ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.198 by root, Sun Dec 23 04:45:51 2007 UTC vs.
Revision 1.264 by root, Mon Oct 13 23:20:12 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
110# else 119# else
111# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
112# endif 121# endif
113# endif 122# endif
114 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
115#endif 132#endif
116 133
117#include <math.h> 134#include <math.h>
118#include <stdlib.h> 135#include <stdlib.h>
119#include <fcntl.h> 136#include <fcntl.h>
137#ifndef _WIN32 154#ifndef _WIN32
138# include <sys/time.h> 155# include <sys/time.h>
139# include <sys/wait.h> 156# include <sys/wait.h>
140# include <unistd.h> 157# include <unistd.h>
141#else 158#else
159# include <io.h>
142# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
143# include <windows.h> 161# include <windows.h>
144# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
146# endif 164# endif
147#endif 165#endif
148 166
149/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
150 168
151#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
152# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
153#endif 175#endif
154 176
155#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
156# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
157#endif 179#endif
158 180
159#ifndef EV_USE_NANOSLEEP 181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
160# define EV_USE_NANOSLEEP 0 185# define EV_USE_NANOSLEEP 0
186# endif
161#endif 187#endif
162 188
163#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
164# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
165#endif 191#endif
171# define EV_USE_POLL 1 197# define EV_USE_POLL 1
172# endif 198# endif
173#endif 199#endif
174 200
175#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
176# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
177#endif 207#endif
178 208
179#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
180# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
181#endif 211#endif
183#ifndef EV_USE_PORT 213#ifndef EV_USE_PORT
184# define EV_USE_PORT 0 214# define EV_USE_PORT 0
185#endif 215#endif
186 216
187#ifndef EV_USE_INOTIFY 217#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1
220# else
188# define EV_USE_INOTIFY 0 221# define EV_USE_INOTIFY 0
222# endif
189#endif 223#endif
190 224
191#ifndef EV_PID_HASHSIZE 225#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL 226# if EV_MINIMAL
193# define EV_PID_HASHSIZE 1 227# define EV_PID_HASHSIZE 1
202# else 236# else
203# define EV_INOTIFY_HASHSIZE 16 237# define EV_INOTIFY_HASHSIZE 16
204# endif 238# endif
205#endif 239#endif
206 240
207/**/ 241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
208 268
209#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
210# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
211# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
212#endif 272#endif
226# include <sys/select.h> 286# include <sys/select.h>
227# endif 287# endif
228#endif 288#endif
229 289
230#if EV_USE_INOTIFY 290#if EV_USE_INOTIFY
291# include <sys/utsname.h>
231# include <sys/inotify.h> 292# include <sys/inotify.h>
293/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
294# ifndef IN_DONT_FOLLOW
295# undef EV_USE_INOTIFY
296# define EV_USE_INOTIFY 0
297# endif
232#endif 298#endif
233 299
234#if EV_SELECT_IS_WINSOCKET 300#if EV_SELECT_IS_WINSOCKET
235# include <winsock.h> 301# include <winsock.h>
236#endif 302#endif
237 303
304#if EV_USE_EVENTFD
305/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
306# include <stdint.h>
307# ifdef __cplusplus
308extern "C" {
309# endif
310int eventfd (unsigned int initval, int flags);
311# ifdef __cplusplus
312}
313# endif
314#endif
315
238/**/ 316/**/
317
318#if EV_VERIFY >= 3
319# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
320#else
321# define EV_FREQUENT_CHECK do { } while (0)
322#endif
239 323
240/* 324/*
241 * This is used to avoid floating point rounding problems. 325 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics 326 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding 327 * to ensure progress, time-wise, even when rounding
255# define expect(expr,value) __builtin_expect ((expr),(value)) 339# define expect(expr,value) __builtin_expect ((expr),(value))
256# define noinline __attribute__ ((noinline)) 340# define noinline __attribute__ ((noinline))
257#else 341#else
258# define expect(expr,value) (expr) 342# define expect(expr,value) (expr)
259# define noinline 343# define noinline
260# if __STDC_VERSION__ < 199901L 344# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
261# define inline 345# define inline
262# endif 346# endif
263#endif 347#endif
264 348
265#define expect_false(expr) expect ((expr) != 0, 0) 349#define expect_false(expr) expect ((expr) != 0, 0)
280 364
281typedef ev_watcher *W; 365typedef ev_watcher *W;
282typedef ev_watcher_list *WL; 366typedef ev_watcher_list *WL;
283typedef ev_watcher_time *WT; 367typedef ev_watcher_time *WT;
284 368
369#define ev_active(w) ((W)(w))->active
370#define ev_at(w) ((WT)(w))->at
371
285#if EV_USE_MONOTONIC 372#if EV_USE_MONOTONIC
286/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 373/* sig_atomic_t is used to avoid per-thread variables or locking but still */
287/* giving it a reasonably high chance of working on typical architetcures */ 374/* giving it a reasonably high chance of working on typical architetcures */
288static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 375static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
289#endif 376#endif
290 377
291#ifdef _WIN32 378#ifdef _WIN32
292# include "ev_win32.c" 379# include "ev_win32.c"
293#endif 380#endif
315 perror (msg); 402 perror (msg);
316 abort (); 403 abort ();
317 } 404 }
318} 405}
319 406
407static void *
408ev_realloc_emul (void *ptr, long size)
409{
410 /* some systems, notably openbsd and darwin, fail to properly
411 * implement realloc (x, 0) (as required by both ansi c-98 and
412 * the single unix specification, so work around them here.
413 */
414
415 if (size)
416 return realloc (ptr, size);
417
418 free (ptr);
419 return 0;
420}
421
320static void *(*alloc)(void *ptr, long size); 422static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
321 423
322void 424void
323ev_set_allocator (void *(*cb)(void *ptr, long size)) 425ev_set_allocator (void *(*cb)(void *ptr, long size))
324{ 426{
325 alloc = cb; 427 alloc = cb;
326} 428}
327 429
328inline_speed void * 430inline_speed void *
329ev_realloc (void *ptr, long size) 431ev_realloc (void *ptr, long size)
330{ 432{
331 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 433 ptr = alloc (ptr, size);
332 434
333 if (!ptr && size) 435 if (!ptr && size)
334 { 436 {
335 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 437 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
336 abort (); 438 abort ();
359 W w; 461 W w;
360 int events; 462 int events;
361} ANPENDING; 463} ANPENDING;
362 464
363#if EV_USE_INOTIFY 465#if EV_USE_INOTIFY
466/* hash table entry per inotify-id */
364typedef struct 467typedef struct
365{ 468{
366 WL head; 469 WL head;
367} ANFS; 470} ANFS;
471#endif
472
473/* Heap Entry */
474#if EV_HEAP_CACHE_AT
475 typedef struct {
476 ev_tstamp at;
477 WT w;
478 } ANHE;
479
480 #define ANHE_w(he) (he).w /* access watcher, read-write */
481 #define ANHE_at(he) (he).at /* access cached at, read-only */
482 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
483#else
484 typedef WT ANHE;
485
486 #define ANHE_w(he) (he)
487 #define ANHE_at(he) (he)->at
488 #define ANHE_at_cache(he)
368#endif 489#endif
369 490
370#if EV_MULTIPLICITY 491#if EV_MULTIPLICITY
371 492
372 struct ev_loop 493 struct ev_loop
443 ts.tv_sec = (time_t)delay; 564 ts.tv_sec = (time_t)delay;
444 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 565 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
445 566
446 nanosleep (&ts, 0); 567 nanosleep (&ts, 0);
447#elif defined(_WIN32) 568#elif defined(_WIN32)
448 Sleep (delay * 1e3); 569 Sleep ((unsigned long)(delay * 1e3));
449#else 570#else
450 struct timeval tv; 571 struct timeval tv;
451 572
452 tv.tv_sec = (time_t)delay; 573 tv.tv_sec = (time_t)delay;
453 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 574 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
454 575
576 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
577 /* somehting nto guaranteed by newer posix versions, but guaranteed */
578 /* by older ones */
455 select (0, 0, 0, 0, &tv); 579 select (0, 0, 0, 0, &tv);
456#endif 580#endif
457 } 581 }
458} 582}
459 583
460/*****************************************************************************/ 584/*****************************************************************************/
585
586#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
461 587
462int inline_size 588int inline_size
463array_nextsize (int elem, int cur, int cnt) 589array_nextsize (int elem, int cur, int cnt)
464{ 590{
465 int ncur = cur + 1; 591 int ncur = cur + 1;
466 592
467 do 593 do
468 ncur <<= 1; 594 ncur <<= 1;
469 while (cnt > ncur); 595 while (cnt > ncur);
470 596
471 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 597 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
472 if (elem * ncur > 4096) 598 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
473 { 599 {
474 ncur *= elem; 600 ncur *= elem;
475 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 601 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
476 ncur = ncur - sizeof (void *) * 4; 602 ncur = ncur - sizeof (void *) * 4;
477 ncur /= elem; 603 ncur /= elem;
478 } 604 }
479 605
480 return ncur; 606 return ncur;
591 events |= (unsigned char)w->events; 717 events |= (unsigned char)w->events;
592 718
593#if EV_SELECT_IS_WINSOCKET 719#if EV_SELECT_IS_WINSOCKET
594 if (events) 720 if (events)
595 { 721 {
596 unsigned long argp; 722 unsigned long arg;
723 #ifdef EV_FD_TO_WIN32_HANDLE
724 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
725 #else
597 anfd->handle = _get_osfhandle (fd); 726 anfd->handle = _get_osfhandle (fd);
727 #endif
598 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 728 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
599 } 729 }
600#endif 730#endif
601 731
602 { 732 {
603 unsigned char o_events = anfd->events; 733 unsigned char o_events = anfd->events;
656{ 786{
657 int fd; 787 int fd;
658 788
659 for (fd = 0; fd < anfdmax; ++fd) 789 for (fd = 0; fd < anfdmax; ++fd)
660 if (anfds [fd].events) 790 if (anfds [fd].events)
661 if (!fd_valid (fd) == -1 && errno == EBADF) 791 if (!fd_valid (fd) && errno == EBADF)
662 fd_kill (EV_A_ fd); 792 fd_kill (EV_A_ fd);
663} 793}
664 794
665/* called on ENOMEM in select/poll to kill some fds and retry */ 795/* called on ENOMEM in select/poll to kill some fds and retry */
666static void noinline 796static void noinline
690 } 820 }
691} 821}
692 822
693/*****************************************************************************/ 823/*****************************************************************************/
694 824
825/*
826 * the heap functions want a real array index. array index 0 uis guaranteed to not
827 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
828 * the branching factor of the d-tree.
829 */
830
831/*
832 * at the moment we allow libev the luxury of two heaps,
833 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
834 * which is more cache-efficient.
835 * the difference is about 5% with 50000+ watchers.
836 */
837#if EV_USE_4HEAP
838
839#define DHEAP 4
840#define HEAP0 (DHEAP - 1) /* index of first element in heap */
841#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
842#define UPHEAP_DONE(p,k) ((p) == (k))
843
844/* away from the root */
695void inline_speed 845void inline_speed
696upheap (WT *heap, int k) 846downheap (ANHE *heap, int N, int k)
697{ 847{
698 WT w = heap [k]; 848 ANHE he = heap [k];
849 ANHE *E = heap + N + HEAP0;
699 850
700 while (k) 851 for (;;)
701 { 852 {
702 int p = (k - 1) >> 1; 853 ev_tstamp minat;
854 ANHE *minpos;
855 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
703 856
704 if (heap [p]->at <= w->at) 857 /* find minimum child */
858 if (expect_true (pos + DHEAP - 1 < E))
859 {
860 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
861 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
862 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
863 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
864 }
865 else if (pos < E)
866 {
867 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
868 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
869 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
870 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
871 }
872 else
705 break; 873 break;
706 874
875 if (ANHE_at (he) <= minat)
876 break;
877
878 heap [k] = *minpos;
879 ev_active (ANHE_w (*minpos)) = k;
880
881 k = minpos - heap;
882 }
883
884 heap [k] = he;
885 ev_active (ANHE_w (he)) = k;
886}
887
888#else /* 4HEAP */
889
890#define HEAP0 1
891#define HPARENT(k) ((k) >> 1)
892#define UPHEAP_DONE(p,k) (!(p))
893
894/* away from the root */
895void inline_speed
896downheap (ANHE *heap, int N, int k)
897{
898 ANHE he = heap [k];
899
900 for (;;)
901 {
902 int c = k << 1;
903
904 if (c > N + HEAP0 - 1)
905 break;
906
907 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
908 ? 1 : 0;
909
910 if (ANHE_at (he) <= ANHE_at (heap [c]))
911 break;
912
913 heap [k] = heap [c];
914 ev_active (ANHE_w (heap [k])) = k;
915
916 k = c;
917 }
918
919 heap [k] = he;
920 ev_active (ANHE_w (he)) = k;
921}
922#endif
923
924/* towards the root */
925void inline_speed
926upheap (ANHE *heap, int k)
927{
928 ANHE he = heap [k];
929
930 for (;;)
931 {
932 int p = HPARENT (k);
933
934 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
935 break;
936
707 heap [k] = heap [p]; 937 heap [k] = heap [p];
708 ((W)heap [k])->active = k + 1; 938 ev_active (ANHE_w (heap [k])) = k;
709 k = p; 939 k = p;
710 } 940 }
711 941
712 heap [k] = w; 942 heap [k] = he;
713 ((W)heap [k])->active = k + 1; 943 ev_active (ANHE_w (he)) = k;
714}
715
716void inline_speed
717downheap (WT *heap, int N, int k)
718{
719 WT w = heap [k];
720
721 for (;;)
722 {
723 int c = (k << 1) + 1;
724
725 if (c >= N)
726 break;
727
728 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
729 ? 1 : 0;
730
731 if (w->at <= heap [c]->at)
732 break;
733
734 heap [k] = heap [c];
735 ((W)heap [k])->active = k + 1;
736
737 k = c;
738 }
739
740 heap [k] = w;
741 ((W)heap [k])->active = k + 1;
742} 944}
743 945
744void inline_size 946void inline_size
745adjustheap (WT *heap, int N, int k) 947adjustheap (ANHE *heap, int N, int k)
746{ 948{
949 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
747 upheap (heap, k); 950 upheap (heap, k);
951 else
748 downheap (heap, N, k); 952 downheap (heap, N, k);
953}
954
955/* rebuild the heap: this function is used only once and executed rarely */
956void inline_size
957reheap (ANHE *heap, int N)
958{
959 int i;
960
961 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
962 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
963 for (i = 0; i < N; ++i)
964 upheap (heap, i + HEAP0);
749} 965}
750 966
751/*****************************************************************************/ 967/*****************************************************************************/
752 968
753typedef struct 969typedef struct
754{ 970{
755 WL head; 971 WL head;
756 sig_atomic_t volatile gotsig; 972 EV_ATOMIC_T gotsig;
757} ANSIG; 973} ANSIG;
758 974
759static ANSIG *signals; 975static ANSIG *signals;
760static int signalmax; 976static int signalmax;
761 977
762static int sigpipe [2]; 978static EV_ATOMIC_T gotsig;
763static sig_atomic_t volatile gotsig;
764static ev_io sigev;
765 979
766void inline_size 980void inline_size
767signals_init (ANSIG *base, int count) 981signals_init (ANSIG *base, int count)
768{ 982{
769 while (count--) 983 while (count--)
773 987
774 ++base; 988 ++base;
775 } 989 }
776} 990}
777 991
778static void 992/*****************************************************************************/
779sighandler (int signum)
780{
781#if _WIN32
782 signal (signum, sighandler);
783#endif
784
785 signals [signum - 1].gotsig = 1;
786
787 if (!gotsig)
788 {
789 int old_errno = errno;
790 gotsig = 1;
791 write (sigpipe [1], &signum, 1);
792 errno = old_errno;
793 }
794}
795
796void noinline
797ev_feed_signal_event (EV_P_ int signum)
798{
799 WL w;
800
801#if EV_MULTIPLICITY
802 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
803#endif
804
805 --signum;
806
807 if (signum < 0 || signum >= signalmax)
808 return;
809
810 signals [signum].gotsig = 0;
811
812 for (w = signals [signum].head; w; w = w->next)
813 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
814}
815
816static void
817sigcb (EV_P_ ev_io *iow, int revents)
818{
819 int signum;
820
821 read (sigpipe [0], &revents, 1);
822 gotsig = 0;
823
824 for (signum = signalmax; signum--; )
825 if (signals [signum].gotsig)
826 ev_feed_signal_event (EV_A_ signum + 1);
827}
828 993
829void inline_speed 994void inline_speed
830fd_intern (int fd) 995fd_intern (int fd)
831{ 996{
832#ifdef _WIN32 997#ifdef _WIN32
833 int arg = 1; 998 unsigned long arg = 1;
834 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 999 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
835#else 1000#else
836 fcntl (fd, F_SETFD, FD_CLOEXEC); 1001 fcntl (fd, F_SETFD, FD_CLOEXEC);
837 fcntl (fd, F_SETFL, O_NONBLOCK); 1002 fcntl (fd, F_SETFL, O_NONBLOCK);
838#endif 1003#endif
839} 1004}
840 1005
841static void noinline 1006static void noinline
842siginit (EV_P) 1007evpipe_init (EV_P)
843{ 1008{
1009 if (!ev_is_active (&pipeev))
1010 {
1011#if EV_USE_EVENTFD
1012 if ((evfd = eventfd (0, 0)) >= 0)
1013 {
1014 evpipe [0] = -1;
1015 fd_intern (evfd);
1016 ev_io_set (&pipeev, evfd, EV_READ);
1017 }
1018 else
1019#endif
1020 {
1021 while (pipe (evpipe))
1022 syserr ("(libev) error creating signal/async pipe");
1023
844 fd_intern (sigpipe [0]); 1024 fd_intern (evpipe [0]);
845 fd_intern (sigpipe [1]); 1025 fd_intern (evpipe [1]);
1026 ev_io_set (&pipeev, evpipe [0], EV_READ);
1027 }
846 1028
847 ev_io_set (&sigev, sigpipe [0], EV_READ);
848 ev_io_start (EV_A_ &sigev); 1029 ev_io_start (EV_A_ &pipeev);
849 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1030 ev_unref (EV_A); /* watcher should not keep loop alive */
1031 }
1032}
1033
1034void inline_size
1035evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1036{
1037 if (!*flag)
1038 {
1039 int old_errno = errno; /* save errno because write might clobber it */
1040
1041 *flag = 1;
1042
1043#if EV_USE_EVENTFD
1044 if (evfd >= 0)
1045 {
1046 uint64_t counter = 1;
1047 write (evfd, &counter, sizeof (uint64_t));
1048 }
1049 else
1050#endif
1051 write (evpipe [1], &old_errno, 1);
1052
1053 errno = old_errno;
1054 }
1055}
1056
1057static void
1058pipecb (EV_P_ ev_io *iow, int revents)
1059{
1060#if EV_USE_EVENTFD
1061 if (evfd >= 0)
1062 {
1063 uint64_t counter;
1064 read (evfd, &counter, sizeof (uint64_t));
1065 }
1066 else
1067#endif
1068 {
1069 char dummy;
1070 read (evpipe [0], &dummy, 1);
1071 }
1072
1073 if (gotsig && ev_is_default_loop (EV_A))
1074 {
1075 int signum;
1076 gotsig = 0;
1077
1078 for (signum = signalmax; signum--; )
1079 if (signals [signum].gotsig)
1080 ev_feed_signal_event (EV_A_ signum + 1);
1081 }
1082
1083#if EV_ASYNC_ENABLE
1084 if (gotasync)
1085 {
1086 int i;
1087 gotasync = 0;
1088
1089 for (i = asynccnt; i--; )
1090 if (asyncs [i]->sent)
1091 {
1092 asyncs [i]->sent = 0;
1093 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1094 }
1095 }
1096#endif
850} 1097}
851 1098
852/*****************************************************************************/ 1099/*****************************************************************************/
853 1100
1101static void
1102ev_sighandler (int signum)
1103{
1104#if EV_MULTIPLICITY
1105 struct ev_loop *loop = &default_loop_struct;
1106#endif
1107
1108#if _WIN32
1109 signal (signum, ev_sighandler);
1110#endif
1111
1112 signals [signum - 1].gotsig = 1;
1113 evpipe_write (EV_A_ &gotsig);
1114}
1115
1116void noinline
1117ev_feed_signal_event (EV_P_ int signum)
1118{
1119 WL w;
1120
1121#if EV_MULTIPLICITY
1122 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1123#endif
1124
1125 --signum;
1126
1127 if (signum < 0 || signum >= signalmax)
1128 return;
1129
1130 signals [signum].gotsig = 0;
1131
1132 for (w = signals [signum].head; w; w = w->next)
1133 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1134}
1135
1136/*****************************************************************************/
1137
854static WL childs [EV_PID_HASHSIZE]; 1138static WL childs [EV_PID_HASHSIZE];
855 1139
856#ifndef _WIN32 1140#ifndef _WIN32
857 1141
858static ev_signal childev; 1142static ev_signal childev;
859 1143
1144#ifndef WIFCONTINUED
1145# define WIFCONTINUED(status) 0
1146#endif
1147
860void inline_speed 1148void inline_speed
861child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1149child_reap (EV_P_ int chain, int pid, int status)
862{ 1150{
863 ev_child *w; 1151 ev_child *w;
1152 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
864 1153
865 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1154 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1155 {
866 if (w->pid == pid || !w->pid) 1156 if ((w->pid == pid || !w->pid)
1157 && (!traced || (w->flags & 1)))
867 { 1158 {
868 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1159 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
869 w->rpid = pid; 1160 w->rpid = pid;
870 w->rstatus = status; 1161 w->rstatus = status;
871 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1162 ev_feed_event (EV_A_ (W)w, EV_CHILD);
872 } 1163 }
1164 }
873} 1165}
874 1166
875#ifndef WCONTINUED 1167#ifndef WCONTINUED
876# define WCONTINUED 0 1168# define WCONTINUED 0
877#endif 1169#endif
886 if (!WCONTINUED 1178 if (!WCONTINUED
887 || errno != EINVAL 1179 || errno != EINVAL
888 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1180 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
889 return; 1181 return;
890 1182
891 /* make sure we are called again until all childs have been reaped */ 1183 /* make sure we are called again until all children have been reaped */
892 /* we need to do it this way so that the callback gets called before we continue */ 1184 /* we need to do it this way so that the callback gets called before we continue */
893 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1185 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
894 1186
895 child_reap (EV_A_ sw, pid, pid, status); 1187 child_reap (EV_A_ pid, pid, status);
896 if (EV_PID_HASHSIZE > 1) 1188 if (EV_PID_HASHSIZE > 1)
897 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1189 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
898} 1190}
899 1191
900#endif 1192#endif
901 1193
902/*****************************************************************************/ 1194/*****************************************************************************/
1020 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1312 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1021 have_monotonic = 1; 1313 have_monotonic = 1;
1022 } 1314 }
1023#endif 1315#endif
1024 1316
1025 ev_rt_now = ev_time (); 1317 ev_rt_now = ev_time ();
1026 mn_now = get_clock (); 1318 mn_now = get_clock ();
1027 now_floor = mn_now; 1319 now_floor = mn_now;
1028 rtmn_diff = ev_rt_now - mn_now; 1320 rtmn_diff = ev_rt_now - mn_now;
1029 1321
1030 io_blocktime = 0.; 1322 io_blocktime = 0.;
1031 timeout_blocktime = 0.; 1323 timeout_blocktime = 0.;
1324 backend = 0;
1325 backend_fd = -1;
1326 gotasync = 0;
1327#if EV_USE_INOTIFY
1328 fs_fd = -2;
1329#endif
1032 1330
1033 /* pid check not overridable via env */ 1331 /* pid check not overridable via env */
1034#ifndef _WIN32 1332#ifndef _WIN32
1035 if (flags & EVFLAG_FORKCHECK) 1333 if (flags & EVFLAG_FORKCHECK)
1036 curpid = getpid (); 1334 curpid = getpid ();
1039 if (!(flags & EVFLAG_NOENV) 1337 if (!(flags & EVFLAG_NOENV)
1040 && !enable_secure () 1338 && !enable_secure ()
1041 && getenv ("LIBEV_FLAGS")) 1339 && getenv ("LIBEV_FLAGS"))
1042 flags = atoi (getenv ("LIBEV_FLAGS")); 1340 flags = atoi (getenv ("LIBEV_FLAGS"));
1043 1341
1044 if (!(flags & 0x0000ffffUL)) 1342 if (!(flags & 0x0000ffffU))
1045 flags |= ev_recommended_backends (); 1343 flags |= ev_recommended_backends ();
1046
1047 backend = 0;
1048 backend_fd = -1;
1049#if EV_USE_INOTIFY
1050 fs_fd = -2;
1051#endif
1052 1344
1053#if EV_USE_PORT 1345#if EV_USE_PORT
1054 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1346 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1055#endif 1347#endif
1056#if EV_USE_KQUEUE 1348#if EV_USE_KQUEUE
1064#endif 1356#endif
1065#if EV_USE_SELECT 1357#if EV_USE_SELECT
1066 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1358 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1067#endif 1359#endif
1068 1360
1069 ev_init (&sigev, sigcb); 1361 ev_init (&pipeev, pipecb);
1070 ev_set_priority (&sigev, EV_MAXPRI); 1362 ev_set_priority (&pipeev, EV_MAXPRI);
1071 } 1363 }
1072} 1364}
1073 1365
1074static void noinline 1366static void noinline
1075loop_destroy (EV_P) 1367loop_destroy (EV_P)
1076{ 1368{
1077 int i; 1369 int i;
1370
1371 if (ev_is_active (&pipeev))
1372 {
1373 ev_ref (EV_A); /* signal watcher */
1374 ev_io_stop (EV_A_ &pipeev);
1375
1376#if EV_USE_EVENTFD
1377 if (evfd >= 0)
1378 close (evfd);
1379#endif
1380
1381 if (evpipe [0] >= 0)
1382 {
1383 close (evpipe [0]);
1384 close (evpipe [1]);
1385 }
1386 }
1078 1387
1079#if EV_USE_INOTIFY 1388#if EV_USE_INOTIFY
1080 if (fs_fd >= 0) 1389 if (fs_fd >= 0)
1081 close (fs_fd); 1390 close (fs_fd);
1082#endif 1391#endif
1119#if EV_FORK_ENABLE 1428#if EV_FORK_ENABLE
1120 array_free (fork, EMPTY); 1429 array_free (fork, EMPTY);
1121#endif 1430#endif
1122 array_free (prepare, EMPTY); 1431 array_free (prepare, EMPTY);
1123 array_free (check, EMPTY); 1432 array_free (check, EMPTY);
1433#if EV_ASYNC_ENABLE
1434 array_free (async, EMPTY);
1435#endif
1124 1436
1125 backend = 0; 1437 backend = 0;
1126} 1438}
1127 1439
1440#if EV_USE_INOTIFY
1128void inline_size infy_fork (EV_P); 1441void inline_size infy_fork (EV_P);
1442#endif
1129 1443
1130void inline_size 1444void inline_size
1131loop_fork (EV_P) 1445loop_fork (EV_P)
1132{ 1446{
1133#if EV_USE_PORT 1447#if EV_USE_PORT
1141#endif 1455#endif
1142#if EV_USE_INOTIFY 1456#if EV_USE_INOTIFY
1143 infy_fork (EV_A); 1457 infy_fork (EV_A);
1144#endif 1458#endif
1145 1459
1146 if (ev_is_active (&sigev)) 1460 if (ev_is_active (&pipeev))
1147 { 1461 {
1148 /* default loop */ 1462 /* this "locks" the handlers against writing to the pipe */
1463 /* while we modify the fd vars */
1464 gotsig = 1;
1465#if EV_ASYNC_ENABLE
1466 gotasync = 1;
1467#endif
1149 1468
1150 ev_ref (EV_A); 1469 ev_ref (EV_A);
1151 ev_io_stop (EV_A_ &sigev); 1470 ev_io_stop (EV_A_ &pipeev);
1471
1472#if EV_USE_EVENTFD
1473 if (evfd >= 0)
1474 close (evfd);
1475#endif
1476
1477 if (evpipe [0] >= 0)
1478 {
1152 close (sigpipe [0]); 1479 close (evpipe [0]);
1153 close (sigpipe [1]); 1480 close (evpipe [1]);
1481 }
1154 1482
1155 while (pipe (sigpipe))
1156 syserr ("(libev) error creating pipe");
1157
1158 siginit (EV_A); 1483 evpipe_init (EV_A);
1484 /* now iterate over everything, in case we missed something */
1485 pipecb (EV_A_ &pipeev, EV_READ);
1159 } 1486 }
1160 1487
1161 postfork = 0; 1488 postfork = 0;
1162} 1489}
1163 1490
1164#if EV_MULTIPLICITY 1491#if EV_MULTIPLICITY
1492
1165struct ev_loop * 1493struct ev_loop *
1166ev_loop_new (unsigned int flags) 1494ev_loop_new (unsigned int flags)
1167{ 1495{
1168 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1496 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1169 1497
1185} 1513}
1186 1514
1187void 1515void
1188ev_loop_fork (EV_P) 1516ev_loop_fork (EV_P)
1189{ 1517{
1190 postfork = 1; 1518 postfork = 1; /* must be in line with ev_default_fork */
1191} 1519}
1192 1520
1521#if EV_VERIFY
1522static void noinline
1523verify_watcher (EV_P_ W w)
1524{
1525 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1526
1527 if (w->pending)
1528 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1529}
1530
1531static void noinline
1532verify_heap (EV_P_ ANHE *heap, int N)
1533{
1534 int i;
1535
1536 for (i = HEAP0; i < N + HEAP0; ++i)
1537 {
1538 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1539 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1540 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1541
1542 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1543 }
1544}
1545
1546static void noinline
1547array_verify (EV_P_ W *ws, int cnt)
1548{
1549 while (cnt--)
1550 {
1551 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1552 verify_watcher (EV_A_ ws [cnt]);
1553 }
1554}
1555#endif
1556
1557void
1558ev_loop_verify (EV_P)
1559{
1560#if EV_VERIFY
1561 int i;
1562 WL w;
1563
1564 assert (activecnt >= -1);
1565
1566 assert (fdchangemax >= fdchangecnt);
1567 for (i = 0; i < fdchangecnt; ++i)
1568 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1569
1570 assert (anfdmax >= 0);
1571 for (i = 0; i < anfdmax; ++i)
1572 for (w = anfds [i].head; w; w = w->next)
1573 {
1574 verify_watcher (EV_A_ (W)w);
1575 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1576 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1577 }
1578
1579 assert (timermax >= timercnt);
1580 verify_heap (EV_A_ timers, timercnt);
1581
1582#if EV_PERIODIC_ENABLE
1583 assert (periodicmax >= periodiccnt);
1584 verify_heap (EV_A_ periodics, periodiccnt);
1585#endif
1586
1587 for (i = NUMPRI; i--; )
1588 {
1589 assert (pendingmax [i] >= pendingcnt [i]);
1590#if EV_IDLE_ENABLE
1591 assert (idleall >= 0);
1592 assert (idlemax [i] >= idlecnt [i]);
1593 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1594#endif
1595 }
1596
1597#if EV_FORK_ENABLE
1598 assert (forkmax >= forkcnt);
1599 array_verify (EV_A_ (W *)forks, forkcnt);
1600#endif
1601
1602#if EV_ASYNC_ENABLE
1603 assert (asyncmax >= asynccnt);
1604 array_verify (EV_A_ (W *)asyncs, asynccnt);
1605#endif
1606
1607 assert (preparemax >= preparecnt);
1608 array_verify (EV_A_ (W *)prepares, preparecnt);
1609
1610 assert (checkmax >= checkcnt);
1611 array_verify (EV_A_ (W *)checks, checkcnt);
1612
1613# if 0
1614 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1615 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1193#endif 1616# endif
1617#endif
1618}
1619
1620#endif /* multiplicity */
1194 1621
1195#if EV_MULTIPLICITY 1622#if EV_MULTIPLICITY
1196struct ev_loop * 1623struct ev_loop *
1197ev_default_loop_init (unsigned int flags) 1624ev_default_loop_init (unsigned int flags)
1198#else 1625#else
1199int 1626int
1200ev_default_loop (unsigned int flags) 1627ev_default_loop (unsigned int flags)
1201#endif 1628#endif
1202{ 1629{
1203 if (sigpipe [0] == sigpipe [1])
1204 if (pipe (sigpipe))
1205 return 0;
1206
1207 if (!ev_default_loop_ptr) 1630 if (!ev_default_loop_ptr)
1208 { 1631 {
1209#if EV_MULTIPLICITY 1632#if EV_MULTIPLICITY
1210 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1633 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1211#else 1634#else
1214 1637
1215 loop_init (EV_A_ flags); 1638 loop_init (EV_A_ flags);
1216 1639
1217 if (ev_backend (EV_A)) 1640 if (ev_backend (EV_A))
1218 { 1641 {
1219 siginit (EV_A);
1220
1221#ifndef _WIN32 1642#ifndef _WIN32
1222 ev_signal_init (&childev, childcb, SIGCHLD); 1643 ev_signal_init (&childev, childcb, SIGCHLD);
1223 ev_set_priority (&childev, EV_MAXPRI); 1644 ev_set_priority (&childev, EV_MAXPRI);
1224 ev_signal_start (EV_A_ &childev); 1645 ev_signal_start (EV_A_ &childev);
1225 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1646 ev_unref (EV_A); /* child watcher should not keep loop alive */
1242#ifndef _WIN32 1663#ifndef _WIN32
1243 ev_ref (EV_A); /* child watcher */ 1664 ev_ref (EV_A); /* child watcher */
1244 ev_signal_stop (EV_A_ &childev); 1665 ev_signal_stop (EV_A_ &childev);
1245#endif 1666#endif
1246 1667
1247 ev_ref (EV_A); /* signal watcher */
1248 ev_io_stop (EV_A_ &sigev);
1249
1250 close (sigpipe [0]); sigpipe [0] = 0;
1251 close (sigpipe [1]); sigpipe [1] = 0;
1252
1253 loop_destroy (EV_A); 1668 loop_destroy (EV_A);
1254} 1669}
1255 1670
1256void 1671void
1257ev_default_fork (void) 1672ev_default_fork (void)
1259#if EV_MULTIPLICITY 1674#if EV_MULTIPLICITY
1260 struct ev_loop *loop = ev_default_loop_ptr; 1675 struct ev_loop *loop = ev_default_loop_ptr;
1261#endif 1676#endif
1262 1677
1263 if (backend) 1678 if (backend)
1264 postfork = 1; 1679 postfork = 1; /* must be in line with ev_loop_fork */
1265} 1680}
1266 1681
1267/*****************************************************************************/ 1682/*****************************************************************************/
1268 1683
1269void 1684void
1286 { 1701 {
1287 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1702 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1288 1703
1289 p->w->pending = 0; 1704 p->w->pending = 0;
1290 EV_CB_INVOKE (p->w, p->events); 1705 EV_CB_INVOKE (p->w, p->events);
1706 EV_FREQUENT_CHECK;
1291 } 1707 }
1292 } 1708 }
1293} 1709}
1294
1295void inline_size
1296timers_reify (EV_P)
1297{
1298 while (timercnt && ((WT)timers [0])->at <= mn_now)
1299 {
1300 ev_timer *w = (ev_timer *)timers [0];
1301
1302 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1303
1304 /* first reschedule or stop timer */
1305 if (w->repeat)
1306 {
1307 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1308
1309 ((WT)w)->at += w->repeat;
1310 if (((WT)w)->at < mn_now)
1311 ((WT)w)->at = mn_now;
1312
1313 downheap (timers, timercnt, 0);
1314 }
1315 else
1316 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1317
1318 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1319 }
1320}
1321
1322#if EV_PERIODIC_ENABLE
1323void inline_size
1324periodics_reify (EV_P)
1325{
1326 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1327 {
1328 ev_periodic *w = (ev_periodic *)periodics [0];
1329
1330 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1331
1332 /* first reschedule or stop timer */
1333 if (w->reschedule_cb)
1334 {
1335 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1336 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1337 downheap (periodics, periodiccnt, 0);
1338 }
1339 else if (w->interval)
1340 {
1341 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1342 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1343 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1344 downheap (periodics, periodiccnt, 0);
1345 }
1346 else
1347 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1348
1349 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1350 }
1351}
1352
1353static void noinline
1354periodics_reschedule (EV_P)
1355{
1356 int i;
1357
1358 /* adjust periodics after time jump */
1359 for (i = 0; i < periodiccnt; ++i)
1360 {
1361 ev_periodic *w = (ev_periodic *)periodics [i];
1362
1363 if (w->reschedule_cb)
1364 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1365 else if (w->interval)
1366 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1367 }
1368
1369 /* now rebuild the heap */
1370 for (i = periodiccnt >> 1; i--; )
1371 downheap (periodics, periodiccnt, i);
1372}
1373#endif
1374 1710
1375#if EV_IDLE_ENABLE 1711#if EV_IDLE_ENABLE
1376void inline_size 1712void inline_size
1377idle_reify (EV_P) 1713idle_reify (EV_P)
1378{ 1714{
1390 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1726 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1391 break; 1727 break;
1392 } 1728 }
1393 } 1729 }
1394 } 1730 }
1731}
1732#endif
1733
1734void inline_size
1735timers_reify (EV_P)
1736{
1737 EV_FREQUENT_CHECK;
1738
1739 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1740 {
1741 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1742
1743 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1744
1745 /* first reschedule or stop timer */
1746 if (w->repeat)
1747 {
1748 ev_at (w) += w->repeat;
1749 if (ev_at (w) < mn_now)
1750 ev_at (w) = mn_now;
1751
1752 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1753
1754 ANHE_at_cache (timers [HEAP0]);
1755 downheap (timers, timercnt, HEAP0);
1756 }
1757 else
1758 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1759
1760 EV_FREQUENT_CHECK;
1761 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1762 }
1763}
1764
1765#if EV_PERIODIC_ENABLE
1766void inline_size
1767periodics_reify (EV_P)
1768{
1769 EV_FREQUENT_CHECK;
1770
1771 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1772 {
1773 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1774
1775 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1776
1777 /* first reschedule or stop timer */
1778 if (w->reschedule_cb)
1779 {
1780 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1781
1782 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1783
1784 ANHE_at_cache (periodics [HEAP0]);
1785 downheap (periodics, periodiccnt, HEAP0);
1786 }
1787 else if (w->interval)
1788 {
1789 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1790 /* if next trigger time is not sufficiently in the future, put it there */
1791 /* this might happen because of floating point inexactness */
1792 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1793 {
1794 ev_at (w) += w->interval;
1795
1796 /* if interval is unreasonably low we might still have a time in the past */
1797 /* so correct this. this will make the periodic very inexact, but the user */
1798 /* has effectively asked to get triggered more often than possible */
1799 if (ev_at (w) < ev_rt_now)
1800 ev_at (w) = ev_rt_now;
1801 }
1802
1803 ANHE_at_cache (periodics [HEAP0]);
1804 downheap (periodics, periodiccnt, HEAP0);
1805 }
1806 else
1807 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1808
1809 EV_FREQUENT_CHECK;
1810 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1811 }
1812}
1813
1814static void noinline
1815periodics_reschedule (EV_P)
1816{
1817 int i;
1818
1819 /* adjust periodics after time jump */
1820 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1821 {
1822 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1823
1824 if (w->reschedule_cb)
1825 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1826 else if (w->interval)
1827 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1828
1829 ANHE_at_cache (periodics [i]);
1830 }
1831
1832 reheap (periodics, periodiccnt);
1395} 1833}
1396#endif 1834#endif
1397 1835
1398void inline_speed 1836void inline_speed
1399time_update (EV_P_ ev_tstamp max_block) 1837time_update (EV_P_ ev_tstamp max_block)
1428 */ 1866 */
1429 for (i = 4; --i; ) 1867 for (i = 4; --i; )
1430 { 1868 {
1431 rtmn_diff = ev_rt_now - mn_now; 1869 rtmn_diff = ev_rt_now - mn_now;
1432 1870
1433 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1871 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1434 return; /* all is well */ 1872 return; /* all is well */
1435 1873
1436 ev_rt_now = ev_time (); 1874 ev_rt_now = ev_time ();
1437 mn_now = get_clock (); 1875 mn_now = get_clock ();
1438 now_floor = mn_now; 1876 now_floor = mn_now;
1454#if EV_PERIODIC_ENABLE 1892#if EV_PERIODIC_ENABLE
1455 periodics_reschedule (EV_A); 1893 periodics_reschedule (EV_A);
1456#endif 1894#endif
1457 /* adjust timers. this is easy, as the offset is the same for all of them */ 1895 /* adjust timers. this is easy, as the offset is the same for all of them */
1458 for (i = 0; i < timercnt; ++i) 1896 for (i = 0; i < timercnt; ++i)
1897 {
1898 ANHE *he = timers + i + HEAP0;
1459 ((WT)timers [i])->at += ev_rt_now - mn_now; 1899 ANHE_w (*he)->at += ev_rt_now - mn_now;
1900 ANHE_at_cache (*he);
1901 }
1460 } 1902 }
1461 1903
1462 mn_now = ev_rt_now; 1904 mn_now = ev_rt_now;
1463 } 1905 }
1464} 1906}
1473ev_unref (EV_P) 1915ev_unref (EV_P)
1474{ 1916{
1475 --activecnt; 1917 --activecnt;
1476} 1918}
1477 1919
1920void
1921ev_now_update (EV_P)
1922{
1923 time_update (EV_A_ 1e100);
1924}
1925
1478static int loop_done; 1926static int loop_done;
1479 1927
1480void 1928void
1481ev_loop (EV_P_ int flags) 1929ev_loop (EV_P_ int flags)
1482{ 1930{
1483 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1931 loop_done = EVUNLOOP_CANCEL;
1484 ? EVUNLOOP_ONE
1485 : EVUNLOOP_CANCEL;
1486 1932
1487 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1933 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1488 1934
1489 do 1935 do
1490 { 1936 {
1937#if EV_VERIFY >= 2
1938 ev_loop_verify (EV_A);
1939#endif
1940
1491#ifndef _WIN32 1941#ifndef _WIN32
1492 if (expect_false (curpid)) /* penalise the forking check even more */ 1942 if (expect_false (curpid)) /* penalise the forking check even more */
1493 if (expect_false (getpid () != curpid)) 1943 if (expect_false (getpid () != curpid))
1494 { 1944 {
1495 curpid = getpid (); 1945 curpid = getpid ();
1536 1986
1537 waittime = MAX_BLOCKTIME; 1987 waittime = MAX_BLOCKTIME;
1538 1988
1539 if (timercnt) 1989 if (timercnt)
1540 { 1990 {
1541 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1991 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1542 if (waittime > to) waittime = to; 1992 if (waittime > to) waittime = to;
1543 } 1993 }
1544 1994
1545#if EV_PERIODIC_ENABLE 1995#if EV_PERIODIC_ENABLE
1546 if (periodiccnt) 1996 if (periodiccnt)
1547 { 1997 {
1548 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1998 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1549 if (waittime > to) waittime = to; 1999 if (waittime > to) waittime = to;
1550 } 2000 }
1551#endif 2001#endif
1552 2002
1553 if (expect_false (waittime < timeout_blocktime)) 2003 if (expect_false (waittime < timeout_blocktime))
1586 /* queue check watchers, to be executed first */ 2036 /* queue check watchers, to be executed first */
1587 if (expect_false (checkcnt)) 2037 if (expect_false (checkcnt))
1588 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2038 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1589 2039
1590 call_pending (EV_A); 2040 call_pending (EV_A);
1591
1592 } 2041 }
1593 while (expect_true (activecnt && !loop_done)); 2042 while (expect_true (
2043 activecnt
2044 && !loop_done
2045 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2046 ));
1594 2047
1595 if (loop_done == EVUNLOOP_ONE) 2048 if (loop_done == EVUNLOOP_ONE)
1596 loop_done = EVUNLOOP_CANCEL; 2049 loop_done = EVUNLOOP_CANCEL;
1597} 2050}
1598 2051
1687 if (expect_false (ev_is_active (w))) 2140 if (expect_false (ev_is_active (w)))
1688 return; 2141 return;
1689 2142
1690 assert (("ev_io_start called with negative fd", fd >= 0)); 2143 assert (("ev_io_start called with negative fd", fd >= 0));
1691 2144
2145 EV_FREQUENT_CHECK;
2146
1692 ev_start (EV_A_ (W)w, 1); 2147 ev_start (EV_A_ (W)w, 1);
1693 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2148 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1694 wlist_add (&anfds[fd].head, (WL)w); 2149 wlist_add (&anfds[fd].head, (WL)w);
1695 2150
1696 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2151 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1697 w->events &= ~EV_IOFDSET; 2152 w->events &= ~EV_IOFDSET;
2153
2154 EV_FREQUENT_CHECK;
1698} 2155}
1699 2156
1700void noinline 2157void noinline
1701ev_io_stop (EV_P_ ev_io *w) 2158ev_io_stop (EV_P_ ev_io *w)
1702{ 2159{
1703 clear_pending (EV_A_ (W)w); 2160 clear_pending (EV_A_ (W)w);
1704 if (expect_false (!ev_is_active (w))) 2161 if (expect_false (!ev_is_active (w)))
1705 return; 2162 return;
1706 2163
1707 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2164 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2165
2166 EV_FREQUENT_CHECK;
1708 2167
1709 wlist_del (&anfds[w->fd].head, (WL)w); 2168 wlist_del (&anfds[w->fd].head, (WL)w);
1710 ev_stop (EV_A_ (W)w); 2169 ev_stop (EV_A_ (W)w);
1711 2170
1712 fd_change (EV_A_ w->fd, 1); 2171 fd_change (EV_A_ w->fd, 1);
2172
2173 EV_FREQUENT_CHECK;
1713} 2174}
1714 2175
1715void noinline 2176void noinline
1716ev_timer_start (EV_P_ ev_timer *w) 2177ev_timer_start (EV_P_ ev_timer *w)
1717{ 2178{
1718 if (expect_false (ev_is_active (w))) 2179 if (expect_false (ev_is_active (w)))
1719 return; 2180 return;
1720 2181
1721 ((WT)w)->at += mn_now; 2182 ev_at (w) += mn_now;
1722 2183
1723 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2184 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1724 2185
2186 EV_FREQUENT_CHECK;
2187
2188 ++timercnt;
1725 ev_start (EV_A_ (W)w, ++timercnt); 2189 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1726 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2190 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1727 timers [timercnt - 1] = (WT)w; 2191 ANHE_w (timers [ev_active (w)]) = (WT)w;
1728 upheap (timers, timercnt - 1); 2192 ANHE_at_cache (timers [ev_active (w)]);
2193 upheap (timers, ev_active (w));
1729 2194
2195 EV_FREQUENT_CHECK;
2196
1730 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2197 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1731} 2198}
1732 2199
1733void noinline 2200void noinline
1734ev_timer_stop (EV_P_ ev_timer *w) 2201ev_timer_stop (EV_P_ ev_timer *w)
1735{ 2202{
1736 clear_pending (EV_A_ (W)w); 2203 clear_pending (EV_A_ (W)w);
1737 if (expect_false (!ev_is_active (w))) 2204 if (expect_false (!ev_is_active (w)))
1738 return; 2205 return;
1739 2206
1740 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2207 EV_FREQUENT_CHECK;
1741 2208
1742 { 2209 {
1743 int active = ((W)w)->active; 2210 int active = ev_active (w);
1744 2211
2212 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2213
2214 --timercnt;
2215
1745 if (expect_true (--active < --timercnt)) 2216 if (expect_true (active < timercnt + HEAP0))
1746 { 2217 {
1747 timers [active] = timers [timercnt]; 2218 timers [active] = timers [timercnt + HEAP0];
1748 adjustheap (timers, timercnt, active); 2219 adjustheap (timers, timercnt, active);
1749 } 2220 }
1750 } 2221 }
1751 2222
1752 ((WT)w)->at -= mn_now; 2223 EV_FREQUENT_CHECK;
2224
2225 ev_at (w) -= mn_now;
1753 2226
1754 ev_stop (EV_A_ (W)w); 2227 ev_stop (EV_A_ (W)w);
1755} 2228}
1756 2229
1757void noinline 2230void noinline
1758ev_timer_again (EV_P_ ev_timer *w) 2231ev_timer_again (EV_P_ ev_timer *w)
1759{ 2232{
2233 EV_FREQUENT_CHECK;
2234
1760 if (ev_is_active (w)) 2235 if (ev_is_active (w))
1761 { 2236 {
1762 if (w->repeat) 2237 if (w->repeat)
1763 { 2238 {
1764 ((WT)w)->at = mn_now + w->repeat; 2239 ev_at (w) = mn_now + w->repeat;
2240 ANHE_at_cache (timers [ev_active (w)]);
1765 adjustheap (timers, timercnt, ((W)w)->active - 1); 2241 adjustheap (timers, timercnt, ev_active (w));
1766 } 2242 }
1767 else 2243 else
1768 ev_timer_stop (EV_A_ w); 2244 ev_timer_stop (EV_A_ w);
1769 } 2245 }
1770 else if (w->repeat) 2246 else if (w->repeat)
1771 { 2247 {
1772 w->at = w->repeat; 2248 ev_at (w) = w->repeat;
1773 ev_timer_start (EV_A_ w); 2249 ev_timer_start (EV_A_ w);
1774 } 2250 }
2251
2252 EV_FREQUENT_CHECK;
1775} 2253}
1776 2254
1777#if EV_PERIODIC_ENABLE 2255#if EV_PERIODIC_ENABLE
1778void noinline 2256void noinline
1779ev_periodic_start (EV_P_ ev_periodic *w) 2257ev_periodic_start (EV_P_ ev_periodic *w)
1780{ 2258{
1781 if (expect_false (ev_is_active (w))) 2259 if (expect_false (ev_is_active (w)))
1782 return; 2260 return;
1783 2261
1784 if (w->reschedule_cb) 2262 if (w->reschedule_cb)
1785 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2263 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1786 else if (w->interval) 2264 else if (w->interval)
1787 { 2265 {
1788 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2266 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1789 /* this formula differs from the one in periodic_reify because we do not always round up */ 2267 /* this formula differs from the one in periodic_reify because we do not always round up */
1790 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2268 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1791 } 2269 }
1792 else 2270 else
1793 ((WT)w)->at = w->offset; 2271 ev_at (w) = w->offset;
1794 2272
2273 EV_FREQUENT_CHECK;
2274
2275 ++periodiccnt;
1795 ev_start (EV_A_ (W)w, ++periodiccnt); 2276 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1796 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2277 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1797 periodics [periodiccnt - 1] = (WT)w; 2278 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1798 upheap (periodics, periodiccnt - 1); 2279 ANHE_at_cache (periodics [ev_active (w)]);
2280 upheap (periodics, ev_active (w));
1799 2281
2282 EV_FREQUENT_CHECK;
2283
1800 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2284 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1801} 2285}
1802 2286
1803void noinline 2287void noinline
1804ev_periodic_stop (EV_P_ ev_periodic *w) 2288ev_periodic_stop (EV_P_ ev_periodic *w)
1805{ 2289{
1806 clear_pending (EV_A_ (W)w); 2290 clear_pending (EV_A_ (W)w);
1807 if (expect_false (!ev_is_active (w))) 2291 if (expect_false (!ev_is_active (w)))
1808 return; 2292 return;
1809 2293
1810 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2294 EV_FREQUENT_CHECK;
1811 2295
1812 { 2296 {
1813 int active = ((W)w)->active; 2297 int active = ev_active (w);
1814 2298
2299 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2300
2301 --periodiccnt;
2302
1815 if (expect_true (--active < --periodiccnt)) 2303 if (expect_true (active < periodiccnt + HEAP0))
1816 { 2304 {
1817 periodics [active] = periodics [periodiccnt]; 2305 periodics [active] = periodics [periodiccnt + HEAP0];
1818 adjustheap (periodics, periodiccnt, active); 2306 adjustheap (periodics, periodiccnt, active);
1819 } 2307 }
1820 } 2308 }
1821 2309
2310 EV_FREQUENT_CHECK;
2311
1822 ev_stop (EV_A_ (W)w); 2312 ev_stop (EV_A_ (W)w);
1823} 2313}
1824 2314
1825void noinline 2315void noinline
1826ev_periodic_again (EV_P_ ev_periodic *w) 2316ev_periodic_again (EV_P_ ev_periodic *w)
1843#endif 2333#endif
1844 if (expect_false (ev_is_active (w))) 2334 if (expect_false (ev_is_active (w)))
1845 return; 2335 return;
1846 2336
1847 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2337 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2338
2339 evpipe_init (EV_A);
2340
2341 EV_FREQUENT_CHECK;
1848 2342
1849 { 2343 {
1850#ifndef _WIN32 2344#ifndef _WIN32
1851 sigset_t full, prev; 2345 sigset_t full, prev;
1852 sigfillset (&full); 2346 sigfillset (&full);
1864 wlist_add (&signals [w->signum - 1].head, (WL)w); 2358 wlist_add (&signals [w->signum - 1].head, (WL)w);
1865 2359
1866 if (!((WL)w)->next) 2360 if (!((WL)w)->next)
1867 { 2361 {
1868#if _WIN32 2362#if _WIN32
1869 signal (w->signum, sighandler); 2363 signal (w->signum, ev_sighandler);
1870#else 2364#else
1871 struct sigaction sa; 2365 struct sigaction sa;
1872 sa.sa_handler = sighandler; 2366 sa.sa_handler = ev_sighandler;
1873 sigfillset (&sa.sa_mask); 2367 sigfillset (&sa.sa_mask);
1874 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2368 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1875 sigaction (w->signum, &sa, 0); 2369 sigaction (w->signum, &sa, 0);
1876#endif 2370#endif
1877 } 2371 }
2372
2373 EV_FREQUENT_CHECK;
1878} 2374}
1879 2375
1880void noinline 2376void noinline
1881ev_signal_stop (EV_P_ ev_signal *w) 2377ev_signal_stop (EV_P_ ev_signal *w)
1882{ 2378{
1883 clear_pending (EV_A_ (W)w); 2379 clear_pending (EV_A_ (W)w);
1884 if (expect_false (!ev_is_active (w))) 2380 if (expect_false (!ev_is_active (w)))
1885 return; 2381 return;
1886 2382
2383 EV_FREQUENT_CHECK;
2384
1887 wlist_del (&signals [w->signum - 1].head, (WL)w); 2385 wlist_del (&signals [w->signum - 1].head, (WL)w);
1888 ev_stop (EV_A_ (W)w); 2386 ev_stop (EV_A_ (W)w);
1889 2387
1890 if (!signals [w->signum - 1].head) 2388 if (!signals [w->signum - 1].head)
1891 signal (w->signum, SIG_DFL); 2389 signal (w->signum, SIG_DFL);
2390
2391 EV_FREQUENT_CHECK;
1892} 2392}
1893 2393
1894void 2394void
1895ev_child_start (EV_P_ ev_child *w) 2395ev_child_start (EV_P_ ev_child *w)
1896{ 2396{
1898 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2398 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1899#endif 2399#endif
1900 if (expect_false (ev_is_active (w))) 2400 if (expect_false (ev_is_active (w)))
1901 return; 2401 return;
1902 2402
2403 EV_FREQUENT_CHECK;
2404
1903 ev_start (EV_A_ (W)w, 1); 2405 ev_start (EV_A_ (W)w, 1);
1904 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2406 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2407
2408 EV_FREQUENT_CHECK;
1905} 2409}
1906 2410
1907void 2411void
1908ev_child_stop (EV_P_ ev_child *w) 2412ev_child_stop (EV_P_ ev_child *w)
1909{ 2413{
1910 clear_pending (EV_A_ (W)w); 2414 clear_pending (EV_A_ (W)w);
1911 if (expect_false (!ev_is_active (w))) 2415 if (expect_false (!ev_is_active (w)))
1912 return; 2416 return;
1913 2417
2418 EV_FREQUENT_CHECK;
2419
1914 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2420 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1915 ev_stop (EV_A_ (W)w); 2421 ev_stop (EV_A_ (W)w);
2422
2423 EV_FREQUENT_CHECK;
1916} 2424}
1917 2425
1918#if EV_STAT_ENABLE 2426#if EV_STAT_ENABLE
1919 2427
1920# ifdef _WIN32 2428# ifdef _WIN32
1938 if (w->wd < 0) 2446 if (w->wd < 0)
1939 { 2447 {
1940 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2448 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1941 2449
1942 /* monitor some parent directory for speedup hints */ 2450 /* monitor some parent directory for speedup hints */
2451 /* note that exceeding the hardcoded limit is not a correctness issue, */
2452 /* but an efficiency issue only */
1943 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2453 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1944 { 2454 {
1945 char path [4096]; 2455 char path [4096];
1946 strcpy (path, w->path); 2456 strcpy (path, w->path);
1947 2457
1987 2497
1988static void noinline 2498static void noinline
1989infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2499infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1990{ 2500{
1991 if (slot < 0) 2501 if (slot < 0)
1992 /* overflow, need to check for all hahs slots */ 2502 /* overflow, need to check for all hash slots */
1993 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2503 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1994 infy_wd (EV_A_ slot, wd, ev); 2504 infy_wd (EV_A_ slot, wd, ev);
1995 else 2505 else
1996 { 2506 {
1997 WL w_; 2507 WL w_;
2031infy_init (EV_P) 2541infy_init (EV_P)
2032{ 2542{
2033 if (fs_fd != -2) 2543 if (fs_fd != -2)
2034 return; 2544 return;
2035 2545
2546 /* kernels < 2.6.25 are borked
2547 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2548 */
2549 {
2550 struct utsname buf;
2551 int major, minor, micro;
2552
2553 fs_fd = -1;
2554
2555 if (uname (&buf))
2556 return;
2557
2558 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2559 return;
2560
2561 if (major < 2
2562 || (major == 2 && minor < 6)
2563 || (major == 2 && minor == 6 && micro < 25))
2564 return;
2565 }
2566
2036 fs_fd = inotify_init (); 2567 fs_fd = inotify_init ();
2037 2568
2038 if (fs_fd >= 0) 2569 if (fs_fd >= 0)
2039 { 2570 {
2040 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 2571 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2069 if (fs_fd >= 0) 2600 if (fs_fd >= 0)
2070 infy_add (EV_A_ w); /* re-add, no matter what */ 2601 infy_add (EV_A_ w); /* re-add, no matter what */
2071 else 2602 else
2072 ev_timer_start (EV_A_ &w->timer); 2603 ev_timer_start (EV_A_ &w->timer);
2073 } 2604 }
2074
2075 } 2605 }
2076} 2606}
2077 2607
2608#endif
2609
2610#ifdef _WIN32
2611# define EV_LSTAT(p,b) _stati64 (p, b)
2612#else
2613# define EV_LSTAT(p,b) lstat (p, b)
2078#endif 2614#endif
2079 2615
2080void 2616void
2081ev_stat_stat (EV_P_ ev_stat *w) 2617ev_stat_stat (EV_P_ ev_stat *w)
2082{ 2618{
2109 || w->prev.st_atime != w->attr.st_atime 2645 || w->prev.st_atime != w->attr.st_atime
2110 || w->prev.st_mtime != w->attr.st_mtime 2646 || w->prev.st_mtime != w->attr.st_mtime
2111 || w->prev.st_ctime != w->attr.st_ctime 2647 || w->prev.st_ctime != w->attr.st_ctime
2112 ) { 2648 ) {
2113 #if EV_USE_INOTIFY 2649 #if EV_USE_INOTIFY
2650 if (fs_fd >= 0)
2651 {
2114 infy_del (EV_A_ w); 2652 infy_del (EV_A_ w);
2115 infy_add (EV_A_ w); 2653 infy_add (EV_A_ w);
2116 ev_stat_stat (EV_A_ w); /* avoid race... */ 2654 ev_stat_stat (EV_A_ w); /* avoid race... */
2655 }
2117 #endif 2656 #endif
2118 2657
2119 ev_feed_event (EV_A_ w, EV_STAT); 2658 ev_feed_event (EV_A_ w, EV_STAT);
2120 } 2659 }
2121} 2660}
2146 else 2685 else
2147#endif 2686#endif
2148 ev_timer_start (EV_A_ &w->timer); 2687 ev_timer_start (EV_A_ &w->timer);
2149 2688
2150 ev_start (EV_A_ (W)w, 1); 2689 ev_start (EV_A_ (W)w, 1);
2690
2691 EV_FREQUENT_CHECK;
2151} 2692}
2152 2693
2153void 2694void
2154ev_stat_stop (EV_P_ ev_stat *w) 2695ev_stat_stop (EV_P_ ev_stat *w)
2155{ 2696{
2156 clear_pending (EV_A_ (W)w); 2697 clear_pending (EV_A_ (W)w);
2157 if (expect_false (!ev_is_active (w))) 2698 if (expect_false (!ev_is_active (w)))
2158 return; 2699 return;
2159 2700
2701 EV_FREQUENT_CHECK;
2702
2160#if EV_USE_INOTIFY 2703#if EV_USE_INOTIFY
2161 infy_del (EV_A_ w); 2704 infy_del (EV_A_ w);
2162#endif 2705#endif
2163 ev_timer_stop (EV_A_ &w->timer); 2706 ev_timer_stop (EV_A_ &w->timer);
2164 2707
2165 ev_stop (EV_A_ (W)w); 2708 ev_stop (EV_A_ (W)w);
2709
2710 EV_FREQUENT_CHECK;
2166} 2711}
2167#endif 2712#endif
2168 2713
2169#if EV_IDLE_ENABLE 2714#if EV_IDLE_ENABLE
2170void 2715void
2172{ 2717{
2173 if (expect_false (ev_is_active (w))) 2718 if (expect_false (ev_is_active (w)))
2174 return; 2719 return;
2175 2720
2176 pri_adjust (EV_A_ (W)w); 2721 pri_adjust (EV_A_ (W)w);
2722
2723 EV_FREQUENT_CHECK;
2177 2724
2178 { 2725 {
2179 int active = ++idlecnt [ABSPRI (w)]; 2726 int active = ++idlecnt [ABSPRI (w)];
2180 2727
2181 ++idleall; 2728 ++idleall;
2182 ev_start (EV_A_ (W)w, active); 2729 ev_start (EV_A_ (W)w, active);
2183 2730
2184 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2731 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2185 idles [ABSPRI (w)][active - 1] = w; 2732 idles [ABSPRI (w)][active - 1] = w;
2186 } 2733 }
2734
2735 EV_FREQUENT_CHECK;
2187} 2736}
2188 2737
2189void 2738void
2190ev_idle_stop (EV_P_ ev_idle *w) 2739ev_idle_stop (EV_P_ ev_idle *w)
2191{ 2740{
2192 clear_pending (EV_A_ (W)w); 2741 clear_pending (EV_A_ (W)w);
2193 if (expect_false (!ev_is_active (w))) 2742 if (expect_false (!ev_is_active (w)))
2194 return; 2743 return;
2195 2744
2745 EV_FREQUENT_CHECK;
2746
2196 { 2747 {
2197 int active = ((W)w)->active; 2748 int active = ev_active (w);
2198 2749
2199 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2750 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2200 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2751 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2201 2752
2202 ev_stop (EV_A_ (W)w); 2753 ev_stop (EV_A_ (W)w);
2203 --idleall; 2754 --idleall;
2204 } 2755 }
2756
2757 EV_FREQUENT_CHECK;
2205} 2758}
2206#endif 2759#endif
2207 2760
2208void 2761void
2209ev_prepare_start (EV_P_ ev_prepare *w) 2762ev_prepare_start (EV_P_ ev_prepare *w)
2210{ 2763{
2211 if (expect_false (ev_is_active (w))) 2764 if (expect_false (ev_is_active (w)))
2212 return; 2765 return;
2766
2767 EV_FREQUENT_CHECK;
2213 2768
2214 ev_start (EV_A_ (W)w, ++preparecnt); 2769 ev_start (EV_A_ (W)w, ++preparecnt);
2215 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2770 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2216 prepares [preparecnt - 1] = w; 2771 prepares [preparecnt - 1] = w;
2772
2773 EV_FREQUENT_CHECK;
2217} 2774}
2218 2775
2219void 2776void
2220ev_prepare_stop (EV_P_ ev_prepare *w) 2777ev_prepare_stop (EV_P_ ev_prepare *w)
2221{ 2778{
2222 clear_pending (EV_A_ (W)w); 2779 clear_pending (EV_A_ (W)w);
2223 if (expect_false (!ev_is_active (w))) 2780 if (expect_false (!ev_is_active (w)))
2224 return; 2781 return;
2225 2782
2783 EV_FREQUENT_CHECK;
2784
2226 { 2785 {
2227 int active = ((W)w)->active; 2786 int active = ev_active (w);
2787
2228 prepares [active - 1] = prepares [--preparecnt]; 2788 prepares [active - 1] = prepares [--preparecnt];
2229 ((W)prepares [active - 1])->active = active; 2789 ev_active (prepares [active - 1]) = active;
2230 } 2790 }
2231 2791
2232 ev_stop (EV_A_ (W)w); 2792 ev_stop (EV_A_ (W)w);
2793
2794 EV_FREQUENT_CHECK;
2233} 2795}
2234 2796
2235void 2797void
2236ev_check_start (EV_P_ ev_check *w) 2798ev_check_start (EV_P_ ev_check *w)
2237{ 2799{
2238 if (expect_false (ev_is_active (w))) 2800 if (expect_false (ev_is_active (w)))
2239 return; 2801 return;
2802
2803 EV_FREQUENT_CHECK;
2240 2804
2241 ev_start (EV_A_ (W)w, ++checkcnt); 2805 ev_start (EV_A_ (W)w, ++checkcnt);
2242 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2806 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2243 checks [checkcnt - 1] = w; 2807 checks [checkcnt - 1] = w;
2808
2809 EV_FREQUENT_CHECK;
2244} 2810}
2245 2811
2246void 2812void
2247ev_check_stop (EV_P_ ev_check *w) 2813ev_check_stop (EV_P_ ev_check *w)
2248{ 2814{
2249 clear_pending (EV_A_ (W)w); 2815 clear_pending (EV_A_ (W)w);
2250 if (expect_false (!ev_is_active (w))) 2816 if (expect_false (!ev_is_active (w)))
2251 return; 2817 return;
2252 2818
2819 EV_FREQUENT_CHECK;
2820
2253 { 2821 {
2254 int active = ((W)w)->active; 2822 int active = ev_active (w);
2823
2255 checks [active - 1] = checks [--checkcnt]; 2824 checks [active - 1] = checks [--checkcnt];
2256 ((W)checks [active - 1])->active = active; 2825 ev_active (checks [active - 1]) = active;
2257 } 2826 }
2258 2827
2259 ev_stop (EV_A_ (W)w); 2828 ev_stop (EV_A_ (W)w);
2829
2830 EV_FREQUENT_CHECK;
2260} 2831}
2261 2832
2262#if EV_EMBED_ENABLE 2833#if EV_EMBED_ENABLE
2263void noinline 2834void noinline
2264ev_embed_sweep (EV_P_ ev_embed *w) 2835ev_embed_sweep (EV_P_ ev_embed *w)
2291 ev_loop (EV_A_ EVLOOP_NONBLOCK); 2862 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2292 } 2863 }
2293 } 2864 }
2294} 2865}
2295 2866
2867static void
2868embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2869{
2870 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2871
2872 {
2873 struct ev_loop *loop = w->other;
2874
2875 ev_loop_fork (EV_A);
2876 }
2877}
2878
2296#if 0 2879#if 0
2297static void 2880static void
2298embed_idle_cb (EV_P_ ev_idle *idle, int revents) 2881embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2299{ 2882{
2300 ev_idle_stop (EV_A_ idle); 2883 ev_idle_stop (EV_A_ idle);
2311 struct ev_loop *loop = w->other; 2894 struct ev_loop *loop = w->other;
2312 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2895 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2313 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2896 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2314 } 2897 }
2315 2898
2899 EV_FREQUENT_CHECK;
2900
2316 ev_set_priority (&w->io, ev_priority (w)); 2901 ev_set_priority (&w->io, ev_priority (w));
2317 ev_io_start (EV_A_ &w->io); 2902 ev_io_start (EV_A_ &w->io);
2318 2903
2319 ev_prepare_init (&w->prepare, embed_prepare_cb); 2904 ev_prepare_init (&w->prepare, embed_prepare_cb);
2320 ev_set_priority (&w->prepare, EV_MINPRI); 2905 ev_set_priority (&w->prepare, EV_MINPRI);
2321 ev_prepare_start (EV_A_ &w->prepare); 2906 ev_prepare_start (EV_A_ &w->prepare);
2322 2907
2908 ev_fork_init (&w->fork, embed_fork_cb);
2909 ev_fork_start (EV_A_ &w->fork);
2910
2323 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2911 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2324 2912
2325 ev_start (EV_A_ (W)w, 1); 2913 ev_start (EV_A_ (W)w, 1);
2914
2915 EV_FREQUENT_CHECK;
2326} 2916}
2327 2917
2328void 2918void
2329ev_embed_stop (EV_P_ ev_embed *w) 2919ev_embed_stop (EV_P_ ev_embed *w)
2330{ 2920{
2331 clear_pending (EV_A_ (W)w); 2921 clear_pending (EV_A_ (W)w);
2332 if (expect_false (!ev_is_active (w))) 2922 if (expect_false (!ev_is_active (w)))
2333 return; 2923 return;
2334 2924
2925 EV_FREQUENT_CHECK;
2926
2335 ev_io_stop (EV_A_ &w->io); 2927 ev_io_stop (EV_A_ &w->io);
2336 ev_prepare_stop (EV_A_ &w->prepare); 2928 ev_prepare_stop (EV_A_ &w->prepare);
2929 ev_fork_stop (EV_A_ &w->fork);
2337 2930
2338 ev_stop (EV_A_ (W)w); 2931 EV_FREQUENT_CHECK;
2339} 2932}
2340#endif 2933#endif
2341 2934
2342#if EV_FORK_ENABLE 2935#if EV_FORK_ENABLE
2343void 2936void
2344ev_fork_start (EV_P_ ev_fork *w) 2937ev_fork_start (EV_P_ ev_fork *w)
2345{ 2938{
2346 if (expect_false (ev_is_active (w))) 2939 if (expect_false (ev_is_active (w)))
2347 return; 2940 return;
2941
2942 EV_FREQUENT_CHECK;
2348 2943
2349 ev_start (EV_A_ (W)w, ++forkcnt); 2944 ev_start (EV_A_ (W)w, ++forkcnt);
2350 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2945 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2351 forks [forkcnt - 1] = w; 2946 forks [forkcnt - 1] = w;
2947
2948 EV_FREQUENT_CHECK;
2352} 2949}
2353 2950
2354void 2951void
2355ev_fork_stop (EV_P_ ev_fork *w) 2952ev_fork_stop (EV_P_ ev_fork *w)
2356{ 2953{
2357 clear_pending (EV_A_ (W)w); 2954 clear_pending (EV_A_ (W)w);
2358 if (expect_false (!ev_is_active (w))) 2955 if (expect_false (!ev_is_active (w)))
2359 return; 2956 return;
2360 2957
2958 EV_FREQUENT_CHECK;
2959
2361 { 2960 {
2362 int active = ((W)w)->active; 2961 int active = ev_active (w);
2962
2363 forks [active - 1] = forks [--forkcnt]; 2963 forks [active - 1] = forks [--forkcnt];
2364 ((W)forks [active - 1])->active = active; 2964 ev_active (forks [active - 1]) = active;
2365 } 2965 }
2366 2966
2367 ev_stop (EV_A_ (W)w); 2967 ev_stop (EV_A_ (W)w);
2968
2969 EV_FREQUENT_CHECK;
2970}
2971#endif
2972
2973#if EV_ASYNC_ENABLE
2974void
2975ev_async_start (EV_P_ ev_async *w)
2976{
2977 if (expect_false (ev_is_active (w)))
2978 return;
2979
2980 evpipe_init (EV_A);
2981
2982 EV_FREQUENT_CHECK;
2983
2984 ev_start (EV_A_ (W)w, ++asynccnt);
2985 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2986 asyncs [asynccnt - 1] = w;
2987
2988 EV_FREQUENT_CHECK;
2989}
2990
2991void
2992ev_async_stop (EV_P_ ev_async *w)
2993{
2994 clear_pending (EV_A_ (W)w);
2995 if (expect_false (!ev_is_active (w)))
2996 return;
2997
2998 EV_FREQUENT_CHECK;
2999
3000 {
3001 int active = ev_active (w);
3002
3003 asyncs [active - 1] = asyncs [--asynccnt];
3004 ev_active (asyncs [active - 1]) = active;
3005 }
3006
3007 ev_stop (EV_A_ (W)w);
3008
3009 EV_FREQUENT_CHECK;
3010}
3011
3012void
3013ev_async_send (EV_P_ ev_async *w)
3014{
3015 w->sent = 1;
3016 evpipe_write (EV_A_ &gotasync);
2368} 3017}
2369#endif 3018#endif
2370 3019
2371/*****************************************************************************/ 3020/*****************************************************************************/
2372 3021
2382once_cb (EV_P_ struct ev_once *once, int revents) 3031once_cb (EV_P_ struct ev_once *once, int revents)
2383{ 3032{
2384 void (*cb)(int revents, void *arg) = once->cb; 3033 void (*cb)(int revents, void *arg) = once->cb;
2385 void *arg = once->arg; 3034 void *arg = once->arg;
2386 3035
2387 ev_io_stop (EV_A_ &once->io); 3036 ev_io_stop (EV_A_ &once->io);
2388 ev_timer_stop (EV_A_ &once->to); 3037 ev_timer_stop (EV_A_ &once->to);
2389 ev_free (once); 3038 ev_free (once);
2390 3039
2391 cb (revents, arg); 3040 cb (revents, arg);
2392} 3041}
2393 3042
2394static void 3043static void
2395once_cb_io (EV_P_ ev_io *w, int revents) 3044once_cb_io (EV_P_ ev_io *w, int revents)
2396{ 3045{
2397 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3046 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3047
3048 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2398} 3049}
2399 3050
2400static void 3051static void
2401once_cb_to (EV_P_ ev_timer *w, int revents) 3052once_cb_to (EV_P_ ev_timer *w, int revents)
2402{ 3053{
2403 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3054 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3055
3056 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2404} 3057}
2405 3058
2406void 3059void
2407ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3060ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2408{ 3061{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines