ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.264 by root, Mon Oct 13 23:20:12 2008 UTC vs.
Revision 1.427 by root, Sun May 6 19:29:59 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
130# endif 163# endif
131 164
132#endif 165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
152#endif 197#endif
153 198
154#ifndef _WIN32 199#ifndef _WIN32
155# include <sys/time.h> 200# include <sys/time.h>
156# include <sys/wait.h> 201# include <sys/wait.h>
160# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
161# include <windows.h> 206# include <windows.h>
162# ifndef EV_SELECT_IS_WINSOCKET 207# ifndef EV_SELECT_IS_WINSOCKET
163# define EV_SELECT_IS_WINSOCKET 1 208# define EV_SELECT_IS_WINSOCKET 1
164# endif 209# endif
210# undef EV_AVOID_STDIO
165#endif 211#endif
212
213/* OS X, in its infinite idiocy, actually HARDCODES
214 * a limit of 1024 into their select. Where people have brains,
215 * OS X engineers apparently have a vacuum. Or maybe they were
216 * ordered to have a vacuum, or they do anything for money.
217 * This might help. Or not.
218 */
219#define _DARWIN_UNLIMITED_SELECT 1
166 220
167/* this block tries to deduce configuration from header-defined symbols and defaults */ 221/* this block tries to deduce configuration from header-defined symbols and defaults */
168 222
223/* try to deduce the maximum number of signals on this platform */
224#if defined EV_NSIG
225/* use what's provided */
226#elif defined NSIG
227# define EV_NSIG (NSIG)
228#elif defined _NSIG
229# define EV_NSIG (_NSIG)
230#elif defined SIGMAX
231# define EV_NSIG (SIGMAX+1)
232#elif defined SIG_MAX
233# define EV_NSIG (SIG_MAX+1)
234#elif defined _SIG_MAX
235# define EV_NSIG (_SIG_MAX+1)
236#elif defined MAXSIG
237# define EV_NSIG (MAXSIG+1)
238#elif defined MAX_SIG
239# define EV_NSIG (MAX_SIG+1)
240#elif defined SIGARRAYSIZE
241# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
242#elif defined _sys_nsig
243# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
244#else
245# error "unable to find value for NSIG, please report"
246/* to make it compile regardless, just remove the above line, */
247/* but consider reporting it, too! :) */
248# define EV_NSIG 65
249#endif
250
251#ifndef EV_USE_FLOOR
252# define EV_USE_FLOOR 0
253#endif
254
255#ifndef EV_USE_CLOCK_SYSCALL
256# if __linux && __GLIBC__ >= 2
257# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
258# else
259# define EV_USE_CLOCK_SYSCALL 0
260# endif
261#endif
262
169#ifndef EV_USE_MONOTONIC 263#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 264# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1 265# define EV_USE_MONOTONIC EV_FEATURE_OS
172# else 266# else
173# define EV_USE_MONOTONIC 0 267# define EV_USE_MONOTONIC 0
174# endif 268# endif
175#endif 269#endif
176 270
177#ifndef EV_USE_REALTIME 271#ifndef EV_USE_REALTIME
178# define EV_USE_REALTIME 0 272# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
179#endif 273#endif
180 274
181#ifndef EV_USE_NANOSLEEP 275#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L 276# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1 277# define EV_USE_NANOSLEEP EV_FEATURE_OS
184# else 278# else
185# define EV_USE_NANOSLEEP 0 279# define EV_USE_NANOSLEEP 0
186# endif 280# endif
187#endif 281#endif
188 282
189#ifndef EV_USE_SELECT 283#ifndef EV_USE_SELECT
190# define EV_USE_SELECT 1 284# define EV_USE_SELECT EV_FEATURE_BACKENDS
191#endif 285#endif
192 286
193#ifndef EV_USE_POLL 287#ifndef EV_USE_POLL
194# ifdef _WIN32 288# ifdef _WIN32
195# define EV_USE_POLL 0 289# define EV_USE_POLL 0
196# else 290# else
197# define EV_USE_POLL 1 291# define EV_USE_POLL EV_FEATURE_BACKENDS
198# endif 292# endif
199#endif 293#endif
200 294
201#ifndef EV_USE_EPOLL 295#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 296# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1 297# define EV_USE_EPOLL EV_FEATURE_BACKENDS
204# else 298# else
205# define EV_USE_EPOLL 0 299# define EV_USE_EPOLL 0
206# endif 300# endif
207#endif 301#endif
208 302
214# define EV_USE_PORT 0 308# define EV_USE_PORT 0
215#endif 309#endif
216 310
217#ifndef EV_USE_INOTIFY 311#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1 313# define EV_USE_INOTIFY EV_FEATURE_OS
220# else 314# else
221# define EV_USE_INOTIFY 0 315# define EV_USE_INOTIFY 0
222# endif 316# endif
223#endif 317#endif
224 318
225#ifndef EV_PID_HASHSIZE 319#ifndef EV_PID_HASHSIZE
226# if EV_MINIMAL 320# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
230# endif
231#endif 321#endif
232 322
233#ifndef EV_INOTIFY_HASHSIZE 323#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL 324# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif 325#endif
240 326
241#ifndef EV_USE_EVENTFD 327#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 328# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1 329# define EV_USE_EVENTFD EV_FEATURE_OS
244# else 330# else
245# define EV_USE_EVENTFD 0 331# define EV_USE_EVENTFD 0
332# endif
333#endif
334
335#ifndef EV_USE_SIGNALFD
336# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
337# define EV_USE_SIGNALFD EV_FEATURE_OS
338# else
339# define EV_USE_SIGNALFD 0
246# endif 340# endif
247#endif 341#endif
248 342
249#if 0 /* debugging */ 343#if 0 /* debugging */
250# define EV_VERIFY 3 344# define EV_VERIFY 3
251# define EV_USE_4HEAP 1 345# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1 346# define EV_HEAP_CACHE_AT 1
253#endif 347#endif
254 348
255#ifndef EV_VERIFY 349#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL 350# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
257#endif 351#endif
258 352
259#ifndef EV_USE_4HEAP 353#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL 354# define EV_USE_4HEAP EV_FEATURE_DATA
261#endif 355#endif
262 356
263#ifndef EV_HEAP_CACHE_AT 357#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL 358# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
359#endif
360
361/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
362/* which makes programs even slower. might work on other unices, too. */
363#if EV_USE_CLOCK_SYSCALL
364# include <sys/syscall.h>
365# ifdef SYS_clock_gettime
366# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
367# undef EV_USE_MONOTONIC
368# define EV_USE_MONOTONIC 1
369# else
370# undef EV_USE_CLOCK_SYSCALL
371# define EV_USE_CLOCK_SYSCALL 0
372# endif
265#endif 373#endif
266 374
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 375/* this block fixes any misconfiguration where we know we run into trouble otherwise */
376
377#ifdef _AIX
378/* AIX has a completely broken poll.h header */
379# undef EV_USE_POLL
380# define EV_USE_POLL 0
381#endif
268 382
269#ifndef CLOCK_MONOTONIC 383#ifndef CLOCK_MONOTONIC
270# undef EV_USE_MONOTONIC 384# undef EV_USE_MONOTONIC
271# define EV_USE_MONOTONIC 0 385# define EV_USE_MONOTONIC 0
272#endif 386#endif
280# undef EV_USE_INOTIFY 394# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0 395# define EV_USE_INOTIFY 0
282#endif 396#endif
283 397
284#if !EV_USE_NANOSLEEP 398#if !EV_USE_NANOSLEEP
285# ifndef _WIN32 399/* hp-ux has it in sys/time.h, which we unconditionally include above */
400# if !defined _WIN32 && !defined __hpux
286# include <sys/select.h> 401# include <sys/select.h>
287# endif 402# endif
288#endif 403#endif
289 404
290#if EV_USE_INOTIFY 405#if EV_USE_INOTIFY
291# include <sys/utsname.h> 406# include <sys/statfs.h>
292# include <sys/inotify.h> 407# include <sys/inotify.h>
293/* some very old inotify.h headers don't have IN_DONT_FOLLOW */ 408/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
294# ifndef IN_DONT_FOLLOW 409# ifndef IN_DONT_FOLLOW
295# undef EV_USE_INOTIFY 410# undef EV_USE_INOTIFY
296# define EV_USE_INOTIFY 0 411# define EV_USE_INOTIFY 0
302#endif 417#endif
303 418
304#if EV_USE_EVENTFD 419#if EV_USE_EVENTFD
305/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 420/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
306# include <stdint.h> 421# include <stdint.h>
307# ifdef __cplusplus 422# ifndef EFD_NONBLOCK
308extern "C" { 423# define EFD_NONBLOCK O_NONBLOCK
309# endif 424# endif
310int eventfd (unsigned int initval, int flags); 425# ifndef EFD_CLOEXEC
311# ifdef __cplusplus 426# ifdef O_CLOEXEC
312} 427# define EFD_CLOEXEC O_CLOEXEC
428# else
429# define EFD_CLOEXEC 02000000
430# endif
313# endif 431# endif
432EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
433#endif
434
435#if EV_USE_SIGNALFD
436/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
437# include <stdint.h>
438# ifndef SFD_NONBLOCK
439# define SFD_NONBLOCK O_NONBLOCK
440# endif
441# ifndef SFD_CLOEXEC
442# ifdef O_CLOEXEC
443# define SFD_CLOEXEC O_CLOEXEC
444# else
445# define SFD_CLOEXEC 02000000
446# endif
447# endif
448EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
449
450struct signalfd_siginfo
451{
452 uint32_t ssi_signo;
453 char pad[128 - sizeof (uint32_t)];
454};
314#endif 455#endif
315 456
316/**/ 457/**/
317 458
318#if EV_VERIFY >= 3 459#if EV_VERIFY >= 3
319# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 460# define EV_FREQUENT_CHECK ev_verify (EV_A)
320#else 461#else
321# define EV_FREQUENT_CHECK do { } while (0) 462# define EV_FREQUENT_CHECK do { } while (0)
322#endif 463#endif
323 464
324/* 465/*
325 * This is used to avoid floating point rounding problems. 466 * This is used to work around floating point rounding problems.
326 * It is added to ev_rt_now when scheduling periodics
327 * to ensure progress, time-wise, even when rounding
328 * errors are against us.
329 * This value is good at least till the year 4000. 467 * This value is good at least till the year 4000.
330 * Better solutions welcome.
331 */ 468 */
332#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 469#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
470/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
333 471
334#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 472#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
335#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 473#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
336/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
337 474
475#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
476#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
477
478/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
479/* ECB.H BEGIN */
480/*
481 * libecb - http://software.schmorp.de/pkg/libecb
482 *
483 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
484 * Copyright (©) 2011 Emanuele Giaquinta
485 * All rights reserved.
486 *
487 * Redistribution and use in source and binary forms, with or without modifica-
488 * tion, are permitted provided that the following conditions are met:
489 *
490 * 1. Redistributions of source code must retain the above copyright notice,
491 * this list of conditions and the following disclaimer.
492 *
493 * 2. Redistributions in binary form must reproduce the above copyright
494 * notice, this list of conditions and the following disclaimer in the
495 * documentation and/or other materials provided with the distribution.
496 *
497 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
498 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
499 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
500 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
501 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
502 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
503 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
504 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
505 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
506 * OF THE POSSIBILITY OF SUCH DAMAGE.
507 */
508
509#ifndef ECB_H
510#define ECB_H
511
512#ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
338#if __GNUC__ >= 4 519 #if __GNUC__
339# define expect(expr,value) __builtin_expect ((expr),(value)) 520 typedef signed long long int64_t;
340# define noinline __attribute__ ((noinline)) 521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
341#else 526#else
342# define expect(expr,value) (expr) 527 #include <inttypes.h>
343# define noinline
344# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
345# define inline
346# endif 528#endif
529
530/* many compilers define _GNUC_ to some versions but then only implement
531 * what their idiot authors think are the "more important" extensions,
532 * causing enormous grief in return for some better fake benchmark numbers.
533 * or so.
534 * we try to detect these and simply assume they are not gcc - if they have
535 * an issue with that they should have done it right in the first place.
536 */
537#ifndef ECB_GCC_VERSION
538 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
539 #define ECB_GCC_VERSION(major,minor) 0
540 #else
541 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
347#endif 542 #endif
543#endif
348 544
545/*****************************************************************************/
546
547/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
548/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
549
550#if ECB_NO_THREADS
551# define ECB_NO_SMP 1
552#endif
553
554#if ECB_NO_THREADS || ECB_NO_SMP
555 #define ECB_MEMORY_FENCE do { } while (0)
556#endif
557
558#ifndef ECB_MEMORY_FENCE
559 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
560 #if __i386 || __i386__
561 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
562 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
563 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
564 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
565 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
566 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
567 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
568 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
569 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
570 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
571 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
572 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
573 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
574 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
575 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
576 #elif __sparc || __sparc__
577 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
578 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
579 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
580 #elif defined __s390__ || defined __s390x__
581 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
582 #elif defined __mips__
583 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
584 #elif defined __alpha__
585 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
586 #endif
587 #endif
588#endif
589
590#ifndef ECB_MEMORY_FENCE
591 #if ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
592 #define ECB_MEMORY_FENCE __sync_synchronize ()
593 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
594 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
595 #elif _MSC_VER >= 1400 /* VC++ 2005 */
596 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
597 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
598 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
599 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
600 #elif defined _WIN32
601 #include <WinNT.h>
602 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
603 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
604 #include <mbarrier.h>
605 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
606 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
607 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
608 #elif __xlC__
609 #define ECB_MEMORY_FENCE __sync ()
610 #endif
611#endif
612
613#ifndef ECB_MEMORY_FENCE
614 #if !ECB_AVOID_PTHREADS
615 /*
616 * if you get undefined symbol references to pthread_mutex_lock,
617 * or failure to find pthread.h, then you should implement
618 * the ECB_MEMORY_FENCE operations for your cpu/compiler
619 * OR provide pthread.h and link against the posix thread library
620 * of your system.
621 */
622 #include <pthread.h>
623 #define ECB_NEEDS_PTHREADS 1
624 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
625
626 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
627 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
628 #endif
629#endif
630
631#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
632 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
633#endif
634
635#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
636 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
637#endif
638
639/*****************************************************************************/
640
641#define ECB_C99 (__STDC_VERSION__ >= 199901L)
642
643#if __cplusplus
644 #define ecb_inline static inline
645#elif ECB_GCC_VERSION(2,5)
646 #define ecb_inline static __inline__
647#elif ECB_C99
648 #define ecb_inline static inline
649#else
650 #define ecb_inline static
651#endif
652
653#if ECB_GCC_VERSION(3,3)
654 #define ecb_restrict __restrict__
655#elif ECB_C99
656 #define ecb_restrict restrict
657#else
658 #define ecb_restrict
659#endif
660
661typedef int ecb_bool;
662
663#define ECB_CONCAT_(a, b) a ## b
664#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
665#define ECB_STRINGIFY_(a) # a
666#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
667
668#define ecb_function_ ecb_inline
669
670#if ECB_GCC_VERSION(3,1)
671 #define ecb_attribute(attrlist) __attribute__(attrlist)
672 #define ecb_is_constant(expr) __builtin_constant_p (expr)
673 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
674 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
675#else
676 #define ecb_attribute(attrlist)
677 #define ecb_is_constant(expr) 0
678 #define ecb_expect(expr,value) (expr)
679 #define ecb_prefetch(addr,rw,locality)
680#endif
681
682/* no emulation for ecb_decltype */
683#if ECB_GCC_VERSION(4,5)
684 #define ecb_decltype(x) __decltype(x)
685#elif ECB_GCC_VERSION(3,0)
686 #define ecb_decltype(x) __typeof(x)
687#endif
688
689#define ecb_noinline ecb_attribute ((__noinline__))
690#define ecb_noreturn ecb_attribute ((__noreturn__))
691#define ecb_unused ecb_attribute ((__unused__))
692#define ecb_const ecb_attribute ((__const__))
693#define ecb_pure ecb_attribute ((__pure__))
694
695#if ECB_GCC_VERSION(4,3)
696 #define ecb_artificial ecb_attribute ((__artificial__))
697 #define ecb_hot ecb_attribute ((__hot__))
698 #define ecb_cold ecb_attribute ((__cold__))
699#else
700 #define ecb_artificial
701 #define ecb_hot
702 #define ecb_cold
703#endif
704
705/* put around conditional expressions if you are very sure that the */
706/* expression is mostly true or mostly false. note that these return */
707/* booleans, not the expression. */
349#define expect_false(expr) expect ((expr) != 0, 0) 708#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
350#define expect_true(expr) expect ((expr) != 0, 1) 709#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
710/* for compatibility to the rest of the world */
711#define ecb_likely(expr) ecb_expect_true (expr)
712#define ecb_unlikely(expr) ecb_expect_false (expr)
713
714/* count trailing zero bits and count # of one bits */
715#if ECB_GCC_VERSION(3,4)
716 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
717 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
718 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
719 #define ecb_ctz32(x) __builtin_ctz (x)
720 #define ecb_ctz64(x) __builtin_ctzll (x)
721 #define ecb_popcount32(x) __builtin_popcount (x)
722 /* no popcountll */
723#else
724 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
725 ecb_function_ int
726 ecb_ctz32 (uint32_t x)
727 {
728 int r = 0;
729
730 x &= ~x + 1; /* this isolates the lowest bit */
731
732#if ECB_branchless_on_i386
733 r += !!(x & 0xaaaaaaaa) << 0;
734 r += !!(x & 0xcccccccc) << 1;
735 r += !!(x & 0xf0f0f0f0) << 2;
736 r += !!(x & 0xff00ff00) << 3;
737 r += !!(x & 0xffff0000) << 4;
738#else
739 if (x & 0xaaaaaaaa) r += 1;
740 if (x & 0xcccccccc) r += 2;
741 if (x & 0xf0f0f0f0) r += 4;
742 if (x & 0xff00ff00) r += 8;
743 if (x & 0xffff0000) r += 16;
744#endif
745
746 return r;
747 }
748
749 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
750 ecb_function_ int
751 ecb_ctz64 (uint64_t x)
752 {
753 int shift = x & 0xffffffffU ? 0 : 32;
754 return ecb_ctz32 (x >> shift) + shift;
755 }
756
757 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
758 ecb_function_ int
759 ecb_popcount32 (uint32_t x)
760 {
761 x -= (x >> 1) & 0x55555555;
762 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
763 x = ((x >> 4) + x) & 0x0f0f0f0f;
764 x *= 0x01010101;
765
766 return x >> 24;
767 }
768
769 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
770 ecb_function_ int ecb_ld32 (uint32_t x)
771 {
772 int r = 0;
773
774 if (x >> 16) { x >>= 16; r += 16; }
775 if (x >> 8) { x >>= 8; r += 8; }
776 if (x >> 4) { x >>= 4; r += 4; }
777 if (x >> 2) { x >>= 2; r += 2; }
778 if (x >> 1) { r += 1; }
779
780 return r;
781 }
782
783 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
784 ecb_function_ int ecb_ld64 (uint64_t x)
785 {
786 int r = 0;
787
788 if (x >> 32) { x >>= 32; r += 32; }
789
790 return r + ecb_ld32 (x);
791 }
792#endif
793
794ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
795ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
796{
797 return ( (x * 0x0802U & 0x22110U)
798 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
799}
800
801ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
802ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
803{
804 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
805 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
806 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
807 x = ( x >> 8 ) | ( x << 8);
808
809 return x;
810}
811
812ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
813ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
814{
815 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
816 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
817 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
818 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
819 x = ( x >> 16 ) | ( x << 16);
820
821 return x;
822}
823
824/* popcount64 is only available on 64 bit cpus as gcc builtin */
825/* so for this version we are lazy */
826ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
827ecb_function_ int
828ecb_popcount64 (uint64_t x)
829{
830 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
831}
832
833ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
834ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
835ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
836ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
837ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
838ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
839ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
840ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
841
842ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
843ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
844ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
845ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
846ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
847ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
848ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
849ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
850
851#if ECB_GCC_VERSION(4,3)
852 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
853 #define ecb_bswap32(x) __builtin_bswap32 (x)
854 #define ecb_bswap64(x) __builtin_bswap64 (x)
855#else
856 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
857 ecb_function_ uint16_t
858 ecb_bswap16 (uint16_t x)
859 {
860 return ecb_rotl16 (x, 8);
861 }
862
863 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
864 ecb_function_ uint32_t
865 ecb_bswap32 (uint32_t x)
866 {
867 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
868 }
869
870 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
871 ecb_function_ uint64_t
872 ecb_bswap64 (uint64_t x)
873 {
874 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
875 }
876#endif
877
878#if ECB_GCC_VERSION(4,5)
879 #define ecb_unreachable() __builtin_unreachable ()
880#else
881 /* this seems to work fine, but gcc always emits a warning for it :/ */
882 ecb_inline void ecb_unreachable (void) ecb_noreturn;
883 ecb_inline void ecb_unreachable (void) { }
884#endif
885
886/* try to tell the compiler that some condition is definitely true */
887#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
888
889ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
890ecb_inline unsigned char
891ecb_byteorder_helper (void)
892{
893 const uint32_t u = 0x11223344;
894 return *(unsigned char *)&u;
895}
896
897ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
898ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
899ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
900ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
901
902#if ECB_GCC_VERSION(3,0) || ECB_C99
903 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
904#else
905 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
906#endif
907
908#if __cplusplus
909 template<typename T>
910 static inline T ecb_div_rd (T val, T div)
911 {
912 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
913 }
914 template<typename T>
915 static inline T ecb_div_ru (T val, T div)
916 {
917 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
918 }
919#else
920 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
921 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
922#endif
923
924#if ecb_cplusplus_does_not_suck
925 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
926 template<typename T, int N>
927 static inline int ecb_array_length (const T (&arr)[N])
928 {
929 return N;
930 }
931#else
932 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
933#endif
934
935#endif
936
937/* ECB.H END */
938
939#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
940/* if your architecture doesn't need memory fences, e.g. because it is
941 * single-cpu/core, or if you use libev in a project that doesn't use libev
942 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
943 * libev, in which cases the memory fences become nops.
944 * alternatively, you can remove this #error and link against libpthread,
945 * which will then provide the memory fences.
946 */
947# error "memory fences not defined for your architecture, please report"
948#endif
949
950#ifndef ECB_MEMORY_FENCE
951# define ECB_MEMORY_FENCE do { } while (0)
952# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
953# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
954#endif
955
956#define expect_false(cond) ecb_expect_false (cond)
957#define expect_true(cond) ecb_expect_true (cond)
958#define noinline ecb_noinline
959
351#define inline_size static inline 960#define inline_size ecb_inline
352 961
353#if EV_MINIMAL 962#if EV_FEATURE_CODE
963# define inline_speed ecb_inline
964#else
354# define inline_speed static noinline 965# define inline_speed static noinline
966#endif
967
968#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
969
970#if EV_MINPRI == EV_MAXPRI
971# define ABSPRI(w) (((W)w), 0)
355#else 972#else
356# define inline_speed static inline
357#endif
358
359#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
360#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 973# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
974#endif
361 975
362#define EMPTY /* required for microsofts broken pseudo-c compiler */ 976#define EMPTY /* required for microsofts broken pseudo-c compiler */
363#define EMPTY2(a,b) /* used to suppress some warnings */ 977#define EMPTY2(a,b) /* used to suppress some warnings */
364 978
365typedef ev_watcher *W; 979typedef ev_watcher *W;
367typedef ev_watcher_time *WT; 981typedef ev_watcher_time *WT;
368 982
369#define ev_active(w) ((W)(w))->active 983#define ev_active(w) ((W)(w))->active
370#define ev_at(w) ((WT)(w))->at 984#define ev_at(w) ((WT)(w))->at
371 985
986#if EV_USE_REALTIME
987/* sig_atomic_t is used to avoid per-thread variables or locking but still */
988/* giving it a reasonably high chance of working on typical architectures */
989static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
990#endif
991
372#if EV_USE_MONOTONIC 992#if EV_USE_MONOTONIC
373/* sig_atomic_t is used to avoid per-thread variables or locking but still */
374/* giving it a reasonably high chance of working on typical architetcures */
375static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 993static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
994#endif
995
996#ifndef EV_FD_TO_WIN32_HANDLE
997# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
998#endif
999#ifndef EV_WIN32_HANDLE_TO_FD
1000# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1001#endif
1002#ifndef EV_WIN32_CLOSE_FD
1003# define EV_WIN32_CLOSE_FD(fd) close (fd)
376#endif 1004#endif
377 1005
378#ifdef _WIN32 1006#ifdef _WIN32
379# include "ev_win32.c" 1007# include "ev_win32.c"
380#endif 1008#endif
381 1009
382/*****************************************************************************/ 1010/*****************************************************************************/
383 1011
1012/* define a suitable floor function (only used by periodics atm) */
1013
1014#if EV_USE_FLOOR
1015# include <math.h>
1016# define ev_floor(v) floor (v)
1017#else
1018
1019#include <float.h>
1020
1021/* a floor() replacement function, should be independent of ev_tstamp type */
1022static ev_tstamp noinline
1023ev_floor (ev_tstamp v)
1024{
1025 /* the choice of shift factor is not terribly important */
1026#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1027 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1028#else
1029 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1030#endif
1031
1032 /* argument too large for an unsigned long? */
1033 if (expect_false (v >= shift))
1034 {
1035 ev_tstamp f;
1036
1037 if (v == v - 1.)
1038 return v; /* very large number */
1039
1040 f = shift * ev_floor (v * (1. / shift));
1041 return f + ev_floor (v - f);
1042 }
1043
1044 /* special treatment for negative args? */
1045 if (expect_false (v < 0.))
1046 {
1047 ev_tstamp f = -ev_floor (-v);
1048
1049 return f - (f == v ? 0 : 1);
1050 }
1051
1052 /* fits into an unsigned long */
1053 return (unsigned long)v;
1054}
1055
1056#endif
1057
1058/*****************************************************************************/
1059
1060#ifdef __linux
1061# include <sys/utsname.h>
1062#endif
1063
1064static unsigned int noinline ecb_cold
1065ev_linux_version (void)
1066{
1067#ifdef __linux
1068 unsigned int v = 0;
1069 struct utsname buf;
1070 int i;
1071 char *p = buf.release;
1072
1073 if (uname (&buf))
1074 return 0;
1075
1076 for (i = 3+1; --i; )
1077 {
1078 unsigned int c = 0;
1079
1080 for (;;)
1081 {
1082 if (*p >= '0' && *p <= '9')
1083 c = c * 10 + *p++ - '0';
1084 else
1085 {
1086 p += *p == '.';
1087 break;
1088 }
1089 }
1090
1091 v = (v << 8) | c;
1092 }
1093
1094 return v;
1095#else
1096 return 0;
1097#endif
1098}
1099
1100/*****************************************************************************/
1101
1102#if EV_AVOID_STDIO
1103static void noinline ecb_cold
1104ev_printerr (const char *msg)
1105{
1106 write (STDERR_FILENO, msg, strlen (msg));
1107}
1108#endif
1109
384static void (*syserr_cb)(const char *msg); 1110static void (*syserr_cb)(const char *msg) EV_THROW;
385 1111
386void 1112void ecb_cold
387ev_set_syserr_cb (void (*cb)(const char *msg)) 1113ev_set_syserr_cb (void (*cb)(const char *msg)) EV_THROW
388{ 1114{
389 syserr_cb = cb; 1115 syserr_cb = cb;
390} 1116}
391 1117
392static void noinline 1118static void noinline ecb_cold
393syserr (const char *msg) 1119ev_syserr (const char *msg)
394{ 1120{
395 if (!msg) 1121 if (!msg)
396 msg = "(libev) system error"; 1122 msg = "(libev) system error";
397 1123
398 if (syserr_cb) 1124 if (syserr_cb)
399 syserr_cb (msg); 1125 syserr_cb (msg);
400 else 1126 else
401 { 1127 {
1128#if EV_AVOID_STDIO
1129 ev_printerr (msg);
1130 ev_printerr (": ");
1131 ev_printerr (strerror (errno));
1132 ev_printerr ("\n");
1133#else
402 perror (msg); 1134 perror (msg);
1135#endif
403 abort (); 1136 abort ();
404 } 1137 }
405} 1138}
406 1139
407static void * 1140static void *
408ev_realloc_emul (void *ptr, long size) 1141ev_realloc_emul (void *ptr, long size)
409{ 1142{
1143#if __GLIBC__
1144 return realloc (ptr, size);
1145#else
410 /* some systems, notably openbsd and darwin, fail to properly 1146 /* some systems, notably openbsd and darwin, fail to properly
411 * implement realloc (x, 0) (as required by both ansi c-98 and 1147 * implement realloc (x, 0) (as required by both ansi c-89 and
412 * the single unix specification, so work around them here. 1148 * the single unix specification, so work around them here.
413 */ 1149 */
414 1150
415 if (size) 1151 if (size)
416 return realloc (ptr, size); 1152 return realloc (ptr, size);
417 1153
418 free (ptr); 1154 free (ptr);
419 return 0; 1155 return 0;
1156#endif
420} 1157}
421 1158
422static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1159static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
423 1160
424void 1161void ecb_cold
425ev_set_allocator (void *(*cb)(void *ptr, long size)) 1162ev_set_allocator (void *(*cb)(void *ptr, long size)) EV_THROW
426{ 1163{
427 alloc = cb; 1164 alloc = cb;
428} 1165}
429 1166
430inline_speed void * 1167inline_speed void *
432{ 1169{
433 ptr = alloc (ptr, size); 1170 ptr = alloc (ptr, size);
434 1171
435 if (!ptr && size) 1172 if (!ptr && size)
436 { 1173 {
1174#if EV_AVOID_STDIO
1175 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1176#else
437 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1177 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1178#endif
438 abort (); 1179 abort ();
439 } 1180 }
440 1181
441 return ptr; 1182 return ptr;
442} 1183}
444#define ev_malloc(size) ev_realloc (0, (size)) 1185#define ev_malloc(size) ev_realloc (0, (size))
445#define ev_free(ptr) ev_realloc ((ptr), 0) 1186#define ev_free(ptr) ev_realloc ((ptr), 0)
446 1187
447/*****************************************************************************/ 1188/*****************************************************************************/
448 1189
1190/* set in reify when reification needed */
1191#define EV_ANFD_REIFY 1
1192
1193/* file descriptor info structure */
449typedef struct 1194typedef struct
450{ 1195{
451 WL head; 1196 WL head;
452 unsigned char events; 1197 unsigned char events; /* the events watched for */
1198 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1199 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
453 unsigned char reify; 1200 unsigned char unused;
1201#if EV_USE_EPOLL
1202 unsigned int egen; /* generation counter to counter epoll bugs */
1203#endif
454#if EV_SELECT_IS_WINSOCKET 1204#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
455 SOCKET handle; 1205 SOCKET handle;
456#endif 1206#endif
1207#if EV_USE_IOCP
1208 OVERLAPPED or, ow;
1209#endif
457} ANFD; 1210} ANFD;
458 1211
1212/* stores the pending event set for a given watcher */
459typedef struct 1213typedef struct
460{ 1214{
461 W w; 1215 W w;
462 int events; 1216 int events; /* the pending event set for the given watcher */
463} ANPENDING; 1217} ANPENDING;
464 1218
465#if EV_USE_INOTIFY 1219#if EV_USE_INOTIFY
466/* hash table entry per inotify-id */ 1220/* hash table entry per inotify-id */
467typedef struct 1221typedef struct
470} ANFS; 1224} ANFS;
471#endif 1225#endif
472 1226
473/* Heap Entry */ 1227/* Heap Entry */
474#if EV_HEAP_CACHE_AT 1228#if EV_HEAP_CACHE_AT
1229 /* a heap element */
475 typedef struct { 1230 typedef struct {
476 ev_tstamp at; 1231 ev_tstamp at;
477 WT w; 1232 WT w;
478 } ANHE; 1233 } ANHE;
479 1234
480 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1235 #define ANHE_w(he) (he).w /* access watcher, read-write */
481 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1236 #define ANHE_at(he) (he).at /* access cached at, read-only */
482 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 1237 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
483#else 1238#else
1239 /* a heap element */
484 typedef WT ANHE; 1240 typedef WT ANHE;
485 1241
486 #define ANHE_w(he) (he) 1242 #define ANHE_w(he) (he)
487 #define ANHE_at(he) (he)->at 1243 #define ANHE_at(he) (he)->at
488 #define ANHE_at_cache(he) 1244 #define ANHE_at_cache(he)
499 #undef VAR 1255 #undef VAR
500 }; 1256 };
501 #include "ev_wrap.h" 1257 #include "ev_wrap.h"
502 1258
503 static struct ev_loop default_loop_struct; 1259 static struct ev_loop default_loop_struct;
504 struct ev_loop *ev_default_loop_ptr; 1260 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
505 1261
506#else 1262#else
507 1263
508 ev_tstamp ev_rt_now; 1264 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
509 #define VAR(name,decl) static decl; 1265 #define VAR(name,decl) static decl;
510 #include "ev_vars.h" 1266 #include "ev_vars.h"
511 #undef VAR 1267 #undef VAR
512 1268
513 static int ev_default_loop_ptr; 1269 static int ev_default_loop_ptr;
514 1270
515#endif 1271#endif
516 1272
1273#if EV_FEATURE_API
1274# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1275# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1276# define EV_INVOKE_PENDING invoke_cb (EV_A)
1277#else
1278# define EV_RELEASE_CB (void)0
1279# define EV_ACQUIRE_CB (void)0
1280# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1281#endif
1282
1283#define EVBREAK_RECURSE 0x80
1284
517/*****************************************************************************/ 1285/*****************************************************************************/
518 1286
1287#ifndef EV_HAVE_EV_TIME
519ev_tstamp 1288ev_tstamp
520ev_time (void) 1289ev_time (void) EV_THROW
521{ 1290{
522#if EV_USE_REALTIME 1291#if EV_USE_REALTIME
1292 if (expect_true (have_realtime))
1293 {
523 struct timespec ts; 1294 struct timespec ts;
524 clock_gettime (CLOCK_REALTIME, &ts); 1295 clock_gettime (CLOCK_REALTIME, &ts);
525 return ts.tv_sec + ts.tv_nsec * 1e-9; 1296 return ts.tv_sec + ts.tv_nsec * 1e-9;
526#else 1297 }
1298#endif
1299
527 struct timeval tv; 1300 struct timeval tv;
528 gettimeofday (&tv, 0); 1301 gettimeofday (&tv, 0);
529 return tv.tv_sec + tv.tv_usec * 1e-6; 1302 return tv.tv_sec + tv.tv_usec * 1e-6;
530#endif
531} 1303}
1304#endif
532 1305
533ev_tstamp inline_size 1306inline_size ev_tstamp
534get_clock (void) 1307get_clock (void)
535{ 1308{
536#if EV_USE_MONOTONIC 1309#if EV_USE_MONOTONIC
537 if (expect_true (have_monotonic)) 1310 if (expect_true (have_monotonic))
538 { 1311 {
545 return ev_time (); 1318 return ev_time ();
546} 1319}
547 1320
548#if EV_MULTIPLICITY 1321#if EV_MULTIPLICITY
549ev_tstamp 1322ev_tstamp
550ev_now (EV_P) 1323ev_now (EV_P) EV_THROW
551{ 1324{
552 return ev_rt_now; 1325 return ev_rt_now;
553} 1326}
554#endif 1327#endif
555 1328
556void 1329void
557ev_sleep (ev_tstamp delay) 1330ev_sleep (ev_tstamp delay) EV_THROW
558{ 1331{
559 if (delay > 0.) 1332 if (delay > 0.)
560 { 1333 {
561#if EV_USE_NANOSLEEP 1334#if EV_USE_NANOSLEEP
562 struct timespec ts; 1335 struct timespec ts;
563 1336
564 ts.tv_sec = (time_t)delay; 1337 EV_TS_SET (ts, delay);
565 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
566
567 nanosleep (&ts, 0); 1338 nanosleep (&ts, 0);
568#elif defined(_WIN32) 1339#elif defined _WIN32
569 Sleep ((unsigned long)(delay * 1e3)); 1340 Sleep ((unsigned long)(delay * 1e3));
570#else 1341#else
571 struct timeval tv; 1342 struct timeval tv;
572 1343
573 tv.tv_sec = (time_t)delay;
574 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
575
576 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 1344 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
577 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 1345 /* something not guaranteed by newer posix versions, but guaranteed */
578 /* by older ones */ 1346 /* by older ones */
1347 EV_TV_SET (tv, delay);
579 select (0, 0, 0, 0, &tv); 1348 select (0, 0, 0, 0, &tv);
580#endif 1349#endif
581 } 1350 }
582} 1351}
583 1352
584/*****************************************************************************/ 1353/*****************************************************************************/
585 1354
586#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1355#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
587 1356
588int inline_size 1357/* find a suitable new size for the given array, */
1358/* hopefully by rounding to a nice-to-malloc size */
1359inline_size int
589array_nextsize (int elem, int cur, int cnt) 1360array_nextsize (int elem, int cur, int cnt)
590{ 1361{
591 int ncur = cur + 1; 1362 int ncur = cur + 1;
592 1363
593 do 1364 do
594 ncur <<= 1; 1365 ncur <<= 1;
595 while (cnt > ncur); 1366 while (cnt > ncur);
596 1367
597 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1368 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
598 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1369 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
599 { 1370 {
600 ncur *= elem; 1371 ncur *= elem;
601 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1372 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
602 ncur = ncur - sizeof (void *) * 4; 1373 ncur = ncur - sizeof (void *) * 4;
604 } 1375 }
605 1376
606 return ncur; 1377 return ncur;
607} 1378}
608 1379
609static noinline void * 1380static void * noinline ecb_cold
610array_realloc (int elem, void *base, int *cur, int cnt) 1381array_realloc (int elem, void *base, int *cur, int cnt)
611{ 1382{
612 *cur = array_nextsize (elem, *cur, cnt); 1383 *cur = array_nextsize (elem, *cur, cnt);
613 return ev_realloc (base, elem * *cur); 1384 return ev_realloc (base, elem * *cur);
614} 1385}
1386
1387#define array_init_zero(base,count) \
1388 memset ((void *)(base), 0, sizeof (*(base)) * (count))
615 1389
616#define array_needsize(type,base,cur,cnt,init) \ 1390#define array_needsize(type,base,cur,cnt,init) \
617 if (expect_false ((cnt) > (cur))) \ 1391 if (expect_false ((cnt) > (cur))) \
618 { \ 1392 { \
619 int ocur_ = (cur); \ 1393 int ecb_unused ocur_ = (cur); \
620 (base) = (type *)array_realloc \ 1394 (base) = (type *)array_realloc \
621 (sizeof (type), (base), &(cur), (cnt)); \ 1395 (sizeof (type), (base), &(cur), (cnt)); \
622 init ((base) + (ocur_), (cur) - ocur_); \ 1396 init ((base) + (ocur_), (cur) - ocur_); \
623 } 1397 }
624 1398
631 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1405 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
632 } 1406 }
633#endif 1407#endif
634 1408
635#define array_free(stem, idx) \ 1409#define array_free(stem, idx) \
636 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1410 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
637 1411
638/*****************************************************************************/ 1412/*****************************************************************************/
639 1413
1414/* dummy callback for pending events */
1415static void noinline
1416pendingcb (EV_P_ ev_prepare *w, int revents)
1417{
1418}
1419
640void noinline 1420void noinline
641ev_feed_event (EV_P_ void *w, int revents) 1421ev_feed_event (EV_P_ void *w, int revents) EV_THROW
642{ 1422{
643 W w_ = (W)w; 1423 W w_ = (W)w;
644 int pri = ABSPRI (w_); 1424 int pri = ABSPRI (w_);
645 1425
646 if (expect_false (w_->pending)) 1426 if (expect_false (w_->pending))
650 w_->pending = ++pendingcnt [pri]; 1430 w_->pending = ++pendingcnt [pri];
651 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1431 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
652 pendings [pri][w_->pending - 1].w = w_; 1432 pendings [pri][w_->pending - 1].w = w_;
653 pendings [pri][w_->pending - 1].events = revents; 1433 pendings [pri][w_->pending - 1].events = revents;
654 } 1434 }
655}
656 1435
657void inline_speed 1436 pendingpri = NUMPRI - 1;
1437}
1438
1439inline_speed void
1440feed_reverse (EV_P_ W w)
1441{
1442 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1443 rfeeds [rfeedcnt++] = w;
1444}
1445
1446inline_size void
1447feed_reverse_done (EV_P_ int revents)
1448{
1449 do
1450 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1451 while (rfeedcnt);
1452}
1453
1454inline_speed void
658queue_events (EV_P_ W *events, int eventcnt, int type) 1455queue_events (EV_P_ W *events, int eventcnt, int type)
659{ 1456{
660 int i; 1457 int i;
661 1458
662 for (i = 0; i < eventcnt; ++i) 1459 for (i = 0; i < eventcnt; ++i)
663 ev_feed_event (EV_A_ events [i], type); 1460 ev_feed_event (EV_A_ events [i], type);
664} 1461}
665 1462
666/*****************************************************************************/ 1463/*****************************************************************************/
667 1464
668void inline_size 1465inline_speed void
669anfds_init (ANFD *base, int count)
670{
671 while (count--)
672 {
673 base->head = 0;
674 base->events = EV_NONE;
675 base->reify = 0;
676
677 ++base;
678 }
679}
680
681void inline_speed
682fd_event (EV_P_ int fd, int revents) 1466fd_event_nocheck (EV_P_ int fd, int revents)
683{ 1467{
684 ANFD *anfd = anfds + fd; 1468 ANFD *anfd = anfds + fd;
685 ev_io *w; 1469 ev_io *w;
686 1470
687 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1471 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
691 if (ev) 1475 if (ev)
692 ev_feed_event (EV_A_ (W)w, ev); 1476 ev_feed_event (EV_A_ (W)w, ev);
693 } 1477 }
694} 1478}
695 1479
1480/* do not submit kernel events for fds that have reify set */
1481/* because that means they changed while we were polling for new events */
1482inline_speed void
1483fd_event (EV_P_ int fd, int revents)
1484{
1485 ANFD *anfd = anfds + fd;
1486
1487 if (expect_true (!anfd->reify))
1488 fd_event_nocheck (EV_A_ fd, revents);
1489}
1490
696void 1491void
697ev_feed_fd_event (EV_P_ int fd, int revents) 1492ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
698{ 1493{
699 if (fd >= 0 && fd < anfdmax) 1494 if (fd >= 0 && fd < anfdmax)
700 fd_event (EV_A_ fd, revents); 1495 fd_event_nocheck (EV_A_ fd, revents);
701} 1496}
702 1497
703void inline_size 1498/* make sure the external fd watch events are in-sync */
1499/* with the kernel/libev internal state */
1500inline_size void
704fd_reify (EV_P) 1501fd_reify (EV_P)
705{ 1502{
706 int i; 1503 int i;
1504
1505#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1506 for (i = 0; i < fdchangecnt; ++i)
1507 {
1508 int fd = fdchanges [i];
1509 ANFD *anfd = anfds + fd;
1510
1511 if (anfd->reify & EV__IOFDSET && anfd->head)
1512 {
1513 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1514
1515 if (handle != anfd->handle)
1516 {
1517 unsigned long arg;
1518
1519 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1520
1521 /* handle changed, but fd didn't - we need to do it in two steps */
1522 backend_modify (EV_A_ fd, anfd->events, 0);
1523 anfd->events = 0;
1524 anfd->handle = handle;
1525 }
1526 }
1527 }
1528#endif
707 1529
708 for (i = 0; i < fdchangecnt; ++i) 1530 for (i = 0; i < fdchangecnt; ++i)
709 { 1531 {
710 int fd = fdchanges [i]; 1532 int fd = fdchanges [i];
711 ANFD *anfd = anfds + fd; 1533 ANFD *anfd = anfds + fd;
712 ev_io *w; 1534 ev_io *w;
713 1535
714 unsigned char events = 0; 1536 unsigned char o_events = anfd->events;
1537 unsigned char o_reify = anfd->reify;
715 1538
716 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1539 anfd->reify = 0;
717 events |= (unsigned char)w->events;
718 1540
719#if EV_SELECT_IS_WINSOCKET 1541 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
720 if (events)
721 { 1542 {
722 unsigned long arg; 1543 anfd->events = 0;
723 #ifdef EV_FD_TO_WIN32_HANDLE 1544
724 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1545 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
725 #else 1546 anfd->events |= (unsigned char)w->events;
726 anfd->handle = _get_osfhandle (fd); 1547
727 #endif 1548 if (o_events != anfd->events)
728 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 1549 o_reify = EV__IOFDSET; /* actually |= */
729 } 1550 }
730#endif
731 1551
732 { 1552 if (o_reify & EV__IOFDSET)
733 unsigned char o_events = anfd->events;
734 unsigned char o_reify = anfd->reify;
735
736 anfd->reify = 0;
737 anfd->events = events;
738
739 if (o_events != events || o_reify & EV_IOFDSET)
740 backend_modify (EV_A_ fd, o_events, events); 1553 backend_modify (EV_A_ fd, o_events, anfd->events);
741 }
742 } 1554 }
743 1555
744 fdchangecnt = 0; 1556 fdchangecnt = 0;
745} 1557}
746 1558
747void inline_size 1559/* something about the given fd changed */
1560inline_size void
748fd_change (EV_P_ int fd, int flags) 1561fd_change (EV_P_ int fd, int flags)
749{ 1562{
750 unsigned char reify = anfds [fd].reify; 1563 unsigned char reify = anfds [fd].reify;
751 anfds [fd].reify |= flags; 1564 anfds [fd].reify |= flags;
752 1565
756 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1569 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
757 fdchanges [fdchangecnt - 1] = fd; 1570 fdchanges [fdchangecnt - 1] = fd;
758 } 1571 }
759} 1572}
760 1573
761void inline_speed 1574/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1575inline_speed void ecb_cold
762fd_kill (EV_P_ int fd) 1576fd_kill (EV_P_ int fd)
763{ 1577{
764 ev_io *w; 1578 ev_io *w;
765 1579
766 while ((w = (ev_io *)anfds [fd].head)) 1580 while ((w = (ev_io *)anfds [fd].head))
768 ev_io_stop (EV_A_ w); 1582 ev_io_stop (EV_A_ w);
769 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1583 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
770 } 1584 }
771} 1585}
772 1586
773int inline_size 1587/* check whether the given fd is actually valid, for error recovery */
1588inline_size int ecb_cold
774fd_valid (int fd) 1589fd_valid (int fd)
775{ 1590{
776#ifdef _WIN32 1591#ifdef _WIN32
777 return _get_osfhandle (fd) != -1; 1592 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
778#else 1593#else
779 return fcntl (fd, F_GETFD) != -1; 1594 return fcntl (fd, F_GETFD) != -1;
780#endif 1595#endif
781} 1596}
782 1597
783/* called on EBADF to verify fds */ 1598/* called on EBADF to verify fds */
784static void noinline 1599static void noinline ecb_cold
785fd_ebadf (EV_P) 1600fd_ebadf (EV_P)
786{ 1601{
787 int fd; 1602 int fd;
788 1603
789 for (fd = 0; fd < anfdmax; ++fd) 1604 for (fd = 0; fd < anfdmax; ++fd)
791 if (!fd_valid (fd) && errno == EBADF) 1606 if (!fd_valid (fd) && errno == EBADF)
792 fd_kill (EV_A_ fd); 1607 fd_kill (EV_A_ fd);
793} 1608}
794 1609
795/* called on ENOMEM in select/poll to kill some fds and retry */ 1610/* called on ENOMEM in select/poll to kill some fds and retry */
796static void noinline 1611static void noinline ecb_cold
797fd_enomem (EV_P) 1612fd_enomem (EV_P)
798{ 1613{
799 int fd; 1614 int fd;
800 1615
801 for (fd = anfdmax; fd--; ) 1616 for (fd = anfdmax; fd--; )
802 if (anfds [fd].events) 1617 if (anfds [fd].events)
803 { 1618 {
804 fd_kill (EV_A_ fd); 1619 fd_kill (EV_A_ fd);
805 return; 1620 break;
806 } 1621 }
807} 1622}
808 1623
809/* usually called after fork if backend needs to re-arm all fds from scratch */ 1624/* usually called after fork if backend needs to re-arm all fds from scratch */
810static void noinline 1625static void noinline
814 1629
815 for (fd = 0; fd < anfdmax; ++fd) 1630 for (fd = 0; fd < anfdmax; ++fd)
816 if (anfds [fd].events) 1631 if (anfds [fd].events)
817 { 1632 {
818 anfds [fd].events = 0; 1633 anfds [fd].events = 0;
1634 anfds [fd].emask = 0;
819 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1635 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
820 } 1636 }
821} 1637}
822 1638
1639/* used to prepare libev internal fd's */
1640/* this is not fork-safe */
1641inline_speed void
1642fd_intern (int fd)
1643{
1644#ifdef _WIN32
1645 unsigned long arg = 1;
1646 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1647#else
1648 fcntl (fd, F_SETFD, FD_CLOEXEC);
1649 fcntl (fd, F_SETFL, O_NONBLOCK);
1650#endif
1651}
1652
823/*****************************************************************************/ 1653/*****************************************************************************/
824 1654
825/* 1655/*
826 * the heap functions want a real array index. array index 0 uis guaranteed to not 1656 * the heap functions want a real array index. array index 0 is guaranteed to not
827 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1657 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
828 * the branching factor of the d-tree. 1658 * the branching factor of the d-tree.
829 */ 1659 */
830 1660
831/* 1661/*
840#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1670#define HEAP0 (DHEAP - 1) /* index of first element in heap */
841#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1671#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
842#define UPHEAP_DONE(p,k) ((p) == (k)) 1672#define UPHEAP_DONE(p,k) ((p) == (k))
843 1673
844/* away from the root */ 1674/* away from the root */
845void inline_speed 1675inline_speed void
846downheap (ANHE *heap, int N, int k) 1676downheap (ANHE *heap, int N, int k)
847{ 1677{
848 ANHE he = heap [k]; 1678 ANHE he = heap [k];
849 ANHE *E = heap + N + HEAP0; 1679 ANHE *E = heap + N + HEAP0;
850 1680
890#define HEAP0 1 1720#define HEAP0 1
891#define HPARENT(k) ((k) >> 1) 1721#define HPARENT(k) ((k) >> 1)
892#define UPHEAP_DONE(p,k) (!(p)) 1722#define UPHEAP_DONE(p,k) (!(p))
893 1723
894/* away from the root */ 1724/* away from the root */
895void inline_speed 1725inline_speed void
896downheap (ANHE *heap, int N, int k) 1726downheap (ANHE *heap, int N, int k)
897{ 1727{
898 ANHE he = heap [k]; 1728 ANHE he = heap [k];
899 1729
900 for (;;) 1730 for (;;)
901 { 1731 {
902 int c = k << 1; 1732 int c = k << 1;
903 1733
904 if (c > N + HEAP0 - 1) 1734 if (c >= N + HEAP0)
905 break; 1735 break;
906 1736
907 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1737 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
908 ? 1 : 0; 1738 ? 1 : 0;
909 1739
920 ev_active (ANHE_w (he)) = k; 1750 ev_active (ANHE_w (he)) = k;
921} 1751}
922#endif 1752#endif
923 1753
924/* towards the root */ 1754/* towards the root */
925void inline_speed 1755inline_speed void
926upheap (ANHE *heap, int k) 1756upheap (ANHE *heap, int k)
927{ 1757{
928 ANHE he = heap [k]; 1758 ANHE he = heap [k];
929 1759
930 for (;;) 1760 for (;;)
941 1771
942 heap [k] = he; 1772 heap [k] = he;
943 ev_active (ANHE_w (he)) = k; 1773 ev_active (ANHE_w (he)) = k;
944} 1774}
945 1775
946void inline_size 1776/* move an element suitably so it is in a correct place */
1777inline_size void
947adjustheap (ANHE *heap, int N, int k) 1778adjustheap (ANHE *heap, int N, int k)
948{ 1779{
949 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1780 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
950 upheap (heap, k); 1781 upheap (heap, k);
951 else 1782 else
952 downheap (heap, N, k); 1783 downheap (heap, N, k);
953} 1784}
954 1785
955/* rebuild the heap: this function is used only once and executed rarely */ 1786/* rebuild the heap: this function is used only once and executed rarely */
956void inline_size 1787inline_size void
957reheap (ANHE *heap, int N) 1788reheap (ANHE *heap, int N)
958{ 1789{
959 int i; 1790 int i;
960 1791
961 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1792 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
964 upheap (heap, i + HEAP0); 1795 upheap (heap, i + HEAP0);
965} 1796}
966 1797
967/*****************************************************************************/ 1798/*****************************************************************************/
968 1799
1800/* associate signal watchers to a signal signal */
969typedef struct 1801typedef struct
970{ 1802{
1803 EV_ATOMIC_T pending;
1804#if EV_MULTIPLICITY
1805 EV_P;
1806#endif
971 WL head; 1807 WL head;
972 EV_ATOMIC_T gotsig;
973} ANSIG; 1808} ANSIG;
974 1809
975static ANSIG *signals; 1810static ANSIG signals [EV_NSIG - 1];
976static int signalmax;
977
978static EV_ATOMIC_T gotsig;
979
980void inline_size
981signals_init (ANSIG *base, int count)
982{
983 while (count--)
984 {
985 base->head = 0;
986 base->gotsig = 0;
987
988 ++base;
989 }
990}
991 1811
992/*****************************************************************************/ 1812/*****************************************************************************/
993 1813
994void inline_speed 1814#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
995fd_intern (int fd)
996{
997#ifdef _WIN32
998 unsigned long arg = 1;
999 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1000#else
1001 fcntl (fd, F_SETFD, FD_CLOEXEC);
1002 fcntl (fd, F_SETFL, O_NONBLOCK);
1003#endif
1004}
1005 1815
1006static void noinline 1816static void noinline ecb_cold
1007evpipe_init (EV_P) 1817evpipe_init (EV_P)
1008{ 1818{
1009 if (!ev_is_active (&pipeev)) 1819 if (!ev_is_active (&pipe_w))
1010 { 1820 {
1011#if EV_USE_EVENTFD 1821# if EV_USE_EVENTFD
1822 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1823 if (evfd < 0 && errno == EINVAL)
1012 if ((evfd = eventfd (0, 0)) >= 0) 1824 evfd = eventfd (0, 0);
1825
1826 if (evfd >= 0)
1013 { 1827 {
1014 evpipe [0] = -1; 1828 evpipe [0] = -1;
1015 fd_intern (evfd); 1829 fd_intern (evfd); /* doing it twice doesn't hurt */
1016 ev_io_set (&pipeev, evfd, EV_READ); 1830 ev_io_set (&pipe_w, evfd, EV_READ);
1017 } 1831 }
1018 else 1832 else
1019#endif 1833# endif
1020 { 1834 {
1021 while (pipe (evpipe)) 1835 while (pipe (evpipe))
1022 syserr ("(libev) error creating signal/async pipe"); 1836 ev_syserr ("(libev) error creating signal/async pipe");
1023 1837
1024 fd_intern (evpipe [0]); 1838 fd_intern (evpipe [0]);
1025 fd_intern (evpipe [1]); 1839 fd_intern (evpipe [1]);
1026 ev_io_set (&pipeev, evpipe [0], EV_READ); 1840 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1027 } 1841 }
1028 1842
1029 ev_io_start (EV_A_ &pipeev); 1843 ev_io_start (EV_A_ &pipe_w);
1030 ev_unref (EV_A); /* watcher should not keep loop alive */ 1844 ev_unref (EV_A); /* watcher should not keep loop alive */
1031 } 1845 }
1032} 1846}
1033 1847
1034void inline_size 1848inline_speed void
1035evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1849evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1036{ 1850{
1037 if (!*flag) 1851 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1852
1853 if (expect_true (*flag))
1854 return;
1855
1856 *flag = 1;
1857
1858 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1859
1860 pipe_write_skipped = 1;
1861
1862 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1863
1864 if (pipe_write_wanted)
1038 { 1865 {
1866 int old_errno;
1867
1868 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1869
1039 int old_errno = errno; /* save errno because write might clobber it */ 1870 old_errno = errno; /* save errno because write will clobber it */
1040
1041 *flag = 1;
1042 1871
1043#if EV_USE_EVENTFD 1872#if EV_USE_EVENTFD
1044 if (evfd >= 0) 1873 if (evfd >= 0)
1045 { 1874 {
1046 uint64_t counter = 1; 1875 uint64_t counter = 1;
1047 write (evfd, &counter, sizeof (uint64_t)); 1876 write (evfd, &counter, sizeof (uint64_t));
1048 } 1877 }
1049 else 1878 else
1050#endif 1879#endif
1880 {
1881#ifdef _WIN32
1882 WSABUF buf;
1883 DWORD sent;
1884 buf.buf = &buf;
1885 buf.len = 1;
1886 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
1887#else
1051 write (evpipe [1], &old_errno, 1); 1888 write (evpipe [1], &(evpipe [1]), 1);
1889#endif
1890 }
1052 1891
1053 errno = old_errno; 1892 errno = old_errno;
1054 } 1893 }
1055} 1894}
1056 1895
1896/* called whenever the libev signal pipe */
1897/* got some events (signal, async) */
1057static void 1898static void
1058pipecb (EV_P_ ev_io *iow, int revents) 1899pipecb (EV_P_ ev_io *iow, int revents)
1059{ 1900{
1901 int i;
1902
1903 if (revents & EV_READ)
1904 {
1060#if EV_USE_EVENTFD 1905#if EV_USE_EVENTFD
1061 if (evfd >= 0) 1906 if (evfd >= 0)
1062 { 1907 {
1063 uint64_t counter; 1908 uint64_t counter;
1064 read (evfd, &counter, sizeof (uint64_t)); 1909 read (evfd, &counter, sizeof (uint64_t));
1065 } 1910 }
1066 else 1911 else
1067#endif 1912#endif
1068 { 1913 {
1069 char dummy; 1914 char dummy[4];
1915#ifdef _WIN32
1916 WSABUF buf;
1917 DWORD recvd;
1918 buf.buf = dummy;
1919 buf.len = sizeof (dummy);
1920 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, 0, 0, 0);
1921#else
1070 read (evpipe [0], &dummy, 1); 1922 read (evpipe [0], &dummy, sizeof (dummy));
1923#endif
1924 }
1925 }
1926
1927 pipe_write_skipped = 0;
1928
1929 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
1930
1931#if EV_SIGNAL_ENABLE
1932 if (sig_pending)
1071 } 1933 {
1934 sig_pending = 0;
1072 1935
1073 if (gotsig && ev_is_default_loop (EV_A)) 1936 ECB_MEMORY_FENCE_RELEASE;
1074 {
1075 int signum;
1076 gotsig = 0;
1077 1937
1078 for (signum = signalmax; signum--; ) 1938 for (i = EV_NSIG - 1; i--; )
1079 if (signals [signum].gotsig) 1939 if (expect_false (signals [i].pending))
1080 ev_feed_signal_event (EV_A_ signum + 1); 1940 ev_feed_signal_event (EV_A_ i + 1);
1081 } 1941 }
1942#endif
1082 1943
1083#if EV_ASYNC_ENABLE 1944#if EV_ASYNC_ENABLE
1084 if (gotasync) 1945 if (async_pending)
1085 { 1946 {
1086 int i; 1947 async_pending = 0;
1087 gotasync = 0; 1948
1949 ECB_MEMORY_FENCE_RELEASE;
1088 1950
1089 for (i = asynccnt; i--; ) 1951 for (i = asynccnt; i--; )
1090 if (asyncs [i]->sent) 1952 if (asyncs [i]->sent)
1091 { 1953 {
1092 asyncs [i]->sent = 0; 1954 asyncs [i]->sent = 0;
1096#endif 1958#endif
1097} 1959}
1098 1960
1099/*****************************************************************************/ 1961/*****************************************************************************/
1100 1962
1963void
1964ev_feed_signal (int signum) EV_THROW
1965{
1966#if EV_MULTIPLICITY
1967 EV_P = signals [signum - 1].loop;
1968
1969 if (!EV_A)
1970 return;
1971#endif
1972
1973 if (!ev_active (&pipe_w))
1974 return;
1975
1976 signals [signum - 1].pending = 1;
1977 evpipe_write (EV_A_ &sig_pending);
1978}
1979
1101static void 1980static void
1102ev_sighandler (int signum) 1981ev_sighandler (int signum)
1103{ 1982{
1983#ifdef _WIN32
1984 signal (signum, ev_sighandler);
1985#endif
1986
1987 ev_feed_signal (signum);
1988}
1989
1990void noinline
1991ev_feed_signal_event (EV_P_ int signum) EV_THROW
1992{
1993 WL w;
1994
1995 if (expect_false (signum <= 0 || signum > EV_NSIG))
1996 return;
1997
1998 --signum;
1999
1104#if EV_MULTIPLICITY 2000#if EV_MULTIPLICITY
1105 struct ev_loop *loop = &default_loop_struct; 2001 /* it is permissible to try to feed a signal to the wrong loop */
1106#endif 2002 /* or, likely more useful, feeding a signal nobody is waiting for */
1107 2003
1108#if _WIN32 2004 if (expect_false (signals [signum].loop != EV_A))
1109 signal (signum, ev_sighandler);
1110#endif
1111
1112 signals [signum - 1].gotsig = 1;
1113 evpipe_write (EV_A_ &gotsig);
1114}
1115
1116void noinline
1117ev_feed_signal_event (EV_P_ int signum)
1118{
1119 WL w;
1120
1121#if EV_MULTIPLICITY
1122 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1123#endif
1124
1125 --signum;
1126
1127 if (signum < 0 || signum >= signalmax)
1128 return; 2005 return;
2006#endif
1129 2007
1130 signals [signum].gotsig = 0; 2008 signals [signum].pending = 0;
1131 2009
1132 for (w = signals [signum].head; w; w = w->next) 2010 for (w = signals [signum].head; w; w = w->next)
1133 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2011 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1134} 2012}
1135 2013
2014#if EV_USE_SIGNALFD
2015static void
2016sigfdcb (EV_P_ ev_io *iow, int revents)
2017{
2018 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2019
2020 for (;;)
2021 {
2022 ssize_t res = read (sigfd, si, sizeof (si));
2023
2024 /* not ISO-C, as res might be -1, but works with SuS */
2025 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2026 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2027
2028 if (res < (ssize_t)sizeof (si))
2029 break;
2030 }
2031}
2032#endif
2033
2034#endif
2035
1136/*****************************************************************************/ 2036/*****************************************************************************/
1137 2037
2038#if EV_CHILD_ENABLE
1138static WL childs [EV_PID_HASHSIZE]; 2039static WL childs [EV_PID_HASHSIZE];
1139
1140#ifndef _WIN32
1141 2040
1142static ev_signal childev; 2041static ev_signal childev;
1143 2042
1144#ifndef WIFCONTINUED 2043#ifndef WIFCONTINUED
1145# define WIFCONTINUED(status) 0 2044# define WIFCONTINUED(status) 0
1146#endif 2045#endif
1147 2046
1148void inline_speed 2047/* handle a single child status event */
2048inline_speed void
1149child_reap (EV_P_ int chain, int pid, int status) 2049child_reap (EV_P_ int chain, int pid, int status)
1150{ 2050{
1151 ev_child *w; 2051 ev_child *w;
1152 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2052 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1153 2053
1154 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2054 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1155 { 2055 {
1156 if ((w->pid == pid || !w->pid) 2056 if ((w->pid == pid || !w->pid)
1157 && (!traced || (w->flags & 1))) 2057 && (!traced || (w->flags & 1)))
1158 { 2058 {
1159 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2059 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1166 2066
1167#ifndef WCONTINUED 2067#ifndef WCONTINUED
1168# define WCONTINUED 0 2068# define WCONTINUED 0
1169#endif 2069#endif
1170 2070
2071/* called on sigchld etc., calls waitpid */
1171static void 2072static void
1172childcb (EV_P_ ev_signal *sw, int revents) 2073childcb (EV_P_ ev_signal *sw, int revents)
1173{ 2074{
1174 int pid, status; 2075 int pid, status;
1175 2076
1183 /* make sure we are called again until all children have been reaped */ 2084 /* make sure we are called again until all children have been reaped */
1184 /* we need to do it this way so that the callback gets called before we continue */ 2085 /* we need to do it this way so that the callback gets called before we continue */
1185 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2086 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1186 2087
1187 child_reap (EV_A_ pid, pid, status); 2088 child_reap (EV_A_ pid, pid, status);
1188 if (EV_PID_HASHSIZE > 1) 2089 if ((EV_PID_HASHSIZE) > 1)
1189 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2090 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1190} 2091}
1191 2092
1192#endif 2093#endif
1193 2094
1194/*****************************************************************************/ 2095/*****************************************************************************/
1195 2096
2097#if EV_USE_IOCP
2098# include "ev_iocp.c"
2099#endif
1196#if EV_USE_PORT 2100#if EV_USE_PORT
1197# include "ev_port.c" 2101# include "ev_port.c"
1198#endif 2102#endif
1199#if EV_USE_KQUEUE 2103#if EV_USE_KQUEUE
1200# include "ev_kqueue.c" 2104# include "ev_kqueue.c"
1207#endif 2111#endif
1208#if EV_USE_SELECT 2112#if EV_USE_SELECT
1209# include "ev_select.c" 2113# include "ev_select.c"
1210#endif 2114#endif
1211 2115
1212int 2116int ecb_cold
1213ev_version_major (void) 2117ev_version_major (void) EV_THROW
1214{ 2118{
1215 return EV_VERSION_MAJOR; 2119 return EV_VERSION_MAJOR;
1216} 2120}
1217 2121
1218int 2122int ecb_cold
1219ev_version_minor (void) 2123ev_version_minor (void) EV_THROW
1220{ 2124{
1221 return EV_VERSION_MINOR; 2125 return EV_VERSION_MINOR;
1222} 2126}
1223 2127
1224/* return true if we are running with elevated privileges and should ignore env variables */ 2128/* return true if we are running with elevated privileges and should ignore env variables */
1225int inline_size 2129int inline_size ecb_cold
1226enable_secure (void) 2130enable_secure (void)
1227{ 2131{
1228#ifdef _WIN32 2132#ifdef _WIN32
1229 return 0; 2133 return 0;
1230#else 2134#else
1231 return getuid () != geteuid () 2135 return getuid () != geteuid ()
1232 || getgid () != getegid (); 2136 || getgid () != getegid ();
1233#endif 2137#endif
1234} 2138}
1235 2139
1236unsigned int 2140unsigned int ecb_cold
1237ev_supported_backends (void) 2141ev_supported_backends (void) EV_THROW
1238{ 2142{
1239 unsigned int flags = 0; 2143 unsigned int flags = 0;
1240 2144
1241 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2145 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1242 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2146 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1245 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2149 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1246 2150
1247 return flags; 2151 return flags;
1248} 2152}
1249 2153
1250unsigned int 2154unsigned int ecb_cold
1251ev_recommended_backends (void) 2155ev_recommended_backends (void) EV_THROW
1252{ 2156{
1253 unsigned int flags = ev_supported_backends (); 2157 unsigned int flags = ev_supported_backends ();
1254 2158
1255#ifndef __NetBSD__ 2159#ifndef __NetBSD__
1256 /* kqueue is borked on everything but netbsd apparently */ 2160 /* kqueue is borked on everything but netbsd apparently */
1257 /* it usually doesn't work correctly on anything but sockets and pipes */ 2161 /* it usually doesn't work correctly on anything but sockets and pipes */
1258 flags &= ~EVBACKEND_KQUEUE; 2162 flags &= ~EVBACKEND_KQUEUE;
1259#endif 2163#endif
1260#ifdef __APPLE__ 2164#ifdef __APPLE__
1261 // flags &= ~EVBACKEND_KQUEUE; for documentation 2165 /* only select works correctly on that "unix-certified" platform */
1262 flags &= ~EVBACKEND_POLL; 2166 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2167 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2168#endif
2169#ifdef __FreeBSD__
2170 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1263#endif 2171#endif
1264 2172
1265 return flags; 2173 return flags;
1266} 2174}
1267 2175
2176unsigned int ecb_cold
2177ev_embeddable_backends (void) EV_THROW
2178{
2179 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2180
2181 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2182 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2183 flags &= ~EVBACKEND_EPOLL;
2184
2185 return flags;
2186}
2187
1268unsigned int 2188unsigned int
1269ev_embeddable_backends (void) 2189ev_backend (EV_P) EV_THROW
1270{ 2190{
1271 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2191 return backend;
1272
1273 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1274 /* please fix it and tell me how to detect the fix */
1275 flags &= ~EVBACKEND_EPOLL;
1276
1277 return flags;
1278} 2192}
1279 2193
2194#if EV_FEATURE_API
1280unsigned int 2195unsigned int
1281ev_backend (EV_P) 2196ev_iteration (EV_P) EV_THROW
1282{ 2197{
1283 return backend; 2198 return loop_count;
1284} 2199}
1285 2200
1286unsigned int 2201unsigned int
1287ev_loop_count (EV_P) 2202ev_depth (EV_P) EV_THROW
1288{ 2203{
1289 return loop_count; 2204 return loop_depth;
1290} 2205}
1291 2206
1292void 2207void
1293ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2208ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1294{ 2209{
1295 io_blocktime = interval; 2210 io_blocktime = interval;
1296} 2211}
1297 2212
1298void 2213void
1299ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2214ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1300{ 2215{
1301 timeout_blocktime = interval; 2216 timeout_blocktime = interval;
1302} 2217}
1303 2218
2219void
2220ev_set_userdata (EV_P_ void *data) EV_THROW
2221{
2222 userdata = data;
2223}
2224
2225void *
2226ev_userdata (EV_P) EV_THROW
2227{
2228 return userdata;
2229}
2230
2231void
2232ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2233{
2234 invoke_cb = invoke_pending_cb;
2235}
2236
2237void
2238ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2239{
2240 release_cb = release;
2241 acquire_cb = acquire;
2242}
2243#endif
2244
2245/* initialise a loop structure, must be zero-initialised */
1304static void noinline 2246static void noinline ecb_cold
1305loop_init (EV_P_ unsigned int flags) 2247loop_init (EV_P_ unsigned int flags) EV_THROW
1306{ 2248{
1307 if (!backend) 2249 if (!backend)
1308 { 2250 {
2251 origflags = flags;
2252
2253#if EV_USE_REALTIME
2254 if (!have_realtime)
2255 {
2256 struct timespec ts;
2257
2258 if (!clock_gettime (CLOCK_REALTIME, &ts))
2259 have_realtime = 1;
2260 }
2261#endif
2262
1309#if EV_USE_MONOTONIC 2263#if EV_USE_MONOTONIC
2264 if (!have_monotonic)
1310 { 2265 {
1311 struct timespec ts; 2266 struct timespec ts;
2267
1312 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2268 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1313 have_monotonic = 1; 2269 have_monotonic = 1;
1314 } 2270 }
1315#endif
1316
1317 ev_rt_now = ev_time ();
1318 mn_now = get_clock ();
1319 now_floor = mn_now;
1320 rtmn_diff = ev_rt_now - mn_now;
1321
1322 io_blocktime = 0.;
1323 timeout_blocktime = 0.;
1324 backend = 0;
1325 backend_fd = -1;
1326 gotasync = 0;
1327#if EV_USE_INOTIFY
1328 fs_fd = -2;
1329#endif 2271#endif
1330 2272
1331 /* pid check not overridable via env */ 2273 /* pid check not overridable via env */
1332#ifndef _WIN32 2274#ifndef _WIN32
1333 if (flags & EVFLAG_FORKCHECK) 2275 if (flags & EVFLAG_FORKCHECK)
1337 if (!(flags & EVFLAG_NOENV) 2279 if (!(flags & EVFLAG_NOENV)
1338 && !enable_secure () 2280 && !enable_secure ()
1339 && getenv ("LIBEV_FLAGS")) 2281 && getenv ("LIBEV_FLAGS"))
1340 flags = atoi (getenv ("LIBEV_FLAGS")); 2282 flags = atoi (getenv ("LIBEV_FLAGS"));
1341 2283
1342 if (!(flags & 0x0000ffffU)) 2284 ev_rt_now = ev_time ();
2285 mn_now = get_clock ();
2286 now_floor = mn_now;
2287 rtmn_diff = ev_rt_now - mn_now;
2288#if EV_FEATURE_API
2289 invoke_cb = ev_invoke_pending;
2290#endif
2291
2292 io_blocktime = 0.;
2293 timeout_blocktime = 0.;
2294 backend = 0;
2295 backend_fd = -1;
2296 sig_pending = 0;
2297#if EV_ASYNC_ENABLE
2298 async_pending = 0;
2299#endif
2300 pipe_write_skipped = 0;
2301 pipe_write_wanted = 0;
2302#if EV_USE_INOTIFY
2303 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2304#endif
2305#if EV_USE_SIGNALFD
2306 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2307#endif
2308
2309 if (!(flags & EVBACKEND_MASK))
1343 flags |= ev_recommended_backends (); 2310 flags |= ev_recommended_backends ();
1344 2311
2312#if EV_USE_IOCP
2313 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2314#endif
1345#if EV_USE_PORT 2315#if EV_USE_PORT
1346 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2316 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1347#endif 2317#endif
1348#if EV_USE_KQUEUE 2318#if EV_USE_KQUEUE
1349 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2319 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1356#endif 2326#endif
1357#if EV_USE_SELECT 2327#if EV_USE_SELECT
1358 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2328 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1359#endif 2329#endif
1360 2330
2331 ev_prepare_init (&pending_w, pendingcb);
2332
2333#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1361 ev_init (&pipeev, pipecb); 2334 ev_init (&pipe_w, pipecb);
1362 ev_set_priority (&pipeev, EV_MAXPRI); 2335 ev_set_priority (&pipe_w, EV_MAXPRI);
2336#endif
1363 } 2337 }
1364} 2338}
1365 2339
1366static void noinline 2340/* free up a loop structure */
2341void ecb_cold
1367loop_destroy (EV_P) 2342ev_loop_destroy (EV_P)
1368{ 2343{
1369 int i; 2344 int i;
1370 2345
2346#if EV_MULTIPLICITY
2347 /* mimic free (0) */
2348 if (!EV_A)
2349 return;
2350#endif
2351
2352#if EV_CLEANUP_ENABLE
2353 /* queue cleanup watchers (and execute them) */
2354 if (expect_false (cleanupcnt))
2355 {
2356 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2357 EV_INVOKE_PENDING;
2358 }
2359#endif
2360
2361#if EV_CHILD_ENABLE
2362 if (ev_is_active (&childev))
2363 {
2364 ev_ref (EV_A); /* child watcher */
2365 ev_signal_stop (EV_A_ &childev);
2366 }
2367#endif
2368
1371 if (ev_is_active (&pipeev)) 2369 if (ev_is_active (&pipe_w))
1372 { 2370 {
1373 ev_ref (EV_A); /* signal watcher */ 2371 /*ev_ref (EV_A);*/
1374 ev_io_stop (EV_A_ &pipeev); 2372 /*ev_io_stop (EV_A_ &pipe_w);*/
1375 2373
1376#if EV_USE_EVENTFD 2374#if EV_USE_EVENTFD
1377 if (evfd >= 0) 2375 if (evfd >= 0)
1378 close (evfd); 2376 close (evfd);
1379#endif 2377#endif
1380 2378
1381 if (evpipe [0] >= 0) 2379 if (evpipe [0] >= 0)
1382 { 2380 {
1383 close (evpipe [0]); 2381 EV_WIN32_CLOSE_FD (evpipe [0]);
1384 close (evpipe [1]); 2382 EV_WIN32_CLOSE_FD (evpipe [1]);
1385 } 2383 }
1386 } 2384 }
2385
2386#if EV_USE_SIGNALFD
2387 if (ev_is_active (&sigfd_w))
2388 close (sigfd);
2389#endif
1387 2390
1388#if EV_USE_INOTIFY 2391#if EV_USE_INOTIFY
1389 if (fs_fd >= 0) 2392 if (fs_fd >= 0)
1390 close (fs_fd); 2393 close (fs_fd);
1391#endif 2394#endif
1392 2395
1393 if (backend_fd >= 0) 2396 if (backend_fd >= 0)
1394 close (backend_fd); 2397 close (backend_fd);
1395 2398
2399#if EV_USE_IOCP
2400 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2401#endif
1396#if EV_USE_PORT 2402#if EV_USE_PORT
1397 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2403 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1398#endif 2404#endif
1399#if EV_USE_KQUEUE 2405#if EV_USE_KQUEUE
1400 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2406 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1415#if EV_IDLE_ENABLE 2421#if EV_IDLE_ENABLE
1416 array_free (idle, [i]); 2422 array_free (idle, [i]);
1417#endif 2423#endif
1418 } 2424 }
1419 2425
1420 ev_free (anfds); anfdmax = 0; 2426 ev_free (anfds); anfds = 0; anfdmax = 0;
1421 2427
1422 /* have to use the microsoft-never-gets-it-right macro */ 2428 /* have to use the microsoft-never-gets-it-right macro */
2429 array_free (rfeed, EMPTY);
1423 array_free (fdchange, EMPTY); 2430 array_free (fdchange, EMPTY);
1424 array_free (timer, EMPTY); 2431 array_free (timer, EMPTY);
1425#if EV_PERIODIC_ENABLE 2432#if EV_PERIODIC_ENABLE
1426 array_free (periodic, EMPTY); 2433 array_free (periodic, EMPTY);
1427#endif 2434#endif
1428#if EV_FORK_ENABLE 2435#if EV_FORK_ENABLE
1429 array_free (fork, EMPTY); 2436 array_free (fork, EMPTY);
1430#endif 2437#endif
2438#if EV_CLEANUP_ENABLE
2439 array_free (cleanup, EMPTY);
2440#endif
1431 array_free (prepare, EMPTY); 2441 array_free (prepare, EMPTY);
1432 array_free (check, EMPTY); 2442 array_free (check, EMPTY);
1433#if EV_ASYNC_ENABLE 2443#if EV_ASYNC_ENABLE
1434 array_free (async, EMPTY); 2444 array_free (async, EMPTY);
1435#endif 2445#endif
1436 2446
1437 backend = 0; 2447 backend = 0;
2448
2449#if EV_MULTIPLICITY
2450 if (ev_is_default_loop (EV_A))
2451#endif
2452 ev_default_loop_ptr = 0;
2453#if EV_MULTIPLICITY
2454 else
2455 ev_free (EV_A);
2456#endif
1438} 2457}
1439 2458
1440#if EV_USE_INOTIFY 2459#if EV_USE_INOTIFY
1441void inline_size infy_fork (EV_P); 2460inline_size void infy_fork (EV_P);
1442#endif 2461#endif
1443 2462
1444void inline_size 2463inline_size void
1445loop_fork (EV_P) 2464loop_fork (EV_P)
1446{ 2465{
1447#if EV_USE_PORT 2466#if EV_USE_PORT
1448 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2467 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1449#endif 2468#endif
1455#endif 2474#endif
1456#if EV_USE_INOTIFY 2475#if EV_USE_INOTIFY
1457 infy_fork (EV_A); 2476 infy_fork (EV_A);
1458#endif 2477#endif
1459 2478
1460 if (ev_is_active (&pipeev)) 2479 if (ev_is_active (&pipe_w))
1461 { 2480 {
1462 /* this "locks" the handlers against writing to the pipe */ 2481 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1463 /* while we modify the fd vars */
1464 gotsig = 1;
1465#if EV_ASYNC_ENABLE
1466 gotasync = 1;
1467#endif
1468 2482
1469 ev_ref (EV_A); 2483 ev_ref (EV_A);
1470 ev_io_stop (EV_A_ &pipeev); 2484 ev_io_stop (EV_A_ &pipe_w);
1471 2485
1472#if EV_USE_EVENTFD 2486#if EV_USE_EVENTFD
1473 if (evfd >= 0) 2487 if (evfd >= 0)
1474 close (evfd); 2488 close (evfd);
1475#endif 2489#endif
1476 2490
1477 if (evpipe [0] >= 0) 2491 if (evpipe [0] >= 0)
1478 { 2492 {
1479 close (evpipe [0]); 2493 EV_WIN32_CLOSE_FD (evpipe [0]);
1480 close (evpipe [1]); 2494 EV_WIN32_CLOSE_FD (evpipe [1]);
1481 } 2495 }
1482 2496
2497#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1483 evpipe_init (EV_A); 2498 evpipe_init (EV_A);
1484 /* now iterate over everything, in case we missed something */ 2499 /* now iterate over everything, in case we missed something */
1485 pipecb (EV_A_ &pipeev, EV_READ); 2500 pipecb (EV_A_ &pipe_w, EV_READ);
2501#endif
1486 } 2502 }
1487 2503
1488 postfork = 0; 2504 postfork = 0;
1489} 2505}
1490 2506
1491#if EV_MULTIPLICITY 2507#if EV_MULTIPLICITY
1492 2508
1493struct ev_loop * 2509struct ev_loop * ecb_cold
1494ev_loop_new (unsigned int flags) 2510ev_loop_new (unsigned int flags) EV_THROW
1495{ 2511{
1496 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2512 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1497 2513
1498 memset (loop, 0, sizeof (struct ev_loop)); 2514 memset (EV_A, 0, sizeof (struct ev_loop));
1499
1500 loop_init (EV_A_ flags); 2515 loop_init (EV_A_ flags);
1501 2516
1502 if (ev_backend (EV_A)) 2517 if (ev_backend (EV_A))
1503 return loop; 2518 return EV_A;
1504 2519
2520 ev_free (EV_A);
1505 return 0; 2521 return 0;
1506} 2522}
1507 2523
1508void 2524#endif /* multiplicity */
1509ev_loop_destroy (EV_P)
1510{
1511 loop_destroy (EV_A);
1512 ev_free (loop);
1513}
1514
1515void
1516ev_loop_fork (EV_P)
1517{
1518 postfork = 1; /* must be in line with ev_default_fork */
1519}
1520 2525
1521#if EV_VERIFY 2526#if EV_VERIFY
1522static void noinline 2527static void noinline ecb_cold
1523verify_watcher (EV_P_ W w) 2528verify_watcher (EV_P_ W w)
1524{ 2529{
1525 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 2530 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1526 2531
1527 if (w->pending) 2532 if (w->pending)
1528 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 2533 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1529} 2534}
1530 2535
1531static void noinline 2536static void noinline ecb_cold
1532verify_heap (EV_P_ ANHE *heap, int N) 2537verify_heap (EV_P_ ANHE *heap, int N)
1533{ 2538{
1534 int i; 2539 int i;
1535 2540
1536 for (i = HEAP0; i < N + HEAP0; ++i) 2541 for (i = HEAP0; i < N + HEAP0; ++i)
1537 { 2542 {
1538 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 2543 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1539 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 2544 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1540 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 2545 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1541 2546
1542 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 2547 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1543 } 2548 }
1544} 2549}
1545 2550
1546static void noinline 2551static void noinline ecb_cold
1547array_verify (EV_P_ W *ws, int cnt) 2552array_verify (EV_P_ W *ws, int cnt)
1548{ 2553{
1549 while (cnt--) 2554 while (cnt--)
1550 { 2555 {
1551 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 2556 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1552 verify_watcher (EV_A_ ws [cnt]); 2557 verify_watcher (EV_A_ ws [cnt]);
1553 } 2558 }
1554} 2559}
1555#endif 2560#endif
1556 2561
1557void 2562#if EV_FEATURE_API
1558ev_loop_verify (EV_P) 2563void ecb_cold
2564ev_verify (EV_P) EV_THROW
1559{ 2565{
1560#if EV_VERIFY 2566#if EV_VERIFY
1561 int i; 2567 int i, j;
1562 WL w; 2568 WL w, w2;
1563 2569
1564 assert (activecnt >= -1); 2570 assert (activecnt >= -1);
1565 2571
1566 assert (fdchangemax >= fdchangecnt); 2572 assert (fdchangemax >= fdchangecnt);
1567 for (i = 0; i < fdchangecnt; ++i) 2573 for (i = 0; i < fdchangecnt; ++i)
1568 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 2574 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1569 2575
1570 assert (anfdmax >= 0); 2576 assert (anfdmax >= 0);
1571 for (i = 0; i < anfdmax; ++i) 2577 for (i = j = 0; i < anfdmax; ++i)
1572 for (w = anfds [i].head; w; w = w->next) 2578 for (w = w2 = anfds [i].head; w; w = w->next)
1573 { 2579 {
1574 verify_watcher (EV_A_ (W)w); 2580 verify_watcher (EV_A_ (W)w);
2581
2582 if (++j & 1)
2583 w2 = w2->next;
2584
2585 assert (("libev: io watcher list contains a loop", w != w2));
1575 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 2586 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1576 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 2587 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1577 } 2588 }
1578 2589
1579 assert (timermax >= timercnt); 2590 assert (timermax >= timercnt);
1580 verify_heap (EV_A_ timers, timercnt); 2591 verify_heap (EV_A_ timers, timercnt);
1581 2592
1597#if EV_FORK_ENABLE 2608#if EV_FORK_ENABLE
1598 assert (forkmax >= forkcnt); 2609 assert (forkmax >= forkcnt);
1599 array_verify (EV_A_ (W *)forks, forkcnt); 2610 array_verify (EV_A_ (W *)forks, forkcnt);
1600#endif 2611#endif
1601 2612
2613#if EV_CLEANUP_ENABLE
2614 assert (cleanupmax >= cleanupcnt);
2615 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2616#endif
2617
1602#if EV_ASYNC_ENABLE 2618#if EV_ASYNC_ENABLE
1603 assert (asyncmax >= asynccnt); 2619 assert (asyncmax >= asynccnt);
1604 array_verify (EV_A_ (W *)asyncs, asynccnt); 2620 array_verify (EV_A_ (W *)asyncs, asynccnt);
1605#endif 2621#endif
1606 2622
2623#if EV_PREPARE_ENABLE
1607 assert (preparemax >= preparecnt); 2624 assert (preparemax >= preparecnt);
1608 array_verify (EV_A_ (W *)prepares, preparecnt); 2625 array_verify (EV_A_ (W *)prepares, preparecnt);
2626#endif
1609 2627
2628#if EV_CHECK_ENABLE
1610 assert (checkmax >= checkcnt); 2629 assert (checkmax >= checkcnt);
1611 array_verify (EV_A_ (W *)checks, checkcnt); 2630 array_verify (EV_A_ (W *)checks, checkcnt);
2631#endif
1612 2632
1613# if 0 2633# if 0
2634#if EV_CHILD_ENABLE
1614 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2635 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1615 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 2636 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2637#endif
1616# endif 2638# endif
1617#endif 2639#endif
1618} 2640}
1619 2641#endif
1620#endif /* multiplicity */
1621 2642
1622#if EV_MULTIPLICITY 2643#if EV_MULTIPLICITY
1623struct ev_loop * 2644struct ev_loop * ecb_cold
1624ev_default_loop_init (unsigned int flags)
1625#else 2645#else
1626int 2646int
2647#endif
1627ev_default_loop (unsigned int flags) 2648ev_default_loop (unsigned int flags) EV_THROW
1628#endif
1629{ 2649{
1630 if (!ev_default_loop_ptr) 2650 if (!ev_default_loop_ptr)
1631 { 2651 {
1632#if EV_MULTIPLICITY 2652#if EV_MULTIPLICITY
1633 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2653 EV_P = ev_default_loop_ptr = &default_loop_struct;
1634#else 2654#else
1635 ev_default_loop_ptr = 1; 2655 ev_default_loop_ptr = 1;
1636#endif 2656#endif
1637 2657
1638 loop_init (EV_A_ flags); 2658 loop_init (EV_A_ flags);
1639 2659
1640 if (ev_backend (EV_A)) 2660 if (ev_backend (EV_A))
1641 { 2661 {
1642#ifndef _WIN32 2662#if EV_CHILD_ENABLE
1643 ev_signal_init (&childev, childcb, SIGCHLD); 2663 ev_signal_init (&childev, childcb, SIGCHLD);
1644 ev_set_priority (&childev, EV_MAXPRI); 2664 ev_set_priority (&childev, EV_MAXPRI);
1645 ev_signal_start (EV_A_ &childev); 2665 ev_signal_start (EV_A_ &childev);
1646 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2666 ev_unref (EV_A); /* child watcher should not keep loop alive */
1647#endif 2667#endif
1652 2672
1653 return ev_default_loop_ptr; 2673 return ev_default_loop_ptr;
1654} 2674}
1655 2675
1656void 2676void
1657ev_default_destroy (void) 2677ev_loop_fork (EV_P) EV_THROW
1658{ 2678{
1659#if EV_MULTIPLICITY
1660 struct ev_loop *loop = ev_default_loop_ptr;
1661#endif
1662
1663#ifndef _WIN32
1664 ev_ref (EV_A); /* child watcher */
1665 ev_signal_stop (EV_A_ &childev);
1666#endif
1667
1668 loop_destroy (EV_A);
1669}
1670
1671void
1672ev_default_fork (void)
1673{
1674#if EV_MULTIPLICITY
1675 struct ev_loop *loop = ev_default_loop_ptr;
1676#endif
1677
1678 if (backend)
1679 postfork = 1; /* must be in line with ev_loop_fork */ 2679 postfork = 1; /* must be in line with ev_default_fork */
1680} 2680}
1681 2681
1682/*****************************************************************************/ 2682/*****************************************************************************/
1683 2683
1684void 2684void
1685ev_invoke (EV_P_ void *w, int revents) 2685ev_invoke (EV_P_ void *w, int revents)
1686{ 2686{
1687 EV_CB_INVOKE ((W)w, revents); 2687 EV_CB_INVOKE ((W)w, revents);
1688} 2688}
1689 2689
1690void inline_speed 2690unsigned int
1691call_pending (EV_P) 2691ev_pending_count (EV_P) EV_THROW
1692{ 2692{
1693 int pri; 2693 int pri;
2694 unsigned int count = 0;
1694 2695
1695 for (pri = NUMPRI; pri--; ) 2696 for (pri = NUMPRI; pri--; )
2697 count += pendingcnt [pri];
2698
2699 return count;
2700}
2701
2702void noinline
2703ev_invoke_pending (EV_P)
2704{
2705 for (pendingpri = NUMPRI; pendingpri--; ) /* pendingpri is modified during the loop */
1696 while (pendingcnt [pri]) 2706 while (pendingcnt [pendingpri])
1697 { 2707 {
1698 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2708 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1699 2709
1700 if (expect_true (p->w))
1701 {
1702 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1703
1704 p->w->pending = 0; 2710 p->w->pending = 0;
1705 EV_CB_INVOKE (p->w, p->events); 2711 EV_CB_INVOKE (p->w, p->events);
1706 EV_FREQUENT_CHECK; 2712 EV_FREQUENT_CHECK;
1707 }
1708 } 2713 }
1709} 2714}
1710 2715
1711#if EV_IDLE_ENABLE 2716#if EV_IDLE_ENABLE
1712void inline_size 2717/* make idle watchers pending. this handles the "call-idle */
2718/* only when higher priorities are idle" logic */
2719inline_size void
1713idle_reify (EV_P) 2720idle_reify (EV_P)
1714{ 2721{
1715 if (expect_false (idleall)) 2722 if (expect_false (idleall))
1716 { 2723 {
1717 int pri; 2724 int pri;
1729 } 2736 }
1730 } 2737 }
1731} 2738}
1732#endif 2739#endif
1733 2740
1734void inline_size 2741/* make timers pending */
2742inline_size void
1735timers_reify (EV_P) 2743timers_reify (EV_P)
1736{ 2744{
1737 EV_FREQUENT_CHECK; 2745 EV_FREQUENT_CHECK;
1738 2746
1739 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2747 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1740 { 2748 {
1741 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2749 do
1742
1743 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1744
1745 /* first reschedule or stop timer */
1746 if (w->repeat)
1747 { 2750 {
2751 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2752
2753 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2754
2755 /* first reschedule or stop timer */
2756 if (w->repeat)
2757 {
1748 ev_at (w) += w->repeat; 2758 ev_at (w) += w->repeat;
1749 if (ev_at (w) < mn_now) 2759 if (ev_at (w) < mn_now)
1750 ev_at (w) = mn_now; 2760 ev_at (w) = mn_now;
1751 2761
1752 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2762 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1753 2763
1754 ANHE_at_cache (timers [HEAP0]); 2764 ANHE_at_cache (timers [HEAP0]);
1755 downheap (timers, timercnt, HEAP0); 2765 downheap (timers, timercnt, HEAP0);
2766 }
2767 else
2768 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2769
2770 EV_FREQUENT_CHECK;
2771 feed_reverse (EV_A_ (W)w);
1756 } 2772 }
1757 else 2773 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1758 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1759 2774
1760 EV_FREQUENT_CHECK; 2775 feed_reverse_done (EV_A_ EV_TIMER);
1761 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1762 } 2776 }
1763} 2777}
1764 2778
1765#if EV_PERIODIC_ENABLE 2779#if EV_PERIODIC_ENABLE
1766void inline_size 2780
2781static void noinline
2782periodic_recalc (EV_P_ ev_periodic *w)
2783{
2784 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2785 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2786
2787 /* the above almost always errs on the low side */
2788 while (at <= ev_rt_now)
2789 {
2790 ev_tstamp nat = at + w->interval;
2791
2792 /* when resolution fails us, we use ev_rt_now */
2793 if (expect_false (nat == at))
2794 {
2795 at = ev_rt_now;
2796 break;
2797 }
2798
2799 at = nat;
2800 }
2801
2802 ev_at (w) = at;
2803}
2804
2805/* make periodics pending */
2806inline_size void
1767periodics_reify (EV_P) 2807periodics_reify (EV_P)
1768{ 2808{
1769 EV_FREQUENT_CHECK; 2809 EV_FREQUENT_CHECK;
1770 2810
1771 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2811 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1772 { 2812 {
1773 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2813 int feed_count = 0;
1774 2814
1775 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2815 do
1776
1777 /* first reschedule or stop timer */
1778 if (w->reschedule_cb)
1779 { 2816 {
2817 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2818
2819 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2820
2821 /* first reschedule or stop timer */
2822 if (w->reschedule_cb)
2823 {
1780 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2824 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1781 2825
1782 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2826 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1783 2827
1784 ANHE_at_cache (periodics [HEAP0]); 2828 ANHE_at_cache (periodics [HEAP0]);
1785 downheap (periodics, periodiccnt, HEAP0); 2829 downheap (periodics, periodiccnt, HEAP0);
2830 }
2831 else if (w->interval)
2832 {
2833 periodic_recalc (EV_A_ w);
2834 ANHE_at_cache (periodics [HEAP0]);
2835 downheap (periodics, periodiccnt, HEAP0);
2836 }
2837 else
2838 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2839
2840 EV_FREQUENT_CHECK;
2841 feed_reverse (EV_A_ (W)w);
1786 } 2842 }
1787 else if (w->interval) 2843 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1788 {
1789 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1790 /* if next trigger time is not sufficiently in the future, put it there */
1791 /* this might happen because of floating point inexactness */
1792 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1793 {
1794 ev_at (w) += w->interval;
1795 2844
1796 /* if interval is unreasonably low we might still have a time in the past */
1797 /* so correct this. this will make the periodic very inexact, but the user */
1798 /* has effectively asked to get triggered more often than possible */
1799 if (ev_at (w) < ev_rt_now)
1800 ev_at (w) = ev_rt_now;
1801 }
1802
1803 ANHE_at_cache (periodics [HEAP0]);
1804 downheap (periodics, periodiccnt, HEAP0);
1805 }
1806 else
1807 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1808
1809 EV_FREQUENT_CHECK;
1810 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2845 feed_reverse_done (EV_A_ EV_PERIODIC);
1811 } 2846 }
1812} 2847}
1813 2848
2849/* simply recalculate all periodics */
2850/* TODO: maybe ensure that at least one event happens when jumping forward? */
1814static void noinline 2851static void noinline ecb_cold
1815periodics_reschedule (EV_P) 2852periodics_reschedule (EV_P)
1816{ 2853{
1817 int i; 2854 int i;
1818 2855
1819 /* adjust periodics after time jump */ 2856 /* adjust periodics after time jump */
1822 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 2859 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1823 2860
1824 if (w->reschedule_cb) 2861 if (w->reschedule_cb)
1825 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2862 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1826 else if (w->interval) 2863 else if (w->interval)
1827 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2864 periodic_recalc (EV_A_ w);
1828 2865
1829 ANHE_at_cache (periodics [i]); 2866 ANHE_at_cache (periodics [i]);
1830 } 2867 }
1831 2868
1832 reheap (periodics, periodiccnt); 2869 reheap (periodics, periodiccnt);
1833} 2870}
1834#endif 2871#endif
1835 2872
1836void inline_speed 2873/* adjust all timers by a given offset */
2874static void noinline ecb_cold
2875timers_reschedule (EV_P_ ev_tstamp adjust)
2876{
2877 int i;
2878
2879 for (i = 0; i < timercnt; ++i)
2880 {
2881 ANHE *he = timers + i + HEAP0;
2882 ANHE_w (*he)->at += adjust;
2883 ANHE_at_cache (*he);
2884 }
2885}
2886
2887/* fetch new monotonic and realtime times from the kernel */
2888/* also detect if there was a timejump, and act accordingly */
2889inline_speed void
1837time_update (EV_P_ ev_tstamp max_block) 2890time_update (EV_P_ ev_tstamp max_block)
1838{ 2891{
1839 int i;
1840
1841#if EV_USE_MONOTONIC 2892#if EV_USE_MONOTONIC
1842 if (expect_true (have_monotonic)) 2893 if (expect_true (have_monotonic))
1843 { 2894 {
2895 int i;
1844 ev_tstamp odiff = rtmn_diff; 2896 ev_tstamp odiff = rtmn_diff;
1845 2897
1846 mn_now = get_clock (); 2898 mn_now = get_clock ();
1847 2899
1848 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2900 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1864 * doesn't hurt either as we only do this on time-jumps or 2916 * doesn't hurt either as we only do this on time-jumps or
1865 * in the unlikely event of having been preempted here. 2917 * in the unlikely event of having been preempted here.
1866 */ 2918 */
1867 for (i = 4; --i; ) 2919 for (i = 4; --i; )
1868 { 2920 {
2921 ev_tstamp diff;
1869 rtmn_diff = ev_rt_now - mn_now; 2922 rtmn_diff = ev_rt_now - mn_now;
1870 2923
2924 diff = odiff - rtmn_diff;
2925
1871 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 2926 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1872 return; /* all is well */ 2927 return; /* all is well */
1873 2928
1874 ev_rt_now = ev_time (); 2929 ev_rt_now = ev_time ();
1875 mn_now = get_clock (); 2930 mn_now = get_clock ();
1876 now_floor = mn_now; 2931 now_floor = mn_now;
1877 } 2932 }
1878 2933
2934 /* no timer adjustment, as the monotonic clock doesn't jump */
2935 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1879# if EV_PERIODIC_ENABLE 2936# if EV_PERIODIC_ENABLE
1880 periodics_reschedule (EV_A); 2937 periodics_reschedule (EV_A);
1881# endif 2938# endif
1882 /* no timer adjustment, as the monotonic clock doesn't jump */
1883 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1884 } 2939 }
1885 else 2940 else
1886#endif 2941#endif
1887 { 2942 {
1888 ev_rt_now = ev_time (); 2943 ev_rt_now = ev_time ();
1889 2944
1890 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2945 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1891 { 2946 {
2947 /* adjust timers. this is easy, as the offset is the same for all of them */
2948 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1892#if EV_PERIODIC_ENABLE 2949#if EV_PERIODIC_ENABLE
1893 periodics_reschedule (EV_A); 2950 periodics_reschedule (EV_A);
1894#endif 2951#endif
1895 /* adjust timers. this is easy, as the offset is the same for all of them */
1896 for (i = 0; i < timercnt; ++i)
1897 {
1898 ANHE *he = timers + i + HEAP0;
1899 ANHE_w (*he)->at += ev_rt_now - mn_now;
1900 ANHE_at_cache (*he);
1901 }
1902 } 2952 }
1903 2953
1904 mn_now = ev_rt_now; 2954 mn_now = ev_rt_now;
1905 } 2955 }
1906} 2956}
1907 2957
1908void 2958int
1909ev_ref (EV_P)
1910{
1911 ++activecnt;
1912}
1913
1914void
1915ev_unref (EV_P)
1916{
1917 --activecnt;
1918}
1919
1920void
1921ev_now_update (EV_P)
1922{
1923 time_update (EV_A_ 1e100);
1924}
1925
1926static int loop_done;
1927
1928void
1929ev_loop (EV_P_ int flags) 2959ev_run (EV_P_ int flags)
1930{ 2960{
2961#if EV_FEATURE_API
2962 ++loop_depth;
2963#endif
2964
2965 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2966
1931 loop_done = EVUNLOOP_CANCEL; 2967 loop_done = EVBREAK_CANCEL;
1932 2968
1933 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2969 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1934 2970
1935 do 2971 do
1936 { 2972 {
1937#if EV_VERIFY >= 2 2973#if EV_VERIFY >= 2
1938 ev_loop_verify (EV_A); 2974 ev_verify (EV_A);
1939#endif 2975#endif
1940 2976
1941#ifndef _WIN32 2977#ifndef _WIN32
1942 if (expect_false (curpid)) /* penalise the forking check even more */ 2978 if (expect_false (curpid)) /* penalise the forking check even more */
1943 if (expect_false (getpid () != curpid)) 2979 if (expect_false (getpid () != curpid))
1951 /* we might have forked, so queue fork handlers */ 2987 /* we might have forked, so queue fork handlers */
1952 if (expect_false (postfork)) 2988 if (expect_false (postfork))
1953 if (forkcnt) 2989 if (forkcnt)
1954 { 2990 {
1955 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2991 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1956 call_pending (EV_A); 2992 EV_INVOKE_PENDING;
1957 } 2993 }
1958#endif 2994#endif
1959 2995
2996#if EV_PREPARE_ENABLE
1960 /* queue prepare watchers (and execute them) */ 2997 /* queue prepare watchers (and execute them) */
1961 if (expect_false (preparecnt)) 2998 if (expect_false (preparecnt))
1962 { 2999 {
1963 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3000 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1964 call_pending (EV_A); 3001 EV_INVOKE_PENDING;
1965 } 3002 }
3003#endif
1966 3004
1967 if (expect_false (!activecnt)) 3005 if (expect_false (loop_done))
1968 break; 3006 break;
1969 3007
1970 /* we might have forked, so reify kernel state if necessary */ 3008 /* we might have forked, so reify kernel state if necessary */
1971 if (expect_false (postfork)) 3009 if (expect_false (postfork))
1972 loop_fork (EV_A); 3010 loop_fork (EV_A);
1977 /* calculate blocking time */ 3015 /* calculate blocking time */
1978 { 3016 {
1979 ev_tstamp waittime = 0.; 3017 ev_tstamp waittime = 0.;
1980 ev_tstamp sleeptime = 0.; 3018 ev_tstamp sleeptime = 0.;
1981 3019
3020 /* remember old timestamp for io_blocktime calculation */
3021 ev_tstamp prev_mn_now = mn_now;
3022
3023 /* update time to cancel out callback processing overhead */
3024 time_update (EV_A_ 1e100);
3025
3026 /* from now on, we want a pipe-wake-up */
3027 pipe_write_wanted = 1;
3028
3029 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3030
1982 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3031 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1983 { 3032 {
1984 /* update time to cancel out callback processing overhead */
1985 time_update (EV_A_ 1e100);
1986
1987 waittime = MAX_BLOCKTIME; 3033 waittime = MAX_BLOCKTIME;
1988 3034
1989 if (timercnt) 3035 if (timercnt)
1990 { 3036 {
1991 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3037 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1992 if (waittime > to) waittime = to; 3038 if (waittime > to) waittime = to;
1993 } 3039 }
1994 3040
1995#if EV_PERIODIC_ENABLE 3041#if EV_PERIODIC_ENABLE
1996 if (periodiccnt) 3042 if (periodiccnt)
1997 { 3043 {
1998 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3044 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1999 if (waittime > to) waittime = to; 3045 if (waittime > to) waittime = to;
2000 } 3046 }
2001#endif 3047#endif
2002 3048
3049 /* don't let timeouts decrease the waittime below timeout_blocktime */
2003 if (expect_false (waittime < timeout_blocktime)) 3050 if (expect_false (waittime < timeout_blocktime))
2004 waittime = timeout_blocktime; 3051 waittime = timeout_blocktime;
2005 3052
2006 sleeptime = waittime - backend_fudge; 3053 /* at this point, we NEED to wait, so we have to ensure */
3054 /* to pass a minimum nonzero value to the backend */
3055 if (expect_false (waittime < backend_mintime))
3056 waittime = backend_mintime;
2007 3057
3058 /* extra check because io_blocktime is commonly 0 */
2008 if (expect_true (sleeptime > io_blocktime)) 3059 if (expect_false (io_blocktime))
2009 sleeptime = io_blocktime;
2010
2011 if (sleeptime)
2012 { 3060 {
3061 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3062
3063 if (sleeptime > waittime - backend_mintime)
3064 sleeptime = waittime - backend_mintime;
3065
3066 if (expect_true (sleeptime > 0.))
3067 {
2013 ev_sleep (sleeptime); 3068 ev_sleep (sleeptime);
2014 waittime -= sleeptime; 3069 waittime -= sleeptime;
3070 }
2015 } 3071 }
2016 } 3072 }
2017 3073
3074#if EV_FEATURE_API
2018 ++loop_count; 3075 ++loop_count;
3076#endif
3077 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2019 backend_poll (EV_A_ waittime); 3078 backend_poll (EV_A_ waittime);
3079 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3080
3081 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3082
3083 if (pipe_write_skipped)
3084 {
3085 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3086 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3087 }
3088
2020 3089
2021 /* update ev_rt_now, do magic */ 3090 /* update ev_rt_now, do magic */
2022 time_update (EV_A_ waittime + sleeptime); 3091 time_update (EV_A_ waittime + sleeptime);
2023 } 3092 }
2024 3093
2031#if EV_IDLE_ENABLE 3100#if EV_IDLE_ENABLE
2032 /* queue idle watchers unless other events are pending */ 3101 /* queue idle watchers unless other events are pending */
2033 idle_reify (EV_A); 3102 idle_reify (EV_A);
2034#endif 3103#endif
2035 3104
3105#if EV_CHECK_ENABLE
2036 /* queue check watchers, to be executed first */ 3106 /* queue check watchers, to be executed first */
2037 if (expect_false (checkcnt)) 3107 if (expect_false (checkcnt))
2038 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3108 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3109#endif
2039 3110
2040 call_pending (EV_A); 3111 EV_INVOKE_PENDING;
2041 } 3112 }
2042 while (expect_true ( 3113 while (expect_true (
2043 activecnt 3114 activecnt
2044 && !loop_done 3115 && !loop_done
2045 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3116 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2046 )); 3117 ));
2047 3118
2048 if (loop_done == EVUNLOOP_ONE) 3119 if (loop_done == EVBREAK_ONE)
2049 loop_done = EVUNLOOP_CANCEL; 3120 loop_done = EVBREAK_CANCEL;
3121
3122#if EV_FEATURE_API
3123 --loop_depth;
3124#endif
3125
3126 return activecnt;
2050} 3127}
2051 3128
2052void 3129void
2053ev_unloop (EV_P_ int how) 3130ev_break (EV_P_ int how) EV_THROW
2054{ 3131{
2055 loop_done = how; 3132 loop_done = how;
2056} 3133}
2057 3134
3135void
3136ev_ref (EV_P) EV_THROW
3137{
3138 ++activecnt;
3139}
3140
3141void
3142ev_unref (EV_P) EV_THROW
3143{
3144 --activecnt;
3145}
3146
3147void
3148ev_now_update (EV_P) EV_THROW
3149{
3150 time_update (EV_A_ 1e100);
3151}
3152
3153void
3154ev_suspend (EV_P) EV_THROW
3155{
3156 ev_now_update (EV_A);
3157}
3158
3159void
3160ev_resume (EV_P) EV_THROW
3161{
3162 ev_tstamp mn_prev = mn_now;
3163
3164 ev_now_update (EV_A);
3165 timers_reschedule (EV_A_ mn_now - mn_prev);
3166#if EV_PERIODIC_ENABLE
3167 /* TODO: really do this? */
3168 periodics_reschedule (EV_A);
3169#endif
3170}
3171
2058/*****************************************************************************/ 3172/*****************************************************************************/
3173/* singly-linked list management, used when the expected list length is short */
2059 3174
2060void inline_size 3175inline_size void
2061wlist_add (WL *head, WL elem) 3176wlist_add (WL *head, WL elem)
2062{ 3177{
2063 elem->next = *head; 3178 elem->next = *head;
2064 *head = elem; 3179 *head = elem;
2065} 3180}
2066 3181
2067void inline_size 3182inline_size void
2068wlist_del (WL *head, WL elem) 3183wlist_del (WL *head, WL elem)
2069{ 3184{
2070 while (*head) 3185 while (*head)
2071 { 3186 {
2072 if (*head == elem) 3187 if (expect_true (*head == elem))
2073 { 3188 {
2074 *head = elem->next; 3189 *head = elem->next;
2075 return; 3190 break;
2076 } 3191 }
2077 3192
2078 head = &(*head)->next; 3193 head = &(*head)->next;
2079 } 3194 }
2080} 3195}
2081 3196
2082void inline_speed 3197/* internal, faster, version of ev_clear_pending */
3198inline_speed void
2083clear_pending (EV_P_ W w) 3199clear_pending (EV_P_ W w)
2084{ 3200{
2085 if (w->pending) 3201 if (w->pending)
2086 { 3202 {
2087 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3203 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2088 w->pending = 0; 3204 w->pending = 0;
2089 } 3205 }
2090} 3206}
2091 3207
2092int 3208int
2093ev_clear_pending (EV_P_ void *w) 3209ev_clear_pending (EV_P_ void *w) EV_THROW
2094{ 3210{
2095 W w_ = (W)w; 3211 W w_ = (W)w;
2096 int pending = w_->pending; 3212 int pending = w_->pending;
2097 3213
2098 if (expect_true (pending)) 3214 if (expect_true (pending))
2099 { 3215 {
2100 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3216 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3217 p->w = (W)&pending_w;
2101 w_->pending = 0; 3218 w_->pending = 0;
2102 p->w = 0;
2103 return p->events; 3219 return p->events;
2104 } 3220 }
2105 else 3221 else
2106 return 0; 3222 return 0;
2107} 3223}
2108 3224
2109void inline_size 3225inline_size void
2110pri_adjust (EV_P_ W w) 3226pri_adjust (EV_P_ W w)
2111{ 3227{
2112 int pri = w->priority; 3228 int pri = ev_priority (w);
2113 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3229 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2114 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3230 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2115 w->priority = pri; 3231 ev_set_priority (w, pri);
2116} 3232}
2117 3233
2118void inline_speed 3234inline_speed void
2119ev_start (EV_P_ W w, int active) 3235ev_start (EV_P_ W w, int active)
2120{ 3236{
2121 pri_adjust (EV_A_ w); 3237 pri_adjust (EV_A_ w);
2122 w->active = active; 3238 w->active = active;
2123 ev_ref (EV_A); 3239 ev_ref (EV_A);
2124} 3240}
2125 3241
2126void inline_size 3242inline_size void
2127ev_stop (EV_P_ W w) 3243ev_stop (EV_P_ W w)
2128{ 3244{
2129 ev_unref (EV_A); 3245 ev_unref (EV_A);
2130 w->active = 0; 3246 w->active = 0;
2131} 3247}
2132 3248
2133/*****************************************************************************/ 3249/*****************************************************************************/
2134 3250
2135void noinline 3251void noinline
2136ev_io_start (EV_P_ ev_io *w) 3252ev_io_start (EV_P_ ev_io *w) EV_THROW
2137{ 3253{
2138 int fd = w->fd; 3254 int fd = w->fd;
2139 3255
2140 if (expect_false (ev_is_active (w))) 3256 if (expect_false (ev_is_active (w)))
2141 return; 3257 return;
2142 3258
2143 assert (("ev_io_start called with negative fd", fd >= 0)); 3259 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3260 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2144 3261
2145 EV_FREQUENT_CHECK; 3262 EV_FREQUENT_CHECK;
2146 3263
2147 ev_start (EV_A_ (W)w, 1); 3264 ev_start (EV_A_ (W)w, 1);
2148 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2149 wlist_add (&anfds[fd].head, (WL)w); 3266 wlist_add (&anfds[fd].head, (WL)w);
2150 3267
3268 /* common bug, apparently */
3269 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3270
2151 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3271 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2152 w->events &= ~EV_IOFDSET; 3272 w->events &= ~EV__IOFDSET;
2153 3273
2154 EV_FREQUENT_CHECK; 3274 EV_FREQUENT_CHECK;
2155} 3275}
2156 3276
2157void noinline 3277void noinline
2158ev_io_stop (EV_P_ ev_io *w) 3278ev_io_stop (EV_P_ ev_io *w) EV_THROW
2159{ 3279{
2160 clear_pending (EV_A_ (W)w); 3280 clear_pending (EV_A_ (W)w);
2161 if (expect_false (!ev_is_active (w))) 3281 if (expect_false (!ev_is_active (w)))
2162 return; 3282 return;
2163 3283
2164 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3284 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2165 3285
2166 EV_FREQUENT_CHECK; 3286 EV_FREQUENT_CHECK;
2167 3287
2168 wlist_del (&anfds[w->fd].head, (WL)w); 3288 wlist_del (&anfds[w->fd].head, (WL)w);
2169 ev_stop (EV_A_ (W)w); 3289 ev_stop (EV_A_ (W)w);
2170 3290
2171 fd_change (EV_A_ w->fd, 1); 3291 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2172 3292
2173 EV_FREQUENT_CHECK; 3293 EV_FREQUENT_CHECK;
2174} 3294}
2175 3295
2176void noinline 3296void noinline
2177ev_timer_start (EV_P_ ev_timer *w) 3297ev_timer_start (EV_P_ ev_timer *w) EV_THROW
2178{ 3298{
2179 if (expect_false (ev_is_active (w))) 3299 if (expect_false (ev_is_active (w)))
2180 return; 3300 return;
2181 3301
2182 ev_at (w) += mn_now; 3302 ev_at (w) += mn_now;
2183 3303
2184 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3304 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2185 3305
2186 EV_FREQUENT_CHECK; 3306 EV_FREQUENT_CHECK;
2187 3307
2188 ++timercnt; 3308 ++timercnt;
2189 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 3309 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2192 ANHE_at_cache (timers [ev_active (w)]); 3312 ANHE_at_cache (timers [ev_active (w)]);
2193 upheap (timers, ev_active (w)); 3313 upheap (timers, ev_active (w));
2194 3314
2195 EV_FREQUENT_CHECK; 3315 EV_FREQUENT_CHECK;
2196 3316
2197 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3317 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2198} 3318}
2199 3319
2200void noinline 3320void noinline
2201ev_timer_stop (EV_P_ ev_timer *w) 3321ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
2202{ 3322{
2203 clear_pending (EV_A_ (W)w); 3323 clear_pending (EV_A_ (W)w);
2204 if (expect_false (!ev_is_active (w))) 3324 if (expect_false (!ev_is_active (w)))
2205 return; 3325 return;
2206 3326
2207 EV_FREQUENT_CHECK; 3327 EV_FREQUENT_CHECK;
2208 3328
2209 { 3329 {
2210 int active = ev_active (w); 3330 int active = ev_active (w);
2211 3331
2212 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 3332 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2213 3333
2214 --timercnt; 3334 --timercnt;
2215 3335
2216 if (expect_true (active < timercnt + HEAP0)) 3336 if (expect_true (active < timercnt + HEAP0))
2217 { 3337 {
2218 timers [active] = timers [timercnt + HEAP0]; 3338 timers [active] = timers [timercnt + HEAP0];
2219 adjustheap (timers, timercnt, active); 3339 adjustheap (timers, timercnt, active);
2220 } 3340 }
2221 } 3341 }
2222 3342
2223 EV_FREQUENT_CHECK;
2224
2225 ev_at (w) -= mn_now; 3343 ev_at (w) -= mn_now;
2226 3344
2227 ev_stop (EV_A_ (W)w); 3345 ev_stop (EV_A_ (W)w);
3346
3347 EV_FREQUENT_CHECK;
2228} 3348}
2229 3349
2230void noinline 3350void noinline
2231ev_timer_again (EV_P_ ev_timer *w) 3351ev_timer_again (EV_P_ ev_timer *w) EV_THROW
2232{ 3352{
2233 EV_FREQUENT_CHECK; 3353 EV_FREQUENT_CHECK;
3354
3355 clear_pending (EV_A_ (W)w);
2234 3356
2235 if (ev_is_active (w)) 3357 if (ev_is_active (w))
2236 { 3358 {
2237 if (w->repeat) 3359 if (w->repeat)
2238 { 3360 {
2250 } 3372 }
2251 3373
2252 EV_FREQUENT_CHECK; 3374 EV_FREQUENT_CHECK;
2253} 3375}
2254 3376
3377ev_tstamp
3378ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3379{
3380 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3381}
3382
2255#if EV_PERIODIC_ENABLE 3383#if EV_PERIODIC_ENABLE
2256void noinline 3384void noinline
2257ev_periodic_start (EV_P_ ev_periodic *w) 3385ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
2258{ 3386{
2259 if (expect_false (ev_is_active (w))) 3387 if (expect_false (ev_is_active (w)))
2260 return; 3388 return;
2261 3389
2262 if (w->reschedule_cb) 3390 if (w->reschedule_cb)
2263 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3391 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2264 else if (w->interval) 3392 else if (w->interval)
2265 { 3393 {
2266 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3394 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2267 /* this formula differs from the one in periodic_reify because we do not always round up */ 3395 periodic_recalc (EV_A_ w);
2268 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2269 } 3396 }
2270 else 3397 else
2271 ev_at (w) = w->offset; 3398 ev_at (w) = w->offset;
2272 3399
2273 EV_FREQUENT_CHECK; 3400 EV_FREQUENT_CHECK;
2279 ANHE_at_cache (periodics [ev_active (w)]); 3406 ANHE_at_cache (periodics [ev_active (w)]);
2280 upheap (periodics, ev_active (w)); 3407 upheap (periodics, ev_active (w));
2281 3408
2282 EV_FREQUENT_CHECK; 3409 EV_FREQUENT_CHECK;
2283 3410
2284 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 3411 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2285} 3412}
2286 3413
2287void noinline 3414void noinline
2288ev_periodic_stop (EV_P_ ev_periodic *w) 3415ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
2289{ 3416{
2290 clear_pending (EV_A_ (W)w); 3417 clear_pending (EV_A_ (W)w);
2291 if (expect_false (!ev_is_active (w))) 3418 if (expect_false (!ev_is_active (w)))
2292 return; 3419 return;
2293 3420
2294 EV_FREQUENT_CHECK; 3421 EV_FREQUENT_CHECK;
2295 3422
2296 { 3423 {
2297 int active = ev_active (w); 3424 int active = ev_active (w);
2298 3425
2299 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 3426 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2300 3427
2301 --periodiccnt; 3428 --periodiccnt;
2302 3429
2303 if (expect_true (active < periodiccnt + HEAP0)) 3430 if (expect_true (active < periodiccnt + HEAP0))
2304 { 3431 {
2305 periodics [active] = periodics [periodiccnt + HEAP0]; 3432 periodics [active] = periodics [periodiccnt + HEAP0];
2306 adjustheap (periodics, periodiccnt, active); 3433 adjustheap (periodics, periodiccnt, active);
2307 } 3434 }
2308 } 3435 }
2309 3436
2310 EV_FREQUENT_CHECK;
2311
2312 ev_stop (EV_A_ (W)w); 3437 ev_stop (EV_A_ (W)w);
3438
3439 EV_FREQUENT_CHECK;
2313} 3440}
2314 3441
2315void noinline 3442void noinline
2316ev_periodic_again (EV_P_ ev_periodic *w) 3443ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
2317{ 3444{
2318 /* TODO: use adjustheap and recalculation */ 3445 /* TODO: use adjustheap and recalculation */
2319 ev_periodic_stop (EV_A_ w); 3446 ev_periodic_stop (EV_A_ w);
2320 ev_periodic_start (EV_A_ w); 3447 ev_periodic_start (EV_A_ w);
2321} 3448}
2323 3450
2324#ifndef SA_RESTART 3451#ifndef SA_RESTART
2325# define SA_RESTART 0 3452# define SA_RESTART 0
2326#endif 3453#endif
2327 3454
3455#if EV_SIGNAL_ENABLE
3456
2328void noinline 3457void noinline
2329ev_signal_start (EV_P_ ev_signal *w) 3458ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2330{ 3459{
2331#if EV_MULTIPLICITY
2332 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2333#endif
2334 if (expect_false (ev_is_active (w))) 3460 if (expect_false (ev_is_active (w)))
2335 return; 3461 return;
2336 3462
2337 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3463 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2338 3464
2339 evpipe_init (EV_A); 3465#if EV_MULTIPLICITY
3466 assert (("libev: a signal must not be attached to two different loops",
3467 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2340 3468
2341 EV_FREQUENT_CHECK; 3469 signals [w->signum - 1].loop = EV_A;
3470#endif
2342 3471
3472 EV_FREQUENT_CHECK;
3473
3474#if EV_USE_SIGNALFD
3475 if (sigfd == -2)
2343 { 3476 {
2344#ifndef _WIN32 3477 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2345 sigset_t full, prev; 3478 if (sigfd < 0 && errno == EINVAL)
2346 sigfillset (&full); 3479 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2347 sigprocmask (SIG_SETMASK, &full, &prev);
2348#endif
2349 3480
2350 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3481 if (sigfd >= 0)
3482 {
3483 fd_intern (sigfd); /* doing it twice will not hurt */
2351 3484
2352#ifndef _WIN32 3485 sigemptyset (&sigfd_set);
2353 sigprocmask (SIG_SETMASK, &prev, 0); 3486
2354#endif 3487 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3488 ev_set_priority (&sigfd_w, EV_MAXPRI);
3489 ev_io_start (EV_A_ &sigfd_w);
3490 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3491 }
2355 } 3492 }
3493
3494 if (sigfd >= 0)
3495 {
3496 /* TODO: check .head */
3497 sigaddset (&sigfd_set, w->signum);
3498 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3499
3500 signalfd (sigfd, &sigfd_set, 0);
3501 }
3502#endif
2356 3503
2357 ev_start (EV_A_ (W)w, 1); 3504 ev_start (EV_A_ (W)w, 1);
2358 wlist_add (&signals [w->signum - 1].head, (WL)w); 3505 wlist_add (&signals [w->signum - 1].head, (WL)w);
2359 3506
2360 if (!((WL)w)->next) 3507 if (!((WL)w)->next)
3508# if EV_USE_SIGNALFD
3509 if (sigfd < 0) /*TODO*/
3510# endif
2361 { 3511 {
2362#if _WIN32 3512# ifdef _WIN32
3513 evpipe_init (EV_A);
3514
2363 signal (w->signum, ev_sighandler); 3515 signal (w->signum, ev_sighandler);
2364#else 3516# else
2365 struct sigaction sa; 3517 struct sigaction sa;
3518
3519 evpipe_init (EV_A);
3520
2366 sa.sa_handler = ev_sighandler; 3521 sa.sa_handler = ev_sighandler;
2367 sigfillset (&sa.sa_mask); 3522 sigfillset (&sa.sa_mask);
2368 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3523 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2369 sigaction (w->signum, &sa, 0); 3524 sigaction (w->signum, &sa, 0);
3525
3526 if (origflags & EVFLAG_NOSIGMASK)
3527 {
3528 sigemptyset (&sa.sa_mask);
3529 sigaddset (&sa.sa_mask, w->signum);
3530 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3531 }
2370#endif 3532#endif
2371 } 3533 }
2372 3534
2373 EV_FREQUENT_CHECK; 3535 EV_FREQUENT_CHECK;
2374} 3536}
2375 3537
2376void noinline 3538void noinline
2377ev_signal_stop (EV_P_ ev_signal *w) 3539ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2378{ 3540{
2379 clear_pending (EV_A_ (W)w); 3541 clear_pending (EV_A_ (W)w);
2380 if (expect_false (!ev_is_active (w))) 3542 if (expect_false (!ev_is_active (w)))
2381 return; 3543 return;
2382 3544
2384 3546
2385 wlist_del (&signals [w->signum - 1].head, (WL)w); 3547 wlist_del (&signals [w->signum - 1].head, (WL)w);
2386 ev_stop (EV_A_ (W)w); 3548 ev_stop (EV_A_ (W)w);
2387 3549
2388 if (!signals [w->signum - 1].head) 3550 if (!signals [w->signum - 1].head)
3551 {
3552#if EV_MULTIPLICITY
3553 signals [w->signum - 1].loop = 0; /* unattach from signal */
3554#endif
3555#if EV_USE_SIGNALFD
3556 if (sigfd >= 0)
3557 {
3558 sigset_t ss;
3559
3560 sigemptyset (&ss);
3561 sigaddset (&ss, w->signum);
3562 sigdelset (&sigfd_set, w->signum);
3563
3564 signalfd (sigfd, &sigfd_set, 0);
3565 sigprocmask (SIG_UNBLOCK, &ss, 0);
3566 }
3567 else
3568#endif
2389 signal (w->signum, SIG_DFL); 3569 signal (w->signum, SIG_DFL);
3570 }
2390 3571
2391 EV_FREQUENT_CHECK; 3572 EV_FREQUENT_CHECK;
2392} 3573}
3574
3575#endif
3576
3577#if EV_CHILD_ENABLE
2393 3578
2394void 3579void
2395ev_child_start (EV_P_ ev_child *w) 3580ev_child_start (EV_P_ ev_child *w) EV_THROW
2396{ 3581{
2397#if EV_MULTIPLICITY 3582#if EV_MULTIPLICITY
2398 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3583 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2399#endif 3584#endif
2400 if (expect_false (ev_is_active (w))) 3585 if (expect_false (ev_is_active (w)))
2401 return; 3586 return;
2402 3587
2403 EV_FREQUENT_CHECK; 3588 EV_FREQUENT_CHECK;
2404 3589
2405 ev_start (EV_A_ (W)w, 1); 3590 ev_start (EV_A_ (W)w, 1);
2406 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3591 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2407 3592
2408 EV_FREQUENT_CHECK; 3593 EV_FREQUENT_CHECK;
2409} 3594}
2410 3595
2411void 3596void
2412ev_child_stop (EV_P_ ev_child *w) 3597ev_child_stop (EV_P_ ev_child *w) EV_THROW
2413{ 3598{
2414 clear_pending (EV_A_ (W)w); 3599 clear_pending (EV_A_ (W)w);
2415 if (expect_false (!ev_is_active (w))) 3600 if (expect_false (!ev_is_active (w)))
2416 return; 3601 return;
2417 3602
2418 EV_FREQUENT_CHECK; 3603 EV_FREQUENT_CHECK;
2419 3604
2420 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3605 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2421 ev_stop (EV_A_ (W)w); 3606 ev_stop (EV_A_ (W)w);
2422 3607
2423 EV_FREQUENT_CHECK; 3608 EV_FREQUENT_CHECK;
2424} 3609}
3610
3611#endif
2425 3612
2426#if EV_STAT_ENABLE 3613#if EV_STAT_ENABLE
2427 3614
2428# ifdef _WIN32 3615# ifdef _WIN32
2429# undef lstat 3616# undef lstat
2430# define lstat(a,b) _stati64 (a,b) 3617# define lstat(a,b) _stati64 (a,b)
2431# endif 3618# endif
2432 3619
2433#define DEF_STAT_INTERVAL 5.0074891 3620#define DEF_STAT_INTERVAL 5.0074891
3621#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2434#define MIN_STAT_INTERVAL 0.1074891 3622#define MIN_STAT_INTERVAL 0.1074891
2435 3623
2436static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3624static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2437 3625
2438#if EV_USE_INOTIFY 3626#if EV_USE_INOTIFY
2439# define EV_INOTIFY_BUFSIZE 8192 3627
3628/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3629# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2440 3630
2441static void noinline 3631static void noinline
2442infy_add (EV_P_ ev_stat *w) 3632infy_add (EV_P_ ev_stat *w)
2443{ 3633{
2444 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3634 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2445 3635
2446 if (w->wd < 0) 3636 if (w->wd >= 0)
3637 {
3638 struct statfs sfs;
3639
3640 /* now local changes will be tracked by inotify, but remote changes won't */
3641 /* unless the filesystem is known to be local, we therefore still poll */
3642 /* also do poll on <2.6.25, but with normal frequency */
3643
3644 if (!fs_2625)
3645 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3646 else if (!statfs (w->path, &sfs)
3647 && (sfs.f_type == 0x1373 /* devfs */
3648 || sfs.f_type == 0xEF53 /* ext2/3 */
3649 || sfs.f_type == 0x3153464a /* jfs */
3650 || sfs.f_type == 0x52654973 /* reiser3 */
3651 || sfs.f_type == 0x01021994 /* tempfs */
3652 || sfs.f_type == 0x58465342 /* xfs */))
3653 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3654 else
3655 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2447 { 3656 }
2448 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3657 else
3658 {
3659 /* can't use inotify, continue to stat */
3660 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2449 3661
2450 /* monitor some parent directory for speedup hints */ 3662 /* if path is not there, monitor some parent directory for speedup hints */
2451 /* note that exceeding the hardcoded limit is not a correctness issue, */ 3663 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2452 /* but an efficiency issue only */ 3664 /* but an efficiency issue only */
2453 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3665 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2454 { 3666 {
2455 char path [4096]; 3667 char path [4096];
2456 strcpy (path, w->path); 3668 strcpy (path, w->path);
2460 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3672 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2461 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3673 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2462 3674
2463 char *pend = strrchr (path, '/'); 3675 char *pend = strrchr (path, '/');
2464 3676
2465 if (!pend) 3677 if (!pend || pend == path)
2466 break; /* whoops, no '/', complain to your admin */ 3678 break;
2467 3679
2468 *pend = 0; 3680 *pend = 0;
2469 w->wd = inotify_add_watch (fs_fd, path, mask); 3681 w->wd = inotify_add_watch (fs_fd, path, mask);
2470 } 3682 }
2471 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3683 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2472 } 3684 }
2473 } 3685 }
2474 else
2475 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2476 3686
2477 if (w->wd >= 0) 3687 if (w->wd >= 0)
2478 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3688 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3689
3690 /* now re-arm timer, if required */
3691 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3692 ev_timer_again (EV_A_ &w->timer);
3693 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2479} 3694}
2480 3695
2481static void noinline 3696static void noinline
2482infy_del (EV_P_ ev_stat *w) 3697infy_del (EV_P_ ev_stat *w)
2483{ 3698{
2486 3701
2487 if (wd < 0) 3702 if (wd < 0)
2488 return; 3703 return;
2489 3704
2490 w->wd = -2; 3705 w->wd = -2;
2491 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3706 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2492 wlist_del (&fs_hash [slot].head, (WL)w); 3707 wlist_del (&fs_hash [slot].head, (WL)w);
2493 3708
2494 /* remove this watcher, if others are watching it, they will rearm */ 3709 /* remove this watcher, if others are watching it, they will rearm */
2495 inotify_rm_watch (fs_fd, wd); 3710 inotify_rm_watch (fs_fd, wd);
2496} 3711}
2498static void noinline 3713static void noinline
2499infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3714infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2500{ 3715{
2501 if (slot < 0) 3716 if (slot < 0)
2502 /* overflow, need to check for all hash slots */ 3717 /* overflow, need to check for all hash slots */
2503 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3718 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2504 infy_wd (EV_A_ slot, wd, ev); 3719 infy_wd (EV_A_ slot, wd, ev);
2505 else 3720 else
2506 { 3721 {
2507 WL w_; 3722 WL w_;
2508 3723
2509 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3724 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2510 { 3725 {
2511 ev_stat *w = (ev_stat *)w_; 3726 ev_stat *w = (ev_stat *)w_;
2512 w_ = w_->next; /* lets us remove this watcher and all before it */ 3727 w_ = w_->next; /* lets us remove this watcher and all before it */
2513 3728
2514 if (w->wd == wd || wd == -1) 3729 if (w->wd == wd || wd == -1)
2515 { 3730 {
2516 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3731 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2517 { 3732 {
3733 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2518 w->wd = -1; 3734 w->wd = -1;
2519 infy_add (EV_A_ w); /* re-add, no matter what */ 3735 infy_add (EV_A_ w); /* re-add, no matter what */
2520 } 3736 }
2521 3737
2522 stat_timer_cb (EV_A_ &w->timer, 0); 3738 stat_timer_cb (EV_A_ &w->timer, 0);
2527 3743
2528static void 3744static void
2529infy_cb (EV_P_ ev_io *w, int revents) 3745infy_cb (EV_P_ ev_io *w, int revents)
2530{ 3746{
2531 char buf [EV_INOTIFY_BUFSIZE]; 3747 char buf [EV_INOTIFY_BUFSIZE];
2532 struct inotify_event *ev = (struct inotify_event *)buf;
2533 int ofs; 3748 int ofs;
2534 int len = read (fs_fd, buf, sizeof (buf)); 3749 int len = read (fs_fd, buf, sizeof (buf));
2535 3750
2536 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3751 for (ofs = 0; ofs < len; )
3752 {
3753 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2537 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3754 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3755 ofs += sizeof (struct inotify_event) + ev->len;
3756 }
2538} 3757}
2539 3758
2540void inline_size 3759inline_size void ecb_cold
2541infy_init (EV_P) 3760ev_check_2625 (EV_P)
2542{ 3761{
2543 if (fs_fd != -2)
2544 return;
2545
2546 /* kernels < 2.6.25 are borked 3762 /* kernels < 2.6.25 are borked
2547 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 3763 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2548 */ 3764 */
2549 { 3765 if (ev_linux_version () < 0x020619)
2550 struct utsname buf; 3766 return;
2551 int major, minor, micro;
2552 3767
3768 fs_2625 = 1;
3769}
3770
3771inline_size int
3772infy_newfd (void)
3773{
3774#if defined IN_CLOEXEC && defined IN_NONBLOCK
3775 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3776 if (fd >= 0)
3777 return fd;
3778#endif
3779 return inotify_init ();
3780}
3781
3782inline_size void
3783infy_init (EV_P)
3784{
3785 if (fs_fd != -2)
3786 return;
3787
2553 fs_fd = -1; 3788 fs_fd = -1;
2554 3789
2555 if (uname (&buf)) 3790 ev_check_2625 (EV_A);
2556 return;
2557 3791
2558 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2559 return;
2560
2561 if (major < 2
2562 || (major == 2 && minor < 6)
2563 || (major == 2 && minor == 6 && micro < 25))
2564 return;
2565 }
2566
2567 fs_fd = inotify_init (); 3792 fs_fd = infy_newfd ();
2568 3793
2569 if (fs_fd >= 0) 3794 if (fs_fd >= 0)
2570 { 3795 {
3796 fd_intern (fs_fd);
2571 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3797 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2572 ev_set_priority (&fs_w, EV_MAXPRI); 3798 ev_set_priority (&fs_w, EV_MAXPRI);
2573 ev_io_start (EV_A_ &fs_w); 3799 ev_io_start (EV_A_ &fs_w);
3800 ev_unref (EV_A);
2574 } 3801 }
2575} 3802}
2576 3803
2577void inline_size 3804inline_size void
2578infy_fork (EV_P) 3805infy_fork (EV_P)
2579{ 3806{
2580 int slot; 3807 int slot;
2581 3808
2582 if (fs_fd < 0) 3809 if (fs_fd < 0)
2583 return; 3810 return;
2584 3811
3812 ev_ref (EV_A);
3813 ev_io_stop (EV_A_ &fs_w);
2585 close (fs_fd); 3814 close (fs_fd);
2586 fs_fd = inotify_init (); 3815 fs_fd = infy_newfd ();
2587 3816
3817 if (fs_fd >= 0)
3818 {
3819 fd_intern (fs_fd);
3820 ev_io_set (&fs_w, fs_fd, EV_READ);
3821 ev_io_start (EV_A_ &fs_w);
3822 ev_unref (EV_A);
3823 }
3824
2588 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3825 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2589 { 3826 {
2590 WL w_ = fs_hash [slot].head; 3827 WL w_ = fs_hash [slot].head;
2591 fs_hash [slot].head = 0; 3828 fs_hash [slot].head = 0;
2592 3829
2593 while (w_) 3830 while (w_)
2598 w->wd = -1; 3835 w->wd = -1;
2599 3836
2600 if (fs_fd >= 0) 3837 if (fs_fd >= 0)
2601 infy_add (EV_A_ w); /* re-add, no matter what */ 3838 infy_add (EV_A_ w); /* re-add, no matter what */
2602 else 3839 else
3840 {
3841 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3842 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2603 ev_timer_start (EV_A_ &w->timer); 3843 ev_timer_again (EV_A_ &w->timer);
3844 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3845 }
2604 } 3846 }
2605 } 3847 }
2606} 3848}
2607 3849
2608#endif 3850#endif
2612#else 3854#else
2613# define EV_LSTAT(p,b) lstat (p, b) 3855# define EV_LSTAT(p,b) lstat (p, b)
2614#endif 3856#endif
2615 3857
2616void 3858void
2617ev_stat_stat (EV_P_ ev_stat *w) 3859ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2618{ 3860{
2619 if (lstat (w->path, &w->attr) < 0) 3861 if (lstat (w->path, &w->attr) < 0)
2620 w->attr.st_nlink = 0; 3862 w->attr.st_nlink = 0;
2621 else if (!w->attr.st_nlink) 3863 else if (!w->attr.st_nlink)
2622 w->attr.st_nlink = 1; 3864 w->attr.st_nlink = 1;
2625static void noinline 3867static void noinline
2626stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3868stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2627{ 3869{
2628 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3870 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2629 3871
2630 /* we copy this here each the time so that */ 3872 ev_statdata prev = w->attr;
2631 /* prev has the old value when the callback gets invoked */
2632 w->prev = w->attr;
2633 ev_stat_stat (EV_A_ w); 3873 ev_stat_stat (EV_A_ w);
2634 3874
2635 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3875 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2636 if ( 3876 if (
2637 w->prev.st_dev != w->attr.st_dev 3877 prev.st_dev != w->attr.st_dev
2638 || w->prev.st_ino != w->attr.st_ino 3878 || prev.st_ino != w->attr.st_ino
2639 || w->prev.st_mode != w->attr.st_mode 3879 || prev.st_mode != w->attr.st_mode
2640 || w->prev.st_nlink != w->attr.st_nlink 3880 || prev.st_nlink != w->attr.st_nlink
2641 || w->prev.st_uid != w->attr.st_uid 3881 || prev.st_uid != w->attr.st_uid
2642 || w->prev.st_gid != w->attr.st_gid 3882 || prev.st_gid != w->attr.st_gid
2643 || w->prev.st_rdev != w->attr.st_rdev 3883 || prev.st_rdev != w->attr.st_rdev
2644 || w->prev.st_size != w->attr.st_size 3884 || prev.st_size != w->attr.st_size
2645 || w->prev.st_atime != w->attr.st_atime 3885 || prev.st_atime != w->attr.st_atime
2646 || w->prev.st_mtime != w->attr.st_mtime 3886 || prev.st_mtime != w->attr.st_mtime
2647 || w->prev.st_ctime != w->attr.st_ctime 3887 || prev.st_ctime != w->attr.st_ctime
2648 ) { 3888 ) {
3889 /* we only update w->prev on actual differences */
3890 /* in case we test more often than invoke the callback, */
3891 /* to ensure that prev is always different to attr */
3892 w->prev = prev;
3893
2649 #if EV_USE_INOTIFY 3894 #if EV_USE_INOTIFY
2650 if (fs_fd >= 0) 3895 if (fs_fd >= 0)
2651 { 3896 {
2652 infy_del (EV_A_ w); 3897 infy_del (EV_A_ w);
2653 infy_add (EV_A_ w); 3898 infy_add (EV_A_ w);
2658 ev_feed_event (EV_A_ w, EV_STAT); 3903 ev_feed_event (EV_A_ w, EV_STAT);
2659 } 3904 }
2660} 3905}
2661 3906
2662void 3907void
2663ev_stat_start (EV_P_ ev_stat *w) 3908ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2664{ 3909{
2665 if (expect_false (ev_is_active (w))) 3910 if (expect_false (ev_is_active (w)))
2666 return; 3911 return;
2667 3912
2668 /* since we use memcmp, we need to clear any padding data etc. */
2669 memset (&w->prev, 0, sizeof (ev_statdata));
2670 memset (&w->attr, 0, sizeof (ev_statdata));
2671
2672 ev_stat_stat (EV_A_ w); 3913 ev_stat_stat (EV_A_ w);
2673 3914
3915 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2674 if (w->interval < MIN_STAT_INTERVAL) 3916 w->interval = MIN_STAT_INTERVAL;
2675 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2676 3917
2677 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3918 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2678 ev_set_priority (&w->timer, ev_priority (w)); 3919 ev_set_priority (&w->timer, ev_priority (w));
2679 3920
2680#if EV_USE_INOTIFY 3921#if EV_USE_INOTIFY
2681 infy_init (EV_A); 3922 infy_init (EV_A);
2682 3923
2683 if (fs_fd >= 0) 3924 if (fs_fd >= 0)
2684 infy_add (EV_A_ w); 3925 infy_add (EV_A_ w);
2685 else 3926 else
2686#endif 3927#endif
3928 {
2687 ev_timer_start (EV_A_ &w->timer); 3929 ev_timer_again (EV_A_ &w->timer);
3930 ev_unref (EV_A);
3931 }
2688 3932
2689 ev_start (EV_A_ (W)w, 1); 3933 ev_start (EV_A_ (W)w, 1);
2690 3934
2691 EV_FREQUENT_CHECK; 3935 EV_FREQUENT_CHECK;
2692} 3936}
2693 3937
2694void 3938void
2695ev_stat_stop (EV_P_ ev_stat *w) 3939ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2696{ 3940{
2697 clear_pending (EV_A_ (W)w); 3941 clear_pending (EV_A_ (W)w);
2698 if (expect_false (!ev_is_active (w))) 3942 if (expect_false (!ev_is_active (w)))
2699 return; 3943 return;
2700 3944
2701 EV_FREQUENT_CHECK; 3945 EV_FREQUENT_CHECK;
2702 3946
2703#if EV_USE_INOTIFY 3947#if EV_USE_INOTIFY
2704 infy_del (EV_A_ w); 3948 infy_del (EV_A_ w);
2705#endif 3949#endif
3950
3951 if (ev_is_active (&w->timer))
3952 {
3953 ev_ref (EV_A);
2706 ev_timer_stop (EV_A_ &w->timer); 3954 ev_timer_stop (EV_A_ &w->timer);
3955 }
2707 3956
2708 ev_stop (EV_A_ (W)w); 3957 ev_stop (EV_A_ (W)w);
2709 3958
2710 EV_FREQUENT_CHECK; 3959 EV_FREQUENT_CHECK;
2711} 3960}
2712#endif 3961#endif
2713 3962
2714#if EV_IDLE_ENABLE 3963#if EV_IDLE_ENABLE
2715void 3964void
2716ev_idle_start (EV_P_ ev_idle *w) 3965ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2717{ 3966{
2718 if (expect_false (ev_is_active (w))) 3967 if (expect_false (ev_is_active (w)))
2719 return; 3968 return;
2720 3969
2721 pri_adjust (EV_A_ (W)w); 3970 pri_adjust (EV_A_ (W)w);
2734 3983
2735 EV_FREQUENT_CHECK; 3984 EV_FREQUENT_CHECK;
2736} 3985}
2737 3986
2738void 3987void
2739ev_idle_stop (EV_P_ ev_idle *w) 3988ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2740{ 3989{
2741 clear_pending (EV_A_ (W)w); 3990 clear_pending (EV_A_ (W)w);
2742 if (expect_false (!ev_is_active (w))) 3991 if (expect_false (!ev_is_active (w)))
2743 return; 3992 return;
2744 3993
2756 4005
2757 EV_FREQUENT_CHECK; 4006 EV_FREQUENT_CHECK;
2758} 4007}
2759#endif 4008#endif
2760 4009
4010#if EV_PREPARE_ENABLE
2761void 4011void
2762ev_prepare_start (EV_P_ ev_prepare *w) 4012ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2763{ 4013{
2764 if (expect_false (ev_is_active (w))) 4014 if (expect_false (ev_is_active (w)))
2765 return; 4015 return;
2766 4016
2767 EV_FREQUENT_CHECK; 4017 EV_FREQUENT_CHECK;
2772 4022
2773 EV_FREQUENT_CHECK; 4023 EV_FREQUENT_CHECK;
2774} 4024}
2775 4025
2776void 4026void
2777ev_prepare_stop (EV_P_ ev_prepare *w) 4027ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2778{ 4028{
2779 clear_pending (EV_A_ (W)w); 4029 clear_pending (EV_A_ (W)w);
2780 if (expect_false (!ev_is_active (w))) 4030 if (expect_false (!ev_is_active (w)))
2781 return; 4031 return;
2782 4032
2791 4041
2792 ev_stop (EV_A_ (W)w); 4042 ev_stop (EV_A_ (W)w);
2793 4043
2794 EV_FREQUENT_CHECK; 4044 EV_FREQUENT_CHECK;
2795} 4045}
4046#endif
2796 4047
4048#if EV_CHECK_ENABLE
2797void 4049void
2798ev_check_start (EV_P_ ev_check *w) 4050ev_check_start (EV_P_ ev_check *w) EV_THROW
2799{ 4051{
2800 if (expect_false (ev_is_active (w))) 4052 if (expect_false (ev_is_active (w)))
2801 return; 4053 return;
2802 4054
2803 EV_FREQUENT_CHECK; 4055 EV_FREQUENT_CHECK;
2808 4060
2809 EV_FREQUENT_CHECK; 4061 EV_FREQUENT_CHECK;
2810} 4062}
2811 4063
2812void 4064void
2813ev_check_stop (EV_P_ ev_check *w) 4065ev_check_stop (EV_P_ ev_check *w) EV_THROW
2814{ 4066{
2815 clear_pending (EV_A_ (W)w); 4067 clear_pending (EV_A_ (W)w);
2816 if (expect_false (!ev_is_active (w))) 4068 if (expect_false (!ev_is_active (w)))
2817 return; 4069 return;
2818 4070
2827 4079
2828 ev_stop (EV_A_ (W)w); 4080 ev_stop (EV_A_ (W)w);
2829 4081
2830 EV_FREQUENT_CHECK; 4082 EV_FREQUENT_CHECK;
2831} 4083}
4084#endif
2832 4085
2833#if EV_EMBED_ENABLE 4086#if EV_EMBED_ENABLE
2834void noinline 4087void noinline
2835ev_embed_sweep (EV_P_ ev_embed *w) 4088ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2836{ 4089{
2837 ev_loop (w->other, EVLOOP_NONBLOCK); 4090 ev_run (w->other, EVRUN_NOWAIT);
2838} 4091}
2839 4092
2840static void 4093static void
2841embed_io_cb (EV_P_ ev_io *io, int revents) 4094embed_io_cb (EV_P_ ev_io *io, int revents)
2842{ 4095{
2843 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4096 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2844 4097
2845 if (ev_cb (w)) 4098 if (ev_cb (w))
2846 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4099 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2847 else 4100 else
2848 ev_loop (w->other, EVLOOP_NONBLOCK); 4101 ev_run (w->other, EVRUN_NOWAIT);
2849} 4102}
2850 4103
2851static void 4104static void
2852embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4105embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2853{ 4106{
2854 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4107 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2855 4108
2856 { 4109 {
2857 struct ev_loop *loop = w->other; 4110 EV_P = w->other;
2858 4111
2859 while (fdchangecnt) 4112 while (fdchangecnt)
2860 { 4113 {
2861 fd_reify (EV_A); 4114 fd_reify (EV_A);
2862 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4115 ev_run (EV_A_ EVRUN_NOWAIT);
2863 } 4116 }
2864 } 4117 }
2865} 4118}
2866 4119
2867static void 4120static void
2868embed_fork_cb (EV_P_ ev_fork *fork_w, int revents) 4121embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2869{ 4122{
2870 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 4123 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2871 4124
4125 ev_embed_stop (EV_A_ w);
4126
2872 { 4127 {
2873 struct ev_loop *loop = w->other; 4128 EV_P = w->other;
2874 4129
2875 ev_loop_fork (EV_A); 4130 ev_loop_fork (EV_A);
4131 ev_run (EV_A_ EVRUN_NOWAIT);
2876 } 4132 }
4133
4134 ev_embed_start (EV_A_ w);
2877} 4135}
2878 4136
2879#if 0 4137#if 0
2880static void 4138static void
2881embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4139embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2883 ev_idle_stop (EV_A_ idle); 4141 ev_idle_stop (EV_A_ idle);
2884} 4142}
2885#endif 4143#endif
2886 4144
2887void 4145void
2888ev_embed_start (EV_P_ ev_embed *w) 4146ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2889{ 4147{
2890 if (expect_false (ev_is_active (w))) 4148 if (expect_false (ev_is_active (w)))
2891 return; 4149 return;
2892 4150
2893 { 4151 {
2894 struct ev_loop *loop = w->other; 4152 EV_P = w->other;
2895 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4153 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2896 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4154 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2897 } 4155 }
2898 4156
2899 EV_FREQUENT_CHECK; 4157 EV_FREQUENT_CHECK;
2900 4158
2914 4172
2915 EV_FREQUENT_CHECK; 4173 EV_FREQUENT_CHECK;
2916} 4174}
2917 4175
2918void 4176void
2919ev_embed_stop (EV_P_ ev_embed *w) 4177ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2920{ 4178{
2921 clear_pending (EV_A_ (W)w); 4179 clear_pending (EV_A_ (W)w);
2922 if (expect_false (!ev_is_active (w))) 4180 if (expect_false (!ev_is_active (w)))
2923 return; 4181 return;
2924 4182
2926 4184
2927 ev_io_stop (EV_A_ &w->io); 4185 ev_io_stop (EV_A_ &w->io);
2928 ev_prepare_stop (EV_A_ &w->prepare); 4186 ev_prepare_stop (EV_A_ &w->prepare);
2929 ev_fork_stop (EV_A_ &w->fork); 4187 ev_fork_stop (EV_A_ &w->fork);
2930 4188
4189 ev_stop (EV_A_ (W)w);
4190
2931 EV_FREQUENT_CHECK; 4191 EV_FREQUENT_CHECK;
2932} 4192}
2933#endif 4193#endif
2934 4194
2935#if EV_FORK_ENABLE 4195#if EV_FORK_ENABLE
2936void 4196void
2937ev_fork_start (EV_P_ ev_fork *w) 4197ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2938{ 4198{
2939 if (expect_false (ev_is_active (w))) 4199 if (expect_false (ev_is_active (w)))
2940 return; 4200 return;
2941 4201
2942 EV_FREQUENT_CHECK; 4202 EV_FREQUENT_CHECK;
2947 4207
2948 EV_FREQUENT_CHECK; 4208 EV_FREQUENT_CHECK;
2949} 4209}
2950 4210
2951void 4211void
2952ev_fork_stop (EV_P_ ev_fork *w) 4212ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2953{ 4213{
2954 clear_pending (EV_A_ (W)w); 4214 clear_pending (EV_A_ (W)w);
2955 if (expect_false (!ev_is_active (w))) 4215 if (expect_false (!ev_is_active (w)))
2956 return; 4216 return;
2957 4217
2968 4228
2969 EV_FREQUENT_CHECK; 4229 EV_FREQUENT_CHECK;
2970} 4230}
2971#endif 4231#endif
2972 4232
4233#if EV_CLEANUP_ENABLE
4234void
4235ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4236{
4237 if (expect_false (ev_is_active (w)))
4238 return;
4239
4240 EV_FREQUENT_CHECK;
4241
4242 ev_start (EV_A_ (W)w, ++cleanupcnt);
4243 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4244 cleanups [cleanupcnt - 1] = w;
4245
4246 /* cleanup watchers should never keep a refcount on the loop */
4247 ev_unref (EV_A);
4248 EV_FREQUENT_CHECK;
4249}
4250
4251void
4252ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4253{
4254 clear_pending (EV_A_ (W)w);
4255 if (expect_false (!ev_is_active (w)))
4256 return;
4257
4258 EV_FREQUENT_CHECK;
4259 ev_ref (EV_A);
4260
4261 {
4262 int active = ev_active (w);
4263
4264 cleanups [active - 1] = cleanups [--cleanupcnt];
4265 ev_active (cleanups [active - 1]) = active;
4266 }
4267
4268 ev_stop (EV_A_ (W)w);
4269
4270 EV_FREQUENT_CHECK;
4271}
4272#endif
4273
2973#if EV_ASYNC_ENABLE 4274#if EV_ASYNC_ENABLE
2974void 4275void
2975ev_async_start (EV_P_ ev_async *w) 4276ev_async_start (EV_P_ ev_async *w) EV_THROW
2976{ 4277{
2977 if (expect_false (ev_is_active (w))) 4278 if (expect_false (ev_is_active (w)))
2978 return; 4279 return;
4280
4281 w->sent = 0;
2979 4282
2980 evpipe_init (EV_A); 4283 evpipe_init (EV_A);
2981 4284
2982 EV_FREQUENT_CHECK; 4285 EV_FREQUENT_CHECK;
2983 4286
2987 4290
2988 EV_FREQUENT_CHECK; 4291 EV_FREQUENT_CHECK;
2989} 4292}
2990 4293
2991void 4294void
2992ev_async_stop (EV_P_ ev_async *w) 4295ev_async_stop (EV_P_ ev_async *w) EV_THROW
2993{ 4296{
2994 clear_pending (EV_A_ (W)w); 4297 clear_pending (EV_A_ (W)w);
2995 if (expect_false (!ev_is_active (w))) 4298 if (expect_false (!ev_is_active (w)))
2996 return; 4299 return;
2997 4300
3008 4311
3009 EV_FREQUENT_CHECK; 4312 EV_FREQUENT_CHECK;
3010} 4313}
3011 4314
3012void 4315void
3013ev_async_send (EV_P_ ev_async *w) 4316ev_async_send (EV_P_ ev_async *w) EV_THROW
3014{ 4317{
3015 w->sent = 1; 4318 w->sent = 1;
3016 evpipe_write (EV_A_ &gotasync); 4319 evpipe_write (EV_A_ &async_pending);
3017} 4320}
3018#endif 4321#endif
3019 4322
3020/*****************************************************************************/ 4323/*****************************************************************************/
3021 4324
3055 4358
3056 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io)); 4359 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3057} 4360}
3058 4361
3059void 4362void
3060ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4363ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
3061{ 4364{
3062 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4365 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3063 4366
3064 if (expect_false (!once)) 4367 if (expect_false (!once))
3065 { 4368 {
3066 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4369 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3067 return; 4370 return;
3068 } 4371 }
3069 4372
3070 once->cb = cb; 4373 once->cb = cb;
3071 once->arg = arg; 4374 once->arg = arg;
3083 ev_timer_set (&once->to, timeout, 0.); 4386 ev_timer_set (&once->to, timeout, 0.);
3084 ev_timer_start (EV_A_ &once->to); 4387 ev_timer_start (EV_A_ &once->to);
3085 } 4388 }
3086} 4389}
3087 4390
4391/*****************************************************************************/
4392
4393#if EV_WALK_ENABLE
4394void ecb_cold
4395ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4396{
4397 int i, j;
4398 ev_watcher_list *wl, *wn;
4399
4400 if (types & (EV_IO | EV_EMBED))
4401 for (i = 0; i < anfdmax; ++i)
4402 for (wl = anfds [i].head; wl; )
4403 {
4404 wn = wl->next;
4405
4406#if EV_EMBED_ENABLE
4407 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4408 {
4409 if (types & EV_EMBED)
4410 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4411 }
4412 else
4413#endif
4414#if EV_USE_INOTIFY
4415 if (ev_cb ((ev_io *)wl) == infy_cb)
4416 ;
4417 else
4418#endif
4419 if ((ev_io *)wl != &pipe_w)
4420 if (types & EV_IO)
4421 cb (EV_A_ EV_IO, wl);
4422
4423 wl = wn;
4424 }
4425
4426 if (types & (EV_TIMER | EV_STAT))
4427 for (i = timercnt + HEAP0; i-- > HEAP0; )
4428#if EV_STAT_ENABLE
4429 /*TODO: timer is not always active*/
4430 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4431 {
4432 if (types & EV_STAT)
4433 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4434 }
4435 else
4436#endif
4437 if (types & EV_TIMER)
4438 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4439
4440#if EV_PERIODIC_ENABLE
4441 if (types & EV_PERIODIC)
4442 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4443 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4444#endif
4445
4446#if EV_IDLE_ENABLE
4447 if (types & EV_IDLE)
4448 for (j = NUMPRI; j--; )
4449 for (i = idlecnt [j]; i--; )
4450 cb (EV_A_ EV_IDLE, idles [j][i]);
4451#endif
4452
4453#if EV_FORK_ENABLE
4454 if (types & EV_FORK)
4455 for (i = forkcnt; i--; )
4456 if (ev_cb (forks [i]) != embed_fork_cb)
4457 cb (EV_A_ EV_FORK, forks [i]);
4458#endif
4459
4460#if EV_ASYNC_ENABLE
4461 if (types & EV_ASYNC)
4462 for (i = asynccnt; i--; )
4463 cb (EV_A_ EV_ASYNC, asyncs [i]);
4464#endif
4465
4466#if EV_PREPARE_ENABLE
4467 if (types & EV_PREPARE)
4468 for (i = preparecnt; i--; )
4469# if EV_EMBED_ENABLE
4470 if (ev_cb (prepares [i]) != embed_prepare_cb)
4471# endif
4472 cb (EV_A_ EV_PREPARE, prepares [i]);
4473#endif
4474
4475#if EV_CHECK_ENABLE
4476 if (types & EV_CHECK)
4477 for (i = checkcnt; i--; )
4478 cb (EV_A_ EV_CHECK, checks [i]);
4479#endif
4480
4481#if EV_SIGNAL_ENABLE
4482 if (types & EV_SIGNAL)
4483 for (i = 0; i < EV_NSIG - 1; ++i)
4484 for (wl = signals [i].head; wl; )
4485 {
4486 wn = wl->next;
4487 cb (EV_A_ EV_SIGNAL, wl);
4488 wl = wn;
4489 }
4490#endif
4491
4492#if EV_CHILD_ENABLE
4493 if (types & EV_CHILD)
4494 for (i = (EV_PID_HASHSIZE); i--; )
4495 for (wl = childs [i]; wl; )
4496 {
4497 wn = wl->next;
4498 cb (EV_A_ EV_CHILD, wl);
4499 wl = wn;
4500 }
4501#endif
4502/* EV_STAT 0x00001000 /* stat data changed */
4503/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4504}
4505#endif
4506
3088#if EV_MULTIPLICITY 4507#if EV_MULTIPLICITY
3089 #include "ev_wrap.h" 4508 #include "ev_wrap.h"
3090#endif 4509#endif
3091 4510
3092#ifdef __cplusplus
3093}
3094#endif
3095

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines