ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.21 by root, Wed Oct 31 18:37:38 2007 UTC vs.
Revision 1.264 by root, Mon Oct 13 23:20:12 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
6 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
7 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
8 * 27 *
9 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
10 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
11 * 30 * in which case the provisions of the GPL are applicable instead of
12 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
13 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
14 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
15 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
16 * 35 * and other provisions required by the GPL. If you do not delete the
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
18 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
19 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1
55# endif
56# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1
58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
74# endif
75
76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
90# endif
91
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
98# endif
99
100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
132#endif
29 133
30#include <math.h> 134#include <math.h>
31#include <stdlib.h> 135#include <stdlib.h>
32#include <unistd.h>
33#include <fcntl.h> 136#include <fcntl.h>
34#include <signal.h>
35#include <stddef.h> 137#include <stddef.h>
36 138
37#include <stdio.h> 139#include <stdio.h>
38 140
39#include <assert.h> 141#include <assert.h>
40#include <errno.h> 142#include <errno.h>
41#include <sys/time.h> 143#include <sys/types.h>
42#include <time.h> 144#include <time.h>
43 145
44#ifndef HAVE_MONOTONIC 146#include <signal.h>
45# ifdef CLOCK_MONOTONIC 147
46# define HAVE_MONOTONIC 1 148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
154#ifndef _WIN32
155# include <sys/time.h>
156# include <sys/wait.h>
157# include <unistd.h>
158#else
159# include <io.h>
160# define WIN32_LEAN_AND_MEAN
161# include <windows.h>
162# ifndef EV_SELECT_IS_WINSOCKET
163# define EV_SELECT_IS_WINSOCKET 1
47# endif 164# endif
48#endif 165#endif
49 166
50#ifndef HAVE_SELECT 167/* this block tries to deduce configuration from header-defined symbols and defaults */
51# define HAVE_SELECT 1 168
169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
173# define EV_USE_MONOTONIC 0
52#endif 174# endif
175#endif
53 176
54#ifndef HAVE_EPOLL 177#ifndef EV_USE_REALTIME
55# define HAVE_EPOLL 0 178# define EV_USE_REALTIME 0
179#endif
180
181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
185# define EV_USE_NANOSLEEP 0
56#endif 186# endif
187#endif
57 188
58#ifndef HAVE_REALTIME 189#ifndef EV_USE_SELECT
59# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 190# define EV_USE_SELECT 1
191#endif
192
193#ifndef EV_USE_POLL
194# ifdef _WIN32
195# define EV_USE_POLL 0
196# else
197# define EV_USE_POLL 1
60#endif 198# endif
199#endif
200
201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
205# define EV_USE_EPOLL 0
206# endif
207#endif
208
209#ifndef EV_USE_KQUEUE
210# define EV_USE_KQUEUE 0
211#endif
212
213#ifndef EV_USE_PORT
214# define EV_USE_PORT 0
215#endif
216
217#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1
220# else
221# define EV_USE_INOTIFY 0
222# endif
223#endif
224
225#ifndef EV_PID_HASHSIZE
226# if EV_MINIMAL
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
230# endif
231#endif
232
233#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif
240
241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
268
269#ifndef CLOCK_MONOTONIC
270# undef EV_USE_MONOTONIC
271# define EV_USE_MONOTONIC 0
272#endif
273
274#ifndef CLOCK_REALTIME
275# undef EV_USE_REALTIME
276# define EV_USE_REALTIME 0
277#endif
278
279#if !EV_STAT_ENABLE
280# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0
282#endif
283
284#if !EV_USE_NANOSLEEP
285# ifndef _WIN32
286# include <sys/select.h>
287# endif
288#endif
289
290#if EV_USE_INOTIFY
291# include <sys/utsname.h>
292# include <sys/inotify.h>
293/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
294# ifndef IN_DONT_FOLLOW
295# undef EV_USE_INOTIFY
296# define EV_USE_INOTIFY 0
297# endif
298#endif
299
300#if EV_SELECT_IS_WINSOCKET
301# include <winsock.h>
302#endif
303
304#if EV_USE_EVENTFD
305/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
306# include <stdint.h>
307# ifdef __cplusplus
308extern "C" {
309# endif
310int eventfd (unsigned int initval, int flags);
311# ifdef __cplusplus
312}
313# endif
314#endif
315
316/**/
317
318#if EV_VERIFY >= 3
319# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
320#else
321# define EV_FREQUENT_CHECK do { } while (0)
322#endif
323
324/*
325 * This is used to avoid floating point rounding problems.
326 * It is added to ev_rt_now when scheduling periodics
327 * to ensure progress, time-wise, even when rounding
328 * errors are against us.
329 * This value is good at least till the year 4000.
330 * Better solutions welcome.
331 */
332#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
61 333
62#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 334#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
63#define MAX_BLOCKTIME 60. 335#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
336/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
64 337
65#include "ev.h" 338#if __GNUC__ >= 4
339# define expect(expr,value) __builtin_expect ((expr),(value))
340# define noinline __attribute__ ((noinline))
341#else
342# define expect(expr,value) (expr)
343# define noinline
344# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
345# define inline
346# endif
347#endif
66 348
349#define expect_false(expr) expect ((expr) != 0, 0)
350#define expect_true(expr) expect ((expr) != 0, 1)
351#define inline_size static inline
352
353#if EV_MINIMAL
354# define inline_speed static noinline
355#else
356# define inline_speed static inline
357#endif
358
359#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
360#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
361
362#define EMPTY /* required for microsofts broken pseudo-c compiler */
363#define EMPTY2(a,b) /* used to suppress some warnings */
364
67typedef struct ev_watcher *W; 365typedef ev_watcher *W;
68typedef struct ev_watcher_list *WL; 366typedef ev_watcher_list *WL;
69typedef struct ev_watcher_time *WT; 367typedef ev_watcher_time *WT;
70 368
71static ev_tstamp now, diff; /* monotonic clock */ 369#define ev_active(w) ((W)(w))->active
370#define ev_at(w) ((WT)(w))->at
371
372#if EV_USE_MONOTONIC
373/* sig_atomic_t is used to avoid per-thread variables or locking but still */
374/* giving it a reasonably high chance of working on typical architetcures */
375static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
376#endif
377
378#ifdef _WIN32
379# include "ev_win32.c"
380#endif
381
382/*****************************************************************************/
383
384static void (*syserr_cb)(const char *msg);
385
386void
387ev_set_syserr_cb (void (*cb)(const char *msg))
388{
389 syserr_cb = cb;
390}
391
392static void noinline
393syserr (const char *msg)
394{
395 if (!msg)
396 msg = "(libev) system error";
397
398 if (syserr_cb)
399 syserr_cb (msg);
400 else
401 {
402 perror (msg);
403 abort ();
404 }
405}
406
407static void *
408ev_realloc_emul (void *ptr, long size)
409{
410 /* some systems, notably openbsd and darwin, fail to properly
411 * implement realloc (x, 0) (as required by both ansi c-98 and
412 * the single unix specification, so work around them here.
413 */
414
415 if (size)
416 return realloc (ptr, size);
417
418 free (ptr);
419 return 0;
420}
421
422static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
423
424void
425ev_set_allocator (void *(*cb)(void *ptr, long size))
426{
427 alloc = cb;
428}
429
430inline_speed void *
431ev_realloc (void *ptr, long size)
432{
433 ptr = alloc (ptr, size);
434
435 if (!ptr && size)
436 {
437 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
438 abort ();
439 }
440
441 return ptr;
442}
443
444#define ev_malloc(size) ev_realloc (0, (size))
445#define ev_free(ptr) ev_realloc ((ptr), 0)
446
447/*****************************************************************************/
448
449typedef struct
450{
451 WL head;
452 unsigned char events;
453 unsigned char reify;
454#if EV_SELECT_IS_WINSOCKET
455 SOCKET handle;
456#endif
457} ANFD;
458
459typedef struct
460{
461 W w;
462 int events;
463} ANPENDING;
464
465#if EV_USE_INOTIFY
466/* hash table entry per inotify-id */
467typedef struct
468{
469 WL head;
470} ANFS;
471#endif
472
473/* Heap Entry */
474#if EV_HEAP_CACHE_AT
475 typedef struct {
476 ev_tstamp at;
477 WT w;
478 } ANHE;
479
480 #define ANHE_w(he) (he).w /* access watcher, read-write */
481 #define ANHE_at(he) (he).at /* access cached at, read-only */
482 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
483#else
484 typedef WT ANHE;
485
486 #define ANHE_w(he) (he)
487 #define ANHE_at(he) (he)->at
488 #define ANHE_at_cache(he)
489#endif
490
491#if EV_MULTIPLICITY
492
493 struct ev_loop
494 {
495 ev_tstamp ev_rt_now;
496 #define ev_rt_now ((loop)->ev_rt_now)
497 #define VAR(name,decl) decl;
498 #include "ev_vars.h"
499 #undef VAR
500 };
501 #include "ev_wrap.h"
502
503 static struct ev_loop default_loop_struct;
504 struct ev_loop *ev_default_loop_ptr;
505
506#else
507
72ev_tstamp ev_now; 508 ev_tstamp ev_rt_now;
73int ev_method; 509 #define VAR(name,decl) static decl;
510 #include "ev_vars.h"
511 #undef VAR
74 512
75static int have_monotonic; /* runtime */ 513 static int ev_default_loop_ptr;
76 514
77static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 515#endif
78static void (*method_modify)(int fd, int oev, int nev);
79static void (*method_poll)(ev_tstamp timeout);
80 516
81/*****************************************************************************/ 517/*****************************************************************************/
82 518
83ev_tstamp 519ev_tstamp
84ev_time (void) 520ev_time (void)
85{ 521{
86#if HAVE_REALTIME 522#if EV_USE_REALTIME
87 struct timespec ts; 523 struct timespec ts;
88 clock_gettime (CLOCK_REALTIME, &ts); 524 clock_gettime (CLOCK_REALTIME, &ts);
89 return ts.tv_sec + ts.tv_nsec * 1e-9; 525 return ts.tv_sec + ts.tv_nsec * 1e-9;
90#else 526#else
91 struct timeval tv; 527 struct timeval tv;
92 gettimeofday (&tv, 0); 528 gettimeofday (&tv, 0);
93 return tv.tv_sec + tv.tv_usec * 1e-6; 529 return tv.tv_sec + tv.tv_usec * 1e-6;
94#endif 530#endif
95} 531}
96 532
97static ev_tstamp 533ev_tstamp inline_size
98get_clock (void) 534get_clock (void)
99{ 535{
100#if HAVE_MONOTONIC 536#if EV_USE_MONOTONIC
101 if (have_monotonic) 537 if (expect_true (have_monotonic))
102 { 538 {
103 struct timespec ts; 539 struct timespec ts;
104 clock_gettime (CLOCK_MONOTONIC, &ts); 540 clock_gettime (CLOCK_MONOTONIC, &ts);
105 return ts.tv_sec + ts.tv_nsec * 1e-9; 541 return ts.tv_sec + ts.tv_nsec * 1e-9;
106 } 542 }
107#endif 543#endif
108 544
109 return ev_time (); 545 return ev_time ();
110} 546}
111 547
112#define array_needsize(base,cur,cnt,init) \ 548#if EV_MULTIPLICITY
113 if ((cnt) > cur) \ 549ev_tstamp
114 { \ 550ev_now (EV_P)
115 int newcnt = cur ? cur << 1 : 16; \ 551{
116 base = realloc (base, sizeof (*base) * (newcnt)); \ 552 return ev_rt_now;
117 init (base + cur, newcnt - cur); \ 553}
118 cur = newcnt; \ 554#endif
555
556void
557ev_sleep (ev_tstamp delay)
558{
559 if (delay > 0.)
119 } 560 {
561#if EV_USE_NANOSLEEP
562 struct timespec ts;
563
564 ts.tv_sec = (time_t)delay;
565 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
566
567 nanosleep (&ts, 0);
568#elif defined(_WIN32)
569 Sleep ((unsigned long)(delay * 1e3));
570#else
571 struct timeval tv;
572
573 tv.tv_sec = (time_t)delay;
574 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
575
576 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
577 /* somehting nto guaranteed by newer posix versions, but guaranteed */
578 /* by older ones */
579 select (0, 0, 0, 0, &tv);
580#endif
581 }
582}
120 583
121/*****************************************************************************/ 584/*****************************************************************************/
122 585
586#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
587
588int inline_size
589array_nextsize (int elem, int cur, int cnt)
590{
591 int ncur = cur + 1;
592
593 do
594 ncur <<= 1;
595 while (cnt > ncur);
596
597 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
598 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
599 {
600 ncur *= elem;
601 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
602 ncur = ncur - sizeof (void *) * 4;
603 ncur /= elem;
604 }
605
606 return ncur;
607}
608
609static noinline void *
610array_realloc (int elem, void *base, int *cur, int cnt)
611{
612 *cur = array_nextsize (elem, *cur, cnt);
613 return ev_realloc (base, elem * *cur);
614}
615
616#define array_needsize(type,base,cur,cnt,init) \
617 if (expect_false ((cnt) > (cur))) \
618 { \
619 int ocur_ = (cur); \
620 (base) = (type *)array_realloc \
621 (sizeof (type), (base), &(cur), (cnt)); \
622 init ((base) + (ocur_), (cur) - ocur_); \
623 }
624
625#if 0
626#define array_slim(type,stem) \
627 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
628 { \
629 stem ## max = array_roundsize (stem ## cnt >> 1); \
630 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
631 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
632 }
633#endif
634
635#define array_free(stem, idx) \
636 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
637
638/*****************************************************************************/
639
640void noinline
641ev_feed_event (EV_P_ void *w, int revents)
642{
643 W w_ = (W)w;
644 int pri = ABSPRI (w_);
645
646 if (expect_false (w_->pending))
647 pendings [pri][w_->pending - 1].events |= revents;
648 else
649 {
650 w_->pending = ++pendingcnt [pri];
651 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
652 pendings [pri][w_->pending - 1].w = w_;
653 pendings [pri][w_->pending - 1].events = revents;
654 }
655}
656
657void inline_speed
658queue_events (EV_P_ W *events, int eventcnt, int type)
659{
660 int i;
661
662 for (i = 0; i < eventcnt; ++i)
663 ev_feed_event (EV_A_ events [i], type);
664}
665
666/*****************************************************************************/
667
668void inline_size
669anfds_init (ANFD *base, int count)
670{
671 while (count--)
672 {
673 base->head = 0;
674 base->events = EV_NONE;
675 base->reify = 0;
676
677 ++base;
678 }
679}
680
681void inline_speed
682fd_event (EV_P_ int fd, int revents)
683{
684 ANFD *anfd = anfds + fd;
685 ev_io *w;
686
687 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
688 {
689 int ev = w->events & revents;
690
691 if (ev)
692 ev_feed_event (EV_A_ (W)w, ev);
693 }
694}
695
696void
697ev_feed_fd_event (EV_P_ int fd, int revents)
698{
699 if (fd >= 0 && fd < anfdmax)
700 fd_event (EV_A_ fd, revents);
701}
702
703void inline_size
704fd_reify (EV_P)
705{
706 int i;
707
708 for (i = 0; i < fdchangecnt; ++i)
709 {
710 int fd = fdchanges [i];
711 ANFD *anfd = anfds + fd;
712 ev_io *w;
713
714 unsigned char events = 0;
715
716 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
717 events |= (unsigned char)w->events;
718
719#if EV_SELECT_IS_WINSOCKET
720 if (events)
721 {
722 unsigned long arg;
723 #ifdef EV_FD_TO_WIN32_HANDLE
724 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
725 #else
726 anfd->handle = _get_osfhandle (fd);
727 #endif
728 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
729 }
730#endif
731
732 {
733 unsigned char o_events = anfd->events;
734 unsigned char o_reify = anfd->reify;
735
736 anfd->reify = 0;
737 anfd->events = events;
738
739 if (o_events != events || o_reify & EV_IOFDSET)
740 backend_modify (EV_A_ fd, o_events, events);
741 }
742 }
743
744 fdchangecnt = 0;
745}
746
747void inline_size
748fd_change (EV_P_ int fd, int flags)
749{
750 unsigned char reify = anfds [fd].reify;
751 anfds [fd].reify |= flags;
752
753 if (expect_true (!reify))
754 {
755 ++fdchangecnt;
756 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
757 fdchanges [fdchangecnt - 1] = fd;
758 }
759}
760
761void inline_speed
762fd_kill (EV_P_ int fd)
763{
764 ev_io *w;
765
766 while ((w = (ev_io *)anfds [fd].head))
767 {
768 ev_io_stop (EV_A_ w);
769 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
770 }
771}
772
773int inline_size
774fd_valid (int fd)
775{
776#ifdef _WIN32
777 return _get_osfhandle (fd) != -1;
778#else
779 return fcntl (fd, F_GETFD) != -1;
780#endif
781}
782
783/* called on EBADF to verify fds */
784static void noinline
785fd_ebadf (EV_P)
786{
787 int fd;
788
789 for (fd = 0; fd < anfdmax; ++fd)
790 if (anfds [fd].events)
791 if (!fd_valid (fd) && errno == EBADF)
792 fd_kill (EV_A_ fd);
793}
794
795/* called on ENOMEM in select/poll to kill some fds and retry */
796static void noinline
797fd_enomem (EV_P)
798{
799 int fd;
800
801 for (fd = anfdmax; fd--; )
802 if (anfds [fd].events)
803 {
804 fd_kill (EV_A_ fd);
805 return;
806 }
807}
808
809/* usually called after fork if backend needs to re-arm all fds from scratch */
810static void noinline
811fd_rearm_all (EV_P)
812{
813 int fd;
814
815 for (fd = 0; fd < anfdmax; ++fd)
816 if (anfds [fd].events)
817 {
818 anfds [fd].events = 0;
819 fd_change (EV_A_ fd, EV_IOFDSET | 1);
820 }
821}
822
823/*****************************************************************************/
824
825/*
826 * the heap functions want a real array index. array index 0 uis guaranteed to not
827 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
828 * the branching factor of the d-tree.
829 */
830
831/*
832 * at the moment we allow libev the luxury of two heaps,
833 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
834 * which is more cache-efficient.
835 * the difference is about 5% with 50000+ watchers.
836 */
837#if EV_USE_4HEAP
838
839#define DHEAP 4
840#define HEAP0 (DHEAP - 1) /* index of first element in heap */
841#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
842#define UPHEAP_DONE(p,k) ((p) == (k))
843
844/* away from the root */
845void inline_speed
846downheap (ANHE *heap, int N, int k)
847{
848 ANHE he = heap [k];
849 ANHE *E = heap + N + HEAP0;
850
851 for (;;)
852 {
853 ev_tstamp minat;
854 ANHE *minpos;
855 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
856
857 /* find minimum child */
858 if (expect_true (pos + DHEAP - 1 < E))
859 {
860 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
861 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
862 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
863 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
864 }
865 else if (pos < E)
866 {
867 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
868 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
869 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
870 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
871 }
872 else
873 break;
874
875 if (ANHE_at (he) <= minat)
876 break;
877
878 heap [k] = *minpos;
879 ev_active (ANHE_w (*minpos)) = k;
880
881 k = minpos - heap;
882 }
883
884 heap [k] = he;
885 ev_active (ANHE_w (he)) = k;
886}
887
888#else /* 4HEAP */
889
890#define HEAP0 1
891#define HPARENT(k) ((k) >> 1)
892#define UPHEAP_DONE(p,k) (!(p))
893
894/* away from the root */
895void inline_speed
896downheap (ANHE *heap, int N, int k)
897{
898 ANHE he = heap [k];
899
900 for (;;)
901 {
902 int c = k << 1;
903
904 if (c > N + HEAP0 - 1)
905 break;
906
907 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
908 ? 1 : 0;
909
910 if (ANHE_at (he) <= ANHE_at (heap [c]))
911 break;
912
913 heap [k] = heap [c];
914 ev_active (ANHE_w (heap [k])) = k;
915
916 k = c;
917 }
918
919 heap [k] = he;
920 ev_active (ANHE_w (he)) = k;
921}
922#endif
923
924/* towards the root */
925void inline_speed
926upheap (ANHE *heap, int k)
927{
928 ANHE he = heap [k];
929
930 for (;;)
931 {
932 int p = HPARENT (k);
933
934 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
935 break;
936
937 heap [k] = heap [p];
938 ev_active (ANHE_w (heap [k])) = k;
939 k = p;
940 }
941
942 heap [k] = he;
943 ev_active (ANHE_w (he)) = k;
944}
945
946void inline_size
947adjustheap (ANHE *heap, int N, int k)
948{
949 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
950 upheap (heap, k);
951 else
952 downheap (heap, N, k);
953}
954
955/* rebuild the heap: this function is used only once and executed rarely */
956void inline_size
957reheap (ANHE *heap, int N)
958{
959 int i;
960
961 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
962 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
963 for (i = 0; i < N; ++i)
964 upheap (heap, i + HEAP0);
965}
966
967/*****************************************************************************/
968
123typedef struct 969typedef struct
124{ 970{
125 struct ev_io *head; 971 WL head;
126 unsigned char wev, rev; /* want, received event set */ 972 EV_ATOMIC_T gotsig;
127} ANFD;
128
129static ANFD *anfds;
130static int anfdmax;
131
132static int *fdchanges;
133static int fdchangemax, fdchangecnt;
134
135static void
136anfds_init (ANFD *base, int count)
137{
138 while (count--)
139 {
140 base->head = 0;
141 base->wev = base->rev = EV_NONE;
142 ++base;
143 }
144}
145
146typedef struct
147{
148 W w;
149 int events;
150} ANPENDING;
151
152static ANPENDING *pendings;
153static int pendingmax, pendingcnt;
154
155static void
156event (W w, int events)
157{
158 if (w->active)
159 {
160 w->pending = ++pendingcnt;
161 array_needsize (pendings, pendingmax, pendingcnt, );
162 pendings [pendingcnt - 1].w = w;
163 pendings [pendingcnt - 1].events = events;
164 }
165}
166
167static void
168fd_event (int fd, int events)
169{
170 ANFD *anfd = anfds + fd;
171 struct ev_io *w;
172
173 for (w = anfd->head; w; w = w->next)
174 {
175 int ev = w->events & events;
176
177 if (ev)
178 event ((W)w, ev);
179 }
180}
181
182static void
183queue_events (W *events, int eventcnt, int type)
184{
185 int i;
186
187 for (i = 0; i < eventcnt; ++i)
188 event (events [i], type);
189}
190
191/* called on EBADF to verify fds */
192static void
193fd_recheck ()
194{
195 int fd;
196
197 for (fd = 0; fd < anfdmax; ++fd)
198 if (anfds [fd].wev)
199 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
200 while (anfds [fd].head)
201 evio_stop (anfds [fd].head);
202}
203
204/*****************************************************************************/
205
206static struct ev_timer **timers;
207static int timermax, timercnt;
208
209static struct ev_periodic **periodics;
210static int periodicmax, periodiccnt;
211
212static void
213upheap (WT *timers, int k)
214{
215 WT w = timers [k];
216
217 while (k && timers [k >> 1]->at > w->at)
218 {
219 timers [k] = timers [k >> 1];
220 timers [k]->active = k + 1;
221 k >>= 1;
222 }
223
224 timers [k] = w;
225 timers [k]->active = k + 1;
226
227}
228
229static void
230downheap (WT *timers, int N, int k)
231{
232 WT w = timers [k];
233
234 while (k < (N >> 1))
235 {
236 int j = k << 1;
237
238 if (j + 1 < N && timers [j]->at > timers [j + 1]->at)
239 ++j;
240
241 if (w->at <= timers [j]->at)
242 break;
243
244 timers [k] = timers [j];
245 timers [k]->active = k + 1;
246 k = j;
247 }
248
249 timers [k] = w;
250 timers [k]->active = k + 1;
251}
252
253/*****************************************************************************/
254
255typedef struct
256{
257 struct ev_signal *head;
258 sig_atomic_t gotsig;
259} ANSIG; 973} ANSIG;
260 974
261static ANSIG *signals; 975static ANSIG *signals;
262static int signalmax; 976static int signalmax;
263 977
264static int sigpipe [2]; 978static EV_ATOMIC_T gotsig;
265static sig_atomic_t gotsig;
266static struct ev_io sigev;
267 979
268static void 980void inline_size
269signals_init (ANSIG *base, int count) 981signals_init (ANSIG *base, int count)
270{ 982{
271 while (count--) 983 while (count--)
272 { 984 {
273 base->head = 0; 985 base->head = 0;
274 base->gotsig = 0; 986 base->gotsig = 0;
987
275 ++base; 988 ++base;
276 } 989 }
277} 990}
278 991
992/*****************************************************************************/
993
994void inline_speed
995fd_intern (int fd)
996{
997#ifdef _WIN32
998 unsigned long arg = 1;
999 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1000#else
1001 fcntl (fd, F_SETFD, FD_CLOEXEC);
1002 fcntl (fd, F_SETFL, O_NONBLOCK);
1003#endif
1004}
1005
1006static void noinline
1007evpipe_init (EV_P)
1008{
1009 if (!ev_is_active (&pipeev))
1010 {
1011#if EV_USE_EVENTFD
1012 if ((evfd = eventfd (0, 0)) >= 0)
1013 {
1014 evpipe [0] = -1;
1015 fd_intern (evfd);
1016 ev_io_set (&pipeev, evfd, EV_READ);
1017 }
1018 else
1019#endif
1020 {
1021 while (pipe (evpipe))
1022 syserr ("(libev) error creating signal/async pipe");
1023
1024 fd_intern (evpipe [0]);
1025 fd_intern (evpipe [1]);
1026 ev_io_set (&pipeev, evpipe [0], EV_READ);
1027 }
1028
1029 ev_io_start (EV_A_ &pipeev);
1030 ev_unref (EV_A); /* watcher should not keep loop alive */
1031 }
1032}
1033
1034void inline_size
1035evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1036{
1037 if (!*flag)
1038 {
1039 int old_errno = errno; /* save errno because write might clobber it */
1040
1041 *flag = 1;
1042
1043#if EV_USE_EVENTFD
1044 if (evfd >= 0)
1045 {
1046 uint64_t counter = 1;
1047 write (evfd, &counter, sizeof (uint64_t));
1048 }
1049 else
1050#endif
1051 write (evpipe [1], &old_errno, 1);
1052
1053 errno = old_errno;
1054 }
1055}
1056
279static void 1057static void
1058pipecb (EV_P_ ev_io *iow, int revents)
1059{
1060#if EV_USE_EVENTFD
1061 if (evfd >= 0)
1062 {
1063 uint64_t counter;
1064 read (evfd, &counter, sizeof (uint64_t));
1065 }
1066 else
1067#endif
1068 {
1069 char dummy;
1070 read (evpipe [0], &dummy, 1);
1071 }
1072
1073 if (gotsig && ev_is_default_loop (EV_A))
1074 {
1075 int signum;
1076 gotsig = 0;
1077
1078 for (signum = signalmax; signum--; )
1079 if (signals [signum].gotsig)
1080 ev_feed_signal_event (EV_A_ signum + 1);
1081 }
1082
1083#if EV_ASYNC_ENABLE
1084 if (gotasync)
1085 {
1086 int i;
1087 gotasync = 0;
1088
1089 for (i = asynccnt; i--; )
1090 if (asyncs [i]->sent)
1091 {
1092 asyncs [i]->sent = 0;
1093 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1094 }
1095 }
1096#endif
1097}
1098
1099/*****************************************************************************/
1100
1101static void
280sighandler (int signum) 1102ev_sighandler (int signum)
281{ 1103{
1104#if EV_MULTIPLICITY
1105 struct ev_loop *loop = &default_loop_struct;
1106#endif
1107
1108#if _WIN32
1109 signal (signum, ev_sighandler);
1110#endif
1111
282 signals [signum - 1].gotsig = 1; 1112 signals [signum - 1].gotsig = 1;
1113 evpipe_write (EV_A_ &gotsig);
1114}
283 1115
284 if (!gotsig) 1116void noinline
1117ev_feed_signal_event (EV_P_ int signum)
1118{
1119 WL w;
1120
1121#if EV_MULTIPLICITY
1122 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1123#endif
1124
1125 --signum;
1126
1127 if (signum < 0 || signum >= signalmax)
1128 return;
1129
1130 signals [signum].gotsig = 0;
1131
1132 for (w = signals [signum].head; w; w = w->next)
1133 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1134}
1135
1136/*****************************************************************************/
1137
1138static WL childs [EV_PID_HASHSIZE];
1139
1140#ifndef _WIN32
1141
1142static ev_signal childev;
1143
1144#ifndef WIFCONTINUED
1145# define WIFCONTINUED(status) 0
1146#endif
1147
1148void inline_speed
1149child_reap (EV_P_ int chain, int pid, int status)
1150{
1151 ev_child *w;
1152 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1153
1154 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1155 {
1156 if ((w->pid == pid || !w->pid)
1157 && (!traced || (w->flags & 1)))
1158 {
1159 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1160 w->rpid = pid;
1161 w->rstatus = status;
1162 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1163 }
1164 }
1165}
1166
1167#ifndef WCONTINUED
1168# define WCONTINUED 0
1169#endif
1170
1171static void
1172childcb (EV_P_ ev_signal *sw, int revents)
1173{
1174 int pid, status;
1175
1176 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1177 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1178 if (!WCONTINUED
1179 || errno != EINVAL
1180 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1181 return;
1182
1183 /* make sure we are called again until all children have been reaped */
1184 /* we need to do it this way so that the callback gets called before we continue */
1185 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1186
1187 child_reap (EV_A_ pid, pid, status);
1188 if (EV_PID_HASHSIZE > 1)
1189 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1190}
1191
1192#endif
1193
1194/*****************************************************************************/
1195
1196#if EV_USE_PORT
1197# include "ev_port.c"
1198#endif
1199#if EV_USE_KQUEUE
1200# include "ev_kqueue.c"
1201#endif
1202#if EV_USE_EPOLL
1203# include "ev_epoll.c"
1204#endif
1205#if EV_USE_POLL
1206# include "ev_poll.c"
1207#endif
1208#if EV_USE_SELECT
1209# include "ev_select.c"
1210#endif
1211
1212int
1213ev_version_major (void)
1214{
1215 return EV_VERSION_MAJOR;
1216}
1217
1218int
1219ev_version_minor (void)
1220{
1221 return EV_VERSION_MINOR;
1222}
1223
1224/* return true if we are running with elevated privileges and should ignore env variables */
1225int inline_size
1226enable_secure (void)
1227{
1228#ifdef _WIN32
1229 return 0;
1230#else
1231 return getuid () != geteuid ()
1232 || getgid () != getegid ();
1233#endif
1234}
1235
1236unsigned int
1237ev_supported_backends (void)
1238{
1239 unsigned int flags = 0;
1240
1241 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1242 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1243 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1244 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1245 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1246
1247 return flags;
1248}
1249
1250unsigned int
1251ev_recommended_backends (void)
1252{
1253 unsigned int flags = ev_supported_backends ();
1254
1255#ifndef __NetBSD__
1256 /* kqueue is borked on everything but netbsd apparently */
1257 /* it usually doesn't work correctly on anything but sockets and pipes */
1258 flags &= ~EVBACKEND_KQUEUE;
1259#endif
1260#ifdef __APPLE__
1261 // flags &= ~EVBACKEND_KQUEUE; for documentation
1262 flags &= ~EVBACKEND_POLL;
1263#endif
1264
1265 return flags;
1266}
1267
1268unsigned int
1269ev_embeddable_backends (void)
1270{
1271 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1272
1273 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1274 /* please fix it and tell me how to detect the fix */
1275 flags &= ~EVBACKEND_EPOLL;
1276
1277 return flags;
1278}
1279
1280unsigned int
1281ev_backend (EV_P)
1282{
1283 return backend;
1284}
1285
1286unsigned int
1287ev_loop_count (EV_P)
1288{
1289 return loop_count;
1290}
1291
1292void
1293ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1294{
1295 io_blocktime = interval;
1296}
1297
1298void
1299ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1300{
1301 timeout_blocktime = interval;
1302}
1303
1304static void noinline
1305loop_init (EV_P_ unsigned int flags)
1306{
1307 if (!backend)
1308 {
1309#if EV_USE_MONOTONIC
285 { 1310 {
1311 struct timespec ts;
1312 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1313 have_monotonic = 1;
1314 }
1315#endif
1316
1317 ev_rt_now = ev_time ();
1318 mn_now = get_clock ();
1319 now_floor = mn_now;
1320 rtmn_diff = ev_rt_now - mn_now;
1321
1322 io_blocktime = 0.;
1323 timeout_blocktime = 0.;
1324 backend = 0;
1325 backend_fd = -1;
1326 gotasync = 0;
1327#if EV_USE_INOTIFY
1328 fs_fd = -2;
1329#endif
1330
1331 /* pid check not overridable via env */
1332#ifndef _WIN32
1333 if (flags & EVFLAG_FORKCHECK)
1334 curpid = getpid ();
1335#endif
1336
1337 if (!(flags & EVFLAG_NOENV)
1338 && !enable_secure ()
1339 && getenv ("LIBEV_FLAGS"))
1340 flags = atoi (getenv ("LIBEV_FLAGS"));
1341
1342 if (!(flags & 0x0000ffffU))
1343 flags |= ev_recommended_backends ();
1344
1345#if EV_USE_PORT
1346 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1347#endif
1348#if EV_USE_KQUEUE
1349 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1350#endif
1351#if EV_USE_EPOLL
1352 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1353#endif
1354#if EV_USE_POLL
1355 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1356#endif
1357#if EV_USE_SELECT
1358 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1359#endif
1360
1361 ev_init (&pipeev, pipecb);
1362 ev_set_priority (&pipeev, EV_MAXPRI);
1363 }
1364}
1365
1366static void noinline
1367loop_destroy (EV_P)
1368{
1369 int i;
1370
1371 if (ev_is_active (&pipeev))
1372 {
1373 ev_ref (EV_A); /* signal watcher */
1374 ev_io_stop (EV_A_ &pipeev);
1375
1376#if EV_USE_EVENTFD
1377 if (evfd >= 0)
1378 close (evfd);
1379#endif
1380
1381 if (evpipe [0] >= 0)
1382 {
1383 close (evpipe [0]);
1384 close (evpipe [1]);
1385 }
1386 }
1387
1388#if EV_USE_INOTIFY
1389 if (fs_fd >= 0)
1390 close (fs_fd);
1391#endif
1392
1393 if (backend_fd >= 0)
1394 close (backend_fd);
1395
1396#if EV_USE_PORT
1397 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1398#endif
1399#if EV_USE_KQUEUE
1400 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1401#endif
1402#if EV_USE_EPOLL
1403 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1404#endif
1405#if EV_USE_POLL
1406 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1407#endif
1408#if EV_USE_SELECT
1409 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1410#endif
1411
1412 for (i = NUMPRI; i--; )
1413 {
1414 array_free (pending, [i]);
1415#if EV_IDLE_ENABLE
1416 array_free (idle, [i]);
1417#endif
1418 }
1419
1420 ev_free (anfds); anfdmax = 0;
1421
1422 /* have to use the microsoft-never-gets-it-right macro */
1423 array_free (fdchange, EMPTY);
1424 array_free (timer, EMPTY);
1425#if EV_PERIODIC_ENABLE
1426 array_free (periodic, EMPTY);
1427#endif
1428#if EV_FORK_ENABLE
1429 array_free (fork, EMPTY);
1430#endif
1431 array_free (prepare, EMPTY);
1432 array_free (check, EMPTY);
1433#if EV_ASYNC_ENABLE
1434 array_free (async, EMPTY);
1435#endif
1436
1437 backend = 0;
1438}
1439
1440#if EV_USE_INOTIFY
1441void inline_size infy_fork (EV_P);
1442#endif
1443
1444void inline_size
1445loop_fork (EV_P)
1446{
1447#if EV_USE_PORT
1448 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1449#endif
1450#if EV_USE_KQUEUE
1451 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1452#endif
1453#if EV_USE_EPOLL
1454 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1455#endif
1456#if EV_USE_INOTIFY
1457 infy_fork (EV_A);
1458#endif
1459
1460 if (ev_is_active (&pipeev))
1461 {
1462 /* this "locks" the handlers against writing to the pipe */
1463 /* while we modify the fd vars */
286 gotsig = 1; 1464 gotsig = 1;
287 write (sigpipe [1], &gotsig, 1); 1465#if EV_ASYNC_ENABLE
288 } 1466 gotasync = 1;
289} 1467#endif
290 1468
291static void 1469 ev_ref (EV_A);
292sigcb (struct ev_io *iow, int revents) 1470 ev_io_stop (EV_A_ &pipeev);
1471
1472#if EV_USE_EVENTFD
1473 if (evfd >= 0)
1474 close (evfd);
1475#endif
1476
1477 if (evpipe [0] >= 0)
1478 {
1479 close (evpipe [0]);
1480 close (evpipe [1]);
1481 }
1482
1483 evpipe_init (EV_A);
1484 /* now iterate over everything, in case we missed something */
1485 pipecb (EV_A_ &pipeev, EV_READ);
1486 }
1487
1488 postfork = 0;
1489}
1490
1491#if EV_MULTIPLICITY
1492
1493struct ev_loop *
1494ev_loop_new (unsigned int flags)
293{ 1495{
294 struct ev_signal *w; 1496 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1497
1498 memset (loop, 0, sizeof (struct ev_loop));
1499
1500 loop_init (EV_A_ flags);
1501
1502 if (ev_backend (EV_A))
1503 return loop;
1504
1505 return 0;
1506}
1507
1508void
1509ev_loop_destroy (EV_P)
1510{
1511 loop_destroy (EV_A);
1512 ev_free (loop);
1513}
1514
1515void
1516ev_loop_fork (EV_P)
1517{
1518 postfork = 1; /* must be in line with ev_default_fork */
1519}
1520
1521#if EV_VERIFY
1522static void noinline
1523verify_watcher (EV_P_ W w)
1524{
1525 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1526
1527 if (w->pending)
1528 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1529}
1530
1531static void noinline
1532verify_heap (EV_P_ ANHE *heap, int N)
1533{
295 int sig; 1534 int i;
296 1535
297 gotsig = 0; 1536 for (i = HEAP0; i < N + HEAP0; ++i)
298 read (sigpipe [0], &revents, 1); 1537 {
1538 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1539 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1540 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
299 1541
300 for (sig = signalmax; sig--; ) 1542 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
301 if (signals [sig].gotsig) 1543 }
1544}
1545
1546static void noinline
1547array_verify (EV_P_ W *ws, int cnt)
1548{
1549 while (cnt--)
1550 {
1551 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1552 verify_watcher (EV_A_ ws [cnt]);
1553 }
1554}
1555#endif
1556
1557void
1558ev_loop_verify (EV_P)
1559{
1560#if EV_VERIFY
1561 int i;
1562 WL w;
1563
1564 assert (activecnt >= -1);
1565
1566 assert (fdchangemax >= fdchangecnt);
1567 for (i = 0; i < fdchangecnt; ++i)
1568 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1569
1570 assert (anfdmax >= 0);
1571 for (i = 0; i < anfdmax; ++i)
1572 for (w = anfds [i].head; w; w = w->next)
302 { 1573 {
303 signals [sig].gotsig = 0; 1574 verify_watcher (EV_A_ (W)w);
304 1575 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
305 for (w = signals [sig].head; w; w = w->next) 1576 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
306 event ((W)w, EV_SIGNAL);
307 } 1577 }
308}
309 1578
310static void 1579 assert (timermax >= timercnt);
311siginit (void) 1580 verify_heap (EV_A_ timers, timercnt);
312{
313 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
314 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
315 1581
316 /* rather than sort out wether we really need nb, set it */ 1582#if EV_PERIODIC_ENABLE
317 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 1583 assert (periodicmax >= periodiccnt);
318 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 1584 verify_heap (EV_A_ periodics, periodiccnt);
1585#endif
319 1586
320 evio_set (&sigev, sigpipe [0], EV_READ); 1587 for (i = NUMPRI; i--; )
321 evio_start (&sigev); 1588 {
1589 assert (pendingmax [i] >= pendingcnt [i]);
1590#if EV_IDLE_ENABLE
1591 assert (idleall >= 0);
1592 assert (idlemax [i] >= idlecnt [i]);
1593 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1594#endif
1595 }
1596
1597#if EV_FORK_ENABLE
1598 assert (forkmax >= forkcnt);
1599 array_verify (EV_A_ (W *)forks, forkcnt);
1600#endif
1601
1602#if EV_ASYNC_ENABLE
1603 assert (asyncmax >= asynccnt);
1604 array_verify (EV_A_ (W *)asyncs, asynccnt);
1605#endif
1606
1607 assert (preparemax >= preparecnt);
1608 array_verify (EV_A_ (W *)prepares, preparecnt);
1609
1610 assert (checkmax >= checkcnt);
1611 array_verify (EV_A_ (W *)checks, checkcnt);
1612
1613# if 0
1614 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1615 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1616# endif
1617#endif
1618}
1619
1620#endif /* multiplicity */
1621
1622#if EV_MULTIPLICITY
1623struct ev_loop *
1624ev_default_loop_init (unsigned int flags)
1625#else
1626int
1627ev_default_loop (unsigned int flags)
1628#endif
1629{
1630 if (!ev_default_loop_ptr)
1631 {
1632#if EV_MULTIPLICITY
1633 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1634#else
1635 ev_default_loop_ptr = 1;
1636#endif
1637
1638 loop_init (EV_A_ flags);
1639
1640 if (ev_backend (EV_A))
1641 {
1642#ifndef _WIN32
1643 ev_signal_init (&childev, childcb, SIGCHLD);
1644 ev_set_priority (&childev, EV_MAXPRI);
1645 ev_signal_start (EV_A_ &childev);
1646 ev_unref (EV_A); /* child watcher should not keep loop alive */
1647#endif
1648 }
1649 else
1650 ev_default_loop_ptr = 0;
1651 }
1652
1653 return ev_default_loop_ptr;
1654}
1655
1656void
1657ev_default_destroy (void)
1658{
1659#if EV_MULTIPLICITY
1660 struct ev_loop *loop = ev_default_loop_ptr;
1661#endif
1662
1663#ifndef _WIN32
1664 ev_ref (EV_A); /* child watcher */
1665 ev_signal_stop (EV_A_ &childev);
1666#endif
1667
1668 loop_destroy (EV_A);
1669}
1670
1671void
1672ev_default_fork (void)
1673{
1674#if EV_MULTIPLICITY
1675 struct ev_loop *loop = ev_default_loop_ptr;
1676#endif
1677
1678 if (backend)
1679 postfork = 1; /* must be in line with ev_loop_fork */
322} 1680}
323 1681
324/*****************************************************************************/ 1682/*****************************************************************************/
325 1683
326static struct ev_idle **idles; 1684void
327static int idlemax, idlecnt; 1685ev_invoke (EV_P_ void *w, int revents)
328
329static struct ev_prepare **prepares;
330static int preparemax, preparecnt;
331
332static struct ev_check **checks;
333static int checkmax, checkcnt;
334
335/*****************************************************************************/
336
337#if HAVE_EPOLL
338# include "ev_epoll.c"
339#endif
340#if HAVE_SELECT
341# include "ev_select.c"
342#endif
343
344int ev_init (int flags)
345{ 1686{
346#if HAVE_MONOTONIC 1687 EV_CB_INVOKE ((W)w, revents);
347 {
348 struct timespec ts;
349 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
350 have_monotonic = 1;
351 }
352#endif
353
354 ev_now = ev_time ();
355 now = get_clock ();
356 diff = ev_now - now;
357
358 if (pipe (sigpipe))
359 return 0;
360
361 ev_method = EVMETHOD_NONE;
362#if HAVE_EPOLL
363 if (ev_method == EVMETHOD_NONE) epoll_init (flags);
364#endif
365#if HAVE_SELECT
366 if (ev_method == EVMETHOD_NONE) select_init (flags);
367#endif
368
369 if (ev_method)
370 {
371 evw_init (&sigev, sigcb);
372 siginit ();
373 }
374
375 return ev_method;
376} 1688}
377 1689
378/*****************************************************************************/ 1690void inline_speed
379 1691call_pending (EV_P)
380void ev_prefork (void)
381{ 1692{
382 /* nop */
383}
384
385void ev_postfork_parent (void)
386{
387 /* nop */
388}
389
390void ev_postfork_child (void)
391{
392#if HAVE_EPOLL
393 if (ev_method == EVMETHOD_EPOLL)
394 epoll_postfork_child ();
395#endif
396
397 evio_stop (&sigev);
398 close (sigpipe [0]);
399 close (sigpipe [1]);
400 pipe (sigpipe);
401 siginit ();
402}
403
404/*****************************************************************************/
405
406static void
407fd_reify (void)
408{
409 int i; 1693 int pri;
410 1694
411 for (i = 0; i < fdchangecnt; ++i) 1695 for (pri = NUMPRI; pri--; )
1696 while (pendingcnt [pri])
412 { 1697 {
413 int fd = fdchanges [i]; 1698 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
414 ANFD *anfd = anfds + fd;
415 struct ev_io *w;
416 1699
417 int wev = 0; 1700 if (expect_true (p->w))
1701 {
1702 /*assert (("non-pending watcher on pending list", p->w->pending));*/
418 1703
419 for (w = anfd->head; w; w = w->next) 1704 p->w->pending = 0;
420 wev |= w->events; 1705 EV_CB_INVOKE (p->w, p->events);
1706 EV_FREQUENT_CHECK;
1707 }
1708 }
1709}
421 1710
422 if (anfd->wev != wev) 1711#if EV_IDLE_ENABLE
1712void inline_size
1713idle_reify (EV_P)
1714{
1715 if (expect_false (idleall))
1716 {
1717 int pri;
1718
1719 for (pri = NUMPRI; pri--; )
423 { 1720 {
424 method_modify (fd, anfd->wev, wev); 1721 if (pendingcnt [pri])
425 anfd->wev = wev; 1722 break;
1723
1724 if (idlecnt [pri])
1725 {
1726 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1727 break;
1728 }
426 } 1729 }
427 } 1730 }
428
429 fdchangecnt = 0;
430} 1731}
1732#endif
431 1733
432static void 1734void inline_size
433call_pending ()
434{
435 while (pendingcnt)
436 {
437 ANPENDING *p = pendings + --pendingcnt;
438
439 if (p->w)
440 {
441 p->w->pending = 0;
442 p->w->cb (p->w, p->events);
443 }
444 }
445}
446
447static void
448timers_reify () 1735timers_reify (EV_P)
449{ 1736{
1737 EV_FREQUENT_CHECK;
1738
450 while (timercnt && timers [0]->at <= now) 1739 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
451 { 1740 {
452 struct ev_timer *w = timers [0]; 1741 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
453 1742
454 event ((W)w, EV_TIMEOUT); 1743 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
455 1744
456 /* first reschedule or stop timer */ 1745 /* first reschedule or stop timer */
457 if (w->repeat) 1746 if (w->repeat)
458 { 1747 {
459 w->at = now + w->repeat; 1748 ev_at (w) += w->repeat;
460 assert (("timer timeout in the past, negative repeat?", w->at > now)); 1749 if (ev_at (w) < mn_now)
1750 ev_at (w) = mn_now;
1751
1752 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1753
1754 ANHE_at_cache (timers [HEAP0]);
461 downheap ((WT *)timers, timercnt, 0); 1755 downheap (timers, timercnt, HEAP0);
462 } 1756 }
463 else 1757 else
464 evtimer_stop (w); /* nonrepeating: stop timer */ 1758 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
465 }
466}
467 1759
468static void 1760 EV_FREQUENT_CHECK;
1761 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1762 }
1763}
1764
1765#if EV_PERIODIC_ENABLE
1766void inline_size
469periodics_reify () 1767periodics_reify (EV_P)
470{ 1768{
1769 EV_FREQUENT_CHECK;
1770
471 while (periodiccnt && periodics [0]->at <= ev_now) 1771 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
472 { 1772 {
473 struct ev_periodic *w = periodics [0]; 1773 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1774
1775 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
474 1776
475 /* first reschedule or stop timer */ 1777 /* first reschedule or stop timer */
476 if (w->interval) 1778 if (w->reschedule_cb)
477 { 1779 {
478 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 1780 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
479 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 1781
1782 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1783
1784 ANHE_at_cache (periodics [HEAP0]);
480 downheap ((WT *)periodics, periodiccnt, 0); 1785 downheap (periodics, periodiccnt, HEAP0);
1786 }
1787 else if (w->interval)
1788 {
1789 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1790 /* if next trigger time is not sufficiently in the future, put it there */
1791 /* this might happen because of floating point inexactness */
1792 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1793 {
1794 ev_at (w) += w->interval;
1795
1796 /* if interval is unreasonably low we might still have a time in the past */
1797 /* so correct this. this will make the periodic very inexact, but the user */
1798 /* has effectively asked to get triggered more often than possible */
1799 if (ev_at (w) < ev_rt_now)
1800 ev_at (w) = ev_rt_now;
1801 }
1802
1803 ANHE_at_cache (periodics [HEAP0]);
1804 downheap (periodics, periodiccnt, HEAP0);
481 } 1805 }
482 else 1806 else
483 evperiodic_stop (w); /* nonrepeating: stop timer */ 1807 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
484 1808
485 event ((W)w, EV_TIMEOUT); 1809 EV_FREQUENT_CHECK;
1810 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
486 } 1811 }
487} 1812}
488 1813
489static void 1814static void noinline
490periodics_reschedule (ev_tstamp diff) 1815periodics_reschedule (EV_P)
491{ 1816{
492 int i; 1817 int i;
493 1818
494 /* adjust periodics after time jump */ 1819 /* adjust periodics after time jump */
495 for (i = 0; i < periodiccnt; ++i) 1820 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
496 { 1821 {
497 struct ev_periodic *w = periodics [i]; 1822 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
498 1823
1824 if (w->reschedule_cb)
1825 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
499 if (w->interval) 1826 else if (w->interval)
1827 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1828
1829 ANHE_at_cache (periodics [i]);
1830 }
1831
1832 reheap (periodics, periodiccnt);
1833}
1834#endif
1835
1836void inline_speed
1837time_update (EV_P_ ev_tstamp max_block)
1838{
1839 int i;
1840
1841#if EV_USE_MONOTONIC
1842 if (expect_true (have_monotonic))
1843 {
1844 ev_tstamp odiff = rtmn_diff;
1845
1846 mn_now = get_clock ();
1847
1848 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1849 /* interpolate in the meantime */
1850 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
500 { 1851 {
501 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 1852 ev_rt_now = rtmn_diff + mn_now;
1853 return;
1854 }
502 1855
503 if (fabs (diff) >= 1e-4) 1856 now_floor = mn_now;
1857 ev_rt_now = ev_time ();
1858
1859 /* loop a few times, before making important decisions.
1860 * on the choice of "4": one iteration isn't enough,
1861 * in case we get preempted during the calls to
1862 * ev_time and get_clock. a second call is almost guaranteed
1863 * to succeed in that case, though. and looping a few more times
1864 * doesn't hurt either as we only do this on time-jumps or
1865 * in the unlikely event of having been preempted here.
1866 */
1867 for (i = 4; --i; )
1868 {
1869 rtmn_diff = ev_rt_now - mn_now;
1870
1871 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1872 return; /* all is well */
1873
1874 ev_rt_now = ev_time ();
1875 mn_now = get_clock ();
1876 now_floor = mn_now;
1877 }
1878
1879# if EV_PERIODIC_ENABLE
1880 periodics_reschedule (EV_A);
1881# endif
1882 /* no timer adjustment, as the monotonic clock doesn't jump */
1883 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1884 }
1885 else
1886#endif
1887 {
1888 ev_rt_now = ev_time ();
1889
1890 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1891 {
1892#if EV_PERIODIC_ENABLE
1893 periodics_reschedule (EV_A);
1894#endif
1895 /* adjust timers. this is easy, as the offset is the same for all of them */
1896 for (i = 0; i < timercnt; ++i)
504 { 1897 {
505 evperiodic_stop (w); 1898 ANHE *he = timers + i + HEAP0;
506 evperiodic_start (w); 1899 ANHE_w (*he)->at += ev_rt_now - mn_now;
507 1900 ANHE_at_cache (*he);
508 i = 0; /* restart loop, inefficient, but time jumps should be rare */
509 } 1901 }
510 } 1902 }
511 }
512}
513 1903
514static void 1904 mn_now = ev_rt_now;
515time_update ()
516{
517 int i;
518
519 ev_now = ev_time ();
520
521 if (have_monotonic)
522 { 1905 }
523 ev_tstamp odiff = diff; 1906}
524 1907
525 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1908void
1909ev_ref (EV_P)
1910{
1911 ++activecnt;
1912}
1913
1914void
1915ev_unref (EV_P)
1916{
1917 --activecnt;
1918}
1919
1920void
1921ev_now_update (EV_P)
1922{
1923 time_update (EV_A_ 1e100);
1924}
1925
1926static int loop_done;
1927
1928void
1929ev_loop (EV_P_ int flags)
1930{
1931 loop_done = EVUNLOOP_CANCEL;
1932
1933 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1934
1935 do
1936 {
1937#if EV_VERIFY >= 2
1938 ev_loop_verify (EV_A);
1939#endif
1940
1941#ifndef _WIN32
1942 if (expect_false (curpid)) /* penalise the forking check even more */
1943 if (expect_false (getpid () != curpid))
1944 {
1945 curpid = getpid ();
1946 postfork = 1;
1947 }
1948#endif
1949
1950#if EV_FORK_ENABLE
1951 /* we might have forked, so queue fork handlers */
1952 if (expect_false (postfork))
1953 if (forkcnt)
1954 {
1955 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1956 call_pending (EV_A);
1957 }
1958#endif
1959
1960 /* queue prepare watchers (and execute them) */
1961 if (expect_false (preparecnt))
526 { 1962 {
527 now = get_clock (); 1963 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
528 diff = ev_now - now; 1964 call_pending (EV_A);
529
530 if (fabs (odiff - diff) < MIN_TIMEJUMP)
531 return; /* all is well */
532
533 ev_now = ev_time ();
534 } 1965 }
535 1966
536 periodics_reschedule (diff - odiff); 1967 if (expect_false (!activecnt))
537 /* no timer adjustment, as the monotonic clock doesn't jump */ 1968 break;
538 }
539 else
540 {
541 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)
542 {
543 periodics_reschedule (ev_now - now);
544 1969
545 /* adjust timers. this is easy, as the offset is the same for all */ 1970 /* we might have forked, so reify kernel state if necessary */
546 for (i = 0; i < timercnt; ++i) 1971 if (expect_false (postfork))
547 timers [i]->at += diff; 1972 loop_fork (EV_A);
548 }
549
550 now = ev_now;
551 }
552}
553
554int ev_loop_done;
555
556void ev_loop (int flags)
557{
558 double block;
559 ev_loop_done = flags & EVLOOP_ONESHOT ? 1 : 0;
560
561 do
562 {
563 /* queue check watchers (and execute them) */
564 if (preparecnt)
565 {
566 queue_events ((W *)prepares, preparecnt, EV_PREPARE);
567 call_pending ();
568 }
569 1973
570 /* update fd-related kernel structures */ 1974 /* update fd-related kernel structures */
571 fd_reify (); 1975 fd_reify (EV_A);
572 1976
573 /* calculate blocking time */ 1977 /* calculate blocking time */
1978 {
1979 ev_tstamp waittime = 0.;
1980 ev_tstamp sleeptime = 0.;
574 1981
575 /* we only need this for !monotonic clockor timers, but as we basically 1982 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
576 always have timers, we just calculate it always */
577 ev_now = ev_time ();
578
579 if (flags & EVLOOP_NONBLOCK || idlecnt)
580 block = 0.;
581 else
582 { 1983 {
1984 /* update time to cancel out callback processing overhead */
1985 time_update (EV_A_ 1e100);
1986
583 block = MAX_BLOCKTIME; 1987 waittime = MAX_BLOCKTIME;
584 1988
585 if (timercnt) 1989 if (timercnt)
586 { 1990 {
587 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 1991 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
588 if (block > to) block = to; 1992 if (waittime > to) waittime = to;
589 } 1993 }
590 1994
1995#if EV_PERIODIC_ENABLE
591 if (periodiccnt) 1996 if (periodiccnt)
592 { 1997 {
593 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1998 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
594 if (block > to) block = to; 1999 if (waittime > to) waittime = to;
595 } 2000 }
2001#endif
596 2002
597 if (block < 0.) block = 0.; 2003 if (expect_false (waittime < timeout_blocktime))
2004 waittime = timeout_blocktime;
2005
2006 sleeptime = waittime - backend_fudge;
2007
2008 if (expect_true (sleeptime > io_blocktime))
2009 sleeptime = io_blocktime;
2010
2011 if (sleeptime)
2012 {
2013 ev_sleep (sleeptime);
2014 waittime -= sleeptime;
2015 }
598 } 2016 }
599 2017
600 method_poll (block); 2018 ++loop_count;
2019 backend_poll (EV_A_ waittime);
601 2020
602 /* update ev_now, do magic */ 2021 /* update ev_rt_now, do magic */
603 time_update (); 2022 time_update (EV_A_ waittime + sleeptime);
2023 }
604 2024
605 /* queue pending timers and reschedule them */ 2025 /* queue pending timers and reschedule them */
606 timers_reify (); /* relative timers called last */ 2026 timers_reify (EV_A); /* relative timers called last */
2027#if EV_PERIODIC_ENABLE
607 periodics_reify (); /* absolute timers called first */ 2028 periodics_reify (EV_A); /* absolute timers called first */
2029#endif
608 2030
2031#if EV_IDLE_ENABLE
609 /* queue idle watchers unless io or timers are pending */ 2032 /* queue idle watchers unless other events are pending */
610 if (!pendingcnt) 2033 idle_reify (EV_A);
611 queue_events ((W *)idles, idlecnt, EV_IDLE); 2034#endif
612 2035
613 /* queue check watchers, to be executed first */ 2036 /* queue check watchers, to be executed first */
614 if (checkcnt) 2037 if (expect_false (checkcnt))
615 queue_events ((W *)checks, checkcnt, EV_CHECK); 2038 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
616 2039
617 call_pending (); 2040 call_pending (EV_A);
618 } 2041 }
619 while (!ev_loop_done); 2042 while (expect_true (
2043 activecnt
2044 && !loop_done
2045 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2046 ));
620 2047
621 if (ev_loop_done != 2) 2048 if (loop_done == EVUNLOOP_ONE)
2049 loop_done = EVUNLOOP_CANCEL;
2050}
2051
2052void
2053ev_unloop (EV_P_ int how)
2054{
622 ev_loop_done = 0; 2055 loop_done = how;
623} 2056}
624 2057
625/*****************************************************************************/ 2058/*****************************************************************************/
626 2059
627static void 2060void inline_size
628wlist_add (WL *head, WL elem) 2061wlist_add (WL *head, WL elem)
629{ 2062{
630 elem->next = *head; 2063 elem->next = *head;
631 *head = elem; 2064 *head = elem;
632} 2065}
633 2066
634static void 2067void inline_size
635wlist_del (WL *head, WL elem) 2068wlist_del (WL *head, WL elem)
636{ 2069{
637 while (*head) 2070 while (*head)
638 { 2071 {
639 if (*head == elem) 2072 if (*head == elem)
644 2077
645 head = &(*head)->next; 2078 head = &(*head)->next;
646 } 2079 }
647} 2080}
648 2081
649static void 2082void inline_speed
650ev_clear (W w) 2083clear_pending (EV_P_ W w)
651{ 2084{
652 if (w->pending) 2085 if (w->pending)
653 { 2086 {
654 pendings [w->pending - 1].w = 0; 2087 pendings [ABSPRI (w)][w->pending - 1].w = 0;
655 w->pending = 0; 2088 w->pending = 0;
656 } 2089 }
657} 2090}
658 2091
659static void 2092int
2093ev_clear_pending (EV_P_ void *w)
2094{
2095 W w_ = (W)w;
2096 int pending = w_->pending;
2097
2098 if (expect_true (pending))
2099 {
2100 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2101 w_->pending = 0;
2102 p->w = 0;
2103 return p->events;
2104 }
2105 else
2106 return 0;
2107}
2108
2109void inline_size
2110pri_adjust (EV_P_ W w)
2111{
2112 int pri = w->priority;
2113 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2114 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2115 w->priority = pri;
2116}
2117
2118void inline_speed
660ev_start (W w, int active) 2119ev_start (EV_P_ W w, int active)
661{ 2120{
2121 pri_adjust (EV_A_ w);
662 w->active = active; 2122 w->active = active;
2123 ev_ref (EV_A);
663} 2124}
664 2125
665static void 2126void inline_size
666ev_stop (W w) 2127ev_stop (EV_P_ W w)
667{ 2128{
2129 ev_unref (EV_A);
668 w->active = 0; 2130 w->active = 0;
669} 2131}
670 2132
671/*****************************************************************************/ 2133/*****************************************************************************/
672 2134
673void 2135void noinline
674evio_start (struct ev_io *w) 2136ev_io_start (EV_P_ ev_io *w)
675{ 2137{
2138 int fd = w->fd;
2139
676 if (ev_is_active (w)) 2140 if (expect_false (ev_is_active (w)))
677 return; 2141 return;
678 2142
679 int fd = w->fd; 2143 assert (("ev_io_start called with negative fd", fd >= 0));
680 2144
2145 EV_FREQUENT_CHECK;
2146
681 ev_start ((W)w, 1); 2147 ev_start (EV_A_ (W)w, 1);
682 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 2148 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
683 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2149 wlist_add (&anfds[fd].head, (WL)w);
684 2150
685 ++fdchangecnt; 2151 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
686 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 2152 w->events &= ~EV_IOFDSET;
687 fdchanges [fdchangecnt - 1] = fd;
688}
689 2153
690void 2154 EV_FREQUENT_CHECK;
2155}
2156
2157void noinline
691evio_stop (struct ev_io *w) 2158ev_io_stop (EV_P_ ev_io *w)
692{ 2159{
693 ev_clear ((W)w); 2160 clear_pending (EV_A_ (W)w);
694 if (!ev_is_active (w)) 2161 if (expect_false (!ev_is_active (w)))
695 return; 2162 return;
696 2163
2164 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2165
2166 EV_FREQUENT_CHECK;
2167
697 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2168 wlist_del (&anfds[w->fd].head, (WL)w);
698 ev_stop ((W)w); 2169 ev_stop (EV_A_ (W)w);
699 2170
700 ++fdchangecnt; 2171 fd_change (EV_A_ w->fd, 1);
701 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
702 fdchanges [fdchangecnt - 1] = w->fd;
703}
704 2172
705void 2173 EV_FREQUENT_CHECK;
2174}
2175
2176void noinline
706evtimer_start (struct ev_timer *w) 2177ev_timer_start (EV_P_ ev_timer *w)
707{ 2178{
708 if (ev_is_active (w)) 2179 if (expect_false (ev_is_active (w)))
709 return; 2180 return;
710 2181
711 w->at += now; 2182 ev_at (w) += mn_now;
712 2183
713 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 2184 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
714 2185
715 ev_start ((W)w, ++timercnt); 2186 EV_FREQUENT_CHECK;
716 array_needsize (timers, timermax, timercnt, );
717 timers [timercnt - 1] = w;
718 upheap ((WT *)timers, timercnt - 1);
719}
720 2187
721void 2188 ++timercnt;
2189 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2190 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2191 ANHE_w (timers [ev_active (w)]) = (WT)w;
2192 ANHE_at_cache (timers [ev_active (w)]);
2193 upheap (timers, ev_active (w));
2194
2195 EV_FREQUENT_CHECK;
2196
2197 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2198}
2199
2200void noinline
722evtimer_stop (struct ev_timer *w) 2201ev_timer_stop (EV_P_ ev_timer *w)
723{ 2202{
724 ev_clear ((W)w); 2203 clear_pending (EV_A_ (W)w);
725 if (!ev_is_active (w)) 2204 if (expect_false (!ev_is_active (w)))
726 return; 2205 return;
727 2206
728 if (w->active < timercnt--) 2207 EV_FREQUENT_CHECK;
2208
2209 {
2210 int active = ev_active (w);
2211
2212 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2213
2214 --timercnt;
2215
2216 if (expect_true (active < timercnt + HEAP0))
729 { 2217 {
730 timers [w->active - 1] = timers [timercnt]; 2218 timers [active] = timers [timercnt + HEAP0];
731 downheap ((WT *)timers, timercnt, w->active - 1); 2219 adjustheap (timers, timercnt, active);
732 } 2220 }
2221 }
733 2222
734 w->at = w->repeat; 2223 EV_FREQUENT_CHECK;
735 2224
2225 ev_at (w) -= mn_now;
2226
736 ev_stop ((W)w); 2227 ev_stop (EV_A_ (W)w);
737} 2228}
738 2229
739void 2230void noinline
740evtimer_again (struct ev_timer *w) 2231ev_timer_again (EV_P_ ev_timer *w)
741{ 2232{
2233 EV_FREQUENT_CHECK;
2234
742 if (ev_is_active (w)) 2235 if (ev_is_active (w))
743 { 2236 {
744 if (w->repeat) 2237 if (w->repeat)
745 { 2238 {
746 w->at = now + w->repeat; 2239 ev_at (w) = mn_now + w->repeat;
2240 ANHE_at_cache (timers [ev_active (w)]);
747 downheap ((WT *)timers, timercnt, w->active - 1); 2241 adjustheap (timers, timercnt, ev_active (w));
748 } 2242 }
749 else 2243 else
750 evtimer_stop (w); 2244 ev_timer_stop (EV_A_ w);
751 } 2245 }
752 else if (w->repeat) 2246 else if (w->repeat)
2247 {
2248 ev_at (w) = w->repeat;
753 evtimer_start (w); 2249 ev_timer_start (EV_A_ w);
754} 2250 }
755 2251
756void 2252 EV_FREQUENT_CHECK;
2253}
2254
2255#if EV_PERIODIC_ENABLE
2256void noinline
757evperiodic_start (struct ev_periodic *w) 2257ev_periodic_start (EV_P_ ev_periodic *w)
758{ 2258{
759 if (ev_is_active (w)) 2259 if (expect_false (ev_is_active (w)))
760 return; 2260 return;
761 2261
762 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 2262 if (w->reschedule_cb)
763 2263 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2264 else if (w->interval)
2265 {
2266 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
764 /* this formula differs from the one in periodic_reify because we do not always round up */ 2267 /* this formula differs from the one in periodic_reify because we do not always round up */
765 if (w->interval)
766 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 2268 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2269 }
2270 else
2271 ev_at (w) = w->offset;
767 2272
2273 EV_FREQUENT_CHECK;
2274
2275 ++periodiccnt;
768 ev_start ((W)w, ++periodiccnt); 2276 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
769 array_needsize (periodics, periodicmax, periodiccnt, ); 2277 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
770 periodics [periodiccnt - 1] = w; 2278 ANHE_w (periodics [ev_active (w)]) = (WT)w;
771 upheap ((WT *)periodics, periodiccnt - 1); 2279 ANHE_at_cache (periodics [ev_active (w)]);
772} 2280 upheap (periodics, ev_active (w));
773 2281
774void 2282 EV_FREQUENT_CHECK;
2283
2284 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2285}
2286
2287void noinline
775evperiodic_stop (struct ev_periodic *w) 2288ev_periodic_stop (EV_P_ ev_periodic *w)
776{ 2289{
777 ev_clear ((W)w); 2290 clear_pending (EV_A_ (W)w);
778 if (!ev_is_active (w)) 2291 if (expect_false (!ev_is_active (w)))
779 return; 2292 return;
780 2293
781 if (w->active < periodiccnt--) 2294 EV_FREQUENT_CHECK;
2295
2296 {
2297 int active = ev_active (w);
2298
2299 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2300
2301 --periodiccnt;
2302
2303 if (expect_true (active < periodiccnt + HEAP0))
782 { 2304 {
783 periodics [w->active - 1] = periodics [periodiccnt]; 2305 periodics [active] = periodics [periodiccnt + HEAP0];
784 downheap ((WT *)periodics, periodiccnt, w->active - 1); 2306 adjustheap (periodics, periodiccnt, active);
785 } 2307 }
2308 }
786 2309
2310 EV_FREQUENT_CHECK;
2311
787 ev_stop ((W)w); 2312 ev_stop (EV_A_ (W)w);
788} 2313}
789 2314
790void 2315void noinline
2316ev_periodic_again (EV_P_ ev_periodic *w)
2317{
2318 /* TODO: use adjustheap and recalculation */
2319 ev_periodic_stop (EV_A_ w);
2320 ev_periodic_start (EV_A_ w);
2321}
2322#endif
2323
2324#ifndef SA_RESTART
2325# define SA_RESTART 0
2326#endif
2327
2328void noinline
791evsignal_start (struct ev_signal *w) 2329ev_signal_start (EV_P_ ev_signal *w)
792{ 2330{
2331#if EV_MULTIPLICITY
2332 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2333#endif
793 if (ev_is_active (w)) 2334 if (expect_false (ev_is_active (w)))
794 return; 2335 return;
795 2336
796 ev_start ((W)w, 1); 2337 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2338
2339 evpipe_init (EV_A);
2340
2341 EV_FREQUENT_CHECK;
2342
2343 {
2344#ifndef _WIN32
2345 sigset_t full, prev;
2346 sigfillset (&full);
2347 sigprocmask (SIG_SETMASK, &full, &prev);
2348#endif
2349
797 array_needsize (signals, signalmax, w->signum, signals_init); 2350 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2351
2352#ifndef _WIN32
2353 sigprocmask (SIG_SETMASK, &prev, 0);
2354#endif
2355 }
2356
2357 ev_start (EV_A_ (W)w, 1);
798 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2358 wlist_add (&signals [w->signum - 1].head, (WL)w);
799 2359
800 if (!w->next) 2360 if (!((WL)w)->next)
801 { 2361 {
2362#if _WIN32
2363 signal (w->signum, ev_sighandler);
2364#else
802 struct sigaction sa; 2365 struct sigaction sa;
803 sa.sa_handler = sighandler; 2366 sa.sa_handler = ev_sighandler;
804 sigfillset (&sa.sa_mask); 2367 sigfillset (&sa.sa_mask);
805 sa.sa_flags = 0; 2368 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
806 sigaction (w->signum, &sa, 0); 2369 sigaction (w->signum, &sa, 0);
2370#endif
807 } 2371 }
808}
809 2372
810void 2373 EV_FREQUENT_CHECK;
2374}
2375
2376void noinline
811evsignal_stop (struct ev_signal *w) 2377ev_signal_stop (EV_P_ ev_signal *w)
812{ 2378{
813 ev_clear ((W)w); 2379 clear_pending (EV_A_ (W)w);
814 if (!ev_is_active (w)) 2380 if (expect_false (!ev_is_active (w)))
815 return; 2381 return;
816 2382
2383 EV_FREQUENT_CHECK;
2384
817 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2385 wlist_del (&signals [w->signum - 1].head, (WL)w);
818 ev_stop ((W)w); 2386 ev_stop (EV_A_ (W)w);
819 2387
820 if (!signals [w->signum - 1].head) 2388 if (!signals [w->signum - 1].head)
821 signal (w->signum, SIG_DFL); 2389 signal (w->signum, SIG_DFL);
822}
823 2390
824void evidle_start (struct ev_idle *w) 2391 EV_FREQUENT_CHECK;
2392}
2393
2394void
2395ev_child_start (EV_P_ ev_child *w)
825{ 2396{
2397#if EV_MULTIPLICITY
2398 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2399#endif
826 if (ev_is_active (w)) 2400 if (expect_false (ev_is_active (w)))
827 return; 2401 return;
828 2402
829 ev_start ((W)w, ++idlecnt); 2403 EV_FREQUENT_CHECK;
830 array_needsize (idles, idlemax, idlecnt, );
831 idles [idlecnt - 1] = w;
832}
833 2404
834void evidle_stop (struct ev_idle *w) 2405 ev_start (EV_A_ (W)w, 1);
2406 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2407
2408 EV_FREQUENT_CHECK;
2409}
2410
2411void
2412ev_child_stop (EV_P_ ev_child *w)
835{ 2413{
836 ev_clear ((W)w); 2414 clear_pending (EV_A_ (W)w);
837 if (ev_is_active (w)) 2415 if (expect_false (!ev_is_active (w)))
838 return; 2416 return;
839 2417
840 idles [w->active - 1] = idles [--idlecnt]; 2418 EV_FREQUENT_CHECK;
2419
2420 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
841 ev_stop ((W)w); 2421 ev_stop (EV_A_ (W)w);
842}
843 2422
844void evprepare_start (struct ev_prepare *w) 2423 EV_FREQUENT_CHECK;
2424}
2425
2426#if EV_STAT_ENABLE
2427
2428# ifdef _WIN32
2429# undef lstat
2430# define lstat(a,b) _stati64 (a,b)
2431# endif
2432
2433#define DEF_STAT_INTERVAL 5.0074891
2434#define MIN_STAT_INTERVAL 0.1074891
2435
2436static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2437
2438#if EV_USE_INOTIFY
2439# define EV_INOTIFY_BUFSIZE 8192
2440
2441static void noinline
2442infy_add (EV_P_ ev_stat *w)
845{ 2443{
846 if (ev_is_active (w)) 2444 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2445
2446 if (w->wd < 0)
2447 {
2448 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2449
2450 /* monitor some parent directory for speedup hints */
2451 /* note that exceeding the hardcoded limit is not a correctness issue, */
2452 /* but an efficiency issue only */
2453 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2454 {
2455 char path [4096];
2456 strcpy (path, w->path);
2457
2458 do
2459 {
2460 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2461 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2462
2463 char *pend = strrchr (path, '/');
2464
2465 if (!pend)
2466 break; /* whoops, no '/', complain to your admin */
2467
2468 *pend = 0;
2469 w->wd = inotify_add_watch (fs_fd, path, mask);
2470 }
2471 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2472 }
2473 }
2474 else
2475 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2476
2477 if (w->wd >= 0)
2478 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2479}
2480
2481static void noinline
2482infy_del (EV_P_ ev_stat *w)
2483{
2484 int slot;
2485 int wd = w->wd;
2486
2487 if (wd < 0)
847 return; 2488 return;
848 2489
2490 w->wd = -2;
2491 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2492 wlist_del (&fs_hash [slot].head, (WL)w);
2493
2494 /* remove this watcher, if others are watching it, they will rearm */
2495 inotify_rm_watch (fs_fd, wd);
2496}
2497
2498static void noinline
2499infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2500{
2501 if (slot < 0)
2502 /* overflow, need to check for all hash slots */
2503 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2504 infy_wd (EV_A_ slot, wd, ev);
2505 else
2506 {
2507 WL w_;
2508
2509 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2510 {
2511 ev_stat *w = (ev_stat *)w_;
2512 w_ = w_->next; /* lets us remove this watcher and all before it */
2513
2514 if (w->wd == wd || wd == -1)
2515 {
2516 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2517 {
2518 w->wd = -1;
2519 infy_add (EV_A_ w); /* re-add, no matter what */
2520 }
2521
2522 stat_timer_cb (EV_A_ &w->timer, 0);
2523 }
2524 }
2525 }
2526}
2527
2528static void
2529infy_cb (EV_P_ ev_io *w, int revents)
2530{
2531 char buf [EV_INOTIFY_BUFSIZE];
2532 struct inotify_event *ev = (struct inotify_event *)buf;
2533 int ofs;
2534 int len = read (fs_fd, buf, sizeof (buf));
2535
2536 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2537 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2538}
2539
2540void inline_size
2541infy_init (EV_P)
2542{
2543 if (fs_fd != -2)
2544 return;
2545
2546 /* kernels < 2.6.25 are borked
2547 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2548 */
2549 {
2550 struct utsname buf;
2551 int major, minor, micro;
2552
2553 fs_fd = -1;
2554
2555 if (uname (&buf))
2556 return;
2557
2558 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2559 return;
2560
2561 if (major < 2
2562 || (major == 2 && minor < 6)
2563 || (major == 2 && minor == 6 && micro < 25))
2564 return;
2565 }
2566
2567 fs_fd = inotify_init ();
2568
2569 if (fs_fd >= 0)
2570 {
2571 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2572 ev_set_priority (&fs_w, EV_MAXPRI);
2573 ev_io_start (EV_A_ &fs_w);
2574 }
2575}
2576
2577void inline_size
2578infy_fork (EV_P)
2579{
2580 int slot;
2581
2582 if (fs_fd < 0)
2583 return;
2584
2585 close (fs_fd);
2586 fs_fd = inotify_init ();
2587
2588 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2589 {
2590 WL w_ = fs_hash [slot].head;
2591 fs_hash [slot].head = 0;
2592
2593 while (w_)
2594 {
2595 ev_stat *w = (ev_stat *)w_;
2596 w_ = w_->next; /* lets us add this watcher */
2597
2598 w->wd = -1;
2599
2600 if (fs_fd >= 0)
2601 infy_add (EV_A_ w); /* re-add, no matter what */
2602 else
2603 ev_timer_start (EV_A_ &w->timer);
2604 }
2605 }
2606}
2607
2608#endif
2609
2610#ifdef _WIN32
2611# define EV_LSTAT(p,b) _stati64 (p, b)
2612#else
2613# define EV_LSTAT(p,b) lstat (p, b)
2614#endif
2615
2616void
2617ev_stat_stat (EV_P_ ev_stat *w)
2618{
2619 if (lstat (w->path, &w->attr) < 0)
2620 w->attr.st_nlink = 0;
2621 else if (!w->attr.st_nlink)
2622 w->attr.st_nlink = 1;
2623}
2624
2625static void noinline
2626stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2627{
2628 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2629
2630 /* we copy this here each the time so that */
2631 /* prev has the old value when the callback gets invoked */
2632 w->prev = w->attr;
2633 ev_stat_stat (EV_A_ w);
2634
2635 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2636 if (
2637 w->prev.st_dev != w->attr.st_dev
2638 || w->prev.st_ino != w->attr.st_ino
2639 || w->prev.st_mode != w->attr.st_mode
2640 || w->prev.st_nlink != w->attr.st_nlink
2641 || w->prev.st_uid != w->attr.st_uid
2642 || w->prev.st_gid != w->attr.st_gid
2643 || w->prev.st_rdev != w->attr.st_rdev
2644 || w->prev.st_size != w->attr.st_size
2645 || w->prev.st_atime != w->attr.st_atime
2646 || w->prev.st_mtime != w->attr.st_mtime
2647 || w->prev.st_ctime != w->attr.st_ctime
2648 ) {
2649 #if EV_USE_INOTIFY
2650 if (fs_fd >= 0)
2651 {
2652 infy_del (EV_A_ w);
2653 infy_add (EV_A_ w);
2654 ev_stat_stat (EV_A_ w); /* avoid race... */
2655 }
2656 #endif
2657
2658 ev_feed_event (EV_A_ w, EV_STAT);
2659 }
2660}
2661
2662void
2663ev_stat_start (EV_P_ ev_stat *w)
2664{
2665 if (expect_false (ev_is_active (w)))
2666 return;
2667
2668 /* since we use memcmp, we need to clear any padding data etc. */
2669 memset (&w->prev, 0, sizeof (ev_statdata));
2670 memset (&w->attr, 0, sizeof (ev_statdata));
2671
2672 ev_stat_stat (EV_A_ w);
2673
2674 if (w->interval < MIN_STAT_INTERVAL)
2675 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2676
2677 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2678 ev_set_priority (&w->timer, ev_priority (w));
2679
2680#if EV_USE_INOTIFY
2681 infy_init (EV_A);
2682
2683 if (fs_fd >= 0)
2684 infy_add (EV_A_ w);
2685 else
2686#endif
2687 ev_timer_start (EV_A_ &w->timer);
2688
2689 ev_start (EV_A_ (W)w, 1);
2690
2691 EV_FREQUENT_CHECK;
2692}
2693
2694void
2695ev_stat_stop (EV_P_ ev_stat *w)
2696{
2697 clear_pending (EV_A_ (W)w);
2698 if (expect_false (!ev_is_active (w)))
2699 return;
2700
2701 EV_FREQUENT_CHECK;
2702
2703#if EV_USE_INOTIFY
2704 infy_del (EV_A_ w);
2705#endif
2706 ev_timer_stop (EV_A_ &w->timer);
2707
2708 ev_stop (EV_A_ (W)w);
2709
2710 EV_FREQUENT_CHECK;
2711}
2712#endif
2713
2714#if EV_IDLE_ENABLE
2715void
2716ev_idle_start (EV_P_ ev_idle *w)
2717{
2718 if (expect_false (ev_is_active (w)))
2719 return;
2720
2721 pri_adjust (EV_A_ (W)w);
2722
2723 EV_FREQUENT_CHECK;
2724
2725 {
2726 int active = ++idlecnt [ABSPRI (w)];
2727
2728 ++idleall;
2729 ev_start (EV_A_ (W)w, active);
2730
2731 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2732 idles [ABSPRI (w)][active - 1] = w;
2733 }
2734
2735 EV_FREQUENT_CHECK;
2736}
2737
2738void
2739ev_idle_stop (EV_P_ ev_idle *w)
2740{
2741 clear_pending (EV_A_ (W)w);
2742 if (expect_false (!ev_is_active (w)))
2743 return;
2744
2745 EV_FREQUENT_CHECK;
2746
2747 {
2748 int active = ev_active (w);
2749
2750 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2751 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2752
2753 ev_stop (EV_A_ (W)w);
2754 --idleall;
2755 }
2756
2757 EV_FREQUENT_CHECK;
2758}
2759#endif
2760
2761void
2762ev_prepare_start (EV_P_ ev_prepare *w)
2763{
2764 if (expect_false (ev_is_active (w)))
2765 return;
2766
2767 EV_FREQUENT_CHECK;
2768
849 ev_start ((W)w, ++preparecnt); 2769 ev_start (EV_A_ (W)w, ++preparecnt);
850 array_needsize (prepares, preparemax, preparecnt, ); 2770 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
851 prepares [preparecnt - 1] = w; 2771 prepares [preparecnt - 1] = w;
852}
853 2772
2773 EV_FREQUENT_CHECK;
2774}
2775
2776void
854void evprepare_stop (struct ev_prepare *w) 2777ev_prepare_stop (EV_P_ ev_prepare *w)
855{ 2778{
856 ev_clear ((W)w); 2779 clear_pending (EV_A_ (W)w);
857 if (ev_is_active (w)) 2780 if (expect_false (!ev_is_active (w)))
858 return; 2781 return;
859 2782
2783 EV_FREQUENT_CHECK;
2784
2785 {
2786 int active = ev_active (w);
2787
860 prepares [w->active - 1] = prepares [--preparecnt]; 2788 prepares [active - 1] = prepares [--preparecnt];
2789 ev_active (prepares [active - 1]) = active;
2790 }
2791
861 ev_stop ((W)w); 2792 ev_stop (EV_A_ (W)w);
862}
863 2793
2794 EV_FREQUENT_CHECK;
2795}
2796
2797void
864void evcheck_start (struct ev_check *w) 2798ev_check_start (EV_P_ ev_check *w)
865{ 2799{
866 if (ev_is_active (w)) 2800 if (expect_false (ev_is_active (w)))
867 return; 2801 return;
868 2802
2803 EV_FREQUENT_CHECK;
2804
869 ev_start ((W)w, ++checkcnt); 2805 ev_start (EV_A_ (W)w, ++checkcnt);
870 array_needsize (checks, checkmax, checkcnt, ); 2806 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
871 checks [checkcnt - 1] = w; 2807 checks [checkcnt - 1] = w;
872}
873 2808
2809 EV_FREQUENT_CHECK;
2810}
2811
2812void
874void evcheck_stop (struct ev_check *w) 2813ev_check_stop (EV_P_ ev_check *w)
875{ 2814{
876 ev_clear ((W)w); 2815 clear_pending (EV_A_ (W)w);
877 if (ev_is_active (w)) 2816 if (expect_false (!ev_is_active (w)))
878 return; 2817 return;
879 2818
2819 EV_FREQUENT_CHECK;
2820
2821 {
2822 int active = ev_active (w);
2823
880 checks [w->active - 1] = checks [--checkcnt]; 2824 checks [active - 1] = checks [--checkcnt];
2825 ev_active (checks [active - 1]) = active;
2826 }
2827
881 ev_stop ((W)w); 2828 ev_stop (EV_A_ (W)w);
2829
2830 EV_FREQUENT_CHECK;
882} 2831}
2832
2833#if EV_EMBED_ENABLE
2834void noinline
2835ev_embed_sweep (EV_P_ ev_embed *w)
2836{
2837 ev_loop (w->other, EVLOOP_NONBLOCK);
2838}
2839
2840static void
2841embed_io_cb (EV_P_ ev_io *io, int revents)
2842{
2843 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2844
2845 if (ev_cb (w))
2846 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2847 else
2848 ev_loop (w->other, EVLOOP_NONBLOCK);
2849}
2850
2851static void
2852embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2853{
2854 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2855
2856 {
2857 struct ev_loop *loop = w->other;
2858
2859 while (fdchangecnt)
2860 {
2861 fd_reify (EV_A);
2862 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2863 }
2864 }
2865}
2866
2867static void
2868embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2869{
2870 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2871
2872 {
2873 struct ev_loop *loop = w->other;
2874
2875 ev_loop_fork (EV_A);
2876 }
2877}
2878
2879#if 0
2880static void
2881embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2882{
2883 ev_idle_stop (EV_A_ idle);
2884}
2885#endif
2886
2887void
2888ev_embed_start (EV_P_ ev_embed *w)
2889{
2890 if (expect_false (ev_is_active (w)))
2891 return;
2892
2893 {
2894 struct ev_loop *loop = w->other;
2895 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2896 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2897 }
2898
2899 EV_FREQUENT_CHECK;
2900
2901 ev_set_priority (&w->io, ev_priority (w));
2902 ev_io_start (EV_A_ &w->io);
2903
2904 ev_prepare_init (&w->prepare, embed_prepare_cb);
2905 ev_set_priority (&w->prepare, EV_MINPRI);
2906 ev_prepare_start (EV_A_ &w->prepare);
2907
2908 ev_fork_init (&w->fork, embed_fork_cb);
2909 ev_fork_start (EV_A_ &w->fork);
2910
2911 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2912
2913 ev_start (EV_A_ (W)w, 1);
2914
2915 EV_FREQUENT_CHECK;
2916}
2917
2918void
2919ev_embed_stop (EV_P_ ev_embed *w)
2920{
2921 clear_pending (EV_A_ (W)w);
2922 if (expect_false (!ev_is_active (w)))
2923 return;
2924
2925 EV_FREQUENT_CHECK;
2926
2927 ev_io_stop (EV_A_ &w->io);
2928 ev_prepare_stop (EV_A_ &w->prepare);
2929 ev_fork_stop (EV_A_ &w->fork);
2930
2931 EV_FREQUENT_CHECK;
2932}
2933#endif
2934
2935#if EV_FORK_ENABLE
2936void
2937ev_fork_start (EV_P_ ev_fork *w)
2938{
2939 if (expect_false (ev_is_active (w)))
2940 return;
2941
2942 EV_FREQUENT_CHECK;
2943
2944 ev_start (EV_A_ (W)w, ++forkcnt);
2945 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2946 forks [forkcnt - 1] = w;
2947
2948 EV_FREQUENT_CHECK;
2949}
2950
2951void
2952ev_fork_stop (EV_P_ ev_fork *w)
2953{
2954 clear_pending (EV_A_ (W)w);
2955 if (expect_false (!ev_is_active (w)))
2956 return;
2957
2958 EV_FREQUENT_CHECK;
2959
2960 {
2961 int active = ev_active (w);
2962
2963 forks [active - 1] = forks [--forkcnt];
2964 ev_active (forks [active - 1]) = active;
2965 }
2966
2967 ev_stop (EV_A_ (W)w);
2968
2969 EV_FREQUENT_CHECK;
2970}
2971#endif
2972
2973#if EV_ASYNC_ENABLE
2974void
2975ev_async_start (EV_P_ ev_async *w)
2976{
2977 if (expect_false (ev_is_active (w)))
2978 return;
2979
2980 evpipe_init (EV_A);
2981
2982 EV_FREQUENT_CHECK;
2983
2984 ev_start (EV_A_ (W)w, ++asynccnt);
2985 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2986 asyncs [asynccnt - 1] = w;
2987
2988 EV_FREQUENT_CHECK;
2989}
2990
2991void
2992ev_async_stop (EV_P_ ev_async *w)
2993{
2994 clear_pending (EV_A_ (W)w);
2995 if (expect_false (!ev_is_active (w)))
2996 return;
2997
2998 EV_FREQUENT_CHECK;
2999
3000 {
3001 int active = ev_active (w);
3002
3003 asyncs [active - 1] = asyncs [--asynccnt];
3004 ev_active (asyncs [active - 1]) = active;
3005 }
3006
3007 ev_stop (EV_A_ (W)w);
3008
3009 EV_FREQUENT_CHECK;
3010}
3011
3012void
3013ev_async_send (EV_P_ ev_async *w)
3014{
3015 w->sent = 1;
3016 evpipe_write (EV_A_ &gotasync);
3017}
3018#endif
883 3019
884/*****************************************************************************/ 3020/*****************************************************************************/
885 3021
886struct ev_once 3022struct ev_once
887{ 3023{
888 struct ev_io io; 3024 ev_io io;
889 struct ev_timer to; 3025 ev_timer to;
890 void (*cb)(int revents, void *arg); 3026 void (*cb)(int revents, void *arg);
891 void *arg; 3027 void *arg;
892}; 3028};
893 3029
894static void 3030static void
895once_cb (struct ev_once *once, int revents) 3031once_cb (EV_P_ struct ev_once *once, int revents)
896{ 3032{
897 void (*cb)(int revents, void *arg) = once->cb; 3033 void (*cb)(int revents, void *arg) = once->cb;
898 void *arg = once->arg; 3034 void *arg = once->arg;
899 3035
900 evio_stop (&once->io); 3036 ev_io_stop (EV_A_ &once->io);
901 evtimer_stop (&once->to); 3037 ev_timer_stop (EV_A_ &once->to);
902 free (once); 3038 ev_free (once);
903 3039
904 cb (revents, arg); 3040 cb (revents, arg);
905} 3041}
906 3042
907static void 3043static void
908once_cb_io (struct ev_io *w, int revents) 3044once_cb_io (EV_P_ ev_io *w, int revents)
909{ 3045{
910 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3046 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3047
3048 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
911} 3049}
912 3050
913static void 3051static void
914once_cb_to (struct ev_timer *w, int revents) 3052once_cb_to (EV_P_ ev_timer *w, int revents)
915{ 3053{
916 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3054 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
917}
918 3055
3056 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3057}
3058
919void 3059void
920ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3060ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
921{ 3061{
922 struct ev_once *once = malloc (sizeof (struct ev_once)); 3062 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
923 3063
924 if (!once) 3064 if (expect_false (!once))
925 cb (EV_ERROR, arg); 3065 {
926 else 3066 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
3067 return;
927 { 3068 }
3069
928 once->cb = cb; 3070 once->cb = cb;
929 once->arg = arg; 3071 once->arg = arg;
930 3072
931 evw_init (&once->io, once_cb_io); 3073 ev_init (&once->io, once_cb_io);
932
933 if (fd >= 0) 3074 if (fd >= 0)
934 { 3075 {
935 evio_set (&once->io, fd, events); 3076 ev_io_set (&once->io, fd, events);
936 evio_start (&once->io); 3077 ev_io_start (EV_A_ &once->io);
937 } 3078 }
938 3079
939 evw_init (&once->to, once_cb_to); 3080 ev_init (&once->to, once_cb_to);
940
941 if (timeout >= 0.) 3081 if (timeout >= 0.)
942 { 3082 {
943 evtimer_set (&once->to, timeout, 0.); 3083 ev_timer_set (&once->to, timeout, 0.);
944 evtimer_start (&once->to); 3084 ev_timer_start (EV_A_ &once->to);
945 }
946 }
947}
948
949/*****************************************************************************/
950
951#if 0
952
953struct ev_io wio;
954
955static void
956sin_cb (struct ev_io *w, int revents)
957{
958 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
959}
960
961static void
962ocb (struct ev_timer *w, int revents)
963{
964 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
965 evtimer_stop (w);
966 evtimer_start (w);
967}
968
969static void
970scb (struct ev_signal *w, int revents)
971{
972 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
973 evio_stop (&wio);
974 evio_start (&wio);
975}
976
977static void
978gcb (struct ev_signal *w, int revents)
979{
980 fprintf (stderr, "generic %x\n", revents);
981
982}
983
984int main (void)
985{
986 ev_init (0);
987
988 evio_init (&wio, sin_cb, 0, EV_READ);
989 evio_start (&wio);
990
991 struct ev_timer t[10000];
992
993#if 0
994 int i;
995 for (i = 0; i < 10000; ++i)
996 { 3085 }
997 struct ev_timer *w = t + i;
998 evw_init (w, ocb, i);
999 evtimer_init_abs (w, ocb, drand48 (), 0.99775533);
1000 evtimer_start (w);
1001 if (drand48 () < 0.5)
1002 evtimer_stop (w);
1003 }
1004#endif
1005
1006 struct ev_timer t1;
1007 evtimer_init (&t1, ocb, 5, 10);
1008 evtimer_start (&t1);
1009
1010 struct ev_signal sig;
1011 evsignal_init (&sig, scb, SIGQUIT);
1012 evsignal_start (&sig);
1013
1014 struct ev_check cw;
1015 evcheck_init (&cw, gcb);
1016 evcheck_start (&cw);
1017
1018 struct ev_idle iw;
1019 evidle_init (&iw, gcb);
1020 evidle_start (&iw);
1021
1022 ev_loop (0);
1023
1024 return 0;
1025} 3086}
1026 3087
3088#if EV_MULTIPLICITY
3089 #include "ev_wrap.h"
1027#endif 3090#endif
1028 3091
3092#ifdef __cplusplus
3093}
3094#endif
1029 3095
1030
1031

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines