ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.263 by root, Wed Oct 1 18:50:03 2008 UTC vs.
Revision 1.461 by root, Fri Dec 27 06:01:22 2013 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
130# endif 163# endif
131 164
132#endif 165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
152#endif 197#endif
153 198
154#ifndef _WIN32 199#ifndef _WIN32
155# include <sys/time.h> 200# include <sys/time.h>
156# include <sys/wait.h> 201# include <sys/wait.h>
157# include <unistd.h> 202# include <unistd.h>
158#else 203#else
159# include <io.h> 204# include <io.h>
160# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
161# include <windows.h> 207# include <windows.h>
162# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
163# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
164# endif 210# endif
211# undef EV_AVOID_STDIO
165#endif 212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
166 221
167/* this block tries to deduce configuration from header-defined symbols and defaults */ 222/* this block tries to deduce configuration from header-defined symbols and defaults */
168 223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# define EV_NSIG (8 * sizeof (sigset_t) + 1)
247#endif
248
249#ifndef EV_USE_FLOOR
250# define EV_USE_FLOOR 0
251#endif
252
253#ifndef EV_USE_CLOCK_SYSCALL
254# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256# else
257# define EV_USE_CLOCK_SYSCALL 0
258# endif
259#endif
260
169#ifndef EV_USE_MONOTONIC 261#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 262# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1 263# define EV_USE_MONOTONIC EV_FEATURE_OS
172# else 264# else
173# define EV_USE_MONOTONIC 0 265# define EV_USE_MONOTONIC 0
174# endif 266# endif
175#endif 267#endif
176 268
177#ifndef EV_USE_REALTIME 269#ifndef EV_USE_REALTIME
178# define EV_USE_REALTIME 0 270# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
179#endif 271#endif
180 272
181#ifndef EV_USE_NANOSLEEP 273#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L 274# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1 275# define EV_USE_NANOSLEEP EV_FEATURE_OS
184# else 276# else
185# define EV_USE_NANOSLEEP 0 277# define EV_USE_NANOSLEEP 0
186# endif 278# endif
187#endif 279#endif
188 280
189#ifndef EV_USE_SELECT 281#ifndef EV_USE_SELECT
190# define EV_USE_SELECT 1 282# define EV_USE_SELECT EV_FEATURE_BACKENDS
191#endif 283#endif
192 284
193#ifndef EV_USE_POLL 285#ifndef EV_USE_POLL
194# ifdef _WIN32 286# ifdef _WIN32
195# define EV_USE_POLL 0 287# define EV_USE_POLL 0
196# else 288# else
197# define EV_USE_POLL 1 289# define EV_USE_POLL EV_FEATURE_BACKENDS
198# endif 290# endif
199#endif 291#endif
200 292
201#ifndef EV_USE_EPOLL 293#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1 295# define EV_USE_EPOLL EV_FEATURE_BACKENDS
204# else 296# else
205# define EV_USE_EPOLL 0 297# define EV_USE_EPOLL 0
206# endif 298# endif
207#endif 299#endif
208 300
214# define EV_USE_PORT 0 306# define EV_USE_PORT 0
215#endif 307#endif
216 308
217#ifndef EV_USE_INOTIFY 309#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1 311# define EV_USE_INOTIFY EV_FEATURE_OS
220# else 312# else
221# define EV_USE_INOTIFY 0 313# define EV_USE_INOTIFY 0
222# endif 314# endif
223#endif 315#endif
224 316
225#ifndef EV_PID_HASHSIZE 317#ifndef EV_PID_HASHSIZE
226# if EV_MINIMAL 318# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
230# endif
231#endif 319#endif
232 320
233#ifndef EV_INOTIFY_HASHSIZE 321#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL 322# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif 323#endif
240 324
241#ifndef EV_USE_EVENTFD 325#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 326# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1 327# define EV_USE_EVENTFD EV_FEATURE_OS
244# else 328# else
245# define EV_USE_EVENTFD 0 329# define EV_USE_EVENTFD 0
330# endif
331#endif
332
333#ifndef EV_USE_SIGNALFD
334# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
335# define EV_USE_SIGNALFD EV_FEATURE_OS
336# else
337# define EV_USE_SIGNALFD 0
246# endif 338# endif
247#endif 339#endif
248 340
249#if 0 /* debugging */ 341#if 0 /* debugging */
250# define EV_VERIFY 3 342# define EV_VERIFY 3
251# define EV_USE_4HEAP 1 343# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1 344# define EV_HEAP_CACHE_AT 1
253#endif 345#endif
254 346
255#ifndef EV_VERIFY 347#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL 348# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
257#endif 349#endif
258 350
259#ifndef EV_USE_4HEAP 351#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL 352# define EV_USE_4HEAP EV_FEATURE_DATA
261#endif 353#endif
262 354
263#ifndef EV_HEAP_CACHE_AT 355#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL 356# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
357#endif
358
359#ifdef ANDROID
360/* supposedly, android doesn't typedef fd_mask */
361# undef EV_USE_SELECT
362# define EV_USE_SELECT 0
363/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
364# undef EV_USE_CLOCK_SYSCALL
365# define EV_USE_CLOCK_SYSCALL 0
366#endif
367
368/* aix's poll.h seems to cause lots of trouble */
369#ifdef _AIX
370/* AIX has a completely broken poll.h header */
371# undef EV_USE_POLL
372# define EV_USE_POLL 0
373#endif
374
375/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
376/* which makes programs even slower. might work on other unices, too. */
377#if EV_USE_CLOCK_SYSCALL
378# include <sys/syscall.h>
379# ifdef SYS_clock_gettime
380# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
381# undef EV_USE_MONOTONIC
382# define EV_USE_MONOTONIC 1
383# else
384# undef EV_USE_CLOCK_SYSCALL
385# define EV_USE_CLOCK_SYSCALL 0
386# endif
265#endif 387#endif
266 388
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 389/* this block fixes any misconfiguration where we know we run into trouble otherwise */
268 390
269#ifndef CLOCK_MONOTONIC 391#ifndef CLOCK_MONOTONIC
280# undef EV_USE_INOTIFY 402# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0 403# define EV_USE_INOTIFY 0
282#endif 404#endif
283 405
284#if !EV_USE_NANOSLEEP 406#if !EV_USE_NANOSLEEP
285# ifndef _WIN32 407/* hp-ux has it in sys/time.h, which we unconditionally include above */
408# if !defined _WIN32 && !defined __hpux
286# include <sys/select.h> 409# include <sys/select.h>
287# endif 410# endif
288#endif 411#endif
289 412
290#if EV_USE_INOTIFY 413#if EV_USE_INOTIFY
414# include <sys/statfs.h>
291# include <sys/inotify.h> 415# include <sys/inotify.h>
292/* some very old inotify.h headers don't have IN_DONT_FOLLOW */ 416/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
293# ifndef IN_DONT_FOLLOW 417# ifndef IN_DONT_FOLLOW
294# undef EV_USE_INOTIFY 418# undef EV_USE_INOTIFY
295# define EV_USE_INOTIFY 0 419# define EV_USE_INOTIFY 0
296# endif 420# endif
297#endif 421#endif
298 422
299#if EV_SELECT_IS_WINSOCKET
300# include <winsock.h>
301#endif
302
303#if EV_USE_EVENTFD 423#if EV_USE_EVENTFD
304/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 424/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
305# include <stdint.h> 425# include <stdint.h>
306# ifdef __cplusplus 426# ifndef EFD_NONBLOCK
307extern "C" { 427# define EFD_NONBLOCK O_NONBLOCK
308# endif 428# endif
309int eventfd (unsigned int initval, int flags); 429# ifndef EFD_CLOEXEC
310# ifdef __cplusplus 430# ifdef O_CLOEXEC
311} 431# define EFD_CLOEXEC O_CLOEXEC
432# else
433# define EFD_CLOEXEC 02000000
434# endif
312# endif 435# endif
436EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
437#endif
438
439#if EV_USE_SIGNALFD
440/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
441# include <stdint.h>
442# ifndef SFD_NONBLOCK
443# define SFD_NONBLOCK O_NONBLOCK
444# endif
445# ifndef SFD_CLOEXEC
446# ifdef O_CLOEXEC
447# define SFD_CLOEXEC O_CLOEXEC
448# else
449# define SFD_CLOEXEC 02000000
450# endif
451# endif
452EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
453
454struct signalfd_siginfo
455{
456 uint32_t ssi_signo;
457 char pad[128 - sizeof (uint32_t)];
458};
313#endif 459#endif
314 460
315/**/ 461/**/
316 462
317#if EV_VERIFY >= 3 463#if EV_VERIFY >= 3
318# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 464# define EV_FREQUENT_CHECK ev_verify (EV_A)
319#else 465#else
320# define EV_FREQUENT_CHECK do { } while (0) 466# define EV_FREQUENT_CHECK do { } while (0)
321#endif 467#endif
322 468
323/* 469/*
324 * This is used to avoid floating point rounding problems. 470 * This is used to work around floating point rounding problems.
325 * It is added to ev_rt_now when scheduling periodics
326 * to ensure progress, time-wise, even when rounding
327 * errors are against us.
328 * This value is good at least till the year 4000. 471 * This value is good at least till the year 4000.
329 * Better solutions welcome.
330 */ 472 */
331#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 473#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
474/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
332 475
333#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 476#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
334#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 477#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
335/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
336 478
479#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
480#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
481
482/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
483/* ECB.H BEGIN */
484/*
485 * libecb - http://software.schmorp.de/pkg/libecb
486 *
487 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
488 * Copyright (©) 2011 Emanuele Giaquinta
489 * All rights reserved.
490 *
491 * Redistribution and use in source and binary forms, with or without modifica-
492 * tion, are permitted provided that the following conditions are met:
493 *
494 * 1. Redistributions of source code must retain the above copyright notice,
495 * this list of conditions and the following disclaimer.
496 *
497 * 2. Redistributions in binary form must reproduce the above copyright
498 * notice, this list of conditions and the following disclaimer in the
499 * documentation and/or other materials provided with the distribution.
500 *
501 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
502 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
503 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
504 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
505 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
506 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
507 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
508 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
509 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
510 * OF THE POSSIBILITY OF SUCH DAMAGE.
511 */
512
513#ifndef ECB_H
514#define ECB_H
515
516/* 16 bits major, 16 bits minor */
517#define ECB_VERSION 0x00010003
518
519#ifdef _WIN32
520 typedef signed char int8_t;
521 typedef unsigned char uint8_t;
522 typedef signed short int16_t;
523 typedef unsigned short uint16_t;
524 typedef signed int int32_t;
525 typedef unsigned int uint32_t;
337#if __GNUC__ >= 4 526 #if __GNUC__
338# define expect(expr,value) __builtin_expect ((expr),(value)) 527 typedef signed long long int64_t;
339# define noinline __attribute__ ((noinline)) 528 typedef unsigned long long uint64_t;
529 #else /* _MSC_VER || __BORLANDC__ */
530 typedef signed __int64 int64_t;
531 typedef unsigned __int64 uint64_t;
532 #endif
533 #ifdef _WIN64
534 #define ECB_PTRSIZE 8
535 typedef uint64_t uintptr_t;
536 typedef int64_t intptr_t;
537 #else
538 #define ECB_PTRSIZE 4
539 typedef uint32_t uintptr_t;
540 typedef int32_t intptr_t;
541 #endif
340#else 542#else
341# define expect(expr,value) (expr) 543 #include <inttypes.h>
342# define noinline 544 #if UINTMAX_MAX > 0xffffffffU
343# if __STDC_VERSION__ < 199901L && __GNUC__ < 2 545 #define ECB_PTRSIZE 8
344# define inline 546 #else
547 #define ECB_PTRSIZE 4
548 #endif
345# endif 549#endif
550
551/* work around x32 idiocy by defining proper macros */
552#if __x86_64 || _M_AMD64
553 #if _ILP32
554 #define ECB_AMD64_X32 1
555 #else
556 #define ECB_AMD64 1
346#endif 557 #endif
558#endif
347 559
560/* many compilers define _GNUC_ to some versions but then only implement
561 * what their idiot authors think are the "more important" extensions,
562 * causing enormous grief in return for some better fake benchmark numbers.
563 * or so.
564 * we try to detect these and simply assume they are not gcc - if they have
565 * an issue with that they should have done it right in the first place.
566 */
567#ifndef ECB_GCC_VERSION
568 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
569 #define ECB_GCC_VERSION(major,minor) 0
570 #else
571 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
572 #endif
573#endif
574
575#define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
576#define ECB_C99 (__STDC_VERSION__ >= 199901L)
577#define ECB_C11 (__STDC_VERSION__ >= 201112L)
578#define ECB_CPP (__cplusplus+0)
579#define ECB_CPP11 (__cplusplus >= 201103L)
580
581#if ECB_CPP
582 #define ECB_EXTERN_C extern "C"
583 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
584 #define ECB_EXTERN_C_END }
585#else
586 #define ECB_EXTERN_C extern
587 #define ECB_EXTERN_C_BEG
588 #define ECB_EXTERN_C_END
589#endif
590
591/*****************************************************************************/
592
593/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
594/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
595
596#if ECB_NO_THREADS
597 #define ECB_NO_SMP 1
598#endif
599
600#if ECB_NO_SMP
601 #define ECB_MEMORY_FENCE do { } while (0)
602#endif
603
604#ifndef ECB_MEMORY_FENCE
605 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
606 #if __i386 || __i386__
607 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
608 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
609 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
610 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
611 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
612 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
613 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
614 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
615 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
616 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
617 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
618 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
619 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
620 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
621 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
622 #elif __sparc || __sparc__
623 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
624 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
625 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
626 #elif defined __s390__ || defined __s390x__
627 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
628 #elif defined __mips__
629 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
630 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
631 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
632 #elif defined __alpha__
633 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
634 #elif defined __hppa__
635 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
636 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
637 #elif defined __ia64__
638 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
639 #elif defined __m68k__
640 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
641 #elif defined __m88k__
642 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
643 #elif defined __sh__
644 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
645 #endif
646 #endif
647#endif
648
649#ifndef ECB_MEMORY_FENCE
650 #if ECB_GCC_VERSION(4,7)
651 /* see comment below (stdatomic.h) about the C11 memory model. */
652 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
653
654 /* The __has_feature syntax from clang is so misdesigned that we cannot use it
655 * without risking compile time errors with other compilers. We *could*
656 * define our own ecb_clang_has_feature, but I just can't be bothered to work
657 * around this shit time and again.
658 * #elif defined __clang && __has_feature (cxx_atomic)
659 * // see comment below (stdatomic.h) about the C11 memory model.
660 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
661 */
662
663 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
664 #define ECB_MEMORY_FENCE __sync_synchronize ()
665 #elif _MSC_VER >= 1400 /* VC++ 2005 */
666 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
667 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
668 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
669 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
670 #elif defined _WIN32
671 #include <WinNT.h>
672 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
673 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
674 #include <mbarrier.h>
675 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
676 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
677 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
678 #elif __xlC__
679 #define ECB_MEMORY_FENCE __sync ()
680 #endif
681#endif
682
683#ifndef ECB_MEMORY_FENCE
684 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
685 /* we assume that these memory fences work on all variables/all memory accesses, */
686 /* not just C11 atomics and atomic accesses */
687 #include <stdatomic.h>
688 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
689 /* any fence other than seq_cst, which isn't very efficient for us. */
690 /* Why that is, we don't know - either the C11 memory model is quite useless */
691 /* for most usages, or gcc and clang have a bug */
692 /* I *currently* lean towards the latter, and inefficiently implement */
693 /* all three of ecb's fences as a seq_cst fence */
694 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
695 #endif
696#endif
697
698#ifndef ECB_MEMORY_FENCE
699 #if !ECB_AVOID_PTHREADS
700 /*
701 * if you get undefined symbol references to pthread_mutex_lock,
702 * or failure to find pthread.h, then you should implement
703 * the ECB_MEMORY_FENCE operations for your cpu/compiler
704 * OR provide pthread.h and link against the posix thread library
705 * of your system.
706 */
707 #include <pthread.h>
708 #define ECB_NEEDS_PTHREADS 1
709 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
710
711 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
712 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
713 #endif
714#endif
715
716#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
717 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
718#endif
719
720#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
721 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
722#endif
723
724/*****************************************************************************/
725
726#if __cplusplus
727 #define ecb_inline static inline
728#elif ECB_GCC_VERSION(2,5)
729 #define ecb_inline static __inline__
730#elif ECB_C99
731 #define ecb_inline static inline
732#else
733 #define ecb_inline static
734#endif
735
736#if ECB_GCC_VERSION(3,3)
737 #define ecb_restrict __restrict__
738#elif ECB_C99
739 #define ecb_restrict restrict
740#else
741 #define ecb_restrict
742#endif
743
744typedef int ecb_bool;
745
746#define ECB_CONCAT_(a, b) a ## b
747#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
748#define ECB_STRINGIFY_(a) # a
749#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
750
751#define ecb_function_ ecb_inline
752
753#if ECB_GCC_VERSION(3,1)
754 #define ecb_attribute(attrlist) __attribute__(attrlist)
755 #define ecb_is_constant(expr) __builtin_constant_p (expr)
756 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
757 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
758#else
759 #define ecb_attribute(attrlist)
760 #define ecb_is_constant(expr) 0
761 #define ecb_expect(expr,value) (expr)
762 #define ecb_prefetch(addr,rw,locality)
763#endif
764
765/* no emulation for ecb_decltype */
766#if ECB_GCC_VERSION(4,5)
767 #define ecb_decltype(x) __decltype(x)
768#elif ECB_GCC_VERSION(3,0)
769 #define ecb_decltype(x) __typeof(x)
770#endif
771
772#define ecb_noinline ecb_attribute ((__noinline__))
773#define ecb_unused ecb_attribute ((__unused__))
774#define ecb_const ecb_attribute ((__const__))
775#define ecb_pure ecb_attribute ((__pure__))
776
777#if ECB_C11
778 #define ecb_noreturn _Noreturn
779#else
780 #define ecb_noreturn ecb_attribute ((__noreturn__))
781#endif
782
783#if ECB_GCC_VERSION(4,3)
784 #define ecb_artificial ecb_attribute ((__artificial__))
785 #define ecb_hot ecb_attribute ((__hot__))
786 #define ecb_cold ecb_attribute ((__cold__))
787#else
788 #define ecb_artificial
789 #define ecb_hot
790 #define ecb_cold
791#endif
792
793/* put around conditional expressions if you are very sure that the */
794/* expression is mostly true or mostly false. note that these return */
795/* booleans, not the expression. */
348#define expect_false(expr) expect ((expr) != 0, 0) 796#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
349#define expect_true(expr) expect ((expr) != 0, 1) 797#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
798/* for compatibility to the rest of the world */
799#define ecb_likely(expr) ecb_expect_true (expr)
800#define ecb_unlikely(expr) ecb_expect_false (expr)
801
802/* count trailing zero bits and count # of one bits */
803#if ECB_GCC_VERSION(3,4)
804 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
805 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
806 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
807 #define ecb_ctz32(x) __builtin_ctz (x)
808 #define ecb_ctz64(x) __builtin_ctzll (x)
809 #define ecb_popcount32(x) __builtin_popcount (x)
810 /* no popcountll */
811#else
812 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
813 ecb_function_ int
814 ecb_ctz32 (uint32_t x)
815 {
816 int r = 0;
817
818 x &= ~x + 1; /* this isolates the lowest bit */
819
820#if ECB_branchless_on_i386
821 r += !!(x & 0xaaaaaaaa) << 0;
822 r += !!(x & 0xcccccccc) << 1;
823 r += !!(x & 0xf0f0f0f0) << 2;
824 r += !!(x & 0xff00ff00) << 3;
825 r += !!(x & 0xffff0000) << 4;
826#else
827 if (x & 0xaaaaaaaa) r += 1;
828 if (x & 0xcccccccc) r += 2;
829 if (x & 0xf0f0f0f0) r += 4;
830 if (x & 0xff00ff00) r += 8;
831 if (x & 0xffff0000) r += 16;
832#endif
833
834 return r;
835 }
836
837 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
838 ecb_function_ int
839 ecb_ctz64 (uint64_t x)
840 {
841 int shift = x & 0xffffffffU ? 0 : 32;
842 return ecb_ctz32 (x >> shift) + shift;
843 }
844
845 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
846 ecb_function_ int
847 ecb_popcount32 (uint32_t x)
848 {
849 x -= (x >> 1) & 0x55555555;
850 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
851 x = ((x >> 4) + x) & 0x0f0f0f0f;
852 x *= 0x01010101;
853
854 return x >> 24;
855 }
856
857 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
858 ecb_function_ int ecb_ld32 (uint32_t x)
859 {
860 int r = 0;
861
862 if (x >> 16) { x >>= 16; r += 16; }
863 if (x >> 8) { x >>= 8; r += 8; }
864 if (x >> 4) { x >>= 4; r += 4; }
865 if (x >> 2) { x >>= 2; r += 2; }
866 if (x >> 1) { r += 1; }
867
868 return r;
869 }
870
871 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
872 ecb_function_ int ecb_ld64 (uint64_t x)
873 {
874 int r = 0;
875
876 if (x >> 32) { x >>= 32; r += 32; }
877
878 return r + ecb_ld32 (x);
879 }
880#endif
881
882ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
883ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
884ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
885ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
886
887ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
888ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
889{
890 return ( (x * 0x0802U & 0x22110U)
891 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
892}
893
894ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
895ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
896{
897 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
898 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
899 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
900 x = ( x >> 8 ) | ( x << 8);
901
902 return x;
903}
904
905ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
906ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
907{
908 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
909 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
910 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
911 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
912 x = ( x >> 16 ) | ( x << 16);
913
914 return x;
915}
916
917/* popcount64 is only available on 64 bit cpus as gcc builtin */
918/* so for this version we are lazy */
919ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
920ecb_function_ int
921ecb_popcount64 (uint64_t x)
922{
923 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
924}
925
926ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
927ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
928ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
929ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
930ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
931ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
932ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
933ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
934
935ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
936ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
937ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
938ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
939ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
940ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
941ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
942ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
943
944#if ECB_GCC_VERSION(4,3)
945 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
946 #define ecb_bswap32(x) __builtin_bswap32 (x)
947 #define ecb_bswap64(x) __builtin_bswap64 (x)
948#else
949 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
950 ecb_function_ uint16_t
951 ecb_bswap16 (uint16_t x)
952 {
953 return ecb_rotl16 (x, 8);
954 }
955
956 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
957 ecb_function_ uint32_t
958 ecb_bswap32 (uint32_t x)
959 {
960 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
961 }
962
963 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
964 ecb_function_ uint64_t
965 ecb_bswap64 (uint64_t x)
966 {
967 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
968 }
969#endif
970
971#if ECB_GCC_VERSION(4,5)
972 #define ecb_unreachable() __builtin_unreachable ()
973#else
974 /* this seems to work fine, but gcc always emits a warning for it :/ */
975 ecb_inline void ecb_unreachable (void) ecb_noreturn;
976 ecb_inline void ecb_unreachable (void) { }
977#endif
978
979/* try to tell the compiler that some condition is definitely true */
980#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
981
982ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
983ecb_inline unsigned char
984ecb_byteorder_helper (void)
985{
986 /* the union code still generates code under pressure in gcc, */
987 /* but less than using pointers, and always seems to */
988 /* successfully return a constant. */
989 /* the reason why we have this horrible preprocessor mess */
990 /* is to avoid it in all cases, at least on common architectures */
991 /* or when using a recent enough gcc version (>= 4.6) */
992#if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
993 return 0x44;
994#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
995 return 0x44;
996#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
997 return 0x11;
998#else
999 union
1000 {
1001 uint32_t i;
1002 uint8_t c;
1003 } u = { 0x11223344 };
1004 return u.c;
1005#endif
1006}
1007
1008ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
1009ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1010ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
1011ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1012
1013#if ECB_GCC_VERSION(3,0) || ECB_C99
1014 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1015#else
1016 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1017#endif
1018
1019#if __cplusplus
1020 template<typename T>
1021 static inline T ecb_div_rd (T val, T div)
1022 {
1023 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1024 }
1025 template<typename T>
1026 static inline T ecb_div_ru (T val, T div)
1027 {
1028 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1029 }
1030#else
1031 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1032 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1033#endif
1034
1035#if ecb_cplusplus_does_not_suck
1036 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1037 template<typename T, int N>
1038 static inline int ecb_array_length (const T (&arr)[N])
1039 {
1040 return N;
1041 }
1042#else
1043 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1044#endif
1045
1046/*******************************************************************************/
1047/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1048
1049/* basically, everything uses "ieee pure-endian" floating point numbers */
1050/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1051#if 0 \
1052 || __i386 || __i386__ \
1053 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1054 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1055 || defined __arm__ && defined __ARM_EABI__ \
1056 || defined __s390__ || defined __s390x__ \
1057 || defined __mips__ \
1058 || defined __alpha__ \
1059 || defined __hppa__ \
1060 || defined __ia64__ \
1061 || defined __m68k__ \
1062 || defined __m88k__ \
1063 || defined __sh__ \
1064 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64
1065 #define ECB_STDFP 1
1066 #include <string.h> /* for memcpy */
1067#else
1068 #define ECB_STDFP 0
1069#endif
1070
1071#ifndef ECB_NO_LIBM
1072
1073 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1074
1075 #ifdef NEN
1076 #define ECB_NAN NAN
1077 #else
1078 #define ECB_NAN INFINITY
1079 #endif
1080
1081 /* converts an ieee half/binary16 to a float */
1082 ecb_function_ float ecb_binary16_to_float (uint16_t x) ecb_const;
1083 ecb_function_ float
1084 ecb_binary16_to_float (uint16_t x)
1085 {
1086 int e = (x >> 10) & 0x1f;
1087 int m = x & 0x3ff;
1088 float r;
1089
1090 if (!e ) r = ldexpf (m , -24);
1091 else if (e != 31) r = ldexpf (m + 0x400, e - 25);
1092 else if (m ) r = ECB_NAN;
1093 else r = INFINITY;
1094
1095 return x & 0x8000 ? -r : r;
1096 }
1097
1098 /* convert a float to ieee single/binary32 */
1099 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1100 ecb_function_ uint32_t
1101 ecb_float_to_binary32 (float x)
1102 {
1103 uint32_t r;
1104
1105 #if ECB_STDFP
1106 memcpy (&r, &x, 4);
1107 #else
1108 /* slow emulation, works for anything but -0 */
1109 uint32_t m;
1110 int e;
1111
1112 if (x == 0e0f ) return 0x00000000U;
1113 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1114 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1115 if (x != x ) return 0x7fbfffffU;
1116
1117 m = frexpf (x, &e) * 0x1000000U;
1118
1119 r = m & 0x80000000U;
1120
1121 if (r)
1122 m = -m;
1123
1124 if (e <= -126)
1125 {
1126 m &= 0xffffffU;
1127 m >>= (-125 - e);
1128 e = -126;
1129 }
1130
1131 r |= (e + 126) << 23;
1132 r |= m & 0x7fffffU;
1133 #endif
1134
1135 return r;
1136 }
1137
1138 /* converts an ieee single/binary32 to a float */
1139 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1140 ecb_function_ float
1141 ecb_binary32_to_float (uint32_t x)
1142 {
1143 float r;
1144
1145 #if ECB_STDFP
1146 memcpy (&r, &x, 4);
1147 #else
1148 /* emulation, only works for normals and subnormals and +0 */
1149 int neg = x >> 31;
1150 int e = (x >> 23) & 0xffU;
1151
1152 x &= 0x7fffffU;
1153
1154 if (e)
1155 x |= 0x800000U;
1156 else
1157 e = 1;
1158
1159 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1160 r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1161
1162 r = neg ? -r : r;
1163 #endif
1164
1165 return r;
1166 }
1167
1168 /* convert a double to ieee double/binary64 */
1169 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1170 ecb_function_ uint64_t
1171 ecb_double_to_binary64 (double x)
1172 {
1173 uint64_t r;
1174
1175 #if ECB_STDFP
1176 memcpy (&r, &x, 8);
1177 #else
1178 /* slow emulation, works for anything but -0 */
1179 uint64_t m;
1180 int e;
1181
1182 if (x == 0e0 ) return 0x0000000000000000U;
1183 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1184 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1185 if (x != x ) return 0X7ff7ffffffffffffU;
1186
1187 m = frexp (x, &e) * 0x20000000000000U;
1188
1189 r = m & 0x8000000000000000;;
1190
1191 if (r)
1192 m = -m;
1193
1194 if (e <= -1022)
1195 {
1196 m &= 0x1fffffffffffffU;
1197 m >>= (-1021 - e);
1198 e = -1022;
1199 }
1200
1201 r |= ((uint64_t)(e + 1022)) << 52;
1202 r |= m & 0xfffffffffffffU;
1203 #endif
1204
1205 return r;
1206 }
1207
1208 /* converts an ieee double/binary64 to a double */
1209 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1210 ecb_function_ double
1211 ecb_binary64_to_double (uint64_t x)
1212 {
1213 double r;
1214
1215 #if ECB_STDFP
1216 memcpy (&r, &x, 8);
1217 #else
1218 /* emulation, only works for normals and subnormals and +0 */
1219 int neg = x >> 63;
1220 int e = (x >> 52) & 0x7ffU;
1221
1222 x &= 0xfffffffffffffU;
1223
1224 if (e)
1225 x |= 0x10000000000000U;
1226 else
1227 e = 1;
1228
1229 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1230 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1231
1232 r = neg ? -r : r;
1233 #endif
1234
1235 return r;
1236 }
1237
1238#endif
1239
1240#endif
1241
1242/* ECB.H END */
1243
1244#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1245/* if your architecture doesn't need memory fences, e.g. because it is
1246 * single-cpu/core, or if you use libev in a project that doesn't use libev
1247 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1248 * libev, in which cases the memory fences become nops.
1249 * alternatively, you can remove this #error and link against libpthread,
1250 * which will then provide the memory fences.
1251 */
1252# error "memory fences not defined for your architecture, please report"
1253#endif
1254
1255#ifndef ECB_MEMORY_FENCE
1256# define ECB_MEMORY_FENCE do { } while (0)
1257# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1258# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1259#endif
1260
1261#define expect_false(cond) ecb_expect_false (cond)
1262#define expect_true(cond) ecb_expect_true (cond)
1263#define noinline ecb_noinline
1264
350#define inline_size static inline 1265#define inline_size ecb_inline
351 1266
352#if EV_MINIMAL 1267#if EV_FEATURE_CODE
1268# define inline_speed ecb_inline
1269#else
353# define inline_speed static noinline 1270# define inline_speed static noinline
1271#endif
1272
1273#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1274
1275#if EV_MINPRI == EV_MAXPRI
1276# define ABSPRI(w) (((W)w), 0)
354#else 1277#else
355# define inline_speed static inline
356#endif
357
358#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
359#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1278# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1279#endif
360 1280
361#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1281#define EMPTY /* required for microsofts broken pseudo-c compiler */
362#define EMPTY2(a,b) /* used to suppress some warnings */ 1282#define EMPTY2(a,b) /* used to suppress some warnings */
363 1283
364typedef ev_watcher *W; 1284typedef ev_watcher *W;
366typedef ev_watcher_time *WT; 1286typedef ev_watcher_time *WT;
367 1287
368#define ev_active(w) ((W)(w))->active 1288#define ev_active(w) ((W)(w))->active
369#define ev_at(w) ((WT)(w))->at 1289#define ev_at(w) ((WT)(w))->at
370 1290
1291#if EV_USE_REALTIME
1292/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1293/* giving it a reasonably high chance of working on typical architectures */
1294static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1295#endif
1296
371#if EV_USE_MONOTONIC 1297#if EV_USE_MONOTONIC
372/* sig_atomic_t is used to avoid per-thread variables or locking but still */
373/* giving it a reasonably high chance of working on typical architetcures */
374static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1298static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1299#endif
1300
1301#ifndef EV_FD_TO_WIN32_HANDLE
1302# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1303#endif
1304#ifndef EV_WIN32_HANDLE_TO_FD
1305# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1306#endif
1307#ifndef EV_WIN32_CLOSE_FD
1308# define EV_WIN32_CLOSE_FD(fd) close (fd)
375#endif 1309#endif
376 1310
377#ifdef _WIN32 1311#ifdef _WIN32
378# include "ev_win32.c" 1312# include "ev_win32.c"
379#endif 1313#endif
380 1314
381/*****************************************************************************/ 1315/*****************************************************************************/
382 1316
1317/* define a suitable floor function (only used by periodics atm) */
1318
1319#if EV_USE_FLOOR
1320# include <math.h>
1321# define ev_floor(v) floor (v)
1322#else
1323
1324#include <float.h>
1325
1326/* a floor() replacement function, should be independent of ev_tstamp type */
1327static ev_tstamp noinline
1328ev_floor (ev_tstamp v)
1329{
1330 /* the choice of shift factor is not terribly important */
1331#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1332 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1333#else
1334 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1335#endif
1336
1337 /* argument too large for an unsigned long? */
1338 if (expect_false (v >= shift))
1339 {
1340 ev_tstamp f;
1341
1342 if (v == v - 1.)
1343 return v; /* very large number */
1344
1345 f = shift * ev_floor (v * (1. / shift));
1346 return f + ev_floor (v - f);
1347 }
1348
1349 /* special treatment for negative args? */
1350 if (expect_false (v < 0.))
1351 {
1352 ev_tstamp f = -ev_floor (-v);
1353
1354 return f - (f == v ? 0 : 1);
1355 }
1356
1357 /* fits into an unsigned long */
1358 return (unsigned long)v;
1359}
1360
1361#endif
1362
1363/*****************************************************************************/
1364
1365#ifdef __linux
1366# include <sys/utsname.h>
1367#endif
1368
1369static unsigned int noinline ecb_cold
1370ev_linux_version (void)
1371{
1372#ifdef __linux
1373 unsigned int v = 0;
1374 struct utsname buf;
1375 int i;
1376 char *p = buf.release;
1377
1378 if (uname (&buf))
1379 return 0;
1380
1381 for (i = 3+1; --i; )
1382 {
1383 unsigned int c = 0;
1384
1385 for (;;)
1386 {
1387 if (*p >= '0' && *p <= '9')
1388 c = c * 10 + *p++ - '0';
1389 else
1390 {
1391 p += *p == '.';
1392 break;
1393 }
1394 }
1395
1396 v = (v << 8) | c;
1397 }
1398
1399 return v;
1400#else
1401 return 0;
1402#endif
1403}
1404
1405/*****************************************************************************/
1406
1407#if EV_AVOID_STDIO
1408static void noinline ecb_cold
1409ev_printerr (const char *msg)
1410{
1411 write (STDERR_FILENO, msg, strlen (msg));
1412}
1413#endif
1414
383static void (*syserr_cb)(const char *msg); 1415static void (*syserr_cb)(const char *msg) EV_THROW;
384 1416
385void 1417void ecb_cold
386ev_set_syserr_cb (void (*cb)(const char *msg)) 1418ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
387{ 1419{
388 syserr_cb = cb; 1420 syserr_cb = cb;
389} 1421}
390 1422
391static void noinline 1423static void noinline ecb_cold
392syserr (const char *msg) 1424ev_syserr (const char *msg)
393{ 1425{
394 if (!msg) 1426 if (!msg)
395 msg = "(libev) system error"; 1427 msg = "(libev) system error";
396 1428
397 if (syserr_cb) 1429 if (syserr_cb)
398 syserr_cb (msg); 1430 syserr_cb (msg);
399 else 1431 else
400 { 1432 {
1433#if EV_AVOID_STDIO
1434 ev_printerr (msg);
1435 ev_printerr (": ");
1436 ev_printerr (strerror (errno));
1437 ev_printerr ("\n");
1438#else
401 perror (msg); 1439 perror (msg);
1440#endif
402 abort (); 1441 abort ();
403 } 1442 }
404} 1443}
405 1444
406static void * 1445static void *
407ev_realloc_emul (void *ptr, long size) 1446ev_realloc_emul (void *ptr, long size) EV_THROW
408{ 1447{
409 /* some systems, notably openbsd and darwin, fail to properly 1448 /* some systems, notably openbsd and darwin, fail to properly
410 * implement realloc (x, 0) (as required by both ansi c-98 and 1449 * implement realloc (x, 0) (as required by both ansi c-89 and
411 * the single unix specification, so work around them here. 1450 * the single unix specification, so work around them here.
1451 * recently, also (at least) fedora and debian started breaking it,
1452 * despite documenting it otherwise.
412 */ 1453 */
413 1454
414 if (size) 1455 if (size)
415 return realloc (ptr, size); 1456 return realloc (ptr, size);
416 1457
417 free (ptr); 1458 free (ptr);
418 return 0; 1459 return 0;
419} 1460}
420 1461
421static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1462static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
422 1463
423void 1464void ecb_cold
424ev_set_allocator (void *(*cb)(void *ptr, long size)) 1465ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
425{ 1466{
426 alloc = cb; 1467 alloc = cb;
427} 1468}
428 1469
429inline_speed void * 1470inline_speed void *
431{ 1472{
432 ptr = alloc (ptr, size); 1473 ptr = alloc (ptr, size);
433 1474
434 if (!ptr && size) 1475 if (!ptr && size)
435 { 1476 {
1477#if EV_AVOID_STDIO
1478 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1479#else
436 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1480 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1481#endif
437 abort (); 1482 abort ();
438 } 1483 }
439 1484
440 return ptr; 1485 return ptr;
441} 1486}
443#define ev_malloc(size) ev_realloc (0, (size)) 1488#define ev_malloc(size) ev_realloc (0, (size))
444#define ev_free(ptr) ev_realloc ((ptr), 0) 1489#define ev_free(ptr) ev_realloc ((ptr), 0)
445 1490
446/*****************************************************************************/ 1491/*****************************************************************************/
447 1492
1493/* set in reify when reification needed */
1494#define EV_ANFD_REIFY 1
1495
1496/* file descriptor info structure */
448typedef struct 1497typedef struct
449{ 1498{
450 WL head; 1499 WL head;
451 unsigned char events; 1500 unsigned char events; /* the events watched for */
1501 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1502 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
452 unsigned char reify; 1503 unsigned char unused;
1504#if EV_USE_EPOLL
1505 unsigned int egen; /* generation counter to counter epoll bugs */
1506#endif
453#if EV_SELECT_IS_WINSOCKET 1507#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
454 SOCKET handle; 1508 SOCKET handle;
455#endif 1509#endif
1510#if EV_USE_IOCP
1511 OVERLAPPED or, ow;
1512#endif
456} ANFD; 1513} ANFD;
457 1514
1515/* stores the pending event set for a given watcher */
458typedef struct 1516typedef struct
459{ 1517{
460 W w; 1518 W w;
461 int events; 1519 int events; /* the pending event set for the given watcher */
462} ANPENDING; 1520} ANPENDING;
463 1521
464#if EV_USE_INOTIFY 1522#if EV_USE_INOTIFY
465/* hash table entry per inotify-id */ 1523/* hash table entry per inotify-id */
466typedef struct 1524typedef struct
469} ANFS; 1527} ANFS;
470#endif 1528#endif
471 1529
472/* Heap Entry */ 1530/* Heap Entry */
473#if EV_HEAP_CACHE_AT 1531#if EV_HEAP_CACHE_AT
1532 /* a heap element */
474 typedef struct { 1533 typedef struct {
475 ev_tstamp at; 1534 ev_tstamp at;
476 WT w; 1535 WT w;
477 } ANHE; 1536 } ANHE;
478 1537
479 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1538 #define ANHE_w(he) (he).w /* access watcher, read-write */
480 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1539 #define ANHE_at(he) (he).at /* access cached at, read-only */
481 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 1540 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
482#else 1541#else
1542 /* a heap element */
483 typedef WT ANHE; 1543 typedef WT ANHE;
484 1544
485 #define ANHE_w(he) (he) 1545 #define ANHE_w(he) (he)
486 #define ANHE_at(he) (he)->at 1546 #define ANHE_at(he) (he)->at
487 #define ANHE_at_cache(he) 1547 #define ANHE_at_cache(he)
498 #undef VAR 1558 #undef VAR
499 }; 1559 };
500 #include "ev_wrap.h" 1560 #include "ev_wrap.h"
501 1561
502 static struct ev_loop default_loop_struct; 1562 static struct ev_loop default_loop_struct;
503 struct ev_loop *ev_default_loop_ptr; 1563 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
504 1564
505#else 1565#else
506 1566
507 ev_tstamp ev_rt_now; 1567 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
508 #define VAR(name,decl) static decl; 1568 #define VAR(name,decl) static decl;
509 #include "ev_vars.h" 1569 #include "ev_vars.h"
510 #undef VAR 1570 #undef VAR
511 1571
512 static int ev_default_loop_ptr; 1572 static int ev_default_loop_ptr;
513 1573
514#endif 1574#endif
515 1575
1576#if EV_FEATURE_API
1577# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1578# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1579# define EV_INVOKE_PENDING invoke_cb (EV_A)
1580#else
1581# define EV_RELEASE_CB (void)0
1582# define EV_ACQUIRE_CB (void)0
1583# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1584#endif
1585
1586#define EVBREAK_RECURSE 0x80
1587
516/*****************************************************************************/ 1588/*****************************************************************************/
517 1589
1590#ifndef EV_HAVE_EV_TIME
518ev_tstamp 1591ev_tstamp
519ev_time (void) 1592ev_time (void) EV_THROW
520{ 1593{
521#if EV_USE_REALTIME 1594#if EV_USE_REALTIME
1595 if (expect_true (have_realtime))
1596 {
522 struct timespec ts; 1597 struct timespec ts;
523 clock_gettime (CLOCK_REALTIME, &ts); 1598 clock_gettime (CLOCK_REALTIME, &ts);
524 return ts.tv_sec + ts.tv_nsec * 1e-9; 1599 return ts.tv_sec + ts.tv_nsec * 1e-9;
525#else 1600 }
1601#endif
1602
526 struct timeval tv; 1603 struct timeval tv;
527 gettimeofday (&tv, 0); 1604 gettimeofday (&tv, 0);
528 return tv.tv_sec + tv.tv_usec * 1e-6; 1605 return tv.tv_sec + tv.tv_usec * 1e-6;
529#endif
530} 1606}
1607#endif
531 1608
532ev_tstamp inline_size 1609inline_size ev_tstamp
533get_clock (void) 1610get_clock (void)
534{ 1611{
535#if EV_USE_MONOTONIC 1612#if EV_USE_MONOTONIC
536 if (expect_true (have_monotonic)) 1613 if (expect_true (have_monotonic))
537 { 1614 {
544 return ev_time (); 1621 return ev_time ();
545} 1622}
546 1623
547#if EV_MULTIPLICITY 1624#if EV_MULTIPLICITY
548ev_tstamp 1625ev_tstamp
549ev_now (EV_P) 1626ev_now (EV_P) EV_THROW
550{ 1627{
551 return ev_rt_now; 1628 return ev_rt_now;
552} 1629}
553#endif 1630#endif
554 1631
555void 1632void
556ev_sleep (ev_tstamp delay) 1633ev_sleep (ev_tstamp delay) EV_THROW
557{ 1634{
558 if (delay > 0.) 1635 if (delay > 0.)
559 { 1636 {
560#if EV_USE_NANOSLEEP 1637#if EV_USE_NANOSLEEP
561 struct timespec ts; 1638 struct timespec ts;
562 1639
563 ts.tv_sec = (time_t)delay; 1640 EV_TS_SET (ts, delay);
564 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
565
566 nanosleep (&ts, 0); 1641 nanosleep (&ts, 0);
567#elif defined(_WIN32) 1642#elif defined _WIN32
568 Sleep ((unsigned long)(delay * 1e3)); 1643 Sleep ((unsigned long)(delay * 1e3));
569#else 1644#else
570 struct timeval tv; 1645 struct timeval tv;
571 1646
572 tv.tv_sec = (time_t)delay;
573 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
574
575 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 1647 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
576 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 1648 /* something not guaranteed by newer posix versions, but guaranteed */
577 /* by older ones */ 1649 /* by older ones */
1650 EV_TV_SET (tv, delay);
578 select (0, 0, 0, 0, &tv); 1651 select (0, 0, 0, 0, &tv);
579#endif 1652#endif
580 } 1653 }
581} 1654}
582 1655
583/*****************************************************************************/ 1656/*****************************************************************************/
584 1657
585#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1658#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
586 1659
587int inline_size 1660/* find a suitable new size for the given array, */
1661/* hopefully by rounding to a nice-to-malloc size */
1662inline_size int
588array_nextsize (int elem, int cur, int cnt) 1663array_nextsize (int elem, int cur, int cnt)
589{ 1664{
590 int ncur = cur + 1; 1665 int ncur = cur + 1;
591 1666
592 do 1667 do
593 ncur <<= 1; 1668 ncur <<= 1;
594 while (cnt > ncur); 1669 while (cnt > ncur);
595 1670
596 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1671 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
597 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1672 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
598 { 1673 {
599 ncur *= elem; 1674 ncur *= elem;
600 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1675 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
601 ncur = ncur - sizeof (void *) * 4; 1676 ncur = ncur - sizeof (void *) * 4;
603 } 1678 }
604 1679
605 return ncur; 1680 return ncur;
606} 1681}
607 1682
608static noinline void * 1683static void * noinline ecb_cold
609array_realloc (int elem, void *base, int *cur, int cnt) 1684array_realloc (int elem, void *base, int *cur, int cnt)
610{ 1685{
611 *cur = array_nextsize (elem, *cur, cnt); 1686 *cur = array_nextsize (elem, *cur, cnt);
612 return ev_realloc (base, elem * *cur); 1687 return ev_realloc (base, elem * *cur);
613} 1688}
1689
1690#define array_init_zero(base,count) \
1691 memset ((void *)(base), 0, sizeof (*(base)) * (count))
614 1692
615#define array_needsize(type,base,cur,cnt,init) \ 1693#define array_needsize(type,base,cur,cnt,init) \
616 if (expect_false ((cnt) > (cur))) \ 1694 if (expect_false ((cnt) > (cur))) \
617 { \ 1695 { \
618 int ocur_ = (cur); \ 1696 int ecb_unused ocur_ = (cur); \
619 (base) = (type *)array_realloc \ 1697 (base) = (type *)array_realloc \
620 (sizeof (type), (base), &(cur), (cnt)); \ 1698 (sizeof (type), (base), &(cur), (cnt)); \
621 init ((base) + (ocur_), (cur) - ocur_); \ 1699 init ((base) + (ocur_), (cur) - ocur_); \
622 } 1700 }
623 1701
630 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1708 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
631 } 1709 }
632#endif 1710#endif
633 1711
634#define array_free(stem, idx) \ 1712#define array_free(stem, idx) \
635 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1713 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
636 1714
637/*****************************************************************************/ 1715/*****************************************************************************/
638 1716
1717/* dummy callback for pending events */
1718static void noinline
1719pendingcb (EV_P_ ev_prepare *w, int revents)
1720{
1721}
1722
639void noinline 1723void noinline
640ev_feed_event (EV_P_ void *w, int revents) 1724ev_feed_event (EV_P_ void *w, int revents) EV_THROW
641{ 1725{
642 W w_ = (W)w; 1726 W w_ = (W)w;
643 int pri = ABSPRI (w_); 1727 int pri = ABSPRI (w_);
644 1728
645 if (expect_false (w_->pending)) 1729 if (expect_false (w_->pending))
649 w_->pending = ++pendingcnt [pri]; 1733 w_->pending = ++pendingcnt [pri];
650 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1734 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
651 pendings [pri][w_->pending - 1].w = w_; 1735 pendings [pri][w_->pending - 1].w = w_;
652 pendings [pri][w_->pending - 1].events = revents; 1736 pendings [pri][w_->pending - 1].events = revents;
653 } 1737 }
654}
655 1738
656void inline_speed 1739 pendingpri = NUMPRI - 1;
1740}
1741
1742inline_speed void
1743feed_reverse (EV_P_ W w)
1744{
1745 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1746 rfeeds [rfeedcnt++] = w;
1747}
1748
1749inline_size void
1750feed_reverse_done (EV_P_ int revents)
1751{
1752 do
1753 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1754 while (rfeedcnt);
1755}
1756
1757inline_speed void
657queue_events (EV_P_ W *events, int eventcnt, int type) 1758queue_events (EV_P_ W *events, int eventcnt, int type)
658{ 1759{
659 int i; 1760 int i;
660 1761
661 for (i = 0; i < eventcnt; ++i) 1762 for (i = 0; i < eventcnt; ++i)
662 ev_feed_event (EV_A_ events [i], type); 1763 ev_feed_event (EV_A_ events [i], type);
663} 1764}
664 1765
665/*****************************************************************************/ 1766/*****************************************************************************/
666 1767
667void inline_size 1768inline_speed void
668anfds_init (ANFD *base, int count)
669{
670 while (count--)
671 {
672 base->head = 0;
673 base->events = EV_NONE;
674 base->reify = 0;
675
676 ++base;
677 }
678}
679
680void inline_speed
681fd_event (EV_P_ int fd, int revents) 1769fd_event_nocheck (EV_P_ int fd, int revents)
682{ 1770{
683 ANFD *anfd = anfds + fd; 1771 ANFD *anfd = anfds + fd;
684 ev_io *w; 1772 ev_io *w;
685 1773
686 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1774 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
690 if (ev) 1778 if (ev)
691 ev_feed_event (EV_A_ (W)w, ev); 1779 ev_feed_event (EV_A_ (W)w, ev);
692 } 1780 }
693} 1781}
694 1782
1783/* do not submit kernel events for fds that have reify set */
1784/* because that means they changed while we were polling for new events */
1785inline_speed void
1786fd_event (EV_P_ int fd, int revents)
1787{
1788 ANFD *anfd = anfds + fd;
1789
1790 if (expect_true (!anfd->reify))
1791 fd_event_nocheck (EV_A_ fd, revents);
1792}
1793
695void 1794void
696ev_feed_fd_event (EV_P_ int fd, int revents) 1795ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
697{ 1796{
698 if (fd >= 0 && fd < anfdmax) 1797 if (fd >= 0 && fd < anfdmax)
699 fd_event (EV_A_ fd, revents); 1798 fd_event_nocheck (EV_A_ fd, revents);
700} 1799}
701 1800
702void inline_size 1801/* make sure the external fd watch events are in-sync */
1802/* with the kernel/libev internal state */
1803inline_size void
703fd_reify (EV_P) 1804fd_reify (EV_P)
704{ 1805{
705 int i; 1806 int i;
1807
1808#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1809 for (i = 0; i < fdchangecnt; ++i)
1810 {
1811 int fd = fdchanges [i];
1812 ANFD *anfd = anfds + fd;
1813
1814 if (anfd->reify & EV__IOFDSET && anfd->head)
1815 {
1816 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1817
1818 if (handle != anfd->handle)
1819 {
1820 unsigned long arg;
1821
1822 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1823
1824 /* handle changed, but fd didn't - we need to do it in two steps */
1825 backend_modify (EV_A_ fd, anfd->events, 0);
1826 anfd->events = 0;
1827 anfd->handle = handle;
1828 }
1829 }
1830 }
1831#endif
706 1832
707 for (i = 0; i < fdchangecnt; ++i) 1833 for (i = 0; i < fdchangecnt; ++i)
708 { 1834 {
709 int fd = fdchanges [i]; 1835 int fd = fdchanges [i];
710 ANFD *anfd = anfds + fd; 1836 ANFD *anfd = anfds + fd;
711 ev_io *w; 1837 ev_io *w;
712 1838
713 unsigned char events = 0; 1839 unsigned char o_events = anfd->events;
1840 unsigned char o_reify = anfd->reify;
714 1841
715 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1842 anfd->reify = 0;
716 events |= (unsigned char)w->events;
717 1843
718#if EV_SELECT_IS_WINSOCKET 1844 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
719 if (events)
720 { 1845 {
721 unsigned long arg; 1846 anfd->events = 0;
722 #ifdef EV_FD_TO_WIN32_HANDLE 1847
723 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1848 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
724 #else 1849 anfd->events |= (unsigned char)w->events;
725 anfd->handle = _get_osfhandle (fd); 1850
726 #endif 1851 if (o_events != anfd->events)
727 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 1852 o_reify = EV__IOFDSET; /* actually |= */
728 } 1853 }
729#endif
730 1854
731 { 1855 if (o_reify & EV__IOFDSET)
732 unsigned char o_events = anfd->events;
733 unsigned char o_reify = anfd->reify;
734
735 anfd->reify = 0;
736 anfd->events = events;
737
738 if (o_events != events || o_reify & EV_IOFDSET)
739 backend_modify (EV_A_ fd, o_events, events); 1856 backend_modify (EV_A_ fd, o_events, anfd->events);
740 }
741 } 1857 }
742 1858
743 fdchangecnt = 0; 1859 fdchangecnt = 0;
744} 1860}
745 1861
746void inline_size 1862/* something about the given fd changed */
1863inline_size void
747fd_change (EV_P_ int fd, int flags) 1864fd_change (EV_P_ int fd, int flags)
748{ 1865{
749 unsigned char reify = anfds [fd].reify; 1866 unsigned char reify = anfds [fd].reify;
750 anfds [fd].reify |= flags; 1867 anfds [fd].reify |= flags;
751 1868
755 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1872 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
756 fdchanges [fdchangecnt - 1] = fd; 1873 fdchanges [fdchangecnt - 1] = fd;
757 } 1874 }
758} 1875}
759 1876
760void inline_speed 1877/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1878inline_speed void ecb_cold
761fd_kill (EV_P_ int fd) 1879fd_kill (EV_P_ int fd)
762{ 1880{
763 ev_io *w; 1881 ev_io *w;
764 1882
765 while ((w = (ev_io *)anfds [fd].head)) 1883 while ((w = (ev_io *)anfds [fd].head))
767 ev_io_stop (EV_A_ w); 1885 ev_io_stop (EV_A_ w);
768 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1886 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
769 } 1887 }
770} 1888}
771 1889
772int inline_size 1890/* check whether the given fd is actually valid, for error recovery */
1891inline_size int ecb_cold
773fd_valid (int fd) 1892fd_valid (int fd)
774{ 1893{
775#ifdef _WIN32 1894#ifdef _WIN32
776 return _get_osfhandle (fd) != -1; 1895 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
777#else 1896#else
778 return fcntl (fd, F_GETFD) != -1; 1897 return fcntl (fd, F_GETFD) != -1;
779#endif 1898#endif
780} 1899}
781 1900
782/* called on EBADF to verify fds */ 1901/* called on EBADF to verify fds */
783static void noinline 1902static void noinline ecb_cold
784fd_ebadf (EV_P) 1903fd_ebadf (EV_P)
785{ 1904{
786 int fd; 1905 int fd;
787 1906
788 for (fd = 0; fd < anfdmax; ++fd) 1907 for (fd = 0; fd < anfdmax; ++fd)
790 if (!fd_valid (fd) && errno == EBADF) 1909 if (!fd_valid (fd) && errno == EBADF)
791 fd_kill (EV_A_ fd); 1910 fd_kill (EV_A_ fd);
792} 1911}
793 1912
794/* called on ENOMEM in select/poll to kill some fds and retry */ 1913/* called on ENOMEM in select/poll to kill some fds and retry */
795static void noinline 1914static void noinline ecb_cold
796fd_enomem (EV_P) 1915fd_enomem (EV_P)
797{ 1916{
798 int fd; 1917 int fd;
799 1918
800 for (fd = anfdmax; fd--; ) 1919 for (fd = anfdmax; fd--; )
801 if (anfds [fd].events) 1920 if (anfds [fd].events)
802 { 1921 {
803 fd_kill (EV_A_ fd); 1922 fd_kill (EV_A_ fd);
804 return; 1923 break;
805 } 1924 }
806} 1925}
807 1926
808/* usually called after fork if backend needs to re-arm all fds from scratch */ 1927/* usually called after fork if backend needs to re-arm all fds from scratch */
809static void noinline 1928static void noinline
813 1932
814 for (fd = 0; fd < anfdmax; ++fd) 1933 for (fd = 0; fd < anfdmax; ++fd)
815 if (anfds [fd].events) 1934 if (anfds [fd].events)
816 { 1935 {
817 anfds [fd].events = 0; 1936 anfds [fd].events = 0;
1937 anfds [fd].emask = 0;
818 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1938 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
819 } 1939 }
820} 1940}
821 1941
1942/* used to prepare libev internal fd's */
1943/* this is not fork-safe */
1944inline_speed void
1945fd_intern (int fd)
1946{
1947#ifdef _WIN32
1948 unsigned long arg = 1;
1949 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1950#else
1951 fcntl (fd, F_SETFD, FD_CLOEXEC);
1952 fcntl (fd, F_SETFL, O_NONBLOCK);
1953#endif
1954}
1955
822/*****************************************************************************/ 1956/*****************************************************************************/
823 1957
824/* 1958/*
825 * the heap functions want a real array index. array index 0 uis guaranteed to not 1959 * the heap functions want a real array index. array index 0 is guaranteed to not
826 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1960 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
827 * the branching factor of the d-tree. 1961 * the branching factor of the d-tree.
828 */ 1962 */
829 1963
830/* 1964/*
839#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1973#define HEAP0 (DHEAP - 1) /* index of first element in heap */
840#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1974#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
841#define UPHEAP_DONE(p,k) ((p) == (k)) 1975#define UPHEAP_DONE(p,k) ((p) == (k))
842 1976
843/* away from the root */ 1977/* away from the root */
844void inline_speed 1978inline_speed void
845downheap (ANHE *heap, int N, int k) 1979downheap (ANHE *heap, int N, int k)
846{ 1980{
847 ANHE he = heap [k]; 1981 ANHE he = heap [k];
848 ANHE *E = heap + N + HEAP0; 1982 ANHE *E = heap + N + HEAP0;
849 1983
889#define HEAP0 1 2023#define HEAP0 1
890#define HPARENT(k) ((k) >> 1) 2024#define HPARENT(k) ((k) >> 1)
891#define UPHEAP_DONE(p,k) (!(p)) 2025#define UPHEAP_DONE(p,k) (!(p))
892 2026
893/* away from the root */ 2027/* away from the root */
894void inline_speed 2028inline_speed void
895downheap (ANHE *heap, int N, int k) 2029downheap (ANHE *heap, int N, int k)
896{ 2030{
897 ANHE he = heap [k]; 2031 ANHE he = heap [k];
898 2032
899 for (;;) 2033 for (;;)
900 { 2034 {
901 int c = k << 1; 2035 int c = k << 1;
902 2036
903 if (c > N + HEAP0 - 1) 2037 if (c >= N + HEAP0)
904 break; 2038 break;
905 2039
906 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 2040 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
907 ? 1 : 0; 2041 ? 1 : 0;
908 2042
919 ev_active (ANHE_w (he)) = k; 2053 ev_active (ANHE_w (he)) = k;
920} 2054}
921#endif 2055#endif
922 2056
923/* towards the root */ 2057/* towards the root */
924void inline_speed 2058inline_speed void
925upheap (ANHE *heap, int k) 2059upheap (ANHE *heap, int k)
926{ 2060{
927 ANHE he = heap [k]; 2061 ANHE he = heap [k];
928 2062
929 for (;;) 2063 for (;;)
940 2074
941 heap [k] = he; 2075 heap [k] = he;
942 ev_active (ANHE_w (he)) = k; 2076 ev_active (ANHE_w (he)) = k;
943} 2077}
944 2078
945void inline_size 2079/* move an element suitably so it is in a correct place */
2080inline_size void
946adjustheap (ANHE *heap, int N, int k) 2081adjustheap (ANHE *heap, int N, int k)
947{ 2082{
948 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 2083 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
949 upheap (heap, k); 2084 upheap (heap, k);
950 else 2085 else
951 downheap (heap, N, k); 2086 downheap (heap, N, k);
952} 2087}
953 2088
954/* rebuild the heap: this function is used only once and executed rarely */ 2089/* rebuild the heap: this function is used only once and executed rarely */
955void inline_size 2090inline_size void
956reheap (ANHE *heap, int N) 2091reheap (ANHE *heap, int N)
957{ 2092{
958 int i; 2093 int i;
959 2094
960 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 2095 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
963 upheap (heap, i + HEAP0); 2098 upheap (heap, i + HEAP0);
964} 2099}
965 2100
966/*****************************************************************************/ 2101/*****************************************************************************/
967 2102
2103/* associate signal watchers to a signal signal */
968typedef struct 2104typedef struct
969{ 2105{
2106 EV_ATOMIC_T pending;
2107#if EV_MULTIPLICITY
2108 EV_P;
2109#endif
970 WL head; 2110 WL head;
971 EV_ATOMIC_T gotsig;
972} ANSIG; 2111} ANSIG;
973 2112
974static ANSIG *signals; 2113static ANSIG signals [EV_NSIG - 1];
975static int signalmax;
976
977static EV_ATOMIC_T gotsig;
978
979void inline_size
980signals_init (ANSIG *base, int count)
981{
982 while (count--)
983 {
984 base->head = 0;
985 base->gotsig = 0;
986
987 ++base;
988 }
989}
990 2114
991/*****************************************************************************/ 2115/*****************************************************************************/
992 2116
993void inline_speed 2117#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
994fd_intern (int fd)
995{
996#ifdef _WIN32
997 unsigned long arg = 1;
998 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
999#else
1000 fcntl (fd, F_SETFD, FD_CLOEXEC);
1001 fcntl (fd, F_SETFL, O_NONBLOCK);
1002#endif
1003}
1004 2118
1005static void noinline 2119static void noinline ecb_cold
1006evpipe_init (EV_P) 2120evpipe_init (EV_P)
1007{ 2121{
1008 if (!ev_is_active (&pipeev)) 2122 if (!ev_is_active (&pipe_w))
2123 {
2124 int fds [2];
2125
2126# if EV_USE_EVENTFD
2127 fds [0] = -1;
2128 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2129 if (fds [1] < 0 && errno == EINVAL)
2130 fds [1] = eventfd (0, 0);
2131
2132 if (fds [1] < 0)
2133# endif
2134 {
2135 while (pipe (fds))
2136 ev_syserr ("(libev) error creating signal/async pipe");
2137
2138 fd_intern (fds [0]);
2139 }
2140
2141 evpipe [0] = fds [0];
2142
2143 if (evpipe [1] < 0)
2144 evpipe [1] = fds [1]; /* first call, set write fd */
2145 else
2146 {
2147 /* on subsequent calls, do not change evpipe [1] */
2148 /* so that evpipe_write can always rely on its value. */
2149 /* this branch does not do anything sensible on windows, */
2150 /* so must not be executed on windows */
2151
2152 dup2 (fds [1], evpipe [1]);
2153 close (fds [1]);
2154 }
2155
2156 fd_intern (evpipe [1]);
2157
2158 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2159 ev_io_start (EV_A_ &pipe_w);
2160 ev_unref (EV_A); /* watcher should not keep loop alive */
1009 { 2161 }
2162}
2163
2164inline_speed void
2165evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2166{
2167 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2168
2169 if (expect_true (*flag))
2170 return;
2171
2172 *flag = 1;
2173 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2174
2175 pipe_write_skipped = 1;
2176
2177 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2178
2179 if (pipe_write_wanted)
2180 {
2181 int old_errno;
2182
2183 pipe_write_skipped = 0;
2184 ECB_MEMORY_FENCE_RELEASE;
2185
2186 old_errno = errno; /* save errno because write will clobber it */
2187
1010#if EV_USE_EVENTFD 2188#if EV_USE_EVENTFD
1011 if ((evfd = eventfd (0, 0)) >= 0) 2189 if (evpipe [0] < 0)
1012 { 2190 {
1013 evpipe [0] = -1; 2191 uint64_t counter = 1;
1014 fd_intern (evfd); 2192 write (evpipe [1], &counter, sizeof (uint64_t));
1015 ev_io_set (&pipeev, evfd, EV_READ);
1016 } 2193 }
1017 else 2194 else
1018#endif 2195#endif
1019 { 2196 {
1020 while (pipe (evpipe)) 2197#ifdef _WIN32
1021 syserr ("(libev) error creating signal/async pipe"); 2198 WSABUF buf;
1022 2199 DWORD sent;
1023 fd_intern (evpipe [0]); 2200 buf.buf = &buf;
1024 fd_intern (evpipe [1]); 2201 buf.len = 1;
1025 ev_io_set (&pipeev, evpipe [0], EV_READ); 2202 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2203#else
2204 write (evpipe [1], &(evpipe [1]), 1);
2205#endif
1026 } 2206 }
1027 2207
1028 ev_io_start (EV_A_ &pipeev); 2208 errno = old_errno;
1029 ev_unref (EV_A); /* watcher should not keep loop alive */
1030 }
1031}
1032
1033void inline_size
1034evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1035{
1036 if (!*flag)
1037 { 2209 }
1038 int old_errno = errno; /* save errno because write might clobber it */ 2210}
1039 2211
1040 *flag = 1; 2212/* called whenever the libev signal pipe */
2213/* got some events (signal, async) */
2214static void
2215pipecb (EV_P_ ev_io *iow, int revents)
2216{
2217 int i;
1041 2218
2219 if (revents & EV_READ)
2220 {
1042#if EV_USE_EVENTFD 2221#if EV_USE_EVENTFD
1043 if (evfd >= 0) 2222 if (evpipe [0] < 0)
1044 { 2223 {
1045 uint64_t counter = 1; 2224 uint64_t counter;
1046 write (evfd, &counter, sizeof (uint64_t)); 2225 read (evpipe [1], &counter, sizeof (uint64_t));
1047 } 2226 }
1048 else 2227 else
1049#endif 2228#endif
1050 write (evpipe [1], &old_errno, 1); 2229 {
1051
1052 errno = old_errno;
1053 }
1054}
1055
1056static void
1057pipecb (EV_P_ ev_io *iow, int revents)
1058{
1059#if EV_USE_EVENTFD
1060 if (evfd >= 0)
1061 {
1062 uint64_t counter;
1063 read (evfd, &counter, sizeof (uint64_t));
1064 }
1065 else
1066#endif
1067 {
1068 char dummy; 2230 char dummy[4];
2231#ifdef _WIN32
2232 WSABUF buf;
2233 DWORD recvd;
2234 DWORD flags = 0;
2235 buf.buf = dummy;
2236 buf.len = sizeof (dummy);
2237 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2238#else
1069 read (evpipe [0], &dummy, 1); 2239 read (evpipe [0], &dummy, sizeof (dummy));
2240#endif
2241 }
2242 }
2243
2244 pipe_write_skipped = 0;
2245
2246 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2247
2248#if EV_SIGNAL_ENABLE
2249 if (sig_pending)
1070 } 2250 {
2251 sig_pending = 0;
1071 2252
1072 if (gotsig && ev_is_default_loop (EV_A)) 2253 ECB_MEMORY_FENCE;
1073 {
1074 int signum;
1075 gotsig = 0;
1076 2254
1077 for (signum = signalmax; signum--; ) 2255 for (i = EV_NSIG - 1; i--; )
1078 if (signals [signum].gotsig) 2256 if (expect_false (signals [i].pending))
1079 ev_feed_signal_event (EV_A_ signum + 1); 2257 ev_feed_signal_event (EV_A_ i + 1);
1080 } 2258 }
2259#endif
1081 2260
1082#if EV_ASYNC_ENABLE 2261#if EV_ASYNC_ENABLE
1083 if (gotasync) 2262 if (async_pending)
1084 { 2263 {
1085 int i; 2264 async_pending = 0;
1086 gotasync = 0; 2265
2266 ECB_MEMORY_FENCE;
1087 2267
1088 for (i = asynccnt; i--; ) 2268 for (i = asynccnt; i--; )
1089 if (asyncs [i]->sent) 2269 if (asyncs [i]->sent)
1090 { 2270 {
1091 asyncs [i]->sent = 0; 2271 asyncs [i]->sent = 0;
2272 ECB_MEMORY_FENCE_RELEASE;
1092 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2273 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1093 } 2274 }
1094 } 2275 }
1095#endif 2276#endif
1096} 2277}
1097 2278
1098/*****************************************************************************/ 2279/*****************************************************************************/
1099 2280
2281void
2282ev_feed_signal (int signum) EV_THROW
2283{
2284#if EV_MULTIPLICITY
2285 EV_P;
2286 ECB_MEMORY_FENCE_ACQUIRE;
2287 EV_A = signals [signum - 1].loop;
2288
2289 if (!EV_A)
2290 return;
2291#endif
2292
2293 signals [signum - 1].pending = 1;
2294 evpipe_write (EV_A_ &sig_pending);
2295}
2296
1100static void 2297static void
1101ev_sighandler (int signum) 2298ev_sighandler (int signum)
1102{ 2299{
2300#ifdef _WIN32
2301 signal (signum, ev_sighandler);
2302#endif
2303
2304 ev_feed_signal (signum);
2305}
2306
2307void noinline
2308ev_feed_signal_event (EV_P_ int signum) EV_THROW
2309{
2310 WL w;
2311
2312 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2313 return;
2314
2315 --signum;
2316
1103#if EV_MULTIPLICITY 2317#if EV_MULTIPLICITY
1104 struct ev_loop *loop = &default_loop_struct; 2318 /* it is permissible to try to feed a signal to the wrong loop */
1105#endif 2319 /* or, likely more useful, feeding a signal nobody is waiting for */
1106 2320
1107#if _WIN32 2321 if (expect_false (signals [signum].loop != EV_A))
1108 signal (signum, ev_sighandler);
1109#endif
1110
1111 signals [signum - 1].gotsig = 1;
1112 evpipe_write (EV_A_ &gotsig);
1113}
1114
1115void noinline
1116ev_feed_signal_event (EV_P_ int signum)
1117{
1118 WL w;
1119
1120#if EV_MULTIPLICITY
1121 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1122#endif
1123
1124 --signum;
1125
1126 if (signum < 0 || signum >= signalmax)
1127 return; 2322 return;
2323#endif
1128 2324
1129 signals [signum].gotsig = 0; 2325 signals [signum].pending = 0;
2326 ECB_MEMORY_FENCE_RELEASE;
1130 2327
1131 for (w = signals [signum].head; w; w = w->next) 2328 for (w = signals [signum].head; w; w = w->next)
1132 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2329 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1133} 2330}
1134 2331
2332#if EV_USE_SIGNALFD
2333static void
2334sigfdcb (EV_P_ ev_io *iow, int revents)
2335{
2336 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2337
2338 for (;;)
2339 {
2340 ssize_t res = read (sigfd, si, sizeof (si));
2341
2342 /* not ISO-C, as res might be -1, but works with SuS */
2343 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2344 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2345
2346 if (res < (ssize_t)sizeof (si))
2347 break;
2348 }
2349}
2350#endif
2351
2352#endif
2353
1135/*****************************************************************************/ 2354/*****************************************************************************/
1136 2355
2356#if EV_CHILD_ENABLE
1137static WL childs [EV_PID_HASHSIZE]; 2357static WL childs [EV_PID_HASHSIZE];
1138
1139#ifndef _WIN32
1140 2358
1141static ev_signal childev; 2359static ev_signal childev;
1142 2360
1143#ifndef WIFCONTINUED 2361#ifndef WIFCONTINUED
1144# define WIFCONTINUED(status) 0 2362# define WIFCONTINUED(status) 0
1145#endif 2363#endif
1146 2364
1147void inline_speed 2365/* handle a single child status event */
2366inline_speed void
1148child_reap (EV_P_ int chain, int pid, int status) 2367child_reap (EV_P_ int chain, int pid, int status)
1149{ 2368{
1150 ev_child *w; 2369 ev_child *w;
1151 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2370 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1152 2371
1153 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2372 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1154 { 2373 {
1155 if ((w->pid == pid || !w->pid) 2374 if ((w->pid == pid || !w->pid)
1156 && (!traced || (w->flags & 1))) 2375 && (!traced || (w->flags & 1)))
1157 { 2376 {
1158 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2377 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1165 2384
1166#ifndef WCONTINUED 2385#ifndef WCONTINUED
1167# define WCONTINUED 0 2386# define WCONTINUED 0
1168#endif 2387#endif
1169 2388
2389/* called on sigchld etc., calls waitpid */
1170static void 2390static void
1171childcb (EV_P_ ev_signal *sw, int revents) 2391childcb (EV_P_ ev_signal *sw, int revents)
1172{ 2392{
1173 int pid, status; 2393 int pid, status;
1174 2394
1182 /* make sure we are called again until all children have been reaped */ 2402 /* make sure we are called again until all children have been reaped */
1183 /* we need to do it this way so that the callback gets called before we continue */ 2403 /* we need to do it this way so that the callback gets called before we continue */
1184 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2404 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1185 2405
1186 child_reap (EV_A_ pid, pid, status); 2406 child_reap (EV_A_ pid, pid, status);
1187 if (EV_PID_HASHSIZE > 1) 2407 if ((EV_PID_HASHSIZE) > 1)
1188 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2408 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1189} 2409}
1190 2410
1191#endif 2411#endif
1192 2412
1193/*****************************************************************************/ 2413/*****************************************************************************/
1194 2414
2415#if EV_USE_IOCP
2416# include "ev_iocp.c"
2417#endif
1195#if EV_USE_PORT 2418#if EV_USE_PORT
1196# include "ev_port.c" 2419# include "ev_port.c"
1197#endif 2420#endif
1198#if EV_USE_KQUEUE 2421#if EV_USE_KQUEUE
1199# include "ev_kqueue.c" 2422# include "ev_kqueue.c"
1206#endif 2429#endif
1207#if EV_USE_SELECT 2430#if EV_USE_SELECT
1208# include "ev_select.c" 2431# include "ev_select.c"
1209#endif 2432#endif
1210 2433
1211int 2434int ecb_cold
1212ev_version_major (void) 2435ev_version_major (void) EV_THROW
1213{ 2436{
1214 return EV_VERSION_MAJOR; 2437 return EV_VERSION_MAJOR;
1215} 2438}
1216 2439
1217int 2440int ecb_cold
1218ev_version_minor (void) 2441ev_version_minor (void) EV_THROW
1219{ 2442{
1220 return EV_VERSION_MINOR; 2443 return EV_VERSION_MINOR;
1221} 2444}
1222 2445
1223/* return true if we are running with elevated privileges and should ignore env variables */ 2446/* return true if we are running with elevated privileges and should ignore env variables */
1224int inline_size 2447int inline_size ecb_cold
1225enable_secure (void) 2448enable_secure (void)
1226{ 2449{
1227#ifdef _WIN32 2450#ifdef _WIN32
1228 return 0; 2451 return 0;
1229#else 2452#else
1230 return getuid () != geteuid () 2453 return getuid () != geteuid ()
1231 || getgid () != getegid (); 2454 || getgid () != getegid ();
1232#endif 2455#endif
1233} 2456}
1234 2457
1235unsigned int 2458unsigned int ecb_cold
1236ev_supported_backends (void) 2459ev_supported_backends (void) EV_THROW
1237{ 2460{
1238 unsigned int flags = 0; 2461 unsigned int flags = 0;
1239 2462
1240 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2463 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1241 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2464 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1244 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2467 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1245 2468
1246 return flags; 2469 return flags;
1247} 2470}
1248 2471
1249unsigned int 2472unsigned int ecb_cold
1250ev_recommended_backends (void) 2473ev_recommended_backends (void) EV_THROW
1251{ 2474{
1252 unsigned int flags = ev_supported_backends (); 2475 unsigned int flags = ev_supported_backends ();
1253 2476
1254#ifndef __NetBSD__ 2477#ifndef __NetBSD__
1255 /* kqueue is borked on everything but netbsd apparently */ 2478 /* kqueue is borked on everything but netbsd apparently */
1256 /* it usually doesn't work correctly on anything but sockets and pipes */ 2479 /* it usually doesn't work correctly on anything but sockets and pipes */
1257 flags &= ~EVBACKEND_KQUEUE; 2480 flags &= ~EVBACKEND_KQUEUE;
1258#endif 2481#endif
1259#ifdef __APPLE__ 2482#ifdef __APPLE__
1260 // flags &= ~EVBACKEND_KQUEUE; for documentation 2483 /* only select works correctly on that "unix-certified" platform */
1261 flags &= ~EVBACKEND_POLL; 2484 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2485 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2486#endif
2487#ifdef __FreeBSD__
2488 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1262#endif 2489#endif
1263 2490
1264 return flags; 2491 return flags;
1265} 2492}
1266 2493
2494unsigned int ecb_cold
2495ev_embeddable_backends (void) EV_THROW
2496{
2497 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2498
2499 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2500 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2501 flags &= ~EVBACKEND_EPOLL;
2502
2503 return flags;
2504}
2505
1267unsigned int 2506unsigned int
1268ev_embeddable_backends (void) 2507ev_backend (EV_P) EV_THROW
1269{ 2508{
1270 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2509 return backend;
1271
1272 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1273 /* please fix it and tell me how to detect the fix */
1274 flags &= ~EVBACKEND_EPOLL;
1275
1276 return flags;
1277} 2510}
1278 2511
2512#if EV_FEATURE_API
1279unsigned int 2513unsigned int
1280ev_backend (EV_P) 2514ev_iteration (EV_P) EV_THROW
1281{ 2515{
1282 return backend; 2516 return loop_count;
1283} 2517}
1284 2518
1285unsigned int 2519unsigned int
1286ev_loop_count (EV_P) 2520ev_depth (EV_P) EV_THROW
1287{ 2521{
1288 return loop_count; 2522 return loop_depth;
1289} 2523}
1290 2524
1291void 2525void
1292ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2526ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1293{ 2527{
1294 io_blocktime = interval; 2528 io_blocktime = interval;
1295} 2529}
1296 2530
1297void 2531void
1298ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2532ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1299{ 2533{
1300 timeout_blocktime = interval; 2534 timeout_blocktime = interval;
1301} 2535}
1302 2536
2537void
2538ev_set_userdata (EV_P_ void *data) EV_THROW
2539{
2540 userdata = data;
2541}
2542
2543void *
2544ev_userdata (EV_P) EV_THROW
2545{
2546 return userdata;
2547}
2548
2549void
2550ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2551{
2552 invoke_cb = invoke_pending_cb;
2553}
2554
2555void
2556ev_set_loop_release_cb (EV_P_ ev_loop_callback_nothrow release, ev_loop_callback_nothrow acquire) EV_THROW
2557{
2558 release_cb = release;
2559 acquire_cb = acquire;
2560}
2561#endif
2562
2563/* initialise a loop structure, must be zero-initialised */
1303static void noinline 2564static void noinline ecb_cold
1304loop_init (EV_P_ unsigned int flags) 2565loop_init (EV_P_ unsigned int flags) EV_THROW
1305{ 2566{
1306 if (!backend) 2567 if (!backend)
1307 { 2568 {
2569 origflags = flags;
2570
2571#if EV_USE_REALTIME
2572 if (!have_realtime)
2573 {
2574 struct timespec ts;
2575
2576 if (!clock_gettime (CLOCK_REALTIME, &ts))
2577 have_realtime = 1;
2578 }
2579#endif
2580
1308#if EV_USE_MONOTONIC 2581#if EV_USE_MONOTONIC
2582 if (!have_monotonic)
1309 { 2583 {
1310 struct timespec ts; 2584 struct timespec ts;
2585
1311 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2586 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1312 have_monotonic = 1; 2587 have_monotonic = 1;
1313 } 2588 }
1314#endif
1315
1316 ev_rt_now = ev_time ();
1317 mn_now = get_clock ();
1318 now_floor = mn_now;
1319 rtmn_diff = ev_rt_now - mn_now;
1320
1321 io_blocktime = 0.;
1322 timeout_blocktime = 0.;
1323 backend = 0;
1324 backend_fd = -1;
1325 gotasync = 0;
1326#if EV_USE_INOTIFY
1327 fs_fd = -2;
1328#endif 2589#endif
1329 2590
1330 /* pid check not overridable via env */ 2591 /* pid check not overridable via env */
1331#ifndef _WIN32 2592#ifndef _WIN32
1332 if (flags & EVFLAG_FORKCHECK) 2593 if (flags & EVFLAG_FORKCHECK)
1336 if (!(flags & EVFLAG_NOENV) 2597 if (!(flags & EVFLAG_NOENV)
1337 && !enable_secure () 2598 && !enable_secure ()
1338 && getenv ("LIBEV_FLAGS")) 2599 && getenv ("LIBEV_FLAGS"))
1339 flags = atoi (getenv ("LIBEV_FLAGS")); 2600 flags = atoi (getenv ("LIBEV_FLAGS"));
1340 2601
1341 if (!(flags & 0x0000ffffU)) 2602 ev_rt_now = ev_time ();
2603 mn_now = get_clock ();
2604 now_floor = mn_now;
2605 rtmn_diff = ev_rt_now - mn_now;
2606#if EV_FEATURE_API
2607 invoke_cb = ev_invoke_pending;
2608#endif
2609
2610 io_blocktime = 0.;
2611 timeout_blocktime = 0.;
2612 backend = 0;
2613 backend_fd = -1;
2614 sig_pending = 0;
2615#if EV_ASYNC_ENABLE
2616 async_pending = 0;
2617#endif
2618 pipe_write_skipped = 0;
2619 pipe_write_wanted = 0;
2620 evpipe [0] = -1;
2621 evpipe [1] = -1;
2622#if EV_USE_INOTIFY
2623 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2624#endif
2625#if EV_USE_SIGNALFD
2626 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2627#endif
2628
2629 if (!(flags & EVBACKEND_MASK))
1342 flags |= ev_recommended_backends (); 2630 flags |= ev_recommended_backends ();
1343 2631
2632#if EV_USE_IOCP
2633 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2634#endif
1344#if EV_USE_PORT 2635#if EV_USE_PORT
1345 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2636 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1346#endif 2637#endif
1347#if EV_USE_KQUEUE 2638#if EV_USE_KQUEUE
1348 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2639 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1355#endif 2646#endif
1356#if EV_USE_SELECT 2647#if EV_USE_SELECT
1357 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2648 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1358#endif 2649#endif
1359 2650
2651 ev_prepare_init (&pending_w, pendingcb);
2652
2653#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1360 ev_init (&pipeev, pipecb); 2654 ev_init (&pipe_w, pipecb);
1361 ev_set_priority (&pipeev, EV_MAXPRI); 2655 ev_set_priority (&pipe_w, EV_MAXPRI);
2656#endif
1362 } 2657 }
1363} 2658}
1364 2659
1365static void noinline 2660/* free up a loop structure */
2661void ecb_cold
1366loop_destroy (EV_P) 2662ev_loop_destroy (EV_P)
1367{ 2663{
1368 int i; 2664 int i;
1369 2665
2666#if EV_MULTIPLICITY
2667 /* mimic free (0) */
2668 if (!EV_A)
2669 return;
2670#endif
2671
2672#if EV_CLEANUP_ENABLE
2673 /* queue cleanup watchers (and execute them) */
2674 if (expect_false (cleanupcnt))
2675 {
2676 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2677 EV_INVOKE_PENDING;
2678 }
2679#endif
2680
2681#if EV_CHILD_ENABLE
2682 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2683 {
2684 ev_ref (EV_A); /* child watcher */
2685 ev_signal_stop (EV_A_ &childev);
2686 }
2687#endif
2688
1370 if (ev_is_active (&pipeev)) 2689 if (ev_is_active (&pipe_w))
1371 { 2690 {
1372 ev_ref (EV_A); /* signal watcher */ 2691 /*ev_ref (EV_A);*/
1373 ev_io_stop (EV_A_ &pipeev); 2692 /*ev_io_stop (EV_A_ &pipe_w);*/
1374 2693
2694 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2695 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2696 }
2697
1375#if EV_USE_EVENTFD 2698#if EV_USE_SIGNALFD
1376 if (evfd >= 0) 2699 if (ev_is_active (&sigfd_w))
1377 close (evfd); 2700 close (sigfd);
1378#endif 2701#endif
1379
1380 if (evpipe [0] >= 0)
1381 {
1382 close (evpipe [0]);
1383 close (evpipe [1]);
1384 }
1385 }
1386 2702
1387#if EV_USE_INOTIFY 2703#if EV_USE_INOTIFY
1388 if (fs_fd >= 0) 2704 if (fs_fd >= 0)
1389 close (fs_fd); 2705 close (fs_fd);
1390#endif 2706#endif
1391 2707
1392 if (backend_fd >= 0) 2708 if (backend_fd >= 0)
1393 close (backend_fd); 2709 close (backend_fd);
1394 2710
2711#if EV_USE_IOCP
2712 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2713#endif
1395#if EV_USE_PORT 2714#if EV_USE_PORT
1396 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2715 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1397#endif 2716#endif
1398#if EV_USE_KQUEUE 2717#if EV_USE_KQUEUE
1399 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2718 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1414#if EV_IDLE_ENABLE 2733#if EV_IDLE_ENABLE
1415 array_free (idle, [i]); 2734 array_free (idle, [i]);
1416#endif 2735#endif
1417 } 2736 }
1418 2737
1419 ev_free (anfds); anfdmax = 0; 2738 ev_free (anfds); anfds = 0; anfdmax = 0;
1420 2739
1421 /* have to use the microsoft-never-gets-it-right macro */ 2740 /* have to use the microsoft-never-gets-it-right macro */
2741 array_free (rfeed, EMPTY);
1422 array_free (fdchange, EMPTY); 2742 array_free (fdchange, EMPTY);
1423 array_free (timer, EMPTY); 2743 array_free (timer, EMPTY);
1424#if EV_PERIODIC_ENABLE 2744#if EV_PERIODIC_ENABLE
1425 array_free (periodic, EMPTY); 2745 array_free (periodic, EMPTY);
1426#endif 2746#endif
1427#if EV_FORK_ENABLE 2747#if EV_FORK_ENABLE
1428 array_free (fork, EMPTY); 2748 array_free (fork, EMPTY);
1429#endif 2749#endif
2750#if EV_CLEANUP_ENABLE
2751 array_free (cleanup, EMPTY);
2752#endif
1430 array_free (prepare, EMPTY); 2753 array_free (prepare, EMPTY);
1431 array_free (check, EMPTY); 2754 array_free (check, EMPTY);
1432#if EV_ASYNC_ENABLE 2755#if EV_ASYNC_ENABLE
1433 array_free (async, EMPTY); 2756 array_free (async, EMPTY);
1434#endif 2757#endif
1435 2758
1436 backend = 0; 2759 backend = 0;
2760
2761#if EV_MULTIPLICITY
2762 if (ev_is_default_loop (EV_A))
2763#endif
2764 ev_default_loop_ptr = 0;
2765#if EV_MULTIPLICITY
2766 else
2767 ev_free (EV_A);
2768#endif
1437} 2769}
1438 2770
1439#if EV_USE_INOTIFY 2771#if EV_USE_INOTIFY
1440void inline_size infy_fork (EV_P); 2772inline_size void infy_fork (EV_P);
1441#endif 2773#endif
1442 2774
1443void inline_size 2775inline_size void
1444loop_fork (EV_P) 2776loop_fork (EV_P)
1445{ 2777{
1446#if EV_USE_PORT 2778#if EV_USE_PORT
1447 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2779 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1448#endif 2780#endif
1454#endif 2786#endif
1455#if EV_USE_INOTIFY 2787#if EV_USE_INOTIFY
1456 infy_fork (EV_A); 2788 infy_fork (EV_A);
1457#endif 2789#endif
1458 2790
2791#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1459 if (ev_is_active (&pipeev)) 2792 if (ev_is_active (&pipe_w))
1460 { 2793 {
1461 /* this "locks" the handlers against writing to the pipe */ 2794 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1462 /* while we modify the fd vars */
1463 gotsig = 1;
1464#if EV_ASYNC_ENABLE
1465 gotasync = 1;
1466#endif
1467 2795
1468 ev_ref (EV_A); 2796 ev_ref (EV_A);
1469 ev_io_stop (EV_A_ &pipeev); 2797 ev_io_stop (EV_A_ &pipe_w);
1470
1471#if EV_USE_EVENTFD
1472 if (evfd >= 0)
1473 close (evfd);
1474#endif
1475 2798
1476 if (evpipe [0] >= 0) 2799 if (evpipe [0] >= 0)
1477 { 2800 EV_WIN32_CLOSE_FD (evpipe [0]);
1478 close (evpipe [0]);
1479 close (evpipe [1]);
1480 }
1481 2801
1482 evpipe_init (EV_A); 2802 evpipe_init (EV_A);
1483 /* now iterate over everything, in case we missed something */ 2803 /* iterate over everything, in case we missed something before */
1484 pipecb (EV_A_ &pipeev, EV_READ); 2804 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1485 } 2805 }
2806#endif
1486 2807
1487 postfork = 0; 2808 postfork = 0;
1488} 2809}
1489 2810
1490#if EV_MULTIPLICITY 2811#if EV_MULTIPLICITY
1491 2812
1492struct ev_loop * 2813struct ev_loop * ecb_cold
1493ev_loop_new (unsigned int flags) 2814ev_loop_new (unsigned int flags) EV_THROW
1494{ 2815{
1495 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2816 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1496 2817
1497 memset (loop, 0, sizeof (struct ev_loop)); 2818 memset (EV_A, 0, sizeof (struct ev_loop));
1498
1499 loop_init (EV_A_ flags); 2819 loop_init (EV_A_ flags);
1500 2820
1501 if (ev_backend (EV_A)) 2821 if (ev_backend (EV_A))
1502 return loop; 2822 return EV_A;
1503 2823
2824 ev_free (EV_A);
1504 return 0; 2825 return 0;
1505} 2826}
1506 2827
1507void 2828#endif /* multiplicity */
1508ev_loop_destroy (EV_P)
1509{
1510 loop_destroy (EV_A);
1511 ev_free (loop);
1512}
1513
1514void
1515ev_loop_fork (EV_P)
1516{
1517 postfork = 1; /* must be in line with ev_default_fork */
1518}
1519 2829
1520#if EV_VERIFY 2830#if EV_VERIFY
1521static void noinline 2831static void noinline ecb_cold
1522verify_watcher (EV_P_ W w) 2832verify_watcher (EV_P_ W w)
1523{ 2833{
1524 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 2834 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1525 2835
1526 if (w->pending) 2836 if (w->pending)
1527 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 2837 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1528} 2838}
1529 2839
1530static void noinline 2840static void noinline ecb_cold
1531verify_heap (EV_P_ ANHE *heap, int N) 2841verify_heap (EV_P_ ANHE *heap, int N)
1532{ 2842{
1533 int i; 2843 int i;
1534 2844
1535 for (i = HEAP0; i < N + HEAP0; ++i) 2845 for (i = HEAP0; i < N + HEAP0; ++i)
1536 { 2846 {
1537 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 2847 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1538 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 2848 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1539 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 2849 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1540 2850
1541 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 2851 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1542 } 2852 }
1543} 2853}
1544 2854
1545static void noinline 2855static void noinline ecb_cold
1546array_verify (EV_P_ W *ws, int cnt) 2856array_verify (EV_P_ W *ws, int cnt)
1547{ 2857{
1548 while (cnt--) 2858 while (cnt--)
1549 { 2859 {
1550 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 2860 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1551 verify_watcher (EV_A_ ws [cnt]); 2861 verify_watcher (EV_A_ ws [cnt]);
1552 } 2862 }
1553} 2863}
1554#endif 2864#endif
1555 2865
1556void 2866#if EV_FEATURE_API
1557ev_loop_verify (EV_P) 2867void ecb_cold
2868ev_verify (EV_P) EV_THROW
1558{ 2869{
1559#if EV_VERIFY 2870#if EV_VERIFY
1560 int i; 2871 int i;
1561 WL w; 2872 WL w, w2;
1562 2873
1563 assert (activecnt >= -1); 2874 assert (activecnt >= -1);
1564 2875
1565 assert (fdchangemax >= fdchangecnt); 2876 assert (fdchangemax >= fdchangecnt);
1566 for (i = 0; i < fdchangecnt; ++i) 2877 for (i = 0; i < fdchangecnt; ++i)
1567 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 2878 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1568 2879
1569 assert (anfdmax >= 0); 2880 assert (anfdmax >= 0);
1570 for (i = 0; i < anfdmax; ++i) 2881 for (i = 0; i < anfdmax; ++i)
2882 {
2883 int j = 0;
2884
1571 for (w = anfds [i].head; w; w = w->next) 2885 for (w = w2 = anfds [i].head; w; w = w->next)
1572 { 2886 {
1573 verify_watcher (EV_A_ (W)w); 2887 verify_watcher (EV_A_ (W)w);
2888
2889 if (j++ & 1)
2890 {
2891 assert (("libev: io watcher list contains a loop", w != w2));
2892 w2 = w2->next;
2893 }
2894
1574 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 2895 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1575 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 2896 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1576 } 2897 }
2898 }
1577 2899
1578 assert (timermax >= timercnt); 2900 assert (timermax >= timercnt);
1579 verify_heap (EV_A_ timers, timercnt); 2901 verify_heap (EV_A_ timers, timercnt);
1580 2902
1581#if EV_PERIODIC_ENABLE 2903#if EV_PERIODIC_ENABLE
1596#if EV_FORK_ENABLE 2918#if EV_FORK_ENABLE
1597 assert (forkmax >= forkcnt); 2919 assert (forkmax >= forkcnt);
1598 array_verify (EV_A_ (W *)forks, forkcnt); 2920 array_verify (EV_A_ (W *)forks, forkcnt);
1599#endif 2921#endif
1600 2922
2923#if EV_CLEANUP_ENABLE
2924 assert (cleanupmax >= cleanupcnt);
2925 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2926#endif
2927
1601#if EV_ASYNC_ENABLE 2928#if EV_ASYNC_ENABLE
1602 assert (asyncmax >= asynccnt); 2929 assert (asyncmax >= asynccnt);
1603 array_verify (EV_A_ (W *)asyncs, asynccnt); 2930 array_verify (EV_A_ (W *)asyncs, asynccnt);
1604#endif 2931#endif
1605 2932
2933#if EV_PREPARE_ENABLE
1606 assert (preparemax >= preparecnt); 2934 assert (preparemax >= preparecnt);
1607 array_verify (EV_A_ (W *)prepares, preparecnt); 2935 array_verify (EV_A_ (W *)prepares, preparecnt);
2936#endif
1608 2937
2938#if EV_CHECK_ENABLE
1609 assert (checkmax >= checkcnt); 2939 assert (checkmax >= checkcnt);
1610 array_verify (EV_A_ (W *)checks, checkcnt); 2940 array_verify (EV_A_ (W *)checks, checkcnt);
2941#endif
1611 2942
1612# if 0 2943# if 0
2944#if EV_CHILD_ENABLE
1613 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2945 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1614 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 2946 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2947#endif
1615# endif 2948# endif
1616#endif 2949#endif
1617} 2950}
1618 2951#endif
1619#endif /* multiplicity */
1620 2952
1621#if EV_MULTIPLICITY 2953#if EV_MULTIPLICITY
1622struct ev_loop * 2954struct ev_loop * ecb_cold
1623ev_default_loop_init (unsigned int flags)
1624#else 2955#else
1625int 2956int
2957#endif
1626ev_default_loop (unsigned int flags) 2958ev_default_loop (unsigned int flags) EV_THROW
1627#endif
1628{ 2959{
1629 if (!ev_default_loop_ptr) 2960 if (!ev_default_loop_ptr)
1630 { 2961 {
1631#if EV_MULTIPLICITY 2962#if EV_MULTIPLICITY
1632 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2963 EV_P = ev_default_loop_ptr = &default_loop_struct;
1633#else 2964#else
1634 ev_default_loop_ptr = 1; 2965 ev_default_loop_ptr = 1;
1635#endif 2966#endif
1636 2967
1637 loop_init (EV_A_ flags); 2968 loop_init (EV_A_ flags);
1638 2969
1639 if (ev_backend (EV_A)) 2970 if (ev_backend (EV_A))
1640 { 2971 {
1641#ifndef _WIN32 2972#if EV_CHILD_ENABLE
1642 ev_signal_init (&childev, childcb, SIGCHLD); 2973 ev_signal_init (&childev, childcb, SIGCHLD);
1643 ev_set_priority (&childev, EV_MAXPRI); 2974 ev_set_priority (&childev, EV_MAXPRI);
1644 ev_signal_start (EV_A_ &childev); 2975 ev_signal_start (EV_A_ &childev);
1645 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2976 ev_unref (EV_A); /* child watcher should not keep loop alive */
1646#endif 2977#endif
1651 2982
1652 return ev_default_loop_ptr; 2983 return ev_default_loop_ptr;
1653} 2984}
1654 2985
1655void 2986void
1656ev_default_destroy (void) 2987ev_loop_fork (EV_P) EV_THROW
1657{ 2988{
1658#if EV_MULTIPLICITY 2989 postfork = 1;
1659 struct ev_loop *loop = ev_default_loop_ptr;
1660#endif
1661
1662#ifndef _WIN32
1663 ev_ref (EV_A); /* child watcher */
1664 ev_signal_stop (EV_A_ &childev);
1665#endif
1666
1667 loop_destroy (EV_A);
1668}
1669
1670void
1671ev_default_fork (void)
1672{
1673#if EV_MULTIPLICITY
1674 struct ev_loop *loop = ev_default_loop_ptr;
1675#endif
1676
1677 if (backend)
1678 postfork = 1; /* must be in line with ev_loop_fork */
1679} 2990}
1680 2991
1681/*****************************************************************************/ 2992/*****************************************************************************/
1682 2993
1683void 2994void
1684ev_invoke (EV_P_ void *w, int revents) 2995ev_invoke (EV_P_ void *w, int revents)
1685{ 2996{
1686 EV_CB_INVOKE ((W)w, revents); 2997 EV_CB_INVOKE ((W)w, revents);
1687} 2998}
1688 2999
1689void inline_speed 3000unsigned int
1690call_pending (EV_P) 3001ev_pending_count (EV_P) EV_THROW
1691{ 3002{
1692 int pri; 3003 int pri;
3004 unsigned int count = 0;
1693 3005
1694 for (pri = NUMPRI; pri--; ) 3006 for (pri = NUMPRI; pri--; )
3007 count += pendingcnt [pri];
3008
3009 return count;
3010}
3011
3012void noinline
3013ev_invoke_pending (EV_P)
3014{
3015 pendingpri = NUMPRI;
3016
3017 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3018 {
3019 --pendingpri;
3020
1695 while (pendingcnt [pri]) 3021 while (pendingcnt [pendingpri])
1696 {
1697 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1698
1699 if (expect_true (p->w))
1700 { 3022 {
1701 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 3023 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1702 3024
1703 p->w->pending = 0; 3025 p->w->pending = 0;
1704 EV_CB_INVOKE (p->w, p->events); 3026 EV_CB_INVOKE (p->w, p->events);
1705 EV_FREQUENT_CHECK; 3027 EV_FREQUENT_CHECK;
1706 } 3028 }
1707 } 3029 }
1708} 3030}
1709 3031
1710#if EV_IDLE_ENABLE 3032#if EV_IDLE_ENABLE
1711void inline_size 3033/* make idle watchers pending. this handles the "call-idle */
3034/* only when higher priorities are idle" logic */
3035inline_size void
1712idle_reify (EV_P) 3036idle_reify (EV_P)
1713{ 3037{
1714 if (expect_false (idleall)) 3038 if (expect_false (idleall))
1715 { 3039 {
1716 int pri; 3040 int pri;
1728 } 3052 }
1729 } 3053 }
1730} 3054}
1731#endif 3055#endif
1732 3056
1733void inline_size 3057/* make timers pending */
3058inline_size void
1734timers_reify (EV_P) 3059timers_reify (EV_P)
1735{ 3060{
1736 EV_FREQUENT_CHECK; 3061 EV_FREQUENT_CHECK;
1737 3062
1738 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 3063 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1739 { 3064 {
1740 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 3065 do
1741
1742 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1743
1744 /* first reschedule or stop timer */
1745 if (w->repeat)
1746 { 3066 {
3067 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3068
3069 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3070
3071 /* first reschedule or stop timer */
3072 if (w->repeat)
3073 {
1747 ev_at (w) += w->repeat; 3074 ev_at (w) += w->repeat;
1748 if (ev_at (w) < mn_now) 3075 if (ev_at (w) < mn_now)
1749 ev_at (w) = mn_now; 3076 ev_at (w) = mn_now;
1750 3077
1751 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3078 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1752 3079
1753 ANHE_at_cache (timers [HEAP0]); 3080 ANHE_at_cache (timers [HEAP0]);
1754 downheap (timers, timercnt, HEAP0); 3081 downheap (timers, timercnt, HEAP0);
3082 }
3083 else
3084 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3085
3086 EV_FREQUENT_CHECK;
3087 feed_reverse (EV_A_ (W)w);
1755 } 3088 }
1756 else 3089 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1757 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1758 3090
1759 EV_FREQUENT_CHECK; 3091 feed_reverse_done (EV_A_ EV_TIMER);
1760 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1761 } 3092 }
1762} 3093}
1763 3094
1764#if EV_PERIODIC_ENABLE 3095#if EV_PERIODIC_ENABLE
1765void inline_size 3096
3097static void noinline
3098periodic_recalc (EV_P_ ev_periodic *w)
3099{
3100 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3101 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3102
3103 /* the above almost always errs on the low side */
3104 while (at <= ev_rt_now)
3105 {
3106 ev_tstamp nat = at + w->interval;
3107
3108 /* when resolution fails us, we use ev_rt_now */
3109 if (expect_false (nat == at))
3110 {
3111 at = ev_rt_now;
3112 break;
3113 }
3114
3115 at = nat;
3116 }
3117
3118 ev_at (w) = at;
3119}
3120
3121/* make periodics pending */
3122inline_size void
1766periodics_reify (EV_P) 3123periodics_reify (EV_P)
1767{ 3124{
1768 EV_FREQUENT_CHECK; 3125 EV_FREQUENT_CHECK;
1769 3126
1770 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 3127 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1771 { 3128 {
1772 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 3129 do
1773
1774 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1775
1776 /* first reschedule or stop timer */
1777 if (w->reschedule_cb)
1778 { 3130 {
3131 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3132
3133 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3134
3135 /* first reschedule or stop timer */
3136 if (w->reschedule_cb)
3137 {
1779 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3138 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1780 3139
1781 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 3140 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1782 3141
1783 ANHE_at_cache (periodics [HEAP0]); 3142 ANHE_at_cache (periodics [HEAP0]);
1784 downheap (periodics, periodiccnt, HEAP0); 3143 downheap (periodics, periodiccnt, HEAP0);
3144 }
3145 else if (w->interval)
3146 {
3147 periodic_recalc (EV_A_ w);
3148 ANHE_at_cache (periodics [HEAP0]);
3149 downheap (periodics, periodiccnt, HEAP0);
3150 }
3151 else
3152 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3153
3154 EV_FREQUENT_CHECK;
3155 feed_reverse (EV_A_ (W)w);
1785 } 3156 }
1786 else if (w->interval) 3157 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1787 {
1788 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1789 /* if next trigger time is not sufficiently in the future, put it there */
1790 /* this might happen because of floating point inexactness */
1791 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1792 {
1793 ev_at (w) += w->interval;
1794 3158
1795 /* if interval is unreasonably low we might still have a time in the past */
1796 /* so correct this. this will make the periodic very inexact, but the user */
1797 /* has effectively asked to get triggered more often than possible */
1798 if (ev_at (w) < ev_rt_now)
1799 ev_at (w) = ev_rt_now;
1800 }
1801
1802 ANHE_at_cache (periodics [HEAP0]);
1803 downheap (periodics, periodiccnt, HEAP0);
1804 }
1805 else
1806 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1807
1808 EV_FREQUENT_CHECK;
1809 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3159 feed_reverse_done (EV_A_ EV_PERIODIC);
1810 } 3160 }
1811} 3161}
1812 3162
3163/* simply recalculate all periodics */
3164/* TODO: maybe ensure that at least one event happens when jumping forward? */
1813static void noinline 3165static void noinline ecb_cold
1814periodics_reschedule (EV_P) 3166periodics_reschedule (EV_P)
1815{ 3167{
1816 int i; 3168 int i;
1817 3169
1818 /* adjust periodics after time jump */ 3170 /* adjust periodics after time jump */
1821 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 3173 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1822 3174
1823 if (w->reschedule_cb) 3175 if (w->reschedule_cb)
1824 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3176 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1825 else if (w->interval) 3177 else if (w->interval)
1826 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3178 periodic_recalc (EV_A_ w);
1827 3179
1828 ANHE_at_cache (periodics [i]); 3180 ANHE_at_cache (periodics [i]);
1829 } 3181 }
1830 3182
1831 reheap (periodics, periodiccnt); 3183 reheap (periodics, periodiccnt);
1832} 3184}
1833#endif 3185#endif
1834 3186
1835void inline_speed 3187/* adjust all timers by a given offset */
3188static void noinline ecb_cold
3189timers_reschedule (EV_P_ ev_tstamp adjust)
3190{
3191 int i;
3192
3193 for (i = 0; i < timercnt; ++i)
3194 {
3195 ANHE *he = timers + i + HEAP0;
3196 ANHE_w (*he)->at += adjust;
3197 ANHE_at_cache (*he);
3198 }
3199}
3200
3201/* fetch new monotonic and realtime times from the kernel */
3202/* also detect if there was a timejump, and act accordingly */
3203inline_speed void
1836time_update (EV_P_ ev_tstamp max_block) 3204time_update (EV_P_ ev_tstamp max_block)
1837{ 3205{
1838 int i;
1839
1840#if EV_USE_MONOTONIC 3206#if EV_USE_MONOTONIC
1841 if (expect_true (have_monotonic)) 3207 if (expect_true (have_monotonic))
1842 { 3208 {
3209 int i;
1843 ev_tstamp odiff = rtmn_diff; 3210 ev_tstamp odiff = rtmn_diff;
1844 3211
1845 mn_now = get_clock (); 3212 mn_now = get_clock ();
1846 3213
1847 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3214 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1863 * doesn't hurt either as we only do this on time-jumps or 3230 * doesn't hurt either as we only do this on time-jumps or
1864 * in the unlikely event of having been preempted here. 3231 * in the unlikely event of having been preempted here.
1865 */ 3232 */
1866 for (i = 4; --i; ) 3233 for (i = 4; --i; )
1867 { 3234 {
3235 ev_tstamp diff;
1868 rtmn_diff = ev_rt_now - mn_now; 3236 rtmn_diff = ev_rt_now - mn_now;
1869 3237
3238 diff = odiff - rtmn_diff;
3239
1870 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3240 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1871 return; /* all is well */ 3241 return; /* all is well */
1872 3242
1873 ev_rt_now = ev_time (); 3243 ev_rt_now = ev_time ();
1874 mn_now = get_clock (); 3244 mn_now = get_clock ();
1875 now_floor = mn_now; 3245 now_floor = mn_now;
1876 } 3246 }
1877 3247
3248 /* no timer adjustment, as the monotonic clock doesn't jump */
3249 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1878# if EV_PERIODIC_ENABLE 3250# if EV_PERIODIC_ENABLE
1879 periodics_reschedule (EV_A); 3251 periodics_reschedule (EV_A);
1880# endif 3252# endif
1881 /* no timer adjustment, as the monotonic clock doesn't jump */
1882 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1883 } 3253 }
1884 else 3254 else
1885#endif 3255#endif
1886 { 3256 {
1887 ev_rt_now = ev_time (); 3257 ev_rt_now = ev_time ();
1888 3258
1889 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3259 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1890 { 3260 {
3261 /* adjust timers. this is easy, as the offset is the same for all of them */
3262 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1891#if EV_PERIODIC_ENABLE 3263#if EV_PERIODIC_ENABLE
1892 periodics_reschedule (EV_A); 3264 periodics_reschedule (EV_A);
1893#endif 3265#endif
1894 /* adjust timers. this is easy, as the offset is the same for all of them */
1895 for (i = 0; i < timercnt; ++i)
1896 {
1897 ANHE *he = timers + i + HEAP0;
1898 ANHE_w (*he)->at += ev_rt_now - mn_now;
1899 ANHE_at_cache (*he);
1900 }
1901 } 3266 }
1902 3267
1903 mn_now = ev_rt_now; 3268 mn_now = ev_rt_now;
1904 } 3269 }
1905} 3270}
1906 3271
1907void 3272int
1908ev_ref (EV_P)
1909{
1910 ++activecnt;
1911}
1912
1913void
1914ev_unref (EV_P)
1915{
1916 --activecnt;
1917}
1918
1919void
1920ev_now_update (EV_P)
1921{
1922 time_update (EV_A_ 1e100);
1923}
1924
1925static int loop_done;
1926
1927void
1928ev_loop (EV_P_ int flags) 3273ev_run (EV_P_ int flags)
1929{ 3274{
3275#if EV_FEATURE_API
3276 ++loop_depth;
3277#endif
3278
3279 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3280
1930 loop_done = EVUNLOOP_CANCEL; 3281 loop_done = EVBREAK_CANCEL;
1931 3282
1932 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3283 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1933 3284
1934 do 3285 do
1935 { 3286 {
1936#if EV_VERIFY >= 2 3287#if EV_VERIFY >= 2
1937 ev_loop_verify (EV_A); 3288 ev_verify (EV_A);
1938#endif 3289#endif
1939 3290
1940#ifndef _WIN32 3291#ifndef _WIN32
1941 if (expect_false (curpid)) /* penalise the forking check even more */ 3292 if (expect_false (curpid)) /* penalise the forking check even more */
1942 if (expect_false (getpid () != curpid)) 3293 if (expect_false (getpid () != curpid))
1950 /* we might have forked, so queue fork handlers */ 3301 /* we might have forked, so queue fork handlers */
1951 if (expect_false (postfork)) 3302 if (expect_false (postfork))
1952 if (forkcnt) 3303 if (forkcnt)
1953 { 3304 {
1954 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3305 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1955 call_pending (EV_A); 3306 EV_INVOKE_PENDING;
1956 } 3307 }
1957#endif 3308#endif
1958 3309
3310#if EV_PREPARE_ENABLE
1959 /* queue prepare watchers (and execute them) */ 3311 /* queue prepare watchers (and execute them) */
1960 if (expect_false (preparecnt)) 3312 if (expect_false (preparecnt))
1961 { 3313 {
1962 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3314 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1963 call_pending (EV_A); 3315 EV_INVOKE_PENDING;
1964 } 3316 }
3317#endif
1965 3318
1966 if (expect_false (!activecnt)) 3319 if (expect_false (loop_done))
1967 break; 3320 break;
1968 3321
1969 /* we might have forked, so reify kernel state if necessary */ 3322 /* we might have forked, so reify kernel state if necessary */
1970 if (expect_false (postfork)) 3323 if (expect_false (postfork))
1971 loop_fork (EV_A); 3324 loop_fork (EV_A);
1976 /* calculate blocking time */ 3329 /* calculate blocking time */
1977 { 3330 {
1978 ev_tstamp waittime = 0.; 3331 ev_tstamp waittime = 0.;
1979 ev_tstamp sleeptime = 0.; 3332 ev_tstamp sleeptime = 0.;
1980 3333
3334 /* remember old timestamp for io_blocktime calculation */
3335 ev_tstamp prev_mn_now = mn_now;
3336
3337 /* update time to cancel out callback processing overhead */
3338 time_update (EV_A_ 1e100);
3339
3340 /* from now on, we want a pipe-wake-up */
3341 pipe_write_wanted = 1;
3342
3343 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3344
1981 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3345 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1982 { 3346 {
1983 /* update time to cancel out callback processing overhead */
1984 time_update (EV_A_ 1e100);
1985
1986 waittime = MAX_BLOCKTIME; 3347 waittime = MAX_BLOCKTIME;
1987 3348
1988 if (timercnt) 3349 if (timercnt)
1989 { 3350 {
1990 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3351 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1991 if (waittime > to) waittime = to; 3352 if (waittime > to) waittime = to;
1992 } 3353 }
1993 3354
1994#if EV_PERIODIC_ENABLE 3355#if EV_PERIODIC_ENABLE
1995 if (periodiccnt) 3356 if (periodiccnt)
1996 { 3357 {
1997 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3358 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1998 if (waittime > to) waittime = to; 3359 if (waittime > to) waittime = to;
1999 } 3360 }
2000#endif 3361#endif
2001 3362
3363 /* don't let timeouts decrease the waittime below timeout_blocktime */
2002 if (expect_false (waittime < timeout_blocktime)) 3364 if (expect_false (waittime < timeout_blocktime))
2003 waittime = timeout_blocktime; 3365 waittime = timeout_blocktime;
2004 3366
2005 sleeptime = waittime - backend_fudge; 3367 /* at this point, we NEED to wait, so we have to ensure */
3368 /* to pass a minimum nonzero value to the backend */
3369 if (expect_false (waittime < backend_mintime))
3370 waittime = backend_mintime;
2006 3371
3372 /* extra check because io_blocktime is commonly 0 */
2007 if (expect_true (sleeptime > io_blocktime)) 3373 if (expect_false (io_blocktime))
2008 sleeptime = io_blocktime;
2009
2010 if (sleeptime)
2011 { 3374 {
3375 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3376
3377 if (sleeptime > waittime - backend_mintime)
3378 sleeptime = waittime - backend_mintime;
3379
3380 if (expect_true (sleeptime > 0.))
3381 {
2012 ev_sleep (sleeptime); 3382 ev_sleep (sleeptime);
2013 waittime -= sleeptime; 3383 waittime -= sleeptime;
3384 }
2014 } 3385 }
2015 } 3386 }
2016 3387
3388#if EV_FEATURE_API
2017 ++loop_count; 3389 ++loop_count;
3390#endif
3391 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2018 backend_poll (EV_A_ waittime); 3392 backend_poll (EV_A_ waittime);
3393 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3394
3395 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3396
3397 ECB_MEMORY_FENCE_ACQUIRE;
3398 if (pipe_write_skipped)
3399 {
3400 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3401 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3402 }
3403
2019 3404
2020 /* update ev_rt_now, do magic */ 3405 /* update ev_rt_now, do magic */
2021 time_update (EV_A_ waittime + sleeptime); 3406 time_update (EV_A_ waittime + sleeptime);
2022 } 3407 }
2023 3408
2030#if EV_IDLE_ENABLE 3415#if EV_IDLE_ENABLE
2031 /* queue idle watchers unless other events are pending */ 3416 /* queue idle watchers unless other events are pending */
2032 idle_reify (EV_A); 3417 idle_reify (EV_A);
2033#endif 3418#endif
2034 3419
3420#if EV_CHECK_ENABLE
2035 /* queue check watchers, to be executed first */ 3421 /* queue check watchers, to be executed first */
2036 if (expect_false (checkcnt)) 3422 if (expect_false (checkcnt))
2037 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3423 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3424#endif
2038 3425
2039 call_pending (EV_A); 3426 EV_INVOKE_PENDING;
2040 } 3427 }
2041 while (expect_true ( 3428 while (expect_true (
2042 activecnt 3429 activecnt
2043 && !loop_done 3430 && !loop_done
2044 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3431 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2045 )); 3432 ));
2046 3433
2047 if (loop_done == EVUNLOOP_ONE) 3434 if (loop_done == EVBREAK_ONE)
2048 loop_done = EVUNLOOP_CANCEL; 3435 loop_done = EVBREAK_CANCEL;
3436
3437#if EV_FEATURE_API
3438 --loop_depth;
3439#endif
3440
3441 return activecnt;
2049} 3442}
2050 3443
2051void 3444void
2052ev_unloop (EV_P_ int how) 3445ev_break (EV_P_ int how) EV_THROW
2053{ 3446{
2054 loop_done = how; 3447 loop_done = how;
2055} 3448}
2056 3449
3450void
3451ev_ref (EV_P) EV_THROW
3452{
3453 ++activecnt;
3454}
3455
3456void
3457ev_unref (EV_P) EV_THROW
3458{
3459 --activecnt;
3460}
3461
3462void
3463ev_now_update (EV_P) EV_THROW
3464{
3465 time_update (EV_A_ 1e100);
3466}
3467
3468void
3469ev_suspend (EV_P) EV_THROW
3470{
3471 ev_now_update (EV_A);
3472}
3473
3474void
3475ev_resume (EV_P) EV_THROW
3476{
3477 ev_tstamp mn_prev = mn_now;
3478
3479 ev_now_update (EV_A);
3480 timers_reschedule (EV_A_ mn_now - mn_prev);
3481#if EV_PERIODIC_ENABLE
3482 /* TODO: really do this? */
3483 periodics_reschedule (EV_A);
3484#endif
3485}
3486
2057/*****************************************************************************/ 3487/*****************************************************************************/
3488/* singly-linked list management, used when the expected list length is short */
2058 3489
2059void inline_size 3490inline_size void
2060wlist_add (WL *head, WL elem) 3491wlist_add (WL *head, WL elem)
2061{ 3492{
2062 elem->next = *head; 3493 elem->next = *head;
2063 *head = elem; 3494 *head = elem;
2064} 3495}
2065 3496
2066void inline_size 3497inline_size void
2067wlist_del (WL *head, WL elem) 3498wlist_del (WL *head, WL elem)
2068{ 3499{
2069 while (*head) 3500 while (*head)
2070 { 3501 {
2071 if (*head == elem) 3502 if (expect_true (*head == elem))
2072 { 3503 {
2073 *head = elem->next; 3504 *head = elem->next;
2074 return; 3505 break;
2075 } 3506 }
2076 3507
2077 head = &(*head)->next; 3508 head = &(*head)->next;
2078 } 3509 }
2079} 3510}
2080 3511
2081void inline_speed 3512/* internal, faster, version of ev_clear_pending */
3513inline_speed void
2082clear_pending (EV_P_ W w) 3514clear_pending (EV_P_ W w)
2083{ 3515{
2084 if (w->pending) 3516 if (w->pending)
2085 { 3517 {
2086 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3518 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2087 w->pending = 0; 3519 w->pending = 0;
2088 } 3520 }
2089} 3521}
2090 3522
2091int 3523int
2092ev_clear_pending (EV_P_ void *w) 3524ev_clear_pending (EV_P_ void *w) EV_THROW
2093{ 3525{
2094 W w_ = (W)w; 3526 W w_ = (W)w;
2095 int pending = w_->pending; 3527 int pending = w_->pending;
2096 3528
2097 if (expect_true (pending)) 3529 if (expect_true (pending))
2098 { 3530 {
2099 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3531 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3532 p->w = (W)&pending_w;
2100 w_->pending = 0; 3533 w_->pending = 0;
2101 p->w = 0;
2102 return p->events; 3534 return p->events;
2103 } 3535 }
2104 else 3536 else
2105 return 0; 3537 return 0;
2106} 3538}
2107 3539
2108void inline_size 3540inline_size void
2109pri_adjust (EV_P_ W w) 3541pri_adjust (EV_P_ W w)
2110{ 3542{
2111 int pri = w->priority; 3543 int pri = ev_priority (w);
2112 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3544 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2113 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3545 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2114 w->priority = pri; 3546 ev_set_priority (w, pri);
2115} 3547}
2116 3548
2117void inline_speed 3549inline_speed void
2118ev_start (EV_P_ W w, int active) 3550ev_start (EV_P_ W w, int active)
2119{ 3551{
2120 pri_adjust (EV_A_ w); 3552 pri_adjust (EV_A_ w);
2121 w->active = active; 3553 w->active = active;
2122 ev_ref (EV_A); 3554 ev_ref (EV_A);
2123} 3555}
2124 3556
2125void inline_size 3557inline_size void
2126ev_stop (EV_P_ W w) 3558ev_stop (EV_P_ W w)
2127{ 3559{
2128 ev_unref (EV_A); 3560 ev_unref (EV_A);
2129 w->active = 0; 3561 w->active = 0;
2130} 3562}
2131 3563
2132/*****************************************************************************/ 3564/*****************************************************************************/
2133 3565
2134void noinline 3566void noinline
2135ev_io_start (EV_P_ ev_io *w) 3567ev_io_start (EV_P_ ev_io *w) EV_THROW
2136{ 3568{
2137 int fd = w->fd; 3569 int fd = w->fd;
2138 3570
2139 if (expect_false (ev_is_active (w))) 3571 if (expect_false (ev_is_active (w)))
2140 return; 3572 return;
2141 3573
2142 assert (("ev_io_start called with negative fd", fd >= 0)); 3574 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3575 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2143 3576
2144 EV_FREQUENT_CHECK; 3577 EV_FREQUENT_CHECK;
2145 3578
2146 ev_start (EV_A_ (W)w, 1); 3579 ev_start (EV_A_ (W)w, 1);
2147 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3580 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2148 wlist_add (&anfds[fd].head, (WL)w); 3581 wlist_add (&anfds[fd].head, (WL)w);
2149 3582
3583 /* common bug, apparently */
3584 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3585
2150 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3586 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2151 w->events &= ~EV_IOFDSET; 3587 w->events &= ~EV__IOFDSET;
2152 3588
2153 EV_FREQUENT_CHECK; 3589 EV_FREQUENT_CHECK;
2154} 3590}
2155 3591
2156void noinline 3592void noinline
2157ev_io_stop (EV_P_ ev_io *w) 3593ev_io_stop (EV_P_ ev_io *w) EV_THROW
2158{ 3594{
2159 clear_pending (EV_A_ (W)w); 3595 clear_pending (EV_A_ (W)w);
2160 if (expect_false (!ev_is_active (w))) 3596 if (expect_false (!ev_is_active (w)))
2161 return; 3597 return;
2162 3598
2163 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3599 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2164 3600
2165 EV_FREQUENT_CHECK; 3601 EV_FREQUENT_CHECK;
2166 3602
2167 wlist_del (&anfds[w->fd].head, (WL)w); 3603 wlist_del (&anfds[w->fd].head, (WL)w);
2168 ev_stop (EV_A_ (W)w); 3604 ev_stop (EV_A_ (W)w);
2169 3605
2170 fd_change (EV_A_ w->fd, 1); 3606 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2171 3607
2172 EV_FREQUENT_CHECK; 3608 EV_FREQUENT_CHECK;
2173} 3609}
2174 3610
2175void noinline 3611void noinline
2176ev_timer_start (EV_P_ ev_timer *w) 3612ev_timer_start (EV_P_ ev_timer *w) EV_THROW
2177{ 3613{
2178 if (expect_false (ev_is_active (w))) 3614 if (expect_false (ev_is_active (w)))
2179 return; 3615 return;
2180 3616
2181 ev_at (w) += mn_now; 3617 ev_at (w) += mn_now;
2182 3618
2183 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3619 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2184 3620
2185 EV_FREQUENT_CHECK; 3621 EV_FREQUENT_CHECK;
2186 3622
2187 ++timercnt; 3623 ++timercnt;
2188 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 3624 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2191 ANHE_at_cache (timers [ev_active (w)]); 3627 ANHE_at_cache (timers [ev_active (w)]);
2192 upheap (timers, ev_active (w)); 3628 upheap (timers, ev_active (w));
2193 3629
2194 EV_FREQUENT_CHECK; 3630 EV_FREQUENT_CHECK;
2195 3631
2196 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3632 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2197} 3633}
2198 3634
2199void noinline 3635void noinline
2200ev_timer_stop (EV_P_ ev_timer *w) 3636ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
2201{ 3637{
2202 clear_pending (EV_A_ (W)w); 3638 clear_pending (EV_A_ (W)w);
2203 if (expect_false (!ev_is_active (w))) 3639 if (expect_false (!ev_is_active (w)))
2204 return; 3640 return;
2205 3641
2206 EV_FREQUENT_CHECK; 3642 EV_FREQUENT_CHECK;
2207 3643
2208 { 3644 {
2209 int active = ev_active (w); 3645 int active = ev_active (w);
2210 3646
2211 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 3647 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2212 3648
2213 --timercnt; 3649 --timercnt;
2214 3650
2215 if (expect_true (active < timercnt + HEAP0)) 3651 if (expect_true (active < timercnt + HEAP0))
2216 { 3652 {
2217 timers [active] = timers [timercnt + HEAP0]; 3653 timers [active] = timers [timercnt + HEAP0];
2218 adjustheap (timers, timercnt, active); 3654 adjustheap (timers, timercnt, active);
2219 } 3655 }
2220 } 3656 }
2221 3657
2222 EV_FREQUENT_CHECK;
2223
2224 ev_at (w) -= mn_now; 3658 ev_at (w) -= mn_now;
2225 3659
2226 ev_stop (EV_A_ (W)w); 3660 ev_stop (EV_A_ (W)w);
3661
3662 EV_FREQUENT_CHECK;
2227} 3663}
2228 3664
2229void noinline 3665void noinline
2230ev_timer_again (EV_P_ ev_timer *w) 3666ev_timer_again (EV_P_ ev_timer *w) EV_THROW
2231{ 3667{
2232 EV_FREQUENT_CHECK; 3668 EV_FREQUENT_CHECK;
3669
3670 clear_pending (EV_A_ (W)w);
2233 3671
2234 if (ev_is_active (w)) 3672 if (ev_is_active (w))
2235 { 3673 {
2236 if (w->repeat) 3674 if (w->repeat)
2237 { 3675 {
2249 } 3687 }
2250 3688
2251 EV_FREQUENT_CHECK; 3689 EV_FREQUENT_CHECK;
2252} 3690}
2253 3691
3692ev_tstamp
3693ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3694{
3695 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3696}
3697
2254#if EV_PERIODIC_ENABLE 3698#if EV_PERIODIC_ENABLE
2255void noinline 3699void noinline
2256ev_periodic_start (EV_P_ ev_periodic *w) 3700ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
2257{ 3701{
2258 if (expect_false (ev_is_active (w))) 3702 if (expect_false (ev_is_active (w)))
2259 return; 3703 return;
2260 3704
2261 if (w->reschedule_cb) 3705 if (w->reschedule_cb)
2262 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3706 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2263 else if (w->interval) 3707 else if (w->interval)
2264 { 3708 {
2265 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3709 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2266 /* this formula differs from the one in periodic_reify because we do not always round up */ 3710 periodic_recalc (EV_A_ w);
2267 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2268 } 3711 }
2269 else 3712 else
2270 ev_at (w) = w->offset; 3713 ev_at (w) = w->offset;
2271 3714
2272 EV_FREQUENT_CHECK; 3715 EV_FREQUENT_CHECK;
2278 ANHE_at_cache (periodics [ev_active (w)]); 3721 ANHE_at_cache (periodics [ev_active (w)]);
2279 upheap (periodics, ev_active (w)); 3722 upheap (periodics, ev_active (w));
2280 3723
2281 EV_FREQUENT_CHECK; 3724 EV_FREQUENT_CHECK;
2282 3725
2283 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 3726 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2284} 3727}
2285 3728
2286void noinline 3729void noinline
2287ev_periodic_stop (EV_P_ ev_periodic *w) 3730ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
2288{ 3731{
2289 clear_pending (EV_A_ (W)w); 3732 clear_pending (EV_A_ (W)w);
2290 if (expect_false (!ev_is_active (w))) 3733 if (expect_false (!ev_is_active (w)))
2291 return; 3734 return;
2292 3735
2293 EV_FREQUENT_CHECK; 3736 EV_FREQUENT_CHECK;
2294 3737
2295 { 3738 {
2296 int active = ev_active (w); 3739 int active = ev_active (w);
2297 3740
2298 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 3741 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2299 3742
2300 --periodiccnt; 3743 --periodiccnt;
2301 3744
2302 if (expect_true (active < periodiccnt + HEAP0)) 3745 if (expect_true (active < periodiccnt + HEAP0))
2303 { 3746 {
2304 periodics [active] = periodics [periodiccnt + HEAP0]; 3747 periodics [active] = periodics [periodiccnt + HEAP0];
2305 adjustheap (periodics, periodiccnt, active); 3748 adjustheap (periodics, periodiccnt, active);
2306 } 3749 }
2307 } 3750 }
2308 3751
2309 EV_FREQUENT_CHECK;
2310
2311 ev_stop (EV_A_ (W)w); 3752 ev_stop (EV_A_ (W)w);
3753
3754 EV_FREQUENT_CHECK;
2312} 3755}
2313 3756
2314void noinline 3757void noinline
2315ev_periodic_again (EV_P_ ev_periodic *w) 3758ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
2316{ 3759{
2317 /* TODO: use adjustheap and recalculation */ 3760 /* TODO: use adjustheap and recalculation */
2318 ev_periodic_stop (EV_A_ w); 3761 ev_periodic_stop (EV_A_ w);
2319 ev_periodic_start (EV_A_ w); 3762 ev_periodic_start (EV_A_ w);
2320} 3763}
2322 3765
2323#ifndef SA_RESTART 3766#ifndef SA_RESTART
2324# define SA_RESTART 0 3767# define SA_RESTART 0
2325#endif 3768#endif
2326 3769
3770#if EV_SIGNAL_ENABLE
3771
2327void noinline 3772void noinline
2328ev_signal_start (EV_P_ ev_signal *w) 3773ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2329{ 3774{
2330#if EV_MULTIPLICITY
2331 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2332#endif
2333 if (expect_false (ev_is_active (w))) 3775 if (expect_false (ev_is_active (w)))
2334 return; 3776 return;
2335 3777
2336 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3778 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2337 3779
2338 evpipe_init (EV_A); 3780#if EV_MULTIPLICITY
3781 assert (("libev: a signal must not be attached to two different loops",
3782 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2339 3783
2340 EV_FREQUENT_CHECK; 3784 signals [w->signum - 1].loop = EV_A;
3785 ECB_MEMORY_FENCE_RELEASE;
3786#endif
2341 3787
3788 EV_FREQUENT_CHECK;
3789
3790#if EV_USE_SIGNALFD
3791 if (sigfd == -2)
2342 { 3792 {
2343#ifndef _WIN32 3793 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2344 sigset_t full, prev; 3794 if (sigfd < 0 && errno == EINVAL)
2345 sigfillset (&full); 3795 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2346 sigprocmask (SIG_SETMASK, &full, &prev);
2347#endif
2348 3796
2349 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3797 if (sigfd >= 0)
3798 {
3799 fd_intern (sigfd); /* doing it twice will not hurt */
2350 3800
2351#ifndef _WIN32 3801 sigemptyset (&sigfd_set);
2352 sigprocmask (SIG_SETMASK, &prev, 0); 3802
2353#endif 3803 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3804 ev_set_priority (&sigfd_w, EV_MAXPRI);
3805 ev_io_start (EV_A_ &sigfd_w);
3806 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3807 }
2354 } 3808 }
3809
3810 if (sigfd >= 0)
3811 {
3812 /* TODO: check .head */
3813 sigaddset (&sigfd_set, w->signum);
3814 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3815
3816 signalfd (sigfd, &sigfd_set, 0);
3817 }
3818#endif
2355 3819
2356 ev_start (EV_A_ (W)w, 1); 3820 ev_start (EV_A_ (W)w, 1);
2357 wlist_add (&signals [w->signum - 1].head, (WL)w); 3821 wlist_add (&signals [w->signum - 1].head, (WL)w);
2358 3822
2359 if (!((WL)w)->next) 3823 if (!((WL)w)->next)
3824# if EV_USE_SIGNALFD
3825 if (sigfd < 0) /*TODO*/
3826# endif
2360 { 3827 {
2361#if _WIN32 3828# ifdef _WIN32
3829 evpipe_init (EV_A);
3830
2362 signal (w->signum, ev_sighandler); 3831 signal (w->signum, ev_sighandler);
2363#else 3832# else
2364 struct sigaction sa; 3833 struct sigaction sa;
3834
3835 evpipe_init (EV_A);
3836
2365 sa.sa_handler = ev_sighandler; 3837 sa.sa_handler = ev_sighandler;
2366 sigfillset (&sa.sa_mask); 3838 sigfillset (&sa.sa_mask);
2367 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3839 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2368 sigaction (w->signum, &sa, 0); 3840 sigaction (w->signum, &sa, 0);
3841
3842 if (origflags & EVFLAG_NOSIGMASK)
3843 {
3844 sigemptyset (&sa.sa_mask);
3845 sigaddset (&sa.sa_mask, w->signum);
3846 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3847 }
2369#endif 3848#endif
2370 } 3849 }
2371 3850
2372 EV_FREQUENT_CHECK; 3851 EV_FREQUENT_CHECK;
2373} 3852}
2374 3853
2375void noinline 3854void noinline
2376ev_signal_stop (EV_P_ ev_signal *w) 3855ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2377{ 3856{
2378 clear_pending (EV_A_ (W)w); 3857 clear_pending (EV_A_ (W)w);
2379 if (expect_false (!ev_is_active (w))) 3858 if (expect_false (!ev_is_active (w)))
2380 return; 3859 return;
2381 3860
2383 3862
2384 wlist_del (&signals [w->signum - 1].head, (WL)w); 3863 wlist_del (&signals [w->signum - 1].head, (WL)w);
2385 ev_stop (EV_A_ (W)w); 3864 ev_stop (EV_A_ (W)w);
2386 3865
2387 if (!signals [w->signum - 1].head) 3866 if (!signals [w->signum - 1].head)
3867 {
3868#if EV_MULTIPLICITY
3869 signals [w->signum - 1].loop = 0; /* unattach from signal */
3870#endif
3871#if EV_USE_SIGNALFD
3872 if (sigfd >= 0)
3873 {
3874 sigset_t ss;
3875
3876 sigemptyset (&ss);
3877 sigaddset (&ss, w->signum);
3878 sigdelset (&sigfd_set, w->signum);
3879
3880 signalfd (sigfd, &sigfd_set, 0);
3881 sigprocmask (SIG_UNBLOCK, &ss, 0);
3882 }
3883 else
3884#endif
2388 signal (w->signum, SIG_DFL); 3885 signal (w->signum, SIG_DFL);
3886 }
2389 3887
2390 EV_FREQUENT_CHECK; 3888 EV_FREQUENT_CHECK;
2391} 3889}
3890
3891#endif
3892
3893#if EV_CHILD_ENABLE
2392 3894
2393void 3895void
2394ev_child_start (EV_P_ ev_child *w) 3896ev_child_start (EV_P_ ev_child *w) EV_THROW
2395{ 3897{
2396#if EV_MULTIPLICITY 3898#if EV_MULTIPLICITY
2397 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3899 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2398#endif 3900#endif
2399 if (expect_false (ev_is_active (w))) 3901 if (expect_false (ev_is_active (w)))
2400 return; 3902 return;
2401 3903
2402 EV_FREQUENT_CHECK; 3904 EV_FREQUENT_CHECK;
2403 3905
2404 ev_start (EV_A_ (W)w, 1); 3906 ev_start (EV_A_ (W)w, 1);
2405 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3907 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2406 3908
2407 EV_FREQUENT_CHECK; 3909 EV_FREQUENT_CHECK;
2408} 3910}
2409 3911
2410void 3912void
2411ev_child_stop (EV_P_ ev_child *w) 3913ev_child_stop (EV_P_ ev_child *w) EV_THROW
2412{ 3914{
2413 clear_pending (EV_A_ (W)w); 3915 clear_pending (EV_A_ (W)w);
2414 if (expect_false (!ev_is_active (w))) 3916 if (expect_false (!ev_is_active (w)))
2415 return; 3917 return;
2416 3918
2417 EV_FREQUENT_CHECK; 3919 EV_FREQUENT_CHECK;
2418 3920
2419 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3921 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2420 ev_stop (EV_A_ (W)w); 3922 ev_stop (EV_A_ (W)w);
2421 3923
2422 EV_FREQUENT_CHECK; 3924 EV_FREQUENT_CHECK;
2423} 3925}
3926
3927#endif
2424 3928
2425#if EV_STAT_ENABLE 3929#if EV_STAT_ENABLE
2426 3930
2427# ifdef _WIN32 3931# ifdef _WIN32
2428# undef lstat 3932# undef lstat
2429# define lstat(a,b) _stati64 (a,b) 3933# define lstat(a,b) _stati64 (a,b)
2430# endif 3934# endif
2431 3935
2432#define DEF_STAT_INTERVAL 5.0074891 3936#define DEF_STAT_INTERVAL 5.0074891
3937#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2433#define MIN_STAT_INTERVAL 0.1074891 3938#define MIN_STAT_INTERVAL 0.1074891
2434 3939
2435static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3940static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2436 3941
2437#if EV_USE_INOTIFY 3942#if EV_USE_INOTIFY
2438# define EV_INOTIFY_BUFSIZE 8192 3943
3944/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3945# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2439 3946
2440static void noinline 3947static void noinline
2441infy_add (EV_P_ ev_stat *w) 3948infy_add (EV_P_ ev_stat *w)
2442{ 3949{
2443 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3950 w->wd = inotify_add_watch (fs_fd, w->path,
3951 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
3952 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
3953 | IN_DONT_FOLLOW | IN_MASK_ADD);
2444 3954
2445 if (w->wd < 0) 3955 if (w->wd >= 0)
3956 {
3957 struct statfs sfs;
3958
3959 /* now local changes will be tracked by inotify, but remote changes won't */
3960 /* unless the filesystem is known to be local, we therefore still poll */
3961 /* also do poll on <2.6.25, but with normal frequency */
3962
3963 if (!fs_2625)
3964 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3965 else if (!statfs (w->path, &sfs)
3966 && (sfs.f_type == 0x1373 /* devfs */
3967 || sfs.f_type == 0x4006 /* fat */
3968 || sfs.f_type == 0x4d44 /* msdos */
3969 || sfs.f_type == 0xEF53 /* ext2/3 */
3970 || sfs.f_type == 0x72b6 /* jffs2 */
3971 || sfs.f_type == 0x858458f6 /* ramfs */
3972 || sfs.f_type == 0x5346544e /* ntfs */
3973 || sfs.f_type == 0x3153464a /* jfs */
3974 || sfs.f_type == 0x9123683e /* btrfs */
3975 || sfs.f_type == 0x52654973 /* reiser3 */
3976 || sfs.f_type == 0x01021994 /* tmpfs */
3977 || sfs.f_type == 0x58465342 /* xfs */))
3978 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3979 else
3980 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2446 { 3981 }
2447 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3982 else
3983 {
3984 /* can't use inotify, continue to stat */
3985 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2448 3986
2449 /* monitor some parent directory for speedup hints */ 3987 /* if path is not there, monitor some parent directory for speedup hints */
2450 /* note that exceeding the hardcoded limit is not a correctness issue, */ 3988 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2451 /* but an efficiency issue only */ 3989 /* but an efficiency issue only */
2452 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3990 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2453 { 3991 {
2454 char path [4096]; 3992 char path [4096];
2455 strcpy (path, w->path); 3993 strcpy (path, w->path);
2459 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3997 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2460 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3998 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2461 3999
2462 char *pend = strrchr (path, '/'); 4000 char *pend = strrchr (path, '/');
2463 4001
2464 if (!pend) 4002 if (!pend || pend == path)
2465 break; /* whoops, no '/', complain to your admin */ 4003 break;
2466 4004
2467 *pend = 0; 4005 *pend = 0;
2468 w->wd = inotify_add_watch (fs_fd, path, mask); 4006 w->wd = inotify_add_watch (fs_fd, path, mask);
2469 } 4007 }
2470 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4008 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2471 } 4009 }
2472 } 4010 }
2473 else
2474 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2475 4011
2476 if (w->wd >= 0) 4012 if (w->wd >= 0)
2477 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4013 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4014
4015 /* now re-arm timer, if required */
4016 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4017 ev_timer_again (EV_A_ &w->timer);
4018 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2478} 4019}
2479 4020
2480static void noinline 4021static void noinline
2481infy_del (EV_P_ ev_stat *w) 4022infy_del (EV_P_ ev_stat *w)
2482{ 4023{
2485 4026
2486 if (wd < 0) 4027 if (wd < 0)
2487 return; 4028 return;
2488 4029
2489 w->wd = -2; 4030 w->wd = -2;
2490 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4031 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2491 wlist_del (&fs_hash [slot].head, (WL)w); 4032 wlist_del (&fs_hash [slot].head, (WL)w);
2492 4033
2493 /* remove this watcher, if others are watching it, they will rearm */ 4034 /* remove this watcher, if others are watching it, they will rearm */
2494 inotify_rm_watch (fs_fd, wd); 4035 inotify_rm_watch (fs_fd, wd);
2495} 4036}
2496 4037
2497static void noinline 4038static void noinline
2498infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4039infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2499{ 4040{
2500 if (slot < 0) 4041 if (slot < 0)
2501 /* overflow, need to check for all hahs slots */ 4042 /* overflow, need to check for all hash slots */
2502 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4043 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2503 infy_wd (EV_A_ slot, wd, ev); 4044 infy_wd (EV_A_ slot, wd, ev);
2504 else 4045 else
2505 { 4046 {
2506 WL w_; 4047 WL w_;
2507 4048
2508 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4049 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2509 { 4050 {
2510 ev_stat *w = (ev_stat *)w_; 4051 ev_stat *w = (ev_stat *)w_;
2511 w_ = w_->next; /* lets us remove this watcher and all before it */ 4052 w_ = w_->next; /* lets us remove this watcher and all before it */
2512 4053
2513 if (w->wd == wd || wd == -1) 4054 if (w->wd == wd || wd == -1)
2514 { 4055 {
2515 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4056 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2516 { 4057 {
4058 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2517 w->wd = -1; 4059 w->wd = -1;
2518 infy_add (EV_A_ w); /* re-add, no matter what */ 4060 infy_add (EV_A_ w); /* re-add, no matter what */
2519 } 4061 }
2520 4062
2521 stat_timer_cb (EV_A_ &w->timer, 0); 4063 stat_timer_cb (EV_A_ &w->timer, 0);
2526 4068
2527static void 4069static void
2528infy_cb (EV_P_ ev_io *w, int revents) 4070infy_cb (EV_P_ ev_io *w, int revents)
2529{ 4071{
2530 char buf [EV_INOTIFY_BUFSIZE]; 4072 char buf [EV_INOTIFY_BUFSIZE];
2531 struct inotify_event *ev = (struct inotify_event *)buf;
2532 int ofs; 4073 int ofs;
2533 int len = read (fs_fd, buf, sizeof (buf)); 4074 int len = read (fs_fd, buf, sizeof (buf));
2534 4075
2535 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4076 for (ofs = 0; ofs < len; )
4077 {
4078 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2536 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4079 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4080 ofs += sizeof (struct inotify_event) + ev->len;
4081 }
2537} 4082}
2538 4083
2539void inline_size 4084inline_size void ecb_cold
4085ev_check_2625 (EV_P)
4086{
4087 /* kernels < 2.6.25 are borked
4088 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4089 */
4090 if (ev_linux_version () < 0x020619)
4091 return;
4092
4093 fs_2625 = 1;
4094}
4095
4096inline_size int
4097infy_newfd (void)
4098{
4099#if defined IN_CLOEXEC && defined IN_NONBLOCK
4100 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4101 if (fd >= 0)
4102 return fd;
4103#endif
4104 return inotify_init ();
4105}
4106
4107inline_size void
2540infy_init (EV_P) 4108infy_init (EV_P)
2541{ 4109{
2542 if (fs_fd != -2) 4110 if (fs_fd != -2)
2543 return; 4111 return;
2544 4112
4113 fs_fd = -1;
4114
4115 ev_check_2625 (EV_A);
4116
2545 fs_fd = inotify_init (); 4117 fs_fd = infy_newfd ();
2546 4118
2547 if (fs_fd >= 0) 4119 if (fs_fd >= 0)
2548 { 4120 {
4121 fd_intern (fs_fd);
2549 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4122 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2550 ev_set_priority (&fs_w, EV_MAXPRI); 4123 ev_set_priority (&fs_w, EV_MAXPRI);
2551 ev_io_start (EV_A_ &fs_w); 4124 ev_io_start (EV_A_ &fs_w);
4125 ev_unref (EV_A);
2552 } 4126 }
2553} 4127}
2554 4128
2555void inline_size 4129inline_size void
2556infy_fork (EV_P) 4130infy_fork (EV_P)
2557{ 4131{
2558 int slot; 4132 int slot;
2559 4133
2560 if (fs_fd < 0) 4134 if (fs_fd < 0)
2561 return; 4135 return;
2562 4136
4137 ev_ref (EV_A);
4138 ev_io_stop (EV_A_ &fs_w);
2563 close (fs_fd); 4139 close (fs_fd);
2564 fs_fd = inotify_init (); 4140 fs_fd = infy_newfd ();
2565 4141
4142 if (fs_fd >= 0)
4143 {
4144 fd_intern (fs_fd);
4145 ev_io_set (&fs_w, fs_fd, EV_READ);
4146 ev_io_start (EV_A_ &fs_w);
4147 ev_unref (EV_A);
4148 }
4149
2566 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4150 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2567 { 4151 {
2568 WL w_ = fs_hash [slot].head; 4152 WL w_ = fs_hash [slot].head;
2569 fs_hash [slot].head = 0; 4153 fs_hash [slot].head = 0;
2570 4154
2571 while (w_) 4155 while (w_)
2576 w->wd = -1; 4160 w->wd = -1;
2577 4161
2578 if (fs_fd >= 0) 4162 if (fs_fd >= 0)
2579 infy_add (EV_A_ w); /* re-add, no matter what */ 4163 infy_add (EV_A_ w); /* re-add, no matter what */
2580 else 4164 else
4165 {
4166 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4167 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2581 ev_timer_start (EV_A_ &w->timer); 4168 ev_timer_again (EV_A_ &w->timer);
4169 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4170 }
2582 } 4171 }
2583
2584 } 4172 }
2585} 4173}
2586 4174
2587#endif 4175#endif
2588 4176
2591#else 4179#else
2592# define EV_LSTAT(p,b) lstat (p, b) 4180# define EV_LSTAT(p,b) lstat (p, b)
2593#endif 4181#endif
2594 4182
2595void 4183void
2596ev_stat_stat (EV_P_ ev_stat *w) 4184ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2597{ 4185{
2598 if (lstat (w->path, &w->attr) < 0) 4186 if (lstat (w->path, &w->attr) < 0)
2599 w->attr.st_nlink = 0; 4187 w->attr.st_nlink = 0;
2600 else if (!w->attr.st_nlink) 4188 else if (!w->attr.st_nlink)
2601 w->attr.st_nlink = 1; 4189 w->attr.st_nlink = 1;
2604static void noinline 4192static void noinline
2605stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4193stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2606{ 4194{
2607 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4195 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2608 4196
2609 /* we copy this here each the time so that */ 4197 ev_statdata prev = w->attr;
2610 /* prev has the old value when the callback gets invoked */
2611 w->prev = w->attr;
2612 ev_stat_stat (EV_A_ w); 4198 ev_stat_stat (EV_A_ w);
2613 4199
2614 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4200 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2615 if ( 4201 if (
2616 w->prev.st_dev != w->attr.st_dev 4202 prev.st_dev != w->attr.st_dev
2617 || w->prev.st_ino != w->attr.st_ino 4203 || prev.st_ino != w->attr.st_ino
2618 || w->prev.st_mode != w->attr.st_mode 4204 || prev.st_mode != w->attr.st_mode
2619 || w->prev.st_nlink != w->attr.st_nlink 4205 || prev.st_nlink != w->attr.st_nlink
2620 || w->prev.st_uid != w->attr.st_uid 4206 || prev.st_uid != w->attr.st_uid
2621 || w->prev.st_gid != w->attr.st_gid 4207 || prev.st_gid != w->attr.st_gid
2622 || w->prev.st_rdev != w->attr.st_rdev 4208 || prev.st_rdev != w->attr.st_rdev
2623 || w->prev.st_size != w->attr.st_size 4209 || prev.st_size != w->attr.st_size
2624 || w->prev.st_atime != w->attr.st_atime 4210 || prev.st_atime != w->attr.st_atime
2625 || w->prev.st_mtime != w->attr.st_mtime 4211 || prev.st_mtime != w->attr.st_mtime
2626 || w->prev.st_ctime != w->attr.st_ctime 4212 || prev.st_ctime != w->attr.st_ctime
2627 ) { 4213 ) {
4214 /* we only update w->prev on actual differences */
4215 /* in case we test more often than invoke the callback, */
4216 /* to ensure that prev is always different to attr */
4217 w->prev = prev;
4218
2628 #if EV_USE_INOTIFY 4219 #if EV_USE_INOTIFY
4220 if (fs_fd >= 0)
4221 {
2629 infy_del (EV_A_ w); 4222 infy_del (EV_A_ w);
2630 infy_add (EV_A_ w); 4223 infy_add (EV_A_ w);
2631 ev_stat_stat (EV_A_ w); /* avoid race... */ 4224 ev_stat_stat (EV_A_ w); /* avoid race... */
4225 }
2632 #endif 4226 #endif
2633 4227
2634 ev_feed_event (EV_A_ w, EV_STAT); 4228 ev_feed_event (EV_A_ w, EV_STAT);
2635 } 4229 }
2636} 4230}
2637 4231
2638void 4232void
2639ev_stat_start (EV_P_ ev_stat *w) 4233ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2640{ 4234{
2641 if (expect_false (ev_is_active (w))) 4235 if (expect_false (ev_is_active (w)))
2642 return; 4236 return;
2643 4237
2644 /* since we use memcmp, we need to clear any padding data etc. */
2645 memset (&w->prev, 0, sizeof (ev_statdata));
2646 memset (&w->attr, 0, sizeof (ev_statdata));
2647
2648 ev_stat_stat (EV_A_ w); 4238 ev_stat_stat (EV_A_ w);
2649 4239
4240 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2650 if (w->interval < MIN_STAT_INTERVAL) 4241 w->interval = MIN_STAT_INTERVAL;
2651 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2652 4242
2653 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4243 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2654 ev_set_priority (&w->timer, ev_priority (w)); 4244 ev_set_priority (&w->timer, ev_priority (w));
2655 4245
2656#if EV_USE_INOTIFY 4246#if EV_USE_INOTIFY
2657 infy_init (EV_A); 4247 infy_init (EV_A);
2658 4248
2659 if (fs_fd >= 0) 4249 if (fs_fd >= 0)
2660 infy_add (EV_A_ w); 4250 infy_add (EV_A_ w);
2661 else 4251 else
2662#endif 4252#endif
4253 {
2663 ev_timer_start (EV_A_ &w->timer); 4254 ev_timer_again (EV_A_ &w->timer);
4255 ev_unref (EV_A);
4256 }
2664 4257
2665 ev_start (EV_A_ (W)w, 1); 4258 ev_start (EV_A_ (W)w, 1);
2666 4259
2667 EV_FREQUENT_CHECK; 4260 EV_FREQUENT_CHECK;
2668} 4261}
2669 4262
2670void 4263void
2671ev_stat_stop (EV_P_ ev_stat *w) 4264ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2672{ 4265{
2673 clear_pending (EV_A_ (W)w); 4266 clear_pending (EV_A_ (W)w);
2674 if (expect_false (!ev_is_active (w))) 4267 if (expect_false (!ev_is_active (w)))
2675 return; 4268 return;
2676 4269
2677 EV_FREQUENT_CHECK; 4270 EV_FREQUENT_CHECK;
2678 4271
2679#if EV_USE_INOTIFY 4272#if EV_USE_INOTIFY
2680 infy_del (EV_A_ w); 4273 infy_del (EV_A_ w);
2681#endif 4274#endif
4275
4276 if (ev_is_active (&w->timer))
4277 {
4278 ev_ref (EV_A);
2682 ev_timer_stop (EV_A_ &w->timer); 4279 ev_timer_stop (EV_A_ &w->timer);
4280 }
2683 4281
2684 ev_stop (EV_A_ (W)w); 4282 ev_stop (EV_A_ (W)w);
2685 4283
2686 EV_FREQUENT_CHECK; 4284 EV_FREQUENT_CHECK;
2687} 4285}
2688#endif 4286#endif
2689 4287
2690#if EV_IDLE_ENABLE 4288#if EV_IDLE_ENABLE
2691void 4289void
2692ev_idle_start (EV_P_ ev_idle *w) 4290ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2693{ 4291{
2694 if (expect_false (ev_is_active (w))) 4292 if (expect_false (ev_is_active (w)))
2695 return; 4293 return;
2696 4294
2697 pri_adjust (EV_A_ (W)w); 4295 pri_adjust (EV_A_ (W)w);
2710 4308
2711 EV_FREQUENT_CHECK; 4309 EV_FREQUENT_CHECK;
2712} 4310}
2713 4311
2714void 4312void
2715ev_idle_stop (EV_P_ ev_idle *w) 4313ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2716{ 4314{
2717 clear_pending (EV_A_ (W)w); 4315 clear_pending (EV_A_ (W)w);
2718 if (expect_false (!ev_is_active (w))) 4316 if (expect_false (!ev_is_active (w)))
2719 return; 4317 return;
2720 4318
2732 4330
2733 EV_FREQUENT_CHECK; 4331 EV_FREQUENT_CHECK;
2734} 4332}
2735#endif 4333#endif
2736 4334
4335#if EV_PREPARE_ENABLE
2737void 4336void
2738ev_prepare_start (EV_P_ ev_prepare *w) 4337ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2739{ 4338{
2740 if (expect_false (ev_is_active (w))) 4339 if (expect_false (ev_is_active (w)))
2741 return; 4340 return;
2742 4341
2743 EV_FREQUENT_CHECK; 4342 EV_FREQUENT_CHECK;
2748 4347
2749 EV_FREQUENT_CHECK; 4348 EV_FREQUENT_CHECK;
2750} 4349}
2751 4350
2752void 4351void
2753ev_prepare_stop (EV_P_ ev_prepare *w) 4352ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2754{ 4353{
2755 clear_pending (EV_A_ (W)w); 4354 clear_pending (EV_A_ (W)w);
2756 if (expect_false (!ev_is_active (w))) 4355 if (expect_false (!ev_is_active (w)))
2757 return; 4356 return;
2758 4357
2767 4366
2768 ev_stop (EV_A_ (W)w); 4367 ev_stop (EV_A_ (W)w);
2769 4368
2770 EV_FREQUENT_CHECK; 4369 EV_FREQUENT_CHECK;
2771} 4370}
4371#endif
2772 4372
4373#if EV_CHECK_ENABLE
2773void 4374void
2774ev_check_start (EV_P_ ev_check *w) 4375ev_check_start (EV_P_ ev_check *w) EV_THROW
2775{ 4376{
2776 if (expect_false (ev_is_active (w))) 4377 if (expect_false (ev_is_active (w)))
2777 return; 4378 return;
2778 4379
2779 EV_FREQUENT_CHECK; 4380 EV_FREQUENT_CHECK;
2784 4385
2785 EV_FREQUENT_CHECK; 4386 EV_FREQUENT_CHECK;
2786} 4387}
2787 4388
2788void 4389void
2789ev_check_stop (EV_P_ ev_check *w) 4390ev_check_stop (EV_P_ ev_check *w) EV_THROW
2790{ 4391{
2791 clear_pending (EV_A_ (W)w); 4392 clear_pending (EV_A_ (W)w);
2792 if (expect_false (!ev_is_active (w))) 4393 if (expect_false (!ev_is_active (w)))
2793 return; 4394 return;
2794 4395
2803 4404
2804 ev_stop (EV_A_ (W)w); 4405 ev_stop (EV_A_ (W)w);
2805 4406
2806 EV_FREQUENT_CHECK; 4407 EV_FREQUENT_CHECK;
2807} 4408}
4409#endif
2808 4410
2809#if EV_EMBED_ENABLE 4411#if EV_EMBED_ENABLE
2810void noinline 4412void noinline
2811ev_embed_sweep (EV_P_ ev_embed *w) 4413ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2812{ 4414{
2813 ev_loop (w->other, EVLOOP_NONBLOCK); 4415 ev_run (w->other, EVRUN_NOWAIT);
2814} 4416}
2815 4417
2816static void 4418static void
2817embed_io_cb (EV_P_ ev_io *io, int revents) 4419embed_io_cb (EV_P_ ev_io *io, int revents)
2818{ 4420{
2819 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4421 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2820 4422
2821 if (ev_cb (w)) 4423 if (ev_cb (w))
2822 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4424 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2823 else 4425 else
2824 ev_loop (w->other, EVLOOP_NONBLOCK); 4426 ev_run (w->other, EVRUN_NOWAIT);
2825} 4427}
2826 4428
2827static void 4429static void
2828embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4430embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2829{ 4431{
2830 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4432 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2831 4433
2832 { 4434 {
2833 struct ev_loop *loop = w->other; 4435 EV_P = w->other;
2834 4436
2835 while (fdchangecnt) 4437 while (fdchangecnt)
2836 { 4438 {
2837 fd_reify (EV_A); 4439 fd_reify (EV_A);
2838 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4440 ev_run (EV_A_ EVRUN_NOWAIT);
2839 } 4441 }
2840 } 4442 }
2841} 4443}
2842 4444
2843static void 4445static void
2844embed_fork_cb (EV_P_ ev_fork *fork_w, int revents) 4446embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2845{ 4447{
2846 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 4448 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2847 4449
4450 ev_embed_stop (EV_A_ w);
4451
2848 { 4452 {
2849 struct ev_loop *loop = w->other; 4453 EV_P = w->other;
2850 4454
2851 ev_loop_fork (EV_A); 4455 ev_loop_fork (EV_A);
4456 ev_run (EV_A_ EVRUN_NOWAIT);
2852 } 4457 }
4458
4459 ev_embed_start (EV_A_ w);
2853} 4460}
2854 4461
2855#if 0 4462#if 0
2856static void 4463static void
2857embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4464embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2859 ev_idle_stop (EV_A_ idle); 4466 ev_idle_stop (EV_A_ idle);
2860} 4467}
2861#endif 4468#endif
2862 4469
2863void 4470void
2864ev_embed_start (EV_P_ ev_embed *w) 4471ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2865{ 4472{
2866 if (expect_false (ev_is_active (w))) 4473 if (expect_false (ev_is_active (w)))
2867 return; 4474 return;
2868 4475
2869 { 4476 {
2870 struct ev_loop *loop = w->other; 4477 EV_P = w->other;
2871 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4478 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2872 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4479 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2873 } 4480 }
2874 4481
2875 EV_FREQUENT_CHECK; 4482 EV_FREQUENT_CHECK;
2876 4483
2890 4497
2891 EV_FREQUENT_CHECK; 4498 EV_FREQUENT_CHECK;
2892} 4499}
2893 4500
2894void 4501void
2895ev_embed_stop (EV_P_ ev_embed *w) 4502ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2896{ 4503{
2897 clear_pending (EV_A_ (W)w); 4504 clear_pending (EV_A_ (W)w);
2898 if (expect_false (!ev_is_active (w))) 4505 if (expect_false (!ev_is_active (w)))
2899 return; 4506 return;
2900 4507
2902 4509
2903 ev_io_stop (EV_A_ &w->io); 4510 ev_io_stop (EV_A_ &w->io);
2904 ev_prepare_stop (EV_A_ &w->prepare); 4511 ev_prepare_stop (EV_A_ &w->prepare);
2905 ev_fork_stop (EV_A_ &w->fork); 4512 ev_fork_stop (EV_A_ &w->fork);
2906 4513
4514 ev_stop (EV_A_ (W)w);
4515
2907 EV_FREQUENT_CHECK; 4516 EV_FREQUENT_CHECK;
2908} 4517}
2909#endif 4518#endif
2910 4519
2911#if EV_FORK_ENABLE 4520#if EV_FORK_ENABLE
2912void 4521void
2913ev_fork_start (EV_P_ ev_fork *w) 4522ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2914{ 4523{
2915 if (expect_false (ev_is_active (w))) 4524 if (expect_false (ev_is_active (w)))
2916 return; 4525 return;
2917 4526
2918 EV_FREQUENT_CHECK; 4527 EV_FREQUENT_CHECK;
2923 4532
2924 EV_FREQUENT_CHECK; 4533 EV_FREQUENT_CHECK;
2925} 4534}
2926 4535
2927void 4536void
2928ev_fork_stop (EV_P_ ev_fork *w) 4537ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2929{ 4538{
2930 clear_pending (EV_A_ (W)w); 4539 clear_pending (EV_A_ (W)w);
2931 if (expect_false (!ev_is_active (w))) 4540 if (expect_false (!ev_is_active (w)))
2932 return; 4541 return;
2933 4542
2944 4553
2945 EV_FREQUENT_CHECK; 4554 EV_FREQUENT_CHECK;
2946} 4555}
2947#endif 4556#endif
2948 4557
4558#if EV_CLEANUP_ENABLE
4559void
4560ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4561{
4562 if (expect_false (ev_is_active (w)))
4563 return;
4564
4565 EV_FREQUENT_CHECK;
4566
4567 ev_start (EV_A_ (W)w, ++cleanupcnt);
4568 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4569 cleanups [cleanupcnt - 1] = w;
4570
4571 /* cleanup watchers should never keep a refcount on the loop */
4572 ev_unref (EV_A);
4573 EV_FREQUENT_CHECK;
4574}
4575
4576void
4577ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4578{
4579 clear_pending (EV_A_ (W)w);
4580 if (expect_false (!ev_is_active (w)))
4581 return;
4582
4583 EV_FREQUENT_CHECK;
4584 ev_ref (EV_A);
4585
4586 {
4587 int active = ev_active (w);
4588
4589 cleanups [active - 1] = cleanups [--cleanupcnt];
4590 ev_active (cleanups [active - 1]) = active;
4591 }
4592
4593 ev_stop (EV_A_ (W)w);
4594
4595 EV_FREQUENT_CHECK;
4596}
4597#endif
4598
2949#if EV_ASYNC_ENABLE 4599#if EV_ASYNC_ENABLE
2950void 4600void
2951ev_async_start (EV_P_ ev_async *w) 4601ev_async_start (EV_P_ ev_async *w) EV_THROW
2952{ 4602{
2953 if (expect_false (ev_is_active (w))) 4603 if (expect_false (ev_is_active (w)))
2954 return; 4604 return;
4605
4606 w->sent = 0;
2955 4607
2956 evpipe_init (EV_A); 4608 evpipe_init (EV_A);
2957 4609
2958 EV_FREQUENT_CHECK; 4610 EV_FREQUENT_CHECK;
2959 4611
2963 4615
2964 EV_FREQUENT_CHECK; 4616 EV_FREQUENT_CHECK;
2965} 4617}
2966 4618
2967void 4619void
2968ev_async_stop (EV_P_ ev_async *w) 4620ev_async_stop (EV_P_ ev_async *w) EV_THROW
2969{ 4621{
2970 clear_pending (EV_A_ (W)w); 4622 clear_pending (EV_A_ (W)w);
2971 if (expect_false (!ev_is_active (w))) 4623 if (expect_false (!ev_is_active (w)))
2972 return; 4624 return;
2973 4625
2984 4636
2985 EV_FREQUENT_CHECK; 4637 EV_FREQUENT_CHECK;
2986} 4638}
2987 4639
2988void 4640void
2989ev_async_send (EV_P_ ev_async *w) 4641ev_async_send (EV_P_ ev_async *w) EV_THROW
2990{ 4642{
2991 w->sent = 1; 4643 w->sent = 1;
2992 evpipe_write (EV_A_ &gotasync); 4644 evpipe_write (EV_A_ &async_pending);
2993} 4645}
2994#endif 4646#endif
2995 4647
2996/*****************************************************************************/ 4648/*****************************************************************************/
2997 4649
3031 4683
3032 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io)); 4684 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3033} 4685}
3034 4686
3035void 4687void
3036ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4688ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
3037{ 4689{
3038 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4690 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3039 4691
3040 if (expect_false (!once)) 4692 if (expect_false (!once))
3041 { 4693 {
3042 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4694 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3043 return; 4695 return;
3044 } 4696 }
3045 4697
3046 once->cb = cb; 4698 once->cb = cb;
3047 once->arg = arg; 4699 once->arg = arg;
3059 ev_timer_set (&once->to, timeout, 0.); 4711 ev_timer_set (&once->to, timeout, 0.);
3060 ev_timer_start (EV_A_ &once->to); 4712 ev_timer_start (EV_A_ &once->to);
3061 } 4713 }
3062} 4714}
3063 4715
4716/*****************************************************************************/
4717
4718#if EV_WALK_ENABLE
4719void ecb_cold
4720ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4721{
4722 int i, j;
4723 ev_watcher_list *wl, *wn;
4724
4725 if (types & (EV_IO | EV_EMBED))
4726 for (i = 0; i < anfdmax; ++i)
4727 for (wl = anfds [i].head; wl; )
4728 {
4729 wn = wl->next;
4730
4731#if EV_EMBED_ENABLE
4732 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4733 {
4734 if (types & EV_EMBED)
4735 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4736 }
4737 else
4738#endif
4739#if EV_USE_INOTIFY
4740 if (ev_cb ((ev_io *)wl) == infy_cb)
4741 ;
4742 else
4743#endif
4744 if ((ev_io *)wl != &pipe_w)
4745 if (types & EV_IO)
4746 cb (EV_A_ EV_IO, wl);
4747
4748 wl = wn;
4749 }
4750
4751 if (types & (EV_TIMER | EV_STAT))
4752 for (i = timercnt + HEAP0; i-- > HEAP0; )
4753#if EV_STAT_ENABLE
4754 /*TODO: timer is not always active*/
4755 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4756 {
4757 if (types & EV_STAT)
4758 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4759 }
4760 else
4761#endif
4762 if (types & EV_TIMER)
4763 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4764
4765#if EV_PERIODIC_ENABLE
4766 if (types & EV_PERIODIC)
4767 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4768 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4769#endif
4770
4771#if EV_IDLE_ENABLE
4772 if (types & EV_IDLE)
4773 for (j = NUMPRI; j--; )
4774 for (i = idlecnt [j]; i--; )
4775 cb (EV_A_ EV_IDLE, idles [j][i]);
4776#endif
4777
4778#if EV_FORK_ENABLE
4779 if (types & EV_FORK)
4780 for (i = forkcnt; i--; )
4781 if (ev_cb (forks [i]) != embed_fork_cb)
4782 cb (EV_A_ EV_FORK, forks [i]);
4783#endif
4784
4785#if EV_ASYNC_ENABLE
4786 if (types & EV_ASYNC)
4787 for (i = asynccnt; i--; )
4788 cb (EV_A_ EV_ASYNC, asyncs [i]);
4789#endif
4790
4791#if EV_PREPARE_ENABLE
4792 if (types & EV_PREPARE)
4793 for (i = preparecnt; i--; )
4794# if EV_EMBED_ENABLE
4795 if (ev_cb (prepares [i]) != embed_prepare_cb)
4796# endif
4797 cb (EV_A_ EV_PREPARE, prepares [i]);
4798#endif
4799
4800#if EV_CHECK_ENABLE
4801 if (types & EV_CHECK)
4802 for (i = checkcnt; i--; )
4803 cb (EV_A_ EV_CHECK, checks [i]);
4804#endif
4805
4806#if EV_SIGNAL_ENABLE
4807 if (types & EV_SIGNAL)
4808 for (i = 0; i < EV_NSIG - 1; ++i)
4809 for (wl = signals [i].head; wl; )
4810 {
4811 wn = wl->next;
4812 cb (EV_A_ EV_SIGNAL, wl);
4813 wl = wn;
4814 }
4815#endif
4816
4817#if EV_CHILD_ENABLE
4818 if (types & EV_CHILD)
4819 for (i = (EV_PID_HASHSIZE); i--; )
4820 for (wl = childs [i]; wl; )
4821 {
4822 wn = wl->next;
4823 cb (EV_A_ EV_CHILD, wl);
4824 wl = wn;
4825 }
4826#endif
4827/* EV_STAT 0x00001000 /* stat data changed */
4828/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4829}
4830#endif
4831
3064#if EV_MULTIPLICITY 4832#if EV_MULTIPLICITY
3065 #include "ev_wrap.h" 4833 #include "ev_wrap.h"
3066#endif 4834#endif
3067 4835
3068#ifdef __cplusplus
3069}
3070#endif
3071

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines