ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.65 by root, Sun Nov 4 23:29:48 2007 UTC vs.
Revision 1.263 by root, Wed Oct 1 18:50:03 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
33 51
34# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
55# endif
56# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 57# define EV_USE_REALTIME 1
58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
37# endif 66# endif
38 67
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
40# define EV_USE_SELECT 1 70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
41# endif 74# endif
42 75
43# if HAVE_POLL && HAVE_POLL_H 76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
44# define EV_USE_POLL 1 78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
45# endif 82# endif
46 83
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
48# define EV_USE_EPOLL 1 86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
49# endif 90# endif
50 91
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
52# define EV_USE_KQUEUE 1 94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
53# endif 98# endif
99
100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
54 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
55#endif 132#endif
56 133
57#include <math.h> 134#include <math.h>
58#include <stdlib.h> 135#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 136#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 137#include <stddef.h>
63 138
64#include <stdio.h> 139#include <stdio.h>
65 140
66#include <assert.h> 141#include <assert.h>
67#include <errno.h> 142#include <errno.h>
68#include <sys/types.h> 143#include <sys/types.h>
144#include <time.h>
145
146#include <signal.h>
147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
69#ifndef WIN32 154#ifndef _WIN32
155# include <sys/time.h>
70# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
158#else
159# include <io.h>
160# define WIN32_LEAN_AND_MEAN
161# include <windows.h>
162# ifndef EV_SELECT_IS_WINSOCKET
163# define EV_SELECT_IS_WINSOCKET 1
71#endif 164# endif
72#include <sys/time.h> 165#endif
73#include <time.h>
74 166
75/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
76 168
77#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
78# define EV_USE_MONOTONIC 1 171# define EV_USE_MONOTONIC 1
172# else
173# define EV_USE_MONOTONIC 0
174# endif
175#endif
176
177#ifndef EV_USE_REALTIME
178# define EV_USE_REALTIME 0
179#endif
180
181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
185# define EV_USE_NANOSLEEP 0
186# endif
79#endif 187#endif
80 188
81#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
83#endif 191#endif
84 192
85#ifndef EV_USE_POLL 193#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 194# ifdef _WIN32
195# define EV_USE_POLL 0
196# else
197# define EV_USE_POLL 1
198# endif
87#endif 199#endif
88 200
89#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
90# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
91#endif 207#endif
92 208
93#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
95#endif 211#endif
96 212
213#ifndef EV_USE_PORT
214# define EV_USE_PORT 0
215#endif
216
97#ifndef EV_USE_WIN32 217#ifndef EV_USE_INOTIFY
98# ifdef WIN32 218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
99# define EV_USE_WIN32 1 219# define EV_USE_INOTIFY 1
100# else 220# else
101# define EV_USE_WIN32 0 221# define EV_USE_INOTIFY 0
102# endif 222# endif
103#endif 223#endif
104 224
105#ifndef EV_USE_REALTIME 225#ifndef EV_PID_HASHSIZE
106# define EV_USE_REALTIME 1 226# if EV_MINIMAL
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
107#endif 230# endif
231#endif
108 232
109/**/ 233#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif
240
241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
110 268
111#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
114#endif 272#endif
116#ifndef CLOCK_REALTIME 274#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 275# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 276# define EV_USE_REALTIME 0
119#endif 277#endif
120 278
279#if !EV_STAT_ENABLE
280# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0
282#endif
283
284#if !EV_USE_NANOSLEEP
285# ifndef _WIN32
286# include <sys/select.h>
287# endif
288#endif
289
290#if EV_USE_INOTIFY
291# include <sys/inotify.h>
292/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
293# ifndef IN_DONT_FOLLOW
294# undef EV_USE_INOTIFY
295# define EV_USE_INOTIFY 0
296# endif
297#endif
298
299#if EV_SELECT_IS_WINSOCKET
300# include <winsock.h>
301#endif
302
303#if EV_USE_EVENTFD
304/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
305# include <stdint.h>
306# ifdef __cplusplus
307extern "C" {
308# endif
309int eventfd (unsigned int initval, int flags);
310# ifdef __cplusplus
311}
312# endif
313#endif
314
121/**/ 315/**/
122 316
317#if EV_VERIFY >= 3
318# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
319#else
320# define EV_FREQUENT_CHECK do { } while (0)
321#endif
322
323/*
324 * This is used to avoid floating point rounding problems.
325 * It is added to ev_rt_now when scheduling periodics
326 * to ensure progress, time-wise, even when rounding
327 * errors are against us.
328 * This value is good at least till the year 4000.
329 * Better solutions welcome.
330 */
331#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
332
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 333#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 334#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 335/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
127 336
128#include "ev.h"
129
130#if __GNUC__ >= 3 337#if __GNUC__ >= 4
131# define expect(expr,value) __builtin_expect ((expr),(value)) 338# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 339# define noinline __attribute__ ((noinline))
133#else 340#else
134# define expect(expr,value) (expr) 341# define expect(expr,value) (expr)
135# define inline static 342# define noinline
343# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
344# define inline
345# endif
136#endif 346#endif
137 347
138#define expect_false(expr) expect ((expr) != 0, 0) 348#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1) 349#define expect_true(expr) expect ((expr) != 0, 1)
350#define inline_size static inline
351
352#if EV_MINIMAL
353# define inline_speed static noinline
354#else
355# define inline_speed static inline
356#endif
140 357
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 358#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI) 359#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
143 360
361#define EMPTY /* required for microsofts broken pseudo-c compiler */
362#define EMPTY2(a,b) /* used to suppress some warnings */
363
144typedef struct ev_watcher *W; 364typedef ev_watcher *W;
145typedef struct ev_watcher_list *WL; 365typedef ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 366typedef ev_watcher_time *WT;
147 367
368#define ev_active(w) ((W)(w))->active
369#define ev_at(w) ((WT)(w))->at
370
371#if EV_USE_MONOTONIC
372/* sig_atomic_t is used to avoid per-thread variables or locking but still */
373/* giving it a reasonably high chance of working on typical architetcures */
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 374static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
375#endif
376
377#ifdef _WIN32
378# include "ev_win32.c"
379#endif
149 380
150/*****************************************************************************/ 381/*****************************************************************************/
151 382
383static void (*syserr_cb)(const char *msg);
384
385void
386ev_set_syserr_cb (void (*cb)(const char *msg))
387{
388 syserr_cb = cb;
389}
390
391static void noinline
392syserr (const char *msg)
393{
394 if (!msg)
395 msg = "(libev) system error";
396
397 if (syserr_cb)
398 syserr_cb (msg);
399 else
400 {
401 perror (msg);
402 abort ();
403 }
404}
405
406static void *
407ev_realloc_emul (void *ptr, long size)
408{
409 /* some systems, notably openbsd and darwin, fail to properly
410 * implement realloc (x, 0) (as required by both ansi c-98 and
411 * the single unix specification, so work around them here.
412 */
413
414 if (size)
415 return realloc (ptr, size);
416
417 free (ptr);
418 return 0;
419}
420
421static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
422
423void
424ev_set_allocator (void *(*cb)(void *ptr, long size))
425{
426 alloc = cb;
427}
428
429inline_speed void *
430ev_realloc (void *ptr, long size)
431{
432 ptr = alloc (ptr, size);
433
434 if (!ptr && size)
435 {
436 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
437 abort ();
438 }
439
440 return ptr;
441}
442
443#define ev_malloc(size) ev_realloc (0, (size))
444#define ev_free(ptr) ev_realloc ((ptr), 0)
445
446/*****************************************************************************/
447
152typedef struct 448typedef struct
153{ 449{
154 struct ev_watcher_list *head; 450 WL head;
155 unsigned char events; 451 unsigned char events;
156 unsigned char reify; 452 unsigned char reify;
453#if EV_SELECT_IS_WINSOCKET
454 SOCKET handle;
455#endif
157} ANFD; 456} ANFD;
158 457
159typedef struct 458typedef struct
160{ 459{
161 W w; 460 W w;
162 int events; 461 int events;
163} ANPENDING; 462} ANPENDING;
164 463
464#if EV_USE_INOTIFY
465/* hash table entry per inotify-id */
466typedef struct
467{
468 WL head;
469} ANFS;
470#endif
471
472/* Heap Entry */
473#if EV_HEAP_CACHE_AT
474 typedef struct {
475 ev_tstamp at;
476 WT w;
477 } ANHE;
478
479 #define ANHE_w(he) (he).w /* access watcher, read-write */
480 #define ANHE_at(he) (he).at /* access cached at, read-only */
481 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
482#else
483 typedef WT ANHE;
484
485 #define ANHE_w(he) (he)
486 #define ANHE_at(he) (he)->at
487 #define ANHE_at_cache(he)
488#endif
489
165#if EV_MULTIPLICITY 490#if EV_MULTIPLICITY
166 491
167struct ev_loop 492 struct ev_loop
168{ 493 {
494 ev_tstamp ev_rt_now;
495 #define ev_rt_now ((loop)->ev_rt_now)
169# define VAR(name,decl) decl; 496 #define VAR(name,decl) decl;
170# include "ev_vars.h" 497 #include "ev_vars.h"
171};
172# undef VAR 498 #undef VAR
499 };
173# include "ev_wrap.h" 500 #include "ev_wrap.h"
501
502 static struct ev_loop default_loop_struct;
503 struct ev_loop *ev_default_loop_ptr;
174 504
175#else 505#else
176 506
507 ev_tstamp ev_rt_now;
177# define VAR(name,decl) static decl; 508 #define VAR(name,decl) static decl;
178# include "ev_vars.h" 509 #include "ev_vars.h"
179# undef VAR 510 #undef VAR
511
512 static int ev_default_loop_ptr;
180 513
181#endif 514#endif
182 515
183/*****************************************************************************/ 516/*****************************************************************************/
184 517
185inline ev_tstamp 518ev_tstamp
186ev_time (void) 519ev_time (void)
187{ 520{
188#if EV_USE_REALTIME 521#if EV_USE_REALTIME
189 struct timespec ts; 522 struct timespec ts;
190 clock_gettime (CLOCK_REALTIME, &ts); 523 clock_gettime (CLOCK_REALTIME, &ts);
194 gettimeofday (&tv, 0); 527 gettimeofday (&tv, 0);
195 return tv.tv_sec + tv.tv_usec * 1e-6; 528 return tv.tv_sec + tv.tv_usec * 1e-6;
196#endif 529#endif
197} 530}
198 531
199inline ev_tstamp 532ev_tstamp inline_size
200get_clock (void) 533get_clock (void)
201{ 534{
202#if EV_USE_MONOTONIC 535#if EV_USE_MONOTONIC
203 if (expect_true (have_monotonic)) 536 if (expect_true (have_monotonic))
204 { 537 {
209#endif 542#endif
210 543
211 return ev_time (); 544 return ev_time ();
212} 545}
213 546
547#if EV_MULTIPLICITY
214ev_tstamp 548ev_tstamp
215ev_now (EV_P) 549ev_now (EV_P)
216{ 550{
217 return rt_now; 551 return ev_rt_now;
218} 552}
553#endif
219 554
220#define array_roundsize(base,n) ((n) | 4 & ~3) 555void
556ev_sleep (ev_tstamp delay)
557{
558 if (delay > 0.)
559 {
560#if EV_USE_NANOSLEEP
561 struct timespec ts;
221 562
563 ts.tv_sec = (time_t)delay;
564 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
565
566 nanosleep (&ts, 0);
567#elif defined(_WIN32)
568 Sleep ((unsigned long)(delay * 1e3));
569#else
570 struct timeval tv;
571
572 tv.tv_sec = (time_t)delay;
573 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
574
575 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
576 /* somehting nto guaranteed by newer posix versions, but guaranteed */
577 /* by older ones */
578 select (0, 0, 0, 0, &tv);
579#endif
580 }
581}
582
583/*****************************************************************************/
584
585#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
586
587int inline_size
588array_nextsize (int elem, int cur, int cnt)
589{
590 int ncur = cur + 1;
591
592 do
593 ncur <<= 1;
594 while (cnt > ncur);
595
596 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
597 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
598 {
599 ncur *= elem;
600 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
601 ncur = ncur - sizeof (void *) * 4;
602 ncur /= elem;
603 }
604
605 return ncur;
606}
607
608static noinline void *
609array_realloc (int elem, void *base, int *cur, int cnt)
610{
611 *cur = array_nextsize (elem, *cur, cnt);
612 return ev_realloc (base, elem * *cur);
613}
614
222#define array_needsize(base,cur,cnt,init) \ 615#define array_needsize(type,base,cur,cnt,init) \
223 if (expect_false ((cnt) > cur)) \ 616 if (expect_false ((cnt) > (cur))) \
224 { \ 617 { \
225 int newcnt = cur; \ 618 int ocur_ = (cur); \
226 do \ 619 (base) = (type *)array_realloc \
227 { \ 620 (sizeof (type), (base), &(cur), (cnt)); \
228 newcnt = array_roundsize (base, newcnt << 1); \ 621 init ((base) + (ocur_), (cur) - ocur_); \
229 } \ 622 }
230 while ((cnt) > newcnt); \ 623
624#if 0
625#define array_slim(type,stem) \
626 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
231 \ 627 { \
232 base = realloc (base, sizeof (*base) * (newcnt)); \ 628 stem ## max = array_roundsize (stem ## cnt >> 1); \
233 init (base + cur, newcnt - cur); \ 629 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
234 cur = newcnt; \ 630 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
235 } 631 }
632#endif
236 633
237#define array_free(stem, idx) \ 634#define array_free(stem, idx) \
238 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 635 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
239 636
240/*****************************************************************************/ 637/*****************************************************************************/
241 638
242static void 639void noinline
640ev_feed_event (EV_P_ void *w, int revents)
641{
642 W w_ = (W)w;
643 int pri = ABSPRI (w_);
644
645 if (expect_false (w_->pending))
646 pendings [pri][w_->pending - 1].events |= revents;
647 else
648 {
649 w_->pending = ++pendingcnt [pri];
650 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
651 pendings [pri][w_->pending - 1].w = w_;
652 pendings [pri][w_->pending - 1].events = revents;
653 }
654}
655
656void inline_speed
657queue_events (EV_P_ W *events, int eventcnt, int type)
658{
659 int i;
660
661 for (i = 0; i < eventcnt; ++i)
662 ev_feed_event (EV_A_ events [i], type);
663}
664
665/*****************************************************************************/
666
667void inline_size
243anfds_init (ANFD *base, int count) 668anfds_init (ANFD *base, int count)
244{ 669{
245 while (count--) 670 while (count--)
246 { 671 {
247 base->head = 0; 672 base->head = 0;
250 675
251 ++base; 676 ++base;
252 } 677 }
253} 678}
254 679
255static void 680void inline_speed
256event (EV_P_ W w, int events)
257{
258 if (w->pending)
259 {
260 pendings [ABSPRI (w)][w->pending - 1].events |= events;
261 return;
262 }
263
264 w->pending = ++pendingcnt [ABSPRI (w)];
265 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
266 pendings [ABSPRI (w)][w->pending - 1].w = w;
267 pendings [ABSPRI (w)][w->pending - 1].events = events;
268}
269
270static void
271queue_events (EV_P_ W *events, int eventcnt, int type)
272{
273 int i;
274
275 for (i = 0; i < eventcnt; ++i)
276 event (EV_A_ events [i], type);
277}
278
279static void
280fd_event (EV_P_ int fd, int events) 681fd_event (EV_P_ int fd, int revents)
281{ 682{
282 ANFD *anfd = anfds + fd; 683 ANFD *anfd = anfds + fd;
283 struct ev_io *w; 684 ev_io *w;
284 685
285 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 686 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
286 { 687 {
287 int ev = w->events & events; 688 int ev = w->events & revents;
288 689
289 if (ev) 690 if (ev)
290 event (EV_A_ (W)w, ev); 691 ev_feed_event (EV_A_ (W)w, ev);
291 } 692 }
292} 693}
293 694
294/*****************************************************************************/ 695void
696ev_feed_fd_event (EV_P_ int fd, int revents)
697{
698 if (fd >= 0 && fd < anfdmax)
699 fd_event (EV_A_ fd, revents);
700}
295 701
296static void 702void inline_size
297fd_reify (EV_P) 703fd_reify (EV_P)
298{ 704{
299 int i; 705 int i;
300 706
301 for (i = 0; i < fdchangecnt; ++i) 707 for (i = 0; i < fdchangecnt; ++i)
302 { 708 {
303 int fd = fdchanges [i]; 709 int fd = fdchanges [i];
304 ANFD *anfd = anfds + fd; 710 ANFD *anfd = anfds + fd;
305 struct ev_io *w; 711 ev_io *w;
306 712
307 int events = 0; 713 unsigned char events = 0;
308 714
309 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 715 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
310 events |= w->events; 716 events |= (unsigned char)w->events;
311 717
718#if EV_SELECT_IS_WINSOCKET
719 if (events)
720 {
721 unsigned long arg;
722 #ifdef EV_FD_TO_WIN32_HANDLE
723 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
724 #else
725 anfd->handle = _get_osfhandle (fd);
726 #endif
727 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
728 }
729#endif
730
731 {
732 unsigned char o_events = anfd->events;
733 unsigned char o_reify = anfd->reify;
734
312 anfd->reify = 0; 735 anfd->reify = 0;
313
314 method_modify (EV_A_ fd, anfd->events, events);
315 anfd->events = events; 736 anfd->events = events;
737
738 if (o_events != events || o_reify & EV_IOFDSET)
739 backend_modify (EV_A_ fd, o_events, events);
740 }
316 } 741 }
317 742
318 fdchangecnt = 0; 743 fdchangecnt = 0;
319} 744}
320 745
321static void 746void inline_size
322fd_change (EV_P_ int fd) 747fd_change (EV_P_ int fd, int flags)
323{ 748{
324 if (anfds [fd].reify || fdchangecnt < 0) 749 unsigned char reify = anfds [fd].reify;
325 return;
326
327 anfds [fd].reify = 1; 750 anfds [fd].reify |= flags;
328 751
752 if (expect_true (!reify))
753 {
329 ++fdchangecnt; 754 ++fdchangecnt;
330 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 755 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
331 fdchanges [fdchangecnt - 1] = fd; 756 fdchanges [fdchangecnt - 1] = fd;
757 }
332} 758}
333 759
334static void 760void inline_speed
335fd_kill (EV_P_ int fd) 761fd_kill (EV_P_ int fd)
336{ 762{
337 struct ev_io *w; 763 ev_io *w;
338 764
339 while ((w = (struct ev_io *)anfds [fd].head)) 765 while ((w = (ev_io *)anfds [fd].head))
340 { 766 {
341 ev_io_stop (EV_A_ w); 767 ev_io_stop (EV_A_ w);
342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 768 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
343 } 769 }
770}
771
772int inline_size
773fd_valid (int fd)
774{
775#ifdef _WIN32
776 return _get_osfhandle (fd) != -1;
777#else
778 return fcntl (fd, F_GETFD) != -1;
779#endif
344} 780}
345 781
346/* called on EBADF to verify fds */ 782/* called on EBADF to verify fds */
347static void 783static void noinline
348fd_ebadf (EV_P) 784fd_ebadf (EV_P)
349{ 785{
350 int fd; 786 int fd;
351 787
352 for (fd = 0; fd < anfdmax; ++fd) 788 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events) 789 if (anfds [fd].events)
354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 790 if (!fd_valid (fd) && errno == EBADF)
355 fd_kill (EV_A_ fd); 791 fd_kill (EV_A_ fd);
356} 792}
357 793
358/* called on ENOMEM in select/poll to kill some fds and retry */ 794/* called on ENOMEM in select/poll to kill some fds and retry */
359static void 795static void noinline
360fd_enomem (EV_P) 796fd_enomem (EV_P)
361{ 797{
362 int fd; 798 int fd;
363 799
364 for (fd = anfdmax; fd--; ) 800 for (fd = anfdmax; fd--; )
365 if (anfds [fd].events) 801 if (anfds [fd].events)
366 { 802 {
367 close (fd);
368 fd_kill (EV_A_ fd); 803 fd_kill (EV_A_ fd);
369 return; 804 return;
370 } 805 }
371} 806}
372 807
373/* susually called after fork if method needs to re-arm all fds from scratch */ 808/* usually called after fork if backend needs to re-arm all fds from scratch */
374static void 809static void noinline
375fd_rearm_all (EV_P) 810fd_rearm_all (EV_P)
376{ 811{
377 int fd; 812 int fd;
378 813
379 /* this should be highly optimised to not do anything but set a flag */
380 for (fd = 0; fd < anfdmax; ++fd) 814 for (fd = 0; fd < anfdmax; ++fd)
381 if (anfds [fd].events) 815 if (anfds [fd].events)
382 { 816 {
383 anfds [fd].events = 0; 817 anfds [fd].events = 0;
384 fd_change (EV_A_ fd); 818 fd_change (EV_A_ fd, EV_IOFDSET | 1);
385 } 819 }
386} 820}
387 821
388/*****************************************************************************/ 822/*****************************************************************************/
389 823
390static void 824/*
391upheap (WT *heap, int k) 825 * the heap functions want a real array index. array index 0 uis guaranteed to not
392{ 826 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
393 WT w = heap [k]; 827 * the branching factor of the d-tree.
828 */
394 829
395 while (k && heap [k >> 1]->at > w->at) 830/*
396 { 831 * at the moment we allow libev the luxury of two heaps,
397 heap [k] = heap [k >> 1]; 832 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
398 ((W)heap [k])->active = k + 1; 833 * which is more cache-efficient.
399 k >>= 1; 834 * the difference is about 5% with 50000+ watchers.
400 } 835 */
836#if EV_USE_4HEAP
401 837
402 heap [k] = w; 838#define DHEAP 4
403 ((W)heap [k])->active = k + 1; 839#define HEAP0 (DHEAP - 1) /* index of first element in heap */
840#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
841#define UPHEAP_DONE(p,k) ((p) == (k))
404 842
405} 843/* away from the root */
406 844void inline_speed
407static void
408downheap (WT *heap, int N, int k) 845downheap (ANHE *heap, int N, int k)
409{ 846{
410 WT w = heap [k]; 847 ANHE he = heap [k];
848 ANHE *E = heap + N + HEAP0;
411 849
412 while (k < (N >> 1)) 850 for (;;)
413 { 851 {
414 int j = k << 1; 852 ev_tstamp minat;
853 ANHE *minpos;
854 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
415 855
416 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 856 /* find minimum child */
857 if (expect_true (pos + DHEAP - 1 < E))
417 ++j; 858 {
418 859 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
419 if (w->at <= heap [j]->at) 860 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
861 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
862 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
863 }
864 else if (pos < E)
865 {
866 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
867 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
868 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
869 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
870 }
871 else
420 break; 872 break;
421 873
874 if (ANHE_at (he) <= minat)
875 break;
876
877 heap [k] = *minpos;
878 ev_active (ANHE_w (*minpos)) = k;
879
880 k = minpos - heap;
881 }
882
883 heap [k] = he;
884 ev_active (ANHE_w (he)) = k;
885}
886
887#else /* 4HEAP */
888
889#define HEAP0 1
890#define HPARENT(k) ((k) >> 1)
891#define UPHEAP_DONE(p,k) (!(p))
892
893/* away from the root */
894void inline_speed
895downheap (ANHE *heap, int N, int k)
896{
897 ANHE he = heap [k];
898
899 for (;;)
900 {
901 int c = k << 1;
902
903 if (c > N + HEAP0 - 1)
904 break;
905
906 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
907 ? 1 : 0;
908
909 if (ANHE_at (he) <= ANHE_at (heap [c]))
910 break;
911
422 heap [k] = heap [j]; 912 heap [k] = heap [c];
423 ((W)heap [k])->active = k + 1; 913 ev_active (ANHE_w (heap [k])) = k;
914
424 k = j; 915 k = c;
425 } 916 }
426 917
427 heap [k] = w; 918 heap [k] = he;
428 ((W)heap [k])->active = k + 1; 919 ev_active (ANHE_w (he)) = k;
920}
921#endif
922
923/* towards the root */
924void inline_speed
925upheap (ANHE *heap, int k)
926{
927 ANHE he = heap [k];
928
929 for (;;)
930 {
931 int p = HPARENT (k);
932
933 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
934 break;
935
936 heap [k] = heap [p];
937 ev_active (ANHE_w (heap [k])) = k;
938 k = p;
939 }
940
941 heap [k] = he;
942 ev_active (ANHE_w (he)) = k;
943}
944
945void inline_size
946adjustheap (ANHE *heap, int N, int k)
947{
948 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
949 upheap (heap, k);
950 else
951 downheap (heap, N, k);
952}
953
954/* rebuild the heap: this function is used only once and executed rarely */
955void inline_size
956reheap (ANHE *heap, int N)
957{
958 int i;
959
960 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
961 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
962 for (i = 0; i < N; ++i)
963 upheap (heap, i + HEAP0);
429} 964}
430 965
431/*****************************************************************************/ 966/*****************************************************************************/
432 967
433typedef struct 968typedef struct
434{ 969{
435 struct ev_watcher_list *head; 970 WL head;
436 sig_atomic_t volatile gotsig; 971 EV_ATOMIC_T gotsig;
437} ANSIG; 972} ANSIG;
438 973
439static ANSIG *signals; 974static ANSIG *signals;
440static int signalmax; 975static int signalmax;
441 976
442static int sigpipe [2]; 977static EV_ATOMIC_T gotsig;
443static sig_atomic_t volatile gotsig;
444static struct ev_io sigev;
445 978
446static void 979void inline_size
447signals_init (ANSIG *base, int count) 980signals_init (ANSIG *base, int count)
448{ 981{
449 while (count--) 982 while (count--)
450 { 983 {
451 base->head = 0; 984 base->head = 0;
453 986
454 ++base; 987 ++base;
455 } 988 }
456} 989}
457 990
991/*****************************************************************************/
992
993void inline_speed
994fd_intern (int fd)
995{
996#ifdef _WIN32
997 unsigned long arg = 1;
998 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
999#else
1000 fcntl (fd, F_SETFD, FD_CLOEXEC);
1001 fcntl (fd, F_SETFL, O_NONBLOCK);
1002#endif
1003}
1004
1005static void noinline
1006evpipe_init (EV_P)
1007{
1008 if (!ev_is_active (&pipeev))
1009 {
1010#if EV_USE_EVENTFD
1011 if ((evfd = eventfd (0, 0)) >= 0)
1012 {
1013 evpipe [0] = -1;
1014 fd_intern (evfd);
1015 ev_io_set (&pipeev, evfd, EV_READ);
1016 }
1017 else
1018#endif
1019 {
1020 while (pipe (evpipe))
1021 syserr ("(libev) error creating signal/async pipe");
1022
1023 fd_intern (evpipe [0]);
1024 fd_intern (evpipe [1]);
1025 ev_io_set (&pipeev, evpipe [0], EV_READ);
1026 }
1027
1028 ev_io_start (EV_A_ &pipeev);
1029 ev_unref (EV_A); /* watcher should not keep loop alive */
1030 }
1031}
1032
1033void inline_size
1034evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1035{
1036 if (!*flag)
1037 {
1038 int old_errno = errno; /* save errno because write might clobber it */
1039
1040 *flag = 1;
1041
1042#if EV_USE_EVENTFD
1043 if (evfd >= 0)
1044 {
1045 uint64_t counter = 1;
1046 write (evfd, &counter, sizeof (uint64_t));
1047 }
1048 else
1049#endif
1050 write (evpipe [1], &old_errno, 1);
1051
1052 errno = old_errno;
1053 }
1054}
1055
458static void 1056static void
1057pipecb (EV_P_ ev_io *iow, int revents)
1058{
1059#if EV_USE_EVENTFD
1060 if (evfd >= 0)
1061 {
1062 uint64_t counter;
1063 read (evfd, &counter, sizeof (uint64_t));
1064 }
1065 else
1066#endif
1067 {
1068 char dummy;
1069 read (evpipe [0], &dummy, 1);
1070 }
1071
1072 if (gotsig && ev_is_default_loop (EV_A))
1073 {
1074 int signum;
1075 gotsig = 0;
1076
1077 for (signum = signalmax; signum--; )
1078 if (signals [signum].gotsig)
1079 ev_feed_signal_event (EV_A_ signum + 1);
1080 }
1081
1082#if EV_ASYNC_ENABLE
1083 if (gotasync)
1084 {
1085 int i;
1086 gotasync = 0;
1087
1088 for (i = asynccnt; i--; )
1089 if (asyncs [i]->sent)
1090 {
1091 asyncs [i]->sent = 0;
1092 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1093 }
1094 }
1095#endif
1096}
1097
1098/*****************************************************************************/
1099
1100static void
459sighandler (int signum) 1101ev_sighandler (int signum)
460{ 1102{
1103#if EV_MULTIPLICITY
1104 struct ev_loop *loop = &default_loop_struct;
1105#endif
1106
1107#if _WIN32
1108 signal (signum, ev_sighandler);
1109#endif
1110
461 signals [signum - 1].gotsig = 1; 1111 signals [signum - 1].gotsig = 1;
462 1112 evpipe_write (EV_A_ &gotsig);
463 if (!gotsig)
464 {
465 int old_errno = errno;
466 gotsig = 1;
467 write (sigpipe [1], &signum, 1);
468 errno = old_errno;
469 }
470} 1113}
471 1114
472static void 1115void noinline
473sigcb (EV_P_ struct ev_io *iow, int revents) 1116ev_feed_signal_event (EV_P_ int signum)
474{ 1117{
475 struct ev_watcher_list *w; 1118 WL w;
1119
1120#if EV_MULTIPLICITY
1121 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1122#endif
1123
476 int signum; 1124 --signum;
477 1125
478 read (sigpipe [0], &revents, 1); 1126 if (signum < 0 || signum >= signalmax)
479 gotsig = 0; 1127 return;
480 1128
481 for (signum = signalmax; signum--; )
482 if (signals [signum].gotsig)
483 {
484 signals [signum].gotsig = 0; 1129 signals [signum].gotsig = 0;
485 1130
486 for (w = signals [signum].head; w; w = w->next) 1131 for (w = signals [signum].head; w; w = w->next)
487 event (EV_A_ (W)w, EV_SIGNAL); 1132 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
488 }
489}
490
491static void
492siginit (EV_P)
493{
494#ifndef WIN32
495 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
496 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
497
498 /* rather than sort out wether we really need nb, set it */
499 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
500 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
501#endif
502
503 ev_io_set (&sigev, sigpipe [0], EV_READ);
504 ev_io_start (EV_A_ &sigev);
505 ev_unref (EV_A); /* child watcher should not keep loop alive */
506} 1133}
507 1134
508/*****************************************************************************/ 1135/*****************************************************************************/
509 1136
1137static WL childs [EV_PID_HASHSIZE];
1138
510#ifndef WIN32 1139#ifndef _WIN32
511 1140
512static struct ev_child *childs [PID_HASHSIZE];
513static struct ev_signal childev; 1141static ev_signal childev;
1142
1143#ifndef WIFCONTINUED
1144# define WIFCONTINUED(status) 0
1145#endif
1146
1147void inline_speed
1148child_reap (EV_P_ int chain, int pid, int status)
1149{
1150 ev_child *w;
1151 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1152
1153 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1154 {
1155 if ((w->pid == pid || !w->pid)
1156 && (!traced || (w->flags & 1)))
1157 {
1158 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1159 w->rpid = pid;
1160 w->rstatus = status;
1161 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1162 }
1163 }
1164}
514 1165
515#ifndef WCONTINUED 1166#ifndef WCONTINUED
516# define WCONTINUED 0 1167# define WCONTINUED 0
517#endif 1168#endif
518 1169
519static void 1170static void
520child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
521{
522 struct ev_child *w;
523
524 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
525 if (w->pid == pid || !w->pid)
526 {
527 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
528 w->rpid = pid;
529 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD);
531 }
532}
533
534static void
535childcb (EV_P_ struct ev_signal *sw, int revents) 1171childcb (EV_P_ ev_signal *sw, int revents)
536{ 1172{
537 int pid, status; 1173 int pid, status;
538 1174
1175 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1176 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
540 { 1177 if (!WCONTINUED
1178 || errno != EINVAL
1179 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1180 return;
1181
541 /* make sure we are called again until all childs have been reaped */ 1182 /* make sure we are called again until all children have been reaped */
1183 /* we need to do it this way so that the callback gets called before we continue */
542 event (EV_A_ (W)sw, EV_SIGNAL); 1184 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
543 1185
544 child_reap (EV_A_ sw, pid, pid, status); 1186 child_reap (EV_A_ pid, pid, status);
1187 if (EV_PID_HASHSIZE > 1)
545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1188 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
546 }
547} 1189}
548 1190
549#endif 1191#endif
550 1192
551/*****************************************************************************/ 1193/*****************************************************************************/
552 1194
1195#if EV_USE_PORT
1196# include "ev_port.c"
1197#endif
553#if EV_USE_KQUEUE 1198#if EV_USE_KQUEUE
554# include "ev_kqueue.c" 1199# include "ev_kqueue.c"
555#endif 1200#endif
556#if EV_USE_EPOLL 1201#if EV_USE_EPOLL
557# include "ev_epoll.c" 1202# include "ev_epoll.c"
574{ 1219{
575 return EV_VERSION_MINOR; 1220 return EV_VERSION_MINOR;
576} 1221}
577 1222
578/* return true if we are running with elevated privileges and should ignore env variables */ 1223/* return true if we are running with elevated privileges and should ignore env variables */
579static int 1224int inline_size
580enable_secure (void) 1225enable_secure (void)
581{ 1226{
582#ifdef WIN32 1227#ifdef _WIN32
583 return 0; 1228 return 0;
584#else 1229#else
585 return getuid () != geteuid () 1230 return getuid () != geteuid ()
586 || getgid () != getegid (); 1231 || getgid () != getegid ();
587#endif 1232#endif
588} 1233}
589 1234
590int 1235unsigned int
591ev_method (EV_P) 1236ev_supported_backends (void)
592{ 1237{
593 return method; 1238 unsigned int flags = 0;
594}
595 1239
596static void 1240 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
597loop_init (EV_P_ int methods) 1241 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1242 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1243 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1244 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1245
1246 return flags;
1247}
1248
1249unsigned int
1250ev_recommended_backends (void)
598{ 1251{
599 if (!method) 1252 unsigned int flags = ev_supported_backends ();
1253
1254#ifndef __NetBSD__
1255 /* kqueue is borked on everything but netbsd apparently */
1256 /* it usually doesn't work correctly on anything but sockets and pipes */
1257 flags &= ~EVBACKEND_KQUEUE;
1258#endif
1259#ifdef __APPLE__
1260 // flags &= ~EVBACKEND_KQUEUE; for documentation
1261 flags &= ~EVBACKEND_POLL;
1262#endif
1263
1264 return flags;
1265}
1266
1267unsigned int
1268ev_embeddable_backends (void)
1269{
1270 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1271
1272 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1273 /* please fix it and tell me how to detect the fix */
1274 flags &= ~EVBACKEND_EPOLL;
1275
1276 return flags;
1277}
1278
1279unsigned int
1280ev_backend (EV_P)
1281{
1282 return backend;
1283}
1284
1285unsigned int
1286ev_loop_count (EV_P)
1287{
1288 return loop_count;
1289}
1290
1291void
1292ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1293{
1294 io_blocktime = interval;
1295}
1296
1297void
1298ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1299{
1300 timeout_blocktime = interval;
1301}
1302
1303static void noinline
1304loop_init (EV_P_ unsigned int flags)
1305{
1306 if (!backend)
600 { 1307 {
601#if EV_USE_MONOTONIC 1308#if EV_USE_MONOTONIC
602 { 1309 {
603 struct timespec ts; 1310 struct timespec ts;
604 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1311 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
605 have_monotonic = 1; 1312 have_monotonic = 1;
606 } 1313 }
607#endif 1314#endif
608 1315
609 rt_now = ev_time (); 1316 ev_rt_now = ev_time ();
610 mn_now = get_clock (); 1317 mn_now = get_clock ();
611 now_floor = mn_now; 1318 now_floor = mn_now;
612 rtmn_diff = rt_now - mn_now; 1319 rtmn_diff = ev_rt_now - mn_now;
613 1320
614 if (methods == EVMETHOD_AUTO) 1321 io_blocktime = 0.;
615 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1322 timeout_blocktime = 0.;
1323 backend = 0;
1324 backend_fd = -1;
1325 gotasync = 0;
1326#if EV_USE_INOTIFY
1327 fs_fd = -2;
1328#endif
1329
1330 /* pid check not overridable via env */
1331#ifndef _WIN32
1332 if (flags & EVFLAG_FORKCHECK)
1333 curpid = getpid ();
1334#endif
1335
1336 if (!(flags & EVFLAG_NOENV)
1337 && !enable_secure ()
1338 && getenv ("LIBEV_FLAGS"))
616 methods = atoi (getenv ("LIBEV_METHODS")); 1339 flags = atoi (getenv ("LIBEV_FLAGS"));
617 else
618 methods = EVMETHOD_ANY;
619 1340
620 method = 0; 1341 if (!(flags & 0x0000ffffU))
621#if EV_USE_WIN32 1342 flags |= ev_recommended_backends ();
622 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 1343
1344#if EV_USE_PORT
1345 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
623#endif 1346#endif
624#if EV_USE_KQUEUE 1347#if EV_USE_KQUEUE
625 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1348 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
626#endif 1349#endif
627#if EV_USE_EPOLL 1350#if EV_USE_EPOLL
628 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1351 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
629#endif 1352#endif
630#if EV_USE_POLL 1353#if EV_USE_POLL
631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1354 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
632#endif 1355#endif
633#if EV_USE_SELECT 1356#if EV_USE_SELECT
634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1357 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
635#endif 1358#endif
636 }
637}
638 1359
639void 1360 ev_init (&pipeev, pipecb);
1361 ev_set_priority (&pipeev, EV_MAXPRI);
1362 }
1363}
1364
1365static void noinline
640loop_destroy (EV_P) 1366loop_destroy (EV_P)
641{ 1367{
642 int i; 1368 int i;
643 1369
1370 if (ev_is_active (&pipeev))
1371 {
1372 ev_ref (EV_A); /* signal watcher */
1373 ev_io_stop (EV_A_ &pipeev);
1374
1375#if EV_USE_EVENTFD
1376 if (evfd >= 0)
1377 close (evfd);
1378#endif
1379
1380 if (evpipe [0] >= 0)
1381 {
1382 close (evpipe [0]);
1383 close (evpipe [1]);
1384 }
1385 }
1386
644#if EV_USE_WIN32 1387#if EV_USE_INOTIFY
645 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 1388 if (fs_fd >= 0)
1389 close (fs_fd);
1390#endif
1391
1392 if (backend_fd >= 0)
1393 close (backend_fd);
1394
1395#if EV_USE_PORT
1396 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
646#endif 1397#endif
647#if EV_USE_KQUEUE 1398#if EV_USE_KQUEUE
648 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1399 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
649#endif 1400#endif
650#if EV_USE_EPOLL 1401#if EV_USE_EPOLL
651 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1402 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
652#endif 1403#endif
653#if EV_USE_POLL 1404#if EV_USE_POLL
654 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1405 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
655#endif 1406#endif
656#if EV_USE_SELECT 1407#if EV_USE_SELECT
657 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1408 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
658#endif 1409#endif
659 1410
660 for (i = NUMPRI; i--; ) 1411 for (i = NUMPRI; i--; )
1412 {
661 array_free (pending, [i]); 1413 array_free (pending, [i]);
1414#if EV_IDLE_ENABLE
1415 array_free (idle, [i]);
1416#endif
1417 }
662 1418
1419 ev_free (anfds); anfdmax = 0;
1420
1421 /* have to use the microsoft-never-gets-it-right macro */
663 array_free (fdchange, ); 1422 array_free (fdchange, EMPTY);
664 array_free (timer, ); 1423 array_free (timer, EMPTY);
1424#if EV_PERIODIC_ENABLE
665 array_free (periodic, ); 1425 array_free (periodic, EMPTY);
666 array_free (idle, ); 1426#endif
1427#if EV_FORK_ENABLE
1428 array_free (fork, EMPTY);
1429#endif
667 array_free (prepare, ); 1430 array_free (prepare, EMPTY);
668 array_free (check, ); 1431 array_free (check, EMPTY);
1432#if EV_ASYNC_ENABLE
1433 array_free (async, EMPTY);
1434#endif
669 1435
670 method = 0; 1436 backend = 0;
671 /*TODO*/
672} 1437}
673 1438
674void 1439#if EV_USE_INOTIFY
1440void inline_size infy_fork (EV_P);
1441#endif
1442
1443void inline_size
675loop_fork (EV_P) 1444loop_fork (EV_P)
676{ 1445{
677 /*TODO*/ 1446#if EV_USE_PORT
1447 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1448#endif
1449#if EV_USE_KQUEUE
1450 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1451#endif
678#if EV_USE_EPOLL 1452#if EV_USE_EPOLL
679 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1453 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1454#endif
1455#if EV_USE_INOTIFY
1456 infy_fork (EV_A);
1457#endif
1458
1459 if (ev_is_active (&pipeev))
1460 {
1461 /* this "locks" the handlers against writing to the pipe */
1462 /* while we modify the fd vars */
1463 gotsig = 1;
1464#if EV_ASYNC_ENABLE
1465 gotasync = 1;
1466#endif
1467
1468 ev_ref (EV_A);
1469 ev_io_stop (EV_A_ &pipeev);
1470
1471#if EV_USE_EVENTFD
1472 if (evfd >= 0)
1473 close (evfd);
1474#endif
1475
1476 if (evpipe [0] >= 0)
1477 {
1478 close (evpipe [0]);
1479 close (evpipe [1]);
1480 }
1481
1482 evpipe_init (EV_A);
1483 /* now iterate over everything, in case we missed something */
1484 pipecb (EV_A_ &pipeev, EV_READ);
1485 }
1486
1487 postfork = 0;
1488}
1489
1490#if EV_MULTIPLICITY
1491
1492struct ev_loop *
1493ev_loop_new (unsigned int flags)
1494{
1495 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1496
1497 memset (loop, 0, sizeof (struct ev_loop));
1498
1499 loop_init (EV_A_ flags);
1500
1501 if (ev_backend (EV_A))
1502 return loop;
1503
1504 return 0;
1505}
1506
1507void
1508ev_loop_destroy (EV_P)
1509{
1510 loop_destroy (EV_A);
1511 ev_free (loop);
1512}
1513
1514void
1515ev_loop_fork (EV_P)
1516{
1517 postfork = 1; /* must be in line with ev_default_fork */
1518}
1519
1520#if EV_VERIFY
1521static void noinline
1522verify_watcher (EV_P_ W w)
1523{
1524 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1525
1526 if (w->pending)
1527 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1528}
1529
1530static void noinline
1531verify_heap (EV_P_ ANHE *heap, int N)
1532{
1533 int i;
1534
1535 for (i = HEAP0; i < N + HEAP0; ++i)
1536 {
1537 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1538 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1539 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1540
1541 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1542 }
1543}
1544
1545static void noinline
1546array_verify (EV_P_ W *ws, int cnt)
1547{
1548 while (cnt--)
1549 {
1550 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1551 verify_watcher (EV_A_ ws [cnt]);
1552 }
1553}
1554#endif
1555
1556void
1557ev_loop_verify (EV_P)
1558{
1559#if EV_VERIFY
1560 int i;
1561 WL w;
1562
1563 assert (activecnt >= -1);
1564
1565 assert (fdchangemax >= fdchangecnt);
1566 for (i = 0; i < fdchangecnt; ++i)
1567 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1568
1569 assert (anfdmax >= 0);
1570 for (i = 0; i < anfdmax; ++i)
1571 for (w = anfds [i].head; w; w = w->next)
1572 {
1573 verify_watcher (EV_A_ (W)w);
1574 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1575 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1576 }
1577
1578 assert (timermax >= timercnt);
1579 verify_heap (EV_A_ timers, timercnt);
1580
1581#if EV_PERIODIC_ENABLE
1582 assert (periodicmax >= periodiccnt);
1583 verify_heap (EV_A_ periodics, periodiccnt);
1584#endif
1585
1586 for (i = NUMPRI; i--; )
1587 {
1588 assert (pendingmax [i] >= pendingcnt [i]);
1589#if EV_IDLE_ENABLE
1590 assert (idleall >= 0);
1591 assert (idlemax [i] >= idlecnt [i]);
1592 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1593#endif
1594 }
1595
1596#if EV_FORK_ENABLE
1597 assert (forkmax >= forkcnt);
1598 array_verify (EV_A_ (W *)forks, forkcnt);
1599#endif
1600
1601#if EV_ASYNC_ENABLE
1602 assert (asyncmax >= asynccnt);
1603 array_verify (EV_A_ (W *)asyncs, asynccnt);
1604#endif
1605
1606 assert (preparemax >= preparecnt);
1607 array_verify (EV_A_ (W *)prepares, preparecnt);
1608
1609 assert (checkmax >= checkcnt);
1610 array_verify (EV_A_ (W *)checks, checkcnt);
1611
1612# if 0
1613 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1614 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
680#endif 1615# endif
681#if EV_USE_KQUEUE
682 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
683#endif 1616#endif
684} 1617}
1618
1619#endif /* multiplicity */
685 1620
686#if EV_MULTIPLICITY 1621#if EV_MULTIPLICITY
687struct ev_loop * 1622struct ev_loop *
688ev_loop_new (int methods) 1623ev_default_loop_init (unsigned int flags)
689{ 1624#else
690 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 1625int
691 1626ev_default_loop (unsigned int flags)
692 loop_init (EV_A_ methods);
693
694 if (ev_method (EV_A))
695 return loop;
696
697 return 0;
698}
699
700void
701ev_loop_destroy (EV_P)
702{
703 loop_destroy (EV_A);
704 free (loop);
705}
706
707void
708ev_loop_fork (EV_P)
709{
710 loop_fork (EV_A);
711}
712
713#endif 1627#endif
714 1628{
1629 if (!ev_default_loop_ptr)
1630 {
715#if EV_MULTIPLICITY 1631#if EV_MULTIPLICITY
716struct ev_loop default_loop_struct; 1632 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
717static struct ev_loop *default_loop;
718
719struct ev_loop *
720#else 1633#else
721static int default_loop;
722
723int
724#endif
725ev_default_loop (int methods)
726{
727 if (sigpipe [0] == sigpipe [1])
728 if (pipe (sigpipe))
729 return 0;
730
731 if (!default_loop)
732 {
733#if EV_MULTIPLICITY
734 struct ev_loop *loop = default_loop = &default_loop_struct;
735#else
736 default_loop = 1; 1634 ev_default_loop_ptr = 1;
737#endif 1635#endif
738 1636
739 loop_init (EV_A_ methods); 1637 loop_init (EV_A_ flags);
740 1638
741 if (ev_method (EV_A)) 1639 if (ev_backend (EV_A))
742 { 1640 {
743 ev_watcher_init (&sigev, sigcb);
744 ev_set_priority (&sigev, EV_MAXPRI);
745 siginit (EV_A);
746
747#ifndef WIN32 1641#ifndef _WIN32
748 ev_signal_init (&childev, childcb, SIGCHLD); 1642 ev_signal_init (&childev, childcb, SIGCHLD);
749 ev_set_priority (&childev, EV_MAXPRI); 1643 ev_set_priority (&childev, EV_MAXPRI);
750 ev_signal_start (EV_A_ &childev); 1644 ev_signal_start (EV_A_ &childev);
751 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1645 ev_unref (EV_A); /* child watcher should not keep loop alive */
752#endif 1646#endif
753 } 1647 }
754 else 1648 else
755 default_loop = 0; 1649 ev_default_loop_ptr = 0;
756 } 1650 }
757 1651
758 return default_loop; 1652 return ev_default_loop_ptr;
759} 1653}
760 1654
761void 1655void
762ev_default_destroy (void) 1656ev_default_destroy (void)
763{ 1657{
764#if EV_MULTIPLICITY 1658#if EV_MULTIPLICITY
765 struct ev_loop *loop = default_loop; 1659 struct ev_loop *loop = ev_default_loop_ptr;
766#endif 1660#endif
767 1661
1662#ifndef _WIN32
768 ev_ref (EV_A); /* child watcher */ 1663 ev_ref (EV_A); /* child watcher */
769 ev_signal_stop (EV_A_ &childev); 1664 ev_signal_stop (EV_A_ &childev);
770 1665#endif
771 ev_ref (EV_A); /* signal watcher */
772 ev_io_stop (EV_A_ &sigev);
773
774 close (sigpipe [0]); sigpipe [0] = 0;
775 close (sigpipe [1]); sigpipe [1] = 0;
776 1666
777 loop_destroy (EV_A); 1667 loop_destroy (EV_A);
778} 1668}
779 1669
780void 1670void
781ev_default_fork (void) 1671ev_default_fork (void)
782{ 1672{
783#if EV_MULTIPLICITY 1673#if EV_MULTIPLICITY
784 struct ev_loop *loop = default_loop; 1674 struct ev_loop *loop = ev_default_loop_ptr;
785#endif 1675#endif
786 1676
787 loop_fork (EV_A); 1677 if (backend)
788 1678 postfork = 1; /* must be in line with ev_loop_fork */
789 ev_io_stop (EV_A_ &sigev);
790 close (sigpipe [0]);
791 close (sigpipe [1]);
792 pipe (sigpipe);
793
794 ev_ref (EV_A); /* signal watcher */
795 siginit (EV_A);
796} 1679}
797 1680
798/*****************************************************************************/ 1681/*****************************************************************************/
799 1682
800static void 1683void
1684ev_invoke (EV_P_ void *w, int revents)
1685{
1686 EV_CB_INVOKE ((W)w, revents);
1687}
1688
1689void inline_speed
801call_pending (EV_P) 1690call_pending (EV_P)
802{ 1691{
803 int pri; 1692 int pri;
804 1693
805 for (pri = NUMPRI; pri--; ) 1694 for (pri = NUMPRI; pri--; )
806 while (pendingcnt [pri]) 1695 while (pendingcnt [pri])
807 { 1696 {
808 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1697 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
809 1698
810 if (p->w) 1699 if (expect_true (p->w))
811 { 1700 {
1701 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1702
812 p->w->pending = 0; 1703 p->w->pending = 0;
813 1704 EV_CB_INVOKE (p->w, p->events);
814 ((void (*)(EV_P_ W, int))p->w->cb) (EV_A_ p->w, p->events); 1705 EV_FREQUENT_CHECK;
815 } 1706 }
816 } 1707 }
817} 1708}
818 1709
819static void 1710#if EV_IDLE_ENABLE
1711void inline_size
1712idle_reify (EV_P)
1713{
1714 if (expect_false (idleall))
1715 {
1716 int pri;
1717
1718 for (pri = NUMPRI; pri--; )
1719 {
1720 if (pendingcnt [pri])
1721 break;
1722
1723 if (idlecnt [pri])
1724 {
1725 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1726 break;
1727 }
1728 }
1729 }
1730}
1731#endif
1732
1733void inline_size
820timers_reify (EV_P) 1734timers_reify (EV_P)
821{ 1735{
1736 EV_FREQUENT_CHECK;
1737
822 while (timercnt && ((WT)timers [0])->at <= mn_now) 1738 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
823 { 1739 {
824 struct ev_timer *w = timers [0]; 1740 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
825 1741
826 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1742 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
827 1743
828 /* first reschedule or stop timer */ 1744 /* first reschedule or stop timer */
829 if (w->repeat) 1745 if (w->repeat)
830 { 1746 {
1747 ev_at (w) += w->repeat;
1748 if (ev_at (w) < mn_now)
1749 ev_at (w) = mn_now;
1750
831 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1751 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
832 ((WT)w)->at = mn_now + w->repeat; 1752
1753 ANHE_at_cache (timers [HEAP0]);
833 downheap ((WT *)timers, timercnt, 0); 1754 downheap (timers, timercnt, HEAP0);
834 } 1755 }
835 else 1756 else
836 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1757 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
837 1758
1759 EV_FREQUENT_CHECK;
838 event (EV_A_ (W)w, EV_TIMEOUT); 1760 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
839 } 1761 }
840} 1762}
841 1763
842static void 1764#if EV_PERIODIC_ENABLE
1765void inline_size
843periodics_reify (EV_P) 1766periodics_reify (EV_P)
844{ 1767{
1768 EV_FREQUENT_CHECK;
1769
845 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1770 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
846 { 1771 {
847 struct ev_periodic *w = periodics [0]; 1772 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
848 1773
849 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1774 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
850 1775
851 /* first reschedule or stop timer */ 1776 /* first reschedule or stop timer */
852 if (w->interval) 1777 if (w->reschedule_cb)
853 { 1778 {
854 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1779 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
855 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1780
1781 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1782
1783 ANHE_at_cache (periodics [HEAP0]);
856 downheap ((WT *)periodics, periodiccnt, 0); 1784 downheap (periodics, periodiccnt, HEAP0);
1785 }
1786 else if (w->interval)
1787 {
1788 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1789 /* if next trigger time is not sufficiently in the future, put it there */
1790 /* this might happen because of floating point inexactness */
1791 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1792 {
1793 ev_at (w) += w->interval;
1794
1795 /* if interval is unreasonably low we might still have a time in the past */
1796 /* so correct this. this will make the periodic very inexact, but the user */
1797 /* has effectively asked to get triggered more often than possible */
1798 if (ev_at (w) < ev_rt_now)
1799 ev_at (w) = ev_rt_now;
1800 }
1801
1802 ANHE_at_cache (periodics [HEAP0]);
1803 downheap (periodics, periodiccnt, HEAP0);
857 } 1804 }
858 else 1805 else
859 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1806 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
860 1807
1808 EV_FREQUENT_CHECK;
861 event (EV_A_ (W)w, EV_PERIODIC); 1809 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
862 } 1810 }
863} 1811}
864 1812
865static void 1813static void noinline
866periodics_reschedule (EV_P) 1814periodics_reschedule (EV_P)
867{ 1815{
868 int i; 1816 int i;
869 1817
870 /* adjust periodics after time jump */ 1818 /* adjust periodics after time jump */
871 for (i = 0; i < periodiccnt; ++i) 1819 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
872 { 1820 {
873 struct ev_periodic *w = periodics [i]; 1821 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
874 1822
1823 if (w->reschedule_cb)
1824 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
875 if (w->interval) 1825 else if (w->interval)
1826 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1827
1828 ANHE_at_cache (periodics [i]);
1829 }
1830
1831 reheap (periodics, periodiccnt);
1832}
1833#endif
1834
1835void inline_speed
1836time_update (EV_P_ ev_tstamp max_block)
1837{
1838 int i;
1839
1840#if EV_USE_MONOTONIC
1841 if (expect_true (have_monotonic))
1842 {
1843 ev_tstamp odiff = rtmn_diff;
1844
1845 mn_now = get_clock ();
1846
1847 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1848 /* interpolate in the meantime */
1849 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
876 { 1850 {
877 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1851 ev_rt_now = rtmn_diff + mn_now;
1852 return;
1853 }
878 1854
879 if (fabs (diff) >= 1e-4) 1855 now_floor = mn_now;
1856 ev_rt_now = ev_time ();
1857
1858 /* loop a few times, before making important decisions.
1859 * on the choice of "4": one iteration isn't enough,
1860 * in case we get preempted during the calls to
1861 * ev_time and get_clock. a second call is almost guaranteed
1862 * to succeed in that case, though. and looping a few more times
1863 * doesn't hurt either as we only do this on time-jumps or
1864 * in the unlikely event of having been preempted here.
1865 */
1866 for (i = 4; --i; )
1867 {
1868 rtmn_diff = ev_rt_now - mn_now;
1869
1870 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1871 return; /* all is well */
1872
1873 ev_rt_now = ev_time ();
1874 mn_now = get_clock ();
1875 now_floor = mn_now;
1876 }
1877
1878# if EV_PERIODIC_ENABLE
1879 periodics_reschedule (EV_A);
1880# endif
1881 /* no timer adjustment, as the monotonic clock doesn't jump */
1882 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1883 }
1884 else
1885#endif
1886 {
1887 ev_rt_now = ev_time ();
1888
1889 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1890 {
1891#if EV_PERIODIC_ENABLE
1892 periodics_reschedule (EV_A);
1893#endif
1894 /* adjust timers. this is easy, as the offset is the same for all of them */
1895 for (i = 0; i < timercnt; ++i)
880 { 1896 {
881 ev_periodic_stop (EV_A_ w); 1897 ANHE *he = timers + i + HEAP0;
882 ev_periodic_start (EV_A_ w); 1898 ANHE_w (*he)->at += ev_rt_now - mn_now;
883 1899 ANHE_at_cache (*he);
884 i = 0; /* restart loop, inefficient, but time jumps should be rare */
885 } 1900 }
886 } 1901 }
887 }
888}
889 1902
890inline int
891time_update_monotonic (EV_P)
892{
893 mn_now = get_clock ();
894
895 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
896 {
897 rt_now = rtmn_diff + mn_now;
898 return 0;
899 }
900 else
901 {
902 now_floor = mn_now;
903 rt_now = ev_time ();
904 return 1;
905 }
906}
907
908static void
909time_update (EV_P)
910{
911 int i;
912
913#if EV_USE_MONOTONIC
914 if (expect_true (have_monotonic))
915 {
916 if (time_update_monotonic (EV_A))
917 {
918 ev_tstamp odiff = rtmn_diff;
919
920 for (i = 4; --i; ) /* loop a few times, before making important decisions */
921 {
922 rtmn_diff = rt_now - mn_now;
923
924 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
925 return; /* all is well */
926
927 rt_now = ev_time ();
928 mn_now = get_clock ();
929 now_floor = mn_now;
930 }
931
932 periodics_reschedule (EV_A);
933 /* no timer adjustment, as the monotonic clock doesn't jump */
934 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
935 }
936 }
937 else
938#endif
939 {
940 rt_now = ev_time ();
941
942 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
943 {
944 periodics_reschedule (EV_A);
945
946 /* adjust timers. this is easy, as the offset is the same for all */
947 for (i = 0; i < timercnt; ++i)
948 ((WT)timers [i])->at += rt_now - mn_now;
949 }
950
951 mn_now = rt_now; 1903 mn_now = ev_rt_now;
952 } 1904 }
953} 1905}
954 1906
955void 1907void
956ev_ref (EV_P) 1908ev_ref (EV_P)
962ev_unref (EV_P) 1914ev_unref (EV_P)
963{ 1915{
964 --activecnt; 1916 --activecnt;
965} 1917}
966 1918
1919void
1920ev_now_update (EV_P)
1921{
1922 time_update (EV_A_ 1e100);
1923}
1924
967static int loop_done; 1925static int loop_done;
968 1926
969void 1927void
970ev_loop (EV_P_ int flags) 1928ev_loop (EV_P_ int flags)
971{ 1929{
972 double block; 1930 loop_done = EVUNLOOP_CANCEL;
973 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1931
1932 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
974 1933
975 do 1934 do
976 { 1935 {
1936#if EV_VERIFY >= 2
1937 ev_loop_verify (EV_A);
1938#endif
1939
1940#ifndef _WIN32
1941 if (expect_false (curpid)) /* penalise the forking check even more */
1942 if (expect_false (getpid () != curpid))
1943 {
1944 curpid = getpid ();
1945 postfork = 1;
1946 }
1947#endif
1948
1949#if EV_FORK_ENABLE
1950 /* we might have forked, so queue fork handlers */
1951 if (expect_false (postfork))
1952 if (forkcnt)
1953 {
1954 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1955 call_pending (EV_A);
1956 }
1957#endif
1958
977 /* queue check watchers (and execute them) */ 1959 /* queue prepare watchers (and execute them) */
978 if (expect_false (preparecnt)) 1960 if (expect_false (preparecnt))
979 { 1961 {
980 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1962 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
981 call_pending (EV_A); 1963 call_pending (EV_A);
982 } 1964 }
983 1965
1966 if (expect_false (!activecnt))
1967 break;
1968
1969 /* we might have forked, so reify kernel state if necessary */
1970 if (expect_false (postfork))
1971 loop_fork (EV_A);
1972
984 /* update fd-related kernel structures */ 1973 /* update fd-related kernel structures */
985 fd_reify (EV_A); 1974 fd_reify (EV_A);
986 1975
987 /* calculate blocking time */ 1976 /* calculate blocking time */
1977 {
1978 ev_tstamp waittime = 0.;
1979 ev_tstamp sleeptime = 0.;
988 1980
989 /* we only need this for !monotonic clockor timers, but as we basically 1981 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
990 always have timers, we just calculate it always */
991#if EV_USE_MONOTONIC
992 if (expect_true (have_monotonic))
993 time_update_monotonic (EV_A);
994 else
995#endif
996 { 1982 {
997 rt_now = ev_time (); 1983 /* update time to cancel out callback processing overhead */
998 mn_now = rt_now; 1984 time_update (EV_A_ 1e100);
999 }
1000 1985
1001 if (flags & EVLOOP_NONBLOCK || idlecnt)
1002 block = 0.;
1003 else
1004 {
1005 block = MAX_BLOCKTIME; 1986 waittime = MAX_BLOCKTIME;
1006 1987
1007 if (timercnt) 1988 if (timercnt)
1008 { 1989 {
1009 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1990 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1010 if (block > to) block = to; 1991 if (waittime > to) waittime = to;
1011 } 1992 }
1012 1993
1994#if EV_PERIODIC_ENABLE
1013 if (periodiccnt) 1995 if (periodiccnt)
1014 { 1996 {
1015 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1997 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1016 if (block > to) block = to; 1998 if (waittime > to) waittime = to;
1017 } 1999 }
2000#endif
1018 2001
1019 if (block < 0.) block = 0.; 2002 if (expect_false (waittime < timeout_blocktime))
2003 waittime = timeout_blocktime;
2004
2005 sleeptime = waittime - backend_fudge;
2006
2007 if (expect_true (sleeptime > io_blocktime))
2008 sleeptime = io_blocktime;
2009
2010 if (sleeptime)
2011 {
2012 ev_sleep (sleeptime);
2013 waittime -= sleeptime;
2014 }
1020 } 2015 }
1021 2016
1022 method_poll (EV_A_ block); 2017 ++loop_count;
2018 backend_poll (EV_A_ waittime);
1023 2019
1024 /* update rt_now, do magic */ 2020 /* update ev_rt_now, do magic */
1025 time_update (EV_A); 2021 time_update (EV_A_ waittime + sleeptime);
2022 }
1026 2023
1027 /* queue pending timers and reschedule them */ 2024 /* queue pending timers and reschedule them */
1028 timers_reify (EV_A); /* relative timers called last */ 2025 timers_reify (EV_A); /* relative timers called last */
2026#if EV_PERIODIC_ENABLE
1029 periodics_reify (EV_A); /* absolute timers called first */ 2027 periodics_reify (EV_A); /* absolute timers called first */
2028#endif
1030 2029
2030#if EV_IDLE_ENABLE
1031 /* queue idle watchers unless io or timers are pending */ 2031 /* queue idle watchers unless other events are pending */
1032 if (!pendingcnt) 2032 idle_reify (EV_A);
1033 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2033#endif
1034 2034
1035 /* queue check watchers, to be executed first */ 2035 /* queue check watchers, to be executed first */
1036 if (checkcnt) 2036 if (expect_false (checkcnt))
1037 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2037 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1038 2038
1039 call_pending (EV_A); 2039 call_pending (EV_A);
1040 } 2040 }
1041 while (activecnt && !loop_done); 2041 while (expect_true (
2042 activecnt
2043 && !loop_done
2044 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2045 ));
1042 2046
1043 if (loop_done != 2) 2047 if (loop_done == EVUNLOOP_ONE)
1044 loop_done = 0; 2048 loop_done = EVUNLOOP_CANCEL;
1045} 2049}
1046 2050
1047void 2051void
1048ev_unloop (EV_P_ int how) 2052ev_unloop (EV_P_ int how)
1049{ 2053{
1050 loop_done = how; 2054 loop_done = how;
1051} 2055}
1052 2056
1053/*****************************************************************************/ 2057/*****************************************************************************/
1054 2058
1055inline void 2059void inline_size
1056wlist_add (WL *head, WL elem) 2060wlist_add (WL *head, WL elem)
1057{ 2061{
1058 elem->next = *head; 2062 elem->next = *head;
1059 *head = elem; 2063 *head = elem;
1060} 2064}
1061 2065
1062inline void 2066void inline_size
1063wlist_del (WL *head, WL elem) 2067wlist_del (WL *head, WL elem)
1064{ 2068{
1065 while (*head) 2069 while (*head)
1066 { 2070 {
1067 if (*head == elem) 2071 if (*head == elem)
1072 2076
1073 head = &(*head)->next; 2077 head = &(*head)->next;
1074 } 2078 }
1075} 2079}
1076 2080
1077inline void 2081void inline_speed
1078ev_clear_pending (EV_P_ W w) 2082clear_pending (EV_P_ W w)
1079{ 2083{
1080 if (w->pending) 2084 if (w->pending)
1081 { 2085 {
1082 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2086 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1083 w->pending = 0; 2087 w->pending = 0;
1084 } 2088 }
1085} 2089}
1086 2090
1087inline void 2091int
2092ev_clear_pending (EV_P_ void *w)
2093{
2094 W w_ = (W)w;
2095 int pending = w_->pending;
2096
2097 if (expect_true (pending))
2098 {
2099 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2100 w_->pending = 0;
2101 p->w = 0;
2102 return p->events;
2103 }
2104 else
2105 return 0;
2106}
2107
2108void inline_size
2109pri_adjust (EV_P_ W w)
2110{
2111 int pri = w->priority;
2112 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2113 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2114 w->priority = pri;
2115}
2116
2117void inline_speed
1088ev_start (EV_P_ W w, int active) 2118ev_start (EV_P_ W w, int active)
1089{ 2119{
1090 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2120 pri_adjust (EV_A_ w);
1091 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1092
1093 w->active = active; 2121 w->active = active;
1094 ev_ref (EV_A); 2122 ev_ref (EV_A);
1095} 2123}
1096 2124
1097inline void 2125void inline_size
1098ev_stop (EV_P_ W w) 2126ev_stop (EV_P_ W w)
1099{ 2127{
1100 ev_unref (EV_A); 2128 ev_unref (EV_A);
1101 w->active = 0; 2129 w->active = 0;
1102} 2130}
1103 2131
1104/*****************************************************************************/ 2132/*****************************************************************************/
1105 2133
1106void 2134void noinline
1107ev_io_start (EV_P_ struct ev_io *w) 2135ev_io_start (EV_P_ ev_io *w)
1108{ 2136{
1109 int fd = w->fd; 2137 int fd = w->fd;
1110 2138
1111 if (ev_is_active (w)) 2139 if (expect_false (ev_is_active (w)))
1112 return; 2140 return;
1113 2141
1114 assert (("ev_io_start called with negative fd", fd >= 0)); 2142 assert (("ev_io_start called with negative fd", fd >= 0));
1115 2143
2144 EV_FREQUENT_CHECK;
2145
1116 ev_start (EV_A_ (W)w, 1); 2146 ev_start (EV_A_ (W)w, 1);
1117 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 2147 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1118 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2148 wlist_add (&anfds[fd].head, (WL)w);
1119 2149
1120 fd_change (EV_A_ fd); 2150 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1121} 2151 w->events &= ~EV_IOFDSET;
1122 2152
1123void 2153 EV_FREQUENT_CHECK;
2154}
2155
2156void noinline
1124ev_io_stop (EV_P_ struct ev_io *w) 2157ev_io_stop (EV_P_ ev_io *w)
1125{ 2158{
1126 ev_clear_pending (EV_A_ (W)w); 2159 clear_pending (EV_A_ (W)w);
1127 if (!ev_is_active (w)) 2160 if (expect_false (!ev_is_active (w)))
1128 return; 2161 return;
1129 2162
2163 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2164
2165 EV_FREQUENT_CHECK;
2166
1130 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2167 wlist_del (&anfds[w->fd].head, (WL)w);
1131 ev_stop (EV_A_ (W)w); 2168 ev_stop (EV_A_ (W)w);
1132 2169
1133 fd_change (EV_A_ w->fd); 2170 fd_change (EV_A_ w->fd, 1);
1134}
1135 2171
1136void 2172 EV_FREQUENT_CHECK;
2173}
2174
2175void noinline
1137ev_timer_start (EV_P_ struct ev_timer *w) 2176ev_timer_start (EV_P_ ev_timer *w)
1138{ 2177{
1139 if (ev_is_active (w)) 2178 if (expect_false (ev_is_active (w)))
1140 return; 2179 return;
1141 2180
1142 ((WT)w)->at += mn_now; 2181 ev_at (w) += mn_now;
1143 2182
1144 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2183 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1145 2184
2185 EV_FREQUENT_CHECK;
2186
2187 ++timercnt;
1146 ev_start (EV_A_ (W)w, ++timercnt); 2188 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1147 array_needsize (timers, timermax, timercnt, ); 2189 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1148 timers [timercnt - 1] = w; 2190 ANHE_w (timers [ev_active (w)]) = (WT)w;
1149 upheap ((WT *)timers, timercnt - 1); 2191 ANHE_at_cache (timers [ev_active (w)]);
2192 upheap (timers, ev_active (w));
1150 2193
2194 EV_FREQUENT_CHECK;
2195
1151 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2196 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1152} 2197}
1153 2198
1154void 2199void noinline
1155ev_timer_stop (EV_P_ struct ev_timer *w) 2200ev_timer_stop (EV_P_ ev_timer *w)
1156{ 2201{
1157 ev_clear_pending (EV_A_ (W)w); 2202 clear_pending (EV_A_ (W)w);
1158 if (!ev_is_active (w)) 2203 if (expect_false (!ev_is_active (w)))
1159 return; 2204 return;
1160 2205
2206 EV_FREQUENT_CHECK;
2207
2208 {
2209 int active = ev_active (w);
2210
1161 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2211 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1162 2212
1163 if (((W)w)->active < timercnt--) 2213 --timercnt;
2214
2215 if (expect_true (active < timercnt + HEAP0))
1164 { 2216 {
1165 timers [((W)w)->active - 1] = timers [timercnt]; 2217 timers [active] = timers [timercnt + HEAP0];
1166 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2218 adjustheap (timers, timercnt, active);
1167 } 2219 }
2220 }
1168 2221
1169 ((WT)w)->at = w->repeat; 2222 EV_FREQUENT_CHECK;
2223
2224 ev_at (w) -= mn_now;
1170 2225
1171 ev_stop (EV_A_ (W)w); 2226 ev_stop (EV_A_ (W)w);
1172} 2227}
1173 2228
1174void 2229void noinline
1175ev_timer_again (EV_P_ struct ev_timer *w) 2230ev_timer_again (EV_P_ ev_timer *w)
1176{ 2231{
2232 EV_FREQUENT_CHECK;
2233
1177 if (ev_is_active (w)) 2234 if (ev_is_active (w))
1178 { 2235 {
1179 if (w->repeat) 2236 if (w->repeat)
1180 { 2237 {
1181 ((WT)w)->at = mn_now + w->repeat; 2238 ev_at (w) = mn_now + w->repeat;
1182 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2239 ANHE_at_cache (timers [ev_active (w)]);
2240 adjustheap (timers, timercnt, ev_active (w));
1183 } 2241 }
1184 else 2242 else
1185 ev_timer_stop (EV_A_ w); 2243 ev_timer_stop (EV_A_ w);
1186 } 2244 }
1187 else if (w->repeat) 2245 else if (w->repeat)
2246 {
2247 ev_at (w) = w->repeat;
1188 ev_timer_start (EV_A_ w); 2248 ev_timer_start (EV_A_ w);
1189} 2249 }
1190 2250
1191void 2251 EV_FREQUENT_CHECK;
2252}
2253
2254#if EV_PERIODIC_ENABLE
2255void noinline
1192ev_periodic_start (EV_P_ struct ev_periodic *w) 2256ev_periodic_start (EV_P_ ev_periodic *w)
1193{ 2257{
1194 if (ev_is_active (w)) 2258 if (expect_false (ev_is_active (w)))
1195 return; 2259 return;
1196 2260
2261 if (w->reschedule_cb)
2262 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2263 else if (w->interval)
2264 {
1197 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2265 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1198
1199 /* this formula differs from the one in periodic_reify because we do not always round up */ 2266 /* this formula differs from the one in periodic_reify because we do not always round up */
1200 if (w->interval)
1201 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 2267 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2268 }
2269 else
2270 ev_at (w) = w->offset;
1202 2271
2272 EV_FREQUENT_CHECK;
2273
2274 ++periodiccnt;
1203 ev_start (EV_A_ (W)w, ++periodiccnt); 2275 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1204 array_needsize (periodics, periodicmax, periodiccnt, ); 2276 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1205 periodics [periodiccnt - 1] = w; 2277 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1206 upheap ((WT *)periodics, periodiccnt - 1); 2278 ANHE_at_cache (periodics [ev_active (w)]);
2279 upheap (periodics, ev_active (w));
1207 2280
2281 EV_FREQUENT_CHECK;
2282
1208 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2283 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1209} 2284}
1210 2285
1211void 2286void noinline
1212ev_periodic_stop (EV_P_ struct ev_periodic *w) 2287ev_periodic_stop (EV_P_ ev_periodic *w)
1213{ 2288{
1214 ev_clear_pending (EV_A_ (W)w); 2289 clear_pending (EV_A_ (W)w);
1215 if (!ev_is_active (w)) 2290 if (expect_false (!ev_is_active (w)))
1216 return; 2291 return;
1217 2292
2293 EV_FREQUENT_CHECK;
2294
2295 {
2296 int active = ev_active (w);
2297
1218 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2298 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1219 2299
1220 if (((W)w)->active < periodiccnt--) 2300 --periodiccnt;
2301
2302 if (expect_true (active < periodiccnt + HEAP0))
1221 { 2303 {
1222 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2304 periodics [active] = periodics [periodiccnt + HEAP0];
1223 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2305 adjustheap (periodics, periodiccnt, active);
1224 } 2306 }
2307 }
2308
2309 EV_FREQUENT_CHECK;
1225 2310
1226 ev_stop (EV_A_ (W)w); 2311 ev_stop (EV_A_ (W)w);
1227} 2312}
1228 2313
1229void 2314void noinline
1230ev_idle_start (EV_P_ struct ev_idle *w) 2315ev_periodic_again (EV_P_ ev_periodic *w)
1231{ 2316{
1232 if (ev_is_active (w)) 2317 /* TODO: use adjustheap and recalculation */
1233 return;
1234
1235 ev_start (EV_A_ (W)w, ++idlecnt);
1236 array_needsize (idles, idlemax, idlecnt, );
1237 idles [idlecnt - 1] = w;
1238}
1239
1240void
1241ev_idle_stop (EV_P_ struct ev_idle *w)
1242{
1243 ev_clear_pending (EV_A_ (W)w);
1244 if (ev_is_active (w))
1245 return;
1246
1247 idles [((W)w)->active - 1] = idles [--idlecnt];
1248 ev_stop (EV_A_ (W)w); 2318 ev_periodic_stop (EV_A_ w);
2319 ev_periodic_start (EV_A_ w);
1249} 2320}
1250 2321#endif
1251void
1252ev_prepare_start (EV_P_ struct ev_prepare *w)
1253{
1254 if (ev_is_active (w))
1255 return;
1256
1257 ev_start (EV_A_ (W)w, ++preparecnt);
1258 array_needsize (prepares, preparemax, preparecnt, );
1259 prepares [preparecnt - 1] = w;
1260}
1261
1262void
1263ev_prepare_stop (EV_P_ struct ev_prepare *w)
1264{
1265 ev_clear_pending (EV_A_ (W)w);
1266 if (ev_is_active (w))
1267 return;
1268
1269 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1270 ev_stop (EV_A_ (W)w);
1271}
1272
1273void
1274ev_check_start (EV_P_ struct ev_check *w)
1275{
1276 if (ev_is_active (w))
1277 return;
1278
1279 ev_start (EV_A_ (W)w, ++checkcnt);
1280 array_needsize (checks, checkmax, checkcnt, );
1281 checks [checkcnt - 1] = w;
1282}
1283
1284void
1285ev_check_stop (EV_P_ struct ev_check *w)
1286{
1287 ev_clear_pending (EV_A_ (W)w);
1288 if (ev_is_active (w))
1289 return;
1290
1291 checks [((W)w)->active - 1] = checks [--checkcnt];
1292 ev_stop (EV_A_ (W)w);
1293}
1294 2322
1295#ifndef SA_RESTART 2323#ifndef SA_RESTART
1296# define SA_RESTART 0 2324# define SA_RESTART 0
1297#endif 2325#endif
1298 2326
1299void 2327void noinline
1300ev_signal_start (EV_P_ struct ev_signal *w) 2328ev_signal_start (EV_P_ ev_signal *w)
1301{ 2329{
1302#if EV_MULTIPLICITY 2330#if EV_MULTIPLICITY
1303 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2331 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1304#endif 2332#endif
1305 if (ev_is_active (w)) 2333 if (expect_false (ev_is_active (w)))
1306 return; 2334 return;
1307 2335
1308 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2336 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1309 2337
2338 evpipe_init (EV_A);
2339
2340 EV_FREQUENT_CHECK;
2341
2342 {
2343#ifndef _WIN32
2344 sigset_t full, prev;
2345 sigfillset (&full);
2346 sigprocmask (SIG_SETMASK, &full, &prev);
2347#endif
2348
2349 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2350
2351#ifndef _WIN32
2352 sigprocmask (SIG_SETMASK, &prev, 0);
2353#endif
2354 }
2355
1310 ev_start (EV_A_ (W)w, 1); 2356 ev_start (EV_A_ (W)w, 1);
1311 array_needsize (signals, signalmax, w->signum, signals_init);
1312 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2357 wlist_add (&signals [w->signum - 1].head, (WL)w);
1313 2358
1314 if (!((WL)w)->next) 2359 if (!((WL)w)->next)
1315 { 2360 {
2361#if _WIN32
2362 signal (w->signum, ev_sighandler);
2363#else
1316 struct sigaction sa; 2364 struct sigaction sa;
1317 sa.sa_handler = sighandler; 2365 sa.sa_handler = ev_sighandler;
1318 sigfillset (&sa.sa_mask); 2366 sigfillset (&sa.sa_mask);
1319 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2367 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1320 sigaction (w->signum, &sa, 0); 2368 sigaction (w->signum, &sa, 0);
2369#endif
1321 } 2370 }
1322}
1323 2371
1324void 2372 EV_FREQUENT_CHECK;
2373}
2374
2375void noinline
1325ev_signal_stop (EV_P_ struct ev_signal *w) 2376ev_signal_stop (EV_P_ ev_signal *w)
1326{ 2377{
1327 ev_clear_pending (EV_A_ (W)w); 2378 clear_pending (EV_A_ (W)w);
1328 if (!ev_is_active (w)) 2379 if (expect_false (!ev_is_active (w)))
1329 return; 2380 return;
1330 2381
2382 EV_FREQUENT_CHECK;
2383
1331 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2384 wlist_del (&signals [w->signum - 1].head, (WL)w);
1332 ev_stop (EV_A_ (W)w); 2385 ev_stop (EV_A_ (W)w);
1333 2386
1334 if (!signals [w->signum - 1].head) 2387 if (!signals [w->signum - 1].head)
1335 signal (w->signum, SIG_DFL); 2388 signal (w->signum, SIG_DFL);
1336}
1337 2389
2390 EV_FREQUENT_CHECK;
2391}
2392
1338void 2393void
1339ev_child_start (EV_P_ struct ev_child *w) 2394ev_child_start (EV_P_ ev_child *w)
1340{ 2395{
1341#if EV_MULTIPLICITY 2396#if EV_MULTIPLICITY
1342 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2397 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1343#endif 2398#endif
1344 if (ev_is_active (w)) 2399 if (expect_false (ev_is_active (w)))
1345 return; 2400 return;
1346 2401
2402 EV_FREQUENT_CHECK;
2403
1347 ev_start (EV_A_ (W)w, 1); 2404 ev_start (EV_A_ (W)w, 1);
1348 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2405 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1349}
1350 2406
2407 EV_FREQUENT_CHECK;
2408}
2409
1351void 2410void
1352ev_child_stop (EV_P_ struct ev_child *w) 2411ev_child_stop (EV_P_ ev_child *w)
1353{ 2412{
1354 ev_clear_pending (EV_A_ (W)w); 2413 clear_pending (EV_A_ (W)w);
1355 if (ev_is_active (w)) 2414 if (expect_false (!ev_is_active (w)))
1356 return; 2415 return;
1357 2416
2417 EV_FREQUENT_CHECK;
2418
1358 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2419 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1359 ev_stop (EV_A_ (W)w); 2420 ev_stop (EV_A_ (W)w);
2421
2422 EV_FREQUENT_CHECK;
1360} 2423}
2424
2425#if EV_STAT_ENABLE
2426
2427# ifdef _WIN32
2428# undef lstat
2429# define lstat(a,b) _stati64 (a,b)
2430# endif
2431
2432#define DEF_STAT_INTERVAL 5.0074891
2433#define MIN_STAT_INTERVAL 0.1074891
2434
2435static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2436
2437#if EV_USE_INOTIFY
2438# define EV_INOTIFY_BUFSIZE 8192
2439
2440static void noinline
2441infy_add (EV_P_ ev_stat *w)
2442{
2443 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2444
2445 if (w->wd < 0)
2446 {
2447 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2448
2449 /* monitor some parent directory for speedup hints */
2450 /* note that exceeding the hardcoded limit is not a correctness issue, */
2451 /* but an efficiency issue only */
2452 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2453 {
2454 char path [4096];
2455 strcpy (path, w->path);
2456
2457 do
2458 {
2459 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2460 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2461
2462 char *pend = strrchr (path, '/');
2463
2464 if (!pend)
2465 break; /* whoops, no '/', complain to your admin */
2466
2467 *pend = 0;
2468 w->wd = inotify_add_watch (fs_fd, path, mask);
2469 }
2470 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2471 }
2472 }
2473 else
2474 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2475
2476 if (w->wd >= 0)
2477 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2478}
2479
2480static void noinline
2481infy_del (EV_P_ ev_stat *w)
2482{
2483 int slot;
2484 int wd = w->wd;
2485
2486 if (wd < 0)
2487 return;
2488
2489 w->wd = -2;
2490 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2491 wlist_del (&fs_hash [slot].head, (WL)w);
2492
2493 /* remove this watcher, if others are watching it, they will rearm */
2494 inotify_rm_watch (fs_fd, wd);
2495}
2496
2497static void noinline
2498infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2499{
2500 if (slot < 0)
2501 /* overflow, need to check for all hahs slots */
2502 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2503 infy_wd (EV_A_ slot, wd, ev);
2504 else
2505 {
2506 WL w_;
2507
2508 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2509 {
2510 ev_stat *w = (ev_stat *)w_;
2511 w_ = w_->next; /* lets us remove this watcher and all before it */
2512
2513 if (w->wd == wd || wd == -1)
2514 {
2515 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2516 {
2517 w->wd = -1;
2518 infy_add (EV_A_ w); /* re-add, no matter what */
2519 }
2520
2521 stat_timer_cb (EV_A_ &w->timer, 0);
2522 }
2523 }
2524 }
2525}
2526
2527static void
2528infy_cb (EV_P_ ev_io *w, int revents)
2529{
2530 char buf [EV_INOTIFY_BUFSIZE];
2531 struct inotify_event *ev = (struct inotify_event *)buf;
2532 int ofs;
2533 int len = read (fs_fd, buf, sizeof (buf));
2534
2535 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2536 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2537}
2538
2539void inline_size
2540infy_init (EV_P)
2541{
2542 if (fs_fd != -2)
2543 return;
2544
2545 fs_fd = inotify_init ();
2546
2547 if (fs_fd >= 0)
2548 {
2549 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2550 ev_set_priority (&fs_w, EV_MAXPRI);
2551 ev_io_start (EV_A_ &fs_w);
2552 }
2553}
2554
2555void inline_size
2556infy_fork (EV_P)
2557{
2558 int slot;
2559
2560 if (fs_fd < 0)
2561 return;
2562
2563 close (fs_fd);
2564 fs_fd = inotify_init ();
2565
2566 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2567 {
2568 WL w_ = fs_hash [slot].head;
2569 fs_hash [slot].head = 0;
2570
2571 while (w_)
2572 {
2573 ev_stat *w = (ev_stat *)w_;
2574 w_ = w_->next; /* lets us add this watcher */
2575
2576 w->wd = -1;
2577
2578 if (fs_fd >= 0)
2579 infy_add (EV_A_ w); /* re-add, no matter what */
2580 else
2581 ev_timer_start (EV_A_ &w->timer);
2582 }
2583
2584 }
2585}
2586
2587#endif
2588
2589#ifdef _WIN32
2590# define EV_LSTAT(p,b) _stati64 (p, b)
2591#else
2592# define EV_LSTAT(p,b) lstat (p, b)
2593#endif
2594
2595void
2596ev_stat_stat (EV_P_ ev_stat *w)
2597{
2598 if (lstat (w->path, &w->attr) < 0)
2599 w->attr.st_nlink = 0;
2600 else if (!w->attr.st_nlink)
2601 w->attr.st_nlink = 1;
2602}
2603
2604static void noinline
2605stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2606{
2607 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2608
2609 /* we copy this here each the time so that */
2610 /* prev has the old value when the callback gets invoked */
2611 w->prev = w->attr;
2612 ev_stat_stat (EV_A_ w);
2613
2614 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2615 if (
2616 w->prev.st_dev != w->attr.st_dev
2617 || w->prev.st_ino != w->attr.st_ino
2618 || w->prev.st_mode != w->attr.st_mode
2619 || w->prev.st_nlink != w->attr.st_nlink
2620 || w->prev.st_uid != w->attr.st_uid
2621 || w->prev.st_gid != w->attr.st_gid
2622 || w->prev.st_rdev != w->attr.st_rdev
2623 || w->prev.st_size != w->attr.st_size
2624 || w->prev.st_atime != w->attr.st_atime
2625 || w->prev.st_mtime != w->attr.st_mtime
2626 || w->prev.st_ctime != w->attr.st_ctime
2627 ) {
2628 #if EV_USE_INOTIFY
2629 infy_del (EV_A_ w);
2630 infy_add (EV_A_ w);
2631 ev_stat_stat (EV_A_ w); /* avoid race... */
2632 #endif
2633
2634 ev_feed_event (EV_A_ w, EV_STAT);
2635 }
2636}
2637
2638void
2639ev_stat_start (EV_P_ ev_stat *w)
2640{
2641 if (expect_false (ev_is_active (w)))
2642 return;
2643
2644 /* since we use memcmp, we need to clear any padding data etc. */
2645 memset (&w->prev, 0, sizeof (ev_statdata));
2646 memset (&w->attr, 0, sizeof (ev_statdata));
2647
2648 ev_stat_stat (EV_A_ w);
2649
2650 if (w->interval < MIN_STAT_INTERVAL)
2651 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2652
2653 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2654 ev_set_priority (&w->timer, ev_priority (w));
2655
2656#if EV_USE_INOTIFY
2657 infy_init (EV_A);
2658
2659 if (fs_fd >= 0)
2660 infy_add (EV_A_ w);
2661 else
2662#endif
2663 ev_timer_start (EV_A_ &w->timer);
2664
2665 ev_start (EV_A_ (W)w, 1);
2666
2667 EV_FREQUENT_CHECK;
2668}
2669
2670void
2671ev_stat_stop (EV_P_ ev_stat *w)
2672{
2673 clear_pending (EV_A_ (W)w);
2674 if (expect_false (!ev_is_active (w)))
2675 return;
2676
2677 EV_FREQUENT_CHECK;
2678
2679#if EV_USE_INOTIFY
2680 infy_del (EV_A_ w);
2681#endif
2682 ev_timer_stop (EV_A_ &w->timer);
2683
2684 ev_stop (EV_A_ (W)w);
2685
2686 EV_FREQUENT_CHECK;
2687}
2688#endif
2689
2690#if EV_IDLE_ENABLE
2691void
2692ev_idle_start (EV_P_ ev_idle *w)
2693{
2694 if (expect_false (ev_is_active (w)))
2695 return;
2696
2697 pri_adjust (EV_A_ (W)w);
2698
2699 EV_FREQUENT_CHECK;
2700
2701 {
2702 int active = ++idlecnt [ABSPRI (w)];
2703
2704 ++idleall;
2705 ev_start (EV_A_ (W)w, active);
2706
2707 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2708 idles [ABSPRI (w)][active - 1] = w;
2709 }
2710
2711 EV_FREQUENT_CHECK;
2712}
2713
2714void
2715ev_idle_stop (EV_P_ ev_idle *w)
2716{
2717 clear_pending (EV_A_ (W)w);
2718 if (expect_false (!ev_is_active (w)))
2719 return;
2720
2721 EV_FREQUENT_CHECK;
2722
2723 {
2724 int active = ev_active (w);
2725
2726 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2727 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2728
2729 ev_stop (EV_A_ (W)w);
2730 --idleall;
2731 }
2732
2733 EV_FREQUENT_CHECK;
2734}
2735#endif
2736
2737void
2738ev_prepare_start (EV_P_ ev_prepare *w)
2739{
2740 if (expect_false (ev_is_active (w)))
2741 return;
2742
2743 EV_FREQUENT_CHECK;
2744
2745 ev_start (EV_A_ (W)w, ++preparecnt);
2746 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2747 prepares [preparecnt - 1] = w;
2748
2749 EV_FREQUENT_CHECK;
2750}
2751
2752void
2753ev_prepare_stop (EV_P_ ev_prepare *w)
2754{
2755 clear_pending (EV_A_ (W)w);
2756 if (expect_false (!ev_is_active (w)))
2757 return;
2758
2759 EV_FREQUENT_CHECK;
2760
2761 {
2762 int active = ev_active (w);
2763
2764 prepares [active - 1] = prepares [--preparecnt];
2765 ev_active (prepares [active - 1]) = active;
2766 }
2767
2768 ev_stop (EV_A_ (W)w);
2769
2770 EV_FREQUENT_CHECK;
2771}
2772
2773void
2774ev_check_start (EV_P_ ev_check *w)
2775{
2776 if (expect_false (ev_is_active (w)))
2777 return;
2778
2779 EV_FREQUENT_CHECK;
2780
2781 ev_start (EV_A_ (W)w, ++checkcnt);
2782 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2783 checks [checkcnt - 1] = w;
2784
2785 EV_FREQUENT_CHECK;
2786}
2787
2788void
2789ev_check_stop (EV_P_ ev_check *w)
2790{
2791 clear_pending (EV_A_ (W)w);
2792 if (expect_false (!ev_is_active (w)))
2793 return;
2794
2795 EV_FREQUENT_CHECK;
2796
2797 {
2798 int active = ev_active (w);
2799
2800 checks [active - 1] = checks [--checkcnt];
2801 ev_active (checks [active - 1]) = active;
2802 }
2803
2804 ev_stop (EV_A_ (W)w);
2805
2806 EV_FREQUENT_CHECK;
2807}
2808
2809#if EV_EMBED_ENABLE
2810void noinline
2811ev_embed_sweep (EV_P_ ev_embed *w)
2812{
2813 ev_loop (w->other, EVLOOP_NONBLOCK);
2814}
2815
2816static void
2817embed_io_cb (EV_P_ ev_io *io, int revents)
2818{
2819 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2820
2821 if (ev_cb (w))
2822 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2823 else
2824 ev_loop (w->other, EVLOOP_NONBLOCK);
2825}
2826
2827static void
2828embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2829{
2830 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2831
2832 {
2833 struct ev_loop *loop = w->other;
2834
2835 while (fdchangecnt)
2836 {
2837 fd_reify (EV_A);
2838 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2839 }
2840 }
2841}
2842
2843static void
2844embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2845{
2846 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2847
2848 {
2849 struct ev_loop *loop = w->other;
2850
2851 ev_loop_fork (EV_A);
2852 }
2853}
2854
2855#if 0
2856static void
2857embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2858{
2859 ev_idle_stop (EV_A_ idle);
2860}
2861#endif
2862
2863void
2864ev_embed_start (EV_P_ ev_embed *w)
2865{
2866 if (expect_false (ev_is_active (w)))
2867 return;
2868
2869 {
2870 struct ev_loop *loop = w->other;
2871 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2872 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2873 }
2874
2875 EV_FREQUENT_CHECK;
2876
2877 ev_set_priority (&w->io, ev_priority (w));
2878 ev_io_start (EV_A_ &w->io);
2879
2880 ev_prepare_init (&w->prepare, embed_prepare_cb);
2881 ev_set_priority (&w->prepare, EV_MINPRI);
2882 ev_prepare_start (EV_A_ &w->prepare);
2883
2884 ev_fork_init (&w->fork, embed_fork_cb);
2885 ev_fork_start (EV_A_ &w->fork);
2886
2887 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2888
2889 ev_start (EV_A_ (W)w, 1);
2890
2891 EV_FREQUENT_CHECK;
2892}
2893
2894void
2895ev_embed_stop (EV_P_ ev_embed *w)
2896{
2897 clear_pending (EV_A_ (W)w);
2898 if (expect_false (!ev_is_active (w)))
2899 return;
2900
2901 EV_FREQUENT_CHECK;
2902
2903 ev_io_stop (EV_A_ &w->io);
2904 ev_prepare_stop (EV_A_ &w->prepare);
2905 ev_fork_stop (EV_A_ &w->fork);
2906
2907 EV_FREQUENT_CHECK;
2908}
2909#endif
2910
2911#if EV_FORK_ENABLE
2912void
2913ev_fork_start (EV_P_ ev_fork *w)
2914{
2915 if (expect_false (ev_is_active (w)))
2916 return;
2917
2918 EV_FREQUENT_CHECK;
2919
2920 ev_start (EV_A_ (W)w, ++forkcnt);
2921 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2922 forks [forkcnt - 1] = w;
2923
2924 EV_FREQUENT_CHECK;
2925}
2926
2927void
2928ev_fork_stop (EV_P_ ev_fork *w)
2929{
2930 clear_pending (EV_A_ (W)w);
2931 if (expect_false (!ev_is_active (w)))
2932 return;
2933
2934 EV_FREQUENT_CHECK;
2935
2936 {
2937 int active = ev_active (w);
2938
2939 forks [active - 1] = forks [--forkcnt];
2940 ev_active (forks [active - 1]) = active;
2941 }
2942
2943 ev_stop (EV_A_ (W)w);
2944
2945 EV_FREQUENT_CHECK;
2946}
2947#endif
2948
2949#if EV_ASYNC_ENABLE
2950void
2951ev_async_start (EV_P_ ev_async *w)
2952{
2953 if (expect_false (ev_is_active (w)))
2954 return;
2955
2956 evpipe_init (EV_A);
2957
2958 EV_FREQUENT_CHECK;
2959
2960 ev_start (EV_A_ (W)w, ++asynccnt);
2961 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2962 asyncs [asynccnt - 1] = w;
2963
2964 EV_FREQUENT_CHECK;
2965}
2966
2967void
2968ev_async_stop (EV_P_ ev_async *w)
2969{
2970 clear_pending (EV_A_ (W)w);
2971 if (expect_false (!ev_is_active (w)))
2972 return;
2973
2974 EV_FREQUENT_CHECK;
2975
2976 {
2977 int active = ev_active (w);
2978
2979 asyncs [active - 1] = asyncs [--asynccnt];
2980 ev_active (asyncs [active - 1]) = active;
2981 }
2982
2983 ev_stop (EV_A_ (W)w);
2984
2985 EV_FREQUENT_CHECK;
2986}
2987
2988void
2989ev_async_send (EV_P_ ev_async *w)
2990{
2991 w->sent = 1;
2992 evpipe_write (EV_A_ &gotasync);
2993}
2994#endif
1361 2995
1362/*****************************************************************************/ 2996/*****************************************************************************/
1363 2997
1364struct ev_once 2998struct ev_once
1365{ 2999{
1366 struct ev_io io; 3000 ev_io io;
1367 struct ev_timer to; 3001 ev_timer to;
1368 void (*cb)(int revents, void *arg); 3002 void (*cb)(int revents, void *arg);
1369 void *arg; 3003 void *arg;
1370}; 3004};
1371 3005
1372static void 3006static void
1373once_cb (EV_P_ struct ev_once *once, int revents) 3007once_cb (EV_P_ struct ev_once *once, int revents)
1374{ 3008{
1375 void (*cb)(int revents, void *arg) = once->cb; 3009 void (*cb)(int revents, void *arg) = once->cb;
1376 void *arg = once->arg; 3010 void *arg = once->arg;
1377 3011
1378 ev_io_stop (EV_A_ &once->io); 3012 ev_io_stop (EV_A_ &once->io);
1379 ev_timer_stop (EV_A_ &once->to); 3013 ev_timer_stop (EV_A_ &once->to);
1380 free (once); 3014 ev_free (once);
1381 3015
1382 cb (revents, arg); 3016 cb (revents, arg);
1383} 3017}
1384 3018
1385static void 3019static void
1386once_cb_io (EV_P_ struct ev_io *w, int revents) 3020once_cb_io (EV_P_ ev_io *w, int revents)
1387{ 3021{
1388 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3022 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3023
3024 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1389} 3025}
1390 3026
1391static void 3027static void
1392once_cb_to (EV_P_ struct ev_timer *w, int revents) 3028once_cb_to (EV_P_ ev_timer *w, int revents)
1393{ 3029{
1394 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3030 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3031
3032 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1395} 3033}
1396 3034
1397void 3035void
1398ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3036ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1399{ 3037{
1400 struct ev_once *once = malloc (sizeof (struct ev_once)); 3038 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1401 3039
1402 if (!once) 3040 if (expect_false (!once))
3041 {
1403 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3042 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1404 else 3043 return;
1405 { 3044 }
3045
1406 once->cb = cb; 3046 once->cb = cb;
1407 once->arg = arg; 3047 once->arg = arg;
1408 3048
1409 ev_watcher_init (&once->io, once_cb_io); 3049 ev_init (&once->io, once_cb_io);
1410 if (fd >= 0) 3050 if (fd >= 0)
1411 { 3051 {
1412 ev_io_set (&once->io, fd, events); 3052 ev_io_set (&once->io, fd, events);
1413 ev_io_start (EV_A_ &once->io); 3053 ev_io_start (EV_A_ &once->io);
1414 } 3054 }
1415 3055
1416 ev_watcher_init (&once->to, once_cb_to); 3056 ev_init (&once->to, once_cb_to);
1417 if (timeout >= 0.) 3057 if (timeout >= 0.)
1418 { 3058 {
1419 ev_timer_set (&once->to, timeout, 0.); 3059 ev_timer_set (&once->to, timeout, 0.);
1420 ev_timer_start (EV_A_ &once->to); 3060 ev_timer_start (EV_A_ &once->to);
1421 }
1422 } 3061 }
1423} 3062}
1424 3063
3064#if EV_MULTIPLICITY
3065 #include "ev_wrap.h"
3066#endif
3067
3068#ifdef __cplusplus
3069}
3070#endif
3071

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines