ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.34 by root, Thu Nov 1 11:43:11 2007 UTC vs.
Revision 1.264 by root, Mon Oct 13 23:20:12 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
6 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
7 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
8 * 27 *
9 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
10 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
11 * 30 * in which case the provisions of the GPL are applicable instead of
12 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
13 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
14 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
15 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
16 * 35 * and other provisions required by the GPL. If you do not delete the
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
18 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
19 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE
29#if EV_USE_CONFIG_H 46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
30# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1
55# endif
56# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1
58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
74# endif
75
76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
90# endif
91
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
98# endif
99
100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
31#endif 132#endif
32 133
33#include <math.h> 134#include <math.h>
34#include <stdlib.h> 135#include <stdlib.h>
35#include <unistd.h>
36#include <fcntl.h> 136#include <fcntl.h>
37#include <signal.h>
38#include <stddef.h> 137#include <stddef.h>
39 138
40#include <stdio.h> 139#include <stdio.h>
41 140
42#include <assert.h> 141#include <assert.h>
43#include <errno.h> 142#include <errno.h>
44#include <sys/types.h> 143#include <sys/types.h>
45#include <sys/wait.h>
46#include <sys/time.h>
47#include <time.h> 144#include <time.h>
48 145
146#include <signal.h>
147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
154#ifndef _WIN32
155# include <sys/time.h>
156# include <sys/wait.h>
157# include <unistd.h>
158#else
159# include <io.h>
160# define WIN32_LEAN_AND_MEAN
161# include <windows.h>
162# ifndef EV_SELECT_IS_WINSOCKET
163# define EV_SELECT_IS_WINSOCKET 1
164# endif
165#endif
166
167/* this block tries to deduce configuration from header-defined symbols and defaults */
168
49#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
50# ifdef CLOCK_MONOTONIC 170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
51# define EV_USE_MONOTONIC 1 171# define EV_USE_MONOTONIC 1
172# else
173# define EV_USE_MONOTONIC 0
174# endif
175#endif
176
177#ifndef EV_USE_REALTIME
178# define EV_USE_REALTIME 0
179#endif
180
181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
185# define EV_USE_NANOSLEEP 0
52# endif 186# endif
53#endif 187#endif
54 188
55#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
56# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
57#endif 191#endif
58 192
193#ifndef EV_USE_POLL
194# ifdef _WIN32
195# define EV_USE_POLL 0
196# else
197# define EV_USE_POLL 1
198# endif
199#endif
200
59#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
60# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
207#endif
208
209#ifndef EV_USE_KQUEUE
210# define EV_USE_KQUEUE 0
211#endif
212
213#ifndef EV_USE_PORT
214# define EV_USE_PORT 0
215#endif
216
217#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1
220# else
221# define EV_USE_INOTIFY 0
222# endif
223#endif
224
225#ifndef EV_PID_HASHSIZE
226# if EV_MINIMAL
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
230# endif
231#endif
232
233#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif
240
241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
268
269#ifndef CLOCK_MONOTONIC
270# undef EV_USE_MONOTONIC
271# define EV_USE_MONOTONIC 0
61#endif 272#endif
62 273
63#ifndef CLOCK_REALTIME 274#ifndef CLOCK_REALTIME
275# undef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 276# define EV_USE_REALTIME 0
65#endif 277#endif
66#ifndef EV_USE_REALTIME 278
67# define EV_USE_REALTIME 1 /* posix requirement, but might be slower */ 279#if !EV_STAT_ENABLE
280# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0
282#endif
283
284#if !EV_USE_NANOSLEEP
285# ifndef _WIN32
286# include <sys/select.h>
68#endif 287# endif
288#endif
289
290#if EV_USE_INOTIFY
291# include <sys/utsname.h>
292# include <sys/inotify.h>
293/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
294# ifndef IN_DONT_FOLLOW
295# undef EV_USE_INOTIFY
296# define EV_USE_INOTIFY 0
297# endif
298#endif
299
300#if EV_SELECT_IS_WINSOCKET
301# include <winsock.h>
302#endif
303
304#if EV_USE_EVENTFD
305/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
306# include <stdint.h>
307# ifdef __cplusplus
308extern "C" {
309# endif
310int eventfd (unsigned int initval, int flags);
311# ifdef __cplusplus
312}
313# endif
314#endif
315
316/**/
317
318#if EV_VERIFY >= 3
319# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
320#else
321# define EV_FREQUENT_CHECK do { } while (0)
322#endif
323
324/*
325 * This is used to avoid floating point rounding problems.
326 * It is added to ev_rt_now when scheduling periodics
327 * to ensure progress, time-wise, even when rounding
328 * errors are against us.
329 * This value is good at least till the year 4000.
330 * Better solutions welcome.
331 */
332#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
69 333
70#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 334#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
71#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detetc time jumps) */ 335#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
72#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
73#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 336/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
74 337
75#include "ev.h" 338#if __GNUC__ >= 4
339# define expect(expr,value) __builtin_expect ((expr),(value))
340# define noinline __attribute__ ((noinline))
341#else
342# define expect(expr,value) (expr)
343# define noinline
344# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
345# define inline
346# endif
347#endif
76 348
349#define expect_false(expr) expect ((expr) != 0, 0)
350#define expect_true(expr) expect ((expr) != 0, 1)
351#define inline_size static inline
352
353#if EV_MINIMAL
354# define inline_speed static noinline
355#else
356# define inline_speed static inline
357#endif
358
359#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
360#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
361
362#define EMPTY /* required for microsofts broken pseudo-c compiler */
363#define EMPTY2(a,b) /* used to suppress some warnings */
364
77typedef struct ev_watcher *W; 365typedef ev_watcher *W;
78typedef struct ev_watcher_list *WL; 366typedef ev_watcher_list *WL;
79typedef struct ev_watcher_time *WT; 367typedef ev_watcher_time *WT;
80 368
81static ev_tstamp now, diff; /* monotonic clock */ 369#define ev_active(w) ((W)(w))->active
370#define ev_at(w) ((WT)(w))->at
371
372#if EV_USE_MONOTONIC
373/* sig_atomic_t is used to avoid per-thread variables or locking but still */
374/* giving it a reasonably high chance of working on typical architetcures */
375static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
376#endif
377
378#ifdef _WIN32
379# include "ev_win32.c"
380#endif
381
382/*****************************************************************************/
383
384static void (*syserr_cb)(const char *msg);
385
386void
387ev_set_syserr_cb (void (*cb)(const char *msg))
388{
389 syserr_cb = cb;
390}
391
392static void noinline
393syserr (const char *msg)
394{
395 if (!msg)
396 msg = "(libev) system error";
397
398 if (syserr_cb)
399 syserr_cb (msg);
400 else
401 {
402 perror (msg);
403 abort ();
404 }
405}
406
407static void *
408ev_realloc_emul (void *ptr, long size)
409{
410 /* some systems, notably openbsd and darwin, fail to properly
411 * implement realloc (x, 0) (as required by both ansi c-98 and
412 * the single unix specification, so work around them here.
413 */
414
415 if (size)
416 return realloc (ptr, size);
417
418 free (ptr);
419 return 0;
420}
421
422static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
423
424void
425ev_set_allocator (void *(*cb)(void *ptr, long size))
426{
427 alloc = cb;
428}
429
430inline_speed void *
431ev_realloc (void *ptr, long size)
432{
433 ptr = alloc (ptr, size);
434
435 if (!ptr && size)
436 {
437 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
438 abort ();
439 }
440
441 return ptr;
442}
443
444#define ev_malloc(size) ev_realloc (0, (size))
445#define ev_free(ptr) ev_realloc ((ptr), 0)
446
447/*****************************************************************************/
448
449typedef struct
450{
451 WL head;
452 unsigned char events;
453 unsigned char reify;
454#if EV_SELECT_IS_WINSOCKET
455 SOCKET handle;
456#endif
457} ANFD;
458
459typedef struct
460{
461 W w;
462 int events;
463} ANPENDING;
464
465#if EV_USE_INOTIFY
466/* hash table entry per inotify-id */
467typedef struct
468{
469 WL head;
470} ANFS;
471#endif
472
473/* Heap Entry */
474#if EV_HEAP_CACHE_AT
475 typedef struct {
476 ev_tstamp at;
477 WT w;
478 } ANHE;
479
480 #define ANHE_w(he) (he).w /* access watcher, read-write */
481 #define ANHE_at(he) (he).at /* access cached at, read-only */
482 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
483#else
484 typedef WT ANHE;
485
486 #define ANHE_w(he) (he)
487 #define ANHE_at(he) (he)->at
488 #define ANHE_at_cache(he)
489#endif
490
491#if EV_MULTIPLICITY
492
493 struct ev_loop
494 {
495 ev_tstamp ev_rt_now;
496 #define ev_rt_now ((loop)->ev_rt_now)
497 #define VAR(name,decl) decl;
498 #include "ev_vars.h"
499 #undef VAR
500 };
501 #include "ev_wrap.h"
502
503 static struct ev_loop default_loop_struct;
504 struct ev_loop *ev_default_loop_ptr;
505
506#else
507
82ev_tstamp ev_now; 508 ev_tstamp ev_rt_now;
83int ev_method; 509 #define VAR(name,decl) static decl;
510 #include "ev_vars.h"
511 #undef VAR
84 512
85static int have_monotonic; /* runtime */ 513 static int ev_default_loop_ptr;
86 514
87static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 515#endif
88static void (*method_modify)(int fd, int oev, int nev);
89static void (*method_poll)(ev_tstamp timeout);
90 516
91/*****************************************************************************/ 517/*****************************************************************************/
92 518
93ev_tstamp 519ev_tstamp
94ev_time (void) 520ev_time (void)
102 gettimeofday (&tv, 0); 528 gettimeofday (&tv, 0);
103 return tv.tv_sec + tv.tv_usec * 1e-6; 529 return tv.tv_sec + tv.tv_usec * 1e-6;
104#endif 530#endif
105} 531}
106 532
107static ev_tstamp 533ev_tstamp inline_size
108get_clock (void) 534get_clock (void)
109{ 535{
110#if EV_USE_MONOTONIC 536#if EV_USE_MONOTONIC
111 if (have_monotonic) 537 if (expect_true (have_monotonic))
112 { 538 {
113 struct timespec ts; 539 struct timespec ts;
114 clock_gettime (CLOCK_MONOTONIC, &ts); 540 clock_gettime (CLOCK_MONOTONIC, &ts);
115 return ts.tv_sec + ts.tv_nsec * 1e-9; 541 return ts.tv_sec + ts.tv_nsec * 1e-9;
116 } 542 }
117#endif 543#endif
118 544
119 return ev_time (); 545 return ev_time ();
120} 546}
121 547
122#define array_roundsize(base,n) ((n) | 4 & ~3) 548#if EV_MULTIPLICITY
549ev_tstamp
550ev_now (EV_P)
551{
552 return ev_rt_now;
553}
554#endif
123 555
124#define array_needsize(base,cur,cnt,init) \ 556void
125 if ((cnt) > cur) \ 557ev_sleep (ev_tstamp delay)
126 { \ 558{
127 int newcnt = cur; \ 559 if (delay > 0.)
128 do \
129 { \
130 newcnt = array_roundsize (base, newcnt << 1); \
131 } \
132 while ((cnt) > newcnt); \
133 \
134 base = realloc (base, sizeof (*base) * (newcnt)); \
135 init (base + cur, newcnt - cur); \
136 cur = newcnt; \
137 } 560 {
561#if EV_USE_NANOSLEEP
562 struct timespec ts;
563
564 ts.tv_sec = (time_t)delay;
565 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
566
567 nanosleep (&ts, 0);
568#elif defined(_WIN32)
569 Sleep ((unsigned long)(delay * 1e3));
570#else
571 struct timeval tv;
572
573 tv.tv_sec = (time_t)delay;
574 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
575
576 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
577 /* somehting nto guaranteed by newer posix versions, but guaranteed */
578 /* by older ones */
579 select (0, 0, 0, 0, &tv);
580#endif
581 }
582}
138 583
139/*****************************************************************************/ 584/*****************************************************************************/
140 585
141typedef struct 586#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
142{
143 struct ev_io *head;
144 unsigned char events;
145 unsigned char reify;
146} ANFD;
147 587
148static ANFD *anfds; 588int inline_size
149static int anfdmax; 589array_nextsize (int elem, int cur, int cnt)
590{
591 int ncur = cur + 1;
150 592
151static void 593 do
594 ncur <<= 1;
595 while (cnt > ncur);
596
597 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
598 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
599 {
600 ncur *= elem;
601 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
602 ncur = ncur - sizeof (void *) * 4;
603 ncur /= elem;
604 }
605
606 return ncur;
607}
608
609static noinline void *
610array_realloc (int elem, void *base, int *cur, int cnt)
611{
612 *cur = array_nextsize (elem, *cur, cnt);
613 return ev_realloc (base, elem * *cur);
614}
615
616#define array_needsize(type,base,cur,cnt,init) \
617 if (expect_false ((cnt) > (cur))) \
618 { \
619 int ocur_ = (cur); \
620 (base) = (type *)array_realloc \
621 (sizeof (type), (base), &(cur), (cnt)); \
622 init ((base) + (ocur_), (cur) - ocur_); \
623 }
624
625#if 0
626#define array_slim(type,stem) \
627 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
628 { \
629 stem ## max = array_roundsize (stem ## cnt >> 1); \
630 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
631 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
632 }
633#endif
634
635#define array_free(stem, idx) \
636 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
637
638/*****************************************************************************/
639
640void noinline
641ev_feed_event (EV_P_ void *w, int revents)
642{
643 W w_ = (W)w;
644 int pri = ABSPRI (w_);
645
646 if (expect_false (w_->pending))
647 pendings [pri][w_->pending - 1].events |= revents;
648 else
649 {
650 w_->pending = ++pendingcnt [pri];
651 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
652 pendings [pri][w_->pending - 1].w = w_;
653 pendings [pri][w_->pending - 1].events = revents;
654 }
655}
656
657void inline_speed
658queue_events (EV_P_ W *events, int eventcnt, int type)
659{
660 int i;
661
662 for (i = 0; i < eventcnt; ++i)
663 ev_feed_event (EV_A_ events [i], type);
664}
665
666/*****************************************************************************/
667
668void inline_size
152anfds_init (ANFD *base, int count) 669anfds_init (ANFD *base, int count)
153{ 670{
154 while (count--) 671 while (count--)
155 { 672 {
156 base->head = 0; 673 base->head = 0;
159 676
160 ++base; 677 ++base;
161 } 678 }
162} 679}
163 680
164typedef struct 681void inline_speed
165{
166 W w;
167 int events;
168} ANPENDING;
169
170static ANPENDING *pendings;
171static int pendingmax, pendingcnt;
172
173static void
174event (W w, int events)
175{
176 if (w->pending)
177 {
178 pendings [w->pending - 1].events |= events;
179 return;
180 }
181
182 w->pending = ++pendingcnt;
183 array_needsize (pendings, pendingmax, pendingcnt, );
184 pendings [pendingcnt - 1].w = w;
185 pendings [pendingcnt - 1].events = events;
186}
187
188static void
189queue_events (W *events, int eventcnt, int type)
190{
191 int i;
192
193 for (i = 0; i < eventcnt; ++i)
194 event (events [i], type);
195}
196
197static void
198fd_event (int fd, int events) 682fd_event (EV_P_ int fd, int revents)
199{ 683{
200 ANFD *anfd = anfds + fd; 684 ANFD *anfd = anfds + fd;
201 struct ev_io *w; 685 ev_io *w;
202 686
203 for (w = anfd->head; w; w = w->next) 687 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
204 { 688 {
205 int ev = w->events & events; 689 int ev = w->events & revents;
206 690
207 if (ev) 691 if (ev)
208 event ((W)w, ev); 692 ev_feed_event (EV_A_ (W)w, ev);
209 } 693 }
210} 694}
211 695
212/*****************************************************************************/ 696void
697ev_feed_fd_event (EV_P_ int fd, int revents)
698{
699 if (fd >= 0 && fd < anfdmax)
700 fd_event (EV_A_ fd, revents);
701}
213 702
214static int *fdchanges; 703void inline_size
215static int fdchangemax, fdchangecnt; 704fd_reify (EV_P)
216
217static void
218fd_reify (void)
219{ 705{
220 int i; 706 int i;
221 707
222 for (i = 0; i < fdchangecnt; ++i) 708 for (i = 0; i < fdchangecnt; ++i)
223 { 709 {
224 int fd = fdchanges [i]; 710 int fd = fdchanges [i];
225 ANFD *anfd = anfds + fd; 711 ANFD *anfd = anfds + fd;
226 struct ev_io *w; 712 ev_io *w;
227 713
228 int events = 0; 714 unsigned char events = 0;
229 715
230 for (w = anfd->head; w; w = w->next) 716 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
231 events |= w->events; 717 events |= (unsigned char)w->events;
232 718
233 anfd->reify = 0; 719#if EV_SELECT_IS_WINSOCKET
234 720 if (events)
235 if (anfd->events != events)
236 { 721 {
237 method_modify (fd, anfd->events, events); 722 unsigned long arg;
238 anfd->events = events; 723 #ifdef EV_FD_TO_WIN32_HANDLE
724 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
725 #else
726 anfd->handle = _get_osfhandle (fd);
727 #endif
728 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
239 } 729 }
730#endif
731
732 {
733 unsigned char o_events = anfd->events;
734 unsigned char o_reify = anfd->reify;
735
736 anfd->reify = 0;
737 anfd->events = events;
738
739 if (o_events != events || o_reify & EV_IOFDSET)
740 backend_modify (EV_A_ fd, o_events, events);
741 }
240 } 742 }
241 743
242 fdchangecnt = 0; 744 fdchangecnt = 0;
243} 745}
244 746
245static void 747void inline_size
246fd_change (int fd) 748fd_change (EV_P_ int fd, int flags)
247{ 749{
248 if (anfds [fd].reify || fdchangecnt < 0) 750 unsigned char reify = anfds [fd].reify;
249 return;
250
251 anfds [fd].reify = 1; 751 anfds [fd].reify |= flags;
252 752
753 if (expect_true (!reify))
754 {
253 ++fdchangecnt; 755 ++fdchangecnt;
254 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 756 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
255 fdchanges [fdchangecnt - 1] = fd; 757 fdchanges [fdchangecnt - 1] = fd;
758 }
759}
760
761void inline_speed
762fd_kill (EV_P_ int fd)
763{
764 ev_io *w;
765
766 while ((w = (ev_io *)anfds [fd].head))
767 {
768 ev_io_stop (EV_A_ w);
769 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
770 }
771}
772
773int inline_size
774fd_valid (int fd)
775{
776#ifdef _WIN32
777 return _get_osfhandle (fd) != -1;
778#else
779 return fcntl (fd, F_GETFD) != -1;
780#endif
256} 781}
257 782
258/* called on EBADF to verify fds */ 783/* called on EBADF to verify fds */
259static void 784static void noinline
260fd_recheck (void) 785fd_ebadf (EV_P)
261{ 786{
262 int fd; 787 int fd;
263 788
264 for (fd = 0; fd < anfdmax; ++fd) 789 for (fd = 0; fd < anfdmax; ++fd)
265 if (anfds [fd].events) 790 if (anfds [fd].events)
266 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 791 if (!fd_valid (fd) && errno == EBADF)
267 while (anfds [fd].head) 792 fd_kill (EV_A_ fd);
793}
794
795/* called on ENOMEM in select/poll to kill some fds and retry */
796static void noinline
797fd_enomem (EV_P)
798{
799 int fd;
800
801 for (fd = anfdmax; fd--; )
802 if (anfds [fd].events)
268 { 803 {
269 ev_io_stop (anfds [fd].head); 804 fd_kill (EV_A_ fd);
270 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE); 805 return;
271 } 806 }
807}
808
809/* usually called after fork if backend needs to re-arm all fds from scratch */
810static void noinline
811fd_rearm_all (EV_P)
812{
813 int fd;
814
815 for (fd = 0; fd < anfdmax; ++fd)
816 if (anfds [fd].events)
817 {
818 anfds [fd].events = 0;
819 fd_change (EV_A_ fd, EV_IOFDSET | 1);
820 }
272} 821}
273 822
274/*****************************************************************************/ 823/*****************************************************************************/
275 824
276static struct ev_timer **timers; 825/*
277static int timermax, timercnt; 826 * the heap functions want a real array index. array index 0 uis guaranteed to not
827 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
828 * the branching factor of the d-tree.
829 */
278 830
279static struct ev_periodic **periodics; 831/*
280static int periodicmax, periodiccnt; 832 * at the moment we allow libev the luxury of two heaps,
833 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
834 * which is more cache-efficient.
835 * the difference is about 5% with 50000+ watchers.
836 */
837#if EV_USE_4HEAP
281 838
282static void 839#define DHEAP 4
283upheap (WT *timers, int k) 840#define HEAP0 (DHEAP - 1) /* index of first element in heap */
284{ 841#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
285 WT w = timers [k]; 842#define UPHEAP_DONE(p,k) ((p) == (k))
286 843
287 while (k && timers [k >> 1]->at > w->at) 844/* away from the root */
288 { 845void inline_speed
289 timers [k] = timers [k >> 1];
290 timers [k]->active = k + 1;
291 k >>= 1;
292 }
293
294 timers [k] = w;
295 timers [k]->active = k + 1;
296
297}
298
299static void
300downheap (WT *timers, int N, int k) 846downheap (ANHE *heap, int N, int k)
301{ 847{
302 WT w = timers [k]; 848 ANHE he = heap [k];
849 ANHE *E = heap + N + HEAP0;
303 850
304 while (k < (N >> 1)) 851 for (;;)
305 { 852 {
306 int j = k << 1; 853 ev_tstamp minat;
854 ANHE *minpos;
855 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
307 856
308 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 857 /* find minimum child */
858 if (expect_true (pos + DHEAP - 1 < E))
309 ++j; 859 {
310 860 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
311 if (w->at <= timers [j]->at) 861 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
862 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
863 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
864 }
865 else if (pos < E)
866 {
867 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
868 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
869 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
870 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
871 }
872 else
312 break; 873 break;
313 874
314 timers [k] = timers [j]; 875 if (ANHE_at (he) <= minat)
315 timers [k]->active = k + 1; 876 break;
877
878 heap [k] = *minpos;
879 ev_active (ANHE_w (*minpos)) = k;
880
881 k = minpos - heap;
882 }
883
884 heap [k] = he;
885 ev_active (ANHE_w (he)) = k;
886}
887
888#else /* 4HEAP */
889
890#define HEAP0 1
891#define HPARENT(k) ((k) >> 1)
892#define UPHEAP_DONE(p,k) (!(p))
893
894/* away from the root */
895void inline_speed
896downheap (ANHE *heap, int N, int k)
897{
898 ANHE he = heap [k];
899
900 for (;;)
901 {
902 int c = k << 1;
903
904 if (c > N + HEAP0 - 1)
905 break;
906
907 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
908 ? 1 : 0;
909
910 if (ANHE_at (he) <= ANHE_at (heap [c]))
911 break;
912
913 heap [k] = heap [c];
914 ev_active (ANHE_w (heap [k])) = k;
915
316 k = j; 916 k = c;
917 }
918
919 heap [k] = he;
920 ev_active (ANHE_w (he)) = k;
921}
922#endif
923
924/* towards the root */
925void inline_speed
926upheap (ANHE *heap, int k)
927{
928 ANHE he = heap [k];
929
930 for (;;)
317 } 931 {
932 int p = HPARENT (k);
318 933
319 timers [k] = w; 934 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
320 timers [k]->active = k + 1; 935 break;
936
937 heap [k] = heap [p];
938 ev_active (ANHE_w (heap [k])) = k;
939 k = p;
940 }
941
942 heap [k] = he;
943 ev_active (ANHE_w (he)) = k;
944}
945
946void inline_size
947adjustheap (ANHE *heap, int N, int k)
948{
949 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
950 upheap (heap, k);
951 else
952 downheap (heap, N, k);
953}
954
955/* rebuild the heap: this function is used only once and executed rarely */
956void inline_size
957reheap (ANHE *heap, int N)
958{
959 int i;
960
961 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
962 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
963 for (i = 0; i < N; ++i)
964 upheap (heap, i + HEAP0);
321} 965}
322 966
323/*****************************************************************************/ 967/*****************************************************************************/
324 968
325typedef struct 969typedef struct
326{ 970{
327 struct ev_signal *head; 971 WL head;
328 sig_atomic_t volatile gotsig; 972 EV_ATOMIC_T gotsig;
329} ANSIG; 973} ANSIG;
330 974
331static ANSIG *signals; 975static ANSIG *signals;
332static int signalmax; 976static int signalmax;
333 977
334static int sigpipe [2]; 978static EV_ATOMIC_T gotsig;
335static sig_atomic_t volatile gotsig;
336static struct ev_io sigev;
337 979
338static void 980void inline_size
339signals_init (ANSIG *base, int count) 981signals_init (ANSIG *base, int count)
340{ 982{
341 while (count--) 983 while (count--)
342 { 984 {
343 base->head = 0; 985 base->head = 0;
345 987
346 ++base; 988 ++base;
347 } 989 }
348} 990}
349 991
992/*****************************************************************************/
993
994void inline_speed
995fd_intern (int fd)
996{
997#ifdef _WIN32
998 unsigned long arg = 1;
999 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1000#else
1001 fcntl (fd, F_SETFD, FD_CLOEXEC);
1002 fcntl (fd, F_SETFL, O_NONBLOCK);
1003#endif
1004}
1005
1006static void noinline
1007evpipe_init (EV_P)
1008{
1009 if (!ev_is_active (&pipeev))
1010 {
1011#if EV_USE_EVENTFD
1012 if ((evfd = eventfd (0, 0)) >= 0)
1013 {
1014 evpipe [0] = -1;
1015 fd_intern (evfd);
1016 ev_io_set (&pipeev, evfd, EV_READ);
1017 }
1018 else
1019#endif
1020 {
1021 while (pipe (evpipe))
1022 syserr ("(libev) error creating signal/async pipe");
1023
1024 fd_intern (evpipe [0]);
1025 fd_intern (evpipe [1]);
1026 ev_io_set (&pipeev, evpipe [0], EV_READ);
1027 }
1028
1029 ev_io_start (EV_A_ &pipeev);
1030 ev_unref (EV_A); /* watcher should not keep loop alive */
1031 }
1032}
1033
1034void inline_size
1035evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1036{
1037 if (!*flag)
1038 {
1039 int old_errno = errno; /* save errno because write might clobber it */
1040
1041 *flag = 1;
1042
1043#if EV_USE_EVENTFD
1044 if (evfd >= 0)
1045 {
1046 uint64_t counter = 1;
1047 write (evfd, &counter, sizeof (uint64_t));
1048 }
1049 else
1050#endif
1051 write (evpipe [1], &old_errno, 1);
1052
1053 errno = old_errno;
1054 }
1055}
1056
350static void 1057static void
1058pipecb (EV_P_ ev_io *iow, int revents)
1059{
1060#if EV_USE_EVENTFD
1061 if (evfd >= 0)
1062 {
1063 uint64_t counter;
1064 read (evfd, &counter, sizeof (uint64_t));
1065 }
1066 else
1067#endif
1068 {
1069 char dummy;
1070 read (evpipe [0], &dummy, 1);
1071 }
1072
1073 if (gotsig && ev_is_default_loop (EV_A))
1074 {
1075 int signum;
1076 gotsig = 0;
1077
1078 for (signum = signalmax; signum--; )
1079 if (signals [signum].gotsig)
1080 ev_feed_signal_event (EV_A_ signum + 1);
1081 }
1082
1083#if EV_ASYNC_ENABLE
1084 if (gotasync)
1085 {
1086 int i;
1087 gotasync = 0;
1088
1089 for (i = asynccnt; i--; )
1090 if (asyncs [i]->sent)
1091 {
1092 asyncs [i]->sent = 0;
1093 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1094 }
1095 }
1096#endif
1097}
1098
1099/*****************************************************************************/
1100
1101static void
351sighandler (int signum) 1102ev_sighandler (int signum)
352{ 1103{
1104#if EV_MULTIPLICITY
1105 struct ev_loop *loop = &default_loop_struct;
1106#endif
1107
1108#if _WIN32
1109 signal (signum, ev_sighandler);
1110#endif
1111
353 signals [signum - 1].gotsig = 1; 1112 signals [signum - 1].gotsig = 1;
354 1113 evpipe_write (EV_A_ &gotsig);
355 if (!gotsig)
356 {
357 gotsig = 1;
358 write (sigpipe [1], &signum, 1);
359 }
360} 1114}
361 1115
362static void 1116void noinline
363sigcb (struct ev_io *iow, int revents) 1117ev_feed_signal_event (EV_P_ int signum)
364{ 1118{
365 struct ev_signal *w; 1119 WL w;
366 int sig;
367 1120
368 read (sigpipe [0], &revents, 1); 1121#if EV_MULTIPLICITY
369 gotsig = 0; 1122 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1123#endif
370 1124
371 for (sig = signalmax; sig--; ) 1125 --signum;
372 if (signals [sig].gotsig) 1126
373 { 1127 if (signum < 0 || signum >= signalmax)
1128 return;
1129
374 signals [sig].gotsig = 0; 1130 signals [signum].gotsig = 0;
375 1131
376 for (w = signals [sig].head; w; w = w->next) 1132 for (w = signals [signum].head; w; w = w->next)
377 event ((W)w, EV_SIGNAL); 1133 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
378 }
379}
380
381static void
382siginit (void)
383{
384 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
385 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
386
387 /* rather than sort out wether we really need nb, set it */
388 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
389 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
390
391 ev_io_set (&sigev, sigpipe [0], EV_READ);
392 ev_io_start (&sigev);
393} 1134}
394 1135
395/*****************************************************************************/ 1136/*****************************************************************************/
396 1137
397static struct ev_idle **idles; 1138static WL childs [EV_PID_HASHSIZE];
398static int idlemax, idlecnt;
399 1139
400static struct ev_prepare **prepares; 1140#ifndef _WIN32
401static int preparemax, preparecnt;
402 1141
403static struct ev_check **checks;
404static int checkmax, checkcnt;
405
406/*****************************************************************************/
407
408static struct ev_child *childs [PID_HASHSIZE];
409static struct ev_signal childev; 1142static ev_signal childev;
1143
1144#ifndef WIFCONTINUED
1145# define WIFCONTINUED(status) 0
1146#endif
1147
1148void inline_speed
1149child_reap (EV_P_ int chain, int pid, int status)
1150{
1151 ev_child *w;
1152 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1153
1154 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1155 {
1156 if ((w->pid == pid || !w->pid)
1157 && (!traced || (w->flags & 1)))
1158 {
1159 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1160 w->rpid = pid;
1161 w->rstatus = status;
1162 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1163 }
1164 }
1165}
410 1166
411#ifndef WCONTINUED 1167#ifndef WCONTINUED
412# define WCONTINUED 0 1168# define WCONTINUED 0
413#endif 1169#endif
414 1170
415static void 1171static void
416childcb (struct ev_signal *sw, int revents) 1172childcb (EV_P_ ev_signal *sw, int revents)
417{ 1173{
418 struct ev_child *w;
419 int pid, status; 1174 int pid, status;
420 1175
1176 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
421 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 1177 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
422 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 1178 if (!WCONTINUED
423 if (w->pid == pid || w->pid == -1) 1179 || errno != EINVAL
424 { 1180 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
425 w->status = status; 1181 return;
426 event ((W)w, EV_CHILD); 1182
427 } 1183 /* make sure we are called again until all children have been reaped */
1184 /* we need to do it this way so that the callback gets called before we continue */
1185 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1186
1187 child_reap (EV_A_ pid, pid, status);
1188 if (EV_PID_HASHSIZE > 1)
1189 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
428} 1190}
1191
1192#endif
429 1193
430/*****************************************************************************/ 1194/*****************************************************************************/
431 1195
1196#if EV_USE_PORT
1197# include "ev_port.c"
1198#endif
1199#if EV_USE_KQUEUE
1200# include "ev_kqueue.c"
1201#endif
432#if EV_USE_EPOLL 1202#if EV_USE_EPOLL
433# include "ev_epoll.c" 1203# include "ev_epoll.c"
434#endif 1204#endif
1205#if EV_USE_POLL
1206# include "ev_poll.c"
1207#endif
435#if EV_USE_SELECT 1208#if EV_USE_SELECT
436# include "ev_select.c" 1209# include "ev_select.c"
437#endif 1210#endif
438 1211
439int 1212int
446ev_version_minor (void) 1219ev_version_minor (void)
447{ 1220{
448 return EV_VERSION_MINOR; 1221 return EV_VERSION_MINOR;
449} 1222}
450 1223
451int ev_init (int flags) 1224/* return true if we are running with elevated privileges and should ignore env variables */
1225int inline_size
1226enable_secure (void)
452{ 1227{
453 if (!ev_method) 1228#ifdef _WIN32
1229 return 0;
1230#else
1231 return getuid () != geteuid ()
1232 || getgid () != getegid ();
1233#endif
1234}
1235
1236unsigned int
1237ev_supported_backends (void)
1238{
1239 unsigned int flags = 0;
1240
1241 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1242 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1243 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1244 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1245 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1246
1247 return flags;
1248}
1249
1250unsigned int
1251ev_recommended_backends (void)
1252{
1253 unsigned int flags = ev_supported_backends ();
1254
1255#ifndef __NetBSD__
1256 /* kqueue is borked on everything but netbsd apparently */
1257 /* it usually doesn't work correctly on anything but sockets and pipes */
1258 flags &= ~EVBACKEND_KQUEUE;
1259#endif
1260#ifdef __APPLE__
1261 // flags &= ~EVBACKEND_KQUEUE; for documentation
1262 flags &= ~EVBACKEND_POLL;
1263#endif
1264
1265 return flags;
1266}
1267
1268unsigned int
1269ev_embeddable_backends (void)
1270{
1271 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1272
1273 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1274 /* please fix it and tell me how to detect the fix */
1275 flags &= ~EVBACKEND_EPOLL;
1276
1277 return flags;
1278}
1279
1280unsigned int
1281ev_backend (EV_P)
1282{
1283 return backend;
1284}
1285
1286unsigned int
1287ev_loop_count (EV_P)
1288{
1289 return loop_count;
1290}
1291
1292void
1293ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1294{
1295 io_blocktime = interval;
1296}
1297
1298void
1299ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1300{
1301 timeout_blocktime = interval;
1302}
1303
1304static void noinline
1305loop_init (EV_P_ unsigned int flags)
1306{
1307 if (!backend)
454 { 1308 {
455#if EV_USE_MONOTONIC 1309#if EV_USE_MONOTONIC
456 { 1310 {
457 struct timespec ts; 1311 struct timespec ts;
458 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1312 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
459 have_monotonic = 1; 1313 have_monotonic = 1;
460 } 1314 }
461#endif 1315#endif
462 1316
463 ev_now = ev_time (); 1317 ev_rt_now = ev_time ();
464 now = get_clock (); 1318 mn_now = get_clock ();
1319 now_floor = mn_now;
465 diff = ev_now - now; 1320 rtmn_diff = ev_rt_now - mn_now;
466 1321
467 if (pipe (sigpipe)) 1322 io_blocktime = 0.;
468 return 0; 1323 timeout_blocktime = 0.;
1324 backend = 0;
1325 backend_fd = -1;
1326 gotasync = 0;
1327#if EV_USE_INOTIFY
1328 fs_fd = -2;
1329#endif
469 1330
470 ev_method = EVMETHOD_NONE; 1331 /* pid check not overridable via env */
1332#ifndef _WIN32
1333 if (flags & EVFLAG_FORKCHECK)
1334 curpid = getpid ();
1335#endif
1336
1337 if (!(flags & EVFLAG_NOENV)
1338 && !enable_secure ()
1339 && getenv ("LIBEV_FLAGS"))
1340 flags = atoi (getenv ("LIBEV_FLAGS"));
1341
1342 if (!(flags & 0x0000ffffU))
1343 flags |= ev_recommended_backends ();
1344
1345#if EV_USE_PORT
1346 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1347#endif
1348#if EV_USE_KQUEUE
1349 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1350#endif
471#if EV_USE_EPOLL 1351#if EV_USE_EPOLL
472 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 1352 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1353#endif
1354#if EV_USE_POLL
1355 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
473#endif 1356#endif
474#if EV_USE_SELECT 1357#if EV_USE_SELECT
475 if (ev_method == EVMETHOD_NONE) select_init (flags); 1358 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
476#endif 1359#endif
477 1360
478 if (ev_method) 1361 ev_init (&pipeev, pipecb);
1362 ev_set_priority (&pipeev, EV_MAXPRI);
1363 }
1364}
1365
1366static void noinline
1367loop_destroy (EV_P)
1368{
1369 int i;
1370
1371 if (ev_is_active (&pipeev))
1372 {
1373 ev_ref (EV_A); /* signal watcher */
1374 ev_io_stop (EV_A_ &pipeev);
1375
1376#if EV_USE_EVENTFD
1377 if (evfd >= 0)
1378 close (evfd);
1379#endif
1380
1381 if (evpipe [0] >= 0)
479 { 1382 {
480 ev_watcher_init (&sigev, sigcb); 1383 close (evpipe [0]);
481 siginit (); 1384 close (evpipe [1]);
1385 }
1386 }
482 1387
1388#if EV_USE_INOTIFY
1389 if (fs_fd >= 0)
1390 close (fs_fd);
1391#endif
1392
1393 if (backend_fd >= 0)
1394 close (backend_fd);
1395
1396#if EV_USE_PORT
1397 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1398#endif
1399#if EV_USE_KQUEUE
1400 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1401#endif
1402#if EV_USE_EPOLL
1403 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1404#endif
1405#if EV_USE_POLL
1406 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1407#endif
1408#if EV_USE_SELECT
1409 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1410#endif
1411
1412 for (i = NUMPRI; i--; )
1413 {
1414 array_free (pending, [i]);
1415#if EV_IDLE_ENABLE
1416 array_free (idle, [i]);
1417#endif
1418 }
1419
1420 ev_free (anfds); anfdmax = 0;
1421
1422 /* have to use the microsoft-never-gets-it-right macro */
1423 array_free (fdchange, EMPTY);
1424 array_free (timer, EMPTY);
1425#if EV_PERIODIC_ENABLE
1426 array_free (periodic, EMPTY);
1427#endif
1428#if EV_FORK_ENABLE
1429 array_free (fork, EMPTY);
1430#endif
1431 array_free (prepare, EMPTY);
1432 array_free (check, EMPTY);
1433#if EV_ASYNC_ENABLE
1434 array_free (async, EMPTY);
1435#endif
1436
1437 backend = 0;
1438}
1439
1440#if EV_USE_INOTIFY
1441void inline_size infy_fork (EV_P);
1442#endif
1443
1444void inline_size
1445loop_fork (EV_P)
1446{
1447#if EV_USE_PORT
1448 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1449#endif
1450#if EV_USE_KQUEUE
1451 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1452#endif
1453#if EV_USE_EPOLL
1454 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1455#endif
1456#if EV_USE_INOTIFY
1457 infy_fork (EV_A);
1458#endif
1459
1460 if (ev_is_active (&pipeev))
1461 {
1462 /* this "locks" the handlers against writing to the pipe */
1463 /* while we modify the fd vars */
1464 gotsig = 1;
1465#if EV_ASYNC_ENABLE
1466 gotasync = 1;
1467#endif
1468
1469 ev_ref (EV_A);
1470 ev_io_stop (EV_A_ &pipeev);
1471
1472#if EV_USE_EVENTFD
1473 if (evfd >= 0)
1474 close (evfd);
1475#endif
1476
1477 if (evpipe [0] >= 0)
1478 {
1479 close (evpipe [0]);
1480 close (evpipe [1]);
1481 }
1482
1483 evpipe_init (EV_A);
1484 /* now iterate over everything, in case we missed something */
1485 pipecb (EV_A_ &pipeev, EV_READ);
1486 }
1487
1488 postfork = 0;
1489}
1490
1491#if EV_MULTIPLICITY
1492
1493struct ev_loop *
1494ev_loop_new (unsigned int flags)
1495{
1496 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1497
1498 memset (loop, 0, sizeof (struct ev_loop));
1499
1500 loop_init (EV_A_ flags);
1501
1502 if (ev_backend (EV_A))
1503 return loop;
1504
1505 return 0;
1506}
1507
1508void
1509ev_loop_destroy (EV_P)
1510{
1511 loop_destroy (EV_A);
1512 ev_free (loop);
1513}
1514
1515void
1516ev_loop_fork (EV_P)
1517{
1518 postfork = 1; /* must be in line with ev_default_fork */
1519}
1520
1521#if EV_VERIFY
1522static void noinline
1523verify_watcher (EV_P_ W w)
1524{
1525 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1526
1527 if (w->pending)
1528 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1529}
1530
1531static void noinline
1532verify_heap (EV_P_ ANHE *heap, int N)
1533{
1534 int i;
1535
1536 for (i = HEAP0; i < N + HEAP0; ++i)
1537 {
1538 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1539 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1540 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1541
1542 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1543 }
1544}
1545
1546static void noinline
1547array_verify (EV_P_ W *ws, int cnt)
1548{
1549 while (cnt--)
1550 {
1551 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1552 verify_watcher (EV_A_ ws [cnt]);
1553 }
1554}
1555#endif
1556
1557void
1558ev_loop_verify (EV_P)
1559{
1560#if EV_VERIFY
1561 int i;
1562 WL w;
1563
1564 assert (activecnt >= -1);
1565
1566 assert (fdchangemax >= fdchangecnt);
1567 for (i = 0; i < fdchangecnt; ++i)
1568 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1569
1570 assert (anfdmax >= 0);
1571 for (i = 0; i < anfdmax; ++i)
1572 for (w = anfds [i].head; w; w = w->next)
1573 {
1574 verify_watcher (EV_A_ (W)w);
1575 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1576 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1577 }
1578
1579 assert (timermax >= timercnt);
1580 verify_heap (EV_A_ timers, timercnt);
1581
1582#if EV_PERIODIC_ENABLE
1583 assert (periodicmax >= periodiccnt);
1584 verify_heap (EV_A_ periodics, periodiccnt);
1585#endif
1586
1587 for (i = NUMPRI; i--; )
1588 {
1589 assert (pendingmax [i] >= pendingcnt [i]);
1590#if EV_IDLE_ENABLE
1591 assert (idleall >= 0);
1592 assert (idlemax [i] >= idlecnt [i]);
1593 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1594#endif
1595 }
1596
1597#if EV_FORK_ENABLE
1598 assert (forkmax >= forkcnt);
1599 array_verify (EV_A_ (W *)forks, forkcnt);
1600#endif
1601
1602#if EV_ASYNC_ENABLE
1603 assert (asyncmax >= asynccnt);
1604 array_verify (EV_A_ (W *)asyncs, asynccnt);
1605#endif
1606
1607 assert (preparemax >= preparecnt);
1608 array_verify (EV_A_ (W *)prepares, preparecnt);
1609
1610 assert (checkmax >= checkcnt);
1611 array_verify (EV_A_ (W *)checks, checkcnt);
1612
1613# if 0
1614 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1615 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1616# endif
1617#endif
1618}
1619
1620#endif /* multiplicity */
1621
1622#if EV_MULTIPLICITY
1623struct ev_loop *
1624ev_default_loop_init (unsigned int flags)
1625#else
1626int
1627ev_default_loop (unsigned int flags)
1628#endif
1629{
1630 if (!ev_default_loop_ptr)
1631 {
1632#if EV_MULTIPLICITY
1633 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1634#else
1635 ev_default_loop_ptr = 1;
1636#endif
1637
1638 loop_init (EV_A_ flags);
1639
1640 if (ev_backend (EV_A))
1641 {
1642#ifndef _WIN32
483 ev_signal_init (&childev, childcb, SIGCHLD); 1643 ev_signal_init (&childev, childcb, SIGCHLD);
1644 ev_set_priority (&childev, EV_MAXPRI);
484 ev_signal_start (&childev); 1645 ev_signal_start (EV_A_ &childev);
1646 ev_unref (EV_A); /* child watcher should not keep loop alive */
1647#endif
485 } 1648 }
1649 else
1650 ev_default_loop_ptr = 0;
486 } 1651 }
487 1652
488 return ev_method; 1653 return ev_default_loop_ptr;
1654}
1655
1656void
1657ev_default_destroy (void)
1658{
1659#if EV_MULTIPLICITY
1660 struct ev_loop *loop = ev_default_loop_ptr;
1661#endif
1662
1663#ifndef _WIN32
1664 ev_ref (EV_A); /* child watcher */
1665 ev_signal_stop (EV_A_ &childev);
1666#endif
1667
1668 loop_destroy (EV_A);
1669}
1670
1671void
1672ev_default_fork (void)
1673{
1674#if EV_MULTIPLICITY
1675 struct ev_loop *loop = ev_default_loop_ptr;
1676#endif
1677
1678 if (backend)
1679 postfork = 1; /* must be in line with ev_loop_fork */
489} 1680}
490 1681
491/*****************************************************************************/ 1682/*****************************************************************************/
492 1683
493void 1684void
494ev_prefork (void) 1685ev_invoke (EV_P_ void *w, int revents)
495{ 1686{
496 /* nop */ 1687 EV_CB_INVOKE ((W)w, revents);
497} 1688}
498 1689
499void 1690void inline_speed
500ev_postfork_parent (void)
501{
502 /* nop */
503}
504
505void
506ev_postfork_child (void)
507{
508#if EV_USE_EPOLL
509 if (ev_method == EVMETHOD_EPOLL)
510 epoll_postfork_child ();
511#endif
512
513 ev_io_stop (&sigev);
514 close (sigpipe [0]);
515 close (sigpipe [1]);
516 pipe (sigpipe);
517 siginit ();
518}
519
520/*****************************************************************************/
521
522static void
523call_pending (void) 1691call_pending (EV_P)
524{ 1692{
1693 int pri;
1694
1695 for (pri = NUMPRI; pri--; )
525 while (pendingcnt) 1696 while (pendingcnt [pri])
526 { 1697 {
527 ANPENDING *p = pendings + --pendingcnt; 1698 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
528 1699
529 if (p->w) 1700 if (expect_true (p->w))
1701 {
1702 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1703
1704 p->w->pending = 0;
1705 EV_CB_INVOKE (p->w, p->events);
1706 EV_FREQUENT_CHECK;
1707 }
1708 }
1709}
1710
1711#if EV_IDLE_ENABLE
1712void inline_size
1713idle_reify (EV_P)
1714{
1715 if (expect_false (idleall))
1716 {
1717 int pri;
1718
1719 for (pri = NUMPRI; pri--; )
530 { 1720 {
531 p->w->pending = 0; 1721 if (pendingcnt [pri])
532 p->w->cb (p->w, p->events); 1722 break;
1723
1724 if (idlecnt [pri])
1725 {
1726 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1727 break;
1728 }
533 } 1729 }
534 } 1730 }
535} 1731}
1732#endif
536 1733
537static void 1734void inline_size
538timers_reify (void) 1735timers_reify (EV_P)
539{ 1736{
1737 EV_FREQUENT_CHECK;
1738
540 while (timercnt && timers [0]->at <= now) 1739 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
541 { 1740 {
542 struct ev_timer *w = timers [0]; 1741 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1742
1743 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
543 1744
544 /* first reschedule or stop timer */ 1745 /* first reschedule or stop timer */
545 if (w->repeat) 1746 if (w->repeat)
546 { 1747 {
1748 ev_at (w) += w->repeat;
1749 if (ev_at (w) < mn_now)
1750 ev_at (w) = mn_now;
1751
547 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1752 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
548 w->at = now + w->repeat; 1753
1754 ANHE_at_cache (timers [HEAP0]);
549 downheap ((WT *)timers, timercnt, 0); 1755 downheap (timers, timercnt, HEAP0);
550 } 1756 }
551 else 1757 else
552 ev_timer_stop (w); /* nonrepeating: stop timer */ 1758 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
553 1759
1760 EV_FREQUENT_CHECK;
554 event ((W)w, EV_TIMEOUT); 1761 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
555 } 1762 }
556} 1763}
557 1764
558static void 1765#if EV_PERIODIC_ENABLE
1766void inline_size
559periodics_reify (void) 1767periodics_reify (EV_P)
560{ 1768{
1769 EV_FREQUENT_CHECK;
1770
561 while (periodiccnt && periodics [0]->at <= ev_now) 1771 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
562 { 1772 {
563 struct ev_periodic *w = periodics [0]; 1773 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1774
1775 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
564 1776
565 /* first reschedule or stop timer */ 1777 /* first reschedule or stop timer */
566 if (w->interval) 1778 if (w->reschedule_cb)
567 { 1779 {
568 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 1780 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
569 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 1781
1782 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1783
1784 ANHE_at_cache (periodics [HEAP0]);
570 downheap ((WT *)periodics, periodiccnt, 0); 1785 downheap (periodics, periodiccnt, HEAP0);
1786 }
1787 else if (w->interval)
1788 {
1789 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1790 /* if next trigger time is not sufficiently in the future, put it there */
1791 /* this might happen because of floating point inexactness */
1792 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1793 {
1794 ev_at (w) += w->interval;
1795
1796 /* if interval is unreasonably low we might still have a time in the past */
1797 /* so correct this. this will make the periodic very inexact, but the user */
1798 /* has effectively asked to get triggered more often than possible */
1799 if (ev_at (w) < ev_rt_now)
1800 ev_at (w) = ev_rt_now;
1801 }
1802
1803 ANHE_at_cache (periodics [HEAP0]);
1804 downheap (periodics, periodiccnt, HEAP0);
571 } 1805 }
572 else 1806 else
573 ev_periodic_stop (w); /* nonrepeating: stop timer */ 1807 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
574 1808
1809 EV_FREQUENT_CHECK;
575 event ((W)w, EV_PERIODIC); 1810 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
576 } 1811 }
577} 1812}
578 1813
579static void 1814static void noinline
580periodics_reschedule (ev_tstamp diff) 1815periodics_reschedule (EV_P)
581{ 1816{
582 int i; 1817 int i;
583 1818
584 /* adjust periodics after time jump */ 1819 /* adjust periodics after time jump */
585 for (i = 0; i < periodiccnt; ++i) 1820 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
586 { 1821 {
587 struct ev_periodic *w = periodics [i]; 1822 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
588 1823
1824 if (w->reschedule_cb)
1825 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
589 if (w->interval) 1826 else if (w->interval)
1827 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1828
1829 ANHE_at_cache (periodics [i]);
1830 }
1831
1832 reheap (periodics, periodiccnt);
1833}
1834#endif
1835
1836void inline_speed
1837time_update (EV_P_ ev_tstamp max_block)
1838{
1839 int i;
1840
1841#if EV_USE_MONOTONIC
1842 if (expect_true (have_monotonic))
1843 {
1844 ev_tstamp odiff = rtmn_diff;
1845
1846 mn_now = get_clock ();
1847
1848 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1849 /* interpolate in the meantime */
1850 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
590 { 1851 {
591 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 1852 ev_rt_now = rtmn_diff + mn_now;
1853 return;
1854 }
592 1855
593 if (fabs (diff) >= 1e-4) 1856 now_floor = mn_now;
1857 ev_rt_now = ev_time ();
1858
1859 /* loop a few times, before making important decisions.
1860 * on the choice of "4": one iteration isn't enough,
1861 * in case we get preempted during the calls to
1862 * ev_time and get_clock. a second call is almost guaranteed
1863 * to succeed in that case, though. and looping a few more times
1864 * doesn't hurt either as we only do this on time-jumps or
1865 * in the unlikely event of having been preempted here.
1866 */
1867 for (i = 4; --i; )
1868 {
1869 rtmn_diff = ev_rt_now - mn_now;
1870
1871 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1872 return; /* all is well */
1873
1874 ev_rt_now = ev_time ();
1875 mn_now = get_clock ();
1876 now_floor = mn_now;
1877 }
1878
1879# if EV_PERIODIC_ENABLE
1880 periodics_reschedule (EV_A);
1881# endif
1882 /* no timer adjustment, as the monotonic clock doesn't jump */
1883 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1884 }
1885 else
1886#endif
1887 {
1888 ev_rt_now = ev_time ();
1889
1890 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1891 {
1892#if EV_PERIODIC_ENABLE
1893 periodics_reschedule (EV_A);
1894#endif
1895 /* adjust timers. this is easy, as the offset is the same for all of them */
1896 for (i = 0; i < timercnt; ++i)
594 { 1897 {
595 ev_periodic_stop (w); 1898 ANHE *he = timers + i + HEAP0;
596 ev_periodic_start (w); 1899 ANHE_w (*he)->at += ev_rt_now - mn_now;
597 1900 ANHE_at_cache (*he);
598 i = 0; /* restart loop, inefficient, but time jumps should be rare */
599 } 1901 }
600 } 1902 }
601 }
602}
603 1903
604static void 1904 mn_now = ev_rt_now;
605time_update (void)
606{
607 int i;
608
609 ev_now = ev_time ();
610
611 if (have_monotonic)
612 { 1905 }
613 ev_tstamp odiff = diff; 1906}
614 1907
615 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1908void
1909ev_ref (EV_P)
1910{
1911 ++activecnt;
1912}
1913
1914void
1915ev_unref (EV_P)
1916{
1917 --activecnt;
1918}
1919
1920void
1921ev_now_update (EV_P)
1922{
1923 time_update (EV_A_ 1e100);
1924}
1925
1926static int loop_done;
1927
1928void
1929ev_loop (EV_P_ int flags)
1930{
1931 loop_done = EVUNLOOP_CANCEL;
1932
1933 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1934
1935 do
1936 {
1937#if EV_VERIFY >= 2
1938 ev_loop_verify (EV_A);
1939#endif
1940
1941#ifndef _WIN32
1942 if (expect_false (curpid)) /* penalise the forking check even more */
1943 if (expect_false (getpid () != curpid))
1944 {
1945 curpid = getpid ();
1946 postfork = 1;
1947 }
1948#endif
1949
1950#if EV_FORK_ENABLE
1951 /* we might have forked, so queue fork handlers */
1952 if (expect_false (postfork))
1953 if (forkcnt)
1954 {
1955 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1956 call_pending (EV_A);
1957 }
1958#endif
1959
1960 /* queue prepare watchers (and execute them) */
1961 if (expect_false (preparecnt))
616 { 1962 {
617 now = get_clock (); 1963 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
618 diff = ev_now - now; 1964 call_pending (EV_A);
619
620 if (fabs (odiff - diff) < MIN_TIMEJUMP)
621 return; /* all is well */
622
623 ev_now = ev_time ();
624 } 1965 }
625 1966
626 periodics_reschedule (diff - odiff); 1967 if (expect_false (!activecnt))
627 /* no timer adjustment, as the monotonic clock doesn't jump */ 1968 break;
628 }
629 else
630 {
631 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)
632 {
633 periodics_reschedule (ev_now - now);
634 1969
635 /* adjust timers. this is easy, as the offset is the same for all */ 1970 /* we might have forked, so reify kernel state if necessary */
636 for (i = 0; i < timercnt; ++i) 1971 if (expect_false (postfork))
637 timers [i]->at += diff; 1972 loop_fork (EV_A);
638 }
639
640 now = ev_now;
641 }
642}
643
644int ev_loop_done;
645
646void ev_loop (int flags)
647{
648 double block;
649 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
650
651 do
652 {
653 /* queue check watchers (and execute them) */
654 if (preparecnt)
655 {
656 queue_events ((W *)prepares, preparecnt, EV_PREPARE);
657 call_pending ();
658 }
659 1973
660 /* update fd-related kernel structures */ 1974 /* update fd-related kernel structures */
661 fd_reify (); 1975 fd_reify (EV_A);
662 1976
663 /* calculate blocking time */ 1977 /* calculate blocking time */
1978 {
1979 ev_tstamp waittime = 0.;
1980 ev_tstamp sleeptime = 0.;
664 1981
665 /* we only need this for !monotonic clockor timers, but as we basically 1982 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
666 always have timers, we just calculate it always */
667 ev_now = ev_time ();
668
669 if (flags & EVLOOP_NONBLOCK || idlecnt)
670 block = 0.;
671 else
672 { 1983 {
1984 /* update time to cancel out callback processing overhead */
1985 time_update (EV_A_ 1e100);
1986
673 block = MAX_BLOCKTIME; 1987 waittime = MAX_BLOCKTIME;
674 1988
675 if (timercnt) 1989 if (timercnt)
676 { 1990 {
677 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 1991 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
678 if (block > to) block = to; 1992 if (waittime > to) waittime = to;
679 } 1993 }
680 1994
1995#if EV_PERIODIC_ENABLE
681 if (periodiccnt) 1996 if (periodiccnt)
682 { 1997 {
683 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1998 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
684 if (block > to) block = to; 1999 if (waittime > to) waittime = to;
685 } 2000 }
2001#endif
686 2002
687 if (block < 0.) block = 0.; 2003 if (expect_false (waittime < timeout_blocktime))
2004 waittime = timeout_blocktime;
2005
2006 sleeptime = waittime - backend_fudge;
2007
2008 if (expect_true (sleeptime > io_blocktime))
2009 sleeptime = io_blocktime;
2010
2011 if (sleeptime)
2012 {
2013 ev_sleep (sleeptime);
2014 waittime -= sleeptime;
2015 }
688 } 2016 }
689 2017
690 method_poll (block); 2018 ++loop_count;
2019 backend_poll (EV_A_ waittime);
691 2020
692 /* update ev_now, do magic */ 2021 /* update ev_rt_now, do magic */
693 time_update (); 2022 time_update (EV_A_ waittime + sleeptime);
2023 }
694 2024
695 /* queue pending timers and reschedule them */ 2025 /* queue pending timers and reschedule them */
696 timers_reify (); /* relative timers called last */ 2026 timers_reify (EV_A); /* relative timers called last */
2027#if EV_PERIODIC_ENABLE
697 periodics_reify (); /* absolute timers called first */ 2028 periodics_reify (EV_A); /* absolute timers called first */
2029#endif
698 2030
2031#if EV_IDLE_ENABLE
699 /* queue idle watchers unless io or timers are pending */ 2032 /* queue idle watchers unless other events are pending */
700 if (!pendingcnt) 2033 idle_reify (EV_A);
701 queue_events ((W *)idles, idlecnt, EV_IDLE); 2034#endif
702 2035
703 /* queue check watchers, to be executed first */ 2036 /* queue check watchers, to be executed first */
704 if (checkcnt) 2037 if (expect_false (checkcnt))
705 queue_events ((W *)checks, checkcnt, EV_CHECK); 2038 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
706 2039
707 call_pending (); 2040 call_pending (EV_A);
708 } 2041 }
709 while (!ev_loop_done); 2042 while (expect_true (
2043 activecnt
2044 && !loop_done
2045 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2046 ));
710 2047
711 if (ev_loop_done != 2) 2048 if (loop_done == EVUNLOOP_ONE)
2049 loop_done = EVUNLOOP_CANCEL;
2050}
2051
2052void
2053ev_unloop (EV_P_ int how)
2054{
712 ev_loop_done = 0; 2055 loop_done = how;
713} 2056}
714 2057
715/*****************************************************************************/ 2058/*****************************************************************************/
716 2059
717static void 2060void inline_size
718wlist_add (WL *head, WL elem) 2061wlist_add (WL *head, WL elem)
719{ 2062{
720 elem->next = *head; 2063 elem->next = *head;
721 *head = elem; 2064 *head = elem;
722} 2065}
723 2066
724static void 2067void inline_size
725wlist_del (WL *head, WL elem) 2068wlist_del (WL *head, WL elem)
726{ 2069{
727 while (*head) 2070 while (*head)
728 { 2071 {
729 if (*head == elem) 2072 if (*head == elem)
734 2077
735 head = &(*head)->next; 2078 head = &(*head)->next;
736 } 2079 }
737} 2080}
738 2081
739static void 2082void inline_speed
740ev_clear_pending (W w) 2083clear_pending (EV_P_ W w)
741{ 2084{
742 if (w->pending) 2085 if (w->pending)
743 { 2086 {
744 pendings [w->pending - 1].w = 0; 2087 pendings [ABSPRI (w)][w->pending - 1].w = 0;
745 w->pending = 0; 2088 w->pending = 0;
746 } 2089 }
747} 2090}
748 2091
749static void 2092int
2093ev_clear_pending (EV_P_ void *w)
2094{
2095 W w_ = (W)w;
2096 int pending = w_->pending;
2097
2098 if (expect_true (pending))
2099 {
2100 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2101 w_->pending = 0;
2102 p->w = 0;
2103 return p->events;
2104 }
2105 else
2106 return 0;
2107}
2108
2109void inline_size
2110pri_adjust (EV_P_ W w)
2111{
2112 int pri = w->priority;
2113 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2114 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2115 w->priority = pri;
2116}
2117
2118void inline_speed
750ev_start (W w, int active) 2119ev_start (EV_P_ W w, int active)
751{ 2120{
2121 pri_adjust (EV_A_ w);
752 w->active = active; 2122 w->active = active;
2123 ev_ref (EV_A);
753} 2124}
754 2125
755static void 2126void inline_size
756ev_stop (W w) 2127ev_stop (EV_P_ W w)
757{ 2128{
2129 ev_unref (EV_A);
758 w->active = 0; 2130 w->active = 0;
759} 2131}
760 2132
761/*****************************************************************************/ 2133/*****************************************************************************/
762 2134
763void 2135void noinline
764ev_io_start (struct ev_io *w) 2136ev_io_start (EV_P_ ev_io *w)
765{ 2137{
2138 int fd = w->fd;
2139
766 if (ev_is_active (w)) 2140 if (expect_false (ev_is_active (w)))
767 return; 2141 return;
768 2142
769 int fd = w->fd;
770
771 assert (("ev_io_start called with negative fd", fd >= 0)); 2143 assert (("ev_io_start called with negative fd", fd >= 0));
772 2144
2145 EV_FREQUENT_CHECK;
2146
773 ev_start ((W)w, 1); 2147 ev_start (EV_A_ (W)w, 1);
774 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 2148 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
775 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2149 wlist_add (&anfds[fd].head, (WL)w);
776 2150
777 fd_change (fd); 2151 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
778} 2152 w->events &= ~EV_IOFDSET;
779 2153
780void 2154 EV_FREQUENT_CHECK;
2155}
2156
2157void noinline
781ev_io_stop (struct ev_io *w) 2158ev_io_stop (EV_P_ ev_io *w)
782{ 2159{
783 ev_clear_pending ((W)w); 2160 clear_pending (EV_A_ (W)w);
784 if (!ev_is_active (w)) 2161 if (expect_false (!ev_is_active (w)))
785 return; 2162 return;
786 2163
2164 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2165
2166 EV_FREQUENT_CHECK;
2167
787 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2168 wlist_del (&anfds[w->fd].head, (WL)w);
788 ev_stop ((W)w); 2169 ev_stop (EV_A_ (W)w);
789 2170
790 fd_change (w->fd); 2171 fd_change (EV_A_ w->fd, 1);
791}
792 2172
793void 2173 EV_FREQUENT_CHECK;
2174}
2175
2176void noinline
794ev_timer_start (struct ev_timer *w) 2177ev_timer_start (EV_P_ ev_timer *w)
795{ 2178{
796 if (ev_is_active (w)) 2179 if (expect_false (ev_is_active (w)))
797 return; 2180 return;
798 2181
799 w->at += now; 2182 ev_at (w) += mn_now;
800 2183
801 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2184 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
802 2185
803 ev_start ((W)w, ++timercnt); 2186 EV_FREQUENT_CHECK;
804 array_needsize (timers, timermax, timercnt, );
805 timers [timercnt - 1] = w;
806 upheap ((WT *)timers, timercnt - 1);
807}
808 2187
809void 2188 ++timercnt;
2189 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2190 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2191 ANHE_w (timers [ev_active (w)]) = (WT)w;
2192 ANHE_at_cache (timers [ev_active (w)]);
2193 upheap (timers, ev_active (w));
2194
2195 EV_FREQUENT_CHECK;
2196
2197 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2198}
2199
2200void noinline
810ev_timer_stop (struct ev_timer *w) 2201ev_timer_stop (EV_P_ ev_timer *w)
811{ 2202{
812 ev_clear_pending ((W)w); 2203 clear_pending (EV_A_ (W)w);
813 if (!ev_is_active (w)) 2204 if (expect_false (!ev_is_active (w)))
814 return; 2205 return;
815 2206
816 if (w->active < timercnt--) 2207 EV_FREQUENT_CHECK;
2208
2209 {
2210 int active = ev_active (w);
2211
2212 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2213
2214 --timercnt;
2215
2216 if (expect_true (active < timercnt + HEAP0))
817 { 2217 {
818 timers [w->active - 1] = timers [timercnt]; 2218 timers [active] = timers [timercnt + HEAP0];
819 downheap ((WT *)timers, timercnt, w->active - 1); 2219 adjustheap (timers, timercnt, active);
820 } 2220 }
2221 }
821 2222
822 w->at = w->repeat; 2223 EV_FREQUENT_CHECK;
823 2224
2225 ev_at (w) -= mn_now;
2226
824 ev_stop ((W)w); 2227 ev_stop (EV_A_ (W)w);
825} 2228}
826 2229
827void 2230void noinline
828ev_timer_again (struct ev_timer *w) 2231ev_timer_again (EV_P_ ev_timer *w)
829{ 2232{
2233 EV_FREQUENT_CHECK;
2234
830 if (ev_is_active (w)) 2235 if (ev_is_active (w))
831 { 2236 {
832 if (w->repeat) 2237 if (w->repeat)
833 { 2238 {
834 w->at = now + w->repeat; 2239 ev_at (w) = mn_now + w->repeat;
2240 ANHE_at_cache (timers [ev_active (w)]);
835 downheap ((WT *)timers, timercnt, w->active - 1); 2241 adjustheap (timers, timercnt, ev_active (w));
836 } 2242 }
837 else 2243 else
838 ev_timer_stop (w); 2244 ev_timer_stop (EV_A_ w);
839 } 2245 }
840 else if (w->repeat) 2246 else if (w->repeat)
2247 {
2248 ev_at (w) = w->repeat;
841 ev_timer_start (w); 2249 ev_timer_start (EV_A_ w);
842} 2250 }
843 2251
844void 2252 EV_FREQUENT_CHECK;
2253}
2254
2255#if EV_PERIODIC_ENABLE
2256void noinline
845ev_periodic_start (struct ev_periodic *w) 2257ev_periodic_start (EV_P_ ev_periodic *w)
846{ 2258{
847 if (ev_is_active (w)) 2259 if (expect_false (ev_is_active (w)))
848 return; 2260 return;
849 2261
2262 if (w->reschedule_cb)
2263 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2264 else if (w->interval)
2265 {
850 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2266 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
851
852 /* this formula differs from the one in periodic_reify because we do not always round up */ 2267 /* this formula differs from the one in periodic_reify because we do not always round up */
853 if (w->interval)
854 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 2268 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2269 }
2270 else
2271 ev_at (w) = w->offset;
855 2272
2273 EV_FREQUENT_CHECK;
2274
2275 ++periodiccnt;
856 ev_start ((W)w, ++periodiccnt); 2276 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
857 array_needsize (periodics, periodicmax, periodiccnt, ); 2277 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
858 periodics [periodiccnt - 1] = w; 2278 ANHE_w (periodics [ev_active (w)]) = (WT)w;
859 upheap ((WT *)periodics, periodiccnt - 1); 2279 ANHE_at_cache (periodics [ev_active (w)]);
860} 2280 upheap (periodics, ev_active (w));
861 2281
862void 2282 EV_FREQUENT_CHECK;
2283
2284 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2285}
2286
2287void noinline
863ev_periodic_stop (struct ev_periodic *w) 2288ev_periodic_stop (EV_P_ ev_periodic *w)
864{ 2289{
865 ev_clear_pending ((W)w); 2290 clear_pending (EV_A_ (W)w);
866 if (!ev_is_active (w)) 2291 if (expect_false (!ev_is_active (w)))
867 return; 2292 return;
868 2293
869 if (w->active < periodiccnt--) 2294 EV_FREQUENT_CHECK;
2295
2296 {
2297 int active = ev_active (w);
2298
2299 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2300
2301 --periodiccnt;
2302
2303 if (expect_true (active < periodiccnt + HEAP0))
870 { 2304 {
871 periodics [w->active - 1] = periodics [periodiccnt]; 2305 periodics [active] = periodics [periodiccnt + HEAP0];
872 downheap ((WT *)periodics, periodiccnt, w->active - 1); 2306 adjustheap (periodics, periodiccnt, active);
873 } 2307 }
2308 }
874 2309
2310 EV_FREQUENT_CHECK;
2311
875 ev_stop ((W)w); 2312 ev_stop (EV_A_ (W)w);
876} 2313}
877 2314
878void 2315void noinline
2316ev_periodic_again (EV_P_ ev_periodic *w)
2317{
2318 /* TODO: use adjustheap and recalculation */
2319 ev_periodic_stop (EV_A_ w);
2320 ev_periodic_start (EV_A_ w);
2321}
2322#endif
2323
2324#ifndef SA_RESTART
2325# define SA_RESTART 0
2326#endif
2327
2328void noinline
879ev_signal_start (struct ev_signal *w) 2329ev_signal_start (EV_P_ ev_signal *w)
880{ 2330{
2331#if EV_MULTIPLICITY
2332 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2333#endif
881 if (ev_is_active (w)) 2334 if (expect_false (ev_is_active (w)))
882 return; 2335 return;
883 2336
884 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2337 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
885 2338
886 ev_start ((W)w, 1); 2339 evpipe_init (EV_A);
2340
2341 EV_FREQUENT_CHECK;
2342
2343 {
2344#ifndef _WIN32
2345 sigset_t full, prev;
2346 sigfillset (&full);
2347 sigprocmask (SIG_SETMASK, &full, &prev);
2348#endif
2349
887 array_needsize (signals, signalmax, w->signum, signals_init); 2350 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2351
2352#ifndef _WIN32
2353 sigprocmask (SIG_SETMASK, &prev, 0);
2354#endif
2355 }
2356
2357 ev_start (EV_A_ (W)w, 1);
888 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2358 wlist_add (&signals [w->signum - 1].head, (WL)w);
889 2359
890 if (!w->next) 2360 if (!((WL)w)->next)
891 { 2361 {
2362#if _WIN32
2363 signal (w->signum, ev_sighandler);
2364#else
892 struct sigaction sa; 2365 struct sigaction sa;
893 sa.sa_handler = sighandler; 2366 sa.sa_handler = ev_sighandler;
894 sigfillset (&sa.sa_mask); 2367 sigfillset (&sa.sa_mask);
895 sa.sa_flags = 0; 2368 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
896 sigaction (w->signum, &sa, 0); 2369 sigaction (w->signum, &sa, 0);
2370#endif
897 } 2371 }
898}
899 2372
900void 2373 EV_FREQUENT_CHECK;
2374}
2375
2376void noinline
901ev_signal_stop (struct ev_signal *w) 2377ev_signal_stop (EV_P_ ev_signal *w)
902{ 2378{
903 ev_clear_pending ((W)w); 2379 clear_pending (EV_A_ (W)w);
904 if (!ev_is_active (w)) 2380 if (expect_false (!ev_is_active (w)))
905 return; 2381 return;
906 2382
2383 EV_FREQUENT_CHECK;
2384
907 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2385 wlist_del (&signals [w->signum - 1].head, (WL)w);
908 ev_stop ((W)w); 2386 ev_stop (EV_A_ (W)w);
909 2387
910 if (!signals [w->signum - 1].head) 2388 if (!signals [w->signum - 1].head)
911 signal (w->signum, SIG_DFL); 2389 signal (w->signum, SIG_DFL);
912}
913 2390
2391 EV_FREQUENT_CHECK;
2392}
2393
914void 2394void
915ev_idle_start (struct ev_idle *w) 2395ev_child_start (EV_P_ ev_child *w)
916{ 2396{
2397#if EV_MULTIPLICITY
2398 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2399#endif
917 if (ev_is_active (w)) 2400 if (expect_false (ev_is_active (w)))
918 return; 2401 return;
919 2402
920 ev_start ((W)w, ++idlecnt); 2403 EV_FREQUENT_CHECK;
921 array_needsize (idles, idlemax, idlecnt, );
922 idles [idlecnt - 1] = w;
923}
924 2404
2405 ev_start (EV_A_ (W)w, 1);
2406 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2407
2408 EV_FREQUENT_CHECK;
2409}
2410
925void 2411void
926ev_idle_stop (struct ev_idle *w) 2412ev_child_stop (EV_P_ ev_child *w)
927{ 2413{
928 ev_clear_pending ((W)w); 2414 clear_pending (EV_A_ (W)w);
929 if (ev_is_active (w)) 2415 if (expect_false (!ev_is_active (w)))
930 return; 2416 return;
931 2417
932 idles [w->active - 1] = idles [--idlecnt]; 2418 EV_FREQUENT_CHECK;
2419
2420 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
933 ev_stop ((W)w); 2421 ev_stop (EV_A_ (W)w);
934}
935 2422
936void 2423 EV_FREQUENT_CHECK;
937ev_prepare_start (struct ev_prepare *w) 2424}
2425
2426#if EV_STAT_ENABLE
2427
2428# ifdef _WIN32
2429# undef lstat
2430# define lstat(a,b) _stati64 (a,b)
2431# endif
2432
2433#define DEF_STAT_INTERVAL 5.0074891
2434#define MIN_STAT_INTERVAL 0.1074891
2435
2436static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2437
2438#if EV_USE_INOTIFY
2439# define EV_INOTIFY_BUFSIZE 8192
2440
2441static void noinline
2442infy_add (EV_P_ ev_stat *w)
938{ 2443{
939 if (ev_is_active (w)) 2444 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2445
2446 if (w->wd < 0)
2447 {
2448 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2449
2450 /* monitor some parent directory for speedup hints */
2451 /* note that exceeding the hardcoded limit is not a correctness issue, */
2452 /* but an efficiency issue only */
2453 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2454 {
2455 char path [4096];
2456 strcpy (path, w->path);
2457
2458 do
2459 {
2460 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2461 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2462
2463 char *pend = strrchr (path, '/');
2464
2465 if (!pend)
2466 break; /* whoops, no '/', complain to your admin */
2467
2468 *pend = 0;
2469 w->wd = inotify_add_watch (fs_fd, path, mask);
2470 }
2471 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2472 }
2473 }
2474 else
2475 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2476
2477 if (w->wd >= 0)
2478 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2479}
2480
2481static void noinline
2482infy_del (EV_P_ ev_stat *w)
2483{
2484 int slot;
2485 int wd = w->wd;
2486
2487 if (wd < 0)
940 return; 2488 return;
941 2489
2490 w->wd = -2;
2491 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2492 wlist_del (&fs_hash [slot].head, (WL)w);
2493
2494 /* remove this watcher, if others are watching it, they will rearm */
2495 inotify_rm_watch (fs_fd, wd);
2496}
2497
2498static void noinline
2499infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2500{
2501 if (slot < 0)
2502 /* overflow, need to check for all hash slots */
2503 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2504 infy_wd (EV_A_ slot, wd, ev);
2505 else
2506 {
2507 WL w_;
2508
2509 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2510 {
2511 ev_stat *w = (ev_stat *)w_;
2512 w_ = w_->next; /* lets us remove this watcher and all before it */
2513
2514 if (w->wd == wd || wd == -1)
2515 {
2516 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2517 {
2518 w->wd = -1;
2519 infy_add (EV_A_ w); /* re-add, no matter what */
2520 }
2521
2522 stat_timer_cb (EV_A_ &w->timer, 0);
2523 }
2524 }
2525 }
2526}
2527
2528static void
2529infy_cb (EV_P_ ev_io *w, int revents)
2530{
2531 char buf [EV_INOTIFY_BUFSIZE];
2532 struct inotify_event *ev = (struct inotify_event *)buf;
2533 int ofs;
2534 int len = read (fs_fd, buf, sizeof (buf));
2535
2536 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2537 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2538}
2539
2540void inline_size
2541infy_init (EV_P)
2542{
2543 if (fs_fd != -2)
2544 return;
2545
2546 /* kernels < 2.6.25 are borked
2547 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2548 */
2549 {
2550 struct utsname buf;
2551 int major, minor, micro;
2552
2553 fs_fd = -1;
2554
2555 if (uname (&buf))
2556 return;
2557
2558 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2559 return;
2560
2561 if (major < 2
2562 || (major == 2 && minor < 6)
2563 || (major == 2 && minor == 6 && micro < 25))
2564 return;
2565 }
2566
2567 fs_fd = inotify_init ();
2568
2569 if (fs_fd >= 0)
2570 {
2571 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2572 ev_set_priority (&fs_w, EV_MAXPRI);
2573 ev_io_start (EV_A_ &fs_w);
2574 }
2575}
2576
2577void inline_size
2578infy_fork (EV_P)
2579{
2580 int slot;
2581
2582 if (fs_fd < 0)
2583 return;
2584
2585 close (fs_fd);
2586 fs_fd = inotify_init ();
2587
2588 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2589 {
2590 WL w_ = fs_hash [slot].head;
2591 fs_hash [slot].head = 0;
2592
2593 while (w_)
2594 {
2595 ev_stat *w = (ev_stat *)w_;
2596 w_ = w_->next; /* lets us add this watcher */
2597
2598 w->wd = -1;
2599
2600 if (fs_fd >= 0)
2601 infy_add (EV_A_ w); /* re-add, no matter what */
2602 else
2603 ev_timer_start (EV_A_ &w->timer);
2604 }
2605 }
2606}
2607
2608#endif
2609
2610#ifdef _WIN32
2611# define EV_LSTAT(p,b) _stati64 (p, b)
2612#else
2613# define EV_LSTAT(p,b) lstat (p, b)
2614#endif
2615
2616void
2617ev_stat_stat (EV_P_ ev_stat *w)
2618{
2619 if (lstat (w->path, &w->attr) < 0)
2620 w->attr.st_nlink = 0;
2621 else if (!w->attr.st_nlink)
2622 w->attr.st_nlink = 1;
2623}
2624
2625static void noinline
2626stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2627{
2628 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2629
2630 /* we copy this here each the time so that */
2631 /* prev has the old value when the callback gets invoked */
2632 w->prev = w->attr;
2633 ev_stat_stat (EV_A_ w);
2634
2635 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2636 if (
2637 w->prev.st_dev != w->attr.st_dev
2638 || w->prev.st_ino != w->attr.st_ino
2639 || w->prev.st_mode != w->attr.st_mode
2640 || w->prev.st_nlink != w->attr.st_nlink
2641 || w->prev.st_uid != w->attr.st_uid
2642 || w->prev.st_gid != w->attr.st_gid
2643 || w->prev.st_rdev != w->attr.st_rdev
2644 || w->prev.st_size != w->attr.st_size
2645 || w->prev.st_atime != w->attr.st_atime
2646 || w->prev.st_mtime != w->attr.st_mtime
2647 || w->prev.st_ctime != w->attr.st_ctime
2648 ) {
2649 #if EV_USE_INOTIFY
2650 if (fs_fd >= 0)
2651 {
2652 infy_del (EV_A_ w);
2653 infy_add (EV_A_ w);
2654 ev_stat_stat (EV_A_ w); /* avoid race... */
2655 }
2656 #endif
2657
2658 ev_feed_event (EV_A_ w, EV_STAT);
2659 }
2660}
2661
2662void
2663ev_stat_start (EV_P_ ev_stat *w)
2664{
2665 if (expect_false (ev_is_active (w)))
2666 return;
2667
2668 /* since we use memcmp, we need to clear any padding data etc. */
2669 memset (&w->prev, 0, sizeof (ev_statdata));
2670 memset (&w->attr, 0, sizeof (ev_statdata));
2671
2672 ev_stat_stat (EV_A_ w);
2673
2674 if (w->interval < MIN_STAT_INTERVAL)
2675 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2676
2677 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2678 ev_set_priority (&w->timer, ev_priority (w));
2679
2680#if EV_USE_INOTIFY
2681 infy_init (EV_A);
2682
2683 if (fs_fd >= 0)
2684 infy_add (EV_A_ w);
2685 else
2686#endif
2687 ev_timer_start (EV_A_ &w->timer);
2688
2689 ev_start (EV_A_ (W)w, 1);
2690
2691 EV_FREQUENT_CHECK;
2692}
2693
2694void
2695ev_stat_stop (EV_P_ ev_stat *w)
2696{
2697 clear_pending (EV_A_ (W)w);
2698 if (expect_false (!ev_is_active (w)))
2699 return;
2700
2701 EV_FREQUENT_CHECK;
2702
2703#if EV_USE_INOTIFY
2704 infy_del (EV_A_ w);
2705#endif
2706 ev_timer_stop (EV_A_ &w->timer);
2707
2708 ev_stop (EV_A_ (W)w);
2709
2710 EV_FREQUENT_CHECK;
2711}
2712#endif
2713
2714#if EV_IDLE_ENABLE
2715void
2716ev_idle_start (EV_P_ ev_idle *w)
2717{
2718 if (expect_false (ev_is_active (w)))
2719 return;
2720
2721 pri_adjust (EV_A_ (W)w);
2722
2723 EV_FREQUENT_CHECK;
2724
2725 {
2726 int active = ++idlecnt [ABSPRI (w)];
2727
2728 ++idleall;
2729 ev_start (EV_A_ (W)w, active);
2730
2731 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2732 idles [ABSPRI (w)][active - 1] = w;
2733 }
2734
2735 EV_FREQUENT_CHECK;
2736}
2737
2738void
2739ev_idle_stop (EV_P_ ev_idle *w)
2740{
2741 clear_pending (EV_A_ (W)w);
2742 if (expect_false (!ev_is_active (w)))
2743 return;
2744
2745 EV_FREQUENT_CHECK;
2746
2747 {
2748 int active = ev_active (w);
2749
2750 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2751 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2752
2753 ev_stop (EV_A_ (W)w);
2754 --idleall;
2755 }
2756
2757 EV_FREQUENT_CHECK;
2758}
2759#endif
2760
2761void
2762ev_prepare_start (EV_P_ ev_prepare *w)
2763{
2764 if (expect_false (ev_is_active (w)))
2765 return;
2766
2767 EV_FREQUENT_CHECK;
2768
942 ev_start ((W)w, ++preparecnt); 2769 ev_start (EV_A_ (W)w, ++preparecnt);
943 array_needsize (prepares, preparemax, preparecnt, ); 2770 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
944 prepares [preparecnt - 1] = w; 2771 prepares [preparecnt - 1] = w;
945}
946 2772
2773 EV_FREQUENT_CHECK;
2774}
2775
947void 2776void
948ev_prepare_stop (struct ev_prepare *w) 2777ev_prepare_stop (EV_P_ ev_prepare *w)
949{ 2778{
950 ev_clear_pending ((W)w); 2779 clear_pending (EV_A_ (W)w);
951 if (ev_is_active (w)) 2780 if (expect_false (!ev_is_active (w)))
952 return; 2781 return;
953 2782
2783 EV_FREQUENT_CHECK;
2784
2785 {
2786 int active = ev_active (w);
2787
954 prepares [w->active - 1] = prepares [--preparecnt]; 2788 prepares [active - 1] = prepares [--preparecnt];
2789 ev_active (prepares [active - 1]) = active;
2790 }
2791
955 ev_stop ((W)w); 2792 ev_stop (EV_A_ (W)w);
956}
957 2793
2794 EV_FREQUENT_CHECK;
2795}
2796
958void 2797void
959ev_check_start (struct ev_check *w) 2798ev_check_start (EV_P_ ev_check *w)
960{ 2799{
961 if (ev_is_active (w)) 2800 if (expect_false (ev_is_active (w)))
962 return; 2801 return;
963 2802
2803 EV_FREQUENT_CHECK;
2804
964 ev_start ((W)w, ++checkcnt); 2805 ev_start (EV_A_ (W)w, ++checkcnt);
965 array_needsize (checks, checkmax, checkcnt, ); 2806 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
966 checks [checkcnt - 1] = w; 2807 checks [checkcnt - 1] = w;
967}
968 2808
2809 EV_FREQUENT_CHECK;
2810}
2811
969void 2812void
970ev_check_stop (struct ev_check *w) 2813ev_check_stop (EV_P_ ev_check *w)
971{ 2814{
972 ev_clear_pending ((W)w); 2815 clear_pending (EV_A_ (W)w);
973 if (ev_is_active (w)) 2816 if (expect_false (!ev_is_active (w)))
974 return; 2817 return;
975 2818
2819 EV_FREQUENT_CHECK;
2820
2821 {
2822 int active = ev_active (w);
2823
976 checks [w->active - 1] = checks [--checkcnt]; 2824 checks [active - 1] = checks [--checkcnt];
2825 ev_active (checks [active - 1]) = active;
2826 }
2827
977 ev_stop ((W)w); 2828 ev_stop (EV_A_ (W)w);
978}
979 2829
980void 2830 EV_FREQUENT_CHECK;
981ev_child_start (struct ev_child *w) 2831}
2832
2833#if EV_EMBED_ENABLE
2834void noinline
2835ev_embed_sweep (EV_P_ ev_embed *w)
982{ 2836{
2837 ev_loop (w->other, EVLOOP_NONBLOCK);
2838}
2839
2840static void
2841embed_io_cb (EV_P_ ev_io *io, int revents)
2842{
2843 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2844
983 if (ev_is_active (w)) 2845 if (ev_cb (w))
2846 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2847 else
2848 ev_loop (w->other, EVLOOP_NONBLOCK);
2849}
2850
2851static void
2852embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2853{
2854 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2855
2856 {
2857 struct ev_loop *loop = w->other;
2858
2859 while (fdchangecnt)
2860 {
2861 fd_reify (EV_A);
2862 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2863 }
2864 }
2865}
2866
2867static void
2868embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2869{
2870 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2871
2872 {
2873 struct ev_loop *loop = w->other;
2874
2875 ev_loop_fork (EV_A);
2876 }
2877}
2878
2879#if 0
2880static void
2881embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2882{
2883 ev_idle_stop (EV_A_ idle);
2884}
2885#endif
2886
2887void
2888ev_embed_start (EV_P_ ev_embed *w)
2889{
2890 if (expect_false (ev_is_active (w)))
984 return; 2891 return;
985 2892
2893 {
2894 struct ev_loop *loop = w->other;
2895 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2896 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2897 }
2898
2899 EV_FREQUENT_CHECK;
2900
2901 ev_set_priority (&w->io, ev_priority (w));
2902 ev_io_start (EV_A_ &w->io);
2903
2904 ev_prepare_init (&w->prepare, embed_prepare_cb);
2905 ev_set_priority (&w->prepare, EV_MINPRI);
2906 ev_prepare_start (EV_A_ &w->prepare);
2907
2908 ev_fork_init (&w->fork, embed_fork_cb);
2909 ev_fork_start (EV_A_ &w->fork);
2910
2911 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2912
986 ev_start ((W)w, 1); 2913 ev_start (EV_A_ (W)w, 1);
987 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
988}
989 2914
2915 EV_FREQUENT_CHECK;
2916}
2917
990void 2918void
991ev_child_stop (struct ev_child *w) 2919ev_embed_stop (EV_P_ ev_embed *w)
992{ 2920{
993 ev_clear_pending ((W)w); 2921 clear_pending (EV_A_ (W)w);
994 if (ev_is_active (w)) 2922 if (expect_false (!ev_is_active (w)))
995 return; 2923 return;
996 2924
997 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2925 EV_FREQUENT_CHECK;
2926
2927 ev_io_stop (EV_A_ &w->io);
2928 ev_prepare_stop (EV_A_ &w->prepare);
2929 ev_fork_stop (EV_A_ &w->fork);
2930
2931 EV_FREQUENT_CHECK;
2932}
2933#endif
2934
2935#if EV_FORK_ENABLE
2936void
2937ev_fork_start (EV_P_ ev_fork *w)
2938{
2939 if (expect_false (ev_is_active (w)))
2940 return;
2941
2942 EV_FREQUENT_CHECK;
2943
2944 ev_start (EV_A_ (W)w, ++forkcnt);
2945 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2946 forks [forkcnt - 1] = w;
2947
2948 EV_FREQUENT_CHECK;
2949}
2950
2951void
2952ev_fork_stop (EV_P_ ev_fork *w)
2953{
2954 clear_pending (EV_A_ (W)w);
2955 if (expect_false (!ev_is_active (w)))
2956 return;
2957
2958 EV_FREQUENT_CHECK;
2959
2960 {
2961 int active = ev_active (w);
2962
2963 forks [active - 1] = forks [--forkcnt];
2964 ev_active (forks [active - 1]) = active;
2965 }
2966
998 ev_stop ((W)w); 2967 ev_stop (EV_A_ (W)w);
2968
2969 EV_FREQUENT_CHECK;
999} 2970}
2971#endif
2972
2973#if EV_ASYNC_ENABLE
2974void
2975ev_async_start (EV_P_ ev_async *w)
2976{
2977 if (expect_false (ev_is_active (w)))
2978 return;
2979
2980 evpipe_init (EV_A);
2981
2982 EV_FREQUENT_CHECK;
2983
2984 ev_start (EV_A_ (W)w, ++asynccnt);
2985 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2986 asyncs [asynccnt - 1] = w;
2987
2988 EV_FREQUENT_CHECK;
2989}
2990
2991void
2992ev_async_stop (EV_P_ ev_async *w)
2993{
2994 clear_pending (EV_A_ (W)w);
2995 if (expect_false (!ev_is_active (w)))
2996 return;
2997
2998 EV_FREQUENT_CHECK;
2999
3000 {
3001 int active = ev_active (w);
3002
3003 asyncs [active - 1] = asyncs [--asynccnt];
3004 ev_active (asyncs [active - 1]) = active;
3005 }
3006
3007 ev_stop (EV_A_ (W)w);
3008
3009 EV_FREQUENT_CHECK;
3010}
3011
3012void
3013ev_async_send (EV_P_ ev_async *w)
3014{
3015 w->sent = 1;
3016 evpipe_write (EV_A_ &gotasync);
3017}
3018#endif
1000 3019
1001/*****************************************************************************/ 3020/*****************************************************************************/
1002 3021
1003struct ev_once 3022struct ev_once
1004{ 3023{
1005 struct ev_io io; 3024 ev_io io;
1006 struct ev_timer to; 3025 ev_timer to;
1007 void (*cb)(int revents, void *arg); 3026 void (*cb)(int revents, void *arg);
1008 void *arg; 3027 void *arg;
1009}; 3028};
1010 3029
1011static void 3030static void
1012once_cb (struct ev_once *once, int revents) 3031once_cb (EV_P_ struct ev_once *once, int revents)
1013{ 3032{
1014 void (*cb)(int revents, void *arg) = once->cb; 3033 void (*cb)(int revents, void *arg) = once->cb;
1015 void *arg = once->arg; 3034 void *arg = once->arg;
1016 3035
1017 ev_io_stop (&once->io); 3036 ev_io_stop (EV_A_ &once->io);
1018 ev_timer_stop (&once->to); 3037 ev_timer_stop (EV_A_ &once->to);
1019 free (once); 3038 ev_free (once);
1020 3039
1021 cb (revents, arg); 3040 cb (revents, arg);
1022} 3041}
1023 3042
1024static void 3043static void
1025once_cb_io (struct ev_io *w, int revents) 3044once_cb_io (EV_P_ ev_io *w, int revents)
1026{ 3045{
1027 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3046 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3047
3048 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1028} 3049}
1029 3050
1030static void 3051static void
1031once_cb_to (struct ev_timer *w, int revents) 3052once_cb_to (EV_P_ ev_timer *w, int revents)
1032{ 3053{
1033 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3054 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
1034}
1035 3055
3056 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3057}
3058
1036void 3059void
1037ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3060ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1038{ 3061{
1039 struct ev_once *once = malloc (sizeof (struct ev_once)); 3062 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1040 3063
1041 if (!once) 3064 if (expect_false (!once))
3065 {
1042 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3066 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1043 else 3067 return;
1044 { 3068 }
3069
1045 once->cb = cb; 3070 once->cb = cb;
1046 once->arg = arg; 3071 once->arg = arg;
1047 3072
1048 ev_watcher_init (&once->io, once_cb_io); 3073 ev_init (&once->io, once_cb_io);
1049 if (fd >= 0) 3074 if (fd >= 0)
1050 { 3075 {
1051 ev_io_set (&once->io, fd, events); 3076 ev_io_set (&once->io, fd, events);
1052 ev_io_start (&once->io); 3077 ev_io_start (EV_A_ &once->io);
1053 } 3078 }
1054 3079
1055 ev_watcher_init (&once->to, once_cb_to); 3080 ev_init (&once->to, once_cb_to);
1056 if (timeout >= 0.) 3081 if (timeout >= 0.)
1057 { 3082 {
1058 ev_timer_set (&once->to, timeout, 0.); 3083 ev_timer_set (&once->to, timeout, 0.);
1059 ev_timer_start (&once->to); 3084 ev_timer_start (EV_A_ &once->to);
1060 }
1061 }
1062}
1063
1064/*****************************************************************************/
1065
1066#if 0
1067
1068struct ev_io wio;
1069
1070static void
1071sin_cb (struct ev_io *w, int revents)
1072{
1073 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1074}
1075
1076static void
1077ocb (struct ev_timer *w, int revents)
1078{
1079 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1080 ev_timer_stop (w);
1081 ev_timer_start (w);
1082}
1083
1084static void
1085scb (struct ev_signal *w, int revents)
1086{
1087 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1088 ev_io_stop (&wio);
1089 ev_io_start (&wio);
1090}
1091
1092static void
1093gcb (struct ev_signal *w, int revents)
1094{
1095 fprintf (stderr, "generic %x\n", revents);
1096
1097}
1098
1099int main (void)
1100{
1101 ev_init (0);
1102
1103 ev_io_init (&wio, sin_cb, 0, EV_READ);
1104 ev_io_start (&wio);
1105
1106 struct ev_timer t[10000];
1107
1108#if 0
1109 int i;
1110 for (i = 0; i < 10000; ++i)
1111 { 3085 }
1112 struct ev_timer *w = t + i;
1113 ev_watcher_init (w, ocb, i);
1114 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1115 ev_timer_start (w);
1116 if (drand48 () < 0.5)
1117 ev_timer_stop (w);
1118 }
1119#endif
1120
1121 struct ev_timer t1;
1122 ev_timer_init (&t1, ocb, 5, 10);
1123 ev_timer_start (&t1);
1124
1125 struct ev_signal sig;
1126 ev_signal_init (&sig, scb, SIGQUIT);
1127 ev_signal_start (&sig);
1128
1129 struct ev_check cw;
1130 ev_check_init (&cw, gcb);
1131 ev_check_start (&cw);
1132
1133 struct ev_idle iw;
1134 ev_idle_init (&iw, gcb);
1135 ev_idle_start (&iw);
1136
1137 ev_loop (0);
1138
1139 return 0;
1140} 3086}
1141 3087
3088#if EV_MULTIPLICITY
3089 #include "ev_wrap.h"
1142#endif 3090#endif
1143 3091
3092#ifdef __cplusplus
3093}
3094#endif
1144 3095
1145
1146

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines