ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.115 by root, Wed Nov 14 04:53:21 2007 UTC vs.
Revision 1.264 by root, Mon Oct 13 23:20:12 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
38 51
39# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 53# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
42# endif 55# endif
43# ifndef EV_USE_REALTIME 56# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 57# define EV_USE_REALTIME 1
45# endif 58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
46# endif 66# endif
47 67
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
50# endif 74# endif
51 75
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
53# define EV_USE_POLL 1 78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
54# endif 82# endif
55 83
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
57# define EV_USE_EPOLL 1 86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
58# endif 90# endif
59 91
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
62# endif 98# endif
99
100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
63 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
64#endif 132#endif
65 133
66#include <math.h> 134#include <math.h>
67#include <stdlib.h> 135#include <stdlib.h>
68#include <fcntl.h> 136#include <fcntl.h>
75#include <sys/types.h> 143#include <sys/types.h>
76#include <time.h> 144#include <time.h>
77 145
78#include <signal.h> 146#include <signal.h>
79 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
80#ifndef _WIN32 154#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h> 155# include <sys/time.h>
83# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
84#else 158#else
159# include <io.h>
85# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
86# include <windows.h> 161# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
89# endif 164# endif
90#endif 165#endif
91 166
92/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
93 168
94#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
95# define EV_USE_MONOTONIC 1 171# define EV_USE_MONOTONIC 1
172# else
173# define EV_USE_MONOTONIC 0
174# endif
175#endif
176
177#ifndef EV_USE_REALTIME
178# define EV_USE_REALTIME 0
179#endif
180
181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
185# define EV_USE_NANOSLEEP 0
186# endif
96#endif 187#endif
97 188
98#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
99# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
100# define EV_SELECT_USE_FD_SET 1
101#endif 191#endif
102 192
103#ifndef EV_USE_POLL 193#ifndef EV_USE_POLL
104# ifdef _WIN32 194# ifdef _WIN32
105# define EV_USE_POLL 0 195# define EV_USE_POLL 0
107# define EV_USE_POLL 1 197# define EV_USE_POLL 1
108# endif 198# endif
109#endif 199#endif
110 200
111#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
112# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
113#endif 207#endif
114 208
115#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
116# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
117#endif 211#endif
118 212
119#ifndef EV_USE_REALTIME 213#ifndef EV_USE_PORT
214# define EV_USE_PORT 0
215#endif
216
217#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
120# define EV_USE_REALTIME 1 219# define EV_USE_INOTIFY 1
220# else
221# define EV_USE_INOTIFY 0
121#endif 222# endif
223#endif
122 224
123/**/ 225#ifndef EV_PID_HASHSIZE
124 226# if EV_MINIMAL
125/* darwin simply cannot be helped */ 227# define EV_PID_HASHSIZE 1
126#ifdef __APPLE__ 228# else
127# undef EV_USE_POLL 229# define EV_PID_HASHSIZE 16
128# undef EV_USE_KQUEUE
129#endif 230# endif
231#endif
232
233#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif
240
241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
130 268
131#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
132# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
133# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
134#endif 272#endif
136#ifndef CLOCK_REALTIME 274#ifndef CLOCK_REALTIME
137# undef EV_USE_REALTIME 275# undef EV_USE_REALTIME
138# define EV_USE_REALTIME 0 276# define EV_USE_REALTIME 0
139#endif 277#endif
140 278
279#if !EV_STAT_ENABLE
280# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0
282#endif
283
284#if !EV_USE_NANOSLEEP
285# ifndef _WIN32
286# include <sys/select.h>
287# endif
288#endif
289
290#if EV_USE_INOTIFY
291# include <sys/utsname.h>
292# include <sys/inotify.h>
293/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
294# ifndef IN_DONT_FOLLOW
295# undef EV_USE_INOTIFY
296# define EV_USE_INOTIFY 0
297# endif
298#endif
299
141#if EV_SELECT_IS_WINSOCKET 300#if EV_SELECT_IS_WINSOCKET
142# include <winsock.h> 301# include <winsock.h>
143#endif 302#endif
144 303
304#if EV_USE_EVENTFD
305/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
306# include <stdint.h>
307# ifdef __cplusplus
308extern "C" {
309# endif
310int eventfd (unsigned int initval, int flags);
311# ifdef __cplusplus
312}
313# endif
314#endif
315
145/**/ 316/**/
146 317
318#if EV_VERIFY >= 3
319# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
320#else
321# define EV_FREQUENT_CHECK do { } while (0)
322#endif
323
324/*
325 * This is used to avoid floating point rounding problems.
326 * It is added to ev_rt_now when scheduling periodics
327 * to ensure progress, time-wise, even when rounding
328 * errors are against us.
329 * This value is good at least till the year 4000.
330 * Better solutions welcome.
331 */
332#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
333
147#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 334#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
148#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 335#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
149#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
150/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 336/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
151 337
152#ifdef EV_H
153# include EV_H
154#else
155# include "ev.h"
156#endif
157
158#if __GNUC__ >= 3 338#if __GNUC__ >= 4
159# define expect(expr,value) __builtin_expect ((expr),(value)) 339# define expect(expr,value) __builtin_expect ((expr),(value))
160# define inline inline 340# define noinline __attribute__ ((noinline))
161#else 341#else
162# define expect(expr,value) (expr) 342# define expect(expr,value) (expr)
163# define inline static 343# define noinline
344# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
345# define inline
346# endif
164#endif 347#endif
165 348
166#define expect_false(expr) expect ((expr) != 0, 0) 349#define expect_false(expr) expect ((expr) != 0, 0)
167#define expect_true(expr) expect ((expr) != 0, 1) 350#define expect_true(expr) expect ((expr) != 0, 1)
351#define inline_size static inline
352
353#if EV_MINIMAL
354# define inline_speed static noinline
355#else
356# define inline_speed static inline
357#endif
168 358
169#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 359#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
170#define ABSPRI(w) ((w)->priority - EV_MINPRI) 360#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
171 361
172#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 362#define EMPTY /* required for microsofts broken pseudo-c compiler */
173#define EMPTY2(a,b) /* used to suppress some warnings */ 363#define EMPTY2(a,b) /* used to suppress some warnings */
174 364
175typedef struct ev_watcher *W; 365typedef ev_watcher *W;
176typedef struct ev_watcher_list *WL; 366typedef ev_watcher_list *WL;
177typedef struct ev_watcher_time *WT; 367typedef ev_watcher_time *WT;
178 368
369#define ev_active(w) ((W)(w))->active
370#define ev_at(w) ((WT)(w))->at
371
372#if EV_USE_MONOTONIC
373/* sig_atomic_t is used to avoid per-thread variables or locking but still */
374/* giving it a reasonably high chance of working on typical architetcures */
179static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 375static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
376#endif
180 377
181#ifdef _WIN32 378#ifdef _WIN32
182# include "ev_win32.c" 379# include "ev_win32.c"
183#endif 380#endif
184 381
185/*****************************************************************************/ 382/*****************************************************************************/
186 383
187static void (*syserr_cb)(const char *msg); 384static void (*syserr_cb)(const char *msg);
188 385
386void
189void ev_set_syserr_cb (void (*cb)(const char *msg)) 387ev_set_syserr_cb (void (*cb)(const char *msg))
190{ 388{
191 syserr_cb = cb; 389 syserr_cb = cb;
192} 390}
193 391
194static void 392static void noinline
195syserr (const char *msg) 393syserr (const char *msg)
196{ 394{
197 if (!msg) 395 if (!msg)
198 msg = "(libev) system error"; 396 msg = "(libev) system error";
199 397
204 perror (msg); 402 perror (msg);
205 abort (); 403 abort ();
206 } 404 }
207} 405}
208 406
407static void *
408ev_realloc_emul (void *ptr, long size)
409{
410 /* some systems, notably openbsd and darwin, fail to properly
411 * implement realloc (x, 0) (as required by both ansi c-98 and
412 * the single unix specification, so work around them here.
413 */
414
415 if (size)
416 return realloc (ptr, size);
417
418 free (ptr);
419 return 0;
420}
421
209static void *(*alloc)(void *ptr, long size); 422static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
210 423
424void
211void ev_set_allocator (void *(*cb)(void *ptr, long size)) 425ev_set_allocator (void *(*cb)(void *ptr, long size))
212{ 426{
213 alloc = cb; 427 alloc = cb;
214} 428}
215 429
216static void * 430inline_speed void *
217ev_realloc (void *ptr, long size) 431ev_realloc (void *ptr, long size)
218{ 432{
219 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 433 ptr = alloc (ptr, size);
220 434
221 if (!ptr && size) 435 if (!ptr && size)
222 { 436 {
223 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 437 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
224 abort (); 438 abort ();
245typedef struct 459typedef struct
246{ 460{
247 W w; 461 W w;
248 int events; 462 int events;
249} ANPENDING; 463} ANPENDING;
464
465#if EV_USE_INOTIFY
466/* hash table entry per inotify-id */
467typedef struct
468{
469 WL head;
470} ANFS;
471#endif
472
473/* Heap Entry */
474#if EV_HEAP_CACHE_AT
475 typedef struct {
476 ev_tstamp at;
477 WT w;
478 } ANHE;
479
480 #define ANHE_w(he) (he).w /* access watcher, read-write */
481 #define ANHE_at(he) (he).at /* access cached at, read-only */
482 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
483#else
484 typedef WT ANHE;
485
486 #define ANHE_w(he) (he)
487 #define ANHE_at(he) (he)->at
488 #define ANHE_at_cache(he)
489#endif
250 490
251#if EV_MULTIPLICITY 491#if EV_MULTIPLICITY
252 492
253 struct ev_loop 493 struct ev_loop
254 { 494 {
258 #include "ev_vars.h" 498 #include "ev_vars.h"
259 #undef VAR 499 #undef VAR
260 }; 500 };
261 #include "ev_wrap.h" 501 #include "ev_wrap.h"
262 502
263 struct ev_loop default_loop_struct; 503 static struct ev_loop default_loop_struct;
264 static struct ev_loop *default_loop; 504 struct ev_loop *ev_default_loop_ptr;
265 505
266#else 506#else
267 507
268 ev_tstamp ev_rt_now; 508 ev_tstamp ev_rt_now;
269 #define VAR(name,decl) static decl; 509 #define VAR(name,decl) static decl;
270 #include "ev_vars.h" 510 #include "ev_vars.h"
271 #undef VAR 511 #undef VAR
272 512
273 static int default_loop; 513 static int ev_default_loop_ptr;
274 514
275#endif 515#endif
276 516
277/*****************************************************************************/ 517/*****************************************************************************/
278 518
288 gettimeofday (&tv, 0); 528 gettimeofday (&tv, 0);
289 return tv.tv_sec + tv.tv_usec * 1e-6; 529 return tv.tv_sec + tv.tv_usec * 1e-6;
290#endif 530#endif
291} 531}
292 532
293inline ev_tstamp 533ev_tstamp inline_size
294get_clock (void) 534get_clock (void)
295{ 535{
296#if EV_USE_MONOTONIC 536#if EV_USE_MONOTONIC
297 if (expect_true (have_monotonic)) 537 if (expect_true (have_monotonic))
298 { 538 {
311{ 551{
312 return ev_rt_now; 552 return ev_rt_now;
313} 553}
314#endif 554#endif
315 555
316#define array_roundsize(type,n) (((n) | 4) & ~3) 556void
557ev_sleep (ev_tstamp delay)
558{
559 if (delay > 0.)
560 {
561#if EV_USE_NANOSLEEP
562 struct timespec ts;
563
564 ts.tv_sec = (time_t)delay;
565 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
566
567 nanosleep (&ts, 0);
568#elif defined(_WIN32)
569 Sleep ((unsigned long)(delay * 1e3));
570#else
571 struct timeval tv;
572
573 tv.tv_sec = (time_t)delay;
574 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
575
576 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
577 /* somehting nto guaranteed by newer posix versions, but guaranteed */
578 /* by older ones */
579 select (0, 0, 0, 0, &tv);
580#endif
581 }
582}
583
584/*****************************************************************************/
585
586#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
587
588int inline_size
589array_nextsize (int elem, int cur, int cnt)
590{
591 int ncur = cur + 1;
592
593 do
594 ncur <<= 1;
595 while (cnt > ncur);
596
597 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
598 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
599 {
600 ncur *= elem;
601 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
602 ncur = ncur - sizeof (void *) * 4;
603 ncur /= elem;
604 }
605
606 return ncur;
607}
608
609static noinline void *
610array_realloc (int elem, void *base, int *cur, int cnt)
611{
612 *cur = array_nextsize (elem, *cur, cnt);
613 return ev_realloc (base, elem * *cur);
614}
317 615
318#define array_needsize(type,base,cur,cnt,init) \ 616#define array_needsize(type,base,cur,cnt,init) \
319 if (expect_false ((cnt) > cur)) \ 617 if (expect_false ((cnt) > (cur))) \
320 { \ 618 { \
321 int newcnt = cur; \ 619 int ocur_ = (cur); \
322 do \ 620 (base) = (type *)array_realloc \
323 { \ 621 (sizeof (type), (base), &(cur), (cnt)); \
324 newcnt = array_roundsize (type, newcnt << 1); \ 622 init ((base) + (ocur_), (cur) - ocur_); \
325 } \
326 while ((cnt) > newcnt); \
327 \
328 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
329 init (base + cur, newcnt - cur); \
330 cur = newcnt; \
331 } 623 }
332 624
625#if 0
333#define array_slim(type,stem) \ 626#define array_slim(type,stem) \
334 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 627 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
335 { \ 628 { \
336 stem ## max = array_roundsize (stem ## cnt >> 1); \ 629 stem ## max = array_roundsize (stem ## cnt >> 1); \
337 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 630 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
338 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 631 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
339 } 632 }
633#endif
340 634
341#define array_free(stem, idx) \ 635#define array_free(stem, idx) \
342 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 636 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
343 637
344/*****************************************************************************/ 638/*****************************************************************************/
345 639
346static void 640void noinline
641ev_feed_event (EV_P_ void *w, int revents)
642{
643 W w_ = (W)w;
644 int pri = ABSPRI (w_);
645
646 if (expect_false (w_->pending))
647 pendings [pri][w_->pending - 1].events |= revents;
648 else
649 {
650 w_->pending = ++pendingcnt [pri];
651 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
652 pendings [pri][w_->pending - 1].w = w_;
653 pendings [pri][w_->pending - 1].events = revents;
654 }
655}
656
657void inline_speed
658queue_events (EV_P_ W *events, int eventcnt, int type)
659{
660 int i;
661
662 for (i = 0; i < eventcnt; ++i)
663 ev_feed_event (EV_A_ events [i], type);
664}
665
666/*****************************************************************************/
667
668void inline_size
347anfds_init (ANFD *base, int count) 669anfds_init (ANFD *base, int count)
348{ 670{
349 while (count--) 671 while (count--)
350 { 672 {
351 base->head = 0; 673 base->head = 0;
354 676
355 ++base; 677 ++base;
356 } 678 }
357} 679}
358 680
359void 681void inline_speed
360ev_feed_event (EV_P_ void *w, int revents)
361{
362 W w_ = (W)w;
363
364 if (w_->pending)
365 {
366 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
367 return;
368 }
369
370 w_->pending = ++pendingcnt [ABSPRI (w_)];
371 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
372 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
373 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
374}
375
376static void
377queue_events (EV_P_ W *events, int eventcnt, int type)
378{
379 int i;
380
381 for (i = 0; i < eventcnt; ++i)
382 ev_feed_event (EV_A_ events [i], type);
383}
384
385inline void
386fd_event (EV_P_ int fd, int revents) 682fd_event (EV_P_ int fd, int revents)
387{ 683{
388 ANFD *anfd = anfds + fd; 684 ANFD *anfd = anfds + fd;
389 struct ev_io *w; 685 ev_io *w;
390 686
391 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 687 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
392 { 688 {
393 int ev = w->events & revents; 689 int ev = w->events & revents;
394 690
395 if (ev) 691 if (ev)
396 ev_feed_event (EV_A_ (W)w, ev); 692 ev_feed_event (EV_A_ (W)w, ev);
398} 694}
399 695
400void 696void
401ev_feed_fd_event (EV_P_ int fd, int revents) 697ev_feed_fd_event (EV_P_ int fd, int revents)
402{ 698{
699 if (fd >= 0 && fd < anfdmax)
403 fd_event (EV_A_ fd, revents); 700 fd_event (EV_A_ fd, revents);
404} 701}
405 702
406/*****************************************************************************/ 703void inline_size
407
408static void
409fd_reify (EV_P) 704fd_reify (EV_P)
410{ 705{
411 int i; 706 int i;
412 707
413 for (i = 0; i < fdchangecnt; ++i) 708 for (i = 0; i < fdchangecnt; ++i)
414 { 709 {
415 int fd = fdchanges [i]; 710 int fd = fdchanges [i];
416 ANFD *anfd = anfds + fd; 711 ANFD *anfd = anfds + fd;
417 struct ev_io *w; 712 ev_io *w;
418 713
419 int events = 0; 714 unsigned char events = 0;
420 715
421 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 716 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
422 events |= w->events; 717 events |= (unsigned char)w->events;
423 718
424#if EV_SELECT_IS_WINSOCKET 719#if EV_SELECT_IS_WINSOCKET
425 if (events) 720 if (events)
426 { 721 {
427 unsigned long argp; 722 unsigned long arg;
723 #ifdef EV_FD_TO_WIN32_HANDLE
724 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
725 #else
428 anfd->handle = _get_osfhandle (fd); 726 anfd->handle = _get_osfhandle (fd);
727 #endif
429 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 728 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
430 } 729 }
431#endif 730#endif
432 731
732 {
733 unsigned char o_events = anfd->events;
734 unsigned char o_reify = anfd->reify;
735
433 anfd->reify = 0; 736 anfd->reify = 0;
434
435 method_modify (EV_A_ fd, anfd->events, events);
436 anfd->events = events; 737 anfd->events = events;
738
739 if (o_events != events || o_reify & EV_IOFDSET)
740 backend_modify (EV_A_ fd, o_events, events);
741 }
437 } 742 }
438 743
439 fdchangecnt = 0; 744 fdchangecnt = 0;
440} 745}
441 746
442static void 747void inline_size
443fd_change (EV_P_ int fd) 748fd_change (EV_P_ int fd, int flags)
444{ 749{
445 if (anfds [fd].reify) 750 unsigned char reify = anfds [fd].reify;
446 return;
447
448 anfds [fd].reify = 1; 751 anfds [fd].reify |= flags;
449 752
753 if (expect_true (!reify))
754 {
450 ++fdchangecnt; 755 ++fdchangecnt;
451 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 756 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
452 fdchanges [fdchangecnt - 1] = fd; 757 fdchanges [fdchangecnt - 1] = fd;
758 }
453} 759}
454 760
455static void 761void inline_speed
456fd_kill (EV_P_ int fd) 762fd_kill (EV_P_ int fd)
457{ 763{
458 struct ev_io *w; 764 ev_io *w;
459 765
460 while ((w = (struct ev_io *)anfds [fd].head)) 766 while ((w = (ev_io *)anfds [fd].head))
461 { 767 {
462 ev_io_stop (EV_A_ w); 768 ev_io_stop (EV_A_ w);
463 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 769 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
464 } 770 }
465} 771}
466 772
467static int 773int inline_size
468fd_valid (int fd) 774fd_valid (int fd)
469{ 775{
470#ifdef _WIN32 776#ifdef _WIN32
471 return _get_osfhandle (fd) != -1; 777 return _get_osfhandle (fd) != -1;
472#else 778#else
473 return fcntl (fd, F_GETFD) != -1; 779 return fcntl (fd, F_GETFD) != -1;
474#endif 780#endif
475} 781}
476 782
477/* called on EBADF to verify fds */ 783/* called on EBADF to verify fds */
478static void 784static void noinline
479fd_ebadf (EV_P) 785fd_ebadf (EV_P)
480{ 786{
481 int fd; 787 int fd;
482 788
483 for (fd = 0; fd < anfdmax; ++fd) 789 for (fd = 0; fd < anfdmax; ++fd)
484 if (anfds [fd].events) 790 if (anfds [fd].events)
485 if (!fd_valid (fd) == -1 && errno == EBADF) 791 if (!fd_valid (fd) && errno == EBADF)
486 fd_kill (EV_A_ fd); 792 fd_kill (EV_A_ fd);
487} 793}
488 794
489/* called on ENOMEM in select/poll to kill some fds and retry */ 795/* called on ENOMEM in select/poll to kill some fds and retry */
490static void 796static void noinline
491fd_enomem (EV_P) 797fd_enomem (EV_P)
492{ 798{
493 int fd; 799 int fd;
494 800
495 for (fd = anfdmax; fd--; ) 801 for (fd = anfdmax; fd--; )
498 fd_kill (EV_A_ fd); 804 fd_kill (EV_A_ fd);
499 return; 805 return;
500 } 806 }
501} 807}
502 808
503/* usually called after fork if method needs to re-arm all fds from scratch */ 809/* usually called after fork if backend needs to re-arm all fds from scratch */
504static void 810static void noinline
505fd_rearm_all (EV_P) 811fd_rearm_all (EV_P)
506{ 812{
507 int fd; 813 int fd;
508 814
509 /* this should be highly optimised to not do anything but set a flag */
510 for (fd = 0; fd < anfdmax; ++fd) 815 for (fd = 0; fd < anfdmax; ++fd)
511 if (anfds [fd].events) 816 if (anfds [fd].events)
512 { 817 {
513 anfds [fd].events = 0; 818 anfds [fd].events = 0;
514 fd_change (EV_A_ fd); 819 fd_change (EV_A_ fd, EV_IOFDSET | 1);
515 } 820 }
516} 821}
517 822
518/*****************************************************************************/ 823/*****************************************************************************/
519 824
520static void 825/*
521upheap (WT *heap, int k) 826 * the heap functions want a real array index. array index 0 uis guaranteed to not
522{ 827 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
523 WT w = heap [k]; 828 * the branching factor of the d-tree.
829 */
524 830
525 while (k && heap [k >> 1]->at > w->at) 831/*
526 { 832 * at the moment we allow libev the luxury of two heaps,
527 heap [k] = heap [k >> 1]; 833 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
528 ((W)heap [k])->active = k + 1; 834 * which is more cache-efficient.
529 k >>= 1; 835 * the difference is about 5% with 50000+ watchers.
530 } 836 */
837#if EV_USE_4HEAP
531 838
532 heap [k] = w; 839#define DHEAP 4
533 ((W)heap [k])->active = k + 1; 840#define HEAP0 (DHEAP - 1) /* index of first element in heap */
841#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
842#define UPHEAP_DONE(p,k) ((p) == (k))
534 843
535} 844/* away from the root */
536 845void inline_speed
537static void
538downheap (WT *heap, int N, int k) 846downheap (ANHE *heap, int N, int k)
539{ 847{
540 WT w = heap [k]; 848 ANHE he = heap [k];
849 ANHE *E = heap + N + HEAP0;
541 850
542 while (k < (N >> 1)) 851 for (;;)
543 { 852 {
544 int j = k << 1; 853 ev_tstamp minat;
854 ANHE *minpos;
855 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
545 856
546 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 857 /* find minimum child */
858 if (expect_true (pos + DHEAP - 1 < E))
547 ++j; 859 {
548 860 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
549 if (w->at <= heap [j]->at) 861 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
862 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
863 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
864 }
865 else if (pos < E)
866 {
867 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
868 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
869 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
870 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
871 }
872 else
550 break; 873 break;
551 874
875 if (ANHE_at (he) <= minat)
876 break;
877
878 heap [k] = *minpos;
879 ev_active (ANHE_w (*minpos)) = k;
880
881 k = minpos - heap;
882 }
883
884 heap [k] = he;
885 ev_active (ANHE_w (he)) = k;
886}
887
888#else /* 4HEAP */
889
890#define HEAP0 1
891#define HPARENT(k) ((k) >> 1)
892#define UPHEAP_DONE(p,k) (!(p))
893
894/* away from the root */
895void inline_speed
896downheap (ANHE *heap, int N, int k)
897{
898 ANHE he = heap [k];
899
900 for (;;)
901 {
902 int c = k << 1;
903
904 if (c > N + HEAP0 - 1)
905 break;
906
907 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
908 ? 1 : 0;
909
910 if (ANHE_at (he) <= ANHE_at (heap [c]))
911 break;
912
552 heap [k] = heap [j]; 913 heap [k] = heap [c];
553 ((W)heap [k])->active = k + 1; 914 ev_active (ANHE_w (heap [k])) = k;
915
554 k = j; 916 k = c;
555 } 917 }
556 918
557 heap [k] = w; 919 heap [k] = he;
558 ((W)heap [k])->active = k + 1; 920 ev_active (ANHE_w (he)) = k;
559} 921}
922#endif
560 923
561inline void 924/* towards the root */
925void inline_speed
926upheap (ANHE *heap, int k)
927{
928 ANHE he = heap [k];
929
930 for (;;)
931 {
932 int p = HPARENT (k);
933
934 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
935 break;
936
937 heap [k] = heap [p];
938 ev_active (ANHE_w (heap [k])) = k;
939 k = p;
940 }
941
942 heap [k] = he;
943 ev_active (ANHE_w (he)) = k;
944}
945
946void inline_size
562adjustheap (WT *heap, int N, int k) 947adjustheap (ANHE *heap, int N, int k)
563{ 948{
949 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
564 upheap (heap, k); 950 upheap (heap, k);
951 else
565 downheap (heap, N, k); 952 downheap (heap, N, k);
953}
954
955/* rebuild the heap: this function is used only once and executed rarely */
956void inline_size
957reheap (ANHE *heap, int N)
958{
959 int i;
960
961 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
962 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
963 for (i = 0; i < N; ++i)
964 upheap (heap, i + HEAP0);
566} 965}
567 966
568/*****************************************************************************/ 967/*****************************************************************************/
569 968
570typedef struct 969typedef struct
571{ 970{
572 WL head; 971 WL head;
573 sig_atomic_t volatile gotsig; 972 EV_ATOMIC_T gotsig;
574} ANSIG; 973} ANSIG;
575 974
576static ANSIG *signals; 975static ANSIG *signals;
577static int signalmax; 976static int signalmax;
578 977
579static int sigpipe [2]; 978static EV_ATOMIC_T gotsig;
580static sig_atomic_t volatile gotsig;
581static struct ev_io sigev;
582 979
583static void 980void inline_size
584signals_init (ANSIG *base, int count) 981signals_init (ANSIG *base, int count)
585{ 982{
586 while (count--) 983 while (count--)
587 { 984 {
588 base->head = 0; 985 base->head = 0;
590 987
591 ++base; 988 ++base;
592 } 989 }
593} 990}
594 991
595static void 992/*****************************************************************************/
596sighandler (int signum)
597{
598#if _WIN32
599 signal (signum, sighandler);
600#endif
601 993
602 signals [signum - 1].gotsig = 1; 994void inline_speed
603
604 if (!gotsig)
605 {
606 int old_errno = errno;
607 gotsig = 1;
608 write (sigpipe [1], &signum, 1);
609 errno = old_errno;
610 }
611}
612
613void
614ev_feed_signal_event (EV_P_ int signum)
615{
616 WL w;
617
618#if EV_MULTIPLICITY
619 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
620#endif
621
622 --signum;
623
624 if (signum < 0 || signum >= signalmax)
625 return;
626
627 signals [signum].gotsig = 0;
628
629 for (w = signals [signum].head; w; w = w->next)
630 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
631}
632
633static void
634sigcb (EV_P_ struct ev_io *iow, int revents)
635{
636 int signum;
637
638 read (sigpipe [0], &revents, 1);
639 gotsig = 0;
640
641 for (signum = signalmax; signum--; )
642 if (signals [signum].gotsig)
643 ev_feed_signal_event (EV_A_ signum + 1);
644}
645
646inline void
647fd_intern (int fd) 995fd_intern (int fd)
648{ 996{
649#ifdef _WIN32 997#ifdef _WIN32
650 int arg = 1; 998 unsigned long arg = 1;
651 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 999 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
652#else 1000#else
653 fcntl (fd, F_SETFD, FD_CLOEXEC); 1001 fcntl (fd, F_SETFD, FD_CLOEXEC);
654 fcntl (fd, F_SETFL, O_NONBLOCK); 1002 fcntl (fd, F_SETFL, O_NONBLOCK);
655#endif 1003#endif
656} 1004}
657 1005
1006static void noinline
1007evpipe_init (EV_P)
1008{
1009 if (!ev_is_active (&pipeev))
1010 {
1011#if EV_USE_EVENTFD
1012 if ((evfd = eventfd (0, 0)) >= 0)
1013 {
1014 evpipe [0] = -1;
1015 fd_intern (evfd);
1016 ev_io_set (&pipeev, evfd, EV_READ);
1017 }
1018 else
1019#endif
1020 {
1021 while (pipe (evpipe))
1022 syserr ("(libev) error creating signal/async pipe");
1023
1024 fd_intern (evpipe [0]);
1025 fd_intern (evpipe [1]);
1026 ev_io_set (&pipeev, evpipe [0], EV_READ);
1027 }
1028
1029 ev_io_start (EV_A_ &pipeev);
1030 ev_unref (EV_A); /* watcher should not keep loop alive */
1031 }
1032}
1033
1034void inline_size
1035evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1036{
1037 if (!*flag)
1038 {
1039 int old_errno = errno; /* save errno because write might clobber it */
1040
1041 *flag = 1;
1042
1043#if EV_USE_EVENTFD
1044 if (evfd >= 0)
1045 {
1046 uint64_t counter = 1;
1047 write (evfd, &counter, sizeof (uint64_t));
1048 }
1049 else
1050#endif
1051 write (evpipe [1], &old_errno, 1);
1052
1053 errno = old_errno;
1054 }
1055}
1056
658static void 1057static void
659siginit (EV_P) 1058pipecb (EV_P_ ev_io *iow, int revents)
660{ 1059{
661 fd_intern (sigpipe [0]); 1060#if EV_USE_EVENTFD
662 fd_intern (sigpipe [1]); 1061 if (evfd >= 0)
1062 {
1063 uint64_t counter;
1064 read (evfd, &counter, sizeof (uint64_t));
1065 }
1066 else
1067#endif
1068 {
1069 char dummy;
1070 read (evpipe [0], &dummy, 1);
1071 }
663 1072
664 ev_io_set (&sigev, sigpipe [0], EV_READ); 1073 if (gotsig && ev_is_default_loop (EV_A))
665 ev_io_start (EV_A_ &sigev); 1074 {
666 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1075 int signum;
1076 gotsig = 0;
1077
1078 for (signum = signalmax; signum--; )
1079 if (signals [signum].gotsig)
1080 ev_feed_signal_event (EV_A_ signum + 1);
1081 }
1082
1083#if EV_ASYNC_ENABLE
1084 if (gotasync)
1085 {
1086 int i;
1087 gotasync = 0;
1088
1089 for (i = asynccnt; i--; )
1090 if (asyncs [i]->sent)
1091 {
1092 asyncs [i]->sent = 0;
1093 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1094 }
1095 }
1096#endif
667} 1097}
668 1098
669/*****************************************************************************/ 1099/*****************************************************************************/
670 1100
671static struct ev_child *childs [PID_HASHSIZE]; 1101static void
1102ev_sighandler (int signum)
1103{
1104#if EV_MULTIPLICITY
1105 struct ev_loop *loop = &default_loop_struct;
1106#endif
1107
1108#if _WIN32
1109 signal (signum, ev_sighandler);
1110#endif
1111
1112 signals [signum - 1].gotsig = 1;
1113 evpipe_write (EV_A_ &gotsig);
1114}
1115
1116void noinline
1117ev_feed_signal_event (EV_P_ int signum)
1118{
1119 WL w;
1120
1121#if EV_MULTIPLICITY
1122 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1123#endif
1124
1125 --signum;
1126
1127 if (signum < 0 || signum >= signalmax)
1128 return;
1129
1130 signals [signum].gotsig = 0;
1131
1132 for (w = signals [signum].head; w; w = w->next)
1133 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1134}
1135
1136/*****************************************************************************/
1137
1138static WL childs [EV_PID_HASHSIZE];
672 1139
673#ifndef _WIN32 1140#ifndef _WIN32
674 1141
675static struct ev_signal childev; 1142static ev_signal childev;
1143
1144#ifndef WIFCONTINUED
1145# define WIFCONTINUED(status) 0
1146#endif
1147
1148void inline_speed
1149child_reap (EV_P_ int chain, int pid, int status)
1150{
1151 ev_child *w;
1152 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1153
1154 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1155 {
1156 if ((w->pid == pid || !w->pid)
1157 && (!traced || (w->flags & 1)))
1158 {
1159 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1160 w->rpid = pid;
1161 w->rstatus = status;
1162 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1163 }
1164 }
1165}
676 1166
677#ifndef WCONTINUED 1167#ifndef WCONTINUED
678# define WCONTINUED 0 1168# define WCONTINUED 0
679#endif 1169#endif
680 1170
681static void 1171static void
682child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
683{
684 struct ev_child *w;
685
686 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
687 if (w->pid == pid || !w->pid)
688 {
689 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
690 w->rpid = pid;
691 w->rstatus = status;
692 ev_feed_event (EV_A_ (W)w, EV_CHILD);
693 }
694}
695
696static void
697childcb (EV_P_ struct ev_signal *sw, int revents) 1172childcb (EV_P_ ev_signal *sw, int revents)
698{ 1173{
699 int pid, status; 1174 int pid, status;
700 1175
1176 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
701 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1177 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
702 { 1178 if (!WCONTINUED
1179 || errno != EINVAL
1180 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1181 return;
1182
703 /* make sure we are called again until all childs have been reaped */ 1183 /* make sure we are called again until all children have been reaped */
1184 /* we need to do it this way so that the callback gets called before we continue */
704 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1185 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
705 1186
706 child_reap (EV_A_ sw, pid, pid, status); 1187 child_reap (EV_A_ pid, pid, status);
1188 if (EV_PID_HASHSIZE > 1)
707 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1189 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
708 }
709} 1190}
710 1191
711#endif 1192#endif
712 1193
713/*****************************************************************************/ 1194/*****************************************************************************/
714 1195
1196#if EV_USE_PORT
1197# include "ev_port.c"
1198#endif
715#if EV_USE_KQUEUE 1199#if EV_USE_KQUEUE
716# include "ev_kqueue.c" 1200# include "ev_kqueue.c"
717#endif 1201#endif
718#if EV_USE_EPOLL 1202#if EV_USE_EPOLL
719# include "ev_epoll.c" 1203# include "ev_epoll.c"
736{ 1220{
737 return EV_VERSION_MINOR; 1221 return EV_VERSION_MINOR;
738} 1222}
739 1223
740/* return true if we are running with elevated privileges and should ignore env variables */ 1224/* return true if we are running with elevated privileges and should ignore env variables */
741static int 1225int inline_size
742enable_secure (void) 1226enable_secure (void)
743{ 1227{
744#ifdef _WIN32 1228#ifdef _WIN32
745 return 0; 1229 return 0;
746#else 1230#else
748 || getgid () != getegid (); 1232 || getgid () != getegid ();
749#endif 1233#endif
750} 1234}
751 1235
752unsigned int 1236unsigned int
753ev_method (EV_P) 1237ev_supported_backends (void)
754{ 1238{
755 return method; 1239 unsigned int flags = 0;
756}
757 1240
758static void 1241 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1242 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1243 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1244 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1245 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1246
1247 return flags;
1248}
1249
1250unsigned int
1251ev_recommended_backends (void)
1252{
1253 unsigned int flags = ev_supported_backends ();
1254
1255#ifndef __NetBSD__
1256 /* kqueue is borked on everything but netbsd apparently */
1257 /* it usually doesn't work correctly on anything but sockets and pipes */
1258 flags &= ~EVBACKEND_KQUEUE;
1259#endif
1260#ifdef __APPLE__
1261 // flags &= ~EVBACKEND_KQUEUE; for documentation
1262 flags &= ~EVBACKEND_POLL;
1263#endif
1264
1265 return flags;
1266}
1267
1268unsigned int
1269ev_embeddable_backends (void)
1270{
1271 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1272
1273 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1274 /* please fix it and tell me how to detect the fix */
1275 flags &= ~EVBACKEND_EPOLL;
1276
1277 return flags;
1278}
1279
1280unsigned int
1281ev_backend (EV_P)
1282{
1283 return backend;
1284}
1285
1286unsigned int
1287ev_loop_count (EV_P)
1288{
1289 return loop_count;
1290}
1291
1292void
1293ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1294{
1295 io_blocktime = interval;
1296}
1297
1298void
1299ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1300{
1301 timeout_blocktime = interval;
1302}
1303
1304static void noinline
759loop_init (EV_P_ unsigned int flags) 1305loop_init (EV_P_ unsigned int flags)
760{ 1306{
761 if (!method) 1307 if (!backend)
762 { 1308 {
763#if EV_USE_MONOTONIC 1309#if EV_USE_MONOTONIC
764 { 1310 {
765 struct timespec ts; 1311 struct timespec ts;
766 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1312 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
767 have_monotonic = 1; 1313 have_monotonic = 1;
768 } 1314 }
769#endif 1315#endif
770 1316
771 ev_rt_now = ev_time (); 1317 ev_rt_now = ev_time ();
772 mn_now = get_clock (); 1318 mn_now = get_clock ();
773 now_floor = mn_now; 1319 now_floor = mn_now;
774 rtmn_diff = ev_rt_now - mn_now; 1320 rtmn_diff = ev_rt_now - mn_now;
775 1321
776 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1322 io_blocktime = 0.;
1323 timeout_blocktime = 0.;
1324 backend = 0;
1325 backend_fd = -1;
1326 gotasync = 0;
1327#if EV_USE_INOTIFY
1328 fs_fd = -2;
1329#endif
1330
1331 /* pid check not overridable via env */
1332#ifndef _WIN32
1333 if (flags & EVFLAG_FORKCHECK)
1334 curpid = getpid ();
1335#endif
1336
1337 if (!(flags & EVFLAG_NOENV)
1338 && !enable_secure ()
1339 && getenv ("LIBEV_FLAGS"))
777 flags = atoi (getenv ("LIBEV_FLAGS")); 1340 flags = atoi (getenv ("LIBEV_FLAGS"));
778 1341
779 if (!(flags & 0x0000ffff)) 1342 if (!(flags & 0x0000ffffU))
780 flags |= 0x0000ffff; 1343 flags |= ev_recommended_backends ();
781 1344
782 method = 0; 1345#if EV_USE_PORT
1346 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1347#endif
783#if EV_USE_KQUEUE 1348#if EV_USE_KQUEUE
784 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 1349 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
785#endif 1350#endif
786#if EV_USE_EPOLL 1351#if EV_USE_EPOLL
787 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 1352 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
788#endif 1353#endif
789#if EV_USE_POLL 1354#if EV_USE_POLL
790 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 1355 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
791#endif 1356#endif
792#if EV_USE_SELECT 1357#if EV_USE_SELECT
793 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 1358 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
794#endif 1359#endif
795 1360
796 ev_init (&sigev, sigcb); 1361 ev_init (&pipeev, pipecb);
797 ev_set_priority (&sigev, EV_MAXPRI); 1362 ev_set_priority (&pipeev, EV_MAXPRI);
798 } 1363 }
799} 1364}
800 1365
801void 1366static void noinline
802loop_destroy (EV_P) 1367loop_destroy (EV_P)
803{ 1368{
804 int i; 1369 int i;
805 1370
1371 if (ev_is_active (&pipeev))
1372 {
1373 ev_ref (EV_A); /* signal watcher */
1374 ev_io_stop (EV_A_ &pipeev);
1375
1376#if EV_USE_EVENTFD
1377 if (evfd >= 0)
1378 close (evfd);
1379#endif
1380
1381 if (evpipe [0] >= 0)
1382 {
1383 close (evpipe [0]);
1384 close (evpipe [1]);
1385 }
1386 }
1387
1388#if EV_USE_INOTIFY
1389 if (fs_fd >= 0)
1390 close (fs_fd);
1391#endif
1392
1393 if (backend_fd >= 0)
1394 close (backend_fd);
1395
1396#if EV_USE_PORT
1397 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1398#endif
806#if EV_USE_KQUEUE 1399#if EV_USE_KQUEUE
807 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1400 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
808#endif 1401#endif
809#if EV_USE_EPOLL 1402#if EV_USE_EPOLL
810 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1403 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
811#endif 1404#endif
812#if EV_USE_POLL 1405#if EV_USE_POLL
813 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1406 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
814#endif 1407#endif
815#if EV_USE_SELECT 1408#if EV_USE_SELECT
816 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1409 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
817#endif 1410#endif
818 1411
819 for (i = NUMPRI; i--; ) 1412 for (i = NUMPRI; i--; )
1413 {
820 array_free (pending, [i]); 1414 array_free (pending, [i]);
1415#if EV_IDLE_ENABLE
1416 array_free (idle, [i]);
1417#endif
1418 }
1419
1420 ev_free (anfds); anfdmax = 0;
821 1421
822 /* have to use the microsoft-never-gets-it-right macro */ 1422 /* have to use the microsoft-never-gets-it-right macro */
823 array_free (fdchange, EMPTY0); 1423 array_free (fdchange, EMPTY);
824 array_free (timer, EMPTY0); 1424 array_free (timer, EMPTY);
825#if EV_PERIODICS 1425#if EV_PERIODIC_ENABLE
826 array_free (periodic, EMPTY0); 1426 array_free (periodic, EMPTY);
827#endif 1427#endif
1428#if EV_FORK_ENABLE
828 array_free (idle, EMPTY0); 1429 array_free (fork, EMPTY);
1430#endif
829 array_free (prepare, EMPTY0); 1431 array_free (prepare, EMPTY);
830 array_free (check, EMPTY0); 1432 array_free (check, EMPTY);
1433#if EV_ASYNC_ENABLE
1434 array_free (async, EMPTY);
1435#endif
831 1436
832 method = 0; 1437 backend = 0;
833} 1438}
834 1439
835static void 1440#if EV_USE_INOTIFY
1441void inline_size infy_fork (EV_P);
1442#endif
1443
1444void inline_size
836loop_fork (EV_P) 1445loop_fork (EV_P)
837{ 1446{
1447#if EV_USE_PORT
1448 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1449#endif
1450#if EV_USE_KQUEUE
1451 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1452#endif
838#if EV_USE_EPOLL 1453#if EV_USE_EPOLL
839 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1454 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
840#endif 1455#endif
841#if EV_USE_KQUEUE 1456#if EV_USE_INOTIFY
842 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1457 infy_fork (EV_A);
843#endif 1458#endif
844 1459
845 if (ev_is_active (&sigev)) 1460 if (ev_is_active (&pipeev))
846 { 1461 {
847 /* default loop */ 1462 /* this "locks" the handlers against writing to the pipe */
1463 /* while we modify the fd vars */
1464 gotsig = 1;
1465#if EV_ASYNC_ENABLE
1466 gotasync = 1;
1467#endif
848 1468
849 ev_ref (EV_A); 1469 ev_ref (EV_A);
850 ev_io_stop (EV_A_ &sigev); 1470 ev_io_stop (EV_A_ &pipeev);
1471
1472#if EV_USE_EVENTFD
1473 if (evfd >= 0)
1474 close (evfd);
1475#endif
1476
1477 if (evpipe [0] >= 0)
1478 {
851 close (sigpipe [0]); 1479 close (evpipe [0]);
852 close (sigpipe [1]); 1480 close (evpipe [1]);
1481 }
853 1482
854 while (pipe (sigpipe))
855 syserr ("(libev) error creating pipe");
856
857 siginit (EV_A); 1483 evpipe_init (EV_A);
1484 /* now iterate over everything, in case we missed something */
1485 pipecb (EV_A_ &pipeev, EV_READ);
858 } 1486 }
859 1487
860 postfork = 0; 1488 postfork = 0;
861} 1489}
1490
1491#if EV_MULTIPLICITY
1492
1493struct ev_loop *
1494ev_loop_new (unsigned int flags)
1495{
1496 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1497
1498 memset (loop, 0, sizeof (struct ev_loop));
1499
1500 loop_init (EV_A_ flags);
1501
1502 if (ev_backend (EV_A))
1503 return loop;
1504
1505 return 0;
1506}
1507
1508void
1509ev_loop_destroy (EV_P)
1510{
1511 loop_destroy (EV_A);
1512 ev_free (loop);
1513}
1514
1515void
1516ev_loop_fork (EV_P)
1517{
1518 postfork = 1; /* must be in line with ev_default_fork */
1519}
1520
1521#if EV_VERIFY
1522static void noinline
1523verify_watcher (EV_P_ W w)
1524{
1525 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1526
1527 if (w->pending)
1528 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1529}
1530
1531static void noinline
1532verify_heap (EV_P_ ANHE *heap, int N)
1533{
1534 int i;
1535
1536 for (i = HEAP0; i < N + HEAP0; ++i)
1537 {
1538 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1539 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1540 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1541
1542 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1543 }
1544}
1545
1546static void noinline
1547array_verify (EV_P_ W *ws, int cnt)
1548{
1549 while (cnt--)
1550 {
1551 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1552 verify_watcher (EV_A_ ws [cnt]);
1553 }
1554}
1555#endif
1556
1557void
1558ev_loop_verify (EV_P)
1559{
1560#if EV_VERIFY
1561 int i;
1562 WL w;
1563
1564 assert (activecnt >= -1);
1565
1566 assert (fdchangemax >= fdchangecnt);
1567 for (i = 0; i < fdchangecnt; ++i)
1568 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1569
1570 assert (anfdmax >= 0);
1571 for (i = 0; i < anfdmax; ++i)
1572 for (w = anfds [i].head; w; w = w->next)
1573 {
1574 verify_watcher (EV_A_ (W)w);
1575 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1576 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1577 }
1578
1579 assert (timermax >= timercnt);
1580 verify_heap (EV_A_ timers, timercnt);
1581
1582#if EV_PERIODIC_ENABLE
1583 assert (periodicmax >= periodiccnt);
1584 verify_heap (EV_A_ periodics, periodiccnt);
1585#endif
1586
1587 for (i = NUMPRI; i--; )
1588 {
1589 assert (pendingmax [i] >= pendingcnt [i]);
1590#if EV_IDLE_ENABLE
1591 assert (idleall >= 0);
1592 assert (idlemax [i] >= idlecnt [i]);
1593 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1594#endif
1595 }
1596
1597#if EV_FORK_ENABLE
1598 assert (forkmax >= forkcnt);
1599 array_verify (EV_A_ (W *)forks, forkcnt);
1600#endif
1601
1602#if EV_ASYNC_ENABLE
1603 assert (asyncmax >= asynccnt);
1604 array_verify (EV_A_ (W *)asyncs, asynccnt);
1605#endif
1606
1607 assert (preparemax >= preparecnt);
1608 array_verify (EV_A_ (W *)prepares, preparecnt);
1609
1610 assert (checkmax >= checkcnt);
1611 array_verify (EV_A_ (W *)checks, checkcnt);
1612
1613# if 0
1614 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1615 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1616# endif
1617#endif
1618}
1619
1620#endif /* multiplicity */
862 1621
863#if EV_MULTIPLICITY 1622#if EV_MULTIPLICITY
864struct ev_loop * 1623struct ev_loop *
865ev_loop_new (unsigned int flags) 1624ev_default_loop_init (unsigned int flags)
866{
867 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
868
869 memset (loop, 0, sizeof (struct ev_loop));
870
871 loop_init (EV_A_ flags);
872
873 if (ev_method (EV_A))
874 return loop;
875
876 return 0;
877}
878
879void
880ev_loop_destroy (EV_P)
881{
882 loop_destroy (EV_A);
883 ev_free (loop);
884}
885
886void
887ev_loop_fork (EV_P)
888{
889 postfork = 1;
890}
891
892#endif
893
894#if EV_MULTIPLICITY
895struct ev_loop *
896#else 1625#else
897int 1626int
898#endif
899ev_default_loop (unsigned int flags) 1627ev_default_loop (unsigned int flags)
1628#endif
900{ 1629{
901 if (sigpipe [0] == sigpipe [1])
902 if (pipe (sigpipe))
903 return 0;
904
905 if (!default_loop) 1630 if (!ev_default_loop_ptr)
906 { 1631 {
907#if EV_MULTIPLICITY 1632#if EV_MULTIPLICITY
908 struct ev_loop *loop = default_loop = &default_loop_struct; 1633 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
909#else 1634#else
910 default_loop = 1; 1635 ev_default_loop_ptr = 1;
911#endif 1636#endif
912 1637
913 loop_init (EV_A_ flags); 1638 loop_init (EV_A_ flags);
914 1639
915 if (ev_method (EV_A)) 1640 if (ev_backend (EV_A))
916 { 1641 {
917 siginit (EV_A);
918
919#ifndef _WIN32 1642#ifndef _WIN32
920 ev_signal_init (&childev, childcb, SIGCHLD); 1643 ev_signal_init (&childev, childcb, SIGCHLD);
921 ev_set_priority (&childev, EV_MAXPRI); 1644 ev_set_priority (&childev, EV_MAXPRI);
922 ev_signal_start (EV_A_ &childev); 1645 ev_signal_start (EV_A_ &childev);
923 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1646 ev_unref (EV_A); /* child watcher should not keep loop alive */
924#endif 1647#endif
925 } 1648 }
926 else 1649 else
927 default_loop = 0; 1650 ev_default_loop_ptr = 0;
928 } 1651 }
929 1652
930 return default_loop; 1653 return ev_default_loop_ptr;
931} 1654}
932 1655
933void 1656void
934ev_default_destroy (void) 1657ev_default_destroy (void)
935{ 1658{
936#if EV_MULTIPLICITY 1659#if EV_MULTIPLICITY
937 struct ev_loop *loop = default_loop; 1660 struct ev_loop *loop = ev_default_loop_ptr;
938#endif 1661#endif
939 1662
940#ifndef _WIN32 1663#ifndef _WIN32
941 ev_ref (EV_A); /* child watcher */ 1664 ev_ref (EV_A); /* child watcher */
942 ev_signal_stop (EV_A_ &childev); 1665 ev_signal_stop (EV_A_ &childev);
943#endif 1666#endif
944 1667
945 ev_ref (EV_A); /* signal watcher */
946 ev_io_stop (EV_A_ &sigev);
947
948 close (sigpipe [0]); sigpipe [0] = 0;
949 close (sigpipe [1]); sigpipe [1] = 0;
950
951 loop_destroy (EV_A); 1668 loop_destroy (EV_A);
952} 1669}
953 1670
954void 1671void
955ev_default_fork (void) 1672ev_default_fork (void)
956{ 1673{
957#if EV_MULTIPLICITY 1674#if EV_MULTIPLICITY
958 struct ev_loop *loop = default_loop; 1675 struct ev_loop *loop = ev_default_loop_ptr;
959#endif 1676#endif
960 1677
961 if (method) 1678 if (backend)
962 postfork = 1; 1679 postfork = 1; /* must be in line with ev_loop_fork */
963} 1680}
964 1681
965/*****************************************************************************/ 1682/*****************************************************************************/
966 1683
967static int 1684void
968any_pending (EV_P) 1685ev_invoke (EV_P_ void *w, int revents)
969{ 1686{
970 int pri; 1687 EV_CB_INVOKE ((W)w, revents);
971
972 for (pri = NUMPRI; pri--; )
973 if (pendingcnt [pri])
974 return 1;
975
976 return 0;
977} 1688}
978 1689
979static void 1690void inline_speed
980call_pending (EV_P) 1691call_pending (EV_P)
981{ 1692{
982 int pri; 1693 int pri;
983 1694
984 for (pri = NUMPRI; pri--; ) 1695 for (pri = NUMPRI; pri--; )
985 while (pendingcnt [pri]) 1696 while (pendingcnt [pri])
986 { 1697 {
987 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1698 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
988 1699
989 if (p->w) 1700 if (expect_true (p->w))
990 { 1701 {
1702 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1703
991 p->w->pending = 0; 1704 p->w->pending = 0;
992 EV_CB_INVOKE (p->w, p->events); 1705 EV_CB_INVOKE (p->w, p->events);
1706 EV_FREQUENT_CHECK;
993 } 1707 }
994 } 1708 }
995} 1709}
996 1710
997static void 1711#if EV_IDLE_ENABLE
1712void inline_size
1713idle_reify (EV_P)
1714{
1715 if (expect_false (idleall))
1716 {
1717 int pri;
1718
1719 for (pri = NUMPRI; pri--; )
1720 {
1721 if (pendingcnt [pri])
1722 break;
1723
1724 if (idlecnt [pri])
1725 {
1726 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1727 break;
1728 }
1729 }
1730 }
1731}
1732#endif
1733
1734void inline_size
998timers_reify (EV_P) 1735timers_reify (EV_P)
999{ 1736{
1737 EV_FREQUENT_CHECK;
1738
1000 while (timercnt && ((WT)timers [0])->at <= mn_now) 1739 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1001 { 1740 {
1002 struct ev_timer *w = timers [0]; 1741 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1003 1742
1004 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1743 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1005 1744
1006 /* first reschedule or stop timer */ 1745 /* first reschedule or stop timer */
1007 if (w->repeat) 1746 if (w->repeat)
1008 { 1747 {
1748 ev_at (w) += w->repeat;
1749 if (ev_at (w) < mn_now)
1750 ev_at (w) = mn_now;
1751
1009 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1752 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1010 1753
1011 ((WT)w)->at += w->repeat; 1754 ANHE_at_cache (timers [HEAP0]);
1012 if (((WT)w)->at < mn_now)
1013 ((WT)w)->at = mn_now;
1014
1015 downheap ((WT *)timers, timercnt, 0); 1755 downheap (timers, timercnt, HEAP0);
1016 } 1756 }
1017 else 1757 else
1018 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1758 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1019 1759
1760 EV_FREQUENT_CHECK;
1020 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1761 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1021 } 1762 }
1022} 1763}
1023 1764
1024#if EV_PERIODICS 1765#if EV_PERIODIC_ENABLE
1025static void 1766void inline_size
1026periodics_reify (EV_P) 1767periodics_reify (EV_P)
1027{ 1768{
1769 EV_FREQUENT_CHECK;
1770
1028 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1771 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1029 { 1772 {
1030 struct ev_periodic *w = periodics [0]; 1773 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1031 1774
1032 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1775 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1033 1776
1034 /* first reschedule or stop timer */ 1777 /* first reschedule or stop timer */
1035 if (w->reschedule_cb) 1778 if (w->reschedule_cb)
1036 { 1779 {
1037 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1780 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1781
1038 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1782 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1783
1784 ANHE_at_cache (periodics [HEAP0]);
1039 downheap ((WT *)periodics, periodiccnt, 0); 1785 downheap (periodics, periodiccnt, HEAP0);
1040 } 1786 }
1041 else if (w->interval) 1787 else if (w->interval)
1042 { 1788 {
1043 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1789 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1044 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1790 /* if next trigger time is not sufficiently in the future, put it there */
1791 /* this might happen because of floating point inexactness */
1792 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1793 {
1794 ev_at (w) += w->interval;
1795
1796 /* if interval is unreasonably low we might still have a time in the past */
1797 /* so correct this. this will make the periodic very inexact, but the user */
1798 /* has effectively asked to get triggered more often than possible */
1799 if (ev_at (w) < ev_rt_now)
1800 ev_at (w) = ev_rt_now;
1801 }
1802
1803 ANHE_at_cache (periodics [HEAP0]);
1045 downheap ((WT *)periodics, periodiccnt, 0); 1804 downheap (periodics, periodiccnt, HEAP0);
1046 } 1805 }
1047 else 1806 else
1048 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1807 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1049 1808
1809 EV_FREQUENT_CHECK;
1050 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1810 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1051 } 1811 }
1052} 1812}
1053 1813
1054static void 1814static void noinline
1055periodics_reschedule (EV_P) 1815periodics_reschedule (EV_P)
1056{ 1816{
1057 int i; 1817 int i;
1058 1818
1059 /* adjust periodics after time jump */ 1819 /* adjust periodics after time jump */
1060 for (i = 0; i < periodiccnt; ++i) 1820 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1061 { 1821 {
1062 struct ev_periodic *w = periodics [i]; 1822 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1063 1823
1064 if (w->reschedule_cb) 1824 if (w->reschedule_cb)
1065 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1825 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1066 else if (w->interval) 1826 else if (w->interval)
1067 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1827 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1828
1829 ANHE_at_cache (periodics [i]);
1830 }
1831
1832 reheap (periodics, periodiccnt);
1833}
1834#endif
1835
1836void inline_speed
1837time_update (EV_P_ ev_tstamp max_block)
1838{
1839 int i;
1840
1841#if EV_USE_MONOTONIC
1842 if (expect_true (have_monotonic))
1068 } 1843 {
1844 ev_tstamp odiff = rtmn_diff;
1069 1845
1070 /* now rebuild the heap */
1071 for (i = periodiccnt >> 1; i--; )
1072 downheap ((WT *)periodics, periodiccnt, i);
1073}
1074#endif
1075
1076inline int
1077time_update_monotonic (EV_P)
1078{
1079 mn_now = get_clock (); 1846 mn_now = get_clock ();
1080 1847
1848 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1849 /* interpolate in the meantime */
1081 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1850 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1082 { 1851 {
1083 ev_rt_now = rtmn_diff + mn_now; 1852 ev_rt_now = rtmn_diff + mn_now;
1084 return 0; 1853 return;
1085 } 1854 }
1086 else 1855
1087 {
1088 now_floor = mn_now; 1856 now_floor = mn_now;
1089 ev_rt_now = ev_time (); 1857 ev_rt_now = ev_time ();
1090 return 1;
1091 }
1092}
1093 1858
1094static void 1859 /* loop a few times, before making important decisions.
1095time_update (EV_P) 1860 * on the choice of "4": one iteration isn't enough,
1096{ 1861 * in case we get preempted during the calls to
1097 int i; 1862 * ev_time and get_clock. a second call is almost guaranteed
1098 1863 * to succeed in that case, though. and looping a few more times
1099#if EV_USE_MONOTONIC 1864 * doesn't hurt either as we only do this on time-jumps or
1100 if (expect_true (have_monotonic)) 1865 * in the unlikely event of having been preempted here.
1101 { 1866 */
1102 if (time_update_monotonic (EV_A)) 1867 for (i = 4; --i; )
1103 { 1868 {
1104 ev_tstamp odiff = rtmn_diff; 1869 rtmn_diff = ev_rt_now - mn_now;
1105 1870
1106 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1871 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1872 return; /* all is well */
1873
1874 ev_rt_now = ev_time ();
1875 mn_now = get_clock ();
1876 now_floor = mn_now;
1877 }
1878
1879# if EV_PERIODIC_ENABLE
1880 periodics_reschedule (EV_A);
1881# endif
1882 /* no timer adjustment, as the monotonic clock doesn't jump */
1883 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1884 }
1885 else
1886#endif
1887 {
1888 ev_rt_now = ev_time ();
1889
1890 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1891 {
1892#if EV_PERIODIC_ENABLE
1893 periodics_reschedule (EV_A);
1894#endif
1895 /* adjust timers. this is easy, as the offset is the same for all of them */
1896 for (i = 0; i < timercnt; ++i)
1107 { 1897 {
1108 rtmn_diff = ev_rt_now - mn_now; 1898 ANHE *he = timers + i + HEAP0;
1109 1899 ANHE_w (*he)->at += ev_rt_now - mn_now;
1110 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1900 ANHE_at_cache (*he);
1111 return; /* all is well */
1112
1113 ev_rt_now = ev_time ();
1114 mn_now = get_clock ();
1115 now_floor = mn_now;
1116 } 1901 }
1117
1118# if EV_PERIODICS
1119 periodics_reschedule (EV_A);
1120# endif
1121 /* no timer adjustment, as the monotonic clock doesn't jump */
1122 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1123 } 1902 }
1124 }
1125 else
1126#endif
1127 {
1128 ev_rt_now = ev_time ();
1129
1130 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1131 {
1132#if EV_PERIODICS
1133 periodics_reschedule (EV_A);
1134#endif
1135
1136 /* adjust timers. this is easy, as the offset is the same for all */
1137 for (i = 0; i < timercnt; ++i)
1138 ((WT)timers [i])->at += ev_rt_now - mn_now;
1139 }
1140 1903
1141 mn_now = ev_rt_now; 1904 mn_now = ev_rt_now;
1142 } 1905 }
1143} 1906}
1144 1907
1152ev_unref (EV_P) 1915ev_unref (EV_P)
1153{ 1916{
1154 --activecnt; 1917 --activecnt;
1155} 1918}
1156 1919
1920void
1921ev_now_update (EV_P)
1922{
1923 time_update (EV_A_ 1e100);
1924}
1925
1157static int loop_done; 1926static int loop_done;
1158 1927
1159void 1928void
1160ev_loop (EV_P_ int flags) 1929ev_loop (EV_P_ int flags)
1161{ 1930{
1162 double block; 1931 loop_done = EVUNLOOP_CANCEL;
1163 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1164 1932
1165 while (activecnt) 1933 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1934
1935 do
1166 { 1936 {
1937#if EV_VERIFY >= 2
1938 ev_loop_verify (EV_A);
1939#endif
1940
1941#ifndef _WIN32
1942 if (expect_false (curpid)) /* penalise the forking check even more */
1943 if (expect_false (getpid () != curpid))
1944 {
1945 curpid = getpid ();
1946 postfork = 1;
1947 }
1948#endif
1949
1950#if EV_FORK_ENABLE
1951 /* we might have forked, so queue fork handlers */
1952 if (expect_false (postfork))
1953 if (forkcnt)
1954 {
1955 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1956 call_pending (EV_A);
1957 }
1958#endif
1959
1167 /* queue check watchers (and execute them) */ 1960 /* queue prepare watchers (and execute them) */
1168 if (expect_false (preparecnt)) 1961 if (expect_false (preparecnt))
1169 { 1962 {
1170 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1963 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1171 call_pending (EV_A); 1964 call_pending (EV_A);
1172 } 1965 }
1173 1966
1967 if (expect_false (!activecnt))
1968 break;
1969
1174 /* we might have forked, so reify kernel state if necessary */ 1970 /* we might have forked, so reify kernel state if necessary */
1175 if (expect_false (postfork)) 1971 if (expect_false (postfork))
1176 loop_fork (EV_A); 1972 loop_fork (EV_A);
1177 1973
1178 /* update fd-related kernel structures */ 1974 /* update fd-related kernel structures */
1179 fd_reify (EV_A); 1975 fd_reify (EV_A);
1180 1976
1181 /* calculate blocking time */ 1977 /* calculate blocking time */
1978 {
1979 ev_tstamp waittime = 0.;
1980 ev_tstamp sleeptime = 0.;
1182 1981
1183 /* we only need this for !monotonic clock or timers, but as we basically 1982 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1184 always have timers, we just calculate it always */
1185#if EV_USE_MONOTONIC
1186 if (expect_true (have_monotonic))
1187 time_update_monotonic (EV_A);
1188 else
1189#endif
1190 { 1983 {
1191 ev_rt_now = ev_time (); 1984 /* update time to cancel out callback processing overhead */
1192 mn_now = ev_rt_now; 1985 time_update (EV_A_ 1e100);
1193 }
1194 1986
1195 if (flags & EVLOOP_NONBLOCK || idlecnt)
1196 block = 0.;
1197 else
1198 {
1199 block = MAX_BLOCKTIME; 1987 waittime = MAX_BLOCKTIME;
1200 1988
1201 if (timercnt) 1989 if (timercnt)
1202 { 1990 {
1203 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1991 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1204 if (block > to) block = to; 1992 if (waittime > to) waittime = to;
1205 } 1993 }
1206 1994
1207#if EV_PERIODICS 1995#if EV_PERIODIC_ENABLE
1208 if (periodiccnt) 1996 if (periodiccnt)
1209 { 1997 {
1210 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1998 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1211 if (block > to) block = to; 1999 if (waittime > to) waittime = to;
1212 } 2000 }
1213#endif 2001#endif
1214 2002
1215 if (block < 0.) block = 0.; 2003 if (expect_false (waittime < timeout_blocktime))
2004 waittime = timeout_blocktime;
2005
2006 sleeptime = waittime - backend_fudge;
2007
2008 if (expect_true (sleeptime > io_blocktime))
2009 sleeptime = io_blocktime;
2010
2011 if (sleeptime)
2012 {
2013 ev_sleep (sleeptime);
2014 waittime -= sleeptime;
2015 }
1216 } 2016 }
1217 2017
1218 method_poll (EV_A_ block); 2018 ++loop_count;
2019 backend_poll (EV_A_ waittime);
1219 2020
1220 /* update ev_rt_now, do magic */ 2021 /* update ev_rt_now, do magic */
1221 time_update (EV_A); 2022 time_update (EV_A_ waittime + sleeptime);
2023 }
1222 2024
1223 /* queue pending timers and reschedule them */ 2025 /* queue pending timers and reschedule them */
1224 timers_reify (EV_A); /* relative timers called last */ 2026 timers_reify (EV_A); /* relative timers called last */
1225#if EV_PERIODICS 2027#if EV_PERIODIC_ENABLE
1226 periodics_reify (EV_A); /* absolute timers called first */ 2028 periodics_reify (EV_A); /* absolute timers called first */
1227#endif 2029#endif
1228 2030
2031#if EV_IDLE_ENABLE
1229 /* queue idle watchers unless io or timers are pending */ 2032 /* queue idle watchers unless other events are pending */
1230 if (idlecnt && !any_pending (EV_A)) 2033 idle_reify (EV_A);
1231 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2034#endif
1232 2035
1233 /* queue check watchers, to be executed first */ 2036 /* queue check watchers, to be executed first */
1234 if (checkcnt) 2037 if (expect_false (checkcnt))
1235 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2038 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1236 2039
1237 call_pending (EV_A); 2040 call_pending (EV_A);
1238
1239 if (loop_done)
1240 break;
1241 } 2041 }
2042 while (expect_true (
2043 activecnt
2044 && !loop_done
2045 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2046 ));
1242 2047
1243 if (loop_done != 2) 2048 if (loop_done == EVUNLOOP_ONE)
1244 loop_done = 0; 2049 loop_done = EVUNLOOP_CANCEL;
1245} 2050}
1246 2051
1247void 2052void
1248ev_unloop (EV_P_ int how) 2053ev_unloop (EV_P_ int how)
1249{ 2054{
1250 loop_done = how; 2055 loop_done = how;
1251} 2056}
1252 2057
1253/*****************************************************************************/ 2058/*****************************************************************************/
1254 2059
1255inline void 2060void inline_size
1256wlist_add (WL *head, WL elem) 2061wlist_add (WL *head, WL elem)
1257{ 2062{
1258 elem->next = *head; 2063 elem->next = *head;
1259 *head = elem; 2064 *head = elem;
1260} 2065}
1261 2066
1262inline void 2067void inline_size
1263wlist_del (WL *head, WL elem) 2068wlist_del (WL *head, WL elem)
1264{ 2069{
1265 while (*head) 2070 while (*head)
1266 { 2071 {
1267 if (*head == elem) 2072 if (*head == elem)
1272 2077
1273 head = &(*head)->next; 2078 head = &(*head)->next;
1274 } 2079 }
1275} 2080}
1276 2081
1277inline void 2082void inline_speed
1278ev_clear_pending (EV_P_ W w) 2083clear_pending (EV_P_ W w)
1279{ 2084{
1280 if (w->pending) 2085 if (w->pending)
1281 { 2086 {
1282 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2087 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1283 w->pending = 0; 2088 w->pending = 0;
1284 } 2089 }
1285} 2090}
1286 2091
1287inline void 2092int
2093ev_clear_pending (EV_P_ void *w)
2094{
2095 W w_ = (W)w;
2096 int pending = w_->pending;
2097
2098 if (expect_true (pending))
2099 {
2100 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2101 w_->pending = 0;
2102 p->w = 0;
2103 return p->events;
2104 }
2105 else
2106 return 0;
2107}
2108
2109void inline_size
2110pri_adjust (EV_P_ W w)
2111{
2112 int pri = w->priority;
2113 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2114 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2115 w->priority = pri;
2116}
2117
2118void inline_speed
1288ev_start (EV_P_ W w, int active) 2119ev_start (EV_P_ W w, int active)
1289{ 2120{
1290 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2121 pri_adjust (EV_A_ w);
1291 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1292
1293 w->active = active; 2122 w->active = active;
1294 ev_ref (EV_A); 2123 ev_ref (EV_A);
1295} 2124}
1296 2125
1297inline void 2126void inline_size
1298ev_stop (EV_P_ W w) 2127ev_stop (EV_P_ W w)
1299{ 2128{
1300 ev_unref (EV_A); 2129 ev_unref (EV_A);
1301 w->active = 0; 2130 w->active = 0;
1302} 2131}
1303 2132
1304/*****************************************************************************/ 2133/*****************************************************************************/
1305 2134
1306void 2135void noinline
1307ev_io_start (EV_P_ struct ev_io *w) 2136ev_io_start (EV_P_ ev_io *w)
1308{ 2137{
1309 int fd = w->fd; 2138 int fd = w->fd;
1310 2139
1311 if (ev_is_active (w)) 2140 if (expect_false (ev_is_active (w)))
1312 return; 2141 return;
1313 2142
1314 assert (("ev_io_start called with negative fd", fd >= 0)); 2143 assert (("ev_io_start called with negative fd", fd >= 0));
2144
2145 EV_FREQUENT_CHECK;
1315 2146
1316 ev_start (EV_A_ (W)w, 1); 2147 ev_start (EV_A_ (W)w, 1);
1317 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2148 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1318 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2149 wlist_add (&anfds[fd].head, (WL)w);
1319 2150
1320 fd_change (EV_A_ fd); 2151 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1321} 2152 w->events &= ~EV_IOFDSET;
1322 2153
1323void 2154 EV_FREQUENT_CHECK;
2155}
2156
2157void noinline
1324ev_io_stop (EV_P_ struct ev_io *w) 2158ev_io_stop (EV_P_ ev_io *w)
1325{ 2159{
1326 ev_clear_pending (EV_A_ (W)w); 2160 clear_pending (EV_A_ (W)w);
1327 if (!ev_is_active (w)) 2161 if (expect_false (!ev_is_active (w)))
1328 return; 2162 return;
1329 2163
1330 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2164 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1331 2165
2166 EV_FREQUENT_CHECK;
2167
1332 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2168 wlist_del (&anfds[w->fd].head, (WL)w);
1333 ev_stop (EV_A_ (W)w); 2169 ev_stop (EV_A_ (W)w);
1334 2170
1335 fd_change (EV_A_ w->fd); 2171 fd_change (EV_A_ w->fd, 1);
1336}
1337 2172
1338void 2173 EV_FREQUENT_CHECK;
2174}
2175
2176void noinline
1339ev_timer_start (EV_P_ struct ev_timer *w) 2177ev_timer_start (EV_P_ ev_timer *w)
1340{ 2178{
1341 if (ev_is_active (w)) 2179 if (expect_false (ev_is_active (w)))
1342 return; 2180 return;
1343 2181
1344 ((WT)w)->at += mn_now; 2182 ev_at (w) += mn_now;
1345 2183
1346 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2184 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1347 2185
2186 EV_FREQUENT_CHECK;
2187
2188 ++timercnt;
1348 ev_start (EV_A_ (W)w, ++timercnt); 2189 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1349 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2190 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1350 timers [timercnt - 1] = w; 2191 ANHE_w (timers [ev_active (w)]) = (WT)w;
1351 upheap ((WT *)timers, timercnt - 1); 2192 ANHE_at_cache (timers [ev_active (w)]);
2193 upheap (timers, ev_active (w));
1352 2194
2195 EV_FREQUENT_CHECK;
2196
1353 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2197 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1354} 2198}
1355 2199
1356void 2200void noinline
1357ev_timer_stop (EV_P_ struct ev_timer *w) 2201ev_timer_stop (EV_P_ ev_timer *w)
1358{ 2202{
1359 ev_clear_pending (EV_A_ (W)w); 2203 clear_pending (EV_A_ (W)w);
1360 if (!ev_is_active (w)) 2204 if (expect_false (!ev_is_active (w)))
1361 return; 2205 return;
1362 2206
2207 EV_FREQUENT_CHECK;
2208
2209 {
2210 int active = ev_active (w);
2211
1363 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2212 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1364 2213
1365 if (((W)w)->active < timercnt--) 2214 --timercnt;
2215
2216 if (expect_true (active < timercnt + HEAP0))
1366 { 2217 {
1367 timers [((W)w)->active - 1] = timers [timercnt]; 2218 timers [active] = timers [timercnt + HEAP0];
1368 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2219 adjustheap (timers, timercnt, active);
1369 } 2220 }
2221 }
1370 2222
1371 ((WT)w)->at -= mn_now; 2223 EV_FREQUENT_CHECK;
2224
2225 ev_at (w) -= mn_now;
1372 2226
1373 ev_stop (EV_A_ (W)w); 2227 ev_stop (EV_A_ (W)w);
1374} 2228}
1375 2229
1376void 2230void noinline
1377ev_timer_again (EV_P_ struct ev_timer *w) 2231ev_timer_again (EV_P_ ev_timer *w)
1378{ 2232{
2233 EV_FREQUENT_CHECK;
2234
1379 if (ev_is_active (w)) 2235 if (ev_is_active (w))
1380 { 2236 {
1381 if (w->repeat) 2237 if (w->repeat)
1382 { 2238 {
1383 ((WT)w)->at = mn_now + w->repeat; 2239 ev_at (w) = mn_now + w->repeat;
2240 ANHE_at_cache (timers [ev_active (w)]);
1384 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2241 adjustheap (timers, timercnt, ev_active (w));
1385 } 2242 }
1386 else 2243 else
1387 ev_timer_stop (EV_A_ w); 2244 ev_timer_stop (EV_A_ w);
1388 } 2245 }
1389 else if (w->repeat) 2246 else if (w->repeat)
1390 { 2247 {
1391 w->at = w->repeat; 2248 ev_at (w) = w->repeat;
1392 ev_timer_start (EV_A_ w); 2249 ev_timer_start (EV_A_ w);
1393 } 2250 }
1394}
1395 2251
2252 EV_FREQUENT_CHECK;
2253}
2254
1396#if EV_PERIODICS 2255#if EV_PERIODIC_ENABLE
1397void 2256void noinline
1398ev_periodic_start (EV_P_ struct ev_periodic *w) 2257ev_periodic_start (EV_P_ ev_periodic *w)
1399{ 2258{
1400 if (ev_is_active (w)) 2259 if (expect_false (ev_is_active (w)))
1401 return; 2260 return;
1402 2261
1403 if (w->reschedule_cb) 2262 if (w->reschedule_cb)
1404 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2263 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1405 else if (w->interval) 2264 else if (w->interval)
1406 { 2265 {
1407 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2266 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1408 /* this formula differs from the one in periodic_reify because we do not always round up */ 2267 /* this formula differs from the one in periodic_reify because we do not always round up */
1409 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2268 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1410 } 2269 }
2270 else
2271 ev_at (w) = w->offset;
1411 2272
2273 EV_FREQUENT_CHECK;
2274
2275 ++periodiccnt;
1412 ev_start (EV_A_ (W)w, ++periodiccnt); 2276 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1413 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2277 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1414 periodics [periodiccnt - 1] = w; 2278 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1415 upheap ((WT *)periodics, periodiccnt - 1); 2279 ANHE_at_cache (periodics [ev_active (w)]);
2280 upheap (periodics, ev_active (w));
1416 2281
2282 EV_FREQUENT_CHECK;
2283
1417 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2284 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1418} 2285}
1419 2286
1420void 2287void noinline
1421ev_periodic_stop (EV_P_ struct ev_periodic *w) 2288ev_periodic_stop (EV_P_ ev_periodic *w)
1422{ 2289{
1423 ev_clear_pending (EV_A_ (W)w); 2290 clear_pending (EV_A_ (W)w);
1424 if (!ev_is_active (w)) 2291 if (expect_false (!ev_is_active (w)))
1425 return; 2292 return;
1426 2293
2294 EV_FREQUENT_CHECK;
2295
2296 {
2297 int active = ev_active (w);
2298
1427 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2299 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1428 2300
1429 if (((W)w)->active < periodiccnt--) 2301 --periodiccnt;
2302
2303 if (expect_true (active < periodiccnt + HEAP0))
1430 { 2304 {
1431 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2305 periodics [active] = periodics [periodiccnt + HEAP0];
1432 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2306 adjustheap (periodics, periodiccnt, active);
1433 } 2307 }
2308 }
2309
2310 EV_FREQUENT_CHECK;
1434 2311
1435 ev_stop (EV_A_ (W)w); 2312 ev_stop (EV_A_ (W)w);
1436} 2313}
1437 2314
1438void 2315void noinline
1439ev_periodic_again (EV_P_ struct ev_periodic *w) 2316ev_periodic_again (EV_P_ ev_periodic *w)
1440{ 2317{
1441 /* TODO: use adjustheap and recalculation */ 2318 /* TODO: use adjustheap and recalculation */
1442 ev_periodic_stop (EV_A_ w); 2319 ev_periodic_stop (EV_A_ w);
1443 ev_periodic_start (EV_A_ w); 2320 ev_periodic_start (EV_A_ w);
1444} 2321}
1445#endif 2322#endif
1446 2323
1447void
1448ev_idle_start (EV_P_ struct ev_idle *w)
1449{
1450 if (ev_is_active (w))
1451 return;
1452
1453 ev_start (EV_A_ (W)w, ++idlecnt);
1454 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1455 idles [idlecnt - 1] = w;
1456}
1457
1458void
1459ev_idle_stop (EV_P_ struct ev_idle *w)
1460{
1461 ev_clear_pending (EV_A_ (W)w);
1462 if (!ev_is_active (w))
1463 return;
1464
1465 idles [((W)w)->active - 1] = idles [--idlecnt];
1466 ev_stop (EV_A_ (W)w);
1467}
1468
1469void
1470ev_prepare_start (EV_P_ struct ev_prepare *w)
1471{
1472 if (ev_is_active (w))
1473 return;
1474
1475 ev_start (EV_A_ (W)w, ++preparecnt);
1476 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1477 prepares [preparecnt - 1] = w;
1478}
1479
1480void
1481ev_prepare_stop (EV_P_ struct ev_prepare *w)
1482{
1483 ev_clear_pending (EV_A_ (W)w);
1484 if (!ev_is_active (w))
1485 return;
1486
1487 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1488 ev_stop (EV_A_ (W)w);
1489}
1490
1491void
1492ev_check_start (EV_P_ struct ev_check *w)
1493{
1494 if (ev_is_active (w))
1495 return;
1496
1497 ev_start (EV_A_ (W)w, ++checkcnt);
1498 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1499 checks [checkcnt - 1] = w;
1500}
1501
1502void
1503ev_check_stop (EV_P_ struct ev_check *w)
1504{
1505 ev_clear_pending (EV_A_ (W)w);
1506 if (!ev_is_active (w))
1507 return;
1508
1509 checks [((W)w)->active - 1] = checks [--checkcnt];
1510 ev_stop (EV_A_ (W)w);
1511}
1512
1513#ifndef SA_RESTART 2324#ifndef SA_RESTART
1514# define SA_RESTART 0 2325# define SA_RESTART 0
1515#endif 2326#endif
1516 2327
1517void 2328void noinline
1518ev_signal_start (EV_P_ struct ev_signal *w) 2329ev_signal_start (EV_P_ ev_signal *w)
1519{ 2330{
1520#if EV_MULTIPLICITY 2331#if EV_MULTIPLICITY
1521 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2332 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1522#endif 2333#endif
1523 if (ev_is_active (w)) 2334 if (expect_false (ev_is_active (w)))
1524 return; 2335 return;
1525 2336
1526 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2337 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1527 2338
2339 evpipe_init (EV_A);
2340
2341 EV_FREQUENT_CHECK;
2342
2343 {
2344#ifndef _WIN32
2345 sigset_t full, prev;
2346 sigfillset (&full);
2347 sigprocmask (SIG_SETMASK, &full, &prev);
2348#endif
2349
2350 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2351
2352#ifndef _WIN32
2353 sigprocmask (SIG_SETMASK, &prev, 0);
2354#endif
2355 }
2356
1528 ev_start (EV_A_ (W)w, 1); 2357 ev_start (EV_A_ (W)w, 1);
1529 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1530 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2358 wlist_add (&signals [w->signum - 1].head, (WL)w);
1531 2359
1532 if (!((WL)w)->next) 2360 if (!((WL)w)->next)
1533 { 2361 {
1534#if _WIN32 2362#if _WIN32
1535 signal (w->signum, sighandler); 2363 signal (w->signum, ev_sighandler);
1536#else 2364#else
1537 struct sigaction sa; 2365 struct sigaction sa;
1538 sa.sa_handler = sighandler; 2366 sa.sa_handler = ev_sighandler;
1539 sigfillset (&sa.sa_mask); 2367 sigfillset (&sa.sa_mask);
1540 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2368 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1541 sigaction (w->signum, &sa, 0); 2369 sigaction (w->signum, &sa, 0);
1542#endif 2370#endif
1543 } 2371 }
1544}
1545 2372
1546void 2373 EV_FREQUENT_CHECK;
2374}
2375
2376void noinline
1547ev_signal_stop (EV_P_ struct ev_signal *w) 2377ev_signal_stop (EV_P_ ev_signal *w)
1548{ 2378{
1549 ev_clear_pending (EV_A_ (W)w); 2379 clear_pending (EV_A_ (W)w);
1550 if (!ev_is_active (w)) 2380 if (expect_false (!ev_is_active (w)))
1551 return; 2381 return;
1552 2382
2383 EV_FREQUENT_CHECK;
2384
1553 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2385 wlist_del (&signals [w->signum - 1].head, (WL)w);
1554 ev_stop (EV_A_ (W)w); 2386 ev_stop (EV_A_ (W)w);
1555 2387
1556 if (!signals [w->signum - 1].head) 2388 if (!signals [w->signum - 1].head)
1557 signal (w->signum, SIG_DFL); 2389 signal (w->signum, SIG_DFL);
1558}
1559 2390
2391 EV_FREQUENT_CHECK;
2392}
2393
1560void 2394void
1561ev_child_start (EV_P_ struct ev_child *w) 2395ev_child_start (EV_P_ ev_child *w)
1562{ 2396{
1563#if EV_MULTIPLICITY 2397#if EV_MULTIPLICITY
1564 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2398 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1565#endif 2399#endif
1566 if (ev_is_active (w)) 2400 if (expect_false (ev_is_active (w)))
1567 return; 2401 return;
1568 2402
2403 EV_FREQUENT_CHECK;
2404
1569 ev_start (EV_A_ (W)w, 1); 2405 ev_start (EV_A_ (W)w, 1);
1570 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2406 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1571}
1572 2407
2408 EV_FREQUENT_CHECK;
2409}
2410
1573void 2411void
1574ev_child_stop (EV_P_ struct ev_child *w) 2412ev_child_stop (EV_P_ ev_child *w)
1575{ 2413{
1576 ev_clear_pending (EV_A_ (W)w); 2414 clear_pending (EV_A_ (W)w);
1577 if (!ev_is_active (w)) 2415 if (expect_false (!ev_is_active (w)))
1578 return; 2416 return;
1579 2417
2418 EV_FREQUENT_CHECK;
2419
1580 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2420 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1581 ev_stop (EV_A_ (W)w); 2421 ev_stop (EV_A_ (W)w);
2422
2423 EV_FREQUENT_CHECK;
1582} 2424}
2425
2426#if EV_STAT_ENABLE
2427
2428# ifdef _WIN32
2429# undef lstat
2430# define lstat(a,b) _stati64 (a,b)
2431# endif
2432
2433#define DEF_STAT_INTERVAL 5.0074891
2434#define MIN_STAT_INTERVAL 0.1074891
2435
2436static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2437
2438#if EV_USE_INOTIFY
2439# define EV_INOTIFY_BUFSIZE 8192
2440
2441static void noinline
2442infy_add (EV_P_ ev_stat *w)
2443{
2444 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2445
2446 if (w->wd < 0)
2447 {
2448 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2449
2450 /* monitor some parent directory for speedup hints */
2451 /* note that exceeding the hardcoded limit is not a correctness issue, */
2452 /* but an efficiency issue only */
2453 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2454 {
2455 char path [4096];
2456 strcpy (path, w->path);
2457
2458 do
2459 {
2460 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2461 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2462
2463 char *pend = strrchr (path, '/');
2464
2465 if (!pend)
2466 break; /* whoops, no '/', complain to your admin */
2467
2468 *pend = 0;
2469 w->wd = inotify_add_watch (fs_fd, path, mask);
2470 }
2471 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2472 }
2473 }
2474 else
2475 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2476
2477 if (w->wd >= 0)
2478 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2479}
2480
2481static void noinline
2482infy_del (EV_P_ ev_stat *w)
2483{
2484 int slot;
2485 int wd = w->wd;
2486
2487 if (wd < 0)
2488 return;
2489
2490 w->wd = -2;
2491 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2492 wlist_del (&fs_hash [slot].head, (WL)w);
2493
2494 /* remove this watcher, if others are watching it, they will rearm */
2495 inotify_rm_watch (fs_fd, wd);
2496}
2497
2498static void noinline
2499infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2500{
2501 if (slot < 0)
2502 /* overflow, need to check for all hash slots */
2503 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2504 infy_wd (EV_A_ slot, wd, ev);
2505 else
2506 {
2507 WL w_;
2508
2509 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2510 {
2511 ev_stat *w = (ev_stat *)w_;
2512 w_ = w_->next; /* lets us remove this watcher and all before it */
2513
2514 if (w->wd == wd || wd == -1)
2515 {
2516 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2517 {
2518 w->wd = -1;
2519 infy_add (EV_A_ w); /* re-add, no matter what */
2520 }
2521
2522 stat_timer_cb (EV_A_ &w->timer, 0);
2523 }
2524 }
2525 }
2526}
2527
2528static void
2529infy_cb (EV_P_ ev_io *w, int revents)
2530{
2531 char buf [EV_INOTIFY_BUFSIZE];
2532 struct inotify_event *ev = (struct inotify_event *)buf;
2533 int ofs;
2534 int len = read (fs_fd, buf, sizeof (buf));
2535
2536 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2537 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2538}
2539
2540void inline_size
2541infy_init (EV_P)
2542{
2543 if (fs_fd != -2)
2544 return;
2545
2546 /* kernels < 2.6.25 are borked
2547 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2548 */
2549 {
2550 struct utsname buf;
2551 int major, minor, micro;
2552
2553 fs_fd = -1;
2554
2555 if (uname (&buf))
2556 return;
2557
2558 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2559 return;
2560
2561 if (major < 2
2562 || (major == 2 && minor < 6)
2563 || (major == 2 && minor == 6 && micro < 25))
2564 return;
2565 }
2566
2567 fs_fd = inotify_init ();
2568
2569 if (fs_fd >= 0)
2570 {
2571 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2572 ev_set_priority (&fs_w, EV_MAXPRI);
2573 ev_io_start (EV_A_ &fs_w);
2574 }
2575}
2576
2577void inline_size
2578infy_fork (EV_P)
2579{
2580 int slot;
2581
2582 if (fs_fd < 0)
2583 return;
2584
2585 close (fs_fd);
2586 fs_fd = inotify_init ();
2587
2588 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2589 {
2590 WL w_ = fs_hash [slot].head;
2591 fs_hash [slot].head = 0;
2592
2593 while (w_)
2594 {
2595 ev_stat *w = (ev_stat *)w_;
2596 w_ = w_->next; /* lets us add this watcher */
2597
2598 w->wd = -1;
2599
2600 if (fs_fd >= 0)
2601 infy_add (EV_A_ w); /* re-add, no matter what */
2602 else
2603 ev_timer_start (EV_A_ &w->timer);
2604 }
2605 }
2606}
2607
2608#endif
2609
2610#ifdef _WIN32
2611# define EV_LSTAT(p,b) _stati64 (p, b)
2612#else
2613# define EV_LSTAT(p,b) lstat (p, b)
2614#endif
2615
2616void
2617ev_stat_stat (EV_P_ ev_stat *w)
2618{
2619 if (lstat (w->path, &w->attr) < 0)
2620 w->attr.st_nlink = 0;
2621 else if (!w->attr.st_nlink)
2622 w->attr.st_nlink = 1;
2623}
2624
2625static void noinline
2626stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2627{
2628 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2629
2630 /* we copy this here each the time so that */
2631 /* prev has the old value when the callback gets invoked */
2632 w->prev = w->attr;
2633 ev_stat_stat (EV_A_ w);
2634
2635 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2636 if (
2637 w->prev.st_dev != w->attr.st_dev
2638 || w->prev.st_ino != w->attr.st_ino
2639 || w->prev.st_mode != w->attr.st_mode
2640 || w->prev.st_nlink != w->attr.st_nlink
2641 || w->prev.st_uid != w->attr.st_uid
2642 || w->prev.st_gid != w->attr.st_gid
2643 || w->prev.st_rdev != w->attr.st_rdev
2644 || w->prev.st_size != w->attr.st_size
2645 || w->prev.st_atime != w->attr.st_atime
2646 || w->prev.st_mtime != w->attr.st_mtime
2647 || w->prev.st_ctime != w->attr.st_ctime
2648 ) {
2649 #if EV_USE_INOTIFY
2650 if (fs_fd >= 0)
2651 {
2652 infy_del (EV_A_ w);
2653 infy_add (EV_A_ w);
2654 ev_stat_stat (EV_A_ w); /* avoid race... */
2655 }
2656 #endif
2657
2658 ev_feed_event (EV_A_ w, EV_STAT);
2659 }
2660}
2661
2662void
2663ev_stat_start (EV_P_ ev_stat *w)
2664{
2665 if (expect_false (ev_is_active (w)))
2666 return;
2667
2668 /* since we use memcmp, we need to clear any padding data etc. */
2669 memset (&w->prev, 0, sizeof (ev_statdata));
2670 memset (&w->attr, 0, sizeof (ev_statdata));
2671
2672 ev_stat_stat (EV_A_ w);
2673
2674 if (w->interval < MIN_STAT_INTERVAL)
2675 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2676
2677 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2678 ev_set_priority (&w->timer, ev_priority (w));
2679
2680#if EV_USE_INOTIFY
2681 infy_init (EV_A);
2682
2683 if (fs_fd >= 0)
2684 infy_add (EV_A_ w);
2685 else
2686#endif
2687 ev_timer_start (EV_A_ &w->timer);
2688
2689 ev_start (EV_A_ (W)w, 1);
2690
2691 EV_FREQUENT_CHECK;
2692}
2693
2694void
2695ev_stat_stop (EV_P_ ev_stat *w)
2696{
2697 clear_pending (EV_A_ (W)w);
2698 if (expect_false (!ev_is_active (w)))
2699 return;
2700
2701 EV_FREQUENT_CHECK;
2702
2703#if EV_USE_INOTIFY
2704 infy_del (EV_A_ w);
2705#endif
2706 ev_timer_stop (EV_A_ &w->timer);
2707
2708 ev_stop (EV_A_ (W)w);
2709
2710 EV_FREQUENT_CHECK;
2711}
2712#endif
2713
2714#if EV_IDLE_ENABLE
2715void
2716ev_idle_start (EV_P_ ev_idle *w)
2717{
2718 if (expect_false (ev_is_active (w)))
2719 return;
2720
2721 pri_adjust (EV_A_ (W)w);
2722
2723 EV_FREQUENT_CHECK;
2724
2725 {
2726 int active = ++idlecnt [ABSPRI (w)];
2727
2728 ++idleall;
2729 ev_start (EV_A_ (W)w, active);
2730
2731 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2732 idles [ABSPRI (w)][active - 1] = w;
2733 }
2734
2735 EV_FREQUENT_CHECK;
2736}
2737
2738void
2739ev_idle_stop (EV_P_ ev_idle *w)
2740{
2741 clear_pending (EV_A_ (W)w);
2742 if (expect_false (!ev_is_active (w)))
2743 return;
2744
2745 EV_FREQUENT_CHECK;
2746
2747 {
2748 int active = ev_active (w);
2749
2750 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2751 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2752
2753 ev_stop (EV_A_ (W)w);
2754 --idleall;
2755 }
2756
2757 EV_FREQUENT_CHECK;
2758}
2759#endif
2760
2761void
2762ev_prepare_start (EV_P_ ev_prepare *w)
2763{
2764 if (expect_false (ev_is_active (w)))
2765 return;
2766
2767 EV_FREQUENT_CHECK;
2768
2769 ev_start (EV_A_ (W)w, ++preparecnt);
2770 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2771 prepares [preparecnt - 1] = w;
2772
2773 EV_FREQUENT_CHECK;
2774}
2775
2776void
2777ev_prepare_stop (EV_P_ ev_prepare *w)
2778{
2779 clear_pending (EV_A_ (W)w);
2780 if (expect_false (!ev_is_active (w)))
2781 return;
2782
2783 EV_FREQUENT_CHECK;
2784
2785 {
2786 int active = ev_active (w);
2787
2788 prepares [active - 1] = prepares [--preparecnt];
2789 ev_active (prepares [active - 1]) = active;
2790 }
2791
2792 ev_stop (EV_A_ (W)w);
2793
2794 EV_FREQUENT_CHECK;
2795}
2796
2797void
2798ev_check_start (EV_P_ ev_check *w)
2799{
2800 if (expect_false (ev_is_active (w)))
2801 return;
2802
2803 EV_FREQUENT_CHECK;
2804
2805 ev_start (EV_A_ (W)w, ++checkcnt);
2806 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2807 checks [checkcnt - 1] = w;
2808
2809 EV_FREQUENT_CHECK;
2810}
2811
2812void
2813ev_check_stop (EV_P_ ev_check *w)
2814{
2815 clear_pending (EV_A_ (W)w);
2816 if (expect_false (!ev_is_active (w)))
2817 return;
2818
2819 EV_FREQUENT_CHECK;
2820
2821 {
2822 int active = ev_active (w);
2823
2824 checks [active - 1] = checks [--checkcnt];
2825 ev_active (checks [active - 1]) = active;
2826 }
2827
2828 ev_stop (EV_A_ (W)w);
2829
2830 EV_FREQUENT_CHECK;
2831}
2832
2833#if EV_EMBED_ENABLE
2834void noinline
2835ev_embed_sweep (EV_P_ ev_embed *w)
2836{
2837 ev_loop (w->other, EVLOOP_NONBLOCK);
2838}
2839
2840static void
2841embed_io_cb (EV_P_ ev_io *io, int revents)
2842{
2843 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2844
2845 if (ev_cb (w))
2846 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2847 else
2848 ev_loop (w->other, EVLOOP_NONBLOCK);
2849}
2850
2851static void
2852embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2853{
2854 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2855
2856 {
2857 struct ev_loop *loop = w->other;
2858
2859 while (fdchangecnt)
2860 {
2861 fd_reify (EV_A);
2862 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2863 }
2864 }
2865}
2866
2867static void
2868embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2869{
2870 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2871
2872 {
2873 struct ev_loop *loop = w->other;
2874
2875 ev_loop_fork (EV_A);
2876 }
2877}
2878
2879#if 0
2880static void
2881embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2882{
2883 ev_idle_stop (EV_A_ idle);
2884}
2885#endif
2886
2887void
2888ev_embed_start (EV_P_ ev_embed *w)
2889{
2890 if (expect_false (ev_is_active (w)))
2891 return;
2892
2893 {
2894 struct ev_loop *loop = w->other;
2895 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2896 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2897 }
2898
2899 EV_FREQUENT_CHECK;
2900
2901 ev_set_priority (&w->io, ev_priority (w));
2902 ev_io_start (EV_A_ &w->io);
2903
2904 ev_prepare_init (&w->prepare, embed_prepare_cb);
2905 ev_set_priority (&w->prepare, EV_MINPRI);
2906 ev_prepare_start (EV_A_ &w->prepare);
2907
2908 ev_fork_init (&w->fork, embed_fork_cb);
2909 ev_fork_start (EV_A_ &w->fork);
2910
2911 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2912
2913 ev_start (EV_A_ (W)w, 1);
2914
2915 EV_FREQUENT_CHECK;
2916}
2917
2918void
2919ev_embed_stop (EV_P_ ev_embed *w)
2920{
2921 clear_pending (EV_A_ (W)w);
2922 if (expect_false (!ev_is_active (w)))
2923 return;
2924
2925 EV_FREQUENT_CHECK;
2926
2927 ev_io_stop (EV_A_ &w->io);
2928 ev_prepare_stop (EV_A_ &w->prepare);
2929 ev_fork_stop (EV_A_ &w->fork);
2930
2931 EV_FREQUENT_CHECK;
2932}
2933#endif
2934
2935#if EV_FORK_ENABLE
2936void
2937ev_fork_start (EV_P_ ev_fork *w)
2938{
2939 if (expect_false (ev_is_active (w)))
2940 return;
2941
2942 EV_FREQUENT_CHECK;
2943
2944 ev_start (EV_A_ (W)w, ++forkcnt);
2945 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2946 forks [forkcnt - 1] = w;
2947
2948 EV_FREQUENT_CHECK;
2949}
2950
2951void
2952ev_fork_stop (EV_P_ ev_fork *w)
2953{
2954 clear_pending (EV_A_ (W)w);
2955 if (expect_false (!ev_is_active (w)))
2956 return;
2957
2958 EV_FREQUENT_CHECK;
2959
2960 {
2961 int active = ev_active (w);
2962
2963 forks [active - 1] = forks [--forkcnt];
2964 ev_active (forks [active - 1]) = active;
2965 }
2966
2967 ev_stop (EV_A_ (W)w);
2968
2969 EV_FREQUENT_CHECK;
2970}
2971#endif
2972
2973#if EV_ASYNC_ENABLE
2974void
2975ev_async_start (EV_P_ ev_async *w)
2976{
2977 if (expect_false (ev_is_active (w)))
2978 return;
2979
2980 evpipe_init (EV_A);
2981
2982 EV_FREQUENT_CHECK;
2983
2984 ev_start (EV_A_ (W)w, ++asynccnt);
2985 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2986 asyncs [asynccnt - 1] = w;
2987
2988 EV_FREQUENT_CHECK;
2989}
2990
2991void
2992ev_async_stop (EV_P_ ev_async *w)
2993{
2994 clear_pending (EV_A_ (W)w);
2995 if (expect_false (!ev_is_active (w)))
2996 return;
2997
2998 EV_FREQUENT_CHECK;
2999
3000 {
3001 int active = ev_active (w);
3002
3003 asyncs [active - 1] = asyncs [--asynccnt];
3004 ev_active (asyncs [active - 1]) = active;
3005 }
3006
3007 ev_stop (EV_A_ (W)w);
3008
3009 EV_FREQUENT_CHECK;
3010}
3011
3012void
3013ev_async_send (EV_P_ ev_async *w)
3014{
3015 w->sent = 1;
3016 evpipe_write (EV_A_ &gotasync);
3017}
3018#endif
1583 3019
1584/*****************************************************************************/ 3020/*****************************************************************************/
1585 3021
1586struct ev_once 3022struct ev_once
1587{ 3023{
1588 struct ev_io io; 3024 ev_io io;
1589 struct ev_timer to; 3025 ev_timer to;
1590 void (*cb)(int revents, void *arg); 3026 void (*cb)(int revents, void *arg);
1591 void *arg; 3027 void *arg;
1592}; 3028};
1593 3029
1594static void 3030static void
1595once_cb (EV_P_ struct ev_once *once, int revents) 3031once_cb (EV_P_ struct ev_once *once, int revents)
1596{ 3032{
1597 void (*cb)(int revents, void *arg) = once->cb; 3033 void (*cb)(int revents, void *arg) = once->cb;
1598 void *arg = once->arg; 3034 void *arg = once->arg;
1599 3035
1600 ev_io_stop (EV_A_ &once->io); 3036 ev_io_stop (EV_A_ &once->io);
1601 ev_timer_stop (EV_A_ &once->to); 3037 ev_timer_stop (EV_A_ &once->to);
1602 ev_free (once); 3038 ev_free (once);
1603 3039
1604 cb (revents, arg); 3040 cb (revents, arg);
1605} 3041}
1606 3042
1607static void 3043static void
1608once_cb_io (EV_P_ struct ev_io *w, int revents) 3044once_cb_io (EV_P_ ev_io *w, int revents)
1609{ 3045{
1610 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3046 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3047
3048 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1611} 3049}
1612 3050
1613static void 3051static void
1614once_cb_to (EV_P_ struct ev_timer *w, int revents) 3052once_cb_to (EV_P_ ev_timer *w, int revents)
1615{ 3053{
1616 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3054 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3055
3056 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1617} 3057}
1618 3058
1619void 3059void
1620ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3060ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1621{ 3061{
1622 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3062 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1623 3063
1624 if (!once) 3064 if (expect_false (!once))
3065 {
1625 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3066 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1626 else 3067 return;
1627 { 3068 }
3069
1628 once->cb = cb; 3070 once->cb = cb;
1629 once->arg = arg; 3071 once->arg = arg;
1630 3072
1631 ev_init (&once->io, once_cb_io); 3073 ev_init (&once->io, once_cb_io);
1632 if (fd >= 0) 3074 if (fd >= 0)
1633 { 3075 {
1634 ev_io_set (&once->io, fd, events); 3076 ev_io_set (&once->io, fd, events);
1635 ev_io_start (EV_A_ &once->io); 3077 ev_io_start (EV_A_ &once->io);
1636 } 3078 }
1637 3079
1638 ev_init (&once->to, once_cb_to); 3080 ev_init (&once->to, once_cb_to);
1639 if (timeout >= 0.) 3081 if (timeout >= 0.)
1640 { 3082 {
1641 ev_timer_set (&once->to, timeout, 0.); 3083 ev_timer_set (&once->to, timeout, 0.);
1642 ev_timer_start (EV_A_ &once->to); 3084 ev_timer_start (EV_A_ &once->to);
1643 }
1644 } 3085 }
1645} 3086}
3087
3088#if EV_MULTIPLICITY
3089 #include "ev_wrap.h"
3090#endif
1646 3091
1647#ifdef __cplusplus 3092#ifdef __cplusplus
1648} 3093}
1649#endif 3094#endif
1650 3095

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines