078 if (signals [signum].gotsig) 1939 if (expect_false (signals [i].pending))
1079 ev_feed_signal_event (EV_A_ signum + 1); 1940 ev_feed_signal_event (EV_A_ i + 1);
1080 } 1941 }
1942#endif
1081 1943
1082#if EV_ASYNC_ENABLE 1944#if EV_ASYNC_ENABLE
1083 if (gotasync) 1945 if (async_pending)
1084 { 1946 {
1085 int i; 1947 async_pending = 0;
1086 gotasync = 0; 1948
1949 ECB_MEMORY_FENCE_RELEASE;
1087 1950
1088 for (i = asynccnt; i--; ) 1951 for (i = asynccnt; i--; )
1089 if (asyncs [i]->sent) 1952 if (asyncs [i]->sent)
1090 { 1953 {
1091 asyncs [i]->sent = 0; 1954 asyncs [i]->sent = 0;
1095#endif 1958#endif
1096} 1959}
1097 1960
1098/*****************************************************************************/ 1961/*****************************************************************************/
1099 1962
1963void
1964ev_feed_signal (int signum) EV_THROW
1965{
1966#if EV_MULTIPLICITY
1967 EV_P = signals [signum - 1].loop;
1968
1969 if (!EV_A)
1970 return;
1971#endif
1972
1973 if (!ev_active (&pipe_w))
1974 return;
1975
1976 signals [signum - 1].pending = 1;
1977 evpipe_write (EV_A_ &sig_pending);
1978}
1979
1100static void 1980static void
1101ev_sighandler (int signum) 1981ev_sighandler (int signum)
1102{ 1982{
1983#ifdef _WIN32
1984 signal (signum, ev_sighandler);
1985#endif
1986
1987 ev_feed_signal (signum);
1988}
1989
1990void noinline
1991ev_feed_signal_event (EV_P_ int signum) EV_THROW
1992{
1993 WL w;
1994
1995 if (expect_false (signum <= 0 || signum > EV_NSIG))
1996 return;
1997
1998 --signum;
1999
1103#if EV_MULTIPLICITY 2000#if EV_MULTIPLICITY
1104 struct ev_loop *loop = &default_loop_struct; 2001 /* it is permissible to try to feed a signal to the wrong loop */
1105#endif 2002 /* or, likely more useful, feeding a signal nobody is waiting for */
1106 2003
1107#if _WIN32 2004 if (expect_false (signals [signum].loop != EV_A))
1108 signal (signum, ev_sighandler);
1109#endif
1110
1111 signals [signum - 1].gotsig = 1;
1112 evpipe_write (EV_A_ &gotsig);
1113}
1114
1115void noinline
1116ev_feed_signal_event (EV_P_ int signum)
1117{
1118 WL w;
1119
1120#if EV_MULTIPLICITY
1121 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1122#endif
1123
1124 --signum;
1125
1126 if (signum < 0 || signum >= signalmax)
1127 return; 2005 return;
2006#endif
1128 2007
1129 signals [signum].gotsig = 0; 2008 signals [signum].pending = 0;
1130 2009
1131 for (w = signals [signum].head; w; w = w->next) 2010 for (w = signals [signum].head; w; w = w->next)
1132 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2011 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1133} 2012}
1134 2013
2014#if EV_USE_SIGNALFD
2015static void
2016sigfdcb (EV_P_ ev_io *iow, int revents)
2017{
2018 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2019
2020 for (;;)
2021 {
2022 ssize_t res = read (sigfd, si, sizeof (si));
2023
2024 /* not ISO-C, as res might be -1, but works with SuS */
2025 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2026 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2027
2028 if (res < (ssize_t)sizeof (si))
2029 break;
2030 }
2031}
2032#endif
2033
2034#endif
2035
1135/*****************************************************************************/ 2036/*****************************************************************************/
1136 2037
2038#if EV_CHILD_ENABLE
1137static WL childs [EV_PID_HASHSIZE]; 2039static WL childs [EV_PID_HASHSIZE];
1138
1139#ifndef _WIN32
1140 2040
1141static ev_signal childev; 2041static ev_signal childev;
1142 2042
1143#ifndef WIFCONTINUED 2043#ifndef WIFCONTINUED
1144# define WIFCONTINUED(status) 0 2044# define WIFCONTINUED(status) 0
1145#endif 2045#endif
1146 2046
1147void inline_speed 2047/* handle a single child status event */
2048inline_speed void
1148child_reap (EV_P_ int chain, int pid, int status) 2049child_reap (EV_P_ int chain, int pid, int status)
1149{ 2050{
1150 ev_child *w; 2051 ev_child *w;
1151 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2052 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1152 2053
1153 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2054 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1154 { 2055 {
1155 if ((w->pid == pid || !w->pid) 2056 if ((w->pid == pid || !w->pid)
1156 && (!traced || (w->flags & 1))) 2057 && (!traced || (w->flags & 1)))
1157 { 2058 {
1158 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2059 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1165 2066
1166#ifndef WCONTINUED 2067#ifndef WCONTINUED
1167# define WCONTINUED 0 2068# define WCONTINUED 0
1168#endif 2069#endif
1169 2070
2071/* called on sigchld etc., calls waitpid */
1170static void 2072static void
1171childcb (EV_P_ ev_signal *sw, int revents) 2073childcb (EV_P_ ev_signal *sw, int revents)
1172{ 2074{
1173 int pid, status; 2075 int pid, status;
1174 2076
1182 /* make sure we are called again until all children have been reaped */ 2084 /* make sure we are called again until all children have been reaped */
1183 /* we need to do it this way so that the callback gets called before we continue */ 2085 /* we need to do it this way so that the callback gets called before we continue */
1184 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2086 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1185 2087
1186 child_reap (EV_A_ pid, pid, status); 2088 child_reap (EV_A_ pid, pid, status);
1187 if (EV_PID_HASHSIZE > 1) 2089 if ((EV_PID_HASHSIZE) > 1)
1188 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2090 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1189} 2091}
1190 2092
1191#endif 2093#endif
1192 2094
1193/*****************************************************************************/ 2095/*****************************************************************************/
1194 2096
2097#if EV_USE_IOCP
2098# include "ev_iocp.c"
2099#endif
1195#if EV_USE_PORT 2100#if EV_USE_PORT
1196# include "ev_port.c" 2101# include "ev_port.c"
1197#endif 2102#endif
1198#if EV_USE_KQUEUE 2103#if EV_USE_KQUEUE
1199# include "ev_kqueue.c" 2104# include "ev_kqueue.c"
1206#endif 2111#endif
1207#if EV_USE_SELECT 2112#if EV_USE_SELECT
1208# include "ev_select.c" 2113# include "ev_select.c"
1209#endif 2114#endif
1210 2115
1211int 2116int ecb_cold
1212ev_version_major (void) 2117ev_version_major (void) EV_THROW
1213{ 2118{
1214 return EV_VERSION_MAJOR; 2119 return EV_VERSION_MAJOR;
1215} 2120}
1216 2121
1217int 2122int ecb_cold
1218ev_version_minor (void) 2123ev_version_minor (void) EV_THROW
1219{ 2124{
1220 return EV_VERSION_MINOR; 2125 return EV_VERSION_MINOR;
1221} 2126}
1222 2127
1223/* return true if we are running with elevated privileges and should ignore env variables */ 2128/* return true if we are running with elevated privileges and should ignore env variables */
1224int inline_size 2129int inline_size ecb_cold
1225enable_secure (void) 2130enable_secure (void)
1226{ 2131{
1227#ifdef _WIN32 2132#ifdef _WIN32
1228 return 0; 2133 return 0;
1229#else 2134#else
1230 return getuid () != geteuid () 2135 return getuid () != geteuid ()
1231 || getgid () != getegid (); 2136 || getgid () != getegid ();
1232#endif 2137#endif
1233} 2138}
1234 2139
1235unsigned int 2140unsigned int ecb_cold
1236ev_supported_backends (void) 2141ev_supported_backends (void) EV_THROW
1237{ 2142{
1238 unsigned int flags = 0; 2143 unsigned int flags = 0;
1239 2144
1240 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2145 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1241 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2146 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1244 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2149 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1245 2150
1246 return flags; 2151 return flags;
1247} 2152}
1248 2153
1249unsigned int 2154unsigned int ecb_cold
1250ev_recommended_backends (void) 2155ev_recommended_backends (void) EV_THROW
1251{ 2156{
1252 unsigned int flags = ev_supported_backends (); 2157 unsigned int flags = ev_supported_backends ();
1253 2158
1254#ifndef __NetBSD__ 2159#ifndef __NetBSD__
1255 /* kqueue is borked on everything but netbsd apparently */ 2160 /* kqueue is borked on everything but netbsd apparently */
1256 /* it usually doesn't work correctly on anything but sockets and pipes */ 2161 /* it usually doesn't work correctly on anything but sockets and pipes */
1257 flags &= ~EVBACKEND_KQUEUE; 2162 flags &= ~EVBACKEND_KQUEUE;
1258#endif 2163#endif
1259#ifdef __APPLE__ 2164#ifdef __APPLE__
1260 // flags &= ~EVBACKEND_KQUEUE; for documentation 2165 /* only select works correctly on that "unix-certified" platform */
1261 flags &= ~EVBACKEND_POLL; 2166 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2167 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2168#endif
2169#ifdef __FreeBSD__
2170 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1262#endif 2171#endif
1263 2172
1264 return flags; 2173 return flags;
1265} 2174}
1266 2175
2176unsigned int ecb_cold
2177ev_embeddable_backends (void) EV_THROW
2178{
2179 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2180
2181 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2182 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2183 flags &= ~EVBACKEND_EPOLL;
2184
2185 return flags;
2186}
2187
1267unsigned int 2188unsigned int
1268ev_embeddable_backends (void) 2189ev_backend (EV_P) EV_THROW
1269{ 2190{
1270 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2191 return backend;
1271
1272 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1273 /* please fix it and tell me how to detect the fix */
1274 flags &= ~EVBACKEND_EPOLL;
1275
1276 return flags;
1277} 2192}
1278 2193
2194#if EV_FEATURE_API
1279unsigned int 2195unsigned int
1280ev_backend (EV_P) 2196ev_iteration (EV_P) EV_THROW
1281{ 2197{
1282 return backend; 2198 return loop_count;
1283} 2199}
1284 2200
1285unsigned int 2201unsigned int
1286ev_loop_count (EV_P) 2202ev_depth (EV_P) EV_THROW
1287{ 2203{
1288 return loop_count; 2204 return loop_depth;
1289} 2205}
1290 2206
1291void 2207void
1292ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2208ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1293{ 2209{
1294 io_blocktime = interval; 2210 io_blocktime = interval;
1295} 2211}
1296 2212
1297void 2213void
1298ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2214ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1299{ 2215{
1300 timeout_blocktime = interval; 2216 timeout_blocktime = interval;
1301} 2217}
1302 2218
2219void
2220ev_set_userdata (EV_P_ void *data) EV_THROW
2221{
2222 userdata = data;
2223}
2224
2225void *
2226ev_userdata (EV_P) EV_THROW
2227{
2228 return userdata;
2229}
2230
2231void
2232ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2233{
2234 invoke_cb = invoke_pending_cb;
2235}
2236
2237void
2238ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2239{
2240 release_cb = release;
2241 acquire_cb = acquire;
2242}
2243#endif
2244
2245/* initialise a loop structure, must be zero-initialised */
1303static void noinline 2246static void noinline ecb_cold
1304loop_init (EV_P_ unsigned int flags) 2247loop_init (EV_P_ unsigned int flags) EV_THROW
1305{ 2248{
1306 if (!backend) 2249 if (!backend)
1307 { 2250 {
2251 origflags = flags;
2252
2253#if EV_USE_REALTIME
2254 if (!have_realtime)
2255 {
2256 struct timespec ts;
2257
2258 if (!clock_gettime (CLOCK_REALTIME, &ts))
2259 have_realtime = 1;
2260 }
2261#endif
2262
1308#if EV_USE_MONOTONIC 2263#if EV_USE_MONOTONIC
2264 if (!have_monotonic)
1309 { 2265 {
1310 struct timespec ts; 2266 struct timespec ts;
2267
1311 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2268 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1312 have_monotonic = 1; 2269 have_monotonic = 1;
1313 } 2270 }
1314#endif
1315
1316 ev_rt_now = ev_time ();
1317 mn_now = get_clock ();
1318 now_floor = mn_now;
1319 rtmn_diff = ev_rt_now - mn_now;
1320
1321 io_blocktime = 0.;
1322 timeout_blocktime = 0.;
1323 backend = 0;
1324 backend_fd = -1;
1325 gotasync = 0;
1326#if EV_USE_INOTIFY
1327 fs_fd = -2;
1328#endif 2271#endif
1329 2272
1330 /* pid check not overridable via env */ 2273 /* pid check not overridable via env */
1331#ifndef _WIN32 2274#ifndef _WIN32
1332 if (flags & EVFLAG_FORKCHECK) 2275 if (flags & EVFLAG_FORKCHECK)
1336 if (!(flags & EVFLAG_NOENV) 2279 if (!(flags & EVFLAG_NOENV)
1337 && !enable_secure () 2280 && !enable_secure ()
1338 && getenv ("LIBEV_FLAGS")) 2281 && getenv ("LIBEV_FLAGS"))
1339 flags = atoi (getenv ("LIBEV_FLAGS")); 2282 flags = atoi (getenv ("LIBEV_FLAGS"));
1340 2283
1341 if (!(flags & 0x0000ffffU)) 2284 ev_rt_now = ev_time ();
2285 mn_now = get_clock ();
2286 now_floor = mn_now;
2287 rtmn_diff = ev_rt_now - mn_now;
2288#if EV_FEATURE_API
2289 invoke_cb = ev_invoke_pending;
2290#endif
2291
2292 io_blocktime = 0.;
2293 timeout_blocktime = 0.;
2294 backend = 0;
2295 backend_fd = -1;
2296 sig_pending = 0;
2297#if EV_ASYNC_ENABLE
2298 async_pending = 0;
2299#endif
2300 pipe_write_skipped = 0;
2301 pipe_write_wanted = 0;
2302#if EV_USE_INOTIFY
2303 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2304#endif
2305#if EV_USE_SIGNALFD
2306 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2307#endif
2308
2309 if (!(flags & EVBACKEND_MASK))
1342 flags |= ev_recommended_backends (); 2310 flags |= ev_recommended_backends ();
1343 2311
2312#if EV_USE_IOCP
2313 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2314#endif
1344#if EV_USE_PORT 2315#if EV_USE_PORT
1345 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2316 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1346#endif 2317#endif
1347#if EV_USE_KQUEUE 2318#if EV_USE_KQUEUE
1348 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2319 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1355#endif 2326#endif
1356#if EV_USE_SELECT 2327#if EV_USE_SELECT
1357 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2328 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1358#endif 2329#endif
1359 2330
2331 ev_prepare_init (&pending_w, pendingcb);
2332
2333#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1360 ev_init (&pipeev, pipecb); 2334 ev_init (&pipe_w, pipecb);
1361 ev_set_priority (&pipeev, EV_MAXPRI); 2335 ev_set_priority (&pipe_w, EV_MAXPRI);
2336#endif
1362 } 2337 }
1363} 2338}
1364 2339
1365static void noinline 2340/* free up a loop structure */
2341void ecb_cold
1366loop_destroy (EV_P) 2342ev_loop_destroy (EV_P)
1367{ 2343{
1368 int i; 2344 int i;
1369 2345
2346#if EV_MULTIPLICITY
2347 /* mimic free (0) */
2348 if (!EV_A)
2349 return;
2350#endif
2351
2352#if EV_CLEANUP_ENABLE
2353 /* queue cleanup watchers (and execute them) */
2354 if (expect_false (cleanupcnt))
2355 {
2356 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2357 EV_INVOKE_PENDING;
2358 }
2359#endif
2360
2361#if EV_CHILD_ENABLE
2362 if (ev_is_active (&childev))
2363 {
2364 ev_ref (EV_A); /* child watcher */
2365 ev_signal_stop (EV_A_ &childev);
2366 }
2367#endif
2368
1370 if (ev_is_active (&pipeev)) 2369 if (ev_is_active (&pipe_w))
1371 { 2370 {
1372 ev_ref (EV_A); /* signal watcher */ 2371 /*ev_ref (EV_A);*/
1373 ev_io_stop (EV_A_ &pipeev); 2372 /*ev_io_stop (EV_A_ &pipe_w);*/
1374 2373
1375#if EV_USE_EVENTFD 2374#if EV_USE_EVENTFD
1376 if (evfd >= 0) 2375 if (evfd >= 0)
1377 close (evfd); 2376 close (evfd);
1378#endif 2377#endif
1379 2378
1380 if (evpipe [0] >= 0) 2379 if (evpipe [0] >= 0)
1381 { 2380 {
1382 close (evpipe [0]); 2381 EV_WIN32_CLOSE_FD (evpipe [0]);
1383 close (evpipe [1]); 2382 EV_WIN32_CLOSE_FD (evpipe [1]);
1384 } 2383 }
1385 } 2384 }
2385
2386#if EV_USE_SIGNALFD
2387 if (ev_is_active (&sigfd_w))
2388 close (sigfd);
2389#endif
1386 2390
1387#if EV_USE_INOTIFY 2391#if EV_USE_INOTIFY
1388 if (fs_fd >= 0) 2392 if (fs_fd >= 0)
1389 close (fs_fd); 2393 close (fs_fd);
1390#endif 2394#endif
1391 2395
1392 if (backend_fd >= 0) 2396 if (backend_fd >= 0)
1393 close (backend_fd); 2397 close (backend_fd);
1394 2398
2399#if EV_USE_IOCP
2400 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2401#endif
1395#if EV_USE_PORT 2402#if EV_USE_PORT
1396 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2403 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1397#endif 2404#endif
1398#if EV_USE_KQUEUE 2405#if EV_USE_KQUEUE
1399 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2406 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1414#if EV_IDLE_ENABLE 2421#if EV_IDLE_ENABLE
1415 array_free (idle, [i]); 2422 array_free (idle, [i]);
1416#endif 2423#endif
1417 } 2424 }
1418 2425
1419 ev_free (anfds); anfdmax = 0; 2426 ev_free (anfds); anfds = 0; anfdmax = 0;
1420 2427
1421 /* have to use the microsoft-never-gets-it-right macro */ 2428 /* have to use the microsoft-never-gets-it-right macro */
2429 array_free (rfeed, EMPTY);
1422 array_free (fdchange, EMPTY); 2430 array_free (fdchange, EMPTY);
1423 array_free (timer, EMPTY); 2431 array_free (timer, EMPTY);
1424#if EV_PERIODIC_ENABLE 2432#if EV_PERIODIC_ENABLE
1425 array_free (periodic, EMPTY); 2433 array_free (periodic, EMPTY);
1426#endif 2434#endif
1427#if EV_FORK_ENABLE 2435#if EV_FORK_ENABLE
1428 array_free (fork, EMPTY); 2436 array_free (fork, EMPTY);
1429#endif 2437#endif
2438#if EV_CLEANUP_ENABLE
2439 array_free (cleanup, EMPTY);
2440#endif
1430 array_free (prepare, EMPTY); 2441 array_free (prepare, EMPTY);
1431 array_free (check, EMPTY); 2442 array_free (check, EMPTY);
1432#if EV_ASYNC_ENABLE 2443#if EV_ASYNC_ENABLE
1433 array_free (async, EMPTY); 2444 array_free (async, EMPTY);
1434#endif 2445#endif
1435 2446
1436 backend = 0; 2447 backend = 0;
2448
2449#if EV_MULTIPLICITY
2450 if (ev_is_default_loop (EV_A))
2451#endif
2452 ev_default_loop_ptr = 0;
2453#if EV_MULTIPLICITY
2454 else
2455 ev_free (EV_A);
2456#endif
1437} 2457}
1438 2458
1439#if EV_USE_INOTIFY 2459#if EV_USE_INOTIFY
1440void inline_size infy_fork (EV_P); 2460inline_size void infy_fork (EV_P);
1441#endif 2461#endif
1442 2462
1443void inline_size 2463inline_size void
1444loop_fork (EV_P) 2464loop_fork (EV_P)
1445{ 2465{
1446#if EV_USE_PORT 2466#if EV_USE_PORT
1447 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2467 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1448#endif 2468#endif
1454#endif 2474#endif
1455#if EV_USE_INOTIFY 2475#if EV_USE_INOTIFY
1456 infy_fork (EV_A); 2476 infy_fork (EV_A);
1457#endif 2477#endif
1458 2478
1459 if (ev_is_active (&pipeev)) 2479 if (ev_is_active (&pipe_w))
1460 { 2480 {
1461 /* this "locks" the handlers against writing to the pipe */ 2481 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1462 /* while we modify the fd vars */
1463 gotsig = 1;
1464#if EV_ASYNC_ENABLE
1465 gotasync = 1;
1466#endif
1467 2482
1468 ev_ref (EV_A); 2483 ev_ref (EV_A);
1469 ev_io_stop (EV_A_ &pipeev); 2484 ev_io_stop (EV_A_ &pipe_w);
1470 2485
1471#if EV_USE_EVENTFD 2486#if EV_USE_EVENTFD
1472 if (evfd >= 0) 2487 if (evfd >= 0)
1473 close (evfd); 2488 close (evfd);
1474#endif 2489#endif
1475 2490
1476 if (evpipe [0] >= 0) 2491 if (evpipe [0] >= 0)
1477 { 2492 {
1478 close (evpipe [0]); 2493 EV_WIN32_CLOSE_FD (evpipe [0]);
1479 close (evpipe [1]); 2494 EV_WIN32_CLOSE_FD (evpipe [1]);
1480 } 2495 }
1481 2496
2497#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1482 evpipe_init (EV_A); 2498 evpipe_init (EV_A);
1483 /* now iterate over everything, in case we missed something */ 2499 /* now iterate over everything, in case we missed something */
1484 pipecb (EV_A_ &pipeev, EV_READ); 2500 pipecb (EV_A_ &pipe_w, EV_READ);
2501#endif
1485 } 2502 }
1486 2503
1487 postfork = 0; 2504 postfork = 0;
1488} 2505}
1489 2506
1490#if EV_MULTIPLICITY 2507#if EV_MULTIPLICITY
1491 2508
1492struct ev_loop * 2509struct ev_loop * ecb_cold
1493ev_loop_new (unsigned int flags) 2510ev_loop_new (unsigned int flags) EV_THROW
1494{ 2511{
1495 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2512 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1496 2513
1497 memset (loop, 0, sizeof (struct ev_loop)); 2514 memset (EV_A, 0, sizeof (struct ev_loop));
1498
1499 loop_init (EV_A_ flags); 2515 loop_init (EV_A_ flags);
1500 2516
1501 if (ev_backend (EV_A)) 2517 if (ev_backend (EV_A))
1502 return loop; 2518 return EV_A;
1503 2519
2520 ev_free (EV_A);
1504 return 0; 2521 return 0;
1505} 2522}
1506 2523
1507void 2524#endif /* multiplicity */
1508ev_loop_destroy (EV_P)
1509{
1510 loop_destroy (EV_A);
1511 ev_free (loop);
1512}
1513
1514void
1515ev_loop_fork (EV_P)
1516{
1517 postfork = 1; /* must be in line with ev_default_fork */
1518}
1519 2525
1520#if EV_VERIFY 2526#if EV_VERIFY
1521static void noinline 2527static void noinline ecb_cold
1522verify_watcher (EV_P_ W w) 2528verify_watcher (EV_P_ W w)
1523{ 2529{
1524 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 2530 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1525 2531
1526 if (w->pending) 2532 if (w->pending)
1527 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 2533 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1528} 2534}
1529 2535
1530static void noinline 2536static void noinline ecb_cold
1531verify_heap (EV_P_ ANHE *heap, int N) 2537verify_heap (EV_P_ ANHE *heap, int N)
1532{ 2538{
1533 int i; 2539 int i;
1534 2540
1535 for (i = HEAP0; i < N + HEAP0; ++i) 2541 for (i = HEAP0; i < N + HEAP0; ++i)
1536 { 2542 {
1537 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 2543 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1538 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 2544 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1539 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 2545 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1540 2546
1541 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 2547 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1542 } 2548 }
1543} 2549}
1544 2550
1545static void noinline 2551static void noinline ecb_cold
1546array_verify (EV_P_ W *ws, int cnt) 2552array_verify (EV_P_ W *ws, int cnt)
1547{ 2553{
1548 while (cnt--) 2554 while (cnt--)
1549 { 2555 {
1550 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 2556 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1551 verify_watcher (EV_A_ ws [cnt]); 2557 verify_watcher (EV_A_ ws [cnt]);
1552 } 2558 }
1553} 2559}
1554#endif 2560#endif
1555 2561
1556void 2562#if EV_FEATURE_API
1557ev_loop_verify (EV_P) 2563void ecb_cold
2564ev_verify (EV_P) EV_THROW
1558{ 2565{
1559#if EV_VERIFY 2566#if EV_VERIFY
1560 int i; 2567 int i, j;
1561 WL w; 2568 WL w, w2;
1562 2569
1563 assert (activecnt >= -1); 2570 assert (activecnt >= -1);
1564 2571
1565 assert (fdchangemax >= fdchangecnt); 2572 assert (fdchangemax >= fdchangecnt);
1566 for (i = 0; i < fdchangecnt; ++i) 2573 for (i = 0; i < fdchangecnt; ++i)
1567 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 2574 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1568 2575
1569 assert (anfdmax >= 0); 2576 assert (anfdmax >= 0);
1570 for (i = 0; i < anfdmax; ++i) 2577 for (i = j = 0; i < anfdmax; ++i)
1571 for (w = anfds [i].head; w; w = w->next) 2578 for (w = w2 = anfds [i].head; w; w = w->next)
1572 { 2579 {
1573 verify_watcher (EV_A_ (W)w); 2580 verify_watcher (EV_A_ (W)w);
2581
2582 if (++j & 1)
2583 w2 = w2->next;
2584
2585 assert (("libev: io watcher list contains a loop", w != w2));
1574 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 2586 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1575 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 2587 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1576 } 2588 }
1577 2589
1578 assert (timermax >= timercnt); 2590 assert (timermax >= timercnt);
1579 verify_heap (EV_A_ timers, timercnt); 2591 verify_heap (EV_A_ timers, timercnt);
1580 2592
1596#if EV_FORK_ENABLE 2608#if EV_FORK_ENABLE
1597 assert (forkmax >= forkcnt); 2609 assert (forkmax >= forkcnt);
1598 array_verify (EV_A_ (W *)forks, forkcnt); 2610 array_verify (EV_A_ (W *)forks, forkcnt);
1599#endif 2611#endif
1600 2612
2613#if EV_CLEANUP_ENABLE
2614 assert (cleanupmax >= cleanupcnt);
2615 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2616#endif
2617
1601#if EV_ASYNC_ENABLE 2618#if EV_ASYNC_ENABLE
1602 assert (asyncmax >= asynccnt); 2619 assert (asyncmax >= asynccnt);
1603 array_verify (EV_A_ (W *)asyncs, asynccnt); 2620 array_verify (EV_A_ (W *)asyncs, asynccnt);
1604#endif 2621#endif
1605 2622
2623#if EV_PREPARE_ENABLE
1606 assert (preparemax >= preparecnt); 2624 assert (preparemax >= preparecnt);
1607 array_verify (EV_A_ (W *)prepares, preparecnt); 2625 array_verify (EV_A_ (W *)prepares, preparecnt);
2626#endif
1608 2627
2628#if EV_CHECK_ENABLE
1609 assert (checkmax >= checkcnt); 2629 assert (checkmax >= checkcnt);
1610 array_verify (EV_A_ (W *)checks, checkcnt); 2630 array_verify (EV_A_ (W *)checks, checkcnt);
2631#endif
1611 2632
1612# if 0 2633# if 0
2634#if EV_CHILD_ENABLE
1613 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2635 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1614 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 2636 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2637#endif
1615# endif 2638# endif
1616#endif 2639#endif
1617} 2640}
1618 2641#endif
1619#endif /* multiplicity */
1620 2642
1621#if EV_MULTIPLICITY 2643#if EV_MULTIPLICITY
1622struct ev_loop * 2644struct ev_loop * ecb_cold
1623ev_default_loop_init (unsigned int flags)
1624#else 2645#else
1625int 2646int
2647#endif
1626ev_default_loop (unsigned int flags) 2648ev_default_loop (unsigned int flags) EV_THROW
1627#endif
1628{ 2649{
1629 if (!ev_default_loop_ptr) 2650 if (!ev_default_loop_ptr)
1630 { 2651 {
1631#if EV_MULTIPLICITY 2652#if EV_MULTIPLICITY
1632 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2653 EV_P = ev_default_loop_ptr = &default_loop_struct;
1633#else 2654#else
1634 ev_default_loop_ptr = 1; 2655 ev_default_loop_ptr = 1;
1635#endif 2656#endif
1636 2657
1637 loop_init (EV_A_ flags); 2658 loop_init (EV_A_ flags);
1638 2659
1639 if (ev_backend (EV_A)) 2660 if (ev_backend (EV_A))
1640 { 2661 {
1641#ifndef _WIN32 2662#if EV_CHILD_ENABLE
1642 ev_signal_init (&childev, childcb, SIGCHLD); 2663 ev_signal_init (&childev, childcb, SIGCHLD);
1643 ev_set_priority (&childev, EV_MAXPRI); 2664 ev_set_priority (&childev, EV_MAXPRI);
1644 ev_signal_start (EV_A_ &childev); 2665 ev_signal_start (EV_A_ &childev);
1645 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2666 ev_unref (EV_A); /* child watcher should not keep loop alive */
1646#endif 2667#endif
1651 2672
1652 return ev_default_loop_ptr; 2673 return ev_default_loop_ptr;
1653} 2674}
1654 2675
1655void 2676void
1656ev_default_destroy (void) 2677ev_loop_fork (EV_P) EV_THROW
1657{ 2678{
1658#if EV_MULTIPLICITY
1659 struct ev_loop *loop = ev_default_loop_ptr;
1660#endif
1661
1662#ifndef _WIN32
1663 ev_ref (EV_A); /* child watcher */
1664 ev_signal_stop (EV_A_ &childev);
1665#endif
1666
1667 loop_destroy (EV_A);
1668}
1669
1670void
1671ev_default_fork (void)
1672{
1673#if EV_MULTIPLICITY
1674 struct ev_loop *loop = ev_default_loop_ptr;
1675#endif
1676
1677 if (backend)
1678 postfork = 1; /* must be in line with ev_loop_fork */ 2679 postfork = 1; /* must be in line with ev_default_fork */
1679} 2680}
1680 2681
1681/*****************************************************************************/ 2682/*****************************************************************************/
1682 2683
1683void 2684void
1684ev_invoke (EV_P_ void *w, int revents) 2685ev_invoke (EV_P_ void *w, int revents)
1685{ 2686{
1686 EV_CB_INVOKE ((W)w, revents); 2687 EV_CB_INVOKE ((W)w, revents);
1687} 2688}
1688 2689
1689void inline_speed 2690unsigned int
1690call_pending (EV_P) 2691ev_pending_count (EV_P) EV_THROW
1691{ 2692{
1692 int pri; 2693 int pri;
2694 unsigned int count = 0;
1693 2695
1694 for (pri = NUMPRI; pri--; ) 2696 for (pri = NUMPRI; pri--; )
2697 count += pendingcnt [pri];
2698
2699 return count;
2700}
2701
2702void noinline
2703ev_invoke_pending (EV_P)
2704{
2705 for (pendingpri = NUMPRI; pendingpri--; ) /* pendingpri is modified during the loop */
1695 while (pendingcnt [pri]) 2706 while (pendingcnt [pendingpri])
1696 { 2707 {
1697 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2708 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1698 2709
1699 if (expect_true (p->w))
1700 {
1701 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1702
1703 p->w->pending = 0; 2710 p->w->pending = 0;
1704 EV_CB_INVOKE (p->w, p->events); 2711 EV_CB_INVOKE (p->w, p->events);
1705 EV_FREQUENT_CHECK; 2712 EV_FREQUENT_CHECK;
1706 }
1707 } 2713 }
1708} 2714}
1709 2715
1710#if EV_IDLE_ENABLE 2716#if EV_IDLE_ENABLE
1711void inline_size 2717/* make idle watchers pending. this handles the "call-idle */
2718/* only when higher priorities are idle" logic */
2719inline_size void
1712idle_reify (EV_P) 2720idle_reify (EV_P)
1713{ 2721{
1714 if (expect_false (idleall)) 2722 if (expect_false (idleall))
1715 { 2723 {
1716 int pri; 2724 int pri;
1728 } 2736 }
1729 } 2737 }
1730} 2738}
1731#endif 2739#endif
1732 2740
1733void inline_size 2741/* make timers pending */
2742inline_size void
1734timers_reify (EV_P) 2743timers_reify (EV_P)
1735{ 2744{
1736 EV_FREQUENT_CHECK; 2745 EV_FREQUENT_CHECK;
1737 2746
1738 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2747 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1739 { 2748 {
1740 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2749 do
1741
1742 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1743
1744 /* first reschedule or stop timer */
1745 if (w->repeat)
1746 { 2750 {
2751 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2752
2753 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2754
2755 /* first reschedule or stop timer */
2756 if (w->repeat)
2757 {
1747 ev_at (w) += w->repeat; 2758 ev_at (w) += w->repeat;
1748 if (ev_at (w) < mn_now) 2759 if (ev_at (w) < mn_now)
1749 ev_at (w) = mn_now; 2760 ev_at (w) = mn_now;
1750 2761
1751 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2762 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1752 2763
1753 ANHE_at_cache (timers [HEAP0]); 2764 ANHE_at_cache (timers [HEAP0]);
1754 downheap (timers, timercnt, HEAP0); 2765 downheap (timers, timercnt, HEAP0);
2766 }
2767 else
2768 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2769
2770 EV_FREQUENT_CHECK;
2771 feed_reverse (EV_A_ (W)w);
1755 } 2772 }
1756 else 2773 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1757 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1758 2774
1759 EV_FREQUENT_CHECK; 2775 feed_reverse_done (EV_A_ EV_TIMER);
1760 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1761 } 2776 }
1762} 2777}
1763 2778
1764#if EV_PERIODIC_ENABLE 2779#if EV_PERIODIC_ENABLE
1765void inline_size 2780
2781static void noinline
2782periodic_recalc (EV_P_ ev_periodic *w)
2783{
2784 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2785 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2786
2787 /* the above almost always errs on the low side */
2788 while (at <= ev_rt_now)
2789 {
2790 ev_tstamp nat = at + w->interval;
2791
2792 /* when resolution fails us, we use ev_rt_now */
2793 if (expect_false (nat == at))
2794 {
2795 at = ev_rt_now;
2796 break;
2797 }
2798
2799 at = nat;
2800 }
2801
2802 ev_at (w) = at;
2803}
2804
2805/* make periodics pending */
2806inline_size void
1766periodics_reify (EV_P) 2807periodics_reify (EV_P)
1767{ 2808{
1768 EV_FREQUENT_CHECK; 2809 EV_FREQUENT_CHECK;
1769 2810
1770 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2811 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1771 { 2812 {
1772 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2813 int feed_count = 0;
1773 2814
1774 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2815 do
1775
1776 /* first reschedule or stop timer */
1777 if (w->reschedule_cb)
1778 { 2816 {
2817 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2818
2819 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2820
2821 /* first reschedule or stop timer */
2822 if (w->reschedule_cb)
2823 {
1779 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2824 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1780 2825
1781 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2826 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1782 2827
1783 ANHE_at_cache (periodics [HEAP0]); 2828 ANHE_at_cache (periodics [HEAP0]);
1784 downheap (periodics, periodiccnt, HEAP0); 2829 downheap (periodics, periodiccnt, HEAP0);
2830 }
2831 else if (w->interval)
2832 {
2833 periodic_recalc (EV_A_ w);
2834 ANHE_at_cache (periodics [HEAP0]);
2835 downheap (periodics, periodiccnt, HEAP0);
2836 }
2837 else
2838 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2839
2840 EV_FREQUENT_CHECK;
2841 feed_reverse (EV_A_ (W)w);
1785 } 2842 }
1786 else if (w->interval) 2843 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1787 {
1788 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1789 /* if next trigger time is not sufficiently in the future, put it there */
1790 /* this might happen because of floating point inexactness */
1791 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1792 {
1793 ev_at (w) += w->interval;
1794 2844
1795 /* if interval is unreasonably low we might still have a time in the past */
1796 /* so correct this. this will make the periodic very inexact, but the user */
1797 /* has effectively asked to get triggered more often than possible */
1798 if (ev_at (w) < ev_rt_now)
1799 ev_at (w) = ev_rt_now;
1800 }
1801
1802 ANHE_at_cache (periodics [HEAP0]);
1803 downheap (periodics, periodiccnt, HEAP0);
1804 }
1805 else
1806 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1807
1808 EV_FREQUENT_CHECK;
1809 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2845 feed_reverse_done (EV_A_ EV_PERIODIC);
1810 } 2846 }
1811} 2847}
1812 2848
2849/* simply recalculate all periodics */
2850/* TODO: maybe ensure that at least one event happens when jumping forward? */
1813static void noinline 2851static void noinline ecb_cold
1814periodics_reschedule (EV_P) 2852periodics_reschedule (EV_P)
1815{ 2853{
1816 int i; 2854 int i;
1817 2855
1818 /* adjust periodics after time jump */ 2856 /* adjust periodics after time jump */
1821 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 2859 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1822 2860
1823 if (w->reschedule_cb) 2861 if (w->reschedule_cb)
1824 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2862 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1825 else if (w->interval) 2863 else if (w->interval)
1826 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2864 periodic_recalc (EV_A_ w);
1827 2865
1828 ANHE_at_cache (periodics [i]); 2866 ANHE_at_cache (periodics [i]);
1829 } 2867 }
1830 2868
1831 reheap (periodics, periodiccnt); 2869 reheap (periodics, periodiccnt);
1832} 2870}
1833#endif 2871#endif
1834 2872
1835void inline_speed 2873/* adjust all timers by a given offset */
2874static void noinline ecb_cold
2875timers_reschedule (EV_P_ ev_tstamp adjust)
2876{
2877 int i;
2878
2879 for (i = 0; i < timercnt; ++i)
2880 {
2881 ANHE *he = timers + i + HEAP0;
2882 ANHE_w (*he)->at += adjust;
2883 ANHE_at_cache (*he);
2884 }
2885}
2886
2887/* fetch new monotonic and realtime times from the kernel */
2888/* also detect if there was a timejump, and act accordingly */
2889inline_speed void
1836time_update (EV_P_ ev_tstamp max_block) 2890time_update (EV_P_ ev_tstamp max_block)
1837{ 2891{
1838 int i;
1839
1840#if EV_USE_MONOTONIC 2892#if EV_USE_MONOTONIC
1841 if (expect_true (have_monotonic)) 2893 if (expect_true (have_monotonic))
1842 { 2894 {
2895 int i;
1843 ev_tstamp odiff = rtmn_diff; 2896 ev_tstamp odiff = rtmn_diff;
1844 2897
1845 mn_now = get_clock (); 2898 mn_now = get_clock ();
1846 2899
1847 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2900 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1863 * doesn't hurt either as we only do this on time-jumps or 2916 * doesn't hurt either as we only do this on time-jumps or
1864 * in the unlikely event of having been preempted here. 2917 * in the unlikely event of having been preempted here.
1865 */ 2918 */
1866 for (i = 4; --i; ) 2919 for (i = 4; --i; )
1867 { 2920 {
2921 ev_tstamp diff;
1868 rtmn_diff = ev_rt_now - mn_now; 2922 rtmn_diff = ev_rt_now - mn_now;
1869 2923
2924 diff = odiff - rtmn_diff;
2925
1870 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 2926 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1871 return; /* all is well */ 2927 return; /* all is well */
1872 2928
1873 ev_rt_now = ev_time (); 2929 ev_rt_now = ev_time ();
1874 mn_now = get_clock (); 2930 mn_now = get_clock ();
1875 now_floor = mn_now; 2931 now_floor = mn_now;
1876 } 2932 }
1877 2933
2934 /* no timer adjustment, as the monotonic clock doesn't jump */
2935 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1878# if EV_PERIODIC_ENABLE 2936# if EV_PERIODIC_ENABLE
1879 periodics_reschedule (EV_A); 2937 periodics_reschedule (EV_A);
1880# endif 2938# endif
1881 /* no timer adjustment, as the monotonic clock doesn't jump */
1882 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1883 } 2939 }
1884 else 2940 else
1885#endif 2941#endif
1886 { 2942 {
1887 ev_rt_now = ev_time (); 2943 ev_rt_now = ev_time ();
1888 2944
1889 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2945 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1890 { 2946 {
2947 /* adjust timers. this is easy, as the offset is the same for all of them */
2948 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1891#if EV_PERIODIC_ENABLE 2949#if EV_PERIODIC_ENABLE
1892 periodics_reschedule (EV_A); 2950 periodics_reschedule (EV_A);
1893#endif 2951#endif
1894 /* adjust timers. this is easy, as the offset is the same for all of them */
1895 for (i = 0; i < timercnt; ++i)
1896 {
1897 ANHE *he = timers + i + HEAP0;
1898 ANHE_w (*he)->at += ev_rt_now - mn_now;
1899 ANHE_at_cache (*he);
1900 }
1901 } 2952 }
1902 2953
1903 mn_now = ev_rt_now; 2954 mn_now = ev_rt_now;
1904 } 2955 }
1905} 2956}
1906 2957
1907void 2958int
1908ev_ref (EV_P)
1909{
1910 ++activecnt;
1911}
1912
1913void
1914ev_unref (EV_P)
1915{
1916 --activecnt;
1917}
1918
1919void
1920ev_now_update (EV_P)
1921{
1922 time_update (EV_A_ 1e100);
1923}
1924
1925static int loop_done;
1926
1927void
1928ev_loop (EV_P_ int flags) 2959ev_run (EV_P_ int flags)
1929{ 2960{
2961#if EV_FEATURE_API
2962 ++loop_depth;
2963#endif
2964
2965 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2966
1930 loop_done = EVUNLOOP_CANCEL; 2967 loop_done = EVBREAK_CANCEL;
1931 2968
1932 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2969 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1933 2970
1934 do 2971 do
1935 { 2972 {
1936#if EV_VERIFY >= 2 2973#if EV_VERIFY >= 2
1937 ev_loop_verify (EV_A); 2974 ev_verify (EV_A);
1938#endif 2975#endif
1939 2976
1940#ifndef _WIN32 2977#ifndef _WIN32
1941 if (expect_false (curpid)) /* penalise the forking check even more */ 2978 if (expect_false (curpid)) /* penalise the forking check even more */
1942 if (expect_false (getpid () != curpid)) 2979 if (expect_false (getpid () != curpid))
1950 /* we might have forked, so queue fork handlers */ 2987 /* we might have forked, so queue fork handlers */
1951 if (expect_false (postfork)) 2988 if (expect_false (postfork))
1952 if (forkcnt) 2989 if (forkcnt)
1953 { 2990 {
1954 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2991 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1955 call_pending (EV_A); 2992 EV_INVOKE_PENDING;
1956 } 2993 }
1957#endif 2994#endif
1958 2995
2996#if EV_PREPARE_ENABLE
1959 /* queue prepare watchers (and execute them) */ 2997 /* queue prepare watchers (and execute them) */
1960 if (expect_false (preparecnt)) 2998 if (expect_false (preparecnt))
1961 { 2999 {
1962 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3000 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1963 call_pending (EV_A); 3001 EV_INVOKE_PENDING;
1964 } 3002 }
3003#endif
1965 3004
1966 if (expect_false (!activecnt)) 3005 if (expect_false (loop_done))
1967 break; 3006 break;
1968 3007
1969 /* we might have forked, so reify kernel state if necessary */ 3008 /* we might have forked, so reify kernel state if necessary */
1970 if (expect_false (postfork)) 3009 if (expect_false (postfork))
1971 loop_fork (EV_A); 3010 loop_fork (EV_A);
1976 /* calculate blocking time */ 3015 /* calculate blocking time */
1977 { 3016 {
1978 ev_tstamp waittime = 0.; 3017 ev_tstamp waittime = 0.;
1979 ev_tstamp sleeptime = 0.; 3018 ev_tstamp sleeptime = 0.;
1980 3019
3020 /* remember old timestamp for io_blocktime calculation */
3021 ev_tstamp prev_mn_now = mn_now;
3022
3023 /* update time to cancel out callback processing overhead */
3024 time_update (EV_A_ 1e100);
3025
3026 /* from now on, we want a pipe-wake-up */
3027 pipe_write_wanted = 1;
3028
3029 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3030
1981 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3031 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1982 { 3032 {
1983 /* update time to cancel out callback processing overhead */
1984 time_update (EV_A_ 1e100);
1985
1986 waittime = MAX_BLOCKTIME; 3033 waittime = MAX_BLOCKTIME;
1987 3034
1988 if (timercnt) 3035 if (timercnt)
1989 { 3036 {
1990 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3037 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1991 if (waittime > to) waittime = to; 3038 if (waittime > to) waittime = to;
1992 } 3039 }
1993 3040
1994#if EV_PERIODIC_ENABLE 3041#if EV_PERIODIC_ENABLE
1995 if (periodiccnt) 3042 if (periodiccnt)
1996 { 3043 {
1997 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3044 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1998 if (waittime > to) waittime = to; 3045 if (waittime > to) waittime = to;
1999 } 3046 }
2000#endif 3047#endif
2001 3048
3049 /* don't let timeouts decrease the waittime below timeout_blocktime */
2002 if (expect_false (waittime < timeout_blocktime)) 3050 if (expect_false (waittime < timeout_blocktime))
2003 waittime = timeout_blocktime; 3051 waittime = timeout_blocktime;
2004 3052
2005 sleeptime = waittime - backend_fudge; 3053 /* at this point, we NEED to wait, so we have to ensure */
3054 /* to pass a minimum nonzero value to the backend */
3055 if (expect_false (waittime < backend_mintime))
3056 waittime = backend_mintime;
2006 3057
3058 /* extra check because io_blocktime is commonly 0 */
2007 if (expect_true (sleeptime > io_blocktime)) 3059 if (expect_false (io_blocktime))
2008 sleeptime = io_blocktime;
2009
2010 if (sleeptime)
2011 { 3060 {
3061 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3062
3063 if (sleeptime > waittime - backend_mintime)
3064 sleeptime = waittime - backend_mintime;
3065
3066 if (expect_true (sleeptime > 0.))
3067 {
2012 ev_sleep (sleeptime); 3068 ev_sleep (sleeptime);
2013 waittime -= sleeptime; 3069 waittime -= sleeptime;
3070 }
2014 } 3071 }
2015 } 3072 }
2016 3073
3074#if EV_FEATURE_API
2017 ++loop_count; 3075 ++loop_count;
3076#endif
3077 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2018 backend_poll (EV_A_ waittime); 3078 backend_poll (EV_A_ waittime);
3079 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3080
3081 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3082
3083 if (pipe_write_skipped)
3084 {
3085 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3086 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3087 }
3088
2019 3089
2020 /* update ev_rt_now, do magic */ 3090 /* update ev_rt_now, do magic */
2021 time_update (EV_A_ waittime + sleeptime); 3091 time_update (EV_A_ waittime + sleeptime);
2022 } 3092 }
2023 3093
2030#if EV_IDLE_ENABLE 3100#if EV_IDLE_ENABLE
2031 /* queue idle watchers unless other events are pending */ 3101 /* queue idle watchers unless other events are pending */
2032 idle_reify (EV_A); 3102 idle_reify (EV_A);
2033#endif 3103#endif
2034 3104
3105#if EV_CHECK_ENABLE
2035 /* queue check watchers, to be executed first */ 3106 /* queue check watchers, to be executed first */
2036 if (expect_false (checkcnt)) 3107 if (expect_false (checkcnt))
2037 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3108 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3109#endif
2038 3110
2039 call_pending (EV_A); 3111 EV_INVOKE_PENDING;
2040 } 3112 }
2041 while (expect_true ( 3113 while (expect_true (
2042 activecnt 3114 activecnt
2043 && !loop_done 3115 && !loop_done
2044 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3116 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2045 )); 3117 ));
2046 3118
2047 if (loop_done == EVUNLOOP_ONE) 3119 if (loop_done == EVBREAK_ONE)
2048 loop_done = EVUNLOOP_CANCEL; 3120 loop_done = EVBREAK_CANCEL;
3121
3122#if EV_FEATURE_API
3123 --loop_depth;
3124#endif
3125
3126 return activecnt;
2049} 3127}
2050 3128
2051void 3129void
2052ev_unloop (EV_P_ int how) 3130ev_break (EV_P_ int how) EV_THROW
2053{ 3131{
2054 loop_done = how; 3132 loop_done = how;
2055} 3133}
2056 3134
3135void
3136ev_ref (EV_P) EV_THROW
3137{
3138 ++activecnt;
3139}
3140
3141void
3142ev_unref (EV_P) EV_THROW
3143{
3144 --activecnt;
3145}
3146
3147void
3148ev_now_update (EV_P) EV_THROW
3149{
3150 time_update (EV_A_ 1e100);
3151}
3152
3153void
3154ev_suspend (EV_P) EV_THROW
3155{
3156 ev_now_update (EV_A);
3157}
3158
3159void
3160ev_resume (EV_P) EV_THROW
3161{
3162 ev_tstamp mn_prev = mn_now;
3163
3164 ev_now_update (EV_A);
3165 timers_reschedule (EV_A_ mn_now - mn_prev);
3166#if EV_PERIODIC_ENABLE
3167 /* TODO: really do this? */
3168 periodics_reschedule (EV_A);
3169#endif
3170}
3171
2057/*****************************************************************************/ 3172/*****************************************************************************/
3173/* singly-linked list management, used when the expected list length is short */
2058 3174
2059void inline_size 3175inline_size void
2060wlist_add (WL *head, WL elem) 3176wlist_add (WL *head, WL elem)
2061{ 3177{
2062 elem->next = *head; 3178 elem->next = *head;
2063 *head = elem; 3179 *head = elem;
2064} 3180}
2065 3181
2066void inline_size 3182inline_size void
2067wlist_del (WL *head, WL elem) 3183wlist_del (WL *head, WL elem)
2068{ 3184{
2069 while (*head) 3185 while (*head)
2070 { 3186 {
2071 if (*head == elem) 3187 if (expect_true (*head == elem))
2072 { 3188 {
2073 *head = elem->next; 3189 *head = elem->next;
2074 return; 3190 break;
2075 } 3191 }
2076 3192
2077 head = &(*head)->next; 3193 head = &(*head)->next;
2078 } 3194 }
2079} 3195}
2080 3196
2081void inline_speed 3197/* internal, faster, version of ev_clear_pending */
3198inline_speed void
2082clear_pending (EV_P_ W w) 3199clear_pending (EV_P_ W w)
2083{ 3200{
2084 if (w->pending) 3201 if (w->pending)
2085 { 3202 {
2086 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3203 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2087 w->pending = 0; 3204 w->pending = 0;
2088 } 3205 }
2089} 3206}
2090 3207
2091int 3208int
2092ev_clear_pending (EV_P_ void *w) 3209ev_clear_pending (EV_P_ void *w) EV_THROW
2093{ 3210{
2094 W w_ = (W)w; 3211 W w_ = (W)w;
2095 int pending = w_->pending; 3212 int pending = w_->pending;
2096 3213
2097 if (expect_true (pending)) 3214 if (expect_true (pending))
2098 { 3215 {
2099 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3216 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3217 p->w = (W)&pending_w;
2100 w_->pending = 0; 3218 w_->pending = 0;
2101 p->w = 0;
2102 return p->events; 3219 return p->events;
2103 } 3220 }
2104 else 3221 else
2105 return 0; 3222 return 0;
2106} 3223}
2107 3224
2108void inline_size 3225inline_size void
2109pri_adjust (EV_P_ W w) 3226pri_adjust (EV_P_ W w)
2110{ 3227{
2111 int pri = w->priority; 3228 int pri = ev_priority (w);
2112 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3229 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2113 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3230 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2114 w->priority = pri; 3231 ev_set_priority (w, pri);
2115} 3232}
2116 3233
2117void inline_speed 3234inline_speed void
2118ev_start (EV_P_ W w, int active) 3235ev_start (EV_P_ W w, int active)
2119{ 3236{
2120 pri_adjust (EV_A_ w); 3237 pri_adjust (EV_A_ w);
2121 w->active = active; 3238 w->active = active;
2122 ev_ref (EV_A); 3239 ev_ref (EV_A);
2123} 3240}
2124 3241
2125void inline_size 3242inline_size void
2126ev_stop (EV_P_ W w) 3243ev_stop (EV_P_ W w)
2127{ 3244{
2128 ev_unref (EV_A); 3245 ev_unref (EV_A);
2129 w->active = 0; 3246 w->active = 0;
2130} 3247}
2131 3248
2132/*****************************************************************************/ 3249/*****************************************************************************/
2133 3250
2134void noinline 3251void noinline
2135ev_io_start (EV_P_ ev_io *w) 3252ev_io_start (EV_P_ ev_io *w) EV_THROW
2136{ 3253{
2137 int fd = w->fd; 3254 int fd = w->fd;
2138 3255
2139 if (expect_false (ev_is_active (w))) 3256 if (expect_false (ev_is_active (w)))
2140 return; 3257 return;
2141 3258
2142 assert (("ev_io_start called with negative fd", fd >= 0)); 3259 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3260 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2143 3261
2144 EV_FREQUENT_CHECK; 3262 EV_FREQUENT_CHECK;
2145 3263
2146 ev_start (EV_A_ (W)w, 1); 3264 ev_start (EV_A_ (W)w, 1);
2147 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2148 wlist_add (&anfds[fd].head, (WL)w); 3266 wlist_add (&anfds[fd].head, (WL)w);
2149 3267
3268 /* common bug, apparently */
3269 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3270
2150 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3271 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2151 w->events &= ~EV_IOFDSET; 3272 w->events &= ~EV__IOFDSET;
2152 3273
2153 EV_FREQUENT_CHECK; 3274 EV_FREQUENT_CHECK;
2154} 3275}
2155 3276
2156void noinline 3277void noinline
2157ev_io_stop (EV_P_ ev_io *w) 3278ev_io_stop (EV_P_ ev_io *w) EV_THROW
2158{ 3279{
2159 clear_pending (EV_A_ (W)w); 3280 clear_pending (EV_A_ (W)w);
2160 if (expect_false (!ev_is_active (w))) 3281 if (expect_false (!ev_is_active (w)))
2161 return; 3282 return;
2162 3283
2163 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3284 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2164 3285
2165 EV_FREQUENT_CHECK; 3286 EV_FREQUENT_CHECK;
2166 3287
2167 wlist_del (&anfds[w->fd].head, (WL)w); 3288 wlist_del (&anfds[w->fd].head, (WL)w);
2168 ev_stop (EV_A_ (W)w); 3289 ev_stop (EV_A_ (W)w);
2169 3290
2170 fd_change (EV_A_ w->fd, 1); 3291 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2171 3292
2172 EV_FREQUENT_CHECK; 3293 EV_FREQUENT_CHECK;
2173} 3294}
2174 3295
2175void noinline 3296void noinline
2176ev_timer_start (EV_P_ ev_timer *w) 3297ev_timer_start (EV_P_ ev_timer *w) EV_THROW
2177{ 3298{
2178 if (expect_false (ev_is_active (w))) 3299 if (expect_false (ev_is_active (w)))
2179 return; 3300 return;
2180 3301
2181 ev_at (w) += mn_now; 3302 ev_at (w) += mn_now;
2182 3303
2183 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3304 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2184 3305
2185 EV_FREQUENT_CHECK; 3306 EV_FREQUENT_CHECK;
2186 3307
2187 ++timercnt; 3308 ++timercnt;
2188 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 3309 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2191 ANHE_at_cache (timers [ev_active (w)]); 3312 ANHE_at_cache (timers [ev_active (w)]);
2192 upheap (timers, ev_active (w)); 3313 upheap (timers, ev_active (w));
2193 3314
2194 EV_FREQUENT_CHECK; 3315 EV_FREQUENT_CHECK;
2195 3316
2196 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3317 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2197} 3318}
2198 3319
2199void noinline 3320void noinline
2200ev_timer_stop (EV_P_ ev_timer *w) 3321ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
2201{ 3322{
2202 clear_pending (EV_A_ (W)w); 3323 clear_pending (EV_A_ (W)w);
2203 if (expect_false (!ev_is_active (w))) 3324 if (expect_false (!ev_is_active (w)))
2204 return; 3325 return;
2205 3326
2206 EV_FREQUENT_CHECK; 3327 EV_FREQUENT_CHECK;
2207 3328
2208 { 3329 {
2209 int active = ev_active (w); 3330 int active = ev_active (w);
2210 3331
2211 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 3332 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2212 3333
2213 --timercnt; 3334 --timercnt;
2214 3335
2215 if (expect_true (active < timercnt + HEAP0)) 3336 if (expect_true (active < timercnt + HEAP0))
2216 { 3337 {
2217 timers [active] = timers [timercnt + HEAP0]; 3338 timers [active] = timers [timercnt + HEAP0];
2218 adjustheap (timers, timercnt, active); 3339 adjustheap (timers, timercnt, active);
2219 } 3340 }
2220 } 3341 }
2221 3342
2222 EV_FREQUENT_CHECK;
2223
2224 ev_at (w) -= mn_now; 3343 ev_at (w) -= mn_now;
2225 3344
2226 ev_stop (EV_A_ (W)w); 3345 ev_stop (EV_A_ (W)w);
3346
3347 EV_FREQUENT_CHECK;
2227} 3348}
2228 3349
2229void noinline 3350void noinline
2230ev_timer_again (EV_P_ ev_timer *w) 3351ev_timer_again (EV_P_ ev_timer *w) EV_THROW
2231{ 3352{
2232 EV_FREQUENT_CHECK; 3353 EV_FREQUENT_CHECK;
3354
3355 clear_pending (EV_A_ (W)w);
2233 3356
2234 if (ev_is_active (w)) 3357 if (ev_is_active (w))
2235 { 3358 {
2236 if (w->repeat) 3359 if (w->repeat)
2237 { 3360 {
2249 } 3372 }
2250 3373
2251 EV_FREQUENT_CHECK; 3374 EV_FREQUENT_CHECK;
2252} 3375}
2253 3376
3377ev_tstamp
3378ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3379{
3380 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3381}
3382
2254#if EV_PERIODIC_ENABLE 3383#if EV_PERIODIC_ENABLE
2255void noinline 3384void noinline
2256ev_periodic_start (EV_P_ ev_periodic *w) 3385ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
2257{ 3386{
2258 if (expect_false (ev_is_active (w))) 3387 if (expect_false (ev_is_active (w)))
2259 return; 3388 return;
2260 3389
2261 if (w->reschedule_cb) 3390 if (w->reschedule_cb)
2262 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3391 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2263 else if (w->interval) 3392 else if (w->interval)
2264 { 3393 {
2265 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3394 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2266 /* this formula differs from the one in periodic_reify because we do not always round up */ 3395 periodic_recalc (EV_A_ w);
2267 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2268 } 3396 }
2269 else 3397 else
2270 ev_at (w) = w->offset; 3398 ev_at (w) = w->offset;
2271 3399
2272 EV_FREQUENT_CHECK; 3400 EV_FREQUENT_CHECK;
2278 ANHE_at_cache (periodics [ev_active (w)]); 3406 ANHE_at_cache (periodics [ev_active (w)]);
2279 upheap (periodics, ev_active (w)); 3407 upheap (periodics, ev_active (w));
2280 3408
2281 EV_FREQUENT_CHECK; 3409 EV_FREQUENT_CHECK;
2282 3410
2283 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 3411 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2284} 3412}
2285 3413
2286void noinline 3414void noinline
2287ev_periodic_stop (EV_P_ ev_periodic *w) 3415ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
2288{ 3416{
2289 clear_pending (EV_A_ (W)w); 3417 clear_pending (EV_A_ (W)w);
2290 if (expect_false (!ev_is_active (w))) 3418 if (expect_false (!ev_is_active (w)))
2291 return; 3419 return;
2292 3420
2293 EV_FREQUENT_CHECK; 3421 EV_FREQUENT_CHECK;
2294 3422
2295 { 3423 {
2296 int active = ev_active (w); 3424 int active = ev_active (w);
2297 3425
2298 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 3426 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2299 3427
2300 --periodiccnt; 3428 --periodiccnt;
2301 3429
2302 if (expect_true (active < periodiccnt + HEAP0)) 3430 if (expect_true (active < periodiccnt + HEAP0))
2303 { 3431 {
2304 periodics [active] = periodics [periodiccnt + HEAP0]; 3432 periodics [active] = periodics [periodiccnt + HEAP0];
2305 adjustheap (periodics, periodiccnt, active); 3433 adjustheap (periodics, periodiccnt, active);
2306 } 3434 }
2307 } 3435 }
2308 3436
2309 EV_FREQUENT_CHECK;
2310
2311 ev_stop (EV_A_ (W)w); 3437 ev_stop (EV_A_ (W)w);
3438
3439 EV_FREQUENT_CHECK;
2312} 3440}
2313 3441
2314void noinline 3442void noinline
2315ev_periodic_again (EV_P_ ev_periodic *w) 3443ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
2316{ 3444{
2317 /* TODO: use adjustheap and recalculation */ 3445 /* TODO: use adjustheap and recalculation */
2318 ev_periodic_stop (EV_A_ w); 3446 ev_periodic_stop (EV_A_ w);
2319 ev_periodic_start (EV_A_ w); 3447 ev_periodic_start (EV_A_ w);
2320} 3448}
2322 3450
2323#ifndef SA_RESTART 3451#ifndef SA_RESTART
2324# define SA_RESTART 0 3452# define SA_RESTART 0
2325#endif 3453#endif
2326 3454
3455#if EV_SIGNAL_ENABLE
3456
2327void noinline 3457void noinline
2328ev_signal_start (EV_P_ ev_signal *w) 3458ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2329{ 3459{
2330#if EV_MULTIPLICITY
2331 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2332#endif
2333 if (expect_false (ev_is_active (w))) 3460 if (expect_false (ev_is_active (w)))
2334 return; 3461 return;
2335 3462
2336 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3463 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2337 3464
2338 evpipe_init (EV_A); 3465#if EV_MULTIPLICITY
3466 assert (("libev: a signal must not be attached to two different loops",
3467 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2339 3468
2340 EV_FREQUENT_CHECK; 3469 signals [w->signum - 1].loop = EV_A;
3470#endif
2341 3471
3472 EV_FREQUENT_CHECK;
3473
3474#if EV_USE_SIGNALFD
3475 if (sigfd == -2)
2342 { 3476 {
2343#ifndef _WIN32 3477 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2344 sigset_t full, prev; 3478 if (sigfd < 0 && errno == EINVAL)
2345 sigfillset (&full); 3479 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2346 sigprocmask (SIG_SETMASK, &full, &prev);
2347#endif
2348 3480
2349 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3481 if (sigfd >= 0)
3482 {
3483 fd_intern (sigfd); /* doing it twice will not hurt */
2350 3484
2351#ifndef _WIN32 3485 sigemptyset (&sigfd_set);
2352 sigprocmask (SIG_SETMASK, &prev, 0); 3486
2353#endif 3487 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3488 ev_set_priority (&sigfd_w, EV_MAXPRI);
3489 ev_io_start (EV_A_ &sigfd_w);
3490 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3491 }
2354 } 3492 }
3493
3494 if (sigfd >= 0)
3495 {
3496 /* TODO: check .head */
3497 sigaddset (&sigfd_set, w->signum);
3498 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3499
3500 signalfd (sigfd, &sigfd_set, 0);
3501 }
3502#endif
2355 3503
2356 ev_start (EV_A_ (W)w, 1); 3504 ev_start (EV_A_ (W)w, 1);
2357 wlist_add (&signals [w->signum - 1].head, (WL)w); 3505 wlist_add (&signals [w->signum - 1].head, (WL)w);
2358 3506
2359 if (!((WL)w)->next) 3507 if (!((WL)w)->next)
3508# if EV_USE_SIGNALFD
3509 if (sigfd < 0) /*TODO*/
3510# endif
2360 { 3511 {
2361#if _WIN32 3512# ifdef _WIN32
3513 evpipe_init (EV_A);
3514
2362 signal (w->signum, ev_sighandler); 3515 signal (w->signum, ev_sighandler);
2363#else 3516# else
2364 struct sigaction sa; 3517 struct sigaction sa;
3518
3519 evpipe_init (EV_A);
3520
2365 sa.sa_handler = ev_sighandler; 3521 sa.sa_handler = ev_sighandler;
2366 sigfillset (&sa.sa_mask); 3522 sigfillset (&sa.sa_mask);
2367 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3523 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2368 sigaction (w->signum, &sa, 0); 3524 sigaction (w->signum, &sa, 0);
3525
3526 if (origflags & EVFLAG_NOSIGMASK)
3527 {
3528 sigemptyset (&sa.sa_mask);
3529 sigaddset (&sa.sa_mask, w->signum);
3530 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3531 }
2369#endif 3532#endif
2370 } 3533 }
2371 3534
2372 EV_FREQUENT_CHECK; 3535 EV_FREQUENT_CHECK;
2373} 3536}
2374 3537
2375void noinline 3538void noinline
2376ev_signal_stop (EV_P_ ev_signal *w) 3539ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2377{ 3540{
2378 clear_pending (EV_A_ (W)w); 3541 clear_pending (EV_A_ (W)w);
2379 if (expect_false (!ev_is_active (w))) 3542 if (expect_false (!ev_is_active (w)))
2380 return; 3543 return;
2381 3544
2383 3546
2384 wlist_del (&signals [w->signum - 1].head, (WL)w); 3547 wlist_del (&signals [w->signum - 1].head, (WL)w);
2385 ev_stop (EV_A_ (W)w); 3548 ev_stop (EV_A_ (W)w);
2386 3549
2387 if (!signals [w->signum - 1].head) 3550 if (!signals [w->signum - 1].head)
3551 {
3552#if EV_MULTIPLICITY
3553 signals [w->signum - 1].loop = 0; /* unattach from signal */
3554#endif
3555#if EV_USE_SIGNALFD
3556 if (sigfd >= 0)
3557 {
3558 sigset_t ss;
3559
3560 sigemptyset (&ss);
3561 sigaddset (&ss, w->signum);
3562 sigdelset (&sigfd_set, w->signum);
3563
3564 signalfd (sigfd, &sigfd_set, 0);
3565 sigprocmask (SIG_UNBLOCK, &ss, 0);
3566 }
3567 else
3568#endif
2388 signal (w->signum, SIG_DFL); 3569 signal (w->signum, SIG_DFL);
3570 }
2389 3571
2390 EV_FREQUENT_CHECK; 3572 EV_FREQUENT_CHECK;
2391} 3573}
3574
3575#endif
3576
3577#if EV_CHILD_ENABLE
2392 3578
2393void 3579void
2394ev_child_start (EV_P_ ev_child *w) 3580ev_child_start (EV_P_ ev_child *w) EV_THROW
2395{ 3581{
2396#if EV_MULTIPLICITY 3582#if EV_MULTIPLICITY
2397 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3583 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2398#endif 3584#endif
2399 if (expect_false (ev_is_active (w))) 3585 if (expect_false (ev_is_active (w)))
2400 return; 3586 return;
2401 3587
2402 EV_FREQUENT_CHECK; 3588 EV_FREQUENT_CHECK;
2403 3589
2404 ev_start (EV_A_ (W)w, 1); 3590 ev_start (EV_A_ (W)w, 1);
2405 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3591 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2406 3592
2407 EV_FREQUENT_CHECK; 3593 EV_FREQUENT_CHECK;
2408} 3594}
2409 3595
2410void 3596void
2411ev_child_stop (EV_P_ ev_child *w) 3597ev_child_stop (EV_P_ ev_child *w) EV_THROW
2412{ 3598{
2413 clear_pending (EV_A_ (W)w); 3599 clear_pending (EV_A_ (W)w);
2414 if (expect_false (!ev_is_active (w))) 3600 if (expect_false (!ev_is_active (w)))
2415 return; 3601 return;
2416 3602
2417 EV_FREQUENT_CHECK; 3603 EV_FREQUENT_CHECK;
2418 3604
2419 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3605 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2420 ev_stop (EV_A_ (W)w); 3606 ev_stop (EV_A_ (W)w);
2421 3607
2422 EV_FREQUENT_CHECK; 3608 EV_FREQUENT_CHECK;
2423} 3609}
3610
3611#endif
2424 3612
2425#if EV_STAT_ENABLE 3613#if EV_STAT_ENABLE
2426 3614
2427# ifdef _WIN32 3615# ifdef _WIN32
2428# undef lstat 3616# undef lstat
2429# define lstat(a,b) _stati64 (a,b) 3617# define lstat(a,b) _stati64 (a,b)
2430# endif 3618# endif
2431 3619
2432#define DEF_STAT_INTERVAL 5.0074891 3620#define DEF_STAT_INTERVAL 5.0074891
3621#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2433#define MIN_STAT_INTERVAL 0.1074891 3622#define MIN_STAT_INTERVAL 0.1074891
2434 3623
2435static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3624static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2436 3625
2437#if EV_USE_INOTIFY 3626#if EV_USE_INOTIFY
2438# define EV_INOTIFY_BUFSIZE 8192 3627
3628/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3629# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2439 3630
2440static void noinline 3631static void noinline
2441infy_add (EV_P_ ev_stat *w) 3632infy_add (EV_P_ ev_stat *w)
2442{ 3633{
2443 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3634 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2444 3635
2445 if (w->wd < 0) 3636 if (w->wd >= 0)
3637 {
3638 struct statfs sfs;
3639
3640 /* now local changes will be tracked by inotify, but remote changes won't */
3641 /* unless the filesystem is known to be local, we therefore still poll */
3642 /* also do poll on <2.6.25, but with normal frequency */
3643
3644 if (!fs_2625)
3645 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3646 else if (!statfs (w->path, &sfs)
3647 && (sfs.f_type == 0x1373 /* devfs */
3648 || sfs.f_type == 0xEF53 /* ext2/3 */
3649 || sfs.f_type == 0x3153464a /* jfs */
3650 || sfs.f_type == 0x52654973 /* reiser3 */
3651 || sfs.f_type == 0x01021994 /* tempfs */
3652 || sfs.f_type == 0x58465342 /* xfs */))
3653 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3654 else
3655 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2446 { 3656 }
2447 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3657 else
3658 {
3659 /* can't use inotify, continue to stat */
3660 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2448 3661
2449 /* monitor some parent directory for speedup hints */ 3662 /* if path is not there, monitor some parent directory for speedup hints */
2450 /* note that exceeding the hardcoded limit is not a correctness issue, */ 3663 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2451 /* but an efficiency issue only */ 3664 /* but an efficiency issue only */
2452 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3665 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2453 { 3666 {
2454 char path [4096]; 3667 char path [4096];
2455 strcpy (path, w->path); 3668 strcpy (path, w->path);
2459 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3672 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2460 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3673 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2461 3674
2462 char *pend = strrchr (path, '/'); 3675 char *pend = strrchr (path, '/');
2463 3676
2464 if (!pend) 3677 if (!pend || pend == path)
2465 break; /* whoops, no '/', complain to your admin */ 3678 break;
2466 3679
2467 *pend = 0; 3680 *pend = 0;
2468 w->wd = inotify_add_watch (fs_fd, path, mask); 3681 w->wd = inotify_add_watch (fs_fd, path, mask);
2469 } 3682 }
2470 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3683 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2471 } 3684 }
2472 } 3685 }
2473 else
2474 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2475 3686
2476 if (w->wd >= 0) 3687 if (w->wd >= 0)
2477 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3688 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3689
3690 /* now re-arm timer, if required */
3691 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3692 ev_timer_again (EV_A_ &w->timer);
3693 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2478} 3694}
2479 3695
2480static void noinline 3696static void noinline
2481infy_del (EV_P_ ev_stat *w) 3697infy_del (EV_P_ ev_stat *w)
2482{ 3698{
2485 3701
2486 if (wd < 0) 3702 if (wd < 0)
2487 return; 3703 return;
2488 3704
2489 w->wd = -2; 3705 w->wd = -2;
2490 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3706 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2491 wlist_del (&fs_hash [slot].head, (WL)w); 3707 wlist_del (&fs_hash [slot].head, (WL)w);
2492 3708
2493 /* remove this watcher, if others are watching it, they will rearm */ 3709 /* remove this watcher, if others are watching it, they will rearm */
2494 inotify_rm_watch (fs_fd, wd); 3710 inotify_rm_watch (fs_fd, wd);
2495} 3711}
2496 3712
2497static void noinline 3713static void noinline
2498infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3714infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2499{ 3715{
2500 if (slot < 0) 3716 if (slot < 0)
2501 /* overflow, need to check for all hahs slots */ 3717 /* overflow, need to check for all hash slots */
2502 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3718 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2503 infy_wd (EV_A_ slot, wd, ev); 3719 infy_wd (EV_A_ slot, wd, ev);
2504 else 3720 else
2505 { 3721 {
2506 WL w_; 3722 WL w_;
2507 3723
2508 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3724 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2509 { 3725 {
2510 ev_stat *w = (ev_stat *)w_; 3726 ev_stat *w = (ev_stat *)w_;
2511 w_ = w_->next; /* lets us remove this watcher and all before it */ 3727 w_ = w_->next; /* lets us remove this watcher and all before it */
2512 3728
2513 if (w->wd == wd || wd == -1) 3729 if (w->wd == wd || wd == -1)
2514 { 3730 {
2515 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3731 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2516 { 3732 {
3733 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2517 w->wd = -1; 3734 w->wd = -1;
2518 infy_add (EV_A_ w); /* re-add, no matter what */ 3735 infy_add (EV_A_ w); /* re-add, no matter what */
2519 } 3736 }
2520 3737
2521 stat_timer_cb (EV_A_ &w->timer, 0); 3738 stat_timer_cb (EV_A_ &w->timer, 0);
2526 3743
2527static void 3744static void
2528infy_cb (EV_P_ ev_io *w, int revents) 3745infy_cb (EV_P_ ev_io *w, int revents)
2529{ 3746{
2530 char buf [EV_INOTIFY_BUFSIZE]; 3747 char buf [EV_INOTIFY_BUFSIZE];
2531 struct inotify_event *ev = (struct inotify_event *)buf;
2532 int ofs; 3748 int ofs;
2533 int len = read (fs_fd, buf, sizeof (buf)); 3749 int len = read (fs_fd, buf, sizeof (buf));
2534 3750
2535 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3751 for (ofs = 0; ofs < len; )
3752 {
3753 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2536 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3754 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3755 ofs += sizeof (struct inotify_event) + ev->len;
3756 }
2537} 3757}
2538 3758
2539void inline_size 3759inline_size void ecb_cold
3760ev_check_2625 (EV_P)
3761{
3762 /* kernels < 2.6.25 are borked
3763 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3764 */
3765 if (ev_linux_version () < 0x020619)
3766 return;
3767
3768 fs_2625 = 1;
3769}
3770
3771inline_size int
3772infy_newfd (void)
3773{
3774#if defined IN_CLOEXEC && defined IN_NONBLOCK
3775 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3776 if (fd >= 0)
3777 return fd;
3778#endif
3779 return inotify_init ();
3780}
3781
3782inline_size void
2540infy_init (EV_P) 3783infy_init (EV_P)
2541{ 3784{
2542 if (fs_fd != -2) 3785 if (fs_fd != -2)
2543 return; 3786 return;
2544 3787
3788 fs_fd = -1;
3789
3790 ev_check_2625 (EV_A);
3791
2545 fs_fd = inotify_init (); 3792 fs_fd = infy_newfd ();
2546 3793
2547 if (fs_fd >= 0) 3794 if (fs_fd >= 0)
2548 { 3795 {
3796 fd_intern (fs_fd);
2549 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3797 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2550 ev_set_priority (&fs_w, EV_MAXPRI); 3798 ev_set_priority (&fs_w, EV_MAXPRI);
2551 ev_io_start (EV_A_ &fs_w); 3799 ev_io_start (EV_A_ &fs_w);
3800 ev_unref (EV_A);
2552 } 3801 }
2553} 3802}
2554 3803
2555void inline_size 3804inline_size void
2556infy_fork (EV_P) 3805infy_fork (EV_P)
2557{ 3806{
2558 int slot; 3807 int slot;
2559 3808
2560 if (fs_fd < 0) 3809 if (fs_fd < 0)
2561 return; 3810 return;
2562 3811
3812 ev_ref (EV_A);
3813 ev_io_stop (EV_A_ &fs_w);
2563 close (fs_fd); 3814 close (fs_fd);
2564 fs_fd = inotify_init (); 3815 fs_fd = infy_newfd ();
2565 3816
3817 if (fs_fd >= 0)
3818 {
3819 fd_intern (fs_fd);
3820 ev_io_set (&fs_w, fs_fd, EV_READ);
3821 ev_io_start (EV_A_ &fs_w);
3822 ev_unref (EV_A);
3823 }
3824
2566 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3825 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2567 { 3826 {
2568 WL w_ = fs_hash [slot].head; 3827 WL w_ = fs_hash [slot].head;
2569 fs_hash [slot].head = 0; 3828 fs_hash [slot].head = 0;
2570 3829
2571 while (w_) 3830 while (w_)
2576 w->wd = -1; 3835 w->wd = -1;
2577 3836
2578 if (fs_fd >= 0) 3837 if (fs_fd >= 0)
2579 infy_add (EV_A_ w); /* re-add, no matter what */ 3838 infy_add (EV_A_ w); /* re-add, no matter what */
2580 else 3839 else
3840 {
3841 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3842 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2581 ev_timer_start (EV_A_ &w->timer); 3843 ev_timer_again (EV_A_ &w->timer);
3844 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3845 }
2582 } 3846 }
2583
2584 } 3847 }
2585} 3848}
2586 3849
2587#endif 3850#endif
2588 3851
2591#else 3854#else
2592# define EV_LSTAT(p,b) lstat (p, b) 3855# define EV_LSTAT(p,b) lstat (p, b)
2593#endif 3856#endif
2594 3857
2595void 3858void
2596ev_stat_stat (EV_P_ ev_stat *w) 3859ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2597{ 3860{
2598 if (lstat (w->path, &w->attr) < 0) 3861 if (lstat (w->path, &w->attr) < 0)
2599 w->attr.st_nlink = 0; 3862 w->attr.st_nlink = 0;
2600 else if (!w->attr.st_nlink) 3863 else if (!w->attr.st_nlink)
2601 w->attr.st_nlink = 1; 3864 w->attr.st_nlink = 1;
2604static void noinline 3867static void noinline
2605stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3868stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2606{ 3869{
2607 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3870 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2608 3871
2609 /* we copy this here each the time so that */ 3872 ev_statdata prev = w->attr;
2610 /* prev has the old value when the callback gets invoked */
2611 w->prev = w->attr;
2612 ev_stat_stat (EV_A_ w); 3873 ev_stat_stat (EV_A_ w);
2613 3874
2614 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3875 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2615 if ( 3876 if (
2616 w->prev.st_dev != w->attr.st_dev 3877 prev.st_dev != w->attr.st_dev
2617 || w->prev.st_ino != w->attr.st_ino 3878 || prev.st_ino != w->attr.st_ino
2618 || w->prev.st_mode != w->attr.st_mode 3879 || prev.st_mode != w->attr.st_mode
2619 || w->prev.st_nlink != w->attr.st_nlink 3880 || prev.st_nlink != w->attr.st_nlink
2620 || w->prev.st_uid != w->attr.st_uid 3881 || prev.st_uid != w->attr.st_uid
2621 || w->prev.st_gid != w->attr.st_gid 3882 || prev.st_gid != w->attr.st_gid
2622 || w->prev.st_rdev != w->attr.st_rdev 3883 || prev.st_rdev != w->attr.st_rdev
2623 || w->prev.st_size != w->attr.st_size 3884 || prev.st_size != w->attr.st_size
2624 || w->prev.st_atime != w->attr.st_atime 3885 || prev.st_atime != w->attr.st_atime
2625 || w->prev.st_mtime != w->attr.st_mtime 3886 || prev.st_mtime != w->attr.st_mtime
2626 || w->prev.st_ctime != w->attr.st_ctime 3887 || prev.st_ctime != w->attr.st_ctime
2627 ) { 3888 ) {
3889 /* we only update w->prev on actual differences */
3890 /* in case we test more often than invoke the callback, */
3891 /* to ensure that prev is always different to attr */
3892 w->prev = prev;
3893
2628 #if EV_USE_INOTIFY 3894 #if EV_USE_INOTIFY
3895 if (fs_fd >= 0)
3896 {
2629 infy_del (EV_A_ w); 3897 infy_del (EV_A_ w);
2630 infy_add (EV_A_ w); 3898 infy_add (EV_A_ w);
2631 ev_stat_stat (EV_A_ w); /* avoid race... */ 3899 ev_stat_stat (EV_A_ w); /* avoid race... */
3900 }
2632 #endif 3901 #endif
2633 3902
2634 ev_feed_event (EV_A_ w, EV_STAT); 3903 ev_feed_event (EV_A_ w, EV_STAT);
2635 } 3904 }
2636} 3905}
2637 3906
2638void 3907void
2639ev_stat_start (EV_P_ ev_stat *w) 3908ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2640{ 3909{
2641 if (expect_false (ev_is_active (w))) 3910 if (expect_false (ev_is_active (w)))
2642 return; 3911 return;
2643 3912
2644 /* since we use memcmp, we need to clear any padding data etc. */
2645 memset (&w->prev, 0, sizeof (ev_statdata));
2646 memset (&w->attr, 0, sizeof (ev_statdata));
2647
2648 ev_stat_stat (EV_A_ w); 3913 ev_stat_stat (EV_A_ w);
2649 3914
3915 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2650 if (w->interval < MIN_STAT_INTERVAL) 3916 w->interval = MIN_STAT_INTERVAL;
2651 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2652 3917
2653 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3918 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2654 ev_set_priority (&w->timer, ev_priority (w)); 3919 ev_set_priority (&w->timer, ev_priority (w));
2655 3920
2656#if EV_USE_INOTIFY 3921#if EV_USE_INOTIFY
2657 infy_init (EV_A); 3922 infy_init (EV_A);
2658 3923
2659 if (fs_fd >= 0) 3924 if (fs_fd >= 0)
2660 infy_add (EV_A_ w); 3925 infy_add (EV_A_ w);
2661 else 3926 else
2662#endif 3927#endif
3928 {
2663 ev_timer_start (EV_A_ &w->timer); 3929 ev_timer_again (EV_A_ &w->timer);
3930 ev_unref (EV_A);
3931 }
2664 3932
2665 ev_start (EV_A_ (W)w, 1); 3933 ev_start (EV_A_ (W)w, 1);
2666 3934
2667 EV_FREQUENT_CHECK; 3935 EV_FREQUENT_CHECK;
2668} 3936}
2669 3937
2670void 3938void
2671ev_stat_stop (EV_P_ ev_stat *w) 3939ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2672{ 3940{
2673 clear_pending (EV_A_ (W)w); 3941 clear_pending (EV_A_ (W)w);
2674 if (expect_false (!ev_is_active (w))) 3942 if (expect_false (!ev_is_active (w)))
2675 return; 3943 return;
2676 3944
2677 EV_FREQUENT_CHECK; 3945 EV_FREQUENT_CHECK;
2678 3946
2679#if EV_USE_INOTIFY 3947#if EV_USE_INOTIFY
2680 infy_del (EV_A_ w); 3948 infy_del (EV_A_ w);
2681#endif 3949#endif
3950
3951 if (ev_is_active (&w->timer))
3952 {
3953 ev_ref (EV_A);
2682 ev_timer_stop (EV_A_ &w->timer); 3954 ev_timer_stop (EV_A_ &w->timer);
3955 }
2683 3956
2684 ev_stop (EV_A_ (W)w); 3957 ev_stop (EV_A_ (W)w);
2685 3958
2686 EV_FREQUENT_CHECK; 3959 EV_FREQUENT_CHECK;
2687} 3960}
2688#endif 3961#endif
2689 3962
2690#if EV_IDLE_ENABLE 3963#if EV_IDLE_ENABLE
2691void 3964void
2692ev_idle_start (EV_P_ ev_idle *w) 3965ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2693{ 3966{
2694 if (expect_false (ev_is_active (w))) 3967 if (expect_false (ev_is_active (w)))
2695 return; 3968 return;
2696 3969
2697 pri_adjust (EV_A_ (W)w); 3970 pri_adjust (EV_A_ (W)w);
2710 3983
2711 EV_FREQUENT_CHECK; 3984 EV_FREQUENT_CHECK;
2712} 3985}
2713 3986
2714void 3987void
2715ev_idle_stop (EV_P_ ev_idle *w) 3988ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2716{ 3989{
2717 clear_pending (EV_A_ (W)w); 3990 clear_pending (EV_A_ (W)w);
2718 if (expect_false (!ev_is_active (w))) 3991 if (expect_false (!ev_is_active (w)))
2719 return; 3992 return;
2720 3993
2732 4005
2733 EV_FREQUENT_CHECK; 4006 EV_FREQUENT_CHECK;
2734} 4007}
2735#endif 4008#endif
2736 4009
4010#if EV_PREPARE_ENABLE
2737void 4011void
2738ev_prepare_start (EV_P_ ev_prepare *w) 4012ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2739{ 4013{
2740 if (expect_false (ev_is_active (w))) 4014 if (expect_false (ev_is_active (w)))
2741 return; 4015 return;
2742 4016
2743 EV_FREQUENT_CHECK; 4017 EV_FREQUENT_CHECK;
2748 4022
2749 EV_FREQUENT_CHECK; 4023 EV_FREQUENT_CHECK;
2750} 4024}
2751 4025
2752void 4026void
2753ev_prepare_stop (EV_P_ ev_prepare *w) 4027ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2754{ 4028{
2755 clear_pending (EV_A_ (W)w); 4029 clear_pending (EV_A_ (W)w);
2756 if (expect_false (!ev_is_active (w))) 4030 if (expect_false (!ev_is_active (w)))
2757 return; 4031 return;
2758 4032
2767 4041
2768 ev_stop (EV_A_ (W)w); 4042 ev_stop (EV_A_ (W)w);
2769 4043
2770 EV_FREQUENT_CHECK; 4044 EV_FREQUENT_CHECK;
2771} 4045}
4046#endif
2772 4047
4048#if EV_CHECK_ENABLE
2773void 4049void
2774ev_check_start (EV_P_ ev_check *w) 4050ev_check_start (EV_P_ ev_check *w) EV_THROW
2775{ 4051{
2776 if (expect_false (ev_is_active (w))) 4052 if (expect_false (ev_is_active (w)))
2777 return; 4053 return;
2778 4054
2779 EV_FREQUENT_CHECK; 4055 EV_FREQUENT_CHECK;
2784 4060
2785 EV_FREQUENT_CHECK; 4061 EV_FREQUENT_CHECK;
2786} 4062}
2787 4063
2788void 4064void
2789ev_check_stop (EV_P_ ev_check *w) 4065ev_check_stop (EV_P_ ev_check *w) EV_THROW
2790{ 4066{
2791 clear_pending (EV_A_ (W)w); 4067 clear_pending (EV_A_ (W)w);
2792 if (expect_false (!ev_is_active (w))) 4068 if (expect_false (!ev_is_active (w)))
2793 return; 4069 return;
2794 4070
2803 4079
2804 ev_stop (EV_A_ (W)w); 4080 ev_stop (EV_A_ (W)w);
2805 4081
2806 EV_FREQUENT_CHECK; 4082 EV_FREQUENT_CHECK;
2807} 4083}
4084#endif
2808 4085
2809#if EV_EMBED_ENABLE 4086#if EV_EMBED_ENABLE
2810void noinline 4087void noinline
2811ev_embed_sweep (EV_P_ ev_embed *w) 4088ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2812{ 4089{
2813 ev_loop (w->other, EVLOOP_NONBLOCK); 4090 ev_run (w->other, EVRUN_NOWAIT);
2814} 4091}
2815 4092
2816static void 4093static void
2817embed_io_cb (EV_P_ ev_io *io, int revents) 4094embed_io_cb (EV_P_ ev_io *io, int revents)
2818{ 4095{
2819 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4096 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2820 4097
2821 if (ev_cb (w)) 4098 if (ev_cb (w))
2822 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4099 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2823 else 4100 else
2824 ev_loop (w->other, EVLOOP_NONBLOCK); 4101 ev_run (w->other, EVRUN_NOWAIT);
2825} 4102}
2826 4103
2827static void 4104static void
2828embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4105embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2829{ 4106{
2830 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4107 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2831 4108
2832 { 4109 {
2833 struct ev_loop *loop = w->other; 4110 EV_P = w->other;
2834 4111
2835 while (fdchangecnt) 4112 while (fdchangecnt)
2836 { 4113 {
2837 fd_reify (EV_A); 4114 fd_reify (EV_A);
2838 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4115 ev_run (EV_A_ EVRUN_NOWAIT);
2839 } 4116 }
2840 } 4117 }
2841} 4118}
2842 4119
2843static void 4120static void
2844embed_fork_cb (EV_P_ ev_fork *fork_w, int revents) 4121embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2845{ 4122{
2846 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 4123 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2847 4124
4125 ev_embed_stop (EV_A_ w);
4126
2848 { 4127 {
2849 struct ev_loop *loop = w->other; 4128 EV_P = w->other;
2850 4129
2851 ev_loop_fork (EV_A); 4130 ev_loop_fork (EV_A);
4131 ev_run (EV_A_ EVRUN_NOWAIT);
2852 } 4132 }
4133
4134 ev_embed_start (EV_A_ w);
2853} 4135}
2854 4136
2855#if 0 4137#if 0
2856static void 4138static void
2857embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4139embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2859 ev_idle_stop (EV_A_ idle); 4141 ev_idle_stop (EV_A_ idle);
2860} 4142}
2861#endif 4143#endif
2862 4144
2863void 4145void
2864ev_embed_start (EV_P_ ev_embed *w) 4146ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2865{ 4147{
2866 if (expect_false (ev_is_active (w))) 4148 if (expect_false (ev_is_active (w)))
2867 return; 4149 return;
2868 4150
2869 { 4151 {
2870 struct ev_loop *loop = w->other; 4152 EV_P = w->other;
2871 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4153 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2872 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4154 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2873 } 4155 }
2874 4156
2875 EV_FREQUENT_CHECK; 4157 EV_FREQUENT_CHECK;
2876 4158
2890 4172
2891 EV_FREQUENT_CHECK; 4173 EV_FREQUENT_CHECK;
2892} 4174}
2893 4175
2894void 4176void
2895ev_embed_stop (EV_P_ ev_embed *w) 4177ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2896{ 4178{
2897 clear_pending (EV_A_ (W)w); 4179 clear_pending (EV_A_ (W)w);
2898 if (expect_false (!ev_is_active (w))) 4180 if (expect_false (!ev_is_active (w)))
2899 return; 4181 return;
2900 4182
2902 4184
2903 ev_io_stop (EV_A_ &w->io); 4185 ev_io_stop (EV_A_ &w->io);
2904 ev_prepare_stop (EV_A_ &w->prepare); 4186 ev_prepare_stop (EV_A_ &w->prepare);
2905 ev_fork_stop (EV_A_ &w->fork); 4187 ev_fork_stop (EV_A_ &w->fork);
2906 4188
4189 ev_stop (EV_A_ (W)w);
4190
2907 EV_FREQUENT_CHECK; 4191 EV_FREQUENT_CHECK;
2908} 4192}
2909#endif 4193#endif
2910 4194
2911#if EV_FORK_ENABLE 4195#if EV_FORK_ENABLE
2912void 4196void
2913ev_fork_start (EV_P_ ev_fork *w) 4197ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2914{ 4198{
2915 if (expect_false (ev_is_active (w))) 4199 if (expect_false (ev_is_active (w)))
2916 return; 4200 return;
2917 4201
2918 EV_FREQUENT_CHECK; 4202 EV_FREQUENT_CHECK;
2923 4207
2924 EV_FREQUENT_CHECK; 4208 EV_FREQUENT_CHECK;
2925} 4209}
2926 4210
2927void 4211void
2928ev_fork_stop (EV_P_ ev_fork *w) 4212ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2929{ 4213{
2930 clear_pending (EV_A_ (W)w); 4214 clear_pending (EV_A_ (W)w);
2931 if (expect_false (!ev_is_active (w))) 4215 if (expect_false (!ev_is_active (w)))
2932 return; 4216 return;
2933 4217
2944 4228
2945 EV_FREQUENT_CHECK; 4229 EV_FREQUENT_CHECK;
2946} 4230}
2947#endif 4231#endif
2948 4232
4233#if EV_CLEANUP_ENABLE
4234void
4235ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4236{
4237 if (expect_false (ev_is_active (w)))
4238 return;
4239
4240 EV_FREQUENT_CHECK;
4241
4242 ev_start (EV_A_ (W)w, ++cleanupcnt);
4243 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4244 cleanups [cleanupcnt - 1] = w;
4245
4246 /* cleanup watchers should never keep a refcount on the loop */
4247 ev_unref (EV_A);
4248 EV_FREQUENT_CHECK;
4249}
4250
4251void
4252ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4253{
4254 clear_pending (EV_A_ (W)w);
4255 if (expect_false (!ev_is_active (w)))
4256 return;
4257
4258 EV_FREQUENT_CHECK;
4259 ev_ref (EV_A);
4260
4261 {
4262 int active = ev_active (w);
4263
4264 cleanups [active - 1] = cleanups [--cleanupcnt];
4265 ev_active (cleanups [active - 1]) = active;
4266 }
4267
4268 ev_stop (EV_A_ (W)w);
4269
4270 EV_FREQUENT_CHECK;
4271}
4272#endif
4273
2949#if EV_ASYNC_ENABLE 4274#if EV_ASYNC_ENABLE
2950void 4275void
2951ev_async_start (EV_P_ ev_async *w) 4276ev_async_start (EV_P_ ev_async *w) EV_THROW
2952{ 4277{
2953 if (expect_false (ev_is_active (w))) 4278 if (expect_false (ev_is_active (w)))
2954 return; 4279 return;
4280
4281 w->sent = 0;
2955 4282
2956 evpipe_init (EV_A); 4283 evpipe_init (EV_A);
2957 4284
2958 EV_FREQUENT_CHECK; 4285 EV_FREQUENT_CHECK;
2959 4286
2963 4290
2964 EV_FREQUENT_CHECK; 4291 EV_FREQUENT_CHECK;
2965} 4292}
2966 4293
2967void 4294void
2968ev_async_stop (EV_P_ ev_async *w) 4295ev_async_stop (EV_P_ ev_async *w) EV_THROW
2969{ 4296{
2970 clear_pending (EV_A_ (W)w); 4297 clear_pending (EV_A_ (W)w);
2971 if (expect_false (!ev_is_active (w))) 4298 if (expect_false (!ev_is_active (w)))
2972 return; 4299 return;
2973 4300
2984 4311
2985 EV_FREQUENT_CHECK; 4312 EV_FREQUENT_CHECK;
2986} 4313}
2987 4314
2988void 4315void
2989ev_async_send (EV_P_ ev_async *w) 4316ev_async_send (EV_P_ ev_async *w) EV_THROW
2990{ 4317{
2991 w->sent = 1; 4318 w->sent = 1;
2992 evpipe_write (EV_A_ &gotasync); 4319 evpipe_write (EV_A_ &async_pending);
2993} 4320}
2994#endif 4321#endif
2995 4322
2996/*****************************************************************************/ 4323/*****************************************************************************/
2997 4324
3031 4358
3032 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io)); 4359 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3033} 4360}
3034 4361
3035void 4362void
3036ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4363ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
3037{ 4364{
3038 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4365 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3039 4366
3040 if (expect_false (!once)) 4367 if (expect_false (!once))
3041 { 4368 {
3042 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4369 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3043 return; 4370 return;
3044 } 4371 }
3045 4372
3046 once->cb = cb; 4373 once->cb = cb;
3047 once->arg = arg; 4374 once->arg = arg;
3059 ev_timer_set (&once->to, timeout, 0.); 4386 ev_timer_set (&once->to, timeout, 0.);
3060 ev_timer_start (EV_A_ &once->to); 4387 ev_timer_start (EV_A_ &once->to);
3061 } 4388 }
3062} 4389}
3063 4390
4391/*****************************************************************************/
4392
4393#if EV_WALK_ENABLE
4394void ecb_cold
4395ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4396{
4397 int i, j;
4398 ev_watcher_list *wl, *wn;
4399
4400 if (types & (EV_IO | EV_EMBED))
4401 for (i = 0; i < anfdmax; ++i)
4402 for (wl = anfds [i].head; wl; )
4403 {
4404 wn = wl->next;
4405
4406#if EV_EMBED_ENABLE
4407 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4408 {
4409 if (types & EV_EMBED)
4410 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4411 }
4412 else
4413#endif
4414#if EV_USE_INOTIFY
4415 if (ev_cb ((ev_io *)wl) == infy_cb)
4416 ;
4417 else
4418#endif
4419 if ((ev_io *)wl != &pipe_w)
4420 if (types & EV_IO)
4421 cb (EV_A_ EV_IO, wl);
4422
4423 wl = wn;
4424 }
4425
4426 if (types & (EV_TIMER | EV_STAT))
4427 for (i = timercnt + HEAP0; i-- > HEAP0; )
4428#if EV_STAT_ENABLE
4429 /*TODO: timer is not always active*/
4430 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4431 {
4432 if (types & EV_STAT)
4433 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4434 }
4435 else
4436#endif
4437 if (types & EV_TIMER)
4438 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4439
4440#if EV_PERIODIC_ENABLE
4441 if (types & EV_PERIODIC)
4442 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4443 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4444#endif
4445
4446#if EV_IDLE_ENABLE
4447 if (types & EV_IDLE)
4448 for (j = NUMPRI; j--; )
4449 for (i = idlecnt [j]; i--; )
4450 cb (EV_A_ EV_IDLE, idles [j][i]);
4451#endif
4452
4453#if EV_FORK_ENABLE
4454 if (types & EV_FORK)
4455 for (i = forkcnt; i--; )
4456 if (ev_cb (forks [i]) != embed_fork_cb)
4457 cb (EV_A_ EV_FORK, forks [i]);
4458#endif
4459
4460#if EV_ASYNC_ENABLE
4461 if (types & EV_ASYNC)
4462 for (i = asynccnt; i--; )
4463 cb (EV_A_ EV_ASYNC, asyncs [i]);
4464#endif
4465
4466#if EV_PREPARE_ENABLE
4467 if (types & EV_PREPARE)
4468 for (i = preparecnt; i--; )
4469# if EV_EMBED_ENABLE
4470 if (ev_cb (prepares [i]) != embed_prepare_cb)
4471# endif
4472 cb (EV_A_ EV_PREPARE, prepares [i]);
4473#endif
4474
4475#if EV_CHECK_ENABLE
4476 if (types & EV_CHECK)
4477 for (i = checkcnt; i--; )
4478 cb (EV_A_ EV_CHECK, checks [i]);
4479#endif
4480
4481#if EV_SIGNAL_ENABLE
4482 if (types & EV_SIGNAL)
4483 for (i = 0; i < EV_NSIG - 1; ++i)
4484 for (wl = signals [i].head; wl; )
4485 {
4486 wn = wl->next;
4487 cb (EV_A_ EV_SIGNAL, wl);
4488 wl = wn;
4489 }
4490#endif
4491
4492#if EV_CHILD_ENABLE
4493 if (types & EV_CHILD)
4494 for (i = (EV_PID_HASHSIZE); i--; )
4495 for (wl = childs [i]; wl; )
4496 {
4497 wn = wl->next;
4498 cb (EV_A_ EV_CHILD, wl);
4499 wl = wn;
4500 }
4501#endif
4502/* EV_STAT 0x00001000 /* stat data changed */
4503/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4504}
4505#endif
4506
3064#if EV_MULTIPLICITY 4507#if EV_MULTIPLICITY
3065 #include "ev_wrap.h" 4508 #include "ev_wrap.h"
3066#endif 4509#endif
3067 4510
3068#ifdef __cplusplus
3069}
3070#endif
3071

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines