ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.149 by root, Tue Nov 27 19:23:31 2007 UTC vs.
Revision 1.264 by root, Mon Oct 13 23:20:12 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# else 111# else
95# define EV_USE_PORT 0 112# define EV_USE_PORT 0
96# endif 113# endif
97# endif 114# endif
98 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
99#endif 132#endif
100 133
101#include <math.h> 134#include <math.h>
102#include <stdlib.h> 135#include <stdlib.h>
103#include <fcntl.h> 136#include <fcntl.h>
109#include <errno.h> 142#include <errno.h>
110#include <sys/types.h> 143#include <sys/types.h>
111#include <time.h> 144#include <time.h>
112 145
113#include <signal.h> 146#include <signal.h>
147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
114 153
115#ifndef _WIN32 154#ifndef _WIN32
116# include <sys/time.h> 155# include <sys/time.h>
117# include <sys/wait.h> 156# include <sys/wait.h>
118# include <unistd.h> 157# include <unistd.h>
119#else 158#else
159# include <io.h>
120# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 161# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
124# endif 164# endif
125#endif 165#endif
126 166
127/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
128 168
129#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
130# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
131#endif 175#endif
132 176
133#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
179#endif
180
181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
185# define EV_USE_NANOSLEEP 0
186# endif
135#endif 187#endif
136 188
137#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
139#endif 191#endif
145# define EV_USE_POLL 1 197# define EV_USE_POLL 1
146# endif 198# endif
147#endif 199#endif
148 200
149#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
150# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
151#endif 207#endif
152 208
153#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
154# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
155#endif 211#endif
156 212
157#ifndef EV_USE_PORT 213#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 214# define EV_USE_PORT 0
215#endif
216
217#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1
220# else
221# define EV_USE_INOTIFY 0
222# endif
159#endif 223#endif
160 224
161#ifndef EV_PID_HASHSIZE 225#ifndef EV_PID_HASHSIZE
162# if EV_MINIMAL 226# if EV_MINIMAL
163# define EV_PID_HASHSIZE 1 227# define EV_PID_HASHSIZE 1
164# else 228# else
165# define EV_PID_HASHSIZE 16 229# define EV_PID_HASHSIZE 16
166# endif 230# endif
167#endif 231#endif
168 232
169/**/ 233#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif
240
241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
170 268
171#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
172# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
173# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
174#endif 272#endif
176#ifndef CLOCK_REALTIME 274#ifndef CLOCK_REALTIME
177# undef EV_USE_REALTIME 275# undef EV_USE_REALTIME
178# define EV_USE_REALTIME 0 276# define EV_USE_REALTIME 0
179#endif 277#endif
180 278
279#if !EV_STAT_ENABLE
280# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0
282#endif
283
284#if !EV_USE_NANOSLEEP
285# ifndef _WIN32
286# include <sys/select.h>
287# endif
288#endif
289
290#if EV_USE_INOTIFY
291# include <sys/utsname.h>
292# include <sys/inotify.h>
293/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
294# ifndef IN_DONT_FOLLOW
295# undef EV_USE_INOTIFY
296# define EV_USE_INOTIFY 0
297# endif
298#endif
299
181#if EV_SELECT_IS_WINSOCKET 300#if EV_SELECT_IS_WINSOCKET
182# include <winsock.h> 301# include <winsock.h>
183#endif 302#endif
184 303
304#if EV_USE_EVENTFD
305/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
306# include <stdint.h>
307# ifdef __cplusplus
308extern "C" {
309# endif
310int eventfd (unsigned int initval, int flags);
311# ifdef __cplusplus
312}
313# endif
314#endif
315
185/**/ 316/**/
317
318#if EV_VERIFY >= 3
319# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
320#else
321# define EV_FREQUENT_CHECK do { } while (0)
322#endif
323
324/*
325 * This is used to avoid floating point rounding problems.
326 * It is added to ev_rt_now when scheduling periodics
327 * to ensure progress, time-wise, even when rounding
328 * errors are against us.
329 * This value is good at least till the year 4000.
330 * Better solutions welcome.
331 */
332#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
186 333
187#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 334#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
188#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 335#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
189/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 336/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
190 337
191#ifdef EV_H
192# include EV_H
193#else
194# include "ev.h"
195#endif
196
197#if __GNUC__ >= 3 338#if __GNUC__ >= 4
198# define expect(expr,value) __builtin_expect ((expr),(value)) 339# define expect(expr,value) __builtin_expect ((expr),(value))
199# define inline_size static inline /* inline for codesize */
200# if EV_MINIMAL
201# define noinline __attribute__ ((noinline)) 340# define noinline __attribute__ ((noinline))
202# define inline_speed static noinline
203# else
204# define noinline
205# define inline_speed static inline
206# endif
207#else 341#else
208# define expect(expr,value) (expr) 342# define expect(expr,value) (expr)
209# define inline_speed static
210# define inline_size static
211# define noinline 343# define noinline
344# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
345# define inline
346# endif
212#endif 347#endif
213 348
214#define expect_false(expr) expect ((expr) != 0, 0) 349#define expect_false(expr) expect ((expr) != 0, 0)
215#define expect_true(expr) expect ((expr) != 0, 1) 350#define expect_true(expr) expect ((expr) != 0, 1)
351#define inline_size static inline
352
353#if EV_MINIMAL
354# define inline_speed static noinline
355#else
356# define inline_speed static inline
357#endif
216 358
217#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 359#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
218#define ABSPRI(w) ((w)->priority - EV_MINPRI) 360#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
219 361
220#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 362#define EMPTY /* required for microsofts broken pseudo-c compiler */
221#define EMPTY2(a,b) /* used to suppress some warnings */ 363#define EMPTY2(a,b) /* used to suppress some warnings */
222 364
223typedef ev_watcher *W; 365typedef ev_watcher *W;
224typedef ev_watcher_list *WL; 366typedef ev_watcher_list *WL;
225typedef ev_watcher_time *WT; 367typedef ev_watcher_time *WT;
226 368
369#define ev_active(w) ((W)(w))->active
370#define ev_at(w) ((WT)(w))->at
371
372#if EV_USE_MONOTONIC
373/* sig_atomic_t is used to avoid per-thread variables or locking but still */
374/* giving it a reasonably high chance of working on typical architetcures */
227static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 375static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
376#endif
228 377
229#ifdef _WIN32 378#ifdef _WIN32
230# include "ev_win32.c" 379# include "ev_win32.c"
231#endif 380#endif
232 381
253 perror (msg); 402 perror (msg);
254 abort (); 403 abort ();
255 } 404 }
256} 405}
257 406
407static void *
408ev_realloc_emul (void *ptr, long size)
409{
410 /* some systems, notably openbsd and darwin, fail to properly
411 * implement realloc (x, 0) (as required by both ansi c-98 and
412 * the single unix specification, so work around them here.
413 */
414
415 if (size)
416 return realloc (ptr, size);
417
418 free (ptr);
419 return 0;
420}
421
258static void *(*alloc)(void *ptr, long size); 422static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
259 423
260void 424void
261ev_set_allocator (void *(*cb)(void *ptr, long size)) 425ev_set_allocator (void *(*cb)(void *ptr, long size))
262{ 426{
263 alloc = cb; 427 alloc = cb;
264} 428}
265 429
266static void * 430inline_speed void *
267ev_realloc (void *ptr, long size) 431ev_realloc (void *ptr, long size)
268{ 432{
269 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 433 ptr = alloc (ptr, size);
270 434
271 if (!ptr && size) 435 if (!ptr && size)
272 { 436 {
273 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 437 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
274 abort (); 438 abort ();
295typedef struct 459typedef struct
296{ 460{
297 W w; 461 W w;
298 int events; 462 int events;
299} ANPENDING; 463} ANPENDING;
464
465#if EV_USE_INOTIFY
466/* hash table entry per inotify-id */
467typedef struct
468{
469 WL head;
470} ANFS;
471#endif
472
473/* Heap Entry */
474#if EV_HEAP_CACHE_AT
475 typedef struct {
476 ev_tstamp at;
477 WT w;
478 } ANHE;
479
480 #define ANHE_w(he) (he).w /* access watcher, read-write */
481 #define ANHE_at(he) (he).at /* access cached at, read-only */
482 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
483#else
484 typedef WT ANHE;
485
486 #define ANHE_w(he) (he)
487 #define ANHE_at(he) (he)->at
488 #define ANHE_at_cache(he)
489#endif
300 490
301#if EV_MULTIPLICITY 491#if EV_MULTIPLICITY
302 492
303 struct ev_loop 493 struct ev_loop
304 { 494 {
361{ 551{
362 return ev_rt_now; 552 return ev_rt_now;
363} 553}
364#endif 554#endif
365 555
366#define array_roundsize(type,n) (((n) | 4) & ~3) 556void
557ev_sleep (ev_tstamp delay)
558{
559 if (delay > 0.)
560 {
561#if EV_USE_NANOSLEEP
562 struct timespec ts;
563
564 ts.tv_sec = (time_t)delay;
565 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
566
567 nanosleep (&ts, 0);
568#elif defined(_WIN32)
569 Sleep ((unsigned long)(delay * 1e3));
570#else
571 struct timeval tv;
572
573 tv.tv_sec = (time_t)delay;
574 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
575
576 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
577 /* somehting nto guaranteed by newer posix versions, but guaranteed */
578 /* by older ones */
579 select (0, 0, 0, 0, &tv);
580#endif
581 }
582}
583
584/*****************************************************************************/
585
586#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
587
588int inline_size
589array_nextsize (int elem, int cur, int cnt)
590{
591 int ncur = cur + 1;
592
593 do
594 ncur <<= 1;
595 while (cnt > ncur);
596
597 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
598 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
599 {
600 ncur *= elem;
601 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
602 ncur = ncur - sizeof (void *) * 4;
603 ncur /= elem;
604 }
605
606 return ncur;
607}
608
609static noinline void *
610array_realloc (int elem, void *base, int *cur, int cnt)
611{
612 *cur = array_nextsize (elem, *cur, cnt);
613 return ev_realloc (base, elem * *cur);
614}
367 615
368#define array_needsize(type,base,cur,cnt,init) \ 616#define array_needsize(type,base,cur,cnt,init) \
369 if (expect_false ((cnt) > cur)) \ 617 if (expect_false ((cnt) > (cur))) \
370 { \ 618 { \
371 int newcnt = cur; \ 619 int ocur_ = (cur); \
372 do \ 620 (base) = (type *)array_realloc \
373 { \ 621 (sizeof (type), (base), &(cur), (cnt)); \
374 newcnt = array_roundsize (type, newcnt << 1); \ 622 init ((base) + (ocur_), (cur) - ocur_); \
375 } \
376 while ((cnt) > newcnt); \
377 \
378 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
379 init (base + cur, newcnt - cur); \
380 cur = newcnt; \
381 } 623 }
382 624
625#if 0
383#define array_slim(type,stem) \ 626#define array_slim(type,stem) \
384 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 627 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
385 { \ 628 { \
386 stem ## max = array_roundsize (stem ## cnt >> 1); \ 629 stem ## max = array_roundsize (stem ## cnt >> 1); \
387 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 630 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
388 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 631 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
389 } 632 }
633#endif
390 634
391#define array_free(stem, idx) \ 635#define array_free(stem, idx) \
392 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 636 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
393 637
394/*****************************************************************************/ 638/*****************************************************************************/
395 639
396void noinline 640void noinline
397ev_feed_event (EV_P_ void *w, int revents) 641ev_feed_event (EV_P_ void *w, int revents)
398{ 642{
399 W w_ = (W)w; 643 W w_ = (W)w;
644 int pri = ABSPRI (w_);
400 645
401 if (expect_false (w_->pending)) 646 if (expect_false (w_->pending))
647 pendings [pri][w_->pending - 1].events |= revents;
648 else
402 { 649 {
650 w_->pending = ++pendingcnt [pri];
651 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
652 pendings [pri][w_->pending - 1].w = w_;
403 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 653 pendings [pri][w_->pending - 1].events = revents;
404 return;
405 } 654 }
406
407 w_->pending = ++pendingcnt [ABSPRI (w_)];
408 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
409 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
410 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
411} 655}
412 656
413void inline_size 657void inline_speed
414queue_events (EV_P_ W *events, int eventcnt, int type) 658queue_events (EV_P_ W *events, int eventcnt, int type)
415{ 659{
416 int i; 660 int i;
417 661
418 for (i = 0; i < eventcnt; ++i) 662 for (i = 0; i < eventcnt; ++i)
450} 694}
451 695
452void 696void
453ev_feed_fd_event (EV_P_ int fd, int revents) 697ev_feed_fd_event (EV_P_ int fd, int revents)
454{ 698{
699 if (fd >= 0 && fd < anfdmax)
455 fd_event (EV_A_ fd, revents); 700 fd_event (EV_A_ fd, revents);
456} 701}
457 702
458void inline_size 703void inline_size
459fd_reify (EV_P) 704fd_reify (EV_P)
460{ 705{
464 { 709 {
465 int fd = fdchanges [i]; 710 int fd = fdchanges [i];
466 ANFD *anfd = anfds + fd; 711 ANFD *anfd = anfds + fd;
467 ev_io *w; 712 ev_io *w;
468 713
469 int events = 0; 714 unsigned char events = 0;
470 715
471 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 716 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
472 events |= w->events; 717 events |= (unsigned char)w->events;
473 718
474#if EV_SELECT_IS_WINSOCKET 719#if EV_SELECT_IS_WINSOCKET
475 if (events) 720 if (events)
476 { 721 {
477 unsigned long argp; 722 unsigned long arg;
723 #ifdef EV_FD_TO_WIN32_HANDLE
724 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
725 #else
478 anfd->handle = _get_osfhandle (fd); 726 anfd->handle = _get_osfhandle (fd);
727 #endif
479 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 728 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
480 } 729 }
481#endif 730#endif
482 731
732 {
733 unsigned char o_events = anfd->events;
734 unsigned char o_reify = anfd->reify;
735
483 anfd->reify = 0; 736 anfd->reify = 0;
484
485 backend_modify (EV_A_ fd, anfd->events, events);
486 anfd->events = events; 737 anfd->events = events;
738
739 if (o_events != events || o_reify & EV_IOFDSET)
740 backend_modify (EV_A_ fd, o_events, events);
741 }
487 } 742 }
488 743
489 fdchangecnt = 0; 744 fdchangecnt = 0;
490} 745}
491 746
492void inline_size 747void inline_size
493fd_change (EV_P_ int fd) 748fd_change (EV_P_ int fd, int flags)
494{ 749{
495 if (expect_false (anfds [fd].reify)) 750 unsigned char reify = anfds [fd].reify;
496 return;
497
498 anfds [fd].reify = 1; 751 anfds [fd].reify |= flags;
499 752
753 if (expect_true (!reify))
754 {
500 ++fdchangecnt; 755 ++fdchangecnt;
501 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 756 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
502 fdchanges [fdchangecnt - 1] = fd; 757 fdchanges [fdchangecnt - 1] = fd;
758 }
503} 759}
504 760
505void inline_speed 761void inline_speed
506fd_kill (EV_P_ int fd) 762fd_kill (EV_P_ int fd)
507{ 763{
530{ 786{
531 int fd; 787 int fd;
532 788
533 for (fd = 0; fd < anfdmax; ++fd) 789 for (fd = 0; fd < anfdmax; ++fd)
534 if (anfds [fd].events) 790 if (anfds [fd].events)
535 if (!fd_valid (fd) == -1 && errno == EBADF) 791 if (!fd_valid (fd) && errno == EBADF)
536 fd_kill (EV_A_ fd); 792 fd_kill (EV_A_ fd);
537} 793}
538 794
539/* called on ENOMEM in select/poll to kill some fds and retry */ 795/* called on ENOMEM in select/poll to kill some fds and retry */
540static void noinline 796static void noinline
554static void noinline 810static void noinline
555fd_rearm_all (EV_P) 811fd_rearm_all (EV_P)
556{ 812{
557 int fd; 813 int fd;
558 814
559 /* this should be highly optimised to not do anything but set a flag */
560 for (fd = 0; fd < anfdmax; ++fd) 815 for (fd = 0; fd < anfdmax; ++fd)
561 if (anfds [fd].events) 816 if (anfds [fd].events)
562 { 817 {
563 anfds [fd].events = 0; 818 anfds [fd].events = 0;
564 fd_change (EV_A_ fd); 819 fd_change (EV_A_ fd, EV_IOFDSET | 1);
565 } 820 }
566} 821}
567 822
568/*****************************************************************************/ 823/*****************************************************************************/
569 824
825/*
826 * the heap functions want a real array index. array index 0 uis guaranteed to not
827 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
828 * the branching factor of the d-tree.
829 */
830
831/*
832 * at the moment we allow libev the luxury of two heaps,
833 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
834 * which is more cache-efficient.
835 * the difference is about 5% with 50000+ watchers.
836 */
837#if EV_USE_4HEAP
838
839#define DHEAP 4
840#define HEAP0 (DHEAP - 1) /* index of first element in heap */
841#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
842#define UPHEAP_DONE(p,k) ((p) == (k))
843
844/* away from the root */
570void inline_speed 845void inline_speed
571upheap (WT *heap, int k) 846downheap (ANHE *heap, int N, int k)
572{ 847{
573 WT w = heap [k]; 848 ANHE he = heap [k];
849 ANHE *E = heap + N + HEAP0;
574 850
575 while (k && heap [k >> 1]->at > w->at) 851 for (;;)
576 {
577 heap [k] = heap [k >> 1];
578 ((W)heap [k])->active = k + 1;
579 k >>= 1;
580 } 852 {
853 ev_tstamp minat;
854 ANHE *minpos;
855 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
581 856
857 /* find minimum child */
858 if (expect_true (pos + DHEAP - 1 < E))
859 {
860 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
861 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
862 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
863 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
864 }
865 else if (pos < E)
866 {
867 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
868 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
869 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
870 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
871 }
872 else
873 break;
874
875 if (ANHE_at (he) <= minat)
876 break;
877
878 heap [k] = *minpos;
879 ev_active (ANHE_w (*minpos)) = k;
880
881 k = minpos - heap;
882 }
883
582 heap [k] = w; 884 heap [k] = he;
583 ((W)heap [k])->active = k + 1; 885 ev_active (ANHE_w (he)) = k;
584
585} 886}
586 887
888#else /* 4HEAP */
889
890#define HEAP0 1
891#define HPARENT(k) ((k) >> 1)
892#define UPHEAP_DONE(p,k) (!(p))
893
894/* away from the root */
587void inline_speed 895void inline_speed
588downheap (WT *heap, int N, int k) 896downheap (ANHE *heap, int N, int k)
589{ 897{
590 WT w = heap [k]; 898 ANHE he = heap [k];
591 899
592 while (k < (N >> 1)) 900 for (;;)
593 { 901 {
594 int j = k << 1; 902 int c = k << 1;
595 903
596 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 904 if (c > N + HEAP0 - 1)
597 ++j;
598
599 if (w->at <= heap [j]->at)
600 break; 905 break;
601 906
907 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
908 ? 1 : 0;
909
910 if (ANHE_at (he) <= ANHE_at (heap [c]))
911 break;
912
602 heap [k] = heap [j]; 913 heap [k] = heap [c];
603 ((W)heap [k])->active = k + 1; 914 ev_active (ANHE_w (heap [k])) = k;
915
604 k = j; 916 k = c;
605 } 917 }
606 918
607 heap [k] = w; 919 heap [k] = he;
608 ((W)heap [k])->active = k + 1; 920 ev_active (ANHE_w (he)) = k;
921}
922#endif
923
924/* towards the root */
925void inline_speed
926upheap (ANHE *heap, int k)
927{
928 ANHE he = heap [k];
929
930 for (;;)
931 {
932 int p = HPARENT (k);
933
934 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
935 break;
936
937 heap [k] = heap [p];
938 ev_active (ANHE_w (heap [k])) = k;
939 k = p;
940 }
941
942 heap [k] = he;
943 ev_active (ANHE_w (he)) = k;
609} 944}
610 945
611void inline_size 946void inline_size
612adjustheap (WT *heap, int N, int k) 947adjustheap (ANHE *heap, int N, int k)
613{ 948{
949 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
614 upheap (heap, k); 950 upheap (heap, k);
951 else
615 downheap (heap, N, k); 952 downheap (heap, N, k);
953}
954
955/* rebuild the heap: this function is used only once and executed rarely */
956void inline_size
957reheap (ANHE *heap, int N)
958{
959 int i;
960
961 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
962 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
963 for (i = 0; i < N; ++i)
964 upheap (heap, i + HEAP0);
616} 965}
617 966
618/*****************************************************************************/ 967/*****************************************************************************/
619 968
620typedef struct 969typedef struct
621{ 970{
622 WL head; 971 WL head;
623 sig_atomic_t volatile gotsig; 972 EV_ATOMIC_T gotsig;
624} ANSIG; 973} ANSIG;
625 974
626static ANSIG *signals; 975static ANSIG *signals;
627static int signalmax; 976static int signalmax;
628 977
629static int sigpipe [2]; 978static EV_ATOMIC_T gotsig;
630static sig_atomic_t volatile gotsig;
631static ev_io sigev;
632 979
633void inline_size 980void inline_size
634signals_init (ANSIG *base, int count) 981signals_init (ANSIG *base, int count)
635{ 982{
636 while (count--) 983 while (count--)
640 987
641 ++base; 988 ++base;
642 } 989 }
643} 990}
644 991
645static void 992/*****************************************************************************/
646sighandler (int signum)
647{
648#if _WIN32
649 signal (signum, sighandler);
650#endif
651 993
652 signals [signum - 1].gotsig = 1;
653
654 if (!gotsig)
655 {
656 int old_errno = errno;
657 gotsig = 1;
658 write (sigpipe [1], &signum, 1);
659 errno = old_errno;
660 }
661}
662
663void noinline
664ev_feed_signal_event (EV_P_ int signum)
665{
666 WL w;
667
668#if EV_MULTIPLICITY
669 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
670#endif
671
672 --signum;
673
674 if (signum < 0 || signum >= signalmax)
675 return;
676
677 signals [signum].gotsig = 0;
678
679 for (w = signals [signum].head; w; w = w->next)
680 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
681}
682
683static void
684sigcb (EV_P_ ev_io *iow, int revents)
685{
686 int signum;
687
688 read (sigpipe [0], &revents, 1);
689 gotsig = 0;
690
691 for (signum = signalmax; signum--; )
692 if (signals [signum].gotsig)
693 ev_feed_signal_event (EV_A_ signum + 1);
694}
695
696void inline_size 994void inline_speed
697fd_intern (int fd) 995fd_intern (int fd)
698{ 996{
699#ifdef _WIN32 997#ifdef _WIN32
700 int arg = 1; 998 unsigned long arg = 1;
701 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 999 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
702#else 1000#else
703 fcntl (fd, F_SETFD, FD_CLOEXEC); 1001 fcntl (fd, F_SETFD, FD_CLOEXEC);
704 fcntl (fd, F_SETFL, O_NONBLOCK); 1002 fcntl (fd, F_SETFL, O_NONBLOCK);
705#endif 1003#endif
706} 1004}
707 1005
708static void noinline 1006static void noinline
709siginit (EV_P) 1007evpipe_init (EV_P)
710{ 1008{
1009 if (!ev_is_active (&pipeev))
1010 {
1011#if EV_USE_EVENTFD
1012 if ((evfd = eventfd (0, 0)) >= 0)
1013 {
1014 evpipe [0] = -1;
1015 fd_intern (evfd);
1016 ev_io_set (&pipeev, evfd, EV_READ);
1017 }
1018 else
1019#endif
1020 {
1021 while (pipe (evpipe))
1022 syserr ("(libev) error creating signal/async pipe");
1023
711 fd_intern (sigpipe [0]); 1024 fd_intern (evpipe [0]);
712 fd_intern (sigpipe [1]); 1025 fd_intern (evpipe [1]);
1026 ev_io_set (&pipeev, evpipe [0], EV_READ);
1027 }
713 1028
714 ev_io_set (&sigev, sigpipe [0], EV_READ);
715 ev_io_start (EV_A_ &sigev); 1029 ev_io_start (EV_A_ &pipeev);
716 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1030 ev_unref (EV_A); /* watcher should not keep loop alive */
1031 }
1032}
1033
1034void inline_size
1035evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1036{
1037 if (!*flag)
1038 {
1039 int old_errno = errno; /* save errno because write might clobber it */
1040
1041 *flag = 1;
1042
1043#if EV_USE_EVENTFD
1044 if (evfd >= 0)
1045 {
1046 uint64_t counter = 1;
1047 write (evfd, &counter, sizeof (uint64_t));
1048 }
1049 else
1050#endif
1051 write (evpipe [1], &old_errno, 1);
1052
1053 errno = old_errno;
1054 }
1055}
1056
1057static void
1058pipecb (EV_P_ ev_io *iow, int revents)
1059{
1060#if EV_USE_EVENTFD
1061 if (evfd >= 0)
1062 {
1063 uint64_t counter;
1064 read (evfd, &counter, sizeof (uint64_t));
1065 }
1066 else
1067#endif
1068 {
1069 char dummy;
1070 read (evpipe [0], &dummy, 1);
1071 }
1072
1073 if (gotsig && ev_is_default_loop (EV_A))
1074 {
1075 int signum;
1076 gotsig = 0;
1077
1078 for (signum = signalmax; signum--; )
1079 if (signals [signum].gotsig)
1080 ev_feed_signal_event (EV_A_ signum + 1);
1081 }
1082
1083#if EV_ASYNC_ENABLE
1084 if (gotasync)
1085 {
1086 int i;
1087 gotasync = 0;
1088
1089 for (i = asynccnt; i--; )
1090 if (asyncs [i]->sent)
1091 {
1092 asyncs [i]->sent = 0;
1093 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1094 }
1095 }
1096#endif
717} 1097}
718 1098
719/*****************************************************************************/ 1099/*****************************************************************************/
720 1100
1101static void
1102ev_sighandler (int signum)
1103{
1104#if EV_MULTIPLICITY
1105 struct ev_loop *loop = &default_loop_struct;
1106#endif
1107
1108#if _WIN32
1109 signal (signum, ev_sighandler);
1110#endif
1111
1112 signals [signum - 1].gotsig = 1;
1113 evpipe_write (EV_A_ &gotsig);
1114}
1115
1116void noinline
1117ev_feed_signal_event (EV_P_ int signum)
1118{
1119 WL w;
1120
1121#if EV_MULTIPLICITY
1122 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1123#endif
1124
1125 --signum;
1126
1127 if (signum < 0 || signum >= signalmax)
1128 return;
1129
1130 signals [signum].gotsig = 0;
1131
1132 for (w = signals [signum].head; w; w = w->next)
1133 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1134}
1135
1136/*****************************************************************************/
1137
721static ev_child *childs [EV_PID_HASHSIZE]; 1138static WL childs [EV_PID_HASHSIZE];
722 1139
723#ifndef _WIN32 1140#ifndef _WIN32
724 1141
725static ev_signal childev; 1142static ev_signal childev;
726 1143
1144#ifndef WIFCONTINUED
1145# define WIFCONTINUED(status) 0
1146#endif
1147
727void inline_speed 1148void inline_speed
728child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1149child_reap (EV_P_ int chain, int pid, int status)
729{ 1150{
730 ev_child *w; 1151 ev_child *w;
1152 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
731 1153
732 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1154 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1155 {
733 if (w->pid == pid || !w->pid) 1156 if ((w->pid == pid || !w->pid)
1157 && (!traced || (w->flags & 1)))
734 { 1158 {
735 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1159 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
736 w->rpid = pid; 1160 w->rpid = pid;
737 w->rstatus = status; 1161 w->rstatus = status;
738 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1162 ev_feed_event (EV_A_ (W)w, EV_CHILD);
739 } 1163 }
1164 }
740} 1165}
741 1166
742#ifndef WCONTINUED 1167#ifndef WCONTINUED
743# define WCONTINUED 0 1168# define WCONTINUED 0
744#endif 1169#endif
753 if (!WCONTINUED 1178 if (!WCONTINUED
754 || errno != EINVAL 1179 || errno != EINVAL
755 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1180 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
756 return; 1181 return;
757 1182
758 /* make sure we are called again until all childs have been reaped */ 1183 /* make sure we are called again until all children have been reaped */
759 /* we need to do it this way so that the callback gets called before we continue */ 1184 /* we need to do it this way so that the callback gets called before we continue */
760 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1185 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
761 1186
762 child_reap (EV_A_ sw, pid, pid, status); 1187 child_reap (EV_A_ pid, pid, status);
763 if (EV_PID_HASHSIZE > 1) 1188 if (EV_PID_HASHSIZE > 1)
764 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1189 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
765} 1190}
766 1191
767#endif 1192#endif
768 1193
769/*****************************************************************************/ 1194/*****************************************************************************/
841} 1266}
842 1267
843unsigned int 1268unsigned int
844ev_embeddable_backends (void) 1269ev_embeddable_backends (void)
845{ 1270{
846 return EVBACKEND_EPOLL 1271 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
847 | EVBACKEND_KQUEUE 1272
848 | EVBACKEND_PORT; 1273 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1274 /* please fix it and tell me how to detect the fix */
1275 flags &= ~EVBACKEND_EPOLL;
1276
1277 return flags;
849} 1278}
850 1279
851unsigned int 1280unsigned int
852ev_backend (EV_P) 1281ev_backend (EV_P)
853{ 1282{
854 return backend; 1283 return backend;
855} 1284}
856 1285
857static void 1286unsigned int
1287ev_loop_count (EV_P)
1288{
1289 return loop_count;
1290}
1291
1292void
1293ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1294{
1295 io_blocktime = interval;
1296}
1297
1298void
1299ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1300{
1301 timeout_blocktime = interval;
1302}
1303
1304static void noinline
858loop_init (EV_P_ unsigned int flags) 1305loop_init (EV_P_ unsigned int flags)
859{ 1306{
860 if (!backend) 1307 if (!backend)
861 { 1308 {
862#if EV_USE_MONOTONIC 1309#if EV_USE_MONOTONIC
865 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1312 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
866 have_monotonic = 1; 1313 have_monotonic = 1;
867 } 1314 }
868#endif 1315#endif
869 1316
870 ev_rt_now = ev_time (); 1317 ev_rt_now = ev_time ();
871 mn_now = get_clock (); 1318 mn_now = get_clock ();
872 now_floor = mn_now; 1319 now_floor = mn_now;
873 rtmn_diff = ev_rt_now - mn_now; 1320 rtmn_diff = ev_rt_now - mn_now;
1321
1322 io_blocktime = 0.;
1323 timeout_blocktime = 0.;
1324 backend = 0;
1325 backend_fd = -1;
1326 gotasync = 0;
1327#if EV_USE_INOTIFY
1328 fs_fd = -2;
1329#endif
1330
1331 /* pid check not overridable via env */
1332#ifndef _WIN32
1333 if (flags & EVFLAG_FORKCHECK)
1334 curpid = getpid ();
1335#endif
874 1336
875 if (!(flags & EVFLAG_NOENV) 1337 if (!(flags & EVFLAG_NOENV)
876 && !enable_secure () 1338 && !enable_secure ()
877 && getenv ("LIBEV_FLAGS")) 1339 && getenv ("LIBEV_FLAGS"))
878 flags = atoi (getenv ("LIBEV_FLAGS")); 1340 flags = atoi (getenv ("LIBEV_FLAGS"));
879 1341
880 if (!(flags & 0x0000ffffUL)) 1342 if (!(flags & 0x0000ffffU))
881 flags |= ev_recommended_backends (); 1343 flags |= ev_recommended_backends ();
882 1344
883 backend = 0;
884#if EV_USE_PORT 1345#if EV_USE_PORT
885 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1346 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
886#endif 1347#endif
887#if EV_USE_KQUEUE 1348#if EV_USE_KQUEUE
888 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1349 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
895#endif 1356#endif
896#if EV_USE_SELECT 1357#if EV_USE_SELECT
897 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1358 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
898#endif 1359#endif
899 1360
900 ev_init (&sigev, sigcb); 1361 ev_init (&pipeev, pipecb);
901 ev_set_priority (&sigev, EV_MAXPRI); 1362 ev_set_priority (&pipeev, EV_MAXPRI);
902 } 1363 }
903} 1364}
904 1365
905static void 1366static void noinline
906loop_destroy (EV_P) 1367loop_destroy (EV_P)
907{ 1368{
908 int i; 1369 int i;
1370
1371 if (ev_is_active (&pipeev))
1372 {
1373 ev_ref (EV_A); /* signal watcher */
1374 ev_io_stop (EV_A_ &pipeev);
1375
1376#if EV_USE_EVENTFD
1377 if (evfd >= 0)
1378 close (evfd);
1379#endif
1380
1381 if (evpipe [0] >= 0)
1382 {
1383 close (evpipe [0]);
1384 close (evpipe [1]);
1385 }
1386 }
1387
1388#if EV_USE_INOTIFY
1389 if (fs_fd >= 0)
1390 close (fs_fd);
1391#endif
1392
1393 if (backend_fd >= 0)
1394 close (backend_fd);
909 1395
910#if EV_USE_PORT 1396#if EV_USE_PORT
911 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1397 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
912#endif 1398#endif
913#if EV_USE_KQUEUE 1399#if EV_USE_KQUEUE
922#if EV_USE_SELECT 1408#if EV_USE_SELECT
923 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1409 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
924#endif 1410#endif
925 1411
926 for (i = NUMPRI; i--; ) 1412 for (i = NUMPRI; i--; )
1413 {
927 array_free (pending, [i]); 1414 array_free (pending, [i]);
1415#if EV_IDLE_ENABLE
1416 array_free (idle, [i]);
1417#endif
1418 }
1419
1420 ev_free (anfds); anfdmax = 0;
928 1421
929 /* have to use the microsoft-never-gets-it-right macro */ 1422 /* have to use the microsoft-never-gets-it-right macro */
930 array_free (fdchange, EMPTY0); 1423 array_free (fdchange, EMPTY);
931 array_free (timer, EMPTY0); 1424 array_free (timer, EMPTY);
932#if EV_PERIODIC_ENABLE 1425#if EV_PERIODIC_ENABLE
933 array_free (periodic, EMPTY0); 1426 array_free (periodic, EMPTY);
934#endif 1427#endif
1428#if EV_FORK_ENABLE
935 array_free (idle, EMPTY0); 1429 array_free (fork, EMPTY);
1430#endif
936 array_free (prepare, EMPTY0); 1431 array_free (prepare, EMPTY);
937 array_free (check, EMPTY0); 1432 array_free (check, EMPTY);
1433#if EV_ASYNC_ENABLE
1434 array_free (async, EMPTY);
1435#endif
938 1436
939 backend = 0; 1437 backend = 0;
940} 1438}
941 1439
942static void 1440#if EV_USE_INOTIFY
1441void inline_size infy_fork (EV_P);
1442#endif
1443
1444void inline_size
943loop_fork (EV_P) 1445loop_fork (EV_P)
944{ 1446{
945#if EV_USE_PORT 1447#if EV_USE_PORT
946 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1448 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
947#endif 1449#endif
949 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1451 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
950#endif 1452#endif
951#if EV_USE_EPOLL 1453#if EV_USE_EPOLL
952 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1454 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
953#endif 1455#endif
1456#if EV_USE_INOTIFY
1457 infy_fork (EV_A);
1458#endif
954 1459
955 if (ev_is_active (&sigev)) 1460 if (ev_is_active (&pipeev))
956 { 1461 {
957 /* default loop */ 1462 /* this "locks" the handlers against writing to the pipe */
1463 /* while we modify the fd vars */
1464 gotsig = 1;
1465#if EV_ASYNC_ENABLE
1466 gotasync = 1;
1467#endif
958 1468
959 ev_ref (EV_A); 1469 ev_ref (EV_A);
960 ev_io_stop (EV_A_ &sigev); 1470 ev_io_stop (EV_A_ &pipeev);
1471
1472#if EV_USE_EVENTFD
1473 if (evfd >= 0)
1474 close (evfd);
1475#endif
1476
1477 if (evpipe [0] >= 0)
1478 {
961 close (sigpipe [0]); 1479 close (evpipe [0]);
962 close (sigpipe [1]); 1480 close (evpipe [1]);
1481 }
963 1482
964 while (pipe (sigpipe))
965 syserr ("(libev) error creating pipe");
966
967 siginit (EV_A); 1483 evpipe_init (EV_A);
1484 /* now iterate over everything, in case we missed something */
1485 pipecb (EV_A_ &pipeev, EV_READ);
968 } 1486 }
969 1487
970 postfork = 0; 1488 postfork = 0;
971} 1489}
972 1490
973#if EV_MULTIPLICITY 1491#if EV_MULTIPLICITY
1492
974struct ev_loop * 1493struct ev_loop *
975ev_loop_new (unsigned int flags) 1494ev_loop_new (unsigned int flags)
976{ 1495{
977 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1496 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
978 1497
994} 1513}
995 1514
996void 1515void
997ev_loop_fork (EV_P) 1516ev_loop_fork (EV_P)
998{ 1517{
999 postfork = 1; 1518 postfork = 1; /* must be in line with ev_default_fork */
1000} 1519}
1001 1520
1521#if EV_VERIFY
1522static void noinline
1523verify_watcher (EV_P_ W w)
1524{
1525 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1526
1527 if (w->pending)
1528 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1529}
1530
1531static void noinline
1532verify_heap (EV_P_ ANHE *heap, int N)
1533{
1534 int i;
1535
1536 for (i = HEAP0; i < N + HEAP0; ++i)
1537 {
1538 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1539 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1540 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1541
1542 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1543 }
1544}
1545
1546static void noinline
1547array_verify (EV_P_ W *ws, int cnt)
1548{
1549 while (cnt--)
1550 {
1551 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1552 verify_watcher (EV_A_ ws [cnt]);
1553 }
1554}
1555#endif
1556
1557void
1558ev_loop_verify (EV_P)
1559{
1560#if EV_VERIFY
1561 int i;
1562 WL w;
1563
1564 assert (activecnt >= -1);
1565
1566 assert (fdchangemax >= fdchangecnt);
1567 for (i = 0; i < fdchangecnt; ++i)
1568 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1569
1570 assert (anfdmax >= 0);
1571 for (i = 0; i < anfdmax; ++i)
1572 for (w = anfds [i].head; w; w = w->next)
1573 {
1574 verify_watcher (EV_A_ (W)w);
1575 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1576 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1577 }
1578
1579 assert (timermax >= timercnt);
1580 verify_heap (EV_A_ timers, timercnt);
1581
1582#if EV_PERIODIC_ENABLE
1583 assert (periodicmax >= periodiccnt);
1584 verify_heap (EV_A_ periodics, periodiccnt);
1585#endif
1586
1587 for (i = NUMPRI; i--; )
1588 {
1589 assert (pendingmax [i] >= pendingcnt [i]);
1590#if EV_IDLE_ENABLE
1591 assert (idleall >= 0);
1592 assert (idlemax [i] >= idlecnt [i]);
1593 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1594#endif
1595 }
1596
1597#if EV_FORK_ENABLE
1598 assert (forkmax >= forkcnt);
1599 array_verify (EV_A_ (W *)forks, forkcnt);
1600#endif
1601
1602#if EV_ASYNC_ENABLE
1603 assert (asyncmax >= asynccnt);
1604 array_verify (EV_A_ (W *)asyncs, asynccnt);
1605#endif
1606
1607 assert (preparemax >= preparecnt);
1608 array_verify (EV_A_ (W *)prepares, preparecnt);
1609
1610 assert (checkmax >= checkcnt);
1611 array_verify (EV_A_ (W *)checks, checkcnt);
1612
1613# if 0
1614 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1615 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1002#endif 1616# endif
1617#endif
1618}
1619
1620#endif /* multiplicity */
1003 1621
1004#if EV_MULTIPLICITY 1622#if EV_MULTIPLICITY
1005struct ev_loop * 1623struct ev_loop *
1006ev_default_loop_init (unsigned int flags) 1624ev_default_loop_init (unsigned int flags)
1007#else 1625#else
1008int 1626int
1009ev_default_loop (unsigned int flags) 1627ev_default_loop (unsigned int flags)
1010#endif 1628#endif
1011{ 1629{
1012 if (sigpipe [0] == sigpipe [1])
1013 if (pipe (sigpipe))
1014 return 0;
1015
1016 if (!ev_default_loop_ptr) 1630 if (!ev_default_loop_ptr)
1017 { 1631 {
1018#if EV_MULTIPLICITY 1632#if EV_MULTIPLICITY
1019 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1633 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1020#else 1634#else
1023 1637
1024 loop_init (EV_A_ flags); 1638 loop_init (EV_A_ flags);
1025 1639
1026 if (ev_backend (EV_A)) 1640 if (ev_backend (EV_A))
1027 { 1641 {
1028 siginit (EV_A);
1029
1030#ifndef _WIN32 1642#ifndef _WIN32
1031 ev_signal_init (&childev, childcb, SIGCHLD); 1643 ev_signal_init (&childev, childcb, SIGCHLD);
1032 ev_set_priority (&childev, EV_MAXPRI); 1644 ev_set_priority (&childev, EV_MAXPRI);
1033 ev_signal_start (EV_A_ &childev); 1645 ev_signal_start (EV_A_ &childev);
1034 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1646 ev_unref (EV_A); /* child watcher should not keep loop alive */
1051#ifndef _WIN32 1663#ifndef _WIN32
1052 ev_ref (EV_A); /* child watcher */ 1664 ev_ref (EV_A); /* child watcher */
1053 ev_signal_stop (EV_A_ &childev); 1665 ev_signal_stop (EV_A_ &childev);
1054#endif 1666#endif
1055 1667
1056 ev_ref (EV_A); /* signal watcher */
1057 ev_io_stop (EV_A_ &sigev);
1058
1059 close (sigpipe [0]); sigpipe [0] = 0;
1060 close (sigpipe [1]); sigpipe [1] = 0;
1061
1062 loop_destroy (EV_A); 1668 loop_destroy (EV_A);
1063} 1669}
1064 1670
1065void 1671void
1066ev_default_fork (void) 1672ev_default_fork (void)
1068#if EV_MULTIPLICITY 1674#if EV_MULTIPLICITY
1069 struct ev_loop *loop = ev_default_loop_ptr; 1675 struct ev_loop *loop = ev_default_loop_ptr;
1070#endif 1676#endif
1071 1677
1072 if (backend) 1678 if (backend)
1073 postfork = 1; 1679 postfork = 1; /* must be in line with ev_loop_fork */
1074} 1680}
1075 1681
1076/*****************************************************************************/ 1682/*****************************************************************************/
1077 1683
1078int inline_size 1684void
1079any_pending (EV_P) 1685ev_invoke (EV_P_ void *w, int revents)
1080{ 1686{
1081 int pri; 1687 EV_CB_INVOKE ((W)w, revents);
1082
1083 for (pri = NUMPRI; pri--; )
1084 if (pendingcnt [pri])
1085 return 1;
1086
1087 return 0;
1088} 1688}
1089 1689
1090void inline_speed 1690void inline_speed
1091call_pending (EV_P) 1691call_pending (EV_P)
1092{ 1692{
1097 { 1697 {
1098 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1698 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1099 1699
1100 if (expect_true (p->w)) 1700 if (expect_true (p->w))
1101 { 1701 {
1102 assert (("non-pending watcher on pending list", p->w->pending)); 1702 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1103 1703
1104 p->w->pending = 0; 1704 p->w->pending = 0;
1105 EV_CB_INVOKE (p->w, p->events); 1705 EV_CB_INVOKE (p->w, p->events);
1706 EV_FREQUENT_CHECK;
1106 } 1707 }
1107 } 1708 }
1108} 1709}
1109 1710
1711#if EV_IDLE_ENABLE
1712void inline_size
1713idle_reify (EV_P)
1714{
1715 if (expect_false (idleall))
1716 {
1717 int pri;
1718
1719 for (pri = NUMPRI; pri--; )
1720 {
1721 if (pendingcnt [pri])
1722 break;
1723
1724 if (idlecnt [pri])
1725 {
1726 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1727 break;
1728 }
1729 }
1730 }
1731}
1732#endif
1733
1110void inline_size 1734void inline_size
1111timers_reify (EV_P) 1735timers_reify (EV_P)
1112{ 1736{
1737 EV_FREQUENT_CHECK;
1738
1113 while (timercnt && ((WT)timers [0])->at <= mn_now) 1739 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1114 { 1740 {
1115 ev_timer *w = timers [0]; 1741 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1116 1742
1117 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1743 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1118 1744
1119 /* first reschedule or stop timer */ 1745 /* first reschedule or stop timer */
1120 if (w->repeat) 1746 if (w->repeat)
1121 { 1747 {
1748 ev_at (w) += w->repeat;
1749 if (ev_at (w) < mn_now)
1750 ev_at (w) = mn_now;
1751
1122 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1752 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1123 1753
1124 ((WT)w)->at += w->repeat; 1754 ANHE_at_cache (timers [HEAP0]);
1125 if (((WT)w)->at < mn_now)
1126 ((WT)w)->at = mn_now;
1127
1128 downheap ((WT *)timers, timercnt, 0); 1755 downheap (timers, timercnt, HEAP0);
1129 } 1756 }
1130 else 1757 else
1131 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1758 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1132 1759
1760 EV_FREQUENT_CHECK;
1133 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1761 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1134 } 1762 }
1135} 1763}
1136 1764
1137#if EV_PERIODIC_ENABLE 1765#if EV_PERIODIC_ENABLE
1138void inline_size 1766void inline_size
1139periodics_reify (EV_P) 1767periodics_reify (EV_P)
1140{ 1768{
1769 EV_FREQUENT_CHECK;
1770
1141 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1771 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1142 { 1772 {
1143 ev_periodic *w = periodics [0]; 1773 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1144 1774
1145 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1775 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1146 1776
1147 /* first reschedule or stop timer */ 1777 /* first reschedule or stop timer */
1148 if (w->reschedule_cb) 1778 if (w->reschedule_cb)
1149 { 1779 {
1150 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1780 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1781
1151 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1782 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1783
1784 ANHE_at_cache (periodics [HEAP0]);
1152 downheap ((WT *)periodics, periodiccnt, 0); 1785 downheap (periodics, periodiccnt, HEAP0);
1153 } 1786 }
1154 else if (w->interval) 1787 else if (w->interval)
1155 { 1788 {
1156 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1789 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1157 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1790 /* if next trigger time is not sufficiently in the future, put it there */
1791 /* this might happen because of floating point inexactness */
1792 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1793 {
1794 ev_at (w) += w->interval;
1795
1796 /* if interval is unreasonably low we might still have a time in the past */
1797 /* so correct this. this will make the periodic very inexact, but the user */
1798 /* has effectively asked to get triggered more often than possible */
1799 if (ev_at (w) < ev_rt_now)
1800 ev_at (w) = ev_rt_now;
1801 }
1802
1803 ANHE_at_cache (periodics [HEAP0]);
1158 downheap ((WT *)periodics, periodiccnt, 0); 1804 downheap (periodics, periodiccnt, HEAP0);
1159 } 1805 }
1160 else 1806 else
1161 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1807 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1162 1808
1809 EV_FREQUENT_CHECK;
1163 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1810 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1164 } 1811 }
1165} 1812}
1166 1813
1167static void noinline 1814static void noinline
1168periodics_reschedule (EV_P) 1815periodics_reschedule (EV_P)
1169{ 1816{
1170 int i; 1817 int i;
1171 1818
1172 /* adjust periodics after time jump */ 1819 /* adjust periodics after time jump */
1173 for (i = 0; i < periodiccnt; ++i) 1820 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1174 { 1821 {
1175 ev_periodic *w = periodics [i]; 1822 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1176 1823
1177 if (w->reschedule_cb) 1824 if (w->reschedule_cb)
1178 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1825 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1179 else if (w->interval) 1826 else if (w->interval)
1180 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1827 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1828
1829 ANHE_at_cache (periodics [i]);
1830 }
1831
1832 reheap (periodics, periodiccnt);
1833}
1834#endif
1835
1836void inline_speed
1837time_update (EV_P_ ev_tstamp max_block)
1838{
1839 int i;
1840
1841#if EV_USE_MONOTONIC
1842 if (expect_true (have_monotonic))
1181 } 1843 {
1844 ev_tstamp odiff = rtmn_diff;
1182 1845
1183 /* now rebuild the heap */
1184 for (i = periodiccnt >> 1; i--; )
1185 downheap ((WT *)periodics, periodiccnt, i);
1186}
1187#endif
1188
1189int inline_size
1190time_update_monotonic (EV_P)
1191{
1192 mn_now = get_clock (); 1846 mn_now = get_clock ();
1193 1847
1848 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1849 /* interpolate in the meantime */
1194 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1850 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1195 { 1851 {
1196 ev_rt_now = rtmn_diff + mn_now; 1852 ev_rt_now = rtmn_diff + mn_now;
1197 return 0; 1853 return;
1198 } 1854 }
1199 else 1855
1200 {
1201 now_floor = mn_now; 1856 now_floor = mn_now;
1202 ev_rt_now = ev_time (); 1857 ev_rt_now = ev_time ();
1203 return 1;
1204 }
1205}
1206 1858
1207void inline_size 1859 /* loop a few times, before making important decisions.
1208time_update (EV_P) 1860 * on the choice of "4": one iteration isn't enough,
1209{ 1861 * in case we get preempted during the calls to
1210 int i; 1862 * ev_time and get_clock. a second call is almost guaranteed
1211 1863 * to succeed in that case, though. and looping a few more times
1212#if EV_USE_MONOTONIC 1864 * doesn't hurt either as we only do this on time-jumps or
1213 if (expect_true (have_monotonic)) 1865 * in the unlikely event of having been preempted here.
1214 { 1866 */
1215 if (time_update_monotonic (EV_A)) 1867 for (i = 4; --i; )
1216 { 1868 {
1217 ev_tstamp odiff = rtmn_diff;
1218
1219 /* loop a few times, before making important decisions.
1220 * on the choice of "4": one iteration isn't enough,
1221 * in case we get preempted during the calls to
1222 * ev_time and get_clock. a second call is almost guarenteed
1223 * to succeed in that case, though. and looping a few more times
1224 * doesn't hurt either as we only do this on time-jumps or
1225 * in the unlikely event of getting preempted here.
1226 */
1227 for (i = 4; --i; )
1228 {
1229 rtmn_diff = ev_rt_now - mn_now; 1869 rtmn_diff = ev_rt_now - mn_now;
1230 1870
1231 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1871 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1232 return; /* all is well */ 1872 return; /* all is well */
1233 1873
1234 ev_rt_now = ev_time (); 1874 ev_rt_now = ev_time ();
1235 mn_now = get_clock (); 1875 mn_now = get_clock ();
1236 now_floor = mn_now; 1876 now_floor = mn_now;
1237 } 1877 }
1238 1878
1239# if EV_PERIODIC_ENABLE 1879# if EV_PERIODIC_ENABLE
1240 periodics_reschedule (EV_A); 1880 periodics_reschedule (EV_A);
1241# endif 1881# endif
1242 /* no timer adjustment, as the monotonic clock doesn't jump */ 1882 /* no timer adjustment, as the monotonic clock doesn't jump */
1243 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1883 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1244 }
1245 } 1884 }
1246 else 1885 else
1247#endif 1886#endif
1248 { 1887 {
1249 ev_rt_now = ev_time (); 1888 ev_rt_now = ev_time ();
1250 1889
1251 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1890 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1252 { 1891 {
1253#if EV_PERIODIC_ENABLE 1892#if EV_PERIODIC_ENABLE
1254 periodics_reschedule (EV_A); 1893 periodics_reschedule (EV_A);
1255#endif 1894#endif
1256
1257 /* adjust timers. this is easy, as the offset is the same for all */ 1895 /* adjust timers. this is easy, as the offset is the same for all of them */
1258 for (i = 0; i < timercnt; ++i) 1896 for (i = 0; i < timercnt; ++i)
1897 {
1898 ANHE *he = timers + i + HEAP0;
1259 ((WT)timers [i])->at += ev_rt_now - mn_now; 1899 ANHE_w (*he)->at += ev_rt_now - mn_now;
1900 ANHE_at_cache (*he);
1901 }
1260 } 1902 }
1261 1903
1262 mn_now = ev_rt_now; 1904 mn_now = ev_rt_now;
1263 } 1905 }
1264} 1906}
1273ev_unref (EV_P) 1915ev_unref (EV_P)
1274{ 1916{
1275 --activecnt; 1917 --activecnt;
1276} 1918}
1277 1919
1920void
1921ev_now_update (EV_P)
1922{
1923 time_update (EV_A_ 1e100);
1924}
1925
1278static int loop_done; 1926static int loop_done;
1279 1927
1280void 1928void
1281ev_loop (EV_P_ int flags) 1929ev_loop (EV_P_ int flags)
1282{ 1930{
1283 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1931 loop_done = EVUNLOOP_CANCEL;
1284 ? EVUNLOOP_ONE
1285 : EVUNLOOP_CANCEL;
1286 1932
1287 while (activecnt) 1933 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1934
1935 do
1288 { 1936 {
1289 /* we might have forked, so reify kernel state if necessary */ 1937#if EV_VERIFY >= 2
1938 ev_loop_verify (EV_A);
1939#endif
1940
1941#ifndef _WIN32
1942 if (expect_false (curpid)) /* penalise the forking check even more */
1943 if (expect_false (getpid () != curpid))
1944 {
1945 curpid = getpid ();
1946 postfork = 1;
1947 }
1948#endif
1949
1290 #if EV_FORK_ENABLE 1950#if EV_FORK_ENABLE
1951 /* we might have forked, so queue fork handlers */
1291 if (expect_false (postfork)) 1952 if (expect_false (postfork))
1292 if (forkcnt) 1953 if (forkcnt)
1293 { 1954 {
1294 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1955 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1295 call_pending (EV_A); 1956 call_pending (EV_A);
1296 } 1957 }
1297 #endif 1958#endif
1298 1959
1299 /* queue check watchers (and execute them) */ 1960 /* queue prepare watchers (and execute them) */
1300 if (expect_false (preparecnt)) 1961 if (expect_false (preparecnt))
1301 { 1962 {
1302 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1963 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1303 call_pending (EV_A); 1964 call_pending (EV_A);
1304 } 1965 }
1305 1966
1967 if (expect_false (!activecnt))
1968 break;
1969
1306 /* we might have forked, so reify kernel state if necessary */ 1970 /* we might have forked, so reify kernel state if necessary */
1307 if (expect_false (postfork)) 1971 if (expect_false (postfork))
1308 loop_fork (EV_A); 1972 loop_fork (EV_A);
1309 1973
1310 /* update fd-related kernel structures */ 1974 /* update fd-related kernel structures */
1311 fd_reify (EV_A); 1975 fd_reify (EV_A);
1312 1976
1313 /* calculate blocking time */ 1977 /* calculate blocking time */
1314 { 1978 {
1315 double block; 1979 ev_tstamp waittime = 0.;
1980 ev_tstamp sleeptime = 0.;
1316 1981
1317 if (flags & EVLOOP_NONBLOCK || idlecnt) 1982 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1318 block = 0.; /* do not block at all */
1319 else
1320 { 1983 {
1321 /* update time to cancel out callback processing overhead */ 1984 /* update time to cancel out callback processing overhead */
1322#if EV_USE_MONOTONIC
1323 if (expect_true (have_monotonic))
1324 time_update_monotonic (EV_A); 1985 time_update (EV_A_ 1e100);
1325 else
1326#endif
1327 {
1328 ev_rt_now = ev_time ();
1329 mn_now = ev_rt_now;
1330 }
1331 1986
1332 block = MAX_BLOCKTIME; 1987 waittime = MAX_BLOCKTIME;
1333 1988
1334 if (timercnt) 1989 if (timercnt)
1335 { 1990 {
1336 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1991 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1337 if (block > to) block = to; 1992 if (waittime > to) waittime = to;
1338 } 1993 }
1339 1994
1340#if EV_PERIODIC_ENABLE 1995#if EV_PERIODIC_ENABLE
1341 if (periodiccnt) 1996 if (periodiccnt)
1342 { 1997 {
1343 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1998 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1344 if (block > to) block = to; 1999 if (waittime > to) waittime = to;
1345 } 2000 }
1346#endif 2001#endif
1347 2002
1348 if (expect_false (block < 0.)) block = 0.; 2003 if (expect_false (waittime < timeout_blocktime))
2004 waittime = timeout_blocktime;
2005
2006 sleeptime = waittime - backend_fudge;
2007
2008 if (expect_true (sleeptime > io_blocktime))
2009 sleeptime = io_blocktime;
2010
2011 if (sleeptime)
2012 {
2013 ev_sleep (sleeptime);
2014 waittime -= sleeptime;
2015 }
1349 } 2016 }
1350 2017
2018 ++loop_count;
1351 backend_poll (EV_A_ block); 2019 backend_poll (EV_A_ waittime);
2020
2021 /* update ev_rt_now, do magic */
2022 time_update (EV_A_ waittime + sleeptime);
1352 } 2023 }
1353
1354 /* update ev_rt_now, do magic */
1355 time_update (EV_A);
1356 2024
1357 /* queue pending timers and reschedule them */ 2025 /* queue pending timers and reschedule them */
1358 timers_reify (EV_A); /* relative timers called last */ 2026 timers_reify (EV_A); /* relative timers called last */
1359#if EV_PERIODIC_ENABLE 2027#if EV_PERIODIC_ENABLE
1360 periodics_reify (EV_A); /* absolute timers called first */ 2028 periodics_reify (EV_A); /* absolute timers called first */
1361#endif 2029#endif
1362 2030
2031#if EV_IDLE_ENABLE
1363 /* queue idle watchers unless other events are pending */ 2032 /* queue idle watchers unless other events are pending */
1364 if (idlecnt && !any_pending (EV_A)) 2033 idle_reify (EV_A);
1365 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2034#endif
1366 2035
1367 /* queue check watchers, to be executed first */ 2036 /* queue check watchers, to be executed first */
1368 if (expect_false (checkcnt)) 2037 if (expect_false (checkcnt))
1369 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2038 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1370 2039
1371 call_pending (EV_A); 2040 call_pending (EV_A);
1372
1373 if (expect_false (loop_done))
1374 break;
1375 } 2041 }
2042 while (expect_true (
2043 activecnt
2044 && !loop_done
2045 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2046 ));
1376 2047
1377 if (loop_done == EVUNLOOP_ONE) 2048 if (loop_done == EVUNLOOP_ONE)
1378 loop_done = EVUNLOOP_CANCEL; 2049 loop_done = EVUNLOOP_CANCEL;
1379} 2050}
1380 2051
1407 head = &(*head)->next; 2078 head = &(*head)->next;
1408 } 2079 }
1409} 2080}
1410 2081
1411void inline_speed 2082void inline_speed
1412ev_clear_pending (EV_P_ W w) 2083clear_pending (EV_P_ W w)
1413{ 2084{
1414 if (w->pending) 2085 if (w->pending)
1415 { 2086 {
1416 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2087 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1417 w->pending = 0; 2088 w->pending = 0;
1418 } 2089 }
1419} 2090}
1420 2091
2092int
2093ev_clear_pending (EV_P_ void *w)
2094{
2095 W w_ = (W)w;
2096 int pending = w_->pending;
2097
2098 if (expect_true (pending))
2099 {
2100 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2101 w_->pending = 0;
2102 p->w = 0;
2103 return p->events;
2104 }
2105 else
2106 return 0;
2107}
2108
2109void inline_size
2110pri_adjust (EV_P_ W w)
2111{
2112 int pri = w->priority;
2113 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2114 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2115 w->priority = pri;
2116}
2117
1421void inline_speed 2118void inline_speed
1422ev_start (EV_P_ W w, int active) 2119ev_start (EV_P_ W w, int active)
1423{ 2120{
1424 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2121 pri_adjust (EV_A_ w);
1425 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1426
1427 w->active = active; 2122 w->active = active;
1428 ev_ref (EV_A); 2123 ev_ref (EV_A);
1429} 2124}
1430 2125
1431void inline_size 2126void inline_size
1435 w->active = 0; 2130 w->active = 0;
1436} 2131}
1437 2132
1438/*****************************************************************************/ 2133/*****************************************************************************/
1439 2134
1440void 2135void noinline
1441ev_io_start (EV_P_ ev_io *w) 2136ev_io_start (EV_P_ ev_io *w)
1442{ 2137{
1443 int fd = w->fd; 2138 int fd = w->fd;
1444 2139
1445 if (expect_false (ev_is_active (w))) 2140 if (expect_false (ev_is_active (w)))
1446 return; 2141 return;
1447 2142
1448 assert (("ev_io_start called with negative fd", fd >= 0)); 2143 assert (("ev_io_start called with negative fd", fd >= 0));
1449 2144
2145 EV_FREQUENT_CHECK;
2146
1450 ev_start (EV_A_ (W)w, 1); 2147 ev_start (EV_A_ (W)w, 1);
1451 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2148 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1452 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2149 wlist_add (&anfds[fd].head, (WL)w);
1453 2150
1454 fd_change (EV_A_ fd); 2151 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1455} 2152 w->events &= ~EV_IOFDSET;
1456 2153
1457void 2154 EV_FREQUENT_CHECK;
2155}
2156
2157void noinline
1458ev_io_stop (EV_P_ ev_io *w) 2158ev_io_stop (EV_P_ ev_io *w)
1459{ 2159{
1460 ev_clear_pending (EV_A_ (W)w); 2160 clear_pending (EV_A_ (W)w);
1461 if (expect_false (!ev_is_active (w))) 2161 if (expect_false (!ev_is_active (w)))
1462 return; 2162 return;
1463 2163
1464 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2164 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1465 2165
2166 EV_FREQUENT_CHECK;
2167
1466 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2168 wlist_del (&anfds[w->fd].head, (WL)w);
1467 ev_stop (EV_A_ (W)w); 2169 ev_stop (EV_A_ (W)w);
1468 2170
1469 fd_change (EV_A_ w->fd); 2171 fd_change (EV_A_ w->fd, 1);
1470}
1471 2172
1472void 2173 EV_FREQUENT_CHECK;
2174}
2175
2176void noinline
1473ev_timer_start (EV_P_ ev_timer *w) 2177ev_timer_start (EV_P_ ev_timer *w)
1474{ 2178{
1475 if (expect_false (ev_is_active (w))) 2179 if (expect_false (ev_is_active (w)))
1476 return; 2180 return;
1477 2181
1478 ((WT)w)->at += mn_now; 2182 ev_at (w) += mn_now;
1479 2183
1480 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2184 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1481 2185
2186 EV_FREQUENT_CHECK;
2187
2188 ++timercnt;
1482 ev_start (EV_A_ (W)w, ++timercnt); 2189 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1483 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2190 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1484 timers [timercnt - 1] = w; 2191 ANHE_w (timers [ev_active (w)]) = (WT)w;
1485 upheap ((WT *)timers, timercnt - 1); 2192 ANHE_at_cache (timers [ev_active (w)]);
2193 upheap (timers, ev_active (w));
1486 2194
2195 EV_FREQUENT_CHECK;
2196
1487 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2197 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1488} 2198}
1489 2199
1490void 2200void noinline
1491ev_timer_stop (EV_P_ ev_timer *w) 2201ev_timer_stop (EV_P_ ev_timer *w)
1492{ 2202{
1493 ev_clear_pending (EV_A_ (W)w); 2203 clear_pending (EV_A_ (W)w);
1494 if (expect_false (!ev_is_active (w))) 2204 if (expect_false (!ev_is_active (w)))
1495 return; 2205 return;
1496 2206
2207 EV_FREQUENT_CHECK;
2208
2209 {
2210 int active = ev_active (w);
2211
1497 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2212 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1498 2213
2214 --timercnt;
2215
1499 if (expect_true (((W)w)->active < timercnt--)) 2216 if (expect_true (active < timercnt + HEAP0))
1500 { 2217 {
1501 timers [((W)w)->active - 1] = timers [timercnt]; 2218 timers [active] = timers [timercnt + HEAP0];
1502 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2219 adjustheap (timers, timercnt, active);
1503 } 2220 }
2221 }
1504 2222
1505 ((WT)w)->at -= mn_now; 2223 EV_FREQUENT_CHECK;
2224
2225 ev_at (w) -= mn_now;
1506 2226
1507 ev_stop (EV_A_ (W)w); 2227 ev_stop (EV_A_ (W)w);
1508} 2228}
1509 2229
1510void 2230void noinline
1511ev_timer_again (EV_P_ ev_timer *w) 2231ev_timer_again (EV_P_ ev_timer *w)
1512{ 2232{
2233 EV_FREQUENT_CHECK;
2234
1513 if (ev_is_active (w)) 2235 if (ev_is_active (w))
1514 { 2236 {
1515 if (w->repeat) 2237 if (w->repeat)
1516 { 2238 {
1517 ((WT)w)->at = mn_now + w->repeat; 2239 ev_at (w) = mn_now + w->repeat;
2240 ANHE_at_cache (timers [ev_active (w)]);
1518 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2241 adjustheap (timers, timercnt, ev_active (w));
1519 } 2242 }
1520 else 2243 else
1521 ev_timer_stop (EV_A_ w); 2244 ev_timer_stop (EV_A_ w);
1522 } 2245 }
1523 else if (w->repeat) 2246 else if (w->repeat)
1524 { 2247 {
1525 w->at = w->repeat; 2248 ev_at (w) = w->repeat;
1526 ev_timer_start (EV_A_ w); 2249 ev_timer_start (EV_A_ w);
1527 } 2250 }
2251
2252 EV_FREQUENT_CHECK;
1528} 2253}
1529 2254
1530#if EV_PERIODIC_ENABLE 2255#if EV_PERIODIC_ENABLE
1531void 2256void noinline
1532ev_periodic_start (EV_P_ ev_periodic *w) 2257ev_periodic_start (EV_P_ ev_periodic *w)
1533{ 2258{
1534 if (expect_false (ev_is_active (w))) 2259 if (expect_false (ev_is_active (w)))
1535 return; 2260 return;
1536 2261
1537 if (w->reschedule_cb) 2262 if (w->reschedule_cb)
1538 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2263 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1539 else if (w->interval) 2264 else if (w->interval)
1540 { 2265 {
1541 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2266 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1542 /* this formula differs from the one in periodic_reify because we do not always round up */ 2267 /* this formula differs from the one in periodic_reify because we do not always round up */
1543 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2268 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1544 } 2269 }
2270 else
2271 ev_at (w) = w->offset;
1545 2272
2273 EV_FREQUENT_CHECK;
2274
2275 ++periodiccnt;
1546 ev_start (EV_A_ (W)w, ++periodiccnt); 2276 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1547 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2277 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1548 periodics [periodiccnt - 1] = w; 2278 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1549 upheap ((WT *)periodics, periodiccnt - 1); 2279 ANHE_at_cache (periodics [ev_active (w)]);
2280 upheap (periodics, ev_active (w));
1550 2281
2282 EV_FREQUENT_CHECK;
2283
1551 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2284 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1552} 2285}
1553 2286
1554void 2287void noinline
1555ev_periodic_stop (EV_P_ ev_periodic *w) 2288ev_periodic_stop (EV_P_ ev_periodic *w)
1556{ 2289{
1557 ev_clear_pending (EV_A_ (W)w); 2290 clear_pending (EV_A_ (W)w);
1558 if (expect_false (!ev_is_active (w))) 2291 if (expect_false (!ev_is_active (w)))
1559 return; 2292 return;
1560 2293
2294 EV_FREQUENT_CHECK;
2295
2296 {
2297 int active = ev_active (w);
2298
1561 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2299 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1562 2300
2301 --periodiccnt;
2302
1563 if (expect_true (((W)w)->active < periodiccnt--)) 2303 if (expect_true (active < periodiccnt + HEAP0))
1564 { 2304 {
1565 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2305 periodics [active] = periodics [periodiccnt + HEAP0];
1566 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2306 adjustheap (periodics, periodiccnt, active);
1567 } 2307 }
2308 }
2309
2310 EV_FREQUENT_CHECK;
1568 2311
1569 ev_stop (EV_A_ (W)w); 2312 ev_stop (EV_A_ (W)w);
1570} 2313}
1571 2314
1572void 2315void noinline
1573ev_periodic_again (EV_P_ ev_periodic *w) 2316ev_periodic_again (EV_P_ ev_periodic *w)
1574{ 2317{
1575 /* TODO: use adjustheap and recalculation */ 2318 /* TODO: use adjustheap and recalculation */
1576 ev_periodic_stop (EV_A_ w); 2319 ev_periodic_stop (EV_A_ w);
1577 ev_periodic_start (EV_A_ w); 2320 ev_periodic_start (EV_A_ w);
1580 2323
1581#ifndef SA_RESTART 2324#ifndef SA_RESTART
1582# define SA_RESTART 0 2325# define SA_RESTART 0
1583#endif 2326#endif
1584 2327
1585void 2328void noinline
1586ev_signal_start (EV_P_ ev_signal *w) 2329ev_signal_start (EV_P_ ev_signal *w)
1587{ 2330{
1588#if EV_MULTIPLICITY 2331#if EV_MULTIPLICITY
1589 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2332 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1590#endif 2333#endif
1591 if (expect_false (ev_is_active (w))) 2334 if (expect_false (ev_is_active (w)))
1592 return; 2335 return;
1593 2336
1594 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2337 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1595 2338
2339 evpipe_init (EV_A);
2340
2341 EV_FREQUENT_CHECK;
2342
2343 {
2344#ifndef _WIN32
2345 sigset_t full, prev;
2346 sigfillset (&full);
2347 sigprocmask (SIG_SETMASK, &full, &prev);
2348#endif
2349
2350 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2351
2352#ifndef _WIN32
2353 sigprocmask (SIG_SETMASK, &prev, 0);
2354#endif
2355 }
2356
1596 ev_start (EV_A_ (W)w, 1); 2357 ev_start (EV_A_ (W)w, 1);
1597 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1598 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2358 wlist_add (&signals [w->signum - 1].head, (WL)w);
1599 2359
1600 if (!((WL)w)->next) 2360 if (!((WL)w)->next)
1601 { 2361 {
1602#if _WIN32 2362#if _WIN32
1603 signal (w->signum, sighandler); 2363 signal (w->signum, ev_sighandler);
1604#else 2364#else
1605 struct sigaction sa; 2365 struct sigaction sa;
1606 sa.sa_handler = sighandler; 2366 sa.sa_handler = ev_sighandler;
1607 sigfillset (&sa.sa_mask); 2367 sigfillset (&sa.sa_mask);
1608 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2368 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1609 sigaction (w->signum, &sa, 0); 2369 sigaction (w->signum, &sa, 0);
1610#endif 2370#endif
1611 } 2371 }
1612}
1613 2372
1614void 2373 EV_FREQUENT_CHECK;
2374}
2375
2376void noinline
1615ev_signal_stop (EV_P_ ev_signal *w) 2377ev_signal_stop (EV_P_ ev_signal *w)
1616{ 2378{
1617 ev_clear_pending (EV_A_ (W)w); 2379 clear_pending (EV_A_ (W)w);
1618 if (expect_false (!ev_is_active (w))) 2380 if (expect_false (!ev_is_active (w)))
1619 return; 2381 return;
1620 2382
2383 EV_FREQUENT_CHECK;
2384
1621 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2385 wlist_del (&signals [w->signum - 1].head, (WL)w);
1622 ev_stop (EV_A_ (W)w); 2386 ev_stop (EV_A_ (W)w);
1623 2387
1624 if (!signals [w->signum - 1].head) 2388 if (!signals [w->signum - 1].head)
1625 signal (w->signum, SIG_DFL); 2389 signal (w->signum, SIG_DFL);
2390
2391 EV_FREQUENT_CHECK;
1626} 2392}
1627 2393
1628void 2394void
1629ev_child_start (EV_P_ ev_child *w) 2395ev_child_start (EV_P_ ev_child *w)
1630{ 2396{
1632 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2398 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1633#endif 2399#endif
1634 if (expect_false (ev_is_active (w))) 2400 if (expect_false (ev_is_active (w)))
1635 return; 2401 return;
1636 2402
2403 EV_FREQUENT_CHECK;
2404
1637 ev_start (EV_A_ (W)w, 1); 2405 ev_start (EV_A_ (W)w, 1);
1638 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2406 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2407
2408 EV_FREQUENT_CHECK;
1639} 2409}
1640 2410
1641void 2411void
1642ev_child_stop (EV_P_ ev_child *w) 2412ev_child_stop (EV_P_ ev_child *w)
1643{ 2413{
1644 ev_clear_pending (EV_A_ (W)w); 2414 clear_pending (EV_A_ (W)w);
1645 if (expect_false (!ev_is_active (w))) 2415 if (expect_false (!ev_is_active (w)))
1646 return; 2416 return;
1647 2417
2418 EV_FREQUENT_CHECK;
2419
1648 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2420 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1649 ev_stop (EV_A_ (W)w); 2421 ev_stop (EV_A_ (W)w);
2422
2423 EV_FREQUENT_CHECK;
1650} 2424}
1651 2425
1652#if EV_STAT_ENABLE 2426#if EV_STAT_ENABLE
1653 2427
1654# ifdef _WIN32 2428# ifdef _WIN32
1657# endif 2431# endif
1658 2432
1659#define DEF_STAT_INTERVAL 5.0074891 2433#define DEF_STAT_INTERVAL 5.0074891
1660#define MIN_STAT_INTERVAL 0.1074891 2434#define MIN_STAT_INTERVAL 0.1074891
1661 2435
2436static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2437
2438#if EV_USE_INOTIFY
2439# define EV_INOTIFY_BUFSIZE 8192
2440
2441static void noinline
2442infy_add (EV_P_ ev_stat *w)
2443{
2444 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2445
2446 if (w->wd < 0)
2447 {
2448 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2449
2450 /* monitor some parent directory for speedup hints */
2451 /* note that exceeding the hardcoded limit is not a correctness issue, */
2452 /* but an efficiency issue only */
2453 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2454 {
2455 char path [4096];
2456 strcpy (path, w->path);
2457
2458 do
2459 {
2460 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2461 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2462
2463 char *pend = strrchr (path, '/');
2464
2465 if (!pend)
2466 break; /* whoops, no '/', complain to your admin */
2467
2468 *pend = 0;
2469 w->wd = inotify_add_watch (fs_fd, path, mask);
2470 }
2471 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2472 }
2473 }
2474 else
2475 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2476
2477 if (w->wd >= 0)
2478 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2479}
2480
2481static void noinline
2482infy_del (EV_P_ ev_stat *w)
2483{
2484 int slot;
2485 int wd = w->wd;
2486
2487 if (wd < 0)
2488 return;
2489
2490 w->wd = -2;
2491 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2492 wlist_del (&fs_hash [slot].head, (WL)w);
2493
2494 /* remove this watcher, if others are watching it, they will rearm */
2495 inotify_rm_watch (fs_fd, wd);
2496}
2497
2498static void noinline
2499infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2500{
2501 if (slot < 0)
2502 /* overflow, need to check for all hash slots */
2503 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2504 infy_wd (EV_A_ slot, wd, ev);
2505 else
2506 {
2507 WL w_;
2508
2509 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2510 {
2511 ev_stat *w = (ev_stat *)w_;
2512 w_ = w_->next; /* lets us remove this watcher and all before it */
2513
2514 if (w->wd == wd || wd == -1)
2515 {
2516 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2517 {
2518 w->wd = -1;
2519 infy_add (EV_A_ w); /* re-add, no matter what */
2520 }
2521
2522 stat_timer_cb (EV_A_ &w->timer, 0);
2523 }
2524 }
2525 }
2526}
2527
2528static void
2529infy_cb (EV_P_ ev_io *w, int revents)
2530{
2531 char buf [EV_INOTIFY_BUFSIZE];
2532 struct inotify_event *ev = (struct inotify_event *)buf;
2533 int ofs;
2534 int len = read (fs_fd, buf, sizeof (buf));
2535
2536 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2537 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2538}
2539
2540void inline_size
2541infy_init (EV_P)
2542{
2543 if (fs_fd != -2)
2544 return;
2545
2546 /* kernels < 2.6.25 are borked
2547 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2548 */
2549 {
2550 struct utsname buf;
2551 int major, minor, micro;
2552
2553 fs_fd = -1;
2554
2555 if (uname (&buf))
2556 return;
2557
2558 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2559 return;
2560
2561 if (major < 2
2562 || (major == 2 && minor < 6)
2563 || (major == 2 && minor == 6 && micro < 25))
2564 return;
2565 }
2566
2567 fs_fd = inotify_init ();
2568
2569 if (fs_fd >= 0)
2570 {
2571 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2572 ev_set_priority (&fs_w, EV_MAXPRI);
2573 ev_io_start (EV_A_ &fs_w);
2574 }
2575}
2576
2577void inline_size
2578infy_fork (EV_P)
2579{
2580 int slot;
2581
2582 if (fs_fd < 0)
2583 return;
2584
2585 close (fs_fd);
2586 fs_fd = inotify_init ();
2587
2588 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2589 {
2590 WL w_ = fs_hash [slot].head;
2591 fs_hash [slot].head = 0;
2592
2593 while (w_)
2594 {
2595 ev_stat *w = (ev_stat *)w_;
2596 w_ = w_->next; /* lets us add this watcher */
2597
2598 w->wd = -1;
2599
2600 if (fs_fd >= 0)
2601 infy_add (EV_A_ w); /* re-add, no matter what */
2602 else
2603 ev_timer_start (EV_A_ &w->timer);
2604 }
2605 }
2606}
2607
2608#endif
2609
2610#ifdef _WIN32
2611# define EV_LSTAT(p,b) _stati64 (p, b)
2612#else
2613# define EV_LSTAT(p,b) lstat (p, b)
2614#endif
2615
1662void 2616void
1663ev_stat_stat (EV_P_ ev_stat *w) 2617ev_stat_stat (EV_P_ ev_stat *w)
1664{ 2618{
1665 if (lstat (w->path, &w->attr) < 0) 2619 if (lstat (w->path, &w->attr) < 0)
1666 w->attr.st_nlink = 0; 2620 w->attr.st_nlink = 0;
1667 else if (!w->attr.st_nlink) 2621 else if (!w->attr.st_nlink)
1668 w->attr.st_nlink = 1; 2622 w->attr.st_nlink = 1;
1669} 2623}
1670 2624
1671static void 2625static void noinline
1672stat_timer_cb (EV_P_ ev_timer *w_, int revents) 2626stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1673{ 2627{
1674 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 2628 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1675 2629
1676 /* we copy this here each the time so that */ 2630 /* we copy this here each the time so that */
1677 /* prev has the old value when the callback gets invoked */ 2631 /* prev has the old value when the callback gets invoked */
1678 w->prev = w->attr; 2632 w->prev = w->attr;
1679 ev_stat_stat (EV_A_ w); 2633 ev_stat_stat (EV_A_ w);
1680 2634
1681 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata))) 2635 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2636 if (
2637 w->prev.st_dev != w->attr.st_dev
2638 || w->prev.st_ino != w->attr.st_ino
2639 || w->prev.st_mode != w->attr.st_mode
2640 || w->prev.st_nlink != w->attr.st_nlink
2641 || w->prev.st_uid != w->attr.st_uid
2642 || w->prev.st_gid != w->attr.st_gid
2643 || w->prev.st_rdev != w->attr.st_rdev
2644 || w->prev.st_size != w->attr.st_size
2645 || w->prev.st_atime != w->attr.st_atime
2646 || w->prev.st_mtime != w->attr.st_mtime
2647 || w->prev.st_ctime != w->attr.st_ctime
2648 ) {
2649 #if EV_USE_INOTIFY
2650 if (fs_fd >= 0)
2651 {
2652 infy_del (EV_A_ w);
2653 infy_add (EV_A_ w);
2654 ev_stat_stat (EV_A_ w); /* avoid race... */
2655 }
2656 #endif
2657
1682 ev_feed_event (EV_A_ w, EV_STAT); 2658 ev_feed_event (EV_A_ w, EV_STAT);
2659 }
1683} 2660}
1684 2661
1685void 2662void
1686ev_stat_start (EV_P_ ev_stat *w) 2663ev_stat_start (EV_P_ ev_stat *w)
1687{ 2664{
1697 if (w->interval < MIN_STAT_INTERVAL) 2674 if (w->interval < MIN_STAT_INTERVAL)
1698 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL; 2675 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1699 2676
1700 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2677 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
1701 ev_set_priority (&w->timer, ev_priority (w)); 2678 ev_set_priority (&w->timer, ev_priority (w));
2679
2680#if EV_USE_INOTIFY
2681 infy_init (EV_A);
2682
2683 if (fs_fd >= 0)
2684 infy_add (EV_A_ w);
2685 else
2686#endif
1702 ev_timer_start (EV_A_ &w->timer); 2687 ev_timer_start (EV_A_ &w->timer);
1703 2688
1704 ev_start (EV_A_ (W)w, 1); 2689 ev_start (EV_A_ (W)w, 1);
2690
2691 EV_FREQUENT_CHECK;
1705} 2692}
1706 2693
1707void 2694void
1708ev_stat_stop (EV_P_ ev_stat *w) 2695ev_stat_stop (EV_P_ ev_stat *w)
1709{ 2696{
1710 ev_clear_pending (EV_A_ (W)w); 2697 clear_pending (EV_A_ (W)w);
1711 if (expect_false (!ev_is_active (w))) 2698 if (expect_false (!ev_is_active (w)))
1712 return; 2699 return;
1713 2700
2701 EV_FREQUENT_CHECK;
2702
2703#if EV_USE_INOTIFY
2704 infy_del (EV_A_ w);
2705#endif
1714 ev_timer_stop (EV_A_ &w->timer); 2706 ev_timer_stop (EV_A_ &w->timer);
1715 2707
1716 ev_stop (EV_A_ (W)w); 2708 ev_stop (EV_A_ (W)w);
1717}
1718#endif
1719 2709
2710 EV_FREQUENT_CHECK;
2711}
2712#endif
2713
2714#if EV_IDLE_ENABLE
1720void 2715void
1721ev_idle_start (EV_P_ ev_idle *w) 2716ev_idle_start (EV_P_ ev_idle *w)
1722{ 2717{
1723 if (expect_false (ev_is_active (w))) 2718 if (expect_false (ev_is_active (w)))
1724 return; 2719 return;
1725 2720
2721 pri_adjust (EV_A_ (W)w);
2722
2723 EV_FREQUENT_CHECK;
2724
2725 {
2726 int active = ++idlecnt [ABSPRI (w)];
2727
2728 ++idleall;
1726 ev_start (EV_A_ (W)w, ++idlecnt); 2729 ev_start (EV_A_ (W)w, active);
2730
1727 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2731 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1728 idles [idlecnt - 1] = w; 2732 idles [ABSPRI (w)][active - 1] = w;
2733 }
2734
2735 EV_FREQUENT_CHECK;
1729} 2736}
1730 2737
1731void 2738void
1732ev_idle_stop (EV_P_ ev_idle *w) 2739ev_idle_stop (EV_P_ ev_idle *w)
1733{ 2740{
1734 ev_clear_pending (EV_A_ (W)w); 2741 clear_pending (EV_A_ (W)w);
1735 if (expect_false (!ev_is_active (w))) 2742 if (expect_false (!ev_is_active (w)))
1736 return; 2743 return;
1737 2744
2745 EV_FREQUENT_CHECK;
2746
1738 { 2747 {
1739 int active = ((W)w)->active; 2748 int active = ev_active (w);
1740 idles [active - 1] = idles [--idlecnt]; 2749
1741 ((W)idles [active - 1])->active = active; 2750 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2751 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2752
2753 ev_stop (EV_A_ (W)w);
2754 --idleall;
1742 } 2755 }
1743 2756
1744 ev_stop (EV_A_ (W)w); 2757 EV_FREQUENT_CHECK;
1745} 2758}
2759#endif
1746 2760
1747void 2761void
1748ev_prepare_start (EV_P_ ev_prepare *w) 2762ev_prepare_start (EV_P_ ev_prepare *w)
1749{ 2763{
1750 if (expect_false (ev_is_active (w))) 2764 if (expect_false (ev_is_active (w)))
1751 return; 2765 return;
2766
2767 EV_FREQUENT_CHECK;
1752 2768
1753 ev_start (EV_A_ (W)w, ++preparecnt); 2769 ev_start (EV_A_ (W)w, ++preparecnt);
1754 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2770 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1755 prepares [preparecnt - 1] = w; 2771 prepares [preparecnt - 1] = w;
2772
2773 EV_FREQUENT_CHECK;
1756} 2774}
1757 2775
1758void 2776void
1759ev_prepare_stop (EV_P_ ev_prepare *w) 2777ev_prepare_stop (EV_P_ ev_prepare *w)
1760{ 2778{
1761 ev_clear_pending (EV_A_ (W)w); 2779 clear_pending (EV_A_ (W)w);
1762 if (expect_false (!ev_is_active (w))) 2780 if (expect_false (!ev_is_active (w)))
1763 return; 2781 return;
1764 2782
2783 EV_FREQUENT_CHECK;
2784
1765 { 2785 {
1766 int active = ((W)w)->active; 2786 int active = ev_active (w);
2787
1767 prepares [active - 1] = prepares [--preparecnt]; 2788 prepares [active - 1] = prepares [--preparecnt];
1768 ((W)prepares [active - 1])->active = active; 2789 ev_active (prepares [active - 1]) = active;
1769 } 2790 }
1770 2791
1771 ev_stop (EV_A_ (W)w); 2792 ev_stop (EV_A_ (W)w);
2793
2794 EV_FREQUENT_CHECK;
1772} 2795}
1773 2796
1774void 2797void
1775ev_check_start (EV_P_ ev_check *w) 2798ev_check_start (EV_P_ ev_check *w)
1776{ 2799{
1777 if (expect_false (ev_is_active (w))) 2800 if (expect_false (ev_is_active (w)))
1778 return; 2801 return;
2802
2803 EV_FREQUENT_CHECK;
1779 2804
1780 ev_start (EV_A_ (W)w, ++checkcnt); 2805 ev_start (EV_A_ (W)w, ++checkcnt);
1781 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2806 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1782 checks [checkcnt - 1] = w; 2807 checks [checkcnt - 1] = w;
2808
2809 EV_FREQUENT_CHECK;
1783} 2810}
1784 2811
1785void 2812void
1786ev_check_stop (EV_P_ ev_check *w) 2813ev_check_stop (EV_P_ ev_check *w)
1787{ 2814{
1788 ev_clear_pending (EV_A_ (W)w); 2815 clear_pending (EV_A_ (W)w);
1789 if (expect_false (!ev_is_active (w))) 2816 if (expect_false (!ev_is_active (w)))
1790 return; 2817 return;
1791 2818
2819 EV_FREQUENT_CHECK;
2820
1792 { 2821 {
1793 int active = ((W)w)->active; 2822 int active = ev_active (w);
2823
1794 checks [active - 1] = checks [--checkcnt]; 2824 checks [active - 1] = checks [--checkcnt];
1795 ((W)checks [active - 1])->active = active; 2825 ev_active (checks [active - 1]) = active;
1796 } 2826 }
1797 2827
1798 ev_stop (EV_A_ (W)w); 2828 ev_stop (EV_A_ (W)w);
2829
2830 EV_FREQUENT_CHECK;
1799} 2831}
1800 2832
1801#if EV_EMBED_ENABLE 2833#if EV_EMBED_ENABLE
1802void noinline 2834void noinline
1803ev_embed_sweep (EV_P_ ev_embed *w) 2835ev_embed_sweep (EV_P_ ev_embed *w)
1804{ 2836{
1805 ev_loop (w->loop, EVLOOP_NONBLOCK); 2837 ev_loop (w->other, EVLOOP_NONBLOCK);
1806} 2838}
1807 2839
1808static void 2840static void
1809embed_cb (EV_P_ ev_io *io, int revents) 2841embed_io_cb (EV_P_ ev_io *io, int revents)
1810{ 2842{
1811 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2843 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1812 2844
1813 if (ev_cb (w)) 2845 if (ev_cb (w))
1814 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2846 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1815 else 2847 else
1816 ev_embed_sweep (loop, w); 2848 ev_loop (w->other, EVLOOP_NONBLOCK);
1817} 2849}
2850
2851static void
2852embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2853{
2854 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2855
2856 {
2857 struct ev_loop *loop = w->other;
2858
2859 while (fdchangecnt)
2860 {
2861 fd_reify (EV_A);
2862 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2863 }
2864 }
2865}
2866
2867static void
2868embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2869{
2870 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2871
2872 {
2873 struct ev_loop *loop = w->other;
2874
2875 ev_loop_fork (EV_A);
2876 }
2877}
2878
2879#if 0
2880static void
2881embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2882{
2883 ev_idle_stop (EV_A_ idle);
2884}
2885#endif
1818 2886
1819void 2887void
1820ev_embed_start (EV_P_ ev_embed *w) 2888ev_embed_start (EV_P_ ev_embed *w)
1821{ 2889{
1822 if (expect_false (ev_is_active (w))) 2890 if (expect_false (ev_is_active (w)))
1823 return; 2891 return;
1824 2892
1825 { 2893 {
1826 struct ev_loop *loop = w->loop; 2894 struct ev_loop *loop = w->other;
1827 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2895 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1828 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2896 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
1829 } 2897 }
2898
2899 EV_FREQUENT_CHECK;
1830 2900
1831 ev_set_priority (&w->io, ev_priority (w)); 2901 ev_set_priority (&w->io, ev_priority (w));
1832 ev_io_start (EV_A_ &w->io); 2902 ev_io_start (EV_A_ &w->io);
1833 2903
2904 ev_prepare_init (&w->prepare, embed_prepare_cb);
2905 ev_set_priority (&w->prepare, EV_MINPRI);
2906 ev_prepare_start (EV_A_ &w->prepare);
2907
2908 ev_fork_init (&w->fork, embed_fork_cb);
2909 ev_fork_start (EV_A_ &w->fork);
2910
2911 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2912
1834 ev_start (EV_A_ (W)w, 1); 2913 ev_start (EV_A_ (W)w, 1);
2914
2915 EV_FREQUENT_CHECK;
1835} 2916}
1836 2917
1837void 2918void
1838ev_embed_stop (EV_P_ ev_embed *w) 2919ev_embed_stop (EV_P_ ev_embed *w)
1839{ 2920{
1840 ev_clear_pending (EV_A_ (W)w); 2921 clear_pending (EV_A_ (W)w);
1841 if (expect_false (!ev_is_active (w))) 2922 if (expect_false (!ev_is_active (w)))
1842 return; 2923 return;
1843 2924
2925 EV_FREQUENT_CHECK;
2926
1844 ev_io_stop (EV_A_ &w->io); 2927 ev_io_stop (EV_A_ &w->io);
2928 ev_prepare_stop (EV_A_ &w->prepare);
2929 ev_fork_stop (EV_A_ &w->fork);
1845 2930
1846 ev_stop (EV_A_ (W)w); 2931 EV_FREQUENT_CHECK;
1847} 2932}
1848#endif 2933#endif
1849 2934
1850#if EV_FORK_ENABLE 2935#if EV_FORK_ENABLE
1851void 2936void
1852ev_fork_start (EV_P_ ev_fork *w) 2937ev_fork_start (EV_P_ ev_fork *w)
1853{ 2938{
1854 if (expect_false (ev_is_active (w))) 2939 if (expect_false (ev_is_active (w)))
1855 return; 2940 return;
2941
2942 EV_FREQUENT_CHECK;
1856 2943
1857 ev_start (EV_A_ (W)w, ++forkcnt); 2944 ev_start (EV_A_ (W)w, ++forkcnt);
1858 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2945 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
1859 forks [forkcnt - 1] = w; 2946 forks [forkcnt - 1] = w;
2947
2948 EV_FREQUENT_CHECK;
1860} 2949}
1861 2950
1862void 2951void
1863ev_fork_stop (EV_P_ ev_fork *w) 2952ev_fork_stop (EV_P_ ev_fork *w)
1864{ 2953{
1865 ev_clear_pending (EV_A_ (W)w); 2954 clear_pending (EV_A_ (W)w);
1866 if (expect_false (!ev_is_active (w))) 2955 if (expect_false (!ev_is_active (w)))
1867 return; 2956 return;
1868 2957
2958 EV_FREQUENT_CHECK;
2959
1869 { 2960 {
1870 int active = ((W)w)->active; 2961 int active = ev_active (w);
2962
1871 forks [active - 1] = forks [--forkcnt]; 2963 forks [active - 1] = forks [--forkcnt];
1872 ((W)forks [active - 1])->active = active; 2964 ev_active (forks [active - 1]) = active;
1873 } 2965 }
1874 2966
1875 ev_stop (EV_A_ (W)w); 2967 ev_stop (EV_A_ (W)w);
2968
2969 EV_FREQUENT_CHECK;
2970}
2971#endif
2972
2973#if EV_ASYNC_ENABLE
2974void
2975ev_async_start (EV_P_ ev_async *w)
2976{
2977 if (expect_false (ev_is_active (w)))
2978 return;
2979
2980 evpipe_init (EV_A);
2981
2982 EV_FREQUENT_CHECK;
2983
2984 ev_start (EV_A_ (W)w, ++asynccnt);
2985 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2986 asyncs [asynccnt - 1] = w;
2987
2988 EV_FREQUENT_CHECK;
2989}
2990
2991void
2992ev_async_stop (EV_P_ ev_async *w)
2993{
2994 clear_pending (EV_A_ (W)w);
2995 if (expect_false (!ev_is_active (w)))
2996 return;
2997
2998 EV_FREQUENT_CHECK;
2999
3000 {
3001 int active = ev_active (w);
3002
3003 asyncs [active - 1] = asyncs [--asynccnt];
3004 ev_active (asyncs [active - 1]) = active;
3005 }
3006
3007 ev_stop (EV_A_ (W)w);
3008
3009 EV_FREQUENT_CHECK;
3010}
3011
3012void
3013ev_async_send (EV_P_ ev_async *w)
3014{
3015 w->sent = 1;
3016 evpipe_write (EV_A_ &gotasync);
1876} 3017}
1877#endif 3018#endif
1878 3019
1879/*****************************************************************************/ 3020/*****************************************************************************/
1880 3021
1890once_cb (EV_P_ struct ev_once *once, int revents) 3031once_cb (EV_P_ struct ev_once *once, int revents)
1891{ 3032{
1892 void (*cb)(int revents, void *arg) = once->cb; 3033 void (*cb)(int revents, void *arg) = once->cb;
1893 void *arg = once->arg; 3034 void *arg = once->arg;
1894 3035
1895 ev_io_stop (EV_A_ &once->io); 3036 ev_io_stop (EV_A_ &once->io);
1896 ev_timer_stop (EV_A_ &once->to); 3037 ev_timer_stop (EV_A_ &once->to);
1897 ev_free (once); 3038 ev_free (once);
1898 3039
1899 cb (revents, arg); 3040 cb (revents, arg);
1900} 3041}
1901 3042
1902static void 3043static void
1903once_cb_io (EV_P_ ev_io *w, int revents) 3044once_cb_io (EV_P_ ev_io *w, int revents)
1904{ 3045{
1905 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3046 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3047
3048 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1906} 3049}
1907 3050
1908static void 3051static void
1909once_cb_to (EV_P_ ev_timer *w, int revents) 3052once_cb_to (EV_P_ ev_timer *w, int revents)
1910{ 3053{
1911 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3054 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3055
3056 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1912} 3057}
1913 3058
1914void 3059void
1915ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3060ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1916{ 3061{
1938 ev_timer_set (&once->to, timeout, 0.); 3083 ev_timer_set (&once->to, timeout, 0.);
1939 ev_timer_start (EV_A_ &once->to); 3084 ev_timer_start (EV_A_ &once->to);
1940 } 3085 }
1941} 3086}
1942 3087
3088#if EV_MULTIPLICITY
3089 #include "ev_wrap.h"
3090#endif
3091
1943#ifdef __cplusplus 3092#ifdef __cplusplus
1944} 3093}
1945#endif 3094#endif
1946 3095

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines