ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.264 by root, Mon Oct 13 23:20:12 2008 UTC vs.
Revision 1.356 by root, Fri Oct 22 11:21:52 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
61
52# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
55# endif 65# endif
56# ifndef EV_USE_REALTIME 66# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
58# endif 68# endif
59# else 69# else
60# ifndef EV_USE_MONOTONIC 70# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 71# define EV_USE_MONOTONIC 0
62# endif 72# endif
63# ifndef EV_USE_REALTIME 73# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 74# define EV_USE_REALTIME 0
65# endif 75# endif
66# endif 76# endif
67 77
78# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 79# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 80# define EV_USE_NANOSLEEP EV_FEATURE_OS
81# endif
71# else 82# else
83# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 84# define EV_USE_NANOSLEEP 0
85# endif
86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
88# ifndef EV_USE_SELECT
89# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 90# endif
91# else
92# undef EV_USE_SELECT
93# define EV_USE_SELECT 0
74# endif 94# endif
75 95
96# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 97# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 98# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 99# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 100# else
101# undef EV_USE_POLL
88# define EV_USE_POLL 0 102# define EV_USE_POLL 0
89# endif
90# endif 103# endif
91 104
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 106# ifndef EV_USE_EPOLL
95# else 107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
98# endif 112# endif
99 113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 115# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
106# endif 121# endif
107 122
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 124# ifndef EV_USE_PORT
111# else 125# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
114# endif 130# endif
115 131
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 133# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
122# endif 139# endif
123 140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 142# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 143# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
148# endif
149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
130# endif 157# endif
131 158
132#endif 159#endif
133 160
134#include <math.h> 161#include <math.h>
135#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
136#include <fcntl.h> 164#include <fcntl.h>
137#include <stddef.h> 165#include <stddef.h>
138 166
139#include <stdio.h> 167#include <stdio.h>
140 168
141#include <assert.h> 169#include <assert.h>
142#include <errno.h> 170#include <errno.h>
143#include <sys/types.h> 171#include <sys/types.h>
144#include <time.h> 172#include <time.h>
173#include <limits.h>
145 174
146#include <signal.h> 175#include <signal.h>
147 176
148#ifdef EV_H 177#ifdef EV_H
149# include EV_H 178# include EV_H
150#else 179#else
151# include "ev.h" 180# include "ev.h"
152#endif 181#endif
182
183EV_CPP(extern "C" {)
153 184
154#ifndef _WIN32 185#ifndef _WIN32
155# include <sys/time.h> 186# include <sys/time.h>
156# include <sys/wait.h> 187# include <sys/wait.h>
157# include <unistd.h> 188# include <unistd.h>
160# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
161# include <windows.h> 192# include <windows.h>
162# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
163# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
164# endif 195# endif
196# undef EV_AVOID_STDIO
165#endif 197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
166 206
167/* this block tries to deduce configuration from header-defined symbols and defaults */ 207/* this block tries to deduce configuration from header-defined symbols and defaults */
208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
242# endif
243#endif
168 244
169#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1 247# define EV_USE_MONOTONIC EV_FEATURE_OS
172# else 248# else
173# define EV_USE_MONOTONIC 0 249# define EV_USE_MONOTONIC 0
174# endif 250# endif
175#endif 251#endif
176 252
177#ifndef EV_USE_REALTIME 253#ifndef EV_USE_REALTIME
178# define EV_USE_REALTIME 0 254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
179#endif 255#endif
180 256
181#ifndef EV_USE_NANOSLEEP 257#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L 258# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1 259# define EV_USE_NANOSLEEP EV_FEATURE_OS
184# else 260# else
185# define EV_USE_NANOSLEEP 0 261# define EV_USE_NANOSLEEP 0
186# endif 262# endif
187#endif 263#endif
188 264
189#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
190# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
191#endif 267#endif
192 268
193#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
194# ifdef _WIN32 270# ifdef _WIN32
195# define EV_USE_POLL 0 271# define EV_USE_POLL 0
196# else 272# else
197# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
198# endif 274# endif
199#endif 275#endif
200 276
201#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1 279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
204# else 280# else
205# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
206# endif 282# endif
207#endif 283#endif
208 284
214# define EV_USE_PORT 0 290# define EV_USE_PORT 0
215#endif 291#endif
216 292
217#ifndef EV_USE_INOTIFY 293#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1 295# define EV_USE_INOTIFY EV_FEATURE_OS
220# else 296# else
221# define EV_USE_INOTIFY 0 297# define EV_USE_INOTIFY 0
222# endif 298# endif
223#endif 299#endif
224 300
225#ifndef EV_PID_HASHSIZE 301#ifndef EV_PID_HASHSIZE
226# if EV_MINIMAL 302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
230# endif
231#endif 303#endif
232 304
233#ifndef EV_INOTIFY_HASHSIZE 305#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL 306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif 307#endif
240 308
241#ifndef EV_USE_EVENTFD 309#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1 311# define EV_USE_EVENTFD EV_FEATURE_OS
244# else 312# else
245# define EV_USE_EVENTFD 0 313# define EV_USE_EVENTFD 0
314# endif
315#endif
316
317#ifndef EV_USE_SIGNALFD
318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
319# define EV_USE_SIGNALFD EV_FEATURE_OS
320# else
321# define EV_USE_SIGNALFD 0
246# endif 322# endif
247#endif 323#endif
248 324
249#if 0 /* debugging */ 325#if 0 /* debugging */
250# define EV_VERIFY 3 326# define EV_VERIFY 3
251# define EV_USE_4HEAP 1 327# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1 328# define EV_HEAP_CACHE_AT 1
253#endif 329#endif
254 330
255#ifndef EV_VERIFY 331#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL 332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
257#endif 333#endif
258 334
259#ifndef EV_USE_4HEAP 335#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL 336# define EV_USE_4HEAP EV_FEATURE_DATA
261#endif 337#endif
262 338
263#ifndef EV_HEAP_CACHE_AT 339#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL 340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
265#endif 355#endif
266 356
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
268 364
269#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
270# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
271# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
272#endif 368#endif
286# include <sys/select.h> 382# include <sys/select.h>
287# endif 383# endif
288#endif 384#endif
289 385
290#if EV_USE_INOTIFY 386#if EV_USE_INOTIFY
291# include <sys/utsname.h> 387# include <sys/statfs.h>
292# include <sys/inotify.h> 388# include <sys/inotify.h>
293/* some very old inotify.h headers don't have IN_DONT_FOLLOW */ 389/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
294# ifndef IN_DONT_FOLLOW 390# ifndef IN_DONT_FOLLOW
295# undef EV_USE_INOTIFY 391# undef EV_USE_INOTIFY
296# define EV_USE_INOTIFY 0 392# define EV_USE_INOTIFY 0
302#endif 398#endif
303 399
304#if EV_USE_EVENTFD 400#if EV_USE_EVENTFD
305/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 401/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
306# include <stdint.h> 402# include <stdint.h>
307# ifdef __cplusplus 403# ifndef EFD_NONBLOCK
308extern "C" { 404# define EFD_NONBLOCK O_NONBLOCK
309# endif 405# endif
310int eventfd (unsigned int initval, int flags); 406# ifndef EFD_CLOEXEC
311# ifdef __cplusplus 407# ifdef O_CLOEXEC
312} 408# define EFD_CLOEXEC O_CLOEXEC
409# else
410# define EFD_CLOEXEC 02000000
411# endif
313# endif 412# endif
413EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414#endif
415
416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
314#endif 436#endif
315 437
316/**/ 438/**/
317 439
318#if EV_VERIFY >= 3 440#if EV_VERIFY >= 3
319# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 441# define EV_FREQUENT_CHECK ev_verify (EV_A)
320#else 442#else
321# define EV_FREQUENT_CHECK do { } while (0) 443# define EV_FREQUENT_CHECK do { } while (0)
322#endif 444#endif
323 445
324/* 446/*
331 */ 453 */
332#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 454#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
333 455
334#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 456#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
335#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 457#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
336/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 458
459#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
460#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
337 461
338#if __GNUC__ >= 4 462#if __GNUC__ >= 4
339# define expect(expr,value) __builtin_expect ((expr),(value)) 463# define expect(expr,value) __builtin_expect ((expr),(value))
340# define noinline __attribute__ ((noinline)) 464# define noinline __attribute__ ((noinline))
341#else 465#else
348 472
349#define expect_false(expr) expect ((expr) != 0, 0) 473#define expect_false(expr) expect ((expr) != 0, 0)
350#define expect_true(expr) expect ((expr) != 0, 1) 474#define expect_true(expr) expect ((expr) != 0, 1)
351#define inline_size static inline 475#define inline_size static inline
352 476
353#if EV_MINIMAL 477#if EV_FEATURE_CODE
478# define inline_speed static inline
479#else
354# define inline_speed static noinline 480# define inline_speed static noinline
481#endif
482
483#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484
485#if EV_MINPRI == EV_MAXPRI
486# define ABSPRI(w) (((W)w), 0)
355#else 487#else
356# define inline_speed static inline
357#endif
358
359#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
360#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 488# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489#endif
361 490
362#define EMPTY /* required for microsofts broken pseudo-c compiler */ 491#define EMPTY /* required for microsofts broken pseudo-c compiler */
363#define EMPTY2(a,b) /* used to suppress some warnings */ 492#define EMPTY2(a,b) /* used to suppress some warnings */
364 493
365typedef ev_watcher *W; 494typedef ev_watcher *W;
367typedef ev_watcher_time *WT; 496typedef ev_watcher_time *WT;
368 497
369#define ev_active(w) ((W)(w))->active 498#define ev_active(w) ((W)(w))->active
370#define ev_at(w) ((WT)(w))->at 499#define ev_at(w) ((WT)(w))->at
371 500
501#if EV_USE_REALTIME
502/* sig_atomic_t is used to avoid per-thread variables or locking but still */
503/* giving it a reasonably high chance of working on typical architectures */
504static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
505#endif
506
372#if EV_USE_MONOTONIC 507#if EV_USE_MONOTONIC
373/* sig_atomic_t is used to avoid per-thread variables or locking but still */
374/* giving it a reasonably high chance of working on typical architetcures */
375static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 508static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
509#endif
510
511#ifndef EV_FD_TO_WIN32_HANDLE
512# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513#endif
514#ifndef EV_WIN32_HANDLE_TO_FD
515# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516#endif
517#ifndef EV_WIN32_CLOSE_FD
518# define EV_WIN32_CLOSE_FD(fd) close (fd)
376#endif 519#endif
377 520
378#ifdef _WIN32 521#ifdef _WIN32
379# include "ev_win32.c" 522# include "ev_win32.c"
380#endif 523#endif
381 524
382/*****************************************************************************/ 525/*****************************************************************************/
383 526
527#ifdef __linux
528# include <sys/utsname.h>
529#endif
530
531static unsigned int noinline
532ev_linux_version (void)
533{
534#ifdef __linux
535 struct utsname buf;
536 unsigned int v;
537 int i;
538 char *p = buf.release;
539
540 if (uname (&buf))
541 return 0;
542
543 for (i = 3+1; --i; )
544 {
545 unsigned int c = 0;
546
547 for (;;)
548 {
549 if (*p >= '0' && *p <= '9')
550 c = c * 10 + *p++ - '0';
551 else
552 {
553 p += *p == '.';
554 break;
555 }
556 }
557
558 v = (v << 8) | c;
559 }
560
561 return v;
562#else
563 return 0;
564#endif
565}
566
567/*****************************************************************************/
568
569#if EV_AVOID_STDIO
570static void noinline
571ev_printerr (const char *msg)
572{
573 write (STDERR_FILENO, msg, strlen (msg));
574}
575#endif
576
384static void (*syserr_cb)(const char *msg); 577static void (*syserr_cb)(const char *msg);
385 578
386void 579void
387ev_set_syserr_cb (void (*cb)(const char *msg)) 580ev_set_syserr_cb (void (*cb)(const char *msg))
388{ 581{
389 syserr_cb = cb; 582 syserr_cb = cb;
390} 583}
391 584
392static void noinline 585static void noinline
393syserr (const char *msg) 586ev_syserr (const char *msg)
394{ 587{
395 if (!msg) 588 if (!msg)
396 msg = "(libev) system error"; 589 msg = "(libev) system error";
397 590
398 if (syserr_cb) 591 if (syserr_cb)
399 syserr_cb (msg); 592 syserr_cb (msg);
400 else 593 else
401 { 594 {
595#if EV_AVOID_STDIO
596 const char *err = strerror (errno);
597
598 ev_printerr (msg);
599 ev_printerr (": ");
600 ev_printerr (err);
601 ev_printerr ("\n");
602#else
402 perror (msg); 603 perror (msg);
604#endif
403 abort (); 605 abort ();
404 } 606 }
405} 607}
406 608
407static void * 609static void *
408ev_realloc_emul (void *ptr, long size) 610ev_realloc_emul (void *ptr, long size)
409{ 611{
612#if __GLIBC__
613 return realloc (ptr, size);
614#else
410 /* some systems, notably openbsd and darwin, fail to properly 615 /* some systems, notably openbsd and darwin, fail to properly
411 * implement realloc (x, 0) (as required by both ansi c-98 and 616 * implement realloc (x, 0) (as required by both ansi c-89 and
412 * the single unix specification, so work around them here. 617 * the single unix specification, so work around them here.
413 */ 618 */
414 619
415 if (size) 620 if (size)
416 return realloc (ptr, size); 621 return realloc (ptr, size);
417 622
418 free (ptr); 623 free (ptr);
419 return 0; 624 return 0;
625#endif
420} 626}
421 627
422static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 628static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
423 629
424void 630void
432{ 638{
433 ptr = alloc (ptr, size); 639 ptr = alloc (ptr, size);
434 640
435 if (!ptr && size) 641 if (!ptr && size)
436 { 642 {
643#if EV_AVOID_STDIO
644 ev_printerr ("libev: memory allocation failed, aborting.\n");
645#else
437 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 646 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
647#endif
438 abort (); 648 abort ();
439 } 649 }
440 650
441 return ptr; 651 return ptr;
442} 652}
444#define ev_malloc(size) ev_realloc (0, (size)) 654#define ev_malloc(size) ev_realloc (0, (size))
445#define ev_free(ptr) ev_realloc ((ptr), 0) 655#define ev_free(ptr) ev_realloc ((ptr), 0)
446 656
447/*****************************************************************************/ 657/*****************************************************************************/
448 658
659/* set in reify when reification needed */
660#define EV_ANFD_REIFY 1
661
662/* file descriptor info structure */
449typedef struct 663typedef struct
450{ 664{
451 WL head; 665 WL head;
452 unsigned char events; 666 unsigned char events; /* the events watched for */
667 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
668 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
453 unsigned char reify; 669 unsigned char unused;
670#if EV_USE_EPOLL
671 unsigned int egen; /* generation counter to counter epoll bugs */
672#endif
454#if EV_SELECT_IS_WINSOCKET 673#if EV_SELECT_IS_WINSOCKET
455 SOCKET handle; 674 SOCKET handle;
456#endif 675#endif
457} ANFD; 676} ANFD;
458 677
678/* stores the pending event set for a given watcher */
459typedef struct 679typedef struct
460{ 680{
461 W w; 681 W w;
462 int events; 682 int events; /* the pending event set for the given watcher */
463} ANPENDING; 683} ANPENDING;
464 684
465#if EV_USE_INOTIFY 685#if EV_USE_INOTIFY
466/* hash table entry per inotify-id */ 686/* hash table entry per inotify-id */
467typedef struct 687typedef struct
470} ANFS; 690} ANFS;
471#endif 691#endif
472 692
473/* Heap Entry */ 693/* Heap Entry */
474#if EV_HEAP_CACHE_AT 694#if EV_HEAP_CACHE_AT
695 /* a heap element */
475 typedef struct { 696 typedef struct {
476 ev_tstamp at; 697 ev_tstamp at;
477 WT w; 698 WT w;
478 } ANHE; 699 } ANHE;
479 700
480 #define ANHE_w(he) (he).w /* access watcher, read-write */ 701 #define ANHE_w(he) (he).w /* access watcher, read-write */
481 #define ANHE_at(he) (he).at /* access cached at, read-only */ 702 #define ANHE_at(he) (he).at /* access cached at, read-only */
482 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 703 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
483#else 704#else
705 /* a heap element */
484 typedef WT ANHE; 706 typedef WT ANHE;
485 707
486 #define ANHE_w(he) (he) 708 #define ANHE_w(he) (he)
487 #define ANHE_at(he) (he)->at 709 #define ANHE_at(he) (he)->at
488 #define ANHE_at_cache(he) 710 #define ANHE_at_cache(he)
512 734
513 static int ev_default_loop_ptr; 735 static int ev_default_loop_ptr;
514 736
515#endif 737#endif
516 738
739#if EV_FEATURE_API
740# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
741# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
742# define EV_INVOKE_PENDING invoke_cb (EV_A)
743#else
744# define EV_RELEASE_CB (void)0
745# define EV_ACQUIRE_CB (void)0
746# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
747#endif
748
749#define EVBREAK_RECURSE 0x80
750
517/*****************************************************************************/ 751/*****************************************************************************/
518 752
753#ifndef EV_HAVE_EV_TIME
519ev_tstamp 754ev_tstamp
520ev_time (void) 755ev_time (void)
521{ 756{
522#if EV_USE_REALTIME 757#if EV_USE_REALTIME
758 if (expect_true (have_realtime))
759 {
523 struct timespec ts; 760 struct timespec ts;
524 clock_gettime (CLOCK_REALTIME, &ts); 761 clock_gettime (CLOCK_REALTIME, &ts);
525 return ts.tv_sec + ts.tv_nsec * 1e-9; 762 return ts.tv_sec + ts.tv_nsec * 1e-9;
526#else 763 }
764#endif
765
527 struct timeval tv; 766 struct timeval tv;
528 gettimeofday (&tv, 0); 767 gettimeofday (&tv, 0);
529 return tv.tv_sec + tv.tv_usec * 1e-6; 768 return tv.tv_sec + tv.tv_usec * 1e-6;
530#endif
531} 769}
770#endif
532 771
533ev_tstamp inline_size 772inline_size ev_tstamp
534get_clock (void) 773get_clock (void)
535{ 774{
536#if EV_USE_MONOTONIC 775#if EV_USE_MONOTONIC
537 if (expect_true (have_monotonic)) 776 if (expect_true (have_monotonic))
538 { 777 {
559 if (delay > 0.) 798 if (delay > 0.)
560 { 799 {
561#if EV_USE_NANOSLEEP 800#if EV_USE_NANOSLEEP
562 struct timespec ts; 801 struct timespec ts;
563 802
564 ts.tv_sec = (time_t)delay; 803 EV_TS_SET (ts, delay);
565 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
566
567 nanosleep (&ts, 0); 804 nanosleep (&ts, 0);
568#elif defined(_WIN32) 805#elif defined(_WIN32)
569 Sleep ((unsigned long)(delay * 1e3)); 806 Sleep ((unsigned long)(delay * 1e3));
570#else 807#else
571 struct timeval tv; 808 struct timeval tv;
572 809
573 tv.tv_sec = (time_t)delay;
574 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
575
576 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 810 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
577 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 811 /* something not guaranteed by newer posix versions, but guaranteed */
578 /* by older ones */ 812 /* by older ones */
813 EV_TV_SET (tv, delay);
579 select (0, 0, 0, 0, &tv); 814 select (0, 0, 0, 0, &tv);
580#endif 815#endif
581 } 816 }
582} 817}
583 818
584/*****************************************************************************/ 819/*****************************************************************************/
585 820
586#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 821#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
587 822
588int inline_size 823/* find a suitable new size for the given array, */
824/* hopefully by rounding to a nice-to-malloc size */
825inline_size int
589array_nextsize (int elem, int cur, int cnt) 826array_nextsize (int elem, int cur, int cnt)
590{ 827{
591 int ncur = cur + 1; 828 int ncur = cur + 1;
592 829
593 do 830 do
610array_realloc (int elem, void *base, int *cur, int cnt) 847array_realloc (int elem, void *base, int *cur, int cnt)
611{ 848{
612 *cur = array_nextsize (elem, *cur, cnt); 849 *cur = array_nextsize (elem, *cur, cnt);
613 return ev_realloc (base, elem * *cur); 850 return ev_realloc (base, elem * *cur);
614} 851}
852
853#define array_init_zero(base,count) \
854 memset ((void *)(base), 0, sizeof (*(base)) * (count))
615 855
616#define array_needsize(type,base,cur,cnt,init) \ 856#define array_needsize(type,base,cur,cnt,init) \
617 if (expect_false ((cnt) > (cur))) \ 857 if (expect_false ((cnt) > (cur))) \
618 { \ 858 { \
619 int ocur_ = (cur); \ 859 int ocur_ = (cur); \
631 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 871 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
632 } 872 }
633#endif 873#endif
634 874
635#define array_free(stem, idx) \ 875#define array_free(stem, idx) \
636 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 876 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
637 877
638/*****************************************************************************/ 878/*****************************************************************************/
879
880/* dummy callback for pending events */
881static void noinline
882pendingcb (EV_P_ ev_prepare *w, int revents)
883{
884}
639 885
640void noinline 886void noinline
641ev_feed_event (EV_P_ void *w, int revents) 887ev_feed_event (EV_P_ void *w, int revents)
642{ 888{
643 W w_ = (W)w; 889 W w_ = (W)w;
652 pendings [pri][w_->pending - 1].w = w_; 898 pendings [pri][w_->pending - 1].w = w_;
653 pendings [pri][w_->pending - 1].events = revents; 899 pendings [pri][w_->pending - 1].events = revents;
654 } 900 }
655} 901}
656 902
657void inline_speed 903inline_speed void
904feed_reverse (EV_P_ W w)
905{
906 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
907 rfeeds [rfeedcnt++] = w;
908}
909
910inline_size void
911feed_reverse_done (EV_P_ int revents)
912{
913 do
914 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
915 while (rfeedcnt);
916}
917
918inline_speed void
658queue_events (EV_P_ W *events, int eventcnt, int type) 919queue_events (EV_P_ W *events, int eventcnt, int type)
659{ 920{
660 int i; 921 int i;
661 922
662 for (i = 0; i < eventcnt; ++i) 923 for (i = 0; i < eventcnt; ++i)
663 ev_feed_event (EV_A_ events [i], type); 924 ev_feed_event (EV_A_ events [i], type);
664} 925}
665 926
666/*****************************************************************************/ 927/*****************************************************************************/
667 928
668void inline_size 929inline_speed void
669anfds_init (ANFD *base, int count)
670{
671 while (count--)
672 {
673 base->head = 0;
674 base->events = EV_NONE;
675 base->reify = 0;
676
677 ++base;
678 }
679}
680
681void inline_speed
682fd_event (EV_P_ int fd, int revents) 930fd_event_nocheck (EV_P_ int fd, int revents)
683{ 931{
684 ANFD *anfd = anfds + fd; 932 ANFD *anfd = anfds + fd;
685 ev_io *w; 933 ev_io *w;
686 934
687 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 935 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
691 if (ev) 939 if (ev)
692 ev_feed_event (EV_A_ (W)w, ev); 940 ev_feed_event (EV_A_ (W)w, ev);
693 } 941 }
694} 942}
695 943
944/* do not submit kernel events for fds that have reify set */
945/* because that means they changed while we were polling for new events */
946inline_speed void
947fd_event (EV_P_ int fd, int revents)
948{
949 ANFD *anfd = anfds + fd;
950
951 if (expect_true (!anfd->reify))
952 fd_event_nocheck (EV_A_ fd, revents);
953}
954
696void 955void
697ev_feed_fd_event (EV_P_ int fd, int revents) 956ev_feed_fd_event (EV_P_ int fd, int revents)
698{ 957{
699 if (fd >= 0 && fd < anfdmax) 958 if (fd >= 0 && fd < anfdmax)
700 fd_event (EV_A_ fd, revents); 959 fd_event_nocheck (EV_A_ fd, revents);
701} 960}
702 961
703void inline_size 962/* make sure the external fd watch events are in-sync */
963/* with the kernel/libev internal state */
964inline_size void
704fd_reify (EV_P) 965fd_reify (EV_P)
705{ 966{
706 int i; 967 int i;
707 968
708 for (i = 0; i < fdchangecnt; ++i) 969 for (i = 0; i < fdchangecnt; ++i)
709 { 970 {
710 int fd = fdchanges [i]; 971 int fd = fdchanges [i];
711 ANFD *anfd = anfds + fd; 972 ANFD *anfd = anfds + fd;
712 ev_io *w; 973 ev_io *w;
713 974
714 unsigned char events = 0; 975 unsigned char o_events = anfd->events;
976 unsigned char o_reify = anfd->reify;
715 977
716 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 978 anfd->reify = 0;
717 events |= (unsigned char)w->events;
718 979
719#if EV_SELECT_IS_WINSOCKET 980#if EV_SELECT_IS_WINSOCKET
720 if (events) 981 if (o_reify & EV__IOFDSET)
721 { 982 {
722 unsigned long arg; 983 unsigned long arg;
723 #ifdef EV_FD_TO_WIN32_HANDLE
724 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 984 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
725 #else
726 anfd->handle = _get_osfhandle (fd);
727 #endif
728 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 985 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
729 } 986 }
730#endif 987#endif
731 988
989 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
732 { 990 {
733 unsigned char o_events = anfd->events;
734 unsigned char o_reify = anfd->reify;
735
736 anfd->reify = 0;
737 anfd->events = events; 991 anfd->events = 0;
738 992
739 if (o_events != events || o_reify & EV_IOFDSET) 993 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
994 anfd->events |= (unsigned char)w->events;
995
996 if (o_events != anfd->events)
997 o_reify = EV__IOFDSET; /* actually |= */
998 }
999
1000 if (o_reify & EV__IOFDSET)
740 backend_modify (EV_A_ fd, o_events, events); 1001 backend_modify (EV_A_ fd, o_events, anfd->events);
741 }
742 } 1002 }
743 1003
744 fdchangecnt = 0; 1004 fdchangecnt = 0;
745} 1005}
746 1006
747void inline_size 1007/* something about the given fd changed */
1008inline_size void
748fd_change (EV_P_ int fd, int flags) 1009fd_change (EV_P_ int fd, int flags)
749{ 1010{
750 unsigned char reify = anfds [fd].reify; 1011 unsigned char reify = anfds [fd].reify;
751 anfds [fd].reify |= flags; 1012 anfds [fd].reify |= flags;
752 1013
756 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1017 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
757 fdchanges [fdchangecnt - 1] = fd; 1018 fdchanges [fdchangecnt - 1] = fd;
758 } 1019 }
759} 1020}
760 1021
761void inline_speed 1022/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1023inline_speed void
762fd_kill (EV_P_ int fd) 1024fd_kill (EV_P_ int fd)
763{ 1025{
764 ev_io *w; 1026 ev_io *w;
765 1027
766 while ((w = (ev_io *)anfds [fd].head)) 1028 while ((w = (ev_io *)anfds [fd].head))
768 ev_io_stop (EV_A_ w); 1030 ev_io_stop (EV_A_ w);
769 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1031 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
770 } 1032 }
771} 1033}
772 1034
773int inline_size 1035/* check whether the given fd is actually valid, for error recovery */
1036inline_size int
774fd_valid (int fd) 1037fd_valid (int fd)
775{ 1038{
776#ifdef _WIN32 1039#ifdef _WIN32
777 return _get_osfhandle (fd) != -1; 1040 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
778#else 1041#else
779 return fcntl (fd, F_GETFD) != -1; 1042 return fcntl (fd, F_GETFD) != -1;
780#endif 1043#endif
781} 1044}
782 1045
800 1063
801 for (fd = anfdmax; fd--; ) 1064 for (fd = anfdmax; fd--; )
802 if (anfds [fd].events) 1065 if (anfds [fd].events)
803 { 1066 {
804 fd_kill (EV_A_ fd); 1067 fd_kill (EV_A_ fd);
805 return; 1068 break;
806 } 1069 }
807} 1070}
808 1071
809/* usually called after fork if backend needs to re-arm all fds from scratch */ 1072/* usually called after fork if backend needs to re-arm all fds from scratch */
810static void noinline 1073static void noinline
814 1077
815 for (fd = 0; fd < anfdmax; ++fd) 1078 for (fd = 0; fd < anfdmax; ++fd)
816 if (anfds [fd].events) 1079 if (anfds [fd].events)
817 { 1080 {
818 anfds [fd].events = 0; 1081 anfds [fd].events = 0;
1082 anfds [fd].emask = 0;
819 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1083 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
820 } 1084 }
821} 1085}
822 1086
1087/* used to prepare libev internal fd's */
1088/* this is not fork-safe */
1089inline_speed void
1090fd_intern (int fd)
1091{
1092#ifdef _WIN32
1093 unsigned long arg = 1;
1094 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1095#else
1096 fcntl (fd, F_SETFD, FD_CLOEXEC);
1097 fcntl (fd, F_SETFL, O_NONBLOCK);
1098#endif
1099}
1100
823/*****************************************************************************/ 1101/*****************************************************************************/
824 1102
825/* 1103/*
826 * the heap functions want a real array index. array index 0 uis guaranteed to not 1104 * the heap functions want a real array index. array index 0 is guaranteed to not
827 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1105 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
828 * the branching factor of the d-tree. 1106 * the branching factor of the d-tree.
829 */ 1107 */
830 1108
831/* 1109/*
840#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1118#define HEAP0 (DHEAP - 1) /* index of first element in heap */
841#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1119#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
842#define UPHEAP_DONE(p,k) ((p) == (k)) 1120#define UPHEAP_DONE(p,k) ((p) == (k))
843 1121
844/* away from the root */ 1122/* away from the root */
845void inline_speed 1123inline_speed void
846downheap (ANHE *heap, int N, int k) 1124downheap (ANHE *heap, int N, int k)
847{ 1125{
848 ANHE he = heap [k]; 1126 ANHE he = heap [k];
849 ANHE *E = heap + N + HEAP0; 1127 ANHE *E = heap + N + HEAP0;
850 1128
890#define HEAP0 1 1168#define HEAP0 1
891#define HPARENT(k) ((k) >> 1) 1169#define HPARENT(k) ((k) >> 1)
892#define UPHEAP_DONE(p,k) (!(p)) 1170#define UPHEAP_DONE(p,k) (!(p))
893 1171
894/* away from the root */ 1172/* away from the root */
895void inline_speed 1173inline_speed void
896downheap (ANHE *heap, int N, int k) 1174downheap (ANHE *heap, int N, int k)
897{ 1175{
898 ANHE he = heap [k]; 1176 ANHE he = heap [k];
899 1177
900 for (;;) 1178 for (;;)
901 { 1179 {
902 int c = k << 1; 1180 int c = k << 1;
903 1181
904 if (c > N + HEAP0 - 1) 1182 if (c >= N + HEAP0)
905 break; 1183 break;
906 1184
907 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1185 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
908 ? 1 : 0; 1186 ? 1 : 0;
909 1187
920 ev_active (ANHE_w (he)) = k; 1198 ev_active (ANHE_w (he)) = k;
921} 1199}
922#endif 1200#endif
923 1201
924/* towards the root */ 1202/* towards the root */
925void inline_speed 1203inline_speed void
926upheap (ANHE *heap, int k) 1204upheap (ANHE *heap, int k)
927{ 1205{
928 ANHE he = heap [k]; 1206 ANHE he = heap [k];
929 1207
930 for (;;) 1208 for (;;)
941 1219
942 heap [k] = he; 1220 heap [k] = he;
943 ev_active (ANHE_w (he)) = k; 1221 ev_active (ANHE_w (he)) = k;
944} 1222}
945 1223
946void inline_size 1224/* move an element suitably so it is in a correct place */
1225inline_size void
947adjustheap (ANHE *heap, int N, int k) 1226adjustheap (ANHE *heap, int N, int k)
948{ 1227{
949 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1228 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
950 upheap (heap, k); 1229 upheap (heap, k);
951 else 1230 else
952 downheap (heap, N, k); 1231 downheap (heap, N, k);
953} 1232}
954 1233
955/* rebuild the heap: this function is used only once and executed rarely */ 1234/* rebuild the heap: this function is used only once and executed rarely */
956void inline_size 1235inline_size void
957reheap (ANHE *heap, int N) 1236reheap (ANHE *heap, int N)
958{ 1237{
959 int i; 1238 int i;
960 1239
961 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1240 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
964 upheap (heap, i + HEAP0); 1243 upheap (heap, i + HEAP0);
965} 1244}
966 1245
967/*****************************************************************************/ 1246/*****************************************************************************/
968 1247
1248/* associate signal watchers to a signal signal */
969typedef struct 1249typedef struct
970{ 1250{
1251 EV_ATOMIC_T pending;
1252#if EV_MULTIPLICITY
1253 EV_P;
1254#endif
971 WL head; 1255 WL head;
972 EV_ATOMIC_T gotsig;
973} ANSIG; 1256} ANSIG;
974 1257
975static ANSIG *signals; 1258static ANSIG signals [EV_NSIG - 1];
976static int signalmax;
977
978static EV_ATOMIC_T gotsig;
979
980void inline_size
981signals_init (ANSIG *base, int count)
982{
983 while (count--)
984 {
985 base->head = 0;
986 base->gotsig = 0;
987
988 ++base;
989 }
990}
991 1259
992/*****************************************************************************/ 1260/*****************************************************************************/
993 1261
994void inline_speed 1262#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
995fd_intern (int fd)
996{
997#ifdef _WIN32
998 unsigned long arg = 1;
999 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1000#else
1001 fcntl (fd, F_SETFD, FD_CLOEXEC);
1002 fcntl (fd, F_SETFL, O_NONBLOCK);
1003#endif
1004}
1005 1263
1006static void noinline 1264static void noinline
1007evpipe_init (EV_P) 1265evpipe_init (EV_P)
1008{ 1266{
1009 if (!ev_is_active (&pipeev)) 1267 if (!ev_is_active (&pipe_w))
1010 { 1268 {
1011#if EV_USE_EVENTFD 1269# if EV_USE_EVENTFD
1270 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1271 if (evfd < 0 && errno == EINVAL)
1012 if ((evfd = eventfd (0, 0)) >= 0) 1272 evfd = eventfd (0, 0);
1273
1274 if (evfd >= 0)
1013 { 1275 {
1014 evpipe [0] = -1; 1276 evpipe [0] = -1;
1015 fd_intern (evfd); 1277 fd_intern (evfd); /* doing it twice doesn't hurt */
1016 ev_io_set (&pipeev, evfd, EV_READ); 1278 ev_io_set (&pipe_w, evfd, EV_READ);
1017 } 1279 }
1018 else 1280 else
1019#endif 1281# endif
1020 { 1282 {
1021 while (pipe (evpipe)) 1283 while (pipe (evpipe))
1022 syserr ("(libev) error creating signal/async pipe"); 1284 ev_syserr ("(libev) error creating signal/async pipe");
1023 1285
1024 fd_intern (evpipe [0]); 1286 fd_intern (evpipe [0]);
1025 fd_intern (evpipe [1]); 1287 fd_intern (evpipe [1]);
1026 ev_io_set (&pipeev, evpipe [0], EV_READ); 1288 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1027 } 1289 }
1028 1290
1029 ev_io_start (EV_A_ &pipeev); 1291 ev_io_start (EV_A_ &pipe_w);
1030 ev_unref (EV_A); /* watcher should not keep loop alive */ 1292 ev_unref (EV_A); /* watcher should not keep loop alive */
1031 } 1293 }
1032} 1294}
1033 1295
1034void inline_size 1296inline_size void
1035evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1297evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1036{ 1298{
1037 if (!*flag) 1299 if (!*flag)
1038 { 1300 {
1039 int old_errno = errno; /* save errno because write might clobber it */ 1301 int old_errno = errno; /* save errno because write might clobber it */
1302 char dummy;
1040 1303
1041 *flag = 1; 1304 *flag = 1;
1042 1305
1043#if EV_USE_EVENTFD 1306#if EV_USE_EVENTFD
1044 if (evfd >= 0) 1307 if (evfd >= 0)
1046 uint64_t counter = 1; 1309 uint64_t counter = 1;
1047 write (evfd, &counter, sizeof (uint64_t)); 1310 write (evfd, &counter, sizeof (uint64_t));
1048 } 1311 }
1049 else 1312 else
1050#endif 1313#endif
1314 /* win32 people keep sending patches that change this write() to send() */
1315 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1316 /* so when you think this write should be a send instead, please find out */
1317 /* where your send() is from - it's definitely not the microsoft send, and */
1318 /* tell me. thank you. */
1051 write (evpipe [1], &old_errno, 1); 1319 write (evpipe [1], &dummy, 1);
1052 1320
1053 errno = old_errno; 1321 errno = old_errno;
1054 } 1322 }
1055} 1323}
1056 1324
1325/* called whenever the libev signal pipe */
1326/* got some events (signal, async) */
1057static void 1327static void
1058pipecb (EV_P_ ev_io *iow, int revents) 1328pipecb (EV_P_ ev_io *iow, int revents)
1059{ 1329{
1330 int i;
1331
1060#if EV_USE_EVENTFD 1332#if EV_USE_EVENTFD
1061 if (evfd >= 0) 1333 if (evfd >= 0)
1062 { 1334 {
1063 uint64_t counter; 1335 uint64_t counter;
1064 read (evfd, &counter, sizeof (uint64_t)); 1336 read (evfd, &counter, sizeof (uint64_t));
1065 } 1337 }
1066 else 1338 else
1067#endif 1339#endif
1068 { 1340 {
1069 char dummy; 1341 char dummy;
1342 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1070 read (evpipe [0], &dummy, 1); 1343 read (evpipe [0], &dummy, 1);
1071 } 1344 }
1072 1345
1073 if (gotsig && ev_is_default_loop (EV_A)) 1346 if (sig_pending)
1074 { 1347 {
1075 int signum; 1348 sig_pending = 0;
1076 gotsig = 0;
1077 1349
1078 for (signum = signalmax; signum--; ) 1350 for (i = EV_NSIG - 1; i--; )
1079 if (signals [signum].gotsig) 1351 if (expect_false (signals [i].pending))
1080 ev_feed_signal_event (EV_A_ signum + 1); 1352 ev_feed_signal_event (EV_A_ i + 1);
1081 } 1353 }
1082 1354
1083#if EV_ASYNC_ENABLE 1355#if EV_ASYNC_ENABLE
1084 if (gotasync) 1356 if (async_pending)
1085 { 1357 {
1086 int i; 1358 async_pending = 0;
1087 gotasync = 0;
1088 1359
1089 for (i = asynccnt; i--; ) 1360 for (i = asynccnt; i--; )
1090 if (asyncs [i]->sent) 1361 if (asyncs [i]->sent)
1091 { 1362 {
1092 asyncs [i]->sent = 0; 1363 asyncs [i]->sent = 0;
1100 1371
1101static void 1372static void
1102ev_sighandler (int signum) 1373ev_sighandler (int signum)
1103{ 1374{
1104#if EV_MULTIPLICITY 1375#if EV_MULTIPLICITY
1105 struct ev_loop *loop = &default_loop_struct; 1376 EV_P = signals [signum - 1].loop;
1106#endif 1377#endif
1107 1378
1108#if _WIN32 1379#ifdef _WIN32
1109 signal (signum, ev_sighandler); 1380 signal (signum, ev_sighandler);
1110#endif 1381#endif
1111 1382
1112 signals [signum - 1].gotsig = 1; 1383 signals [signum - 1].pending = 1;
1113 evpipe_write (EV_A_ &gotsig); 1384 evpipe_write (EV_A_ &sig_pending);
1114} 1385}
1115 1386
1116void noinline 1387void noinline
1117ev_feed_signal_event (EV_P_ int signum) 1388ev_feed_signal_event (EV_P_ int signum)
1118{ 1389{
1119 WL w; 1390 WL w;
1120 1391
1392 if (expect_false (signum <= 0 || signum > EV_NSIG))
1393 return;
1394
1395 --signum;
1396
1121#if EV_MULTIPLICITY 1397#if EV_MULTIPLICITY
1122 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1398 /* it is permissible to try to feed a signal to the wrong loop */
1123#endif 1399 /* or, likely more useful, feeding a signal nobody is waiting for */
1124 1400
1125 --signum; 1401 if (expect_false (signals [signum].loop != EV_A))
1126
1127 if (signum < 0 || signum >= signalmax)
1128 return; 1402 return;
1403#endif
1129 1404
1130 signals [signum].gotsig = 0; 1405 signals [signum].pending = 0;
1131 1406
1132 for (w = signals [signum].head; w; w = w->next) 1407 for (w = signals [signum].head; w; w = w->next)
1133 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1408 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1134} 1409}
1135 1410
1411#if EV_USE_SIGNALFD
1412static void
1413sigfdcb (EV_P_ ev_io *iow, int revents)
1414{
1415 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1416
1417 for (;;)
1418 {
1419 ssize_t res = read (sigfd, si, sizeof (si));
1420
1421 /* not ISO-C, as res might be -1, but works with SuS */
1422 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1423 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1424
1425 if (res < (ssize_t)sizeof (si))
1426 break;
1427 }
1428}
1429#endif
1430
1431#endif
1432
1136/*****************************************************************************/ 1433/*****************************************************************************/
1137 1434
1435#if EV_CHILD_ENABLE
1138static WL childs [EV_PID_HASHSIZE]; 1436static WL childs [EV_PID_HASHSIZE];
1139
1140#ifndef _WIN32
1141 1437
1142static ev_signal childev; 1438static ev_signal childev;
1143 1439
1144#ifndef WIFCONTINUED 1440#ifndef WIFCONTINUED
1145# define WIFCONTINUED(status) 0 1441# define WIFCONTINUED(status) 0
1146#endif 1442#endif
1147 1443
1148void inline_speed 1444/* handle a single child status event */
1445inline_speed void
1149child_reap (EV_P_ int chain, int pid, int status) 1446child_reap (EV_P_ int chain, int pid, int status)
1150{ 1447{
1151 ev_child *w; 1448 ev_child *w;
1152 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1449 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1153 1450
1154 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1451 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1155 { 1452 {
1156 if ((w->pid == pid || !w->pid) 1453 if ((w->pid == pid || !w->pid)
1157 && (!traced || (w->flags & 1))) 1454 && (!traced || (w->flags & 1)))
1158 { 1455 {
1159 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1456 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1166 1463
1167#ifndef WCONTINUED 1464#ifndef WCONTINUED
1168# define WCONTINUED 0 1465# define WCONTINUED 0
1169#endif 1466#endif
1170 1467
1468/* called on sigchld etc., calls waitpid */
1171static void 1469static void
1172childcb (EV_P_ ev_signal *sw, int revents) 1470childcb (EV_P_ ev_signal *sw, int revents)
1173{ 1471{
1174 int pid, status; 1472 int pid, status;
1175 1473
1183 /* make sure we are called again until all children have been reaped */ 1481 /* make sure we are called again until all children have been reaped */
1184 /* we need to do it this way so that the callback gets called before we continue */ 1482 /* we need to do it this way so that the callback gets called before we continue */
1185 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1483 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1186 1484
1187 child_reap (EV_A_ pid, pid, status); 1485 child_reap (EV_A_ pid, pid, status);
1188 if (EV_PID_HASHSIZE > 1) 1486 if ((EV_PID_HASHSIZE) > 1)
1189 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1487 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1190} 1488}
1191 1489
1192#endif 1490#endif
1193 1491
1256 /* kqueue is borked on everything but netbsd apparently */ 1554 /* kqueue is borked on everything but netbsd apparently */
1257 /* it usually doesn't work correctly on anything but sockets and pipes */ 1555 /* it usually doesn't work correctly on anything but sockets and pipes */
1258 flags &= ~EVBACKEND_KQUEUE; 1556 flags &= ~EVBACKEND_KQUEUE;
1259#endif 1557#endif
1260#ifdef __APPLE__ 1558#ifdef __APPLE__
1261 // flags &= ~EVBACKEND_KQUEUE; for documentation 1559 /* only select works correctly on that "unix-certified" platform */
1262 flags &= ~EVBACKEND_POLL; 1560 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1561 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1562#endif
1563#ifdef __FreeBSD__
1564 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1263#endif 1565#endif
1264 1566
1265 return flags; 1567 return flags;
1266} 1568}
1267 1569
1269ev_embeddable_backends (void) 1571ev_embeddable_backends (void)
1270{ 1572{
1271 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 1573 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1272 1574
1273 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1575 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1274 /* please fix it and tell me how to detect the fix */ 1576 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1275 flags &= ~EVBACKEND_EPOLL; 1577 flags &= ~EVBACKEND_EPOLL;
1276 1578
1277 return flags; 1579 return flags;
1278} 1580}
1279 1581
1280unsigned int 1582unsigned int
1281ev_backend (EV_P) 1583ev_backend (EV_P)
1282{ 1584{
1283 return backend; 1585 return backend;
1284} 1586}
1285 1587
1588#if EV_FEATURE_API
1286unsigned int 1589unsigned int
1287ev_loop_count (EV_P) 1590ev_iteration (EV_P)
1288{ 1591{
1289 return loop_count; 1592 return loop_count;
1290} 1593}
1291 1594
1595unsigned int
1596ev_depth (EV_P)
1597{
1598 return loop_depth;
1599}
1600
1292void 1601void
1293ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1602ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1294{ 1603{
1295 io_blocktime = interval; 1604 io_blocktime = interval;
1296} 1605}
1299ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1608ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1300{ 1609{
1301 timeout_blocktime = interval; 1610 timeout_blocktime = interval;
1302} 1611}
1303 1612
1613void
1614ev_set_userdata (EV_P_ void *data)
1615{
1616 userdata = data;
1617}
1618
1619void *
1620ev_userdata (EV_P)
1621{
1622 return userdata;
1623}
1624
1625void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1626{
1627 invoke_cb = invoke_pending_cb;
1628}
1629
1630void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1631{
1632 release_cb = release;
1633 acquire_cb = acquire;
1634}
1635#endif
1636
1637/* initialise a loop structure, must be zero-initialised */
1304static void noinline 1638static void noinline
1305loop_init (EV_P_ unsigned int flags) 1639loop_init (EV_P_ unsigned int flags)
1306{ 1640{
1307 if (!backend) 1641 if (!backend)
1308 { 1642 {
1643#if EV_USE_REALTIME
1644 if (!have_realtime)
1645 {
1646 struct timespec ts;
1647
1648 if (!clock_gettime (CLOCK_REALTIME, &ts))
1649 have_realtime = 1;
1650 }
1651#endif
1652
1309#if EV_USE_MONOTONIC 1653#if EV_USE_MONOTONIC
1654 if (!have_monotonic)
1310 { 1655 {
1311 struct timespec ts; 1656 struct timespec ts;
1657
1312 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1658 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1313 have_monotonic = 1; 1659 have_monotonic = 1;
1314 } 1660 }
1315#endif 1661#endif
1662
1663 /* pid check not overridable via env */
1664#ifndef _WIN32
1665 if (flags & EVFLAG_FORKCHECK)
1666 curpid = getpid ();
1667#endif
1668
1669 if (!(flags & EVFLAG_NOENV)
1670 && !enable_secure ()
1671 && getenv ("LIBEV_FLAGS"))
1672 flags = atoi (getenv ("LIBEV_FLAGS"));
1316 1673
1317 ev_rt_now = ev_time (); 1674 ev_rt_now = ev_time ();
1318 mn_now = get_clock (); 1675 mn_now = get_clock ();
1319 now_floor = mn_now; 1676 now_floor = mn_now;
1320 rtmn_diff = ev_rt_now - mn_now; 1677 rtmn_diff = ev_rt_now - mn_now;
1678#if EV_FEATURE_API
1679 invoke_cb = ev_invoke_pending;
1680#endif
1321 1681
1322 io_blocktime = 0.; 1682 io_blocktime = 0.;
1323 timeout_blocktime = 0.; 1683 timeout_blocktime = 0.;
1324 backend = 0; 1684 backend = 0;
1325 backend_fd = -1; 1685 backend_fd = -1;
1326 gotasync = 0; 1686 sig_pending = 0;
1687#if EV_ASYNC_ENABLE
1688 async_pending = 0;
1689#endif
1327#if EV_USE_INOTIFY 1690#if EV_USE_INOTIFY
1328 fs_fd = -2; 1691 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1329#endif 1692#endif
1330 1693#if EV_USE_SIGNALFD
1331 /* pid check not overridable via env */ 1694 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1332#ifndef _WIN32
1333 if (flags & EVFLAG_FORKCHECK)
1334 curpid = getpid ();
1335#endif 1695#endif
1336
1337 if (!(flags & EVFLAG_NOENV)
1338 && !enable_secure ()
1339 && getenv ("LIBEV_FLAGS"))
1340 flags = atoi (getenv ("LIBEV_FLAGS"));
1341 1696
1342 if (!(flags & 0x0000ffffU)) 1697 if (!(flags & 0x0000ffffU))
1343 flags |= ev_recommended_backends (); 1698 flags |= ev_recommended_backends ();
1344 1699
1345#if EV_USE_PORT 1700#if EV_USE_PORT
1356#endif 1711#endif
1357#if EV_USE_SELECT 1712#if EV_USE_SELECT
1358 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1713 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1359#endif 1714#endif
1360 1715
1716 ev_prepare_init (&pending_w, pendingcb);
1717
1718#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1361 ev_init (&pipeev, pipecb); 1719 ev_init (&pipe_w, pipecb);
1362 ev_set_priority (&pipeev, EV_MAXPRI); 1720 ev_set_priority (&pipe_w, EV_MAXPRI);
1721#endif
1363 } 1722 }
1364} 1723}
1365 1724
1725/* free up a loop structure */
1366static void noinline 1726static void noinline
1367loop_destroy (EV_P) 1727loop_destroy (EV_P)
1368{ 1728{
1369 int i; 1729 int i;
1370 1730
1371 if (ev_is_active (&pipeev)) 1731 if (ev_is_active (&pipe_w))
1372 { 1732 {
1373 ev_ref (EV_A); /* signal watcher */ 1733 /*ev_ref (EV_A);*/
1374 ev_io_stop (EV_A_ &pipeev); 1734 /*ev_io_stop (EV_A_ &pipe_w);*/
1375 1735
1376#if EV_USE_EVENTFD 1736#if EV_USE_EVENTFD
1377 if (evfd >= 0) 1737 if (evfd >= 0)
1378 close (evfd); 1738 close (evfd);
1379#endif 1739#endif
1380 1740
1381 if (evpipe [0] >= 0) 1741 if (evpipe [0] >= 0)
1382 { 1742 {
1383 close (evpipe [0]); 1743 EV_WIN32_CLOSE_FD (evpipe [0]);
1384 close (evpipe [1]); 1744 EV_WIN32_CLOSE_FD (evpipe [1]);
1385 } 1745 }
1386 } 1746 }
1747
1748#if EV_USE_SIGNALFD
1749 if (ev_is_active (&sigfd_w))
1750 close (sigfd);
1751#endif
1387 1752
1388#if EV_USE_INOTIFY 1753#if EV_USE_INOTIFY
1389 if (fs_fd >= 0) 1754 if (fs_fd >= 0)
1390 close (fs_fd); 1755 close (fs_fd);
1391#endif 1756#endif
1415#if EV_IDLE_ENABLE 1780#if EV_IDLE_ENABLE
1416 array_free (idle, [i]); 1781 array_free (idle, [i]);
1417#endif 1782#endif
1418 } 1783 }
1419 1784
1420 ev_free (anfds); anfdmax = 0; 1785 ev_free (anfds); anfds = 0; anfdmax = 0;
1421 1786
1422 /* have to use the microsoft-never-gets-it-right macro */ 1787 /* have to use the microsoft-never-gets-it-right macro */
1788 array_free (rfeed, EMPTY);
1423 array_free (fdchange, EMPTY); 1789 array_free (fdchange, EMPTY);
1424 array_free (timer, EMPTY); 1790 array_free (timer, EMPTY);
1425#if EV_PERIODIC_ENABLE 1791#if EV_PERIODIC_ENABLE
1426 array_free (periodic, EMPTY); 1792 array_free (periodic, EMPTY);
1427#endif 1793#endif
1436 1802
1437 backend = 0; 1803 backend = 0;
1438} 1804}
1439 1805
1440#if EV_USE_INOTIFY 1806#if EV_USE_INOTIFY
1441void inline_size infy_fork (EV_P); 1807inline_size void infy_fork (EV_P);
1442#endif 1808#endif
1443 1809
1444void inline_size 1810inline_size void
1445loop_fork (EV_P) 1811loop_fork (EV_P)
1446{ 1812{
1447#if EV_USE_PORT 1813#if EV_USE_PORT
1448 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1814 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1449#endif 1815#endif
1455#endif 1821#endif
1456#if EV_USE_INOTIFY 1822#if EV_USE_INOTIFY
1457 infy_fork (EV_A); 1823 infy_fork (EV_A);
1458#endif 1824#endif
1459 1825
1460 if (ev_is_active (&pipeev)) 1826 if (ev_is_active (&pipe_w))
1461 { 1827 {
1462 /* this "locks" the handlers against writing to the pipe */ 1828 /* this "locks" the handlers against writing to the pipe */
1463 /* while we modify the fd vars */ 1829 /* while we modify the fd vars */
1464 gotsig = 1; 1830 sig_pending = 1;
1465#if EV_ASYNC_ENABLE 1831#if EV_ASYNC_ENABLE
1466 gotasync = 1; 1832 async_pending = 1;
1467#endif 1833#endif
1468 1834
1469 ev_ref (EV_A); 1835 ev_ref (EV_A);
1470 ev_io_stop (EV_A_ &pipeev); 1836 ev_io_stop (EV_A_ &pipe_w);
1471 1837
1472#if EV_USE_EVENTFD 1838#if EV_USE_EVENTFD
1473 if (evfd >= 0) 1839 if (evfd >= 0)
1474 close (evfd); 1840 close (evfd);
1475#endif 1841#endif
1476 1842
1477 if (evpipe [0] >= 0) 1843 if (evpipe [0] >= 0)
1478 { 1844 {
1479 close (evpipe [0]); 1845 EV_WIN32_CLOSE_FD (evpipe [0]);
1480 close (evpipe [1]); 1846 EV_WIN32_CLOSE_FD (evpipe [1]);
1481 } 1847 }
1482 1848
1849#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1483 evpipe_init (EV_A); 1850 evpipe_init (EV_A);
1484 /* now iterate over everything, in case we missed something */ 1851 /* now iterate over everything, in case we missed something */
1485 pipecb (EV_A_ &pipeev, EV_READ); 1852 pipecb (EV_A_ &pipe_w, EV_READ);
1853#endif
1486 } 1854 }
1487 1855
1488 postfork = 0; 1856 postfork = 0;
1489} 1857}
1490 1858
1491#if EV_MULTIPLICITY 1859#if EV_MULTIPLICITY
1492 1860
1493struct ev_loop * 1861struct ev_loop *
1494ev_loop_new (unsigned int flags) 1862ev_loop_new (unsigned int flags)
1495{ 1863{
1496 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1864 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1497 1865
1498 memset (loop, 0, sizeof (struct ev_loop)); 1866 memset (EV_A, 0, sizeof (struct ev_loop));
1499
1500 loop_init (EV_A_ flags); 1867 loop_init (EV_A_ flags);
1501 1868
1502 if (ev_backend (EV_A)) 1869 if (ev_backend (EV_A))
1503 return loop; 1870 return EV_A;
1504 1871
1505 return 0; 1872 return 0;
1506} 1873}
1507 1874
1508void 1875void
1515void 1882void
1516ev_loop_fork (EV_P) 1883ev_loop_fork (EV_P)
1517{ 1884{
1518 postfork = 1; /* must be in line with ev_default_fork */ 1885 postfork = 1; /* must be in line with ev_default_fork */
1519} 1886}
1887#endif /* multiplicity */
1520 1888
1521#if EV_VERIFY 1889#if EV_VERIFY
1522static void noinline 1890static void noinline
1523verify_watcher (EV_P_ W w) 1891verify_watcher (EV_P_ W w)
1524{ 1892{
1525 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 1893 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1526 1894
1527 if (w->pending) 1895 if (w->pending)
1528 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 1896 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1529} 1897}
1530 1898
1531static void noinline 1899static void noinline
1532verify_heap (EV_P_ ANHE *heap, int N) 1900verify_heap (EV_P_ ANHE *heap, int N)
1533{ 1901{
1534 int i; 1902 int i;
1535 1903
1536 for (i = HEAP0; i < N + HEAP0; ++i) 1904 for (i = HEAP0; i < N + HEAP0; ++i)
1537 { 1905 {
1538 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 1906 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1539 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 1907 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1540 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 1908 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1541 1909
1542 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 1910 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1543 } 1911 }
1544} 1912}
1545 1913
1546static void noinline 1914static void noinline
1547array_verify (EV_P_ W *ws, int cnt) 1915array_verify (EV_P_ W *ws, int cnt)
1548{ 1916{
1549 while (cnt--) 1917 while (cnt--)
1550 { 1918 {
1551 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 1919 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1552 verify_watcher (EV_A_ ws [cnt]); 1920 verify_watcher (EV_A_ ws [cnt]);
1553 } 1921 }
1554} 1922}
1555#endif 1923#endif
1556 1924
1925#if EV_FEATURE_API
1557void 1926void
1558ev_loop_verify (EV_P) 1927ev_verify (EV_P)
1559{ 1928{
1560#if EV_VERIFY 1929#if EV_VERIFY
1561 int i; 1930 int i;
1562 WL w; 1931 WL w;
1563 1932
1564 assert (activecnt >= -1); 1933 assert (activecnt >= -1);
1565 1934
1566 assert (fdchangemax >= fdchangecnt); 1935 assert (fdchangemax >= fdchangecnt);
1567 for (i = 0; i < fdchangecnt; ++i) 1936 for (i = 0; i < fdchangecnt; ++i)
1568 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 1937 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1569 1938
1570 assert (anfdmax >= 0); 1939 assert (anfdmax >= 0);
1571 for (i = 0; i < anfdmax; ++i) 1940 for (i = 0; i < anfdmax; ++i)
1572 for (w = anfds [i].head; w; w = w->next) 1941 for (w = anfds [i].head; w; w = w->next)
1573 { 1942 {
1574 verify_watcher (EV_A_ (W)w); 1943 verify_watcher (EV_A_ (W)w);
1575 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 1944 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1576 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 1945 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1577 } 1946 }
1578 1947
1579 assert (timermax >= timercnt); 1948 assert (timermax >= timercnt);
1580 verify_heap (EV_A_ timers, timercnt); 1949 verify_heap (EV_A_ timers, timercnt);
1581 1950
1602#if EV_ASYNC_ENABLE 1971#if EV_ASYNC_ENABLE
1603 assert (asyncmax >= asynccnt); 1972 assert (asyncmax >= asynccnt);
1604 array_verify (EV_A_ (W *)asyncs, asynccnt); 1973 array_verify (EV_A_ (W *)asyncs, asynccnt);
1605#endif 1974#endif
1606 1975
1976#if EV_PREPARE_ENABLE
1607 assert (preparemax >= preparecnt); 1977 assert (preparemax >= preparecnt);
1608 array_verify (EV_A_ (W *)prepares, preparecnt); 1978 array_verify (EV_A_ (W *)prepares, preparecnt);
1979#endif
1609 1980
1981#if EV_CHECK_ENABLE
1610 assert (checkmax >= checkcnt); 1982 assert (checkmax >= checkcnt);
1611 array_verify (EV_A_ (W *)checks, checkcnt); 1983 array_verify (EV_A_ (W *)checks, checkcnt);
1984#endif
1612 1985
1613# if 0 1986# if 0
1987#if EV_CHILD_ENABLE
1614 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1988 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1615 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 1989 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1990#endif
1616# endif 1991# endif
1617#endif 1992#endif
1618} 1993}
1619 1994#endif
1620#endif /* multiplicity */
1621 1995
1622#if EV_MULTIPLICITY 1996#if EV_MULTIPLICITY
1623struct ev_loop * 1997struct ev_loop *
1624ev_default_loop_init (unsigned int flags) 1998ev_default_loop_init (unsigned int flags)
1625#else 1999#else
1628#endif 2002#endif
1629{ 2003{
1630 if (!ev_default_loop_ptr) 2004 if (!ev_default_loop_ptr)
1631 { 2005 {
1632#if EV_MULTIPLICITY 2006#if EV_MULTIPLICITY
1633 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2007 EV_P = ev_default_loop_ptr = &default_loop_struct;
1634#else 2008#else
1635 ev_default_loop_ptr = 1; 2009 ev_default_loop_ptr = 1;
1636#endif 2010#endif
1637 2011
1638 loop_init (EV_A_ flags); 2012 loop_init (EV_A_ flags);
1639 2013
1640 if (ev_backend (EV_A)) 2014 if (ev_backend (EV_A))
1641 { 2015 {
1642#ifndef _WIN32 2016#if EV_CHILD_ENABLE
1643 ev_signal_init (&childev, childcb, SIGCHLD); 2017 ev_signal_init (&childev, childcb, SIGCHLD);
1644 ev_set_priority (&childev, EV_MAXPRI); 2018 ev_set_priority (&childev, EV_MAXPRI);
1645 ev_signal_start (EV_A_ &childev); 2019 ev_signal_start (EV_A_ &childev);
1646 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2020 ev_unref (EV_A); /* child watcher should not keep loop alive */
1647#endif 2021#endif
1655 2029
1656void 2030void
1657ev_default_destroy (void) 2031ev_default_destroy (void)
1658{ 2032{
1659#if EV_MULTIPLICITY 2033#if EV_MULTIPLICITY
1660 struct ev_loop *loop = ev_default_loop_ptr; 2034 EV_P = ev_default_loop_ptr;
1661#endif 2035#endif
1662 2036
1663#ifndef _WIN32 2037 ev_default_loop_ptr = 0;
2038
2039#if EV_CHILD_ENABLE
1664 ev_ref (EV_A); /* child watcher */ 2040 ev_ref (EV_A); /* child watcher */
1665 ev_signal_stop (EV_A_ &childev); 2041 ev_signal_stop (EV_A_ &childev);
1666#endif 2042#endif
1667 2043
1668 loop_destroy (EV_A); 2044 loop_destroy (EV_A);
1670 2046
1671void 2047void
1672ev_default_fork (void) 2048ev_default_fork (void)
1673{ 2049{
1674#if EV_MULTIPLICITY 2050#if EV_MULTIPLICITY
1675 struct ev_loop *loop = ev_default_loop_ptr; 2051 EV_P = ev_default_loop_ptr;
1676#endif 2052#endif
1677 2053
1678 if (backend)
1679 postfork = 1; /* must be in line with ev_loop_fork */ 2054 postfork = 1; /* must be in line with ev_loop_fork */
1680} 2055}
1681 2056
1682/*****************************************************************************/ 2057/*****************************************************************************/
1683 2058
1684void 2059void
1685ev_invoke (EV_P_ void *w, int revents) 2060ev_invoke (EV_P_ void *w, int revents)
1686{ 2061{
1687 EV_CB_INVOKE ((W)w, revents); 2062 EV_CB_INVOKE ((W)w, revents);
1688} 2063}
1689 2064
1690void inline_speed 2065unsigned int
1691call_pending (EV_P) 2066ev_pending_count (EV_P)
2067{
2068 int pri;
2069 unsigned int count = 0;
2070
2071 for (pri = NUMPRI; pri--; )
2072 count += pendingcnt [pri];
2073
2074 return count;
2075}
2076
2077void noinline
2078ev_invoke_pending (EV_P)
1692{ 2079{
1693 int pri; 2080 int pri;
1694 2081
1695 for (pri = NUMPRI; pri--; ) 2082 for (pri = NUMPRI; pri--; )
1696 while (pendingcnt [pri]) 2083 while (pendingcnt [pri])
1697 { 2084 {
1698 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2085 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1699 2086
1700 if (expect_true (p->w))
1701 {
1702 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2087 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2088 /* ^ this is no longer true, as pending_w could be here */
1703 2089
1704 p->w->pending = 0; 2090 p->w->pending = 0;
1705 EV_CB_INVOKE (p->w, p->events); 2091 EV_CB_INVOKE (p->w, p->events);
1706 EV_FREQUENT_CHECK; 2092 EV_FREQUENT_CHECK;
1707 }
1708 } 2093 }
1709} 2094}
1710 2095
1711#if EV_IDLE_ENABLE 2096#if EV_IDLE_ENABLE
1712void inline_size 2097/* make idle watchers pending. this handles the "call-idle */
2098/* only when higher priorities are idle" logic */
2099inline_size void
1713idle_reify (EV_P) 2100idle_reify (EV_P)
1714{ 2101{
1715 if (expect_false (idleall)) 2102 if (expect_false (idleall))
1716 { 2103 {
1717 int pri; 2104 int pri;
1729 } 2116 }
1730 } 2117 }
1731} 2118}
1732#endif 2119#endif
1733 2120
1734void inline_size 2121/* make timers pending */
2122inline_size void
1735timers_reify (EV_P) 2123timers_reify (EV_P)
1736{ 2124{
1737 EV_FREQUENT_CHECK; 2125 EV_FREQUENT_CHECK;
1738 2126
1739 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2127 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1740 { 2128 {
1741 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2129 do
1742
1743 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1744
1745 /* first reschedule or stop timer */
1746 if (w->repeat)
1747 { 2130 {
2131 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2132
2133 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2134
2135 /* first reschedule or stop timer */
2136 if (w->repeat)
2137 {
1748 ev_at (w) += w->repeat; 2138 ev_at (w) += w->repeat;
1749 if (ev_at (w) < mn_now) 2139 if (ev_at (w) < mn_now)
1750 ev_at (w) = mn_now; 2140 ev_at (w) = mn_now;
1751 2141
1752 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2142 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1753 2143
1754 ANHE_at_cache (timers [HEAP0]); 2144 ANHE_at_cache (timers [HEAP0]);
1755 downheap (timers, timercnt, HEAP0); 2145 downheap (timers, timercnt, HEAP0);
2146 }
2147 else
2148 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2149
2150 EV_FREQUENT_CHECK;
2151 feed_reverse (EV_A_ (W)w);
1756 } 2152 }
1757 else 2153 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1758 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1759 2154
1760 EV_FREQUENT_CHECK; 2155 feed_reverse_done (EV_A_ EV_TIMER);
1761 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1762 } 2156 }
1763} 2157}
1764 2158
1765#if EV_PERIODIC_ENABLE 2159#if EV_PERIODIC_ENABLE
1766void inline_size 2160/* make periodics pending */
2161inline_size void
1767periodics_reify (EV_P) 2162periodics_reify (EV_P)
1768{ 2163{
1769 EV_FREQUENT_CHECK; 2164 EV_FREQUENT_CHECK;
1770 2165
1771 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2166 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1772 { 2167 {
1773 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2168 int feed_count = 0;
1774 2169
1775 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2170 do
1776
1777 /* first reschedule or stop timer */
1778 if (w->reschedule_cb)
1779 { 2171 {
2172 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2173
2174 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2175
2176 /* first reschedule or stop timer */
2177 if (w->reschedule_cb)
2178 {
1780 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2179 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1781 2180
1782 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2181 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1783 2182
1784 ANHE_at_cache (periodics [HEAP0]); 2183 ANHE_at_cache (periodics [HEAP0]);
1785 downheap (periodics, periodiccnt, HEAP0); 2184 downheap (periodics, periodiccnt, HEAP0);
2185 }
2186 else if (w->interval)
2187 {
2188 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2189 /* if next trigger time is not sufficiently in the future, put it there */
2190 /* this might happen because of floating point inexactness */
2191 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2192 {
2193 ev_at (w) += w->interval;
2194
2195 /* if interval is unreasonably low we might still have a time in the past */
2196 /* so correct this. this will make the periodic very inexact, but the user */
2197 /* has effectively asked to get triggered more often than possible */
2198 if (ev_at (w) < ev_rt_now)
2199 ev_at (w) = ev_rt_now;
2200 }
2201
2202 ANHE_at_cache (periodics [HEAP0]);
2203 downheap (periodics, periodiccnt, HEAP0);
2204 }
2205 else
2206 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2207
2208 EV_FREQUENT_CHECK;
2209 feed_reverse (EV_A_ (W)w);
1786 } 2210 }
1787 else if (w->interval) 2211 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1788 {
1789 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1790 /* if next trigger time is not sufficiently in the future, put it there */
1791 /* this might happen because of floating point inexactness */
1792 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1793 {
1794 ev_at (w) += w->interval;
1795 2212
1796 /* if interval is unreasonably low we might still have a time in the past */
1797 /* so correct this. this will make the periodic very inexact, but the user */
1798 /* has effectively asked to get triggered more often than possible */
1799 if (ev_at (w) < ev_rt_now)
1800 ev_at (w) = ev_rt_now;
1801 }
1802
1803 ANHE_at_cache (periodics [HEAP0]);
1804 downheap (periodics, periodiccnt, HEAP0);
1805 }
1806 else
1807 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1808
1809 EV_FREQUENT_CHECK;
1810 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2213 feed_reverse_done (EV_A_ EV_PERIODIC);
1811 } 2214 }
1812} 2215}
1813 2216
2217/* simply recalculate all periodics */
2218/* TODO: maybe ensure that at least one event happens when jumping forward? */
1814static void noinline 2219static void noinline
1815periodics_reschedule (EV_P) 2220periodics_reschedule (EV_P)
1816{ 2221{
1817 int i; 2222 int i;
1818 2223
1831 2236
1832 reheap (periodics, periodiccnt); 2237 reheap (periodics, periodiccnt);
1833} 2238}
1834#endif 2239#endif
1835 2240
1836void inline_speed 2241/* adjust all timers by a given offset */
2242static void noinline
2243timers_reschedule (EV_P_ ev_tstamp adjust)
2244{
2245 int i;
2246
2247 for (i = 0; i < timercnt; ++i)
2248 {
2249 ANHE *he = timers + i + HEAP0;
2250 ANHE_w (*he)->at += adjust;
2251 ANHE_at_cache (*he);
2252 }
2253}
2254
2255/* fetch new monotonic and realtime times from the kernel */
2256/* also detect if there was a timejump, and act accordingly */
2257inline_speed void
1837time_update (EV_P_ ev_tstamp max_block) 2258time_update (EV_P_ ev_tstamp max_block)
1838{ 2259{
1839 int i;
1840
1841#if EV_USE_MONOTONIC 2260#if EV_USE_MONOTONIC
1842 if (expect_true (have_monotonic)) 2261 if (expect_true (have_monotonic))
1843 { 2262 {
2263 int i;
1844 ev_tstamp odiff = rtmn_diff; 2264 ev_tstamp odiff = rtmn_diff;
1845 2265
1846 mn_now = get_clock (); 2266 mn_now = get_clock ();
1847 2267
1848 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2268 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1874 ev_rt_now = ev_time (); 2294 ev_rt_now = ev_time ();
1875 mn_now = get_clock (); 2295 mn_now = get_clock ();
1876 now_floor = mn_now; 2296 now_floor = mn_now;
1877 } 2297 }
1878 2298
2299 /* no timer adjustment, as the monotonic clock doesn't jump */
2300 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1879# if EV_PERIODIC_ENABLE 2301# if EV_PERIODIC_ENABLE
1880 periodics_reschedule (EV_A); 2302 periodics_reschedule (EV_A);
1881# endif 2303# endif
1882 /* no timer adjustment, as the monotonic clock doesn't jump */
1883 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1884 } 2304 }
1885 else 2305 else
1886#endif 2306#endif
1887 { 2307 {
1888 ev_rt_now = ev_time (); 2308 ev_rt_now = ev_time ();
1889 2309
1890 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2310 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1891 { 2311 {
2312 /* adjust timers. this is easy, as the offset is the same for all of them */
2313 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1892#if EV_PERIODIC_ENABLE 2314#if EV_PERIODIC_ENABLE
1893 periodics_reschedule (EV_A); 2315 periodics_reschedule (EV_A);
1894#endif 2316#endif
1895 /* adjust timers. this is easy, as the offset is the same for all of them */
1896 for (i = 0; i < timercnt; ++i)
1897 {
1898 ANHE *he = timers + i + HEAP0;
1899 ANHE_w (*he)->at += ev_rt_now - mn_now;
1900 ANHE_at_cache (*he);
1901 }
1902 } 2317 }
1903 2318
1904 mn_now = ev_rt_now; 2319 mn_now = ev_rt_now;
1905 } 2320 }
1906} 2321}
1907 2322
1908void 2323void
1909ev_ref (EV_P)
1910{
1911 ++activecnt;
1912}
1913
1914void
1915ev_unref (EV_P)
1916{
1917 --activecnt;
1918}
1919
1920void
1921ev_now_update (EV_P)
1922{
1923 time_update (EV_A_ 1e100);
1924}
1925
1926static int loop_done;
1927
1928void
1929ev_loop (EV_P_ int flags) 2324ev_run (EV_P_ int flags)
1930{ 2325{
2326#if EV_FEATURE_API
2327 ++loop_depth;
2328#endif
2329
2330 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2331
1931 loop_done = EVUNLOOP_CANCEL; 2332 loop_done = EVBREAK_CANCEL;
1932 2333
1933 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2334 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1934 2335
1935 do 2336 do
1936 { 2337 {
1937#if EV_VERIFY >= 2 2338#if EV_VERIFY >= 2
1938 ev_loop_verify (EV_A); 2339 ev_verify (EV_A);
1939#endif 2340#endif
1940 2341
1941#ifndef _WIN32 2342#ifndef _WIN32
1942 if (expect_false (curpid)) /* penalise the forking check even more */ 2343 if (expect_false (curpid)) /* penalise the forking check even more */
1943 if (expect_false (getpid () != curpid)) 2344 if (expect_false (getpid () != curpid))
1951 /* we might have forked, so queue fork handlers */ 2352 /* we might have forked, so queue fork handlers */
1952 if (expect_false (postfork)) 2353 if (expect_false (postfork))
1953 if (forkcnt) 2354 if (forkcnt)
1954 { 2355 {
1955 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2356 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1956 call_pending (EV_A); 2357 EV_INVOKE_PENDING;
1957 } 2358 }
1958#endif 2359#endif
1959 2360
2361#if EV_PREPARE_ENABLE
1960 /* queue prepare watchers (and execute them) */ 2362 /* queue prepare watchers (and execute them) */
1961 if (expect_false (preparecnt)) 2363 if (expect_false (preparecnt))
1962 { 2364 {
1963 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2365 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1964 call_pending (EV_A); 2366 EV_INVOKE_PENDING;
1965 } 2367 }
2368#endif
1966 2369
1967 if (expect_false (!activecnt)) 2370 if (expect_false (loop_done))
1968 break; 2371 break;
1969 2372
1970 /* we might have forked, so reify kernel state if necessary */ 2373 /* we might have forked, so reify kernel state if necessary */
1971 if (expect_false (postfork)) 2374 if (expect_false (postfork))
1972 loop_fork (EV_A); 2375 loop_fork (EV_A);
1977 /* calculate blocking time */ 2380 /* calculate blocking time */
1978 { 2381 {
1979 ev_tstamp waittime = 0.; 2382 ev_tstamp waittime = 0.;
1980 ev_tstamp sleeptime = 0.; 2383 ev_tstamp sleeptime = 0.;
1981 2384
2385 /* remember old timestamp for io_blocktime calculation */
2386 ev_tstamp prev_mn_now = mn_now;
2387
2388 /* update time to cancel out callback processing overhead */
2389 time_update (EV_A_ 1e100);
2390
1982 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2391 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1983 { 2392 {
1984 /* update time to cancel out callback processing overhead */
1985 time_update (EV_A_ 1e100);
1986
1987 waittime = MAX_BLOCKTIME; 2393 waittime = MAX_BLOCKTIME;
1988 2394
1989 if (timercnt) 2395 if (timercnt)
1990 { 2396 {
1991 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 2397 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1998 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2404 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1999 if (waittime > to) waittime = to; 2405 if (waittime > to) waittime = to;
2000 } 2406 }
2001#endif 2407#endif
2002 2408
2409 /* don't let timeouts decrease the waittime below timeout_blocktime */
2003 if (expect_false (waittime < timeout_blocktime)) 2410 if (expect_false (waittime < timeout_blocktime))
2004 waittime = timeout_blocktime; 2411 waittime = timeout_blocktime;
2005 2412
2006 sleeptime = waittime - backend_fudge; 2413 /* extra check because io_blocktime is commonly 0 */
2007
2008 if (expect_true (sleeptime > io_blocktime)) 2414 if (expect_false (io_blocktime))
2009 sleeptime = io_blocktime;
2010
2011 if (sleeptime)
2012 { 2415 {
2416 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2417
2418 if (sleeptime > waittime - backend_fudge)
2419 sleeptime = waittime - backend_fudge;
2420
2421 if (expect_true (sleeptime > 0.))
2422 {
2013 ev_sleep (sleeptime); 2423 ev_sleep (sleeptime);
2014 waittime -= sleeptime; 2424 waittime -= sleeptime;
2425 }
2015 } 2426 }
2016 } 2427 }
2017 2428
2429#if EV_FEATURE_API
2018 ++loop_count; 2430 ++loop_count;
2431#endif
2432 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2019 backend_poll (EV_A_ waittime); 2433 backend_poll (EV_A_ waittime);
2434 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2020 2435
2021 /* update ev_rt_now, do magic */ 2436 /* update ev_rt_now, do magic */
2022 time_update (EV_A_ waittime + sleeptime); 2437 time_update (EV_A_ waittime + sleeptime);
2023 } 2438 }
2024 2439
2031#if EV_IDLE_ENABLE 2446#if EV_IDLE_ENABLE
2032 /* queue idle watchers unless other events are pending */ 2447 /* queue idle watchers unless other events are pending */
2033 idle_reify (EV_A); 2448 idle_reify (EV_A);
2034#endif 2449#endif
2035 2450
2451#if EV_CHECK_ENABLE
2036 /* queue check watchers, to be executed first */ 2452 /* queue check watchers, to be executed first */
2037 if (expect_false (checkcnt)) 2453 if (expect_false (checkcnt))
2038 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2454 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2455#endif
2039 2456
2040 call_pending (EV_A); 2457 EV_INVOKE_PENDING;
2041 } 2458 }
2042 while (expect_true ( 2459 while (expect_true (
2043 activecnt 2460 activecnt
2044 && !loop_done 2461 && !loop_done
2045 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2462 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2046 )); 2463 ));
2047 2464
2048 if (loop_done == EVUNLOOP_ONE) 2465 if (loop_done == EVBREAK_ONE)
2049 loop_done = EVUNLOOP_CANCEL; 2466 loop_done = EVBREAK_CANCEL;
2050}
2051 2467
2468#if EV_FEATURE_API
2469 --loop_depth;
2470#endif
2471}
2472
2052void 2473void
2053ev_unloop (EV_P_ int how) 2474ev_break (EV_P_ int how)
2054{ 2475{
2055 loop_done = how; 2476 loop_done = how;
2056} 2477}
2057 2478
2479void
2480ev_ref (EV_P)
2481{
2482 ++activecnt;
2483}
2484
2485void
2486ev_unref (EV_P)
2487{
2488 --activecnt;
2489}
2490
2491void
2492ev_now_update (EV_P)
2493{
2494 time_update (EV_A_ 1e100);
2495}
2496
2497void
2498ev_suspend (EV_P)
2499{
2500 ev_now_update (EV_A);
2501}
2502
2503void
2504ev_resume (EV_P)
2505{
2506 ev_tstamp mn_prev = mn_now;
2507
2508 ev_now_update (EV_A);
2509 timers_reschedule (EV_A_ mn_now - mn_prev);
2510#if EV_PERIODIC_ENABLE
2511 /* TODO: really do this? */
2512 periodics_reschedule (EV_A);
2513#endif
2514}
2515
2058/*****************************************************************************/ 2516/*****************************************************************************/
2517/* singly-linked list management, used when the expected list length is short */
2059 2518
2060void inline_size 2519inline_size void
2061wlist_add (WL *head, WL elem) 2520wlist_add (WL *head, WL elem)
2062{ 2521{
2063 elem->next = *head; 2522 elem->next = *head;
2064 *head = elem; 2523 *head = elem;
2065} 2524}
2066 2525
2067void inline_size 2526inline_size void
2068wlist_del (WL *head, WL elem) 2527wlist_del (WL *head, WL elem)
2069{ 2528{
2070 while (*head) 2529 while (*head)
2071 { 2530 {
2072 if (*head == elem) 2531 if (expect_true (*head == elem))
2073 { 2532 {
2074 *head = elem->next; 2533 *head = elem->next;
2075 return; 2534 break;
2076 } 2535 }
2077 2536
2078 head = &(*head)->next; 2537 head = &(*head)->next;
2079 } 2538 }
2080} 2539}
2081 2540
2082void inline_speed 2541/* internal, faster, version of ev_clear_pending */
2542inline_speed void
2083clear_pending (EV_P_ W w) 2543clear_pending (EV_P_ W w)
2084{ 2544{
2085 if (w->pending) 2545 if (w->pending)
2086 { 2546 {
2087 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2547 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2088 w->pending = 0; 2548 w->pending = 0;
2089 } 2549 }
2090} 2550}
2091 2551
2092int 2552int
2096 int pending = w_->pending; 2556 int pending = w_->pending;
2097 2557
2098 if (expect_true (pending)) 2558 if (expect_true (pending))
2099 { 2559 {
2100 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2560 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2561 p->w = (W)&pending_w;
2101 w_->pending = 0; 2562 w_->pending = 0;
2102 p->w = 0;
2103 return p->events; 2563 return p->events;
2104 } 2564 }
2105 else 2565 else
2106 return 0; 2566 return 0;
2107} 2567}
2108 2568
2109void inline_size 2569inline_size void
2110pri_adjust (EV_P_ W w) 2570pri_adjust (EV_P_ W w)
2111{ 2571{
2112 int pri = w->priority; 2572 int pri = ev_priority (w);
2113 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2573 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2114 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2574 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2115 w->priority = pri; 2575 ev_set_priority (w, pri);
2116} 2576}
2117 2577
2118void inline_speed 2578inline_speed void
2119ev_start (EV_P_ W w, int active) 2579ev_start (EV_P_ W w, int active)
2120{ 2580{
2121 pri_adjust (EV_A_ w); 2581 pri_adjust (EV_A_ w);
2122 w->active = active; 2582 w->active = active;
2123 ev_ref (EV_A); 2583 ev_ref (EV_A);
2124} 2584}
2125 2585
2126void inline_size 2586inline_size void
2127ev_stop (EV_P_ W w) 2587ev_stop (EV_P_ W w)
2128{ 2588{
2129 ev_unref (EV_A); 2589 ev_unref (EV_A);
2130 w->active = 0; 2590 w->active = 0;
2131} 2591}
2138 int fd = w->fd; 2598 int fd = w->fd;
2139 2599
2140 if (expect_false (ev_is_active (w))) 2600 if (expect_false (ev_is_active (w)))
2141 return; 2601 return;
2142 2602
2143 assert (("ev_io_start called with negative fd", fd >= 0)); 2603 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2604 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2144 2605
2145 EV_FREQUENT_CHECK; 2606 EV_FREQUENT_CHECK;
2146 2607
2147 ev_start (EV_A_ (W)w, 1); 2608 ev_start (EV_A_ (W)w, 1);
2148 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2609 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2149 wlist_add (&anfds[fd].head, (WL)w); 2610 wlist_add (&anfds[fd].head, (WL)w);
2150 2611
2151 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2612 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2152 w->events &= ~EV_IOFDSET; 2613 w->events &= ~EV__IOFDSET;
2153 2614
2154 EV_FREQUENT_CHECK; 2615 EV_FREQUENT_CHECK;
2155} 2616}
2156 2617
2157void noinline 2618void noinline
2159{ 2620{
2160 clear_pending (EV_A_ (W)w); 2621 clear_pending (EV_A_ (W)w);
2161 if (expect_false (!ev_is_active (w))) 2622 if (expect_false (!ev_is_active (w)))
2162 return; 2623 return;
2163 2624
2164 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2625 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2165 2626
2166 EV_FREQUENT_CHECK; 2627 EV_FREQUENT_CHECK;
2167 2628
2168 wlist_del (&anfds[w->fd].head, (WL)w); 2629 wlist_del (&anfds[w->fd].head, (WL)w);
2169 ev_stop (EV_A_ (W)w); 2630 ev_stop (EV_A_ (W)w);
2170 2631
2171 fd_change (EV_A_ w->fd, 1); 2632 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2172 2633
2173 EV_FREQUENT_CHECK; 2634 EV_FREQUENT_CHECK;
2174} 2635}
2175 2636
2176void noinline 2637void noinline
2179 if (expect_false (ev_is_active (w))) 2640 if (expect_false (ev_is_active (w)))
2180 return; 2641 return;
2181 2642
2182 ev_at (w) += mn_now; 2643 ev_at (w) += mn_now;
2183 2644
2184 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2645 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2185 2646
2186 EV_FREQUENT_CHECK; 2647 EV_FREQUENT_CHECK;
2187 2648
2188 ++timercnt; 2649 ++timercnt;
2189 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 2650 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2192 ANHE_at_cache (timers [ev_active (w)]); 2653 ANHE_at_cache (timers [ev_active (w)]);
2193 upheap (timers, ev_active (w)); 2654 upheap (timers, ev_active (w));
2194 2655
2195 EV_FREQUENT_CHECK; 2656 EV_FREQUENT_CHECK;
2196 2657
2197 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2658 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2198} 2659}
2199 2660
2200void noinline 2661void noinline
2201ev_timer_stop (EV_P_ ev_timer *w) 2662ev_timer_stop (EV_P_ ev_timer *w)
2202{ 2663{
2207 EV_FREQUENT_CHECK; 2668 EV_FREQUENT_CHECK;
2208 2669
2209 { 2670 {
2210 int active = ev_active (w); 2671 int active = ev_active (w);
2211 2672
2212 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2673 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2213 2674
2214 --timercnt; 2675 --timercnt;
2215 2676
2216 if (expect_true (active < timercnt + HEAP0)) 2677 if (expect_true (active < timercnt + HEAP0))
2217 { 2678 {
2218 timers [active] = timers [timercnt + HEAP0]; 2679 timers [active] = timers [timercnt + HEAP0];
2219 adjustheap (timers, timercnt, active); 2680 adjustheap (timers, timercnt, active);
2220 } 2681 }
2221 } 2682 }
2222 2683
2223 EV_FREQUENT_CHECK;
2224
2225 ev_at (w) -= mn_now; 2684 ev_at (w) -= mn_now;
2226 2685
2227 ev_stop (EV_A_ (W)w); 2686 ev_stop (EV_A_ (W)w);
2687
2688 EV_FREQUENT_CHECK;
2228} 2689}
2229 2690
2230void noinline 2691void noinline
2231ev_timer_again (EV_P_ ev_timer *w) 2692ev_timer_again (EV_P_ ev_timer *w)
2232{ 2693{
2250 } 2711 }
2251 2712
2252 EV_FREQUENT_CHECK; 2713 EV_FREQUENT_CHECK;
2253} 2714}
2254 2715
2716ev_tstamp
2717ev_timer_remaining (EV_P_ ev_timer *w)
2718{
2719 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2720}
2721
2255#if EV_PERIODIC_ENABLE 2722#if EV_PERIODIC_ENABLE
2256void noinline 2723void noinline
2257ev_periodic_start (EV_P_ ev_periodic *w) 2724ev_periodic_start (EV_P_ ev_periodic *w)
2258{ 2725{
2259 if (expect_false (ev_is_active (w))) 2726 if (expect_false (ev_is_active (w)))
2261 2728
2262 if (w->reschedule_cb) 2729 if (w->reschedule_cb)
2263 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2730 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2264 else if (w->interval) 2731 else if (w->interval)
2265 { 2732 {
2266 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2733 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2267 /* this formula differs from the one in periodic_reify because we do not always round up */ 2734 /* this formula differs from the one in periodic_reify because we do not always round up */
2268 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2735 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2269 } 2736 }
2270 else 2737 else
2271 ev_at (w) = w->offset; 2738 ev_at (w) = w->offset;
2279 ANHE_at_cache (periodics [ev_active (w)]); 2746 ANHE_at_cache (periodics [ev_active (w)]);
2280 upheap (periodics, ev_active (w)); 2747 upheap (periodics, ev_active (w));
2281 2748
2282 EV_FREQUENT_CHECK; 2749 EV_FREQUENT_CHECK;
2283 2750
2284 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2751 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2285} 2752}
2286 2753
2287void noinline 2754void noinline
2288ev_periodic_stop (EV_P_ ev_periodic *w) 2755ev_periodic_stop (EV_P_ ev_periodic *w)
2289{ 2756{
2294 EV_FREQUENT_CHECK; 2761 EV_FREQUENT_CHECK;
2295 2762
2296 { 2763 {
2297 int active = ev_active (w); 2764 int active = ev_active (w);
2298 2765
2299 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2766 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2300 2767
2301 --periodiccnt; 2768 --periodiccnt;
2302 2769
2303 if (expect_true (active < periodiccnt + HEAP0)) 2770 if (expect_true (active < periodiccnt + HEAP0))
2304 { 2771 {
2305 periodics [active] = periodics [periodiccnt + HEAP0]; 2772 periodics [active] = periodics [periodiccnt + HEAP0];
2306 adjustheap (periodics, periodiccnt, active); 2773 adjustheap (periodics, periodiccnt, active);
2307 } 2774 }
2308 } 2775 }
2309 2776
2310 EV_FREQUENT_CHECK;
2311
2312 ev_stop (EV_A_ (W)w); 2777 ev_stop (EV_A_ (W)w);
2778
2779 EV_FREQUENT_CHECK;
2313} 2780}
2314 2781
2315void noinline 2782void noinline
2316ev_periodic_again (EV_P_ ev_periodic *w) 2783ev_periodic_again (EV_P_ ev_periodic *w)
2317{ 2784{
2323 2790
2324#ifndef SA_RESTART 2791#ifndef SA_RESTART
2325# define SA_RESTART 0 2792# define SA_RESTART 0
2326#endif 2793#endif
2327 2794
2795#if EV_SIGNAL_ENABLE
2796
2328void noinline 2797void noinline
2329ev_signal_start (EV_P_ ev_signal *w) 2798ev_signal_start (EV_P_ ev_signal *w)
2330{ 2799{
2331#if EV_MULTIPLICITY
2332 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2333#endif
2334 if (expect_false (ev_is_active (w))) 2800 if (expect_false (ev_is_active (w)))
2335 return; 2801 return;
2336 2802
2337 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2803 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2338 2804
2339 evpipe_init (EV_A); 2805#if EV_MULTIPLICITY
2806 assert (("libev: a signal must not be attached to two different loops",
2807 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2340 2808
2341 EV_FREQUENT_CHECK; 2809 signals [w->signum - 1].loop = EV_A;
2810#endif
2342 2811
2812 EV_FREQUENT_CHECK;
2813
2814#if EV_USE_SIGNALFD
2815 if (sigfd == -2)
2343 { 2816 {
2344#ifndef _WIN32 2817 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2345 sigset_t full, prev; 2818 if (sigfd < 0 && errno == EINVAL)
2346 sigfillset (&full); 2819 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2347 sigprocmask (SIG_SETMASK, &full, &prev);
2348#endif
2349 2820
2350 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2821 if (sigfd >= 0)
2822 {
2823 fd_intern (sigfd); /* doing it twice will not hurt */
2351 2824
2352#ifndef _WIN32 2825 sigemptyset (&sigfd_set);
2353 sigprocmask (SIG_SETMASK, &prev, 0); 2826
2354#endif 2827 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2828 ev_set_priority (&sigfd_w, EV_MAXPRI);
2829 ev_io_start (EV_A_ &sigfd_w);
2830 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2831 }
2355 } 2832 }
2833
2834 if (sigfd >= 0)
2835 {
2836 /* TODO: check .head */
2837 sigaddset (&sigfd_set, w->signum);
2838 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2839
2840 signalfd (sigfd, &sigfd_set, 0);
2841 }
2842#endif
2356 2843
2357 ev_start (EV_A_ (W)w, 1); 2844 ev_start (EV_A_ (W)w, 1);
2358 wlist_add (&signals [w->signum - 1].head, (WL)w); 2845 wlist_add (&signals [w->signum - 1].head, (WL)w);
2359 2846
2360 if (!((WL)w)->next) 2847 if (!((WL)w)->next)
2848# if EV_USE_SIGNALFD
2849 if (sigfd < 0) /*TODO*/
2850# endif
2361 { 2851 {
2362#if _WIN32 2852# ifdef _WIN32
2853 evpipe_init (EV_A);
2854
2363 signal (w->signum, ev_sighandler); 2855 signal (w->signum, ev_sighandler);
2364#else 2856# else
2365 struct sigaction sa; 2857 struct sigaction sa;
2858
2859 evpipe_init (EV_A);
2860
2366 sa.sa_handler = ev_sighandler; 2861 sa.sa_handler = ev_sighandler;
2367 sigfillset (&sa.sa_mask); 2862 sigfillset (&sa.sa_mask);
2368 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2863 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2369 sigaction (w->signum, &sa, 0); 2864 sigaction (w->signum, &sa, 0);
2865
2866 sigemptyset (&sa.sa_mask);
2867 sigaddset (&sa.sa_mask, w->signum);
2868 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2370#endif 2869#endif
2371 } 2870 }
2372 2871
2373 EV_FREQUENT_CHECK; 2872 EV_FREQUENT_CHECK;
2374} 2873}
2375 2874
2376void noinline 2875void noinline
2384 2883
2385 wlist_del (&signals [w->signum - 1].head, (WL)w); 2884 wlist_del (&signals [w->signum - 1].head, (WL)w);
2386 ev_stop (EV_A_ (W)w); 2885 ev_stop (EV_A_ (W)w);
2387 2886
2388 if (!signals [w->signum - 1].head) 2887 if (!signals [w->signum - 1].head)
2888 {
2889#if EV_MULTIPLICITY
2890 signals [w->signum - 1].loop = 0; /* unattach from signal */
2891#endif
2892#if EV_USE_SIGNALFD
2893 if (sigfd >= 0)
2894 {
2895 sigset_t ss;
2896
2897 sigemptyset (&ss);
2898 sigaddset (&ss, w->signum);
2899 sigdelset (&sigfd_set, w->signum);
2900
2901 signalfd (sigfd, &sigfd_set, 0);
2902 sigprocmask (SIG_UNBLOCK, &ss, 0);
2903 }
2904 else
2905#endif
2389 signal (w->signum, SIG_DFL); 2906 signal (w->signum, SIG_DFL);
2907 }
2390 2908
2391 EV_FREQUENT_CHECK; 2909 EV_FREQUENT_CHECK;
2392} 2910}
2911
2912#endif
2913
2914#if EV_CHILD_ENABLE
2393 2915
2394void 2916void
2395ev_child_start (EV_P_ ev_child *w) 2917ev_child_start (EV_P_ ev_child *w)
2396{ 2918{
2397#if EV_MULTIPLICITY 2919#if EV_MULTIPLICITY
2398 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2920 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2399#endif 2921#endif
2400 if (expect_false (ev_is_active (w))) 2922 if (expect_false (ev_is_active (w)))
2401 return; 2923 return;
2402 2924
2403 EV_FREQUENT_CHECK; 2925 EV_FREQUENT_CHECK;
2404 2926
2405 ev_start (EV_A_ (W)w, 1); 2927 ev_start (EV_A_ (W)w, 1);
2406 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2928 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2407 2929
2408 EV_FREQUENT_CHECK; 2930 EV_FREQUENT_CHECK;
2409} 2931}
2410 2932
2411void 2933void
2415 if (expect_false (!ev_is_active (w))) 2937 if (expect_false (!ev_is_active (w)))
2416 return; 2938 return;
2417 2939
2418 EV_FREQUENT_CHECK; 2940 EV_FREQUENT_CHECK;
2419 2941
2420 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2942 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2421 ev_stop (EV_A_ (W)w); 2943 ev_stop (EV_A_ (W)w);
2422 2944
2423 EV_FREQUENT_CHECK; 2945 EV_FREQUENT_CHECK;
2424} 2946}
2947
2948#endif
2425 2949
2426#if EV_STAT_ENABLE 2950#if EV_STAT_ENABLE
2427 2951
2428# ifdef _WIN32 2952# ifdef _WIN32
2429# undef lstat 2953# undef lstat
2430# define lstat(a,b) _stati64 (a,b) 2954# define lstat(a,b) _stati64 (a,b)
2431# endif 2955# endif
2432 2956
2433#define DEF_STAT_INTERVAL 5.0074891 2957#define DEF_STAT_INTERVAL 5.0074891
2958#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2434#define MIN_STAT_INTERVAL 0.1074891 2959#define MIN_STAT_INTERVAL 0.1074891
2435 2960
2436static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2961static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2437 2962
2438#if EV_USE_INOTIFY 2963#if EV_USE_INOTIFY
2439# define EV_INOTIFY_BUFSIZE 8192 2964
2965/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2966# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2440 2967
2441static void noinline 2968static void noinline
2442infy_add (EV_P_ ev_stat *w) 2969infy_add (EV_P_ ev_stat *w)
2443{ 2970{
2444 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2971 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2445 2972
2446 if (w->wd < 0) 2973 if (w->wd >= 0)
2974 {
2975 struct statfs sfs;
2976
2977 /* now local changes will be tracked by inotify, but remote changes won't */
2978 /* unless the filesystem is known to be local, we therefore still poll */
2979 /* also do poll on <2.6.25, but with normal frequency */
2980
2981 if (!fs_2625)
2982 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2983 else if (!statfs (w->path, &sfs)
2984 && (sfs.f_type == 0x1373 /* devfs */
2985 || sfs.f_type == 0xEF53 /* ext2/3 */
2986 || sfs.f_type == 0x3153464a /* jfs */
2987 || sfs.f_type == 0x52654973 /* reiser3 */
2988 || sfs.f_type == 0x01021994 /* tempfs */
2989 || sfs.f_type == 0x58465342 /* xfs */))
2990 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2991 else
2992 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2447 { 2993 }
2448 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2994 else
2995 {
2996 /* can't use inotify, continue to stat */
2997 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2449 2998
2450 /* monitor some parent directory for speedup hints */ 2999 /* if path is not there, monitor some parent directory for speedup hints */
2451 /* note that exceeding the hardcoded limit is not a correctness issue, */ 3000 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2452 /* but an efficiency issue only */ 3001 /* but an efficiency issue only */
2453 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3002 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2454 { 3003 {
2455 char path [4096]; 3004 char path [4096];
2456 strcpy (path, w->path); 3005 strcpy (path, w->path);
2460 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3009 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2461 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3010 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2462 3011
2463 char *pend = strrchr (path, '/'); 3012 char *pend = strrchr (path, '/');
2464 3013
2465 if (!pend) 3014 if (!pend || pend == path)
2466 break; /* whoops, no '/', complain to your admin */ 3015 break;
2467 3016
2468 *pend = 0; 3017 *pend = 0;
2469 w->wd = inotify_add_watch (fs_fd, path, mask); 3018 w->wd = inotify_add_watch (fs_fd, path, mask);
2470 } 3019 }
2471 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3020 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2472 } 3021 }
2473 } 3022 }
2474 else
2475 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2476 3023
2477 if (w->wd >= 0) 3024 if (w->wd >= 0)
2478 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3025 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3026
3027 /* now re-arm timer, if required */
3028 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3029 ev_timer_again (EV_A_ &w->timer);
3030 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2479} 3031}
2480 3032
2481static void noinline 3033static void noinline
2482infy_del (EV_P_ ev_stat *w) 3034infy_del (EV_P_ ev_stat *w)
2483{ 3035{
2486 3038
2487 if (wd < 0) 3039 if (wd < 0)
2488 return; 3040 return;
2489 3041
2490 w->wd = -2; 3042 w->wd = -2;
2491 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3043 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2492 wlist_del (&fs_hash [slot].head, (WL)w); 3044 wlist_del (&fs_hash [slot].head, (WL)w);
2493 3045
2494 /* remove this watcher, if others are watching it, they will rearm */ 3046 /* remove this watcher, if others are watching it, they will rearm */
2495 inotify_rm_watch (fs_fd, wd); 3047 inotify_rm_watch (fs_fd, wd);
2496} 3048}
2498static void noinline 3050static void noinline
2499infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3051infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2500{ 3052{
2501 if (slot < 0) 3053 if (slot < 0)
2502 /* overflow, need to check for all hash slots */ 3054 /* overflow, need to check for all hash slots */
2503 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3055 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2504 infy_wd (EV_A_ slot, wd, ev); 3056 infy_wd (EV_A_ slot, wd, ev);
2505 else 3057 else
2506 { 3058 {
2507 WL w_; 3059 WL w_;
2508 3060
2509 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3061 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2510 { 3062 {
2511 ev_stat *w = (ev_stat *)w_; 3063 ev_stat *w = (ev_stat *)w_;
2512 w_ = w_->next; /* lets us remove this watcher and all before it */ 3064 w_ = w_->next; /* lets us remove this watcher and all before it */
2513 3065
2514 if (w->wd == wd || wd == -1) 3066 if (w->wd == wd || wd == -1)
2515 { 3067 {
2516 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3068 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2517 { 3069 {
3070 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2518 w->wd = -1; 3071 w->wd = -1;
2519 infy_add (EV_A_ w); /* re-add, no matter what */ 3072 infy_add (EV_A_ w); /* re-add, no matter what */
2520 } 3073 }
2521 3074
2522 stat_timer_cb (EV_A_ &w->timer, 0); 3075 stat_timer_cb (EV_A_ &w->timer, 0);
2527 3080
2528static void 3081static void
2529infy_cb (EV_P_ ev_io *w, int revents) 3082infy_cb (EV_P_ ev_io *w, int revents)
2530{ 3083{
2531 char buf [EV_INOTIFY_BUFSIZE]; 3084 char buf [EV_INOTIFY_BUFSIZE];
2532 struct inotify_event *ev = (struct inotify_event *)buf;
2533 int ofs; 3085 int ofs;
2534 int len = read (fs_fd, buf, sizeof (buf)); 3086 int len = read (fs_fd, buf, sizeof (buf));
2535 3087
2536 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3088 for (ofs = 0; ofs < len; )
3089 {
3090 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2537 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3091 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3092 ofs += sizeof (struct inotify_event) + ev->len;
3093 }
2538} 3094}
2539 3095
2540void inline_size 3096inline_size void
2541infy_init (EV_P) 3097ev_check_2625 (EV_P)
2542{ 3098{
2543 if (fs_fd != -2)
2544 return;
2545
2546 /* kernels < 2.6.25 are borked 3099 /* kernels < 2.6.25 are borked
2547 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 3100 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2548 */ 3101 */
2549 { 3102 if (ev_linux_version () < 0x020619)
2550 struct utsname buf; 3103 return;
2551 int major, minor, micro;
2552 3104
3105 fs_2625 = 1;
3106}
3107
3108inline_size int
3109infy_newfd (void)
3110{
3111#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3112 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3113 if (fd >= 0)
3114 return fd;
3115#endif
3116 return inotify_init ();
3117}
3118
3119inline_size void
3120infy_init (EV_P)
3121{
3122 if (fs_fd != -2)
3123 return;
3124
2553 fs_fd = -1; 3125 fs_fd = -1;
2554 3126
2555 if (uname (&buf)) 3127 ev_check_2625 (EV_A);
2556 return;
2557 3128
2558 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2559 return;
2560
2561 if (major < 2
2562 || (major == 2 && minor < 6)
2563 || (major == 2 && minor == 6 && micro < 25))
2564 return;
2565 }
2566
2567 fs_fd = inotify_init (); 3129 fs_fd = infy_newfd ();
2568 3130
2569 if (fs_fd >= 0) 3131 if (fs_fd >= 0)
2570 { 3132 {
3133 fd_intern (fs_fd);
2571 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3134 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2572 ev_set_priority (&fs_w, EV_MAXPRI); 3135 ev_set_priority (&fs_w, EV_MAXPRI);
2573 ev_io_start (EV_A_ &fs_w); 3136 ev_io_start (EV_A_ &fs_w);
3137 ev_unref (EV_A);
2574 } 3138 }
2575} 3139}
2576 3140
2577void inline_size 3141inline_size void
2578infy_fork (EV_P) 3142infy_fork (EV_P)
2579{ 3143{
2580 int slot; 3144 int slot;
2581 3145
2582 if (fs_fd < 0) 3146 if (fs_fd < 0)
2583 return; 3147 return;
2584 3148
3149 ev_ref (EV_A);
3150 ev_io_stop (EV_A_ &fs_w);
2585 close (fs_fd); 3151 close (fs_fd);
2586 fs_fd = inotify_init (); 3152 fs_fd = infy_newfd ();
2587 3153
3154 if (fs_fd >= 0)
3155 {
3156 fd_intern (fs_fd);
3157 ev_io_set (&fs_w, fs_fd, EV_READ);
3158 ev_io_start (EV_A_ &fs_w);
3159 ev_unref (EV_A);
3160 }
3161
2588 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3162 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2589 { 3163 {
2590 WL w_ = fs_hash [slot].head; 3164 WL w_ = fs_hash [slot].head;
2591 fs_hash [slot].head = 0; 3165 fs_hash [slot].head = 0;
2592 3166
2593 while (w_) 3167 while (w_)
2598 w->wd = -1; 3172 w->wd = -1;
2599 3173
2600 if (fs_fd >= 0) 3174 if (fs_fd >= 0)
2601 infy_add (EV_A_ w); /* re-add, no matter what */ 3175 infy_add (EV_A_ w); /* re-add, no matter what */
2602 else 3176 else
3177 {
3178 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3179 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2603 ev_timer_start (EV_A_ &w->timer); 3180 ev_timer_again (EV_A_ &w->timer);
3181 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3182 }
2604 } 3183 }
2605 } 3184 }
2606} 3185}
2607 3186
2608#endif 3187#endif
2625static void noinline 3204static void noinline
2626stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3205stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2627{ 3206{
2628 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3207 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2629 3208
2630 /* we copy this here each the time so that */ 3209 ev_statdata prev = w->attr;
2631 /* prev has the old value when the callback gets invoked */
2632 w->prev = w->attr;
2633 ev_stat_stat (EV_A_ w); 3210 ev_stat_stat (EV_A_ w);
2634 3211
2635 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3212 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2636 if ( 3213 if (
2637 w->prev.st_dev != w->attr.st_dev 3214 prev.st_dev != w->attr.st_dev
2638 || w->prev.st_ino != w->attr.st_ino 3215 || prev.st_ino != w->attr.st_ino
2639 || w->prev.st_mode != w->attr.st_mode 3216 || prev.st_mode != w->attr.st_mode
2640 || w->prev.st_nlink != w->attr.st_nlink 3217 || prev.st_nlink != w->attr.st_nlink
2641 || w->prev.st_uid != w->attr.st_uid 3218 || prev.st_uid != w->attr.st_uid
2642 || w->prev.st_gid != w->attr.st_gid 3219 || prev.st_gid != w->attr.st_gid
2643 || w->prev.st_rdev != w->attr.st_rdev 3220 || prev.st_rdev != w->attr.st_rdev
2644 || w->prev.st_size != w->attr.st_size 3221 || prev.st_size != w->attr.st_size
2645 || w->prev.st_atime != w->attr.st_atime 3222 || prev.st_atime != w->attr.st_atime
2646 || w->prev.st_mtime != w->attr.st_mtime 3223 || prev.st_mtime != w->attr.st_mtime
2647 || w->prev.st_ctime != w->attr.st_ctime 3224 || prev.st_ctime != w->attr.st_ctime
2648 ) { 3225 ) {
3226 /* we only update w->prev on actual differences */
3227 /* in case we test more often than invoke the callback, */
3228 /* to ensure that prev is always different to attr */
3229 w->prev = prev;
3230
2649 #if EV_USE_INOTIFY 3231 #if EV_USE_INOTIFY
2650 if (fs_fd >= 0) 3232 if (fs_fd >= 0)
2651 { 3233 {
2652 infy_del (EV_A_ w); 3234 infy_del (EV_A_ w);
2653 infy_add (EV_A_ w); 3235 infy_add (EV_A_ w);
2663ev_stat_start (EV_P_ ev_stat *w) 3245ev_stat_start (EV_P_ ev_stat *w)
2664{ 3246{
2665 if (expect_false (ev_is_active (w))) 3247 if (expect_false (ev_is_active (w)))
2666 return; 3248 return;
2667 3249
2668 /* since we use memcmp, we need to clear any padding data etc. */
2669 memset (&w->prev, 0, sizeof (ev_statdata));
2670 memset (&w->attr, 0, sizeof (ev_statdata));
2671
2672 ev_stat_stat (EV_A_ w); 3250 ev_stat_stat (EV_A_ w);
2673 3251
3252 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2674 if (w->interval < MIN_STAT_INTERVAL) 3253 w->interval = MIN_STAT_INTERVAL;
2675 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2676 3254
2677 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3255 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2678 ev_set_priority (&w->timer, ev_priority (w)); 3256 ev_set_priority (&w->timer, ev_priority (w));
2679 3257
2680#if EV_USE_INOTIFY 3258#if EV_USE_INOTIFY
2681 infy_init (EV_A); 3259 infy_init (EV_A);
2682 3260
2683 if (fs_fd >= 0) 3261 if (fs_fd >= 0)
2684 infy_add (EV_A_ w); 3262 infy_add (EV_A_ w);
2685 else 3263 else
2686#endif 3264#endif
3265 {
2687 ev_timer_start (EV_A_ &w->timer); 3266 ev_timer_again (EV_A_ &w->timer);
3267 ev_unref (EV_A);
3268 }
2688 3269
2689 ev_start (EV_A_ (W)w, 1); 3270 ev_start (EV_A_ (W)w, 1);
2690 3271
2691 EV_FREQUENT_CHECK; 3272 EV_FREQUENT_CHECK;
2692} 3273}
2701 EV_FREQUENT_CHECK; 3282 EV_FREQUENT_CHECK;
2702 3283
2703#if EV_USE_INOTIFY 3284#if EV_USE_INOTIFY
2704 infy_del (EV_A_ w); 3285 infy_del (EV_A_ w);
2705#endif 3286#endif
3287
3288 if (ev_is_active (&w->timer))
3289 {
3290 ev_ref (EV_A);
2706 ev_timer_stop (EV_A_ &w->timer); 3291 ev_timer_stop (EV_A_ &w->timer);
3292 }
2707 3293
2708 ev_stop (EV_A_ (W)w); 3294 ev_stop (EV_A_ (W)w);
2709 3295
2710 EV_FREQUENT_CHECK; 3296 EV_FREQUENT_CHECK;
2711} 3297}
2756 3342
2757 EV_FREQUENT_CHECK; 3343 EV_FREQUENT_CHECK;
2758} 3344}
2759#endif 3345#endif
2760 3346
3347#if EV_PREPARE_ENABLE
2761void 3348void
2762ev_prepare_start (EV_P_ ev_prepare *w) 3349ev_prepare_start (EV_P_ ev_prepare *w)
2763{ 3350{
2764 if (expect_false (ev_is_active (w))) 3351 if (expect_false (ev_is_active (w)))
2765 return; 3352 return;
2791 3378
2792 ev_stop (EV_A_ (W)w); 3379 ev_stop (EV_A_ (W)w);
2793 3380
2794 EV_FREQUENT_CHECK; 3381 EV_FREQUENT_CHECK;
2795} 3382}
3383#endif
2796 3384
3385#if EV_CHECK_ENABLE
2797void 3386void
2798ev_check_start (EV_P_ ev_check *w) 3387ev_check_start (EV_P_ ev_check *w)
2799{ 3388{
2800 if (expect_false (ev_is_active (w))) 3389 if (expect_false (ev_is_active (w)))
2801 return; 3390 return;
2827 3416
2828 ev_stop (EV_A_ (W)w); 3417 ev_stop (EV_A_ (W)w);
2829 3418
2830 EV_FREQUENT_CHECK; 3419 EV_FREQUENT_CHECK;
2831} 3420}
3421#endif
2832 3422
2833#if EV_EMBED_ENABLE 3423#if EV_EMBED_ENABLE
2834void noinline 3424void noinline
2835ev_embed_sweep (EV_P_ ev_embed *w) 3425ev_embed_sweep (EV_P_ ev_embed *w)
2836{ 3426{
2837 ev_loop (w->other, EVLOOP_NONBLOCK); 3427 ev_run (w->other, EVRUN_NOWAIT);
2838} 3428}
2839 3429
2840static void 3430static void
2841embed_io_cb (EV_P_ ev_io *io, int revents) 3431embed_io_cb (EV_P_ ev_io *io, int revents)
2842{ 3432{
2843 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3433 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2844 3434
2845 if (ev_cb (w)) 3435 if (ev_cb (w))
2846 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3436 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2847 else 3437 else
2848 ev_loop (w->other, EVLOOP_NONBLOCK); 3438 ev_run (w->other, EVRUN_NOWAIT);
2849} 3439}
2850 3440
2851static void 3441static void
2852embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3442embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2853{ 3443{
2854 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3444 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2855 3445
2856 { 3446 {
2857 struct ev_loop *loop = w->other; 3447 EV_P = w->other;
2858 3448
2859 while (fdchangecnt) 3449 while (fdchangecnt)
2860 { 3450 {
2861 fd_reify (EV_A); 3451 fd_reify (EV_A);
2862 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3452 ev_run (EV_A_ EVRUN_NOWAIT);
2863 } 3453 }
2864 } 3454 }
2865} 3455}
2866 3456
2867static void 3457static void
2868embed_fork_cb (EV_P_ ev_fork *fork_w, int revents) 3458embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2869{ 3459{
2870 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 3460 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2871 3461
3462 ev_embed_stop (EV_A_ w);
3463
2872 { 3464 {
2873 struct ev_loop *loop = w->other; 3465 EV_P = w->other;
2874 3466
2875 ev_loop_fork (EV_A); 3467 ev_loop_fork (EV_A);
3468 ev_run (EV_A_ EVRUN_NOWAIT);
2876 } 3469 }
3470
3471 ev_embed_start (EV_A_ w);
2877} 3472}
2878 3473
2879#if 0 3474#if 0
2880static void 3475static void
2881embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3476embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2889{ 3484{
2890 if (expect_false (ev_is_active (w))) 3485 if (expect_false (ev_is_active (w)))
2891 return; 3486 return;
2892 3487
2893 { 3488 {
2894 struct ev_loop *loop = w->other; 3489 EV_P = w->other;
2895 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3490 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2896 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3491 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2897 } 3492 }
2898 3493
2899 EV_FREQUENT_CHECK; 3494 EV_FREQUENT_CHECK;
2900 3495
2926 3521
2927 ev_io_stop (EV_A_ &w->io); 3522 ev_io_stop (EV_A_ &w->io);
2928 ev_prepare_stop (EV_A_ &w->prepare); 3523 ev_prepare_stop (EV_A_ &w->prepare);
2929 ev_fork_stop (EV_A_ &w->fork); 3524 ev_fork_stop (EV_A_ &w->fork);
2930 3525
3526 ev_stop (EV_A_ (W)w);
3527
2931 EV_FREQUENT_CHECK; 3528 EV_FREQUENT_CHECK;
2932} 3529}
2933#endif 3530#endif
2934 3531
2935#if EV_FORK_ENABLE 3532#if EV_FORK_ENABLE
2975ev_async_start (EV_P_ ev_async *w) 3572ev_async_start (EV_P_ ev_async *w)
2976{ 3573{
2977 if (expect_false (ev_is_active (w))) 3574 if (expect_false (ev_is_active (w)))
2978 return; 3575 return;
2979 3576
3577 w->sent = 0;
3578
2980 evpipe_init (EV_A); 3579 evpipe_init (EV_A);
2981 3580
2982 EV_FREQUENT_CHECK; 3581 EV_FREQUENT_CHECK;
2983 3582
2984 ev_start (EV_A_ (W)w, ++asynccnt); 3583 ev_start (EV_A_ (W)w, ++asynccnt);
3011 3610
3012void 3611void
3013ev_async_send (EV_P_ ev_async *w) 3612ev_async_send (EV_P_ ev_async *w)
3014{ 3613{
3015 w->sent = 1; 3614 w->sent = 1;
3016 evpipe_write (EV_A_ &gotasync); 3615 evpipe_write (EV_A_ &async_pending);
3017} 3616}
3018#endif 3617#endif
3019 3618
3020/*****************************************************************************/ 3619/*****************************************************************************/
3021 3620
3061{ 3660{
3062 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3661 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3063 3662
3064 if (expect_false (!once)) 3663 if (expect_false (!once))
3065 { 3664 {
3066 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3665 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3067 return; 3666 return;
3068 } 3667 }
3069 3668
3070 once->cb = cb; 3669 once->cb = cb;
3071 once->arg = arg; 3670 once->arg = arg;
3083 ev_timer_set (&once->to, timeout, 0.); 3682 ev_timer_set (&once->to, timeout, 0.);
3084 ev_timer_start (EV_A_ &once->to); 3683 ev_timer_start (EV_A_ &once->to);
3085 } 3684 }
3086} 3685}
3087 3686
3687/*****************************************************************************/
3688
3689#if EV_WALK_ENABLE
3690void
3691ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3692{
3693 int i, j;
3694 ev_watcher_list *wl, *wn;
3695
3696 if (types & (EV_IO | EV_EMBED))
3697 for (i = 0; i < anfdmax; ++i)
3698 for (wl = anfds [i].head; wl; )
3699 {
3700 wn = wl->next;
3701
3702#if EV_EMBED_ENABLE
3703 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3704 {
3705 if (types & EV_EMBED)
3706 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3707 }
3708 else
3709#endif
3710#if EV_USE_INOTIFY
3711 if (ev_cb ((ev_io *)wl) == infy_cb)
3712 ;
3713 else
3714#endif
3715 if ((ev_io *)wl != &pipe_w)
3716 if (types & EV_IO)
3717 cb (EV_A_ EV_IO, wl);
3718
3719 wl = wn;
3720 }
3721
3722 if (types & (EV_TIMER | EV_STAT))
3723 for (i = timercnt + HEAP0; i-- > HEAP0; )
3724#if EV_STAT_ENABLE
3725 /*TODO: timer is not always active*/
3726 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3727 {
3728 if (types & EV_STAT)
3729 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3730 }
3731 else
3732#endif
3733 if (types & EV_TIMER)
3734 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3735
3736#if EV_PERIODIC_ENABLE
3737 if (types & EV_PERIODIC)
3738 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3739 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3740#endif
3741
3742#if EV_IDLE_ENABLE
3743 if (types & EV_IDLE)
3744 for (j = NUMPRI; i--; )
3745 for (i = idlecnt [j]; i--; )
3746 cb (EV_A_ EV_IDLE, idles [j][i]);
3747#endif
3748
3749#if EV_FORK_ENABLE
3750 if (types & EV_FORK)
3751 for (i = forkcnt; i--; )
3752 if (ev_cb (forks [i]) != embed_fork_cb)
3753 cb (EV_A_ EV_FORK, forks [i]);
3754#endif
3755
3756#if EV_ASYNC_ENABLE
3757 if (types & EV_ASYNC)
3758 for (i = asynccnt; i--; )
3759 cb (EV_A_ EV_ASYNC, asyncs [i]);
3760#endif
3761
3762#if EV_PREPARE_ENABLE
3763 if (types & EV_PREPARE)
3764 for (i = preparecnt; i--; )
3765# if EV_EMBED_ENABLE
3766 if (ev_cb (prepares [i]) != embed_prepare_cb)
3767# endif
3768 cb (EV_A_ EV_PREPARE, prepares [i]);
3769#endif
3770
3771#if EV_CHECK_ENABLE
3772 if (types & EV_CHECK)
3773 for (i = checkcnt; i--; )
3774 cb (EV_A_ EV_CHECK, checks [i]);
3775#endif
3776
3777#if EV_SIGNAL_ENABLE
3778 if (types & EV_SIGNAL)
3779 for (i = 0; i < EV_NSIG - 1; ++i)
3780 for (wl = signals [i].head; wl; )
3781 {
3782 wn = wl->next;
3783 cb (EV_A_ EV_SIGNAL, wl);
3784 wl = wn;
3785 }
3786#endif
3787
3788#if EV_CHILD_ENABLE
3789 if (types & EV_CHILD)
3790 for (i = (EV_PID_HASHSIZE); i--; )
3791 for (wl = childs [i]; wl; )
3792 {
3793 wn = wl->next;
3794 cb (EV_A_ EV_CHILD, wl);
3795 wl = wn;
3796 }
3797#endif
3798/* EV_STAT 0x00001000 /* stat data changed */
3799/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3800}
3801#endif
3802
3088#if EV_MULTIPLICITY 3803#if EV_MULTIPLICITY
3089 #include "ev_wrap.h" 3804 #include "ev_wrap.h"
3090#endif 3805#endif
3091 3806
3092#ifdef __cplusplus 3807EV_CPP(})
3093}
3094#endif
3095 3808

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines