ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.264 by root, Mon Oct 13 23:20:12 2008 UTC vs.
Revision 1.481 by root, Thu Jun 1 20:25:50 2017 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
130# endif 163# endif
131 164
132#endif 165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
152#endif 197#endif
153 198
154#ifndef _WIN32 199#ifndef _WIN32
155# include <sys/time.h> 200# include <sys/time.h>
156# include <sys/wait.h> 201# include <sys/wait.h>
157# include <unistd.h> 202# include <unistd.h>
158#else 203#else
159# include <io.h> 204# include <io.h>
160# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
161# include <windows.h> 207# include <windows.h>
162# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
163# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
164# endif 210# endif
211# undef EV_AVOID_STDIO
165#endif 212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
166 221
167/* this block tries to deduce configuration from header-defined symbols and defaults */ 222/* this block tries to deduce configuration from header-defined symbols and defaults */
168 223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# define EV_NSIG (8 * sizeof (sigset_t) + 1)
247#endif
248
249#ifndef EV_USE_FLOOR
250# define EV_USE_FLOOR 0
251#endif
252
253#ifndef EV_USE_CLOCK_SYSCALL
254# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256# else
257# define EV_USE_CLOCK_SYSCALL 0
258# endif
259#endif
260
261#if !(_POSIX_TIMERS > 0)
262# ifndef EV_USE_MONOTONIC
263# define EV_USE_MONOTONIC 0
264# endif
265# ifndef EV_USE_REALTIME
266# define EV_USE_REALTIME 0
267# endif
268#endif
269
169#ifndef EV_USE_MONOTONIC 270#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 271# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1 272# define EV_USE_MONOTONIC EV_FEATURE_OS
172# else 273# else
173# define EV_USE_MONOTONIC 0 274# define EV_USE_MONOTONIC 0
174# endif 275# endif
175#endif 276#endif
176 277
177#ifndef EV_USE_REALTIME 278#ifndef EV_USE_REALTIME
178# define EV_USE_REALTIME 0 279# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
179#endif 280#endif
180 281
181#ifndef EV_USE_NANOSLEEP 282#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L 283# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1 284# define EV_USE_NANOSLEEP EV_FEATURE_OS
184# else 285# else
185# define EV_USE_NANOSLEEP 0 286# define EV_USE_NANOSLEEP 0
186# endif 287# endif
187#endif 288#endif
188 289
189#ifndef EV_USE_SELECT 290#ifndef EV_USE_SELECT
190# define EV_USE_SELECT 1 291# define EV_USE_SELECT EV_FEATURE_BACKENDS
191#endif 292#endif
192 293
193#ifndef EV_USE_POLL 294#ifndef EV_USE_POLL
194# ifdef _WIN32 295# ifdef _WIN32
195# define EV_USE_POLL 0 296# define EV_USE_POLL 0
196# else 297# else
197# define EV_USE_POLL 1 298# define EV_USE_POLL EV_FEATURE_BACKENDS
198# endif 299# endif
199#endif 300#endif
200 301
201#ifndef EV_USE_EPOLL 302#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1 304# define EV_USE_EPOLL EV_FEATURE_BACKENDS
204# else 305# else
205# define EV_USE_EPOLL 0 306# define EV_USE_EPOLL 0
206# endif 307# endif
207#endif 308#endif
208 309
214# define EV_USE_PORT 0 315# define EV_USE_PORT 0
215#endif 316#endif
216 317
217#ifndef EV_USE_INOTIFY 318#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1 320# define EV_USE_INOTIFY EV_FEATURE_OS
220# else 321# else
221# define EV_USE_INOTIFY 0 322# define EV_USE_INOTIFY 0
222# endif 323# endif
223#endif 324#endif
224 325
225#ifndef EV_PID_HASHSIZE 326#ifndef EV_PID_HASHSIZE
226# if EV_MINIMAL 327# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
230# endif
231#endif 328#endif
232 329
233#ifndef EV_INOTIFY_HASHSIZE 330#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL 331# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif 332#endif
240 333
241#ifndef EV_USE_EVENTFD 334#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 335# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1 336# define EV_USE_EVENTFD EV_FEATURE_OS
244# else 337# else
245# define EV_USE_EVENTFD 0 338# define EV_USE_EVENTFD 0
339# endif
340#endif
341
342#ifndef EV_USE_SIGNALFD
343# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
344# define EV_USE_SIGNALFD EV_FEATURE_OS
345# else
346# define EV_USE_SIGNALFD 0
246# endif 347# endif
247#endif 348#endif
248 349
249#if 0 /* debugging */ 350#if 0 /* debugging */
250# define EV_VERIFY 3 351# define EV_VERIFY 3
251# define EV_USE_4HEAP 1 352# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1 353# define EV_HEAP_CACHE_AT 1
253#endif 354#endif
254 355
255#ifndef EV_VERIFY 356#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL 357# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
257#endif 358#endif
258 359
259#ifndef EV_USE_4HEAP 360#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL 361# define EV_USE_4HEAP EV_FEATURE_DATA
261#endif 362#endif
262 363
263#ifndef EV_HEAP_CACHE_AT 364#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL 365# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
366#endif
367
368#ifdef __ANDROID__
369/* supposedly, android doesn't typedef fd_mask */
370# undef EV_USE_SELECT
371# define EV_USE_SELECT 0
372/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
373# undef EV_USE_CLOCK_SYSCALL
374# define EV_USE_CLOCK_SYSCALL 0
375#endif
376
377/* aix's poll.h seems to cause lots of trouble */
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
383
384/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
385/* which makes programs even slower. might work on other unices, too. */
386#if EV_USE_CLOCK_SYSCALL
387# include <sys/syscall.h>
388# ifdef SYS_clock_gettime
389# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
390# undef EV_USE_MONOTONIC
391# define EV_USE_MONOTONIC 1
392# else
393# undef EV_USE_CLOCK_SYSCALL
394# define EV_USE_CLOCK_SYSCALL 0
395# endif
265#endif 396#endif
266 397
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 398/* this block fixes any misconfiguration where we know we run into trouble otherwise */
268 399
269#ifndef CLOCK_MONOTONIC 400#ifndef CLOCK_MONOTONIC
280# undef EV_USE_INOTIFY 411# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0 412# define EV_USE_INOTIFY 0
282#endif 413#endif
283 414
284#if !EV_USE_NANOSLEEP 415#if !EV_USE_NANOSLEEP
285# ifndef _WIN32 416/* hp-ux has it in sys/time.h, which we unconditionally include above */
417# if !defined _WIN32 && !defined __hpux
286# include <sys/select.h> 418# include <sys/select.h>
287# endif 419# endif
288#endif 420#endif
289 421
290#if EV_USE_INOTIFY 422#if EV_USE_INOTIFY
291# include <sys/utsname.h> 423# include <sys/statfs.h>
292# include <sys/inotify.h> 424# include <sys/inotify.h>
293/* some very old inotify.h headers don't have IN_DONT_FOLLOW */ 425/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
294# ifndef IN_DONT_FOLLOW 426# ifndef IN_DONT_FOLLOW
295# undef EV_USE_INOTIFY 427# undef EV_USE_INOTIFY
296# define EV_USE_INOTIFY 0 428# define EV_USE_INOTIFY 0
297# endif 429# endif
298#endif 430#endif
299 431
300#if EV_SELECT_IS_WINSOCKET
301# include <winsock.h>
302#endif
303
304#if EV_USE_EVENTFD 432#if EV_USE_EVENTFD
305/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
306# include <stdint.h> 434# include <stdint.h>
307# ifdef __cplusplus 435# ifndef EFD_NONBLOCK
308extern "C" { 436# define EFD_NONBLOCK O_NONBLOCK
309# endif 437# endif
310int eventfd (unsigned int initval, int flags); 438# ifndef EFD_CLOEXEC
311# ifdef __cplusplus 439# ifdef O_CLOEXEC
312} 440# define EFD_CLOEXEC O_CLOEXEC
441# else
442# define EFD_CLOEXEC 02000000
443# endif
313# endif 444# endif
445EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
446#endif
447
448#if EV_USE_SIGNALFD
449/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
450# include <stdint.h>
451# ifndef SFD_NONBLOCK
452# define SFD_NONBLOCK O_NONBLOCK
453# endif
454# ifndef SFD_CLOEXEC
455# ifdef O_CLOEXEC
456# define SFD_CLOEXEC O_CLOEXEC
457# else
458# define SFD_CLOEXEC 02000000
459# endif
460# endif
461EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
462
463struct signalfd_siginfo
464{
465 uint32_t ssi_signo;
466 char pad[128 - sizeof (uint32_t)];
467};
314#endif 468#endif
315 469
316/**/ 470/**/
317 471
318#if EV_VERIFY >= 3 472#if EV_VERIFY >= 3
319# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 473# define EV_FREQUENT_CHECK ev_verify (EV_A)
320#else 474#else
321# define EV_FREQUENT_CHECK do { } while (0) 475# define EV_FREQUENT_CHECK do { } while (0)
322#endif 476#endif
323 477
324/* 478/*
325 * This is used to avoid floating point rounding problems. 479 * This is used to work around floating point rounding problems.
326 * It is added to ev_rt_now when scheduling periodics
327 * to ensure progress, time-wise, even when rounding
328 * errors are against us.
329 * This value is good at least till the year 4000. 480 * This value is good at least till the year 4000.
330 * Better solutions welcome.
331 */ 481 */
332#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 482#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
483/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
333 484
334#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 485#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
335#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 486#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
336/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
337 487
488#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
489#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
490
491/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
492/* ECB.H BEGIN */
493/*
494 * libecb - http://software.schmorp.de/pkg/libecb
495 *
496 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
497 * Copyright (©) 2011 Emanuele Giaquinta
498 * All rights reserved.
499 *
500 * Redistribution and use in source and binary forms, with or without modifica-
501 * tion, are permitted provided that the following conditions are met:
502 *
503 * 1. Redistributions of source code must retain the above copyright notice,
504 * this list of conditions and the following disclaimer.
505 *
506 * 2. Redistributions in binary form must reproduce the above copyright
507 * notice, this list of conditions and the following disclaimer in the
508 * documentation and/or other materials provided with the distribution.
509 *
510 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
511 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
512 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
513 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
514 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
515 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
516 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
517 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
518 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
519 * OF THE POSSIBILITY OF SUCH DAMAGE.
520 *
521 * Alternatively, the contents of this file may be used under the terms of
522 * the GNU General Public License ("GPL") version 2 or any later version,
523 * in which case the provisions of the GPL are applicable instead of
524 * the above. If you wish to allow the use of your version of this file
525 * only under the terms of the GPL and not to allow others to use your
526 * version of this file under the BSD license, indicate your decision
527 * by deleting the provisions above and replace them with the notice
528 * and other provisions required by the GPL. If you do not delete the
529 * provisions above, a recipient may use your version of this file under
530 * either the BSD or the GPL.
531 */
532
533#ifndef ECB_H
534#define ECB_H
535
536/* 16 bits major, 16 bits minor */
537#define ECB_VERSION 0x00010005
538
539#ifdef _WIN32
540 typedef signed char int8_t;
541 typedef unsigned char uint8_t;
542 typedef signed short int16_t;
543 typedef unsigned short uint16_t;
544 typedef signed int int32_t;
545 typedef unsigned int uint32_t;
338#if __GNUC__ >= 4 546 #if __GNUC__
547 typedef signed long long int64_t;
548 typedef unsigned long long uint64_t;
549 #else /* _MSC_VER || __BORLANDC__ */
550 typedef signed __int64 int64_t;
551 typedef unsigned __int64 uint64_t;
552 #endif
553 #ifdef _WIN64
554 #define ECB_PTRSIZE 8
555 typedef uint64_t uintptr_t;
556 typedef int64_t intptr_t;
557 #else
558 #define ECB_PTRSIZE 4
559 typedef uint32_t uintptr_t;
560 typedef int32_t intptr_t;
561 #endif
562#else
563 #include <inttypes.h>
564 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
565 #define ECB_PTRSIZE 8
566 #else
567 #define ECB_PTRSIZE 4
568 #endif
569#endif
570
571#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
572#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
573
574/* work around x32 idiocy by defining proper macros */
575#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
576 #if _ILP32
577 #define ECB_AMD64_X32 1
578 #else
579 #define ECB_AMD64 1
580 #endif
581#endif
582
583/* many compilers define _GNUC_ to some versions but then only implement
584 * what their idiot authors think are the "more important" extensions,
585 * causing enormous grief in return for some better fake benchmark numbers.
586 * or so.
587 * we try to detect these and simply assume they are not gcc - if they have
588 * an issue with that they should have done it right in the first place.
589 */
590#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
591 #define ECB_GCC_VERSION(major,minor) 0
592#else
593 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
594#endif
595
596#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
597
598#if __clang__ && defined __has_builtin
599 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
600#else
601 #define ECB_CLANG_BUILTIN(x) 0
602#endif
603
604#if __clang__ && defined __has_extension
605 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
606#else
607 #define ECB_CLANG_EXTENSION(x) 0
608#endif
609
610#define ECB_CPP (__cplusplus+0)
611#define ECB_CPP11 (__cplusplus >= 201103L)
612
613#if ECB_CPP
614 #define ECB_C 0
615 #define ECB_STDC_VERSION 0
616#else
617 #define ECB_C 1
618 #define ECB_STDC_VERSION __STDC_VERSION__
619#endif
620
621#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
622#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
623
624#if ECB_CPP
625 #define ECB_EXTERN_C extern "C"
626 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
627 #define ECB_EXTERN_C_END }
628#else
629 #define ECB_EXTERN_C extern
630 #define ECB_EXTERN_C_BEG
631 #define ECB_EXTERN_C_END
632#endif
633
634/*****************************************************************************/
635
636/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
637/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
638
639#if ECB_NO_THREADS
640 #define ECB_NO_SMP 1
641#endif
642
643#if ECB_NO_SMP
644 #define ECB_MEMORY_FENCE do { } while (0)
645#endif
646
647/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
648#if __xlC__ && ECB_CPP
649 #include <builtins.h>
650#endif
651
652#if 1400 <= _MSC_VER
653 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
654#endif
655
656#ifndef ECB_MEMORY_FENCE
657 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
658 #if __i386 || __i386__
659 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
660 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
661 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
662 #elif ECB_GCC_AMD64
663 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
664 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
665 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
666 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
667 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
668 #elif defined __ARM_ARCH_2__ \
669 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
670 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
671 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
672 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
673 || defined __ARM_ARCH_5TEJ__
674 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
675 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
676 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
677 || defined __ARM_ARCH_6T2__
678 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
679 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
680 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
681 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
682 #elif __aarch64__
683 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
684 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
685 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
686 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
687 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
688 #elif defined __s390__ || defined __s390x__
689 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
690 #elif defined __mips__
691 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
692 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
693 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
694 #elif defined __alpha__
695 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
696 #elif defined __hppa__
697 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
698 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
699 #elif defined __ia64__
700 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
701 #elif defined __m68k__
702 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
703 #elif defined __m88k__
704 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
705 #elif defined __sh__
706 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
707 #endif
708 #endif
709#endif
710
711#ifndef ECB_MEMORY_FENCE
712 #if ECB_GCC_VERSION(4,7)
713 /* see comment below (stdatomic.h) about the C11 memory model. */
714 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
715 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
716 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
717
718 #elif ECB_CLANG_EXTENSION(c_atomic)
719 /* see comment below (stdatomic.h) about the C11 memory model. */
720 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
721 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
722 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
723
724 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
725 #define ECB_MEMORY_FENCE __sync_synchronize ()
726 #elif _MSC_VER >= 1500 /* VC++ 2008 */
727 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
728 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
729 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
730 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
731 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
732 #elif _MSC_VER >= 1400 /* VC++ 2005 */
733 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
734 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
735 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
736 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
737 #elif defined _WIN32
738 #include <WinNT.h>
739 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
740 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
741 #include <mbarrier.h>
742 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
743 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
744 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
745 #elif __xlC__
746 #define ECB_MEMORY_FENCE __sync ()
747 #endif
748#endif
749
750#ifndef ECB_MEMORY_FENCE
751 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
752 /* we assume that these memory fences work on all variables/all memory accesses, */
753 /* not just C11 atomics and atomic accesses */
754 #include <stdatomic.h>
755 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
756 /* any fence other than seq_cst, which isn't very efficient for us. */
757 /* Why that is, we don't know - either the C11 memory model is quite useless */
758 /* for most usages, or gcc and clang have a bug */
759 /* I *currently* lean towards the latter, and inefficiently implement */
760 /* all three of ecb's fences as a seq_cst fence */
761 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
762 /* for all __atomic_thread_fence's except seq_cst */
763 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
764 #endif
765#endif
766
767#ifndef ECB_MEMORY_FENCE
768 #if !ECB_AVOID_PTHREADS
769 /*
770 * if you get undefined symbol references to pthread_mutex_lock,
771 * or failure to find pthread.h, then you should implement
772 * the ECB_MEMORY_FENCE operations for your cpu/compiler
773 * OR provide pthread.h and link against the posix thread library
774 * of your system.
775 */
776 #include <pthread.h>
777 #define ECB_NEEDS_PTHREADS 1
778 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
779
780 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
781 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
782 #endif
783#endif
784
785#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
786 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
787#endif
788
789#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
790 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
791#endif
792
793/*****************************************************************************/
794
795#if ECB_CPP
796 #define ecb_inline static inline
797#elif ECB_GCC_VERSION(2,5)
798 #define ecb_inline static __inline__
799#elif ECB_C99
800 #define ecb_inline static inline
801#else
802 #define ecb_inline static
803#endif
804
805#if ECB_GCC_VERSION(3,3)
806 #define ecb_restrict __restrict__
807#elif ECB_C99
808 #define ecb_restrict restrict
809#else
810 #define ecb_restrict
811#endif
812
813typedef int ecb_bool;
814
815#define ECB_CONCAT_(a, b) a ## b
816#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
817#define ECB_STRINGIFY_(a) # a
818#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
819#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
820
821#define ecb_function_ ecb_inline
822
823#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
824 #define ecb_attribute(attrlist) __attribute__ (attrlist)
825#else
826 #define ecb_attribute(attrlist)
827#endif
828
829#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
830 #define ecb_is_constant(expr) __builtin_constant_p (expr)
831#else
832 /* possible C11 impl for integral types
833 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
834 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
835
836 #define ecb_is_constant(expr) 0
837#endif
838
839#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
339# define expect(expr,value) __builtin_expect ((expr),(value)) 840 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
340# define noinline __attribute__ ((noinline))
341#else 841#else
342# define expect(expr,value) (expr) 842 #define ecb_expect(expr,value) (expr)
343# define noinline
344# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
345# define inline
346# endif 843#endif
347#endif
348 844
845#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
846 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
847#else
848 #define ecb_prefetch(addr,rw,locality)
849#endif
850
851/* no emulation for ecb_decltype */
852#if ECB_CPP11
853 // older implementations might have problems with decltype(x)::type, work around it
854 template<class T> struct ecb_decltype_t { typedef T type; };
855 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
856#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
857 #define ecb_decltype(x) __typeof__ (x)
858#endif
859
860#if _MSC_VER >= 1300
861 #define ecb_deprecated __declspec (deprecated)
862#else
863 #define ecb_deprecated ecb_attribute ((__deprecated__))
864#endif
865
866#if _MSC_VER >= 1500
867 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
868#elif ECB_GCC_VERSION(4,5)
869 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
870#else
871 #define ecb_deprecated_message(msg) ecb_deprecated
872#endif
873
874#if _MSC_VER >= 1400
875 #define ecb_noinline __declspec (noinline)
876#else
877 #define ecb_noinline ecb_attribute ((__noinline__))
878#endif
879
880#define ecb_unused ecb_attribute ((__unused__))
881#define ecb_const ecb_attribute ((__const__))
882#define ecb_pure ecb_attribute ((__pure__))
883
884#if ECB_C11 || __IBMC_NORETURN
885 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
886 #define ecb_noreturn _Noreturn
887#elif ECB_CPP11
888 #define ecb_noreturn [[noreturn]]
889#elif _MSC_VER >= 1200
890 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
891 #define ecb_noreturn __declspec (noreturn)
892#else
893 #define ecb_noreturn ecb_attribute ((__noreturn__))
894#endif
895
896#if ECB_GCC_VERSION(4,3)
897 #define ecb_artificial ecb_attribute ((__artificial__))
898 #define ecb_hot ecb_attribute ((__hot__))
899 #define ecb_cold ecb_attribute ((__cold__))
900#else
901 #define ecb_artificial
902 #define ecb_hot
903 #define ecb_cold
904#endif
905
906/* put around conditional expressions if you are very sure that the */
907/* expression is mostly true or mostly false. note that these return */
908/* booleans, not the expression. */
349#define expect_false(expr) expect ((expr) != 0, 0) 909#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
350#define expect_true(expr) expect ((expr) != 0, 1) 910#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
911/* for compatibility to the rest of the world */
912#define ecb_likely(expr) ecb_expect_true (expr)
913#define ecb_unlikely(expr) ecb_expect_false (expr)
914
915/* count trailing zero bits and count # of one bits */
916#if ECB_GCC_VERSION(3,4) \
917 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
918 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
919 && ECB_CLANG_BUILTIN(__builtin_popcount))
920 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
921 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
922 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
923 #define ecb_ctz32(x) __builtin_ctz (x)
924 #define ecb_ctz64(x) __builtin_ctzll (x)
925 #define ecb_popcount32(x) __builtin_popcount (x)
926 /* no popcountll */
927#else
928 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
929 ecb_function_ ecb_const int
930 ecb_ctz32 (uint32_t x)
931 {
932#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
933 unsigned long r;
934 _BitScanForward (&r, x);
935 return (int)r;
936#else
937 int r = 0;
938
939 x &= ~x + 1; /* this isolates the lowest bit */
940
941#if ECB_branchless_on_i386
942 r += !!(x & 0xaaaaaaaa) << 0;
943 r += !!(x & 0xcccccccc) << 1;
944 r += !!(x & 0xf0f0f0f0) << 2;
945 r += !!(x & 0xff00ff00) << 3;
946 r += !!(x & 0xffff0000) << 4;
947#else
948 if (x & 0xaaaaaaaa) r += 1;
949 if (x & 0xcccccccc) r += 2;
950 if (x & 0xf0f0f0f0) r += 4;
951 if (x & 0xff00ff00) r += 8;
952 if (x & 0xffff0000) r += 16;
953#endif
954
955 return r;
956#endif
957 }
958
959 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
960 ecb_function_ ecb_const int
961 ecb_ctz64 (uint64_t x)
962 {
963#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
964 unsigned long r;
965 _BitScanForward64 (&r, x);
966 return (int)r;
967#else
968 int shift = x & 0xffffffff ? 0 : 32;
969 return ecb_ctz32 (x >> shift) + shift;
970#endif
971 }
972
973 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
974 ecb_function_ ecb_const int
975 ecb_popcount32 (uint32_t x)
976 {
977 x -= (x >> 1) & 0x55555555;
978 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
979 x = ((x >> 4) + x) & 0x0f0f0f0f;
980 x *= 0x01010101;
981
982 return x >> 24;
983 }
984
985 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
986 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
987 {
988#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
989 unsigned long r;
990 _BitScanReverse (&r, x);
991 return (int)r;
992#else
993 int r = 0;
994
995 if (x >> 16) { x >>= 16; r += 16; }
996 if (x >> 8) { x >>= 8; r += 8; }
997 if (x >> 4) { x >>= 4; r += 4; }
998 if (x >> 2) { x >>= 2; r += 2; }
999 if (x >> 1) { r += 1; }
1000
1001 return r;
1002#endif
1003 }
1004
1005 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1006 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1007 {
1008#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1009 unsigned long r;
1010 _BitScanReverse64 (&r, x);
1011 return (int)r;
1012#else
1013 int r = 0;
1014
1015 if (x >> 32) { x >>= 32; r += 32; }
1016
1017 return r + ecb_ld32 (x);
1018#endif
1019 }
1020#endif
1021
1022ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1023ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1024ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1025ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1026
1027ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1028ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1029{
1030 return ( (x * 0x0802U & 0x22110U)
1031 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1032}
1033
1034ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1035ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1036{
1037 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1038 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1039 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1040 x = ( x >> 8 ) | ( x << 8);
1041
1042 return x;
1043}
1044
1045ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1046ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1047{
1048 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1049 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1050 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1051 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1052 x = ( x >> 16 ) | ( x << 16);
1053
1054 return x;
1055}
1056
1057/* popcount64 is only available on 64 bit cpus as gcc builtin */
1058/* so for this version we are lazy */
1059ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1060ecb_function_ ecb_const int
1061ecb_popcount64 (uint64_t x)
1062{
1063 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1064}
1065
1066ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1067ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1068ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1069ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1070ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1071ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1072ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1073ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1074
1075ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1076ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1077ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1078ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1079ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1080ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1081ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1082ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1083
1084#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1085 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1086 #define ecb_bswap16(x) __builtin_bswap16 (x)
1087 #else
1088 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1089 #endif
1090 #define ecb_bswap32(x) __builtin_bswap32 (x)
1091 #define ecb_bswap64(x) __builtin_bswap64 (x)
1092#elif _MSC_VER
1093 #include <stdlib.h>
1094 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1095 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1096 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1097#else
1098 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1099 ecb_function_ ecb_const uint16_t
1100 ecb_bswap16 (uint16_t x)
1101 {
1102 return ecb_rotl16 (x, 8);
1103 }
1104
1105 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1106 ecb_function_ ecb_const uint32_t
1107 ecb_bswap32 (uint32_t x)
1108 {
1109 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1110 }
1111
1112 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1113 ecb_function_ ecb_const uint64_t
1114 ecb_bswap64 (uint64_t x)
1115 {
1116 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1117 }
1118#endif
1119
1120#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1121 #define ecb_unreachable() __builtin_unreachable ()
1122#else
1123 /* this seems to work fine, but gcc always emits a warning for it :/ */
1124 ecb_inline ecb_noreturn void ecb_unreachable (void);
1125 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1126#endif
1127
1128/* try to tell the compiler that some condition is definitely true */
1129#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1130
1131ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1132ecb_inline ecb_const uint32_t
1133ecb_byteorder_helper (void)
1134{
1135 /* the union code still generates code under pressure in gcc, */
1136 /* but less than using pointers, and always seems to */
1137 /* successfully return a constant. */
1138 /* the reason why we have this horrible preprocessor mess */
1139 /* is to avoid it in all cases, at least on common architectures */
1140 /* or when using a recent enough gcc version (>= 4.6) */
1141#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1142 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1143 #define ECB_LITTLE_ENDIAN 1
1144 return 0x44332211;
1145#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1146 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1147 #define ECB_BIG_ENDIAN 1
1148 return 0x11223344;
1149#else
1150 union
1151 {
1152 uint8_t c[4];
1153 uint32_t u;
1154 } u = { 0x11, 0x22, 0x33, 0x44 };
1155 return u.u;
1156#endif
1157}
1158
1159ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1160ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1161ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1162ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1163
1164#if ECB_GCC_VERSION(3,0) || ECB_C99
1165 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1166#else
1167 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1168#endif
1169
1170#if ECB_CPP
1171 template<typename T>
1172 static inline T ecb_div_rd (T val, T div)
1173 {
1174 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1175 }
1176 template<typename T>
1177 static inline T ecb_div_ru (T val, T div)
1178 {
1179 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1180 }
1181#else
1182 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1183 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1184#endif
1185
1186#if ecb_cplusplus_does_not_suck
1187 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1188 template<typename T, int N>
1189 static inline int ecb_array_length (const T (&arr)[N])
1190 {
1191 return N;
1192 }
1193#else
1194 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1195#endif
1196
1197ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1198ecb_function_ ecb_const uint32_t
1199ecb_binary16_to_binary32 (uint32_t x)
1200{
1201 unsigned int s = (x & 0x8000) << (31 - 15);
1202 int e = (x >> 10) & 0x001f;
1203 unsigned int m = x & 0x03ff;
1204
1205 if (ecb_expect_false (e == 31))
1206 /* infinity or NaN */
1207 e = 255 - (127 - 15);
1208 else if (ecb_expect_false (!e))
1209 {
1210 if (ecb_expect_true (!m))
1211 /* zero, handled by code below by forcing e to 0 */
1212 e = 0 - (127 - 15);
1213 else
1214 {
1215 /* subnormal, renormalise */
1216 unsigned int s = 10 - ecb_ld32 (m);
1217
1218 m = (m << s) & 0x3ff; /* mask implicit bit */
1219 e -= s - 1;
1220 }
1221 }
1222
1223 /* e and m now are normalised, or zero, (or inf or nan) */
1224 e += 127 - 15;
1225
1226 return s | (e << 23) | (m << (23 - 10));
1227}
1228
1229ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1230ecb_function_ ecb_const uint16_t
1231ecb_binary32_to_binary16 (uint32_t x)
1232{
1233 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1234 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1235 unsigned int m = x & 0x007fffff;
1236
1237 x &= 0x7fffffff;
1238
1239 /* if it's within range of binary16 normals, use fast path */
1240 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1241 {
1242 /* mantissa round-to-even */
1243 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1244
1245 /* handle overflow */
1246 if (ecb_expect_false (m >= 0x00800000))
1247 {
1248 m >>= 1;
1249 e += 1;
1250 }
1251
1252 return s | (e << 10) | (m >> (23 - 10));
1253 }
1254
1255 /* handle large numbers and infinity */
1256 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1257 return s | 0x7c00;
1258
1259 /* handle zero, subnormals and small numbers */
1260 if (ecb_expect_true (x < 0x38800000))
1261 {
1262 /* zero */
1263 if (ecb_expect_true (!x))
1264 return s;
1265
1266 /* handle subnormals */
1267
1268 /* too small, will be zero */
1269 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1270 return s;
1271
1272 m |= 0x00800000; /* make implicit bit explicit */
1273
1274 /* very tricky - we need to round to the nearest e (+10) bit value */
1275 {
1276 unsigned int bits = 14 - e;
1277 unsigned int half = (1 << (bits - 1)) - 1;
1278 unsigned int even = (m >> bits) & 1;
1279
1280 /* if this overflows, we will end up with a normalised number */
1281 m = (m + half + even) >> bits;
1282 }
1283
1284 return s | m;
1285 }
1286
1287 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1288 m >>= 13;
1289
1290 return s | 0x7c00 | m | !m;
1291}
1292
1293/*******************************************************************************/
1294/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1295
1296/* basically, everything uses "ieee pure-endian" floating point numbers */
1297/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1298#if 0 \
1299 || __i386 || __i386__ \
1300 || ECB_GCC_AMD64 \
1301 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1302 || defined __s390__ || defined __s390x__ \
1303 || defined __mips__ \
1304 || defined __alpha__ \
1305 || defined __hppa__ \
1306 || defined __ia64__ \
1307 || defined __m68k__ \
1308 || defined __m88k__ \
1309 || defined __sh__ \
1310 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1311 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1312 || defined __aarch64__
1313 #define ECB_STDFP 1
1314 #include <string.h> /* for memcpy */
1315#else
1316 #define ECB_STDFP 0
1317#endif
1318
1319#ifndef ECB_NO_LIBM
1320
1321 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1322
1323 /* only the oldest of old doesn't have this one. solaris. */
1324 #ifdef INFINITY
1325 #define ECB_INFINITY INFINITY
1326 #else
1327 #define ECB_INFINITY HUGE_VAL
1328 #endif
1329
1330 #ifdef NAN
1331 #define ECB_NAN NAN
1332 #else
1333 #define ECB_NAN ECB_INFINITY
1334 #endif
1335
1336 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1337 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1338 #define ecb_frexpf(x,e) frexpf ((x), (e))
1339 #else
1340 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1341 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1342 #endif
1343
1344 /* convert a float to ieee single/binary32 */
1345 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1346 ecb_function_ ecb_const uint32_t
1347 ecb_float_to_binary32 (float x)
1348 {
1349 uint32_t r;
1350
1351 #if ECB_STDFP
1352 memcpy (&r, &x, 4);
1353 #else
1354 /* slow emulation, works for anything but -0 */
1355 uint32_t m;
1356 int e;
1357
1358 if (x == 0e0f ) return 0x00000000U;
1359 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1360 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1361 if (x != x ) return 0x7fbfffffU;
1362
1363 m = ecb_frexpf (x, &e) * 0x1000000U;
1364
1365 r = m & 0x80000000U;
1366
1367 if (r)
1368 m = -m;
1369
1370 if (e <= -126)
1371 {
1372 m &= 0xffffffU;
1373 m >>= (-125 - e);
1374 e = -126;
1375 }
1376
1377 r |= (e + 126) << 23;
1378 r |= m & 0x7fffffU;
1379 #endif
1380
1381 return r;
1382 }
1383
1384 /* converts an ieee single/binary32 to a float */
1385 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1386 ecb_function_ ecb_const float
1387 ecb_binary32_to_float (uint32_t x)
1388 {
1389 float r;
1390
1391 #if ECB_STDFP
1392 memcpy (&r, &x, 4);
1393 #else
1394 /* emulation, only works for normals and subnormals and +0 */
1395 int neg = x >> 31;
1396 int e = (x >> 23) & 0xffU;
1397
1398 x &= 0x7fffffU;
1399
1400 if (e)
1401 x |= 0x800000U;
1402 else
1403 e = 1;
1404
1405 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1406 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1407
1408 r = neg ? -r : r;
1409 #endif
1410
1411 return r;
1412 }
1413
1414 /* convert a double to ieee double/binary64 */
1415 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1416 ecb_function_ ecb_const uint64_t
1417 ecb_double_to_binary64 (double x)
1418 {
1419 uint64_t r;
1420
1421 #if ECB_STDFP
1422 memcpy (&r, &x, 8);
1423 #else
1424 /* slow emulation, works for anything but -0 */
1425 uint64_t m;
1426 int e;
1427
1428 if (x == 0e0 ) return 0x0000000000000000U;
1429 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1430 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1431 if (x != x ) return 0X7ff7ffffffffffffU;
1432
1433 m = frexp (x, &e) * 0x20000000000000U;
1434
1435 r = m & 0x8000000000000000;;
1436
1437 if (r)
1438 m = -m;
1439
1440 if (e <= -1022)
1441 {
1442 m &= 0x1fffffffffffffU;
1443 m >>= (-1021 - e);
1444 e = -1022;
1445 }
1446
1447 r |= ((uint64_t)(e + 1022)) << 52;
1448 r |= m & 0xfffffffffffffU;
1449 #endif
1450
1451 return r;
1452 }
1453
1454 /* converts an ieee double/binary64 to a double */
1455 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1456 ecb_function_ ecb_const double
1457 ecb_binary64_to_double (uint64_t x)
1458 {
1459 double r;
1460
1461 #if ECB_STDFP
1462 memcpy (&r, &x, 8);
1463 #else
1464 /* emulation, only works for normals and subnormals and +0 */
1465 int neg = x >> 63;
1466 int e = (x >> 52) & 0x7ffU;
1467
1468 x &= 0xfffffffffffffU;
1469
1470 if (e)
1471 x |= 0x10000000000000U;
1472 else
1473 e = 1;
1474
1475 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1476 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1477
1478 r = neg ? -r : r;
1479 #endif
1480
1481 return r;
1482 }
1483
1484 /* convert a float to ieee half/binary16 */
1485 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1486 ecb_function_ ecb_const uint16_t
1487 ecb_float_to_binary16 (float x)
1488 {
1489 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1490 }
1491
1492 /* convert an ieee half/binary16 to float */
1493 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1494 ecb_function_ ecb_const float
1495 ecb_binary16_to_float (uint16_t x)
1496 {
1497 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1498 }
1499
1500#endif
1501
1502#endif
1503
1504/* ECB.H END */
1505
1506#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1507/* if your architecture doesn't need memory fences, e.g. because it is
1508 * single-cpu/core, or if you use libev in a project that doesn't use libev
1509 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1510 * libev, in which cases the memory fences become nops.
1511 * alternatively, you can remove this #error and link against libpthread,
1512 * which will then provide the memory fences.
1513 */
1514# error "memory fences not defined for your architecture, please report"
1515#endif
1516
1517#ifndef ECB_MEMORY_FENCE
1518# define ECB_MEMORY_FENCE do { } while (0)
1519# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1520# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1521#endif
1522
1523#define expect_false(cond) ecb_expect_false (cond)
1524#define expect_true(cond) ecb_expect_true (cond)
1525#define noinline ecb_noinline
1526
351#define inline_size static inline 1527#define inline_size ecb_inline
352 1528
353#if EV_MINIMAL 1529#if EV_FEATURE_CODE
354# define inline_speed static noinline
355#else
356# define inline_speed static inline 1530# define inline_speed ecb_inline
1531#else
1532# define inline_speed noinline static
357#endif 1533#endif
358 1534
359#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1535#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1536
1537#if EV_MINPRI == EV_MAXPRI
1538# define ABSPRI(w) (((W)w), 0)
1539#else
360#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1540# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1541#endif
361 1542
362#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1543#define EMPTY /* required for microsofts broken pseudo-c compiler */
363#define EMPTY2(a,b) /* used to suppress some warnings */ 1544#define EMPTY2(a,b) /* used to suppress some warnings */
364 1545
365typedef ev_watcher *W; 1546typedef ev_watcher *W;
367typedef ev_watcher_time *WT; 1548typedef ev_watcher_time *WT;
368 1549
369#define ev_active(w) ((W)(w))->active 1550#define ev_active(w) ((W)(w))->active
370#define ev_at(w) ((WT)(w))->at 1551#define ev_at(w) ((WT)(w))->at
371 1552
1553#if EV_USE_REALTIME
1554/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1555/* giving it a reasonably high chance of working on typical architectures */
1556static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1557#endif
1558
372#if EV_USE_MONOTONIC 1559#if EV_USE_MONOTONIC
373/* sig_atomic_t is used to avoid per-thread variables or locking but still */
374/* giving it a reasonably high chance of working on typical architetcures */
375static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1560static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1561#endif
1562
1563#ifndef EV_FD_TO_WIN32_HANDLE
1564# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1565#endif
1566#ifndef EV_WIN32_HANDLE_TO_FD
1567# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1568#endif
1569#ifndef EV_WIN32_CLOSE_FD
1570# define EV_WIN32_CLOSE_FD(fd) close (fd)
376#endif 1571#endif
377 1572
378#ifdef _WIN32 1573#ifdef _WIN32
379# include "ev_win32.c" 1574# include "ev_win32.c"
380#endif 1575#endif
381 1576
382/*****************************************************************************/ 1577/*****************************************************************************/
383 1578
1579/* define a suitable floor function (only used by periodics atm) */
1580
1581#if EV_USE_FLOOR
1582# include <math.h>
1583# define ev_floor(v) floor (v)
1584#else
1585
1586#include <float.h>
1587
1588/* a floor() replacement function, should be independent of ev_tstamp type */
1589noinline
1590static ev_tstamp
1591ev_floor (ev_tstamp v)
1592{
1593 /* the choice of shift factor is not terribly important */
1594#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1595 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1596#else
1597 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1598#endif
1599
1600 /* argument too large for an unsigned long? */
1601 if (expect_false (v >= shift))
1602 {
1603 ev_tstamp f;
1604
1605 if (v == v - 1.)
1606 return v; /* very large number */
1607
1608 f = shift * ev_floor (v * (1. / shift));
1609 return f + ev_floor (v - f);
1610 }
1611
1612 /* special treatment for negative args? */
1613 if (expect_false (v < 0.))
1614 {
1615 ev_tstamp f = -ev_floor (-v);
1616
1617 return f - (f == v ? 0 : 1);
1618 }
1619
1620 /* fits into an unsigned long */
1621 return (unsigned long)v;
1622}
1623
1624#endif
1625
1626/*****************************************************************************/
1627
1628#ifdef __linux
1629# include <sys/utsname.h>
1630#endif
1631
1632noinline ecb_cold
1633static unsigned int
1634ev_linux_version (void)
1635{
1636#ifdef __linux
1637 unsigned int v = 0;
1638 struct utsname buf;
1639 int i;
1640 char *p = buf.release;
1641
1642 if (uname (&buf))
1643 return 0;
1644
1645 for (i = 3+1; --i; )
1646 {
1647 unsigned int c = 0;
1648
1649 for (;;)
1650 {
1651 if (*p >= '0' && *p <= '9')
1652 c = c * 10 + *p++ - '0';
1653 else
1654 {
1655 p += *p == '.';
1656 break;
1657 }
1658 }
1659
1660 v = (v << 8) | c;
1661 }
1662
1663 return v;
1664#else
1665 return 0;
1666#endif
1667}
1668
1669/*****************************************************************************/
1670
1671#if EV_AVOID_STDIO
1672noinline ecb_cold
1673static void
1674ev_printerr (const char *msg)
1675{
1676 write (STDERR_FILENO, msg, strlen (msg));
1677}
1678#endif
1679
384static void (*syserr_cb)(const char *msg); 1680static void (*syserr_cb)(const char *msg) EV_THROW;
385 1681
1682ecb_cold
386void 1683void
387ev_set_syserr_cb (void (*cb)(const char *msg)) 1684ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
388{ 1685{
389 syserr_cb = cb; 1686 syserr_cb = cb;
390} 1687}
391 1688
392static void noinline 1689noinline ecb_cold
1690static void
393syserr (const char *msg) 1691ev_syserr (const char *msg)
394{ 1692{
395 if (!msg) 1693 if (!msg)
396 msg = "(libev) system error"; 1694 msg = "(libev) system error";
397 1695
398 if (syserr_cb) 1696 if (syserr_cb)
399 syserr_cb (msg); 1697 syserr_cb (msg);
400 else 1698 else
401 { 1699 {
1700#if EV_AVOID_STDIO
1701 ev_printerr (msg);
1702 ev_printerr (": ");
1703 ev_printerr (strerror (errno));
1704 ev_printerr ("\n");
1705#else
402 perror (msg); 1706 perror (msg);
1707#endif
403 abort (); 1708 abort ();
404 } 1709 }
405} 1710}
406 1711
407static void * 1712static void *
408ev_realloc_emul (void *ptr, long size) 1713ev_realloc_emul (void *ptr, long size) EV_THROW
409{ 1714{
410 /* some systems, notably openbsd and darwin, fail to properly 1715 /* some systems, notably openbsd and darwin, fail to properly
411 * implement realloc (x, 0) (as required by both ansi c-98 and 1716 * implement realloc (x, 0) (as required by both ansi c-89 and
412 * the single unix specification, so work around them here. 1717 * the single unix specification, so work around them here.
1718 * recently, also (at least) fedora and debian started breaking it,
1719 * despite documenting it otherwise.
413 */ 1720 */
414 1721
415 if (size) 1722 if (size)
416 return realloc (ptr, size); 1723 return realloc (ptr, size);
417 1724
418 free (ptr); 1725 free (ptr);
419 return 0; 1726 return 0;
420} 1727}
421 1728
422static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1729static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
423 1730
1731ecb_cold
424void 1732void
425ev_set_allocator (void *(*cb)(void *ptr, long size)) 1733ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
426{ 1734{
427 alloc = cb; 1735 alloc = cb;
428} 1736}
429 1737
430inline_speed void * 1738inline_speed void *
432{ 1740{
433 ptr = alloc (ptr, size); 1741 ptr = alloc (ptr, size);
434 1742
435 if (!ptr && size) 1743 if (!ptr && size)
436 { 1744 {
1745#if EV_AVOID_STDIO
1746 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1747#else
437 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1748 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1749#endif
438 abort (); 1750 abort ();
439 } 1751 }
440 1752
441 return ptr; 1753 return ptr;
442} 1754}
444#define ev_malloc(size) ev_realloc (0, (size)) 1756#define ev_malloc(size) ev_realloc (0, (size))
445#define ev_free(ptr) ev_realloc ((ptr), 0) 1757#define ev_free(ptr) ev_realloc ((ptr), 0)
446 1758
447/*****************************************************************************/ 1759/*****************************************************************************/
448 1760
1761/* set in reify when reification needed */
1762#define EV_ANFD_REIFY 1
1763
1764/* file descriptor info structure */
449typedef struct 1765typedef struct
450{ 1766{
451 WL head; 1767 WL head;
452 unsigned char events; 1768 unsigned char events; /* the events watched for */
1769 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1770 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
453 unsigned char reify; 1771 unsigned char unused;
1772#if EV_USE_EPOLL
1773 unsigned int egen; /* generation counter to counter epoll bugs */
1774#endif
454#if EV_SELECT_IS_WINSOCKET 1775#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
455 SOCKET handle; 1776 SOCKET handle;
456#endif 1777#endif
1778#if EV_USE_IOCP
1779 OVERLAPPED or, ow;
1780#endif
457} ANFD; 1781} ANFD;
458 1782
1783/* stores the pending event set for a given watcher */
459typedef struct 1784typedef struct
460{ 1785{
461 W w; 1786 W w;
462 int events; 1787 int events; /* the pending event set for the given watcher */
463} ANPENDING; 1788} ANPENDING;
464 1789
465#if EV_USE_INOTIFY 1790#if EV_USE_INOTIFY
466/* hash table entry per inotify-id */ 1791/* hash table entry per inotify-id */
467typedef struct 1792typedef struct
470} ANFS; 1795} ANFS;
471#endif 1796#endif
472 1797
473/* Heap Entry */ 1798/* Heap Entry */
474#if EV_HEAP_CACHE_AT 1799#if EV_HEAP_CACHE_AT
1800 /* a heap element */
475 typedef struct { 1801 typedef struct {
476 ev_tstamp at; 1802 ev_tstamp at;
477 WT w; 1803 WT w;
478 } ANHE; 1804 } ANHE;
479 1805
480 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1806 #define ANHE_w(he) (he).w /* access watcher, read-write */
481 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1807 #define ANHE_at(he) (he).at /* access cached at, read-only */
482 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 1808 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
483#else 1809#else
1810 /* a heap element */
484 typedef WT ANHE; 1811 typedef WT ANHE;
485 1812
486 #define ANHE_w(he) (he) 1813 #define ANHE_w(he) (he)
487 #define ANHE_at(he) (he)->at 1814 #define ANHE_at(he) (he)->at
488 #define ANHE_at_cache(he) 1815 #define ANHE_at_cache(he)
499 #undef VAR 1826 #undef VAR
500 }; 1827 };
501 #include "ev_wrap.h" 1828 #include "ev_wrap.h"
502 1829
503 static struct ev_loop default_loop_struct; 1830 static struct ev_loop default_loop_struct;
504 struct ev_loop *ev_default_loop_ptr; 1831 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
505 1832
506#else 1833#else
507 1834
508 ev_tstamp ev_rt_now; 1835 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
509 #define VAR(name,decl) static decl; 1836 #define VAR(name,decl) static decl;
510 #include "ev_vars.h" 1837 #include "ev_vars.h"
511 #undef VAR 1838 #undef VAR
512 1839
513 static int ev_default_loop_ptr; 1840 static int ev_default_loop_ptr;
514 1841
515#endif 1842#endif
516 1843
1844#if EV_FEATURE_API
1845# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1846# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1847# define EV_INVOKE_PENDING invoke_cb (EV_A)
1848#else
1849# define EV_RELEASE_CB (void)0
1850# define EV_ACQUIRE_CB (void)0
1851# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1852#endif
1853
1854#define EVBREAK_RECURSE 0x80
1855
517/*****************************************************************************/ 1856/*****************************************************************************/
518 1857
1858#ifndef EV_HAVE_EV_TIME
519ev_tstamp 1859ev_tstamp
520ev_time (void) 1860ev_time (void) EV_THROW
521{ 1861{
522#if EV_USE_REALTIME 1862#if EV_USE_REALTIME
1863 if (expect_true (have_realtime))
1864 {
523 struct timespec ts; 1865 struct timespec ts;
524 clock_gettime (CLOCK_REALTIME, &ts); 1866 clock_gettime (CLOCK_REALTIME, &ts);
525 return ts.tv_sec + ts.tv_nsec * 1e-9; 1867 return ts.tv_sec + ts.tv_nsec * 1e-9;
526#else 1868 }
1869#endif
1870
527 struct timeval tv; 1871 struct timeval tv;
528 gettimeofday (&tv, 0); 1872 gettimeofday (&tv, 0);
529 return tv.tv_sec + tv.tv_usec * 1e-6; 1873 return tv.tv_sec + tv.tv_usec * 1e-6;
530#endif
531} 1874}
1875#endif
532 1876
533ev_tstamp inline_size 1877inline_size ev_tstamp
534get_clock (void) 1878get_clock (void)
535{ 1879{
536#if EV_USE_MONOTONIC 1880#if EV_USE_MONOTONIC
537 if (expect_true (have_monotonic)) 1881 if (expect_true (have_monotonic))
538 { 1882 {
545 return ev_time (); 1889 return ev_time ();
546} 1890}
547 1891
548#if EV_MULTIPLICITY 1892#if EV_MULTIPLICITY
549ev_tstamp 1893ev_tstamp
550ev_now (EV_P) 1894ev_now (EV_P) EV_THROW
551{ 1895{
552 return ev_rt_now; 1896 return ev_rt_now;
553} 1897}
554#endif 1898#endif
555 1899
556void 1900void
557ev_sleep (ev_tstamp delay) 1901ev_sleep (ev_tstamp delay) EV_THROW
558{ 1902{
559 if (delay > 0.) 1903 if (delay > 0.)
560 { 1904 {
561#if EV_USE_NANOSLEEP 1905#if EV_USE_NANOSLEEP
562 struct timespec ts; 1906 struct timespec ts;
563 1907
564 ts.tv_sec = (time_t)delay; 1908 EV_TS_SET (ts, delay);
565 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
566
567 nanosleep (&ts, 0); 1909 nanosleep (&ts, 0);
568#elif defined(_WIN32) 1910#elif defined _WIN32
569 Sleep ((unsigned long)(delay * 1e3)); 1911 Sleep ((unsigned long)(delay * 1e3));
570#else 1912#else
571 struct timeval tv; 1913 struct timeval tv;
572 1914
573 tv.tv_sec = (time_t)delay;
574 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
575
576 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 1915 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
577 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 1916 /* something not guaranteed by newer posix versions, but guaranteed */
578 /* by older ones */ 1917 /* by older ones */
1918 EV_TV_SET (tv, delay);
579 select (0, 0, 0, 0, &tv); 1919 select (0, 0, 0, 0, &tv);
580#endif 1920#endif
581 } 1921 }
582} 1922}
583 1923
584/*****************************************************************************/ 1924/*****************************************************************************/
585 1925
586#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1926#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
587 1927
588int inline_size 1928/* find a suitable new size for the given array, */
1929/* hopefully by rounding to a nice-to-malloc size */
1930inline_size int
589array_nextsize (int elem, int cur, int cnt) 1931array_nextsize (int elem, int cur, int cnt)
590{ 1932{
591 int ncur = cur + 1; 1933 int ncur = cur + 1;
592 1934
593 do 1935 do
594 ncur <<= 1; 1936 ncur <<= 1;
595 while (cnt > ncur); 1937 while (cnt > ncur);
596 1938
597 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1939 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
598 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1940 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
599 { 1941 {
600 ncur *= elem; 1942 ncur *= elem;
601 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1943 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
602 ncur = ncur - sizeof (void *) * 4; 1944 ncur = ncur - sizeof (void *) * 4;
604 } 1946 }
605 1947
606 return ncur; 1948 return ncur;
607} 1949}
608 1950
609static noinline void * 1951noinline ecb_cold
1952static void *
610array_realloc (int elem, void *base, int *cur, int cnt) 1953array_realloc (int elem, void *base, int *cur, int cnt)
611{ 1954{
612 *cur = array_nextsize (elem, *cur, cnt); 1955 *cur = array_nextsize (elem, *cur, cnt);
613 return ev_realloc (base, elem * *cur); 1956 return ev_realloc (base, elem * *cur);
614} 1957}
1958
1959#define array_init_zero(base,count) \
1960 memset ((void *)(base), 0, sizeof (*(base)) * (count))
615 1961
616#define array_needsize(type,base,cur,cnt,init) \ 1962#define array_needsize(type,base,cur,cnt,init) \
617 if (expect_false ((cnt) > (cur))) \ 1963 if (expect_false ((cnt) > (cur))) \
618 { \ 1964 { \
619 int ocur_ = (cur); \ 1965 ecb_unused int ocur_ = (cur); \
620 (base) = (type *)array_realloc \ 1966 (base) = (type *)array_realloc \
621 (sizeof (type), (base), &(cur), (cnt)); \ 1967 (sizeof (type), (base), &(cur), (cnt)); \
622 init ((base) + (ocur_), (cur) - ocur_); \ 1968 init ((base) + (ocur_), (cur) - ocur_); \
623 } 1969 }
624 1970
631 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1977 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
632 } 1978 }
633#endif 1979#endif
634 1980
635#define array_free(stem, idx) \ 1981#define array_free(stem, idx) \
636 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1982 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
637 1983
638/*****************************************************************************/ 1984/*****************************************************************************/
639 1985
1986/* dummy callback for pending events */
640void noinline 1987noinline
1988static void
1989pendingcb (EV_P_ ev_prepare *w, int revents)
1990{
1991}
1992
1993noinline
1994void
641ev_feed_event (EV_P_ void *w, int revents) 1995ev_feed_event (EV_P_ void *w, int revents) EV_THROW
642{ 1996{
643 W w_ = (W)w; 1997 W w_ = (W)w;
644 int pri = ABSPRI (w_); 1998 int pri = ABSPRI (w_);
645 1999
646 if (expect_false (w_->pending)) 2000 if (expect_false (w_->pending))
650 w_->pending = ++pendingcnt [pri]; 2004 w_->pending = ++pendingcnt [pri];
651 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 2005 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
652 pendings [pri][w_->pending - 1].w = w_; 2006 pendings [pri][w_->pending - 1].w = w_;
653 pendings [pri][w_->pending - 1].events = revents; 2007 pendings [pri][w_->pending - 1].events = revents;
654 } 2008 }
655}
656 2009
657void inline_speed 2010 pendingpri = NUMPRI - 1;
2011}
2012
2013inline_speed void
2014feed_reverse (EV_P_ W w)
2015{
2016 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
2017 rfeeds [rfeedcnt++] = w;
2018}
2019
2020inline_size void
2021feed_reverse_done (EV_P_ int revents)
2022{
2023 do
2024 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2025 while (rfeedcnt);
2026}
2027
2028inline_speed void
658queue_events (EV_P_ W *events, int eventcnt, int type) 2029queue_events (EV_P_ W *events, int eventcnt, int type)
659{ 2030{
660 int i; 2031 int i;
661 2032
662 for (i = 0; i < eventcnt; ++i) 2033 for (i = 0; i < eventcnt; ++i)
663 ev_feed_event (EV_A_ events [i], type); 2034 ev_feed_event (EV_A_ events [i], type);
664} 2035}
665 2036
666/*****************************************************************************/ 2037/*****************************************************************************/
667 2038
668void inline_size 2039inline_speed void
669anfds_init (ANFD *base, int count)
670{
671 while (count--)
672 {
673 base->head = 0;
674 base->events = EV_NONE;
675 base->reify = 0;
676
677 ++base;
678 }
679}
680
681void inline_speed
682fd_event (EV_P_ int fd, int revents) 2040fd_event_nocheck (EV_P_ int fd, int revents)
683{ 2041{
684 ANFD *anfd = anfds + fd; 2042 ANFD *anfd = anfds + fd;
685 ev_io *w; 2043 ev_io *w;
686 2044
687 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2045 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
691 if (ev) 2049 if (ev)
692 ev_feed_event (EV_A_ (W)w, ev); 2050 ev_feed_event (EV_A_ (W)w, ev);
693 } 2051 }
694} 2052}
695 2053
2054/* do not submit kernel events for fds that have reify set */
2055/* because that means they changed while we were polling for new events */
2056inline_speed void
2057fd_event (EV_P_ int fd, int revents)
2058{
2059 ANFD *anfd = anfds + fd;
2060
2061 if (expect_true (!anfd->reify))
2062 fd_event_nocheck (EV_A_ fd, revents);
2063}
2064
696void 2065void
697ev_feed_fd_event (EV_P_ int fd, int revents) 2066ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
698{ 2067{
699 if (fd >= 0 && fd < anfdmax) 2068 if (fd >= 0 && fd < anfdmax)
700 fd_event (EV_A_ fd, revents); 2069 fd_event_nocheck (EV_A_ fd, revents);
701} 2070}
702 2071
703void inline_size 2072/* make sure the external fd watch events are in-sync */
2073/* with the kernel/libev internal state */
2074inline_size void
704fd_reify (EV_P) 2075fd_reify (EV_P)
705{ 2076{
706 int i; 2077 int i;
2078
2079#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2080 for (i = 0; i < fdchangecnt; ++i)
2081 {
2082 int fd = fdchanges [i];
2083 ANFD *anfd = anfds + fd;
2084
2085 if (anfd->reify & EV__IOFDSET && anfd->head)
2086 {
2087 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2088
2089 if (handle != anfd->handle)
2090 {
2091 unsigned long arg;
2092
2093 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2094
2095 /* handle changed, but fd didn't - we need to do it in two steps */
2096 backend_modify (EV_A_ fd, anfd->events, 0);
2097 anfd->events = 0;
2098 anfd->handle = handle;
2099 }
2100 }
2101 }
2102#endif
707 2103
708 for (i = 0; i < fdchangecnt; ++i) 2104 for (i = 0; i < fdchangecnt; ++i)
709 { 2105 {
710 int fd = fdchanges [i]; 2106 int fd = fdchanges [i];
711 ANFD *anfd = anfds + fd; 2107 ANFD *anfd = anfds + fd;
712 ev_io *w; 2108 ev_io *w;
713 2109
714 unsigned char events = 0; 2110 unsigned char o_events = anfd->events;
2111 unsigned char o_reify = anfd->reify;
715 2112
716 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2113 anfd->reify = 0;
717 events |= (unsigned char)w->events;
718 2114
719#if EV_SELECT_IS_WINSOCKET 2115 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
720 if (events)
721 { 2116 {
722 unsigned long arg; 2117 anfd->events = 0;
723 #ifdef EV_FD_TO_WIN32_HANDLE 2118
724 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 2119 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
725 #else 2120 anfd->events |= (unsigned char)w->events;
726 anfd->handle = _get_osfhandle (fd); 2121
727 #endif 2122 if (o_events != anfd->events)
728 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 2123 o_reify = EV__IOFDSET; /* actually |= */
729 } 2124 }
730#endif
731 2125
732 { 2126 if (o_reify & EV__IOFDSET)
733 unsigned char o_events = anfd->events;
734 unsigned char o_reify = anfd->reify;
735
736 anfd->reify = 0;
737 anfd->events = events;
738
739 if (o_events != events || o_reify & EV_IOFDSET)
740 backend_modify (EV_A_ fd, o_events, events); 2127 backend_modify (EV_A_ fd, o_events, anfd->events);
741 }
742 } 2128 }
743 2129
744 fdchangecnt = 0; 2130 fdchangecnt = 0;
745} 2131}
746 2132
2133/* something about the given fd changed */
747void inline_size 2134inline_size
2135void
748fd_change (EV_P_ int fd, int flags) 2136fd_change (EV_P_ int fd, int flags)
749{ 2137{
750 unsigned char reify = anfds [fd].reify; 2138 unsigned char reify = anfds [fd].reify;
751 anfds [fd].reify |= flags; 2139 anfds [fd].reify |= flags;
752 2140
756 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2144 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
757 fdchanges [fdchangecnt - 1] = fd; 2145 fdchanges [fdchangecnt - 1] = fd;
758 } 2146 }
759} 2147}
760 2148
761void inline_speed 2149/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2150inline_speed ecb_cold void
762fd_kill (EV_P_ int fd) 2151fd_kill (EV_P_ int fd)
763{ 2152{
764 ev_io *w; 2153 ev_io *w;
765 2154
766 while ((w = (ev_io *)anfds [fd].head)) 2155 while ((w = (ev_io *)anfds [fd].head))
768 ev_io_stop (EV_A_ w); 2157 ev_io_stop (EV_A_ w);
769 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2158 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
770 } 2159 }
771} 2160}
772 2161
773int inline_size 2162/* check whether the given fd is actually valid, for error recovery */
2163inline_size ecb_cold int
774fd_valid (int fd) 2164fd_valid (int fd)
775{ 2165{
776#ifdef _WIN32 2166#ifdef _WIN32
777 return _get_osfhandle (fd) != -1; 2167 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
778#else 2168#else
779 return fcntl (fd, F_GETFD) != -1; 2169 return fcntl (fd, F_GETFD) != -1;
780#endif 2170#endif
781} 2171}
782 2172
783/* called on EBADF to verify fds */ 2173/* called on EBADF to verify fds */
784static void noinline 2174noinline ecb_cold
2175static void
785fd_ebadf (EV_P) 2176fd_ebadf (EV_P)
786{ 2177{
787 int fd; 2178 int fd;
788 2179
789 for (fd = 0; fd < anfdmax; ++fd) 2180 for (fd = 0; fd < anfdmax; ++fd)
791 if (!fd_valid (fd) && errno == EBADF) 2182 if (!fd_valid (fd) && errno == EBADF)
792 fd_kill (EV_A_ fd); 2183 fd_kill (EV_A_ fd);
793} 2184}
794 2185
795/* called on ENOMEM in select/poll to kill some fds and retry */ 2186/* called on ENOMEM in select/poll to kill some fds and retry */
796static void noinline 2187noinline ecb_cold
2188static void
797fd_enomem (EV_P) 2189fd_enomem (EV_P)
798{ 2190{
799 int fd; 2191 int fd;
800 2192
801 for (fd = anfdmax; fd--; ) 2193 for (fd = anfdmax; fd--; )
802 if (anfds [fd].events) 2194 if (anfds [fd].events)
803 { 2195 {
804 fd_kill (EV_A_ fd); 2196 fd_kill (EV_A_ fd);
805 return; 2197 break;
806 } 2198 }
807} 2199}
808 2200
809/* usually called after fork if backend needs to re-arm all fds from scratch */ 2201/* usually called after fork if backend needs to re-arm all fds from scratch */
810static void noinline 2202noinline
2203static void
811fd_rearm_all (EV_P) 2204fd_rearm_all (EV_P)
812{ 2205{
813 int fd; 2206 int fd;
814 2207
815 for (fd = 0; fd < anfdmax; ++fd) 2208 for (fd = 0; fd < anfdmax; ++fd)
816 if (anfds [fd].events) 2209 if (anfds [fd].events)
817 { 2210 {
818 anfds [fd].events = 0; 2211 anfds [fd].events = 0;
2212 anfds [fd].emask = 0;
819 fd_change (EV_A_ fd, EV_IOFDSET | 1); 2213 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
820 } 2214 }
821} 2215}
822 2216
2217/* used to prepare libev internal fd's */
2218/* this is not fork-safe */
2219inline_speed void
2220fd_intern (int fd)
2221{
2222#ifdef _WIN32
2223 unsigned long arg = 1;
2224 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2225#else
2226 fcntl (fd, F_SETFD, FD_CLOEXEC);
2227 fcntl (fd, F_SETFL, O_NONBLOCK);
2228#endif
2229}
2230
823/*****************************************************************************/ 2231/*****************************************************************************/
824 2232
825/* 2233/*
826 * the heap functions want a real array index. array index 0 uis guaranteed to not 2234 * the heap functions want a real array index. array index 0 is guaranteed to not
827 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 2235 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
828 * the branching factor of the d-tree. 2236 * the branching factor of the d-tree.
829 */ 2237 */
830 2238
831/* 2239/*
840#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 2248#define HEAP0 (DHEAP - 1) /* index of first element in heap */
841#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 2249#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
842#define UPHEAP_DONE(p,k) ((p) == (k)) 2250#define UPHEAP_DONE(p,k) ((p) == (k))
843 2251
844/* away from the root */ 2252/* away from the root */
845void inline_speed 2253inline_speed void
846downheap (ANHE *heap, int N, int k) 2254downheap (ANHE *heap, int N, int k)
847{ 2255{
848 ANHE he = heap [k]; 2256 ANHE he = heap [k];
849 ANHE *E = heap + N + HEAP0; 2257 ANHE *E = heap + N + HEAP0;
850 2258
890#define HEAP0 1 2298#define HEAP0 1
891#define HPARENT(k) ((k) >> 1) 2299#define HPARENT(k) ((k) >> 1)
892#define UPHEAP_DONE(p,k) (!(p)) 2300#define UPHEAP_DONE(p,k) (!(p))
893 2301
894/* away from the root */ 2302/* away from the root */
895void inline_speed 2303inline_speed void
896downheap (ANHE *heap, int N, int k) 2304downheap (ANHE *heap, int N, int k)
897{ 2305{
898 ANHE he = heap [k]; 2306 ANHE he = heap [k];
899 2307
900 for (;;) 2308 for (;;)
901 { 2309 {
902 int c = k << 1; 2310 int c = k << 1;
903 2311
904 if (c > N + HEAP0 - 1) 2312 if (c >= N + HEAP0)
905 break; 2313 break;
906 2314
907 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 2315 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
908 ? 1 : 0; 2316 ? 1 : 0;
909 2317
920 ev_active (ANHE_w (he)) = k; 2328 ev_active (ANHE_w (he)) = k;
921} 2329}
922#endif 2330#endif
923 2331
924/* towards the root */ 2332/* towards the root */
925void inline_speed 2333inline_speed void
926upheap (ANHE *heap, int k) 2334upheap (ANHE *heap, int k)
927{ 2335{
928 ANHE he = heap [k]; 2336 ANHE he = heap [k];
929 2337
930 for (;;) 2338 for (;;)
941 2349
942 heap [k] = he; 2350 heap [k] = he;
943 ev_active (ANHE_w (he)) = k; 2351 ev_active (ANHE_w (he)) = k;
944} 2352}
945 2353
946void inline_size 2354/* move an element suitably so it is in a correct place */
2355inline_size void
947adjustheap (ANHE *heap, int N, int k) 2356adjustheap (ANHE *heap, int N, int k)
948{ 2357{
949 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 2358 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
950 upheap (heap, k); 2359 upheap (heap, k);
951 else 2360 else
952 downheap (heap, N, k); 2361 downheap (heap, N, k);
953} 2362}
954 2363
955/* rebuild the heap: this function is used only once and executed rarely */ 2364/* rebuild the heap: this function is used only once and executed rarely */
956void inline_size 2365inline_size void
957reheap (ANHE *heap, int N) 2366reheap (ANHE *heap, int N)
958{ 2367{
959 int i; 2368 int i;
960 2369
961 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 2370 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
964 upheap (heap, i + HEAP0); 2373 upheap (heap, i + HEAP0);
965} 2374}
966 2375
967/*****************************************************************************/ 2376/*****************************************************************************/
968 2377
2378/* associate signal watchers to a signal signal */
969typedef struct 2379typedef struct
970{ 2380{
2381 EV_ATOMIC_T pending;
2382#if EV_MULTIPLICITY
2383 EV_P;
2384#endif
971 WL head; 2385 WL head;
972 EV_ATOMIC_T gotsig;
973} ANSIG; 2386} ANSIG;
974 2387
975static ANSIG *signals; 2388static ANSIG signals [EV_NSIG - 1];
976static int signalmax;
977
978static EV_ATOMIC_T gotsig;
979
980void inline_size
981signals_init (ANSIG *base, int count)
982{
983 while (count--)
984 {
985 base->head = 0;
986 base->gotsig = 0;
987
988 ++base;
989 }
990}
991 2389
992/*****************************************************************************/ 2390/*****************************************************************************/
993 2391
994void inline_speed 2392#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
995fd_intern (int fd)
996{
997#ifdef _WIN32
998 unsigned long arg = 1;
999 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1000#else
1001 fcntl (fd, F_SETFD, FD_CLOEXEC);
1002 fcntl (fd, F_SETFL, O_NONBLOCK);
1003#endif
1004}
1005 2393
1006static void noinline 2394noinline ecb_cold
2395static void
1007evpipe_init (EV_P) 2396evpipe_init (EV_P)
1008{ 2397{
1009 if (!ev_is_active (&pipeev)) 2398 if (!ev_is_active (&pipe_w))
2399 {
2400 int fds [2];
2401
2402# if EV_USE_EVENTFD
2403 fds [0] = -1;
2404 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2405 if (fds [1] < 0 && errno == EINVAL)
2406 fds [1] = eventfd (0, 0);
2407
2408 if (fds [1] < 0)
2409# endif
2410 {
2411 while (pipe (fds))
2412 ev_syserr ("(libev) error creating signal/async pipe");
2413
2414 fd_intern (fds [0]);
2415 }
2416
2417 evpipe [0] = fds [0];
2418
2419 if (evpipe [1] < 0)
2420 evpipe [1] = fds [1]; /* first call, set write fd */
2421 else
2422 {
2423 /* on subsequent calls, do not change evpipe [1] */
2424 /* so that evpipe_write can always rely on its value. */
2425 /* this branch does not do anything sensible on windows, */
2426 /* so must not be executed on windows */
2427
2428 dup2 (fds [1], evpipe [1]);
2429 close (fds [1]);
2430 }
2431
2432 fd_intern (evpipe [1]);
2433
2434 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2435 ev_io_start (EV_A_ &pipe_w);
2436 ev_unref (EV_A); /* watcher should not keep loop alive */
1010 { 2437 }
2438}
2439
2440inline_speed void
2441evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2442{
2443 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2444
2445 if (expect_true (*flag))
2446 return;
2447
2448 *flag = 1;
2449 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2450
2451 pipe_write_skipped = 1;
2452
2453 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2454
2455 if (pipe_write_wanted)
2456 {
2457 int old_errno;
2458
2459 pipe_write_skipped = 0;
2460 ECB_MEMORY_FENCE_RELEASE;
2461
2462 old_errno = errno; /* save errno because write will clobber it */
2463
1011#if EV_USE_EVENTFD 2464#if EV_USE_EVENTFD
1012 if ((evfd = eventfd (0, 0)) >= 0) 2465 if (evpipe [0] < 0)
1013 { 2466 {
1014 evpipe [0] = -1; 2467 uint64_t counter = 1;
1015 fd_intern (evfd); 2468 write (evpipe [1], &counter, sizeof (uint64_t));
1016 ev_io_set (&pipeev, evfd, EV_READ);
1017 } 2469 }
1018 else 2470 else
1019#endif 2471#endif
1020 { 2472 {
1021 while (pipe (evpipe)) 2473#ifdef _WIN32
1022 syserr ("(libev) error creating signal/async pipe"); 2474 WSABUF buf;
1023 2475 DWORD sent;
1024 fd_intern (evpipe [0]); 2476 buf.buf = &buf;
1025 fd_intern (evpipe [1]); 2477 buf.len = 1;
1026 ev_io_set (&pipeev, evpipe [0], EV_READ); 2478 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2479#else
2480 write (evpipe [1], &(evpipe [1]), 1);
2481#endif
1027 } 2482 }
1028 2483
1029 ev_io_start (EV_A_ &pipeev); 2484 errno = old_errno;
1030 ev_unref (EV_A); /* watcher should not keep loop alive */
1031 }
1032}
1033
1034void inline_size
1035evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1036{
1037 if (!*flag)
1038 { 2485 }
1039 int old_errno = errno; /* save errno because write might clobber it */ 2486}
1040 2487
1041 *flag = 1; 2488/* called whenever the libev signal pipe */
2489/* got some events (signal, async) */
2490static void
2491pipecb (EV_P_ ev_io *iow, int revents)
2492{
2493 int i;
1042 2494
2495 if (revents & EV_READ)
2496 {
1043#if EV_USE_EVENTFD 2497#if EV_USE_EVENTFD
1044 if (evfd >= 0) 2498 if (evpipe [0] < 0)
1045 { 2499 {
1046 uint64_t counter = 1; 2500 uint64_t counter;
1047 write (evfd, &counter, sizeof (uint64_t)); 2501 read (evpipe [1], &counter, sizeof (uint64_t));
1048 } 2502 }
1049 else 2503 else
1050#endif 2504#endif
1051 write (evpipe [1], &old_errno, 1); 2505 {
1052
1053 errno = old_errno;
1054 }
1055}
1056
1057static void
1058pipecb (EV_P_ ev_io *iow, int revents)
1059{
1060#if EV_USE_EVENTFD
1061 if (evfd >= 0)
1062 {
1063 uint64_t counter;
1064 read (evfd, &counter, sizeof (uint64_t));
1065 }
1066 else
1067#endif
1068 {
1069 char dummy; 2506 char dummy[4];
2507#ifdef _WIN32
2508 WSABUF buf;
2509 DWORD recvd;
2510 DWORD flags = 0;
2511 buf.buf = dummy;
2512 buf.len = sizeof (dummy);
2513 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2514#else
1070 read (evpipe [0], &dummy, 1); 2515 read (evpipe [0], &dummy, sizeof (dummy));
2516#endif
2517 }
2518 }
2519
2520 pipe_write_skipped = 0;
2521
2522 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2523
2524#if EV_SIGNAL_ENABLE
2525 if (sig_pending)
1071 } 2526 {
2527 sig_pending = 0;
1072 2528
1073 if (gotsig && ev_is_default_loop (EV_A)) 2529 ECB_MEMORY_FENCE;
1074 {
1075 int signum;
1076 gotsig = 0;
1077 2530
1078 for (signum = signalmax; signum--; ) 2531 for (i = EV_NSIG - 1; i--; )
1079 if (signals [signum].gotsig) 2532 if (expect_false (signals [i].pending))
1080 ev_feed_signal_event (EV_A_ signum + 1); 2533 ev_feed_signal_event (EV_A_ i + 1);
1081 } 2534 }
2535#endif
1082 2536
1083#if EV_ASYNC_ENABLE 2537#if EV_ASYNC_ENABLE
1084 if (gotasync) 2538 if (async_pending)
1085 { 2539 {
1086 int i; 2540 async_pending = 0;
1087 gotasync = 0; 2541
2542 ECB_MEMORY_FENCE;
1088 2543
1089 for (i = asynccnt; i--; ) 2544 for (i = asynccnt; i--; )
1090 if (asyncs [i]->sent) 2545 if (asyncs [i]->sent)
1091 { 2546 {
1092 asyncs [i]->sent = 0; 2547 asyncs [i]->sent = 0;
2548 ECB_MEMORY_FENCE_RELEASE;
1093 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2549 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1094 } 2550 }
1095 } 2551 }
1096#endif 2552#endif
1097} 2553}
1098 2554
1099/*****************************************************************************/ 2555/*****************************************************************************/
1100 2556
2557void
2558ev_feed_signal (int signum) EV_THROW
2559{
2560#if EV_MULTIPLICITY
2561 EV_P;
2562 ECB_MEMORY_FENCE_ACQUIRE;
2563 EV_A = signals [signum - 1].loop;
2564
2565 if (!EV_A)
2566 return;
2567#endif
2568
2569 signals [signum - 1].pending = 1;
2570 evpipe_write (EV_A_ &sig_pending);
2571}
2572
1101static void 2573static void
1102ev_sighandler (int signum) 2574ev_sighandler (int signum)
1103{ 2575{
2576#ifdef _WIN32
2577 signal (signum, ev_sighandler);
2578#endif
2579
2580 ev_feed_signal (signum);
2581}
2582
2583noinline
2584void
2585ev_feed_signal_event (EV_P_ int signum) EV_THROW
2586{
2587 WL w;
2588
2589 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2590 return;
2591
2592 --signum;
2593
1104#if EV_MULTIPLICITY 2594#if EV_MULTIPLICITY
1105 struct ev_loop *loop = &default_loop_struct; 2595 /* it is permissible to try to feed a signal to the wrong loop */
1106#endif 2596 /* or, likely more useful, feeding a signal nobody is waiting for */
1107 2597
1108#if _WIN32 2598 if (expect_false (signals [signum].loop != EV_A))
1109 signal (signum, ev_sighandler);
1110#endif
1111
1112 signals [signum - 1].gotsig = 1;
1113 evpipe_write (EV_A_ &gotsig);
1114}
1115
1116void noinline
1117ev_feed_signal_event (EV_P_ int signum)
1118{
1119 WL w;
1120
1121#if EV_MULTIPLICITY
1122 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1123#endif
1124
1125 --signum;
1126
1127 if (signum < 0 || signum >= signalmax)
1128 return; 2599 return;
2600#endif
1129 2601
1130 signals [signum].gotsig = 0; 2602 signals [signum].pending = 0;
2603 ECB_MEMORY_FENCE_RELEASE;
1131 2604
1132 for (w = signals [signum].head; w; w = w->next) 2605 for (w = signals [signum].head; w; w = w->next)
1133 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2606 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1134} 2607}
1135 2608
2609#if EV_USE_SIGNALFD
2610static void
2611sigfdcb (EV_P_ ev_io *iow, int revents)
2612{
2613 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2614
2615 for (;;)
2616 {
2617 ssize_t res = read (sigfd, si, sizeof (si));
2618
2619 /* not ISO-C, as res might be -1, but works with SuS */
2620 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2621 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2622
2623 if (res < (ssize_t)sizeof (si))
2624 break;
2625 }
2626}
2627#endif
2628
2629#endif
2630
1136/*****************************************************************************/ 2631/*****************************************************************************/
1137 2632
2633#if EV_CHILD_ENABLE
1138static WL childs [EV_PID_HASHSIZE]; 2634static WL childs [EV_PID_HASHSIZE];
1139
1140#ifndef _WIN32
1141 2635
1142static ev_signal childev; 2636static ev_signal childev;
1143 2637
1144#ifndef WIFCONTINUED 2638#ifndef WIFCONTINUED
1145# define WIFCONTINUED(status) 0 2639# define WIFCONTINUED(status) 0
1146#endif 2640#endif
1147 2641
1148void inline_speed 2642/* handle a single child status event */
2643inline_speed void
1149child_reap (EV_P_ int chain, int pid, int status) 2644child_reap (EV_P_ int chain, int pid, int status)
1150{ 2645{
1151 ev_child *w; 2646 ev_child *w;
1152 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2647 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1153 2648
1154 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2649 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1155 { 2650 {
1156 if ((w->pid == pid || !w->pid) 2651 if ((w->pid == pid || !w->pid)
1157 && (!traced || (w->flags & 1))) 2652 && (!traced || (w->flags & 1)))
1158 { 2653 {
1159 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2654 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1166 2661
1167#ifndef WCONTINUED 2662#ifndef WCONTINUED
1168# define WCONTINUED 0 2663# define WCONTINUED 0
1169#endif 2664#endif
1170 2665
2666/* called on sigchld etc., calls waitpid */
1171static void 2667static void
1172childcb (EV_P_ ev_signal *sw, int revents) 2668childcb (EV_P_ ev_signal *sw, int revents)
1173{ 2669{
1174 int pid, status; 2670 int pid, status;
1175 2671
1183 /* make sure we are called again until all children have been reaped */ 2679 /* make sure we are called again until all children have been reaped */
1184 /* we need to do it this way so that the callback gets called before we continue */ 2680 /* we need to do it this way so that the callback gets called before we continue */
1185 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2681 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1186 2682
1187 child_reap (EV_A_ pid, pid, status); 2683 child_reap (EV_A_ pid, pid, status);
1188 if (EV_PID_HASHSIZE > 1) 2684 if ((EV_PID_HASHSIZE) > 1)
1189 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2685 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1190} 2686}
1191 2687
1192#endif 2688#endif
1193 2689
1194/*****************************************************************************/ 2690/*****************************************************************************/
1195 2691
2692#if EV_USE_IOCP
2693# include "ev_iocp.c"
2694#endif
1196#if EV_USE_PORT 2695#if EV_USE_PORT
1197# include "ev_port.c" 2696# include "ev_port.c"
1198#endif 2697#endif
1199#if EV_USE_KQUEUE 2698#if EV_USE_KQUEUE
1200# include "ev_kqueue.c" 2699# include "ev_kqueue.c"
1207#endif 2706#endif
1208#if EV_USE_SELECT 2707#if EV_USE_SELECT
1209# include "ev_select.c" 2708# include "ev_select.c"
1210#endif 2709#endif
1211 2710
1212int 2711ecb_cold int
1213ev_version_major (void) 2712ev_version_major (void) EV_THROW
1214{ 2713{
1215 return EV_VERSION_MAJOR; 2714 return EV_VERSION_MAJOR;
1216} 2715}
1217 2716
1218int 2717ecb_cold int
1219ev_version_minor (void) 2718ev_version_minor (void) EV_THROW
1220{ 2719{
1221 return EV_VERSION_MINOR; 2720 return EV_VERSION_MINOR;
1222} 2721}
1223 2722
1224/* return true if we are running with elevated privileges and should ignore env variables */ 2723/* return true if we are running with elevated privileges and should ignore env variables */
1225int inline_size 2724inline_size ecb_cold int
1226enable_secure (void) 2725enable_secure (void)
1227{ 2726{
1228#ifdef _WIN32 2727#ifdef _WIN32
1229 return 0; 2728 return 0;
1230#else 2729#else
1231 return getuid () != geteuid () 2730 return getuid () != geteuid ()
1232 || getgid () != getegid (); 2731 || getgid () != getegid ();
1233#endif 2732#endif
1234} 2733}
1235 2734
2735ecb_cold
1236unsigned int 2736unsigned int
1237ev_supported_backends (void) 2737ev_supported_backends (void) EV_THROW
1238{ 2738{
1239 unsigned int flags = 0; 2739 unsigned int flags = 0;
1240 2740
1241 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2741 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1242 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2742 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1245 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2745 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1246 2746
1247 return flags; 2747 return flags;
1248} 2748}
1249 2749
2750ecb_cold
1250unsigned int 2751unsigned int
1251ev_recommended_backends (void) 2752ev_recommended_backends (void) EV_THROW
1252{ 2753{
1253 unsigned int flags = ev_supported_backends (); 2754 unsigned int flags = ev_supported_backends ();
1254 2755
1255#ifndef __NetBSD__ 2756#ifndef __NetBSD__
1256 /* kqueue is borked on everything but netbsd apparently */ 2757 /* kqueue is borked on everything but netbsd apparently */
1257 /* it usually doesn't work correctly on anything but sockets and pipes */ 2758 /* it usually doesn't work correctly on anything but sockets and pipes */
1258 flags &= ~EVBACKEND_KQUEUE; 2759 flags &= ~EVBACKEND_KQUEUE;
1259#endif 2760#endif
1260#ifdef __APPLE__ 2761#ifdef __APPLE__
1261 // flags &= ~EVBACKEND_KQUEUE; for documentation 2762 /* only select works correctly on that "unix-certified" platform */
1262 flags &= ~EVBACKEND_POLL; 2763 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2764 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2765#endif
2766#ifdef __FreeBSD__
2767 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1263#endif 2768#endif
1264 2769
1265 return flags; 2770 return flags;
1266} 2771}
1267 2772
2773ecb_cold
1268unsigned int 2774unsigned int
1269ev_embeddable_backends (void) 2775ev_embeddable_backends (void) EV_THROW
1270{ 2776{
1271 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2777 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1272 2778
1273 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 2779 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1274 /* please fix it and tell me how to detect the fix */ 2780 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1275 flags &= ~EVBACKEND_EPOLL; 2781 flags &= ~EVBACKEND_EPOLL;
1276 2782
1277 return flags; 2783 return flags;
1278} 2784}
1279 2785
1280unsigned int 2786unsigned int
1281ev_backend (EV_P) 2787ev_backend (EV_P) EV_THROW
1282{ 2788{
1283 return backend; 2789 return backend;
1284} 2790}
1285 2791
2792#if EV_FEATURE_API
1286unsigned int 2793unsigned int
1287ev_loop_count (EV_P) 2794ev_iteration (EV_P) EV_THROW
1288{ 2795{
1289 return loop_count; 2796 return loop_count;
1290} 2797}
1291 2798
2799unsigned int
2800ev_depth (EV_P) EV_THROW
2801{
2802 return loop_depth;
2803}
2804
1292void 2805void
1293ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2806ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1294{ 2807{
1295 io_blocktime = interval; 2808 io_blocktime = interval;
1296} 2809}
1297 2810
1298void 2811void
1299ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2812ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1300{ 2813{
1301 timeout_blocktime = interval; 2814 timeout_blocktime = interval;
1302} 2815}
1303 2816
1304static void noinline 2817void
2818ev_set_userdata (EV_P_ void *data) EV_THROW
2819{
2820 userdata = data;
2821}
2822
2823void *
2824ev_userdata (EV_P) EV_THROW
2825{
2826 return userdata;
2827}
2828
2829void
2830ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2831{
2832 invoke_cb = invoke_pending_cb;
2833}
2834
2835void
2836ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2837{
2838 release_cb = release;
2839 acquire_cb = acquire;
2840}
2841#endif
2842
2843/* initialise a loop structure, must be zero-initialised */
2844noinline ecb_cold
2845static void
1305loop_init (EV_P_ unsigned int flags) 2846loop_init (EV_P_ unsigned int flags) EV_THROW
1306{ 2847{
1307 if (!backend) 2848 if (!backend)
1308 { 2849 {
2850 origflags = flags;
2851
2852#if EV_USE_REALTIME
2853 if (!have_realtime)
2854 {
2855 struct timespec ts;
2856
2857 if (!clock_gettime (CLOCK_REALTIME, &ts))
2858 have_realtime = 1;
2859 }
2860#endif
2861
1309#if EV_USE_MONOTONIC 2862#if EV_USE_MONOTONIC
2863 if (!have_monotonic)
1310 { 2864 {
1311 struct timespec ts; 2865 struct timespec ts;
2866
1312 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2867 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1313 have_monotonic = 1; 2868 have_monotonic = 1;
1314 } 2869 }
1315#endif
1316
1317 ev_rt_now = ev_time ();
1318 mn_now = get_clock ();
1319 now_floor = mn_now;
1320 rtmn_diff = ev_rt_now - mn_now;
1321
1322 io_blocktime = 0.;
1323 timeout_blocktime = 0.;
1324 backend = 0;
1325 backend_fd = -1;
1326 gotasync = 0;
1327#if EV_USE_INOTIFY
1328 fs_fd = -2;
1329#endif 2870#endif
1330 2871
1331 /* pid check not overridable via env */ 2872 /* pid check not overridable via env */
1332#ifndef _WIN32 2873#ifndef _WIN32
1333 if (flags & EVFLAG_FORKCHECK) 2874 if (flags & EVFLAG_FORKCHECK)
1337 if (!(flags & EVFLAG_NOENV) 2878 if (!(flags & EVFLAG_NOENV)
1338 && !enable_secure () 2879 && !enable_secure ()
1339 && getenv ("LIBEV_FLAGS")) 2880 && getenv ("LIBEV_FLAGS"))
1340 flags = atoi (getenv ("LIBEV_FLAGS")); 2881 flags = atoi (getenv ("LIBEV_FLAGS"));
1341 2882
1342 if (!(flags & 0x0000ffffU)) 2883 ev_rt_now = ev_time ();
2884 mn_now = get_clock ();
2885 now_floor = mn_now;
2886 rtmn_diff = ev_rt_now - mn_now;
2887#if EV_FEATURE_API
2888 invoke_cb = ev_invoke_pending;
2889#endif
2890
2891 io_blocktime = 0.;
2892 timeout_blocktime = 0.;
2893 backend = 0;
2894 backend_fd = -1;
2895 sig_pending = 0;
2896#if EV_ASYNC_ENABLE
2897 async_pending = 0;
2898#endif
2899 pipe_write_skipped = 0;
2900 pipe_write_wanted = 0;
2901 evpipe [0] = -1;
2902 evpipe [1] = -1;
2903#if EV_USE_INOTIFY
2904 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2905#endif
2906#if EV_USE_SIGNALFD
2907 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2908#endif
2909
2910 if (!(flags & EVBACKEND_MASK))
1343 flags |= ev_recommended_backends (); 2911 flags |= ev_recommended_backends ();
1344 2912
2913#if EV_USE_IOCP
2914 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2915#endif
1345#if EV_USE_PORT 2916#if EV_USE_PORT
1346 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2917 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1347#endif 2918#endif
1348#if EV_USE_KQUEUE 2919#if EV_USE_KQUEUE
1349 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2920 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1356#endif 2927#endif
1357#if EV_USE_SELECT 2928#if EV_USE_SELECT
1358 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2929 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1359#endif 2930#endif
1360 2931
2932 ev_prepare_init (&pending_w, pendingcb);
2933
2934#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1361 ev_init (&pipeev, pipecb); 2935 ev_init (&pipe_w, pipecb);
1362 ev_set_priority (&pipeev, EV_MAXPRI); 2936 ev_set_priority (&pipe_w, EV_MAXPRI);
2937#endif
1363 } 2938 }
1364} 2939}
1365 2940
1366static void noinline 2941/* free up a loop structure */
2942ecb_cold
2943void
1367loop_destroy (EV_P) 2944ev_loop_destroy (EV_P)
1368{ 2945{
1369 int i; 2946 int i;
1370 2947
2948#if EV_MULTIPLICITY
2949 /* mimic free (0) */
2950 if (!EV_A)
2951 return;
2952#endif
2953
2954#if EV_CLEANUP_ENABLE
2955 /* queue cleanup watchers (and execute them) */
2956 if (expect_false (cleanupcnt))
2957 {
2958 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2959 EV_INVOKE_PENDING;
2960 }
2961#endif
2962
2963#if EV_CHILD_ENABLE
2964 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2965 {
2966 ev_ref (EV_A); /* child watcher */
2967 ev_signal_stop (EV_A_ &childev);
2968 }
2969#endif
2970
1371 if (ev_is_active (&pipeev)) 2971 if (ev_is_active (&pipe_w))
1372 { 2972 {
1373 ev_ref (EV_A); /* signal watcher */ 2973 /*ev_ref (EV_A);*/
1374 ev_io_stop (EV_A_ &pipeev); 2974 /*ev_io_stop (EV_A_ &pipe_w);*/
1375 2975
2976 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2977 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2978 }
2979
1376#if EV_USE_EVENTFD 2980#if EV_USE_SIGNALFD
1377 if (evfd >= 0) 2981 if (ev_is_active (&sigfd_w))
1378 close (evfd); 2982 close (sigfd);
1379#endif 2983#endif
1380
1381 if (evpipe [0] >= 0)
1382 {
1383 close (evpipe [0]);
1384 close (evpipe [1]);
1385 }
1386 }
1387 2984
1388#if EV_USE_INOTIFY 2985#if EV_USE_INOTIFY
1389 if (fs_fd >= 0) 2986 if (fs_fd >= 0)
1390 close (fs_fd); 2987 close (fs_fd);
1391#endif 2988#endif
1392 2989
1393 if (backend_fd >= 0) 2990 if (backend_fd >= 0)
1394 close (backend_fd); 2991 close (backend_fd);
1395 2992
2993#if EV_USE_IOCP
2994 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2995#endif
1396#if EV_USE_PORT 2996#if EV_USE_PORT
1397 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2997 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1398#endif 2998#endif
1399#if EV_USE_KQUEUE 2999#if EV_USE_KQUEUE
1400 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 3000 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1415#if EV_IDLE_ENABLE 3015#if EV_IDLE_ENABLE
1416 array_free (idle, [i]); 3016 array_free (idle, [i]);
1417#endif 3017#endif
1418 } 3018 }
1419 3019
1420 ev_free (anfds); anfdmax = 0; 3020 ev_free (anfds); anfds = 0; anfdmax = 0;
1421 3021
1422 /* have to use the microsoft-never-gets-it-right macro */ 3022 /* have to use the microsoft-never-gets-it-right macro */
3023 array_free (rfeed, EMPTY);
1423 array_free (fdchange, EMPTY); 3024 array_free (fdchange, EMPTY);
1424 array_free (timer, EMPTY); 3025 array_free (timer, EMPTY);
1425#if EV_PERIODIC_ENABLE 3026#if EV_PERIODIC_ENABLE
1426 array_free (periodic, EMPTY); 3027 array_free (periodic, EMPTY);
1427#endif 3028#endif
1428#if EV_FORK_ENABLE 3029#if EV_FORK_ENABLE
1429 array_free (fork, EMPTY); 3030 array_free (fork, EMPTY);
1430#endif 3031#endif
3032#if EV_CLEANUP_ENABLE
3033 array_free (cleanup, EMPTY);
3034#endif
1431 array_free (prepare, EMPTY); 3035 array_free (prepare, EMPTY);
1432 array_free (check, EMPTY); 3036 array_free (check, EMPTY);
1433#if EV_ASYNC_ENABLE 3037#if EV_ASYNC_ENABLE
1434 array_free (async, EMPTY); 3038 array_free (async, EMPTY);
1435#endif 3039#endif
1436 3040
1437 backend = 0; 3041 backend = 0;
3042
3043#if EV_MULTIPLICITY
3044 if (ev_is_default_loop (EV_A))
3045#endif
3046 ev_default_loop_ptr = 0;
3047#if EV_MULTIPLICITY
3048 else
3049 ev_free (EV_A);
3050#endif
1438} 3051}
1439 3052
1440#if EV_USE_INOTIFY 3053#if EV_USE_INOTIFY
1441void inline_size infy_fork (EV_P); 3054inline_size void infy_fork (EV_P);
1442#endif 3055#endif
1443 3056
1444void inline_size 3057inline_size void
1445loop_fork (EV_P) 3058loop_fork (EV_P)
1446{ 3059{
1447#if EV_USE_PORT 3060#if EV_USE_PORT
1448 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 3061 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1449#endif 3062#endif
1455#endif 3068#endif
1456#if EV_USE_INOTIFY 3069#if EV_USE_INOTIFY
1457 infy_fork (EV_A); 3070 infy_fork (EV_A);
1458#endif 3071#endif
1459 3072
1460 if (ev_is_active (&pipeev)) 3073#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3074 if (ev_is_active (&pipe_w) && postfork != 2)
1461 { 3075 {
1462 /* this "locks" the handlers against writing to the pipe */ 3076 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1463 /* while we modify the fd vars */
1464 gotsig = 1;
1465#if EV_ASYNC_ENABLE
1466 gotasync = 1;
1467#endif
1468 3077
1469 ev_ref (EV_A); 3078 ev_ref (EV_A);
1470 ev_io_stop (EV_A_ &pipeev); 3079 ev_io_stop (EV_A_ &pipe_w);
1471
1472#if EV_USE_EVENTFD
1473 if (evfd >= 0)
1474 close (evfd);
1475#endif
1476 3080
1477 if (evpipe [0] >= 0) 3081 if (evpipe [0] >= 0)
1478 { 3082 EV_WIN32_CLOSE_FD (evpipe [0]);
1479 close (evpipe [0]);
1480 close (evpipe [1]);
1481 }
1482 3083
1483 evpipe_init (EV_A); 3084 evpipe_init (EV_A);
1484 /* now iterate over everything, in case we missed something */ 3085 /* iterate over everything, in case we missed something before */
1485 pipecb (EV_A_ &pipeev, EV_READ); 3086 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1486 } 3087 }
3088#endif
1487 3089
1488 postfork = 0; 3090 postfork = 0;
1489} 3091}
1490 3092
1491#if EV_MULTIPLICITY 3093#if EV_MULTIPLICITY
1492 3094
3095ecb_cold
1493struct ev_loop * 3096struct ev_loop *
1494ev_loop_new (unsigned int flags) 3097ev_loop_new (unsigned int flags) EV_THROW
1495{ 3098{
1496 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 3099 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1497 3100
1498 memset (loop, 0, sizeof (struct ev_loop)); 3101 memset (EV_A, 0, sizeof (struct ev_loop));
1499
1500 loop_init (EV_A_ flags); 3102 loop_init (EV_A_ flags);
1501 3103
1502 if (ev_backend (EV_A)) 3104 if (ev_backend (EV_A))
1503 return loop; 3105 return EV_A;
1504 3106
3107 ev_free (EV_A);
1505 return 0; 3108 return 0;
1506} 3109}
1507 3110
1508void 3111#endif /* multiplicity */
1509ev_loop_destroy (EV_P)
1510{
1511 loop_destroy (EV_A);
1512 ev_free (loop);
1513}
1514
1515void
1516ev_loop_fork (EV_P)
1517{
1518 postfork = 1; /* must be in line with ev_default_fork */
1519}
1520 3112
1521#if EV_VERIFY 3113#if EV_VERIFY
1522static void noinline 3114noinline ecb_cold
3115static void
1523verify_watcher (EV_P_ W w) 3116verify_watcher (EV_P_ W w)
1524{ 3117{
1525 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 3118 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1526 3119
1527 if (w->pending) 3120 if (w->pending)
1528 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 3121 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1529} 3122}
1530 3123
1531static void noinline 3124noinline ecb_cold
3125static void
1532verify_heap (EV_P_ ANHE *heap, int N) 3126verify_heap (EV_P_ ANHE *heap, int N)
1533{ 3127{
1534 int i; 3128 int i;
1535 3129
1536 for (i = HEAP0; i < N + HEAP0; ++i) 3130 for (i = HEAP0; i < N + HEAP0; ++i)
1537 { 3131 {
1538 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 3132 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1539 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 3133 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1540 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 3134 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1541 3135
1542 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 3136 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1543 } 3137 }
1544} 3138}
1545 3139
1546static void noinline 3140noinline ecb_cold
3141static void
1547array_verify (EV_P_ W *ws, int cnt) 3142array_verify (EV_P_ W *ws, int cnt)
1548{ 3143{
1549 while (cnt--) 3144 while (cnt--)
1550 { 3145 {
1551 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 3146 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1552 verify_watcher (EV_A_ ws [cnt]); 3147 verify_watcher (EV_A_ ws [cnt]);
1553 } 3148 }
1554} 3149}
1555#endif 3150#endif
1556 3151
1557void 3152#if EV_FEATURE_API
1558ev_loop_verify (EV_P) 3153void ecb_cold
3154ev_verify (EV_P) EV_THROW
1559{ 3155{
1560#if EV_VERIFY 3156#if EV_VERIFY
1561 int i; 3157 int i;
1562 WL w; 3158 WL w, w2;
1563 3159
1564 assert (activecnt >= -1); 3160 assert (activecnt >= -1);
1565 3161
1566 assert (fdchangemax >= fdchangecnt); 3162 assert (fdchangemax >= fdchangecnt);
1567 for (i = 0; i < fdchangecnt; ++i) 3163 for (i = 0; i < fdchangecnt; ++i)
1568 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 3164 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1569 3165
1570 assert (anfdmax >= 0); 3166 assert (anfdmax >= 0);
1571 for (i = 0; i < anfdmax; ++i) 3167 for (i = 0; i < anfdmax; ++i)
3168 {
3169 int j = 0;
3170
1572 for (w = anfds [i].head; w; w = w->next) 3171 for (w = w2 = anfds [i].head; w; w = w->next)
1573 { 3172 {
1574 verify_watcher (EV_A_ (W)w); 3173 verify_watcher (EV_A_ (W)w);
3174
3175 if (j++ & 1)
3176 {
3177 assert (("libev: io watcher list contains a loop", w != w2));
3178 w2 = w2->next;
3179 }
3180
1575 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 3181 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1576 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 3182 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1577 } 3183 }
3184 }
1578 3185
1579 assert (timermax >= timercnt); 3186 assert (timermax >= timercnt);
1580 verify_heap (EV_A_ timers, timercnt); 3187 verify_heap (EV_A_ timers, timercnt);
1581 3188
1582#if EV_PERIODIC_ENABLE 3189#if EV_PERIODIC_ENABLE
1597#if EV_FORK_ENABLE 3204#if EV_FORK_ENABLE
1598 assert (forkmax >= forkcnt); 3205 assert (forkmax >= forkcnt);
1599 array_verify (EV_A_ (W *)forks, forkcnt); 3206 array_verify (EV_A_ (W *)forks, forkcnt);
1600#endif 3207#endif
1601 3208
3209#if EV_CLEANUP_ENABLE
3210 assert (cleanupmax >= cleanupcnt);
3211 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3212#endif
3213
1602#if EV_ASYNC_ENABLE 3214#if EV_ASYNC_ENABLE
1603 assert (asyncmax >= asynccnt); 3215 assert (asyncmax >= asynccnt);
1604 array_verify (EV_A_ (W *)asyncs, asynccnt); 3216 array_verify (EV_A_ (W *)asyncs, asynccnt);
1605#endif 3217#endif
1606 3218
3219#if EV_PREPARE_ENABLE
1607 assert (preparemax >= preparecnt); 3220 assert (preparemax >= preparecnt);
1608 array_verify (EV_A_ (W *)prepares, preparecnt); 3221 array_verify (EV_A_ (W *)prepares, preparecnt);
3222#endif
1609 3223
3224#if EV_CHECK_ENABLE
1610 assert (checkmax >= checkcnt); 3225 assert (checkmax >= checkcnt);
1611 array_verify (EV_A_ (W *)checks, checkcnt); 3226 array_verify (EV_A_ (W *)checks, checkcnt);
3227#endif
1612 3228
1613# if 0 3229# if 0
3230#if EV_CHILD_ENABLE
1614 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 3231 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1615 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 3232 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3233#endif
1616# endif 3234# endif
1617#endif 3235#endif
1618} 3236}
1619 3237#endif
1620#endif /* multiplicity */
1621 3238
1622#if EV_MULTIPLICITY 3239#if EV_MULTIPLICITY
3240ecb_cold
1623struct ev_loop * 3241struct ev_loop *
1624ev_default_loop_init (unsigned int flags)
1625#else 3242#else
1626int 3243int
3244#endif
1627ev_default_loop (unsigned int flags) 3245ev_default_loop (unsigned int flags) EV_THROW
1628#endif
1629{ 3246{
1630 if (!ev_default_loop_ptr) 3247 if (!ev_default_loop_ptr)
1631 { 3248 {
1632#if EV_MULTIPLICITY 3249#if EV_MULTIPLICITY
1633 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3250 EV_P = ev_default_loop_ptr = &default_loop_struct;
1634#else 3251#else
1635 ev_default_loop_ptr = 1; 3252 ev_default_loop_ptr = 1;
1636#endif 3253#endif
1637 3254
1638 loop_init (EV_A_ flags); 3255 loop_init (EV_A_ flags);
1639 3256
1640 if (ev_backend (EV_A)) 3257 if (ev_backend (EV_A))
1641 { 3258 {
1642#ifndef _WIN32 3259#if EV_CHILD_ENABLE
1643 ev_signal_init (&childev, childcb, SIGCHLD); 3260 ev_signal_init (&childev, childcb, SIGCHLD);
1644 ev_set_priority (&childev, EV_MAXPRI); 3261 ev_set_priority (&childev, EV_MAXPRI);
1645 ev_signal_start (EV_A_ &childev); 3262 ev_signal_start (EV_A_ &childev);
1646 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3263 ev_unref (EV_A); /* child watcher should not keep loop alive */
1647#endif 3264#endif
1652 3269
1653 return ev_default_loop_ptr; 3270 return ev_default_loop_ptr;
1654} 3271}
1655 3272
1656void 3273void
1657ev_default_destroy (void) 3274ev_loop_fork (EV_P) EV_THROW
1658{ 3275{
1659#if EV_MULTIPLICITY 3276 postfork = 1;
1660 struct ev_loop *loop = ev_default_loop_ptr;
1661#endif
1662
1663#ifndef _WIN32
1664 ev_ref (EV_A); /* child watcher */
1665 ev_signal_stop (EV_A_ &childev);
1666#endif
1667
1668 loop_destroy (EV_A);
1669}
1670
1671void
1672ev_default_fork (void)
1673{
1674#if EV_MULTIPLICITY
1675 struct ev_loop *loop = ev_default_loop_ptr;
1676#endif
1677
1678 if (backend)
1679 postfork = 1; /* must be in line with ev_loop_fork */
1680} 3277}
1681 3278
1682/*****************************************************************************/ 3279/*****************************************************************************/
1683 3280
1684void 3281void
1685ev_invoke (EV_P_ void *w, int revents) 3282ev_invoke (EV_P_ void *w, int revents)
1686{ 3283{
1687 EV_CB_INVOKE ((W)w, revents); 3284 EV_CB_INVOKE ((W)w, revents);
1688} 3285}
1689 3286
1690void inline_speed 3287unsigned int
1691call_pending (EV_P) 3288ev_pending_count (EV_P) EV_THROW
1692{ 3289{
1693 int pri; 3290 int pri;
3291 unsigned int count = 0;
1694 3292
1695 for (pri = NUMPRI; pri--; ) 3293 for (pri = NUMPRI; pri--; )
3294 count += pendingcnt [pri];
3295
3296 return count;
3297}
3298
3299noinline
3300void
3301ev_invoke_pending (EV_P)
3302{
3303 pendingpri = NUMPRI;
3304
3305 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3306 {
3307 --pendingpri;
3308
1696 while (pendingcnt [pri]) 3309 while (pendingcnt [pendingpri])
1697 {
1698 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1699
1700 if (expect_true (p->w))
1701 { 3310 {
1702 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 3311 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1703 3312
1704 p->w->pending = 0; 3313 p->w->pending = 0;
1705 EV_CB_INVOKE (p->w, p->events); 3314 EV_CB_INVOKE (p->w, p->events);
1706 EV_FREQUENT_CHECK; 3315 EV_FREQUENT_CHECK;
1707 } 3316 }
1708 } 3317 }
1709} 3318}
1710 3319
1711#if EV_IDLE_ENABLE 3320#if EV_IDLE_ENABLE
1712void inline_size 3321/* make idle watchers pending. this handles the "call-idle */
3322/* only when higher priorities are idle" logic */
3323inline_size void
1713idle_reify (EV_P) 3324idle_reify (EV_P)
1714{ 3325{
1715 if (expect_false (idleall)) 3326 if (expect_false (idleall))
1716 { 3327 {
1717 int pri; 3328 int pri;
1729 } 3340 }
1730 } 3341 }
1731} 3342}
1732#endif 3343#endif
1733 3344
1734void inline_size 3345/* make timers pending */
3346inline_size void
1735timers_reify (EV_P) 3347timers_reify (EV_P)
1736{ 3348{
1737 EV_FREQUENT_CHECK; 3349 EV_FREQUENT_CHECK;
1738 3350
1739 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 3351 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1740 { 3352 {
1741 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 3353 do
1742
1743 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1744
1745 /* first reschedule or stop timer */
1746 if (w->repeat)
1747 { 3354 {
3355 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3356
3357 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3358
3359 /* first reschedule or stop timer */
3360 if (w->repeat)
3361 {
1748 ev_at (w) += w->repeat; 3362 ev_at (w) += w->repeat;
1749 if (ev_at (w) < mn_now) 3363 if (ev_at (w) < mn_now)
1750 ev_at (w) = mn_now; 3364 ev_at (w) = mn_now;
1751 3365
1752 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3366 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1753 3367
1754 ANHE_at_cache (timers [HEAP0]); 3368 ANHE_at_cache (timers [HEAP0]);
1755 downheap (timers, timercnt, HEAP0); 3369 downheap (timers, timercnt, HEAP0);
3370 }
3371 else
3372 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3373
3374 EV_FREQUENT_CHECK;
3375 feed_reverse (EV_A_ (W)w);
1756 } 3376 }
1757 else 3377 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1758 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1759 3378
1760 EV_FREQUENT_CHECK; 3379 feed_reverse_done (EV_A_ EV_TIMER);
1761 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1762 } 3380 }
1763} 3381}
1764 3382
1765#if EV_PERIODIC_ENABLE 3383#if EV_PERIODIC_ENABLE
1766void inline_size 3384
3385noinline
3386static void
3387periodic_recalc (EV_P_ ev_periodic *w)
3388{
3389 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3390 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3391
3392 /* the above almost always errs on the low side */
3393 while (at <= ev_rt_now)
3394 {
3395 ev_tstamp nat = at + w->interval;
3396
3397 /* when resolution fails us, we use ev_rt_now */
3398 if (expect_false (nat == at))
3399 {
3400 at = ev_rt_now;
3401 break;
3402 }
3403
3404 at = nat;
3405 }
3406
3407 ev_at (w) = at;
3408}
3409
3410/* make periodics pending */
3411inline_size void
1767periodics_reify (EV_P) 3412periodics_reify (EV_P)
1768{ 3413{
1769 EV_FREQUENT_CHECK; 3414 EV_FREQUENT_CHECK;
1770 3415
1771 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 3416 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1772 { 3417 {
1773 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 3418 do
1774
1775 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1776
1777 /* first reschedule or stop timer */
1778 if (w->reschedule_cb)
1779 { 3419 {
3420 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3421
3422 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3423
3424 /* first reschedule or stop timer */
3425 if (w->reschedule_cb)
3426 {
1780 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3427 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1781 3428
1782 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 3429 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1783 3430
1784 ANHE_at_cache (periodics [HEAP0]); 3431 ANHE_at_cache (periodics [HEAP0]);
1785 downheap (periodics, periodiccnt, HEAP0); 3432 downheap (periodics, periodiccnt, HEAP0);
3433 }
3434 else if (w->interval)
3435 {
3436 periodic_recalc (EV_A_ w);
3437 ANHE_at_cache (periodics [HEAP0]);
3438 downheap (periodics, periodiccnt, HEAP0);
3439 }
3440 else
3441 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3442
3443 EV_FREQUENT_CHECK;
3444 feed_reverse (EV_A_ (W)w);
1786 } 3445 }
1787 else if (w->interval) 3446 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1788 {
1789 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1790 /* if next trigger time is not sufficiently in the future, put it there */
1791 /* this might happen because of floating point inexactness */
1792 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1793 {
1794 ev_at (w) += w->interval;
1795 3447
1796 /* if interval is unreasonably low we might still have a time in the past */
1797 /* so correct this. this will make the periodic very inexact, but the user */
1798 /* has effectively asked to get triggered more often than possible */
1799 if (ev_at (w) < ev_rt_now)
1800 ev_at (w) = ev_rt_now;
1801 }
1802
1803 ANHE_at_cache (periodics [HEAP0]);
1804 downheap (periodics, periodiccnt, HEAP0);
1805 }
1806 else
1807 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1808
1809 EV_FREQUENT_CHECK;
1810 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3448 feed_reverse_done (EV_A_ EV_PERIODIC);
1811 } 3449 }
1812} 3450}
1813 3451
1814static void noinline 3452/* simply recalculate all periodics */
3453/* TODO: maybe ensure that at least one event happens when jumping forward? */
3454noinline ecb_cold
3455static void
1815periodics_reschedule (EV_P) 3456periodics_reschedule (EV_P)
1816{ 3457{
1817 int i; 3458 int i;
1818 3459
1819 /* adjust periodics after time jump */ 3460 /* adjust periodics after time jump */
1822 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 3463 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1823 3464
1824 if (w->reschedule_cb) 3465 if (w->reschedule_cb)
1825 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3466 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1826 else if (w->interval) 3467 else if (w->interval)
1827 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3468 periodic_recalc (EV_A_ w);
1828 3469
1829 ANHE_at_cache (periodics [i]); 3470 ANHE_at_cache (periodics [i]);
1830 } 3471 }
1831 3472
1832 reheap (periodics, periodiccnt); 3473 reheap (periodics, periodiccnt);
1833} 3474}
1834#endif 3475#endif
1835 3476
1836void inline_speed 3477/* adjust all timers by a given offset */
3478noinline ecb_cold
3479static void
3480timers_reschedule (EV_P_ ev_tstamp adjust)
3481{
3482 int i;
3483
3484 for (i = 0; i < timercnt; ++i)
3485 {
3486 ANHE *he = timers + i + HEAP0;
3487 ANHE_w (*he)->at += adjust;
3488 ANHE_at_cache (*he);
3489 }
3490}
3491
3492/* fetch new monotonic and realtime times from the kernel */
3493/* also detect if there was a timejump, and act accordingly */
3494inline_speed void
1837time_update (EV_P_ ev_tstamp max_block) 3495time_update (EV_P_ ev_tstamp max_block)
1838{ 3496{
1839 int i;
1840
1841#if EV_USE_MONOTONIC 3497#if EV_USE_MONOTONIC
1842 if (expect_true (have_monotonic)) 3498 if (expect_true (have_monotonic))
1843 { 3499 {
3500 int i;
1844 ev_tstamp odiff = rtmn_diff; 3501 ev_tstamp odiff = rtmn_diff;
1845 3502
1846 mn_now = get_clock (); 3503 mn_now = get_clock ();
1847 3504
1848 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3505 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1864 * doesn't hurt either as we only do this on time-jumps or 3521 * doesn't hurt either as we only do this on time-jumps or
1865 * in the unlikely event of having been preempted here. 3522 * in the unlikely event of having been preempted here.
1866 */ 3523 */
1867 for (i = 4; --i; ) 3524 for (i = 4; --i; )
1868 { 3525 {
3526 ev_tstamp diff;
1869 rtmn_diff = ev_rt_now - mn_now; 3527 rtmn_diff = ev_rt_now - mn_now;
1870 3528
3529 diff = odiff - rtmn_diff;
3530
1871 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3531 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1872 return; /* all is well */ 3532 return; /* all is well */
1873 3533
1874 ev_rt_now = ev_time (); 3534 ev_rt_now = ev_time ();
1875 mn_now = get_clock (); 3535 mn_now = get_clock ();
1876 now_floor = mn_now; 3536 now_floor = mn_now;
1877 } 3537 }
1878 3538
3539 /* no timer adjustment, as the monotonic clock doesn't jump */
3540 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1879# if EV_PERIODIC_ENABLE 3541# if EV_PERIODIC_ENABLE
1880 periodics_reschedule (EV_A); 3542 periodics_reschedule (EV_A);
1881# endif 3543# endif
1882 /* no timer adjustment, as the monotonic clock doesn't jump */
1883 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1884 } 3544 }
1885 else 3545 else
1886#endif 3546#endif
1887 { 3547 {
1888 ev_rt_now = ev_time (); 3548 ev_rt_now = ev_time ();
1889 3549
1890 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3550 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1891 { 3551 {
3552 /* adjust timers. this is easy, as the offset is the same for all of them */
3553 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1892#if EV_PERIODIC_ENABLE 3554#if EV_PERIODIC_ENABLE
1893 periodics_reschedule (EV_A); 3555 periodics_reschedule (EV_A);
1894#endif 3556#endif
1895 /* adjust timers. this is easy, as the offset is the same for all of them */
1896 for (i = 0; i < timercnt; ++i)
1897 {
1898 ANHE *he = timers + i + HEAP0;
1899 ANHE_w (*he)->at += ev_rt_now - mn_now;
1900 ANHE_at_cache (*he);
1901 }
1902 } 3557 }
1903 3558
1904 mn_now = ev_rt_now; 3559 mn_now = ev_rt_now;
1905 } 3560 }
1906} 3561}
1907 3562
1908void 3563int
1909ev_ref (EV_P)
1910{
1911 ++activecnt;
1912}
1913
1914void
1915ev_unref (EV_P)
1916{
1917 --activecnt;
1918}
1919
1920void
1921ev_now_update (EV_P)
1922{
1923 time_update (EV_A_ 1e100);
1924}
1925
1926static int loop_done;
1927
1928void
1929ev_loop (EV_P_ int flags) 3564ev_run (EV_P_ int flags)
1930{ 3565{
3566#if EV_FEATURE_API
3567 ++loop_depth;
3568#endif
3569
3570 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3571
1931 loop_done = EVUNLOOP_CANCEL; 3572 loop_done = EVBREAK_CANCEL;
1932 3573
1933 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3574 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1934 3575
1935 do 3576 do
1936 { 3577 {
1937#if EV_VERIFY >= 2 3578#if EV_VERIFY >= 2
1938 ev_loop_verify (EV_A); 3579 ev_verify (EV_A);
1939#endif 3580#endif
1940 3581
1941#ifndef _WIN32 3582#ifndef _WIN32
1942 if (expect_false (curpid)) /* penalise the forking check even more */ 3583 if (expect_false (curpid)) /* penalise the forking check even more */
1943 if (expect_false (getpid () != curpid)) 3584 if (expect_false (getpid () != curpid))
1951 /* we might have forked, so queue fork handlers */ 3592 /* we might have forked, so queue fork handlers */
1952 if (expect_false (postfork)) 3593 if (expect_false (postfork))
1953 if (forkcnt) 3594 if (forkcnt)
1954 { 3595 {
1955 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3596 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1956 call_pending (EV_A); 3597 EV_INVOKE_PENDING;
1957 } 3598 }
1958#endif 3599#endif
1959 3600
3601#if EV_PREPARE_ENABLE
1960 /* queue prepare watchers (and execute them) */ 3602 /* queue prepare watchers (and execute them) */
1961 if (expect_false (preparecnt)) 3603 if (expect_false (preparecnt))
1962 { 3604 {
1963 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3605 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1964 call_pending (EV_A); 3606 EV_INVOKE_PENDING;
1965 } 3607 }
3608#endif
1966 3609
1967 if (expect_false (!activecnt)) 3610 if (expect_false (loop_done))
1968 break; 3611 break;
1969 3612
1970 /* we might have forked, so reify kernel state if necessary */ 3613 /* we might have forked, so reify kernel state if necessary */
1971 if (expect_false (postfork)) 3614 if (expect_false (postfork))
1972 loop_fork (EV_A); 3615 loop_fork (EV_A);
1977 /* calculate blocking time */ 3620 /* calculate blocking time */
1978 { 3621 {
1979 ev_tstamp waittime = 0.; 3622 ev_tstamp waittime = 0.;
1980 ev_tstamp sleeptime = 0.; 3623 ev_tstamp sleeptime = 0.;
1981 3624
3625 /* remember old timestamp for io_blocktime calculation */
3626 ev_tstamp prev_mn_now = mn_now;
3627
3628 /* update time to cancel out callback processing overhead */
3629 time_update (EV_A_ 1e100);
3630
3631 /* from now on, we want a pipe-wake-up */
3632 pipe_write_wanted = 1;
3633
3634 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3635
1982 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3636 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1983 { 3637 {
1984 /* update time to cancel out callback processing overhead */
1985 time_update (EV_A_ 1e100);
1986
1987 waittime = MAX_BLOCKTIME; 3638 waittime = MAX_BLOCKTIME;
1988 3639
1989 if (timercnt) 3640 if (timercnt)
1990 { 3641 {
1991 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3642 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1992 if (waittime > to) waittime = to; 3643 if (waittime > to) waittime = to;
1993 } 3644 }
1994 3645
1995#if EV_PERIODIC_ENABLE 3646#if EV_PERIODIC_ENABLE
1996 if (periodiccnt) 3647 if (periodiccnt)
1997 { 3648 {
1998 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3649 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1999 if (waittime > to) waittime = to; 3650 if (waittime > to) waittime = to;
2000 } 3651 }
2001#endif 3652#endif
2002 3653
3654 /* don't let timeouts decrease the waittime below timeout_blocktime */
2003 if (expect_false (waittime < timeout_blocktime)) 3655 if (expect_false (waittime < timeout_blocktime))
2004 waittime = timeout_blocktime; 3656 waittime = timeout_blocktime;
2005 3657
2006 sleeptime = waittime - backend_fudge; 3658 /* at this point, we NEED to wait, so we have to ensure */
3659 /* to pass a minimum nonzero value to the backend */
3660 if (expect_false (waittime < backend_mintime))
3661 waittime = backend_mintime;
2007 3662
3663 /* extra check because io_blocktime is commonly 0 */
2008 if (expect_true (sleeptime > io_blocktime)) 3664 if (expect_false (io_blocktime))
2009 sleeptime = io_blocktime;
2010
2011 if (sleeptime)
2012 { 3665 {
3666 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3667
3668 if (sleeptime > waittime - backend_mintime)
3669 sleeptime = waittime - backend_mintime;
3670
3671 if (expect_true (sleeptime > 0.))
3672 {
2013 ev_sleep (sleeptime); 3673 ev_sleep (sleeptime);
2014 waittime -= sleeptime; 3674 waittime -= sleeptime;
3675 }
2015 } 3676 }
2016 } 3677 }
2017 3678
3679#if EV_FEATURE_API
2018 ++loop_count; 3680 ++loop_count;
3681#endif
3682 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2019 backend_poll (EV_A_ waittime); 3683 backend_poll (EV_A_ waittime);
3684 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3685
3686 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3687
3688 ECB_MEMORY_FENCE_ACQUIRE;
3689 if (pipe_write_skipped)
3690 {
3691 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3692 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3693 }
3694
2020 3695
2021 /* update ev_rt_now, do magic */ 3696 /* update ev_rt_now, do magic */
2022 time_update (EV_A_ waittime + sleeptime); 3697 time_update (EV_A_ waittime + sleeptime);
2023 } 3698 }
2024 3699
2031#if EV_IDLE_ENABLE 3706#if EV_IDLE_ENABLE
2032 /* queue idle watchers unless other events are pending */ 3707 /* queue idle watchers unless other events are pending */
2033 idle_reify (EV_A); 3708 idle_reify (EV_A);
2034#endif 3709#endif
2035 3710
3711#if EV_CHECK_ENABLE
2036 /* queue check watchers, to be executed first */ 3712 /* queue check watchers, to be executed first */
2037 if (expect_false (checkcnt)) 3713 if (expect_false (checkcnt))
2038 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3714 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3715#endif
2039 3716
2040 call_pending (EV_A); 3717 EV_INVOKE_PENDING;
2041 } 3718 }
2042 while (expect_true ( 3719 while (expect_true (
2043 activecnt 3720 activecnt
2044 && !loop_done 3721 && !loop_done
2045 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3722 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2046 )); 3723 ));
2047 3724
2048 if (loop_done == EVUNLOOP_ONE) 3725 if (loop_done == EVBREAK_ONE)
2049 loop_done = EVUNLOOP_CANCEL; 3726 loop_done = EVBREAK_CANCEL;
2050}
2051 3727
3728#if EV_FEATURE_API
3729 --loop_depth;
3730#endif
3731
3732 return activecnt;
3733}
3734
2052void 3735void
2053ev_unloop (EV_P_ int how) 3736ev_break (EV_P_ int how) EV_THROW
2054{ 3737{
2055 loop_done = how; 3738 loop_done = how;
2056} 3739}
2057 3740
3741void
3742ev_ref (EV_P) EV_THROW
3743{
3744 ++activecnt;
3745}
3746
3747void
3748ev_unref (EV_P) EV_THROW
3749{
3750 --activecnt;
3751}
3752
3753void
3754ev_now_update (EV_P) EV_THROW
3755{
3756 time_update (EV_A_ 1e100);
3757}
3758
3759void
3760ev_suspend (EV_P) EV_THROW
3761{
3762 ev_now_update (EV_A);
3763}
3764
3765void
3766ev_resume (EV_P) EV_THROW
3767{
3768 ev_tstamp mn_prev = mn_now;
3769
3770 ev_now_update (EV_A);
3771 timers_reschedule (EV_A_ mn_now - mn_prev);
3772#if EV_PERIODIC_ENABLE
3773 /* TODO: really do this? */
3774 periodics_reschedule (EV_A);
3775#endif
3776}
3777
2058/*****************************************************************************/ 3778/*****************************************************************************/
3779/* singly-linked list management, used when the expected list length is short */
2059 3780
2060void inline_size 3781inline_size void
2061wlist_add (WL *head, WL elem) 3782wlist_add (WL *head, WL elem)
2062{ 3783{
2063 elem->next = *head; 3784 elem->next = *head;
2064 *head = elem; 3785 *head = elem;
2065} 3786}
2066 3787
2067void inline_size 3788inline_size void
2068wlist_del (WL *head, WL elem) 3789wlist_del (WL *head, WL elem)
2069{ 3790{
2070 while (*head) 3791 while (*head)
2071 { 3792 {
2072 if (*head == elem) 3793 if (expect_true (*head == elem))
2073 { 3794 {
2074 *head = elem->next; 3795 *head = elem->next;
2075 return; 3796 break;
2076 } 3797 }
2077 3798
2078 head = &(*head)->next; 3799 head = &(*head)->next;
2079 } 3800 }
2080} 3801}
2081 3802
2082void inline_speed 3803/* internal, faster, version of ev_clear_pending */
3804inline_speed void
2083clear_pending (EV_P_ W w) 3805clear_pending (EV_P_ W w)
2084{ 3806{
2085 if (w->pending) 3807 if (w->pending)
2086 { 3808 {
2087 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3809 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2088 w->pending = 0; 3810 w->pending = 0;
2089 } 3811 }
2090} 3812}
2091 3813
2092int 3814int
2093ev_clear_pending (EV_P_ void *w) 3815ev_clear_pending (EV_P_ void *w) EV_THROW
2094{ 3816{
2095 W w_ = (W)w; 3817 W w_ = (W)w;
2096 int pending = w_->pending; 3818 int pending = w_->pending;
2097 3819
2098 if (expect_true (pending)) 3820 if (expect_true (pending))
2099 { 3821 {
2100 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3822 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3823 p->w = (W)&pending_w;
2101 w_->pending = 0; 3824 w_->pending = 0;
2102 p->w = 0;
2103 return p->events; 3825 return p->events;
2104 } 3826 }
2105 else 3827 else
2106 return 0; 3828 return 0;
2107} 3829}
2108 3830
2109void inline_size 3831inline_size void
2110pri_adjust (EV_P_ W w) 3832pri_adjust (EV_P_ W w)
2111{ 3833{
2112 int pri = w->priority; 3834 int pri = ev_priority (w);
2113 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3835 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2114 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3836 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2115 w->priority = pri; 3837 ev_set_priority (w, pri);
2116} 3838}
2117 3839
2118void inline_speed 3840inline_speed void
2119ev_start (EV_P_ W w, int active) 3841ev_start (EV_P_ W w, int active)
2120{ 3842{
2121 pri_adjust (EV_A_ w); 3843 pri_adjust (EV_A_ w);
2122 w->active = active; 3844 w->active = active;
2123 ev_ref (EV_A); 3845 ev_ref (EV_A);
2124} 3846}
2125 3847
2126void inline_size 3848inline_size void
2127ev_stop (EV_P_ W w) 3849ev_stop (EV_P_ W w)
2128{ 3850{
2129 ev_unref (EV_A); 3851 ev_unref (EV_A);
2130 w->active = 0; 3852 w->active = 0;
2131} 3853}
2132 3854
2133/*****************************************************************************/ 3855/*****************************************************************************/
2134 3856
2135void noinline 3857noinline
3858void
2136ev_io_start (EV_P_ ev_io *w) 3859ev_io_start (EV_P_ ev_io *w) EV_THROW
2137{ 3860{
2138 int fd = w->fd; 3861 int fd = w->fd;
2139 3862
2140 if (expect_false (ev_is_active (w))) 3863 if (expect_false (ev_is_active (w)))
2141 return; 3864 return;
2142 3865
2143 assert (("ev_io_start called with negative fd", fd >= 0)); 3866 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3867 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2144 3868
2145 EV_FREQUENT_CHECK; 3869 EV_FREQUENT_CHECK;
2146 3870
2147 ev_start (EV_A_ (W)w, 1); 3871 ev_start (EV_A_ (W)w, 1);
2148 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3872 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2149 wlist_add (&anfds[fd].head, (WL)w); 3873 wlist_add (&anfds[fd].head, (WL)w);
2150 3874
3875 /* common bug, apparently */
3876 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3877
2151 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3878 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2152 w->events &= ~EV_IOFDSET; 3879 w->events &= ~EV__IOFDSET;
2153 3880
2154 EV_FREQUENT_CHECK; 3881 EV_FREQUENT_CHECK;
2155} 3882}
2156 3883
2157void noinline 3884noinline
3885void
2158ev_io_stop (EV_P_ ev_io *w) 3886ev_io_stop (EV_P_ ev_io *w) EV_THROW
2159{ 3887{
2160 clear_pending (EV_A_ (W)w); 3888 clear_pending (EV_A_ (W)w);
2161 if (expect_false (!ev_is_active (w))) 3889 if (expect_false (!ev_is_active (w)))
2162 return; 3890 return;
2163 3891
2164 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3892 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2165 3893
2166 EV_FREQUENT_CHECK; 3894 EV_FREQUENT_CHECK;
2167 3895
2168 wlist_del (&anfds[w->fd].head, (WL)w); 3896 wlist_del (&anfds[w->fd].head, (WL)w);
2169 ev_stop (EV_A_ (W)w); 3897 ev_stop (EV_A_ (W)w);
2170 3898
2171 fd_change (EV_A_ w->fd, 1); 3899 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2172 3900
2173 EV_FREQUENT_CHECK; 3901 EV_FREQUENT_CHECK;
2174} 3902}
2175 3903
2176void noinline 3904noinline
3905void
2177ev_timer_start (EV_P_ ev_timer *w) 3906ev_timer_start (EV_P_ ev_timer *w) EV_THROW
2178{ 3907{
2179 if (expect_false (ev_is_active (w))) 3908 if (expect_false (ev_is_active (w)))
2180 return; 3909 return;
2181 3910
2182 ev_at (w) += mn_now; 3911 ev_at (w) += mn_now;
2183 3912
2184 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3913 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2185 3914
2186 EV_FREQUENT_CHECK; 3915 EV_FREQUENT_CHECK;
2187 3916
2188 ++timercnt; 3917 ++timercnt;
2189 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 3918 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2192 ANHE_at_cache (timers [ev_active (w)]); 3921 ANHE_at_cache (timers [ev_active (w)]);
2193 upheap (timers, ev_active (w)); 3922 upheap (timers, ev_active (w));
2194 3923
2195 EV_FREQUENT_CHECK; 3924 EV_FREQUENT_CHECK;
2196 3925
2197 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3926 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2198} 3927}
2199 3928
2200void noinline 3929noinline
3930void
2201ev_timer_stop (EV_P_ ev_timer *w) 3931ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
2202{ 3932{
2203 clear_pending (EV_A_ (W)w); 3933 clear_pending (EV_A_ (W)w);
2204 if (expect_false (!ev_is_active (w))) 3934 if (expect_false (!ev_is_active (w)))
2205 return; 3935 return;
2206 3936
2207 EV_FREQUENT_CHECK; 3937 EV_FREQUENT_CHECK;
2208 3938
2209 { 3939 {
2210 int active = ev_active (w); 3940 int active = ev_active (w);
2211 3941
2212 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 3942 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2213 3943
2214 --timercnt; 3944 --timercnt;
2215 3945
2216 if (expect_true (active < timercnt + HEAP0)) 3946 if (expect_true (active < timercnt + HEAP0))
2217 { 3947 {
2218 timers [active] = timers [timercnt + HEAP0]; 3948 timers [active] = timers [timercnt + HEAP0];
2219 adjustheap (timers, timercnt, active); 3949 adjustheap (timers, timercnt, active);
2220 } 3950 }
2221 } 3951 }
2222 3952
2223 EV_FREQUENT_CHECK;
2224
2225 ev_at (w) -= mn_now; 3953 ev_at (w) -= mn_now;
2226 3954
2227 ev_stop (EV_A_ (W)w); 3955 ev_stop (EV_A_ (W)w);
2228}
2229 3956
3957 EV_FREQUENT_CHECK;
3958}
3959
2230void noinline 3960noinline
3961void
2231ev_timer_again (EV_P_ ev_timer *w) 3962ev_timer_again (EV_P_ ev_timer *w) EV_THROW
2232{ 3963{
2233 EV_FREQUENT_CHECK; 3964 EV_FREQUENT_CHECK;
3965
3966 clear_pending (EV_A_ (W)w);
2234 3967
2235 if (ev_is_active (w)) 3968 if (ev_is_active (w))
2236 { 3969 {
2237 if (w->repeat) 3970 if (w->repeat)
2238 { 3971 {
2250 } 3983 }
2251 3984
2252 EV_FREQUENT_CHECK; 3985 EV_FREQUENT_CHECK;
2253} 3986}
2254 3987
3988ev_tstamp
3989ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3990{
3991 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3992}
3993
2255#if EV_PERIODIC_ENABLE 3994#if EV_PERIODIC_ENABLE
2256void noinline 3995noinline
3996void
2257ev_periodic_start (EV_P_ ev_periodic *w) 3997ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
2258{ 3998{
2259 if (expect_false (ev_is_active (w))) 3999 if (expect_false (ev_is_active (w)))
2260 return; 4000 return;
2261 4001
2262 if (w->reschedule_cb) 4002 if (w->reschedule_cb)
2263 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 4003 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2264 else if (w->interval) 4004 else if (w->interval)
2265 { 4005 {
2266 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 4006 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2267 /* this formula differs from the one in periodic_reify because we do not always round up */ 4007 periodic_recalc (EV_A_ w);
2268 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2269 } 4008 }
2270 else 4009 else
2271 ev_at (w) = w->offset; 4010 ev_at (w) = w->offset;
2272 4011
2273 EV_FREQUENT_CHECK; 4012 EV_FREQUENT_CHECK;
2279 ANHE_at_cache (periodics [ev_active (w)]); 4018 ANHE_at_cache (periodics [ev_active (w)]);
2280 upheap (periodics, ev_active (w)); 4019 upheap (periodics, ev_active (w));
2281 4020
2282 EV_FREQUENT_CHECK; 4021 EV_FREQUENT_CHECK;
2283 4022
2284 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 4023 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2285} 4024}
2286 4025
2287void noinline 4026noinline
4027void
2288ev_periodic_stop (EV_P_ ev_periodic *w) 4028ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
2289{ 4029{
2290 clear_pending (EV_A_ (W)w); 4030 clear_pending (EV_A_ (W)w);
2291 if (expect_false (!ev_is_active (w))) 4031 if (expect_false (!ev_is_active (w)))
2292 return; 4032 return;
2293 4033
2294 EV_FREQUENT_CHECK; 4034 EV_FREQUENT_CHECK;
2295 4035
2296 { 4036 {
2297 int active = ev_active (w); 4037 int active = ev_active (w);
2298 4038
2299 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 4039 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2300 4040
2301 --periodiccnt; 4041 --periodiccnt;
2302 4042
2303 if (expect_true (active < periodiccnt + HEAP0)) 4043 if (expect_true (active < periodiccnt + HEAP0))
2304 { 4044 {
2305 periodics [active] = periodics [periodiccnt + HEAP0]; 4045 periodics [active] = periodics [periodiccnt + HEAP0];
2306 adjustheap (periodics, periodiccnt, active); 4046 adjustheap (periodics, periodiccnt, active);
2307 } 4047 }
2308 } 4048 }
2309 4049
2310 EV_FREQUENT_CHECK;
2311
2312 ev_stop (EV_A_ (W)w); 4050 ev_stop (EV_A_ (W)w);
2313}
2314 4051
4052 EV_FREQUENT_CHECK;
4053}
4054
2315void noinline 4055noinline
4056void
2316ev_periodic_again (EV_P_ ev_periodic *w) 4057ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
2317{ 4058{
2318 /* TODO: use adjustheap and recalculation */ 4059 /* TODO: use adjustheap and recalculation */
2319 ev_periodic_stop (EV_A_ w); 4060 ev_periodic_stop (EV_A_ w);
2320 ev_periodic_start (EV_A_ w); 4061 ev_periodic_start (EV_A_ w);
2321} 4062}
2323 4064
2324#ifndef SA_RESTART 4065#ifndef SA_RESTART
2325# define SA_RESTART 0 4066# define SA_RESTART 0
2326#endif 4067#endif
2327 4068
4069#if EV_SIGNAL_ENABLE
4070
2328void noinline 4071noinline
4072void
2329ev_signal_start (EV_P_ ev_signal *w) 4073ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2330{ 4074{
2331#if EV_MULTIPLICITY
2332 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2333#endif
2334 if (expect_false (ev_is_active (w))) 4075 if (expect_false (ev_is_active (w)))
2335 return; 4076 return;
2336 4077
2337 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4078 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2338 4079
2339 evpipe_init (EV_A); 4080#if EV_MULTIPLICITY
4081 assert (("libev: a signal must not be attached to two different loops",
4082 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2340 4083
2341 EV_FREQUENT_CHECK; 4084 signals [w->signum - 1].loop = EV_A;
4085 ECB_MEMORY_FENCE_RELEASE;
4086#endif
2342 4087
4088 EV_FREQUENT_CHECK;
4089
4090#if EV_USE_SIGNALFD
4091 if (sigfd == -2)
2343 { 4092 {
2344#ifndef _WIN32 4093 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2345 sigset_t full, prev; 4094 if (sigfd < 0 && errno == EINVAL)
2346 sigfillset (&full); 4095 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2347 sigprocmask (SIG_SETMASK, &full, &prev);
2348#endif
2349 4096
2350 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 4097 if (sigfd >= 0)
4098 {
4099 fd_intern (sigfd); /* doing it twice will not hurt */
2351 4100
2352#ifndef _WIN32 4101 sigemptyset (&sigfd_set);
2353 sigprocmask (SIG_SETMASK, &prev, 0); 4102
2354#endif 4103 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4104 ev_set_priority (&sigfd_w, EV_MAXPRI);
4105 ev_io_start (EV_A_ &sigfd_w);
4106 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4107 }
2355 } 4108 }
4109
4110 if (sigfd >= 0)
4111 {
4112 /* TODO: check .head */
4113 sigaddset (&sigfd_set, w->signum);
4114 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4115
4116 signalfd (sigfd, &sigfd_set, 0);
4117 }
4118#endif
2356 4119
2357 ev_start (EV_A_ (W)w, 1); 4120 ev_start (EV_A_ (W)w, 1);
2358 wlist_add (&signals [w->signum - 1].head, (WL)w); 4121 wlist_add (&signals [w->signum - 1].head, (WL)w);
2359 4122
2360 if (!((WL)w)->next) 4123 if (!((WL)w)->next)
4124# if EV_USE_SIGNALFD
4125 if (sigfd < 0) /*TODO*/
4126# endif
2361 { 4127 {
2362#if _WIN32 4128# ifdef _WIN32
4129 evpipe_init (EV_A);
4130
2363 signal (w->signum, ev_sighandler); 4131 signal (w->signum, ev_sighandler);
2364#else 4132# else
2365 struct sigaction sa; 4133 struct sigaction sa;
4134
4135 evpipe_init (EV_A);
4136
2366 sa.sa_handler = ev_sighandler; 4137 sa.sa_handler = ev_sighandler;
2367 sigfillset (&sa.sa_mask); 4138 sigfillset (&sa.sa_mask);
2368 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 4139 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2369 sigaction (w->signum, &sa, 0); 4140 sigaction (w->signum, &sa, 0);
4141
4142 if (origflags & EVFLAG_NOSIGMASK)
4143 {
4144 sigemptyset (&sa.sa_mask);
4145 sigaddset (&sa.sa_mask, w->signum);
4146 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4147 }
2370#endif 4148#endif
2371 } 4149 }
2372 4150
2373 EV_FREQUENT_CHECK; 4151 EV_FREQUENT_CHECK;
2374} 4152}
2375 4153
2376void noinline 4154noinline
4155void
2377ev_signal_stop (EV_P_ ev_signal *w) 4156ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2378{ 4157{
2379 clear_pending (EV_A_ (W)w); 4158 clear_pending (EV_A_ (W)w);
2380 if (expect_false (!ev_is_active (w))) 4159 if (expect_false (!ev_is_active (w)))
2381 return; 4160 return;
2382 4161
2384 4163
2385 wlist_del (&signals [w->signum - 1].head, (WL)w); 4164 wlist_del (&signals [w->signum - 1].head, (WL)w);
2386 ev_stop (EV_A_ (W)w); 4165 ev_stop (EV_A_ (W)w);
2387 4166
2388 if (!signals [w->signum - 1].head) 4167 if (!signals [w->signum - 1].head)
2389 signal (w->signum, SIG_DFL); 4168 {
2390
2391 EV_FREQUENT_CHECK;
2392}
2393
2394void
2395ev_child_start (EV_P_ ev_child *w)
2396{
2397#if EV_MULTIPLICITY 4169#if EV_MULTIPLICITY
4170 signals [w->signum - 1].loop = 0; /* unattach from signal */
4171#endif
4172#if EV_USE_SIGNALFD
4173 if (sigfd >= 0)
4174 {
4175 sigset_t ss;
4176
4177 sigemptyset (&ss);
4178 sigaddset (&ss, w->signum);
4179 sigdelset (&sigfd_set, w->signum);
4180
4181 signalfd (sigfd, &sigfd_set, 0);
4182 sigprocmask (SIG_UNBLOCK, &ss, 0);
4183 }
4184 else
4185#endif
4186 signal (w->signum, SIG_DFL);
4187 }
4188
4189 EV_FREQUENT_CHECK;
4190}
4191
4192#endif
4193
4194#if EV_CHILD_ENABLE
4195
4196void
4197ev_child_start (EV_P_ ev_child *w) EV_THROW
4198{
4199#if EV_MULTIPLICITY
2398 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4200 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2399#endif 4201#endif
2400 if (expect_false (ev_is_active (w))) 4202 if (expect_false (ev_is_active (w)))
2401 return; 4203 return;
2402 4204
2403 EV_FREQUENT_CHECK; 4205 EV_FREQUENT_CHECK;
2404 4206
2405 ev_start (EV_A_ (W)w, 1); 4207 ev_start (EV_A_ (W)w, 1);
2406 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4208 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2407 4209
2408 EV_FREQUENT_CHECK; 4210 EV_FREQUENT_CHECK;
2409} 4211}
2410 4212
2411void 4213void
2412ev_child_stop (EV_P_ ev_child *w) 4214ev_child_stop (EV_P_ ev_child *w) EV_THROW
2413{ 4215{
2414 clear_pending (EV_A_ (W)w); 4216 clear_pending (EV_A_ (W)w);
2415 if (expect_false (!ev_is_active (w))) 4217 if (expect_false (!ev_is_active (w)))
2416 return; 4218 return;
2417 4219
2418 EV_FREQUENT_CHECK; 4220 EV_FREQUENT_CHECK;
2419 4221
2420 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4222 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2421 ev_stop (EV_A_ (W)w); 4223 ev_stop (EV_A_ (W)w);
2422 4224
2423 EV_FREQUENT_CHECK; 4225 EV_FREQUENT_CHECK;
2424} 4226}
4227
4228#endif
2425 4229
2426#if EV_STAT_ENABLE 4230#if EV_STAT_ENABLE
2427 4231
2428# ifdef _WIN32 4232# ifdef _WIN32
2429# undef lstat 4233# undef lstat
2430# define lstat(a,b) _stati64 (a,b) 4234# define lstat(a,b) _stati64 (a,b)
2431# endif 4235# endif
2432 4236
2433#define DEF_STAT_INTERVAL 5.0074891 4237#define DEF_STAT_INTERVAL 5.0074891
4238#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2434#define MIN_STAT_INTERVAL 0.1074891 4239#define MIN_STAT_INTERVAL 0.1074891
2435 4240
2436static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4241noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2437 4242
2438#if EV_USE_INOTIFY 4243#if EV_USE_INOTIFY
2439# define EV_INOTIFY_BUFSIZE 8192
2440 4244
2441static void noinline 4245/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4246# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4247
4248noinline
4249static void
2442infy_add (EV_P_ ev_stat *w) 4250infy_add (EV_P_ ev_stat *w)
2443{ 4251{
2444 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4252 w->wd = inotify_add_watch (fs_fd, w->path,
4253 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4254 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4255 | IN_DONT_FOLLOW | IN_MASK_ADD);
2445 4256
2446 if (w->wd < 0) 4257 if (w->wd >= 0)
4258 {
4259 struct statfs sfs;
4260
4261 /* now local changes will be tracked by inotify, but remote changes won't */
4262 /* unless the filesystem is known to be local, we therefore still poll */
4263 /* also do poll on <2.6.25, but with normal frequency */
4264
4265 if (!fs_2625)
4266 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4267 else if (!statfs (w->path, &sfs)
4268 && (sfs.f_type == 0x1373 /* devfs */
4269 || sfs.f_type == 0x4006 /* fat */
4270 || sfs.f_type == 0x4d44 /* msdos */
4271 || sfs.f_type == 0xEF53 /* ext2/3 */
4272 || sfs.f_type == 0x72b6 /* jffs2 */
4273 || sfs.f_type == 0x858458f6 /* ramfs */
4274 || sfs.f_type == 0x5346544e /* ntfs */
4275 || sfs.f_type == 0x3153464a /* jfs */
4276 || sfs.f_type == 0x9123683e /* btrfs */
4277 || sfs.f_type == 0x52654973 /* reiser3 */
4278 || sfs.f_type == 0x01021994 /* tmpfs */
4279 || sfs.f_type == 0x58465342 /* xfs */))
4280 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4281 else
4282 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2447 { 4283 }
2448 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 4284 else
4285 {
4286 /* can't use inotify, continue to stat */
4287 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2449 4288
2450 /* monitor some parent directory for speedup hints */ 4289 /* if path is not there, monitor some parent directory for speedup hints */
2451 /* note that exceeding the hardcoded limit is not a correctness issue, */ 4290 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2452 /* but an efficiency issue only */ 4291 /* but an efficiency issue only */
2453 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4292 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2454 { 4293 {
2455 char path [4096]; 4294 char path [4096];
2456 strcpy (path, w->path); 4295 strcpy (path, w->path);
2460 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4299 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2461 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4300 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2462 4301
2463 char *pend = strrchr (path, '/'); 4302 char *pend = strrchr (path, '/');
2464 4303
2465 if (!pend) 4304 if (!pend || pend == path)
2466 break; /* whoops, no '/', complain to your admin */ 4305 break;
2467 4306
2468 *pend = 0; 4307 *pend = 0;
2469 w->wd = inotify_add_watch (fs_fd, path, mask); 4308 w->wd = inotify_add_watch (fs_fd, path, mask);
2470 } 4309 }
2471 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4310 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2472 } 4311 }
2473 } 4312 }
2474 else
2475 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2476 4313
2477 if (w->wd >= 0) 4314 if (w->wd >= 0)
2478 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4315 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2479}
2480 4316
2481static void noinline 4317 /* now re-arm timer, if required */
4318 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4319 ev_timer_again (EV_A_ &w->timer);
4320 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4321}
4322
4323noinline
4324static void
2482infy_del (EV_P_ ev_stat *w) 4325infy_del (EV_P_ ev_stat *w)
2483{ 4326{
2484 int slot; 4327 int slot;
2485 int wd = w->wd; 4328 int wd = w->wd;
2486 4329
2487 if (wd < 0) 4330 if (wd < 0)
2488 return; 4331 return;
2489 4332
2490 w->wd = -2; 4333 w->wd = -2;
2491 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4334 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2492 wlist_del (&fs_hash [slot].head, (WL)w); 4335 wlist_del (&fs_hash [slot].head, (WL)w);
2493 4336
2494 /* remove this watcher, if others are watching it, they will rearm */ 4337 /* remove this watcher, if others are watching it, they will rearm */
2495 inotify_rm_watch (fs_fd, wd); 4338 inotify_rm_watch (fs_fd, wd);
2496} 4339}
2497 4340
2498static void noinline 4341noinline
4342static void
2499infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4343infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2500{ 4344{
2501 if (slot < 0) 4345 if (slot < 0)
2502 /* overflow, need to check for all hash slots */ 4346 /* overflow, need to check for all hash slots */
2503 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4347 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2504 infy_wd (EV_A_ slot, wd, ev); 4348 infy_wd (EV_A_ slot, wd, ev);
2505 else 4349 else
2506 { 4350 {
2507 WL w_; 4351 WL w_;
2508 4352
2509 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4353 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2510 { 4354 {
2511 ev_stat *w = (ev_stat *)w_; 4355 ev_stat *w = (ev_stat *)w_;
2512 w_ = w_->next; /* lets us remove this watcher and all before it */ 4356 w_ = w_->next; /* lets us remove this watcher and all before it */
2513 4357
2514 if (w->wd == wd || wd == -1) 4358 if (w->wd == wd || wd == -1)
2515 { 4359 {
2516 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4360 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2517 { 4361 {
4362 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2518 w->wd = -1; 4363 w->wd = -1;
2519 infy_add (EV_A_ w); /* re-add, no matter what */ 4364 infy_add (EV_A_ w); /* re-add, no matter what */
2520 } 4365 }
2521 4366
2522 stat_timer_cb (EV_A_ &w->timer, 0); 4367 stat_timer_cb (EV_A_ &w->timer, 0);
2527 4372
2528static void 4373static void
2529infy_cb (EV_P_ ev_io *w, int revents) 4374infy_cb (EV_P_ ev_io *w, int revents)
2530{ 4375{
2531 char buf [EV_INOTIFY_BUFSIZE]; 4376 char buf [EV_INOTIFY_BUFSIZE];
2532 struct inotify_event *ev = (struct inotify_event *)buf;
2533 int ofs; 4377 int ofs;
2534 int len = read (fs_fd, buf, sizeof (buf)); 4378 int len = read (fs_fd, buf, sizeof (buf));
2535 4379
2536 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4380 for (ofs = 0; ofs < len; )
4381 {
4382 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2537 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4383 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4384 ofs += sizeof (struct inotify_event) + ev->len;
4385 }
2538} 4386}
2539 4387
2540void inline_size 4388inline_size ecb_cold
2541infy_init (EV_P) 4389void
4390ev_check_2625 (EV_P)
2542{ 4391{
2543 if (fs_fd != -2)
2544 return;
2545
2546 /* kernels < 2.6.25 are borked 4392 /* kernels < 2.6.25 are borked
2547 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 4393 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2548 */ 4394 */
2549 { 4395 if (ev_linux_version () < 0x020619)
2550 struct utsname buf; 4396 return;
2551 int major, minor, micro;
2552 4397
4398 fs_2625 = 1;
4399}
4400
4401inline_size int
4402infy_newfd (void)
4403{
4404#if defined IN_CLOEXEC && defined IN_NONBLOCK
4405 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4406 if (fd >= 0)
4407 return fd;
4408#endif
4409 return inotify_init ();
4410}
4411
4412inline_size void
4413infy_init (EV_P)
4414{
4415 if (fs_fd != -2)
4416 return;
4417
2553 fs_fd = -1; 4418 fs_fd = -1;
2554 4419
2555 if (uname (&buf)) 4420 ev_check_2625 (EV_A);
2556 return;
2557 4421
2558 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2559 return;
2560
2561 if (major < 2
2562 || (major == 2 && minor < 6)
2563 || (major == 2 && minor == 6 && micro < 25))
2564 return;
2565 }
2566
2567 fs_fd = inotify_init (); 4422 fs_fd = infy_newfd ();
2568 4423
2569 if (fs_fd >= 0) 4424 if (fs_fd >= 0)
2570 { 4425 {
4426 fd_intern (fs_fd);
2571 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4427 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2572 ev_set_priority (&fs_w, EV_MAXPRI); 4428 ev_set_priority (&fs_w, EV_MAXPRI);
2573 ev_io_start (EV_A_ &fs_w); 4429 ev_io_start (EV_A_ &fs_w);
4430 ev_unref (EV_A);
2574 } 4431 }
2575} 4432}
2576 4433
2577void inline_size 4434inline_size void
2578infy_fork (EV_P) 4435infy_fork (EV_P)
2579{ 4436{
2580 int slot; 4437 int slot;
2581 4438
2582 if (fs_fd < 0) 4439 if (fs_fd < 0)
2583 return; 4440 return;
2584 4441
4442 ev_ref (EV_A);
4443 ev_io_stop (EV_A_ &fs_w);
2585 close (fs_fd); 4444 close (fs_fd);
2586 fs_fd = inotify_init (); 4445 fs_fd = infy_newfd ();
2587 4446
4447 if (fs_fd >= 0)
4448 {
4449 fd_intern (fs_fd);
4450 ev_io_set (&fs_w, fs_fd, EV_READ);
4451 ev_io_start (EV_A_ &fs_w);
4452 ev_unref (EV_A);
4453 }
4454
2588 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4455 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2589 { 4456 {
2590 WL w_ = fs_hash [slot].head; 4457 WL w_ = fs_hash [slot].head;
2591 fs_hash [slot].head = 0; 4458 fs_hash [slot].head = 0;
2592 4459
2593 while (w_) 4460 while (w_)
2598 w->wd = -1; 4465 w->wd = -1;
2599 4466
2600 if (fs_fd >= 0) 4467 if (fs_fd >= 0)
2601 infy_add (EV_A_ w); /* re-add, no matter what */ 4468 infy_add (EV_A_ w); /* re-add, no matter what */
2602 else 4469 else
4470 {
4471 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4472 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2603 ev_timer_start (EV_A_ &w->timer); 4473 ev_timer_again (EV_A_ &w->timer);
4474 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4475 }
2604 } 4476 }
2605 } 4477 }
2606} 4478}
2607 4479
2608#endif 4480#endif
2612#else 4484#else
2613# define EV_LSTAT(p,b) lstat (p, b) 4485# define EV_LSTAT(p,b) lstat (p, b)
2614#endif 4486#endif
2615 4487
2616void 4488void
2617ev_stat_stat (EV_P_ ev_stat *w) 4489ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2618{ 4490{
2619 if (lstat (w->path, &w->attr) < 0) 4491 if (lstat (w->path, &w->attr) < 0)
2620 w->attr.st_nlink = 0; 4492 w->attr.st_nlink = 0;
2621 else if (!w->attr.st_nlink) 4493 else if (!w->attr.st_nlink)
2622 w->attr.st_nlink = 1; 4494 w->attr.st_nlink = 1;
2623} 4495}
2624 4496
2625static void noinline 4497noinline
4498static void
2626stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4499stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2627{ 4500{
2628 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4501 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2629 4502
2630 /* we copy this here each the time so that */ 4503 ev_statdata prev = w->attr;
2631 /* prev has the old value when the callback gets invoked */
2632 w->prev = w->attr;
2633 ev_stat_stat (EV_A_ w); 4504 ev_stat_stat (EV_A_ w);
2634 4505
2635 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4506 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2636 if ( 4507 if (
2637 w->prev.st_dev != w->attr.st_dev 4508 prev.st_dev != w->attr.st_dev
2638 || w->prev.st_ino != w->attr.st_ino 4509 || prev.st_ino != w->attr.st_ino
2639 || w->prev.st_mode != w->attr.st_mode 4510 || prev.st_mode != w->attr.st_mode
2640 || w->prev.st_nlink != w->attr.st_nlink 4511 || prev.st_nlink != w->attr.st_nlink
2641 || w->prev.st_uid != w->attr.st_uid 4512 || prev.st_uid != w->attr.st_uid
2642 || w->prev.st_gid != w->attr.st_gid 4513 || prev.st_gid != w->attr.st_gid
2643 || w->prev.st_rdev != w->attr.st_rdev 4514 || prev.st_rdev != w->attr.st_rdev
2644 || w->prev.st_size != w->attr.st_size 4515 || prev.st_size != w->attr.st_size
2645 || w->prev.st_atime != w->attr.st_atime 4516 || prev.st_atime != w->attr.st_atime
2646 || w->prev.st_mtime != w->attr.st_mtime 4517 || prev.st_mtime != w->attr.st_mtime
2647 || w->prev.st_ctime != w->attr.st_ctime 4518 || prev.st_ctime != w->attr.st_ctime
2648 ) { 4519 ) {
4520 /* we only update w->prev on actual differences */
4521 /* in case we test more often than invoke the callback, */
4522 /* to ensure that prev is always different to attr */
4523 w->prev = prev;
4524
2649 #if EV_USE_INOTIFY 4525 #if EV_USE_INOTIFY
2650 if (fs_fd >= 0) 4526 if (fs_fd >= 0)
2651 { 4527 {
2652 infy_del (EV_A_ w); 4528 infy_del (EV_A_ w);
2653 infy_add (EV_A_ w); 4529 infy_add (EV_A_ w);
2658 ev_feed_event (EV_A_ w, EV_STAT); 4534 ev_feed_event (EV_A_ w, EV_STAT);
2659 } 4535 }
2660} 4536}
2661 4537
2662void 4538void
2663ev_stat_start (EV_P_ ev_stat *w) 4539ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2664{ 4540{
2665 if (expect_false (ev_is_active (w))) 4541 if (expect_false (ev_is_active (w)))
2666 return; 4542 return;
2667 4543
2668 /* since we use memcmp, we need to clear any padding data etc. */
2669 memset (&w->prev, 0, sizeof (ev_statdata));
2670 memset (&w->attr, 0, sizeof (ev_statdata));
2671
2672 ev_stat_stat (EV_A_ w); 4544 ev_stat_stat (EV_A_ w);
2673 4545
4546 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2674 if (w->interval < MIN_STAT_INTERVAL) 4547 w->interval = MIN_STAT_INTERVAL;
2675 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2676 4548
2677 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4549 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2678 ev_set_priority (&w->timer, ev_priority (w)); 4550 ev_set_priority (&w->timer, ev_priority (w));
2679 4551
2680#if EV_USE_INOTIFY 4552#if EV_USE_INOTIFY
2681 infy_init (EV_A); 4553 infy_init (EV_A);
2682 4554
2683 if (fs_fd >= 0) 4555 if (fs_fd >= 0)
2684 infy_add (EV_A_ w); 4556 infy_add (EV_A_ w);
2685 else 4557 else
2686#endif 4558#endif
4559 {
2687 ev_timer_start (EV_A_ &w->timer); 4560 ev_timer_again (EV_A_ &w->timer);
4561 ev_unref (EV_A);
4562 }
2688 4563
2689 ev_start (EV_A_ (W)w, 1); 4564 ev_start (EV_A_ (W)w, 1);
2690 4565
2691 EV_FREQUENT_CHECK; 4566 EV_FREQUENT_CHECK;
2692} 4567}
2693 4568
2694void 4569void
2695ev_stat_stop (EV_P_ ev_stat *w) 4570ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2696{ 4571{
2697 clear_pending (EV_A_ (W)w); 4572 clear_pending (EV_A_ (W)w);
2698 if (expect_false (!ev_is_active (w))) 4573 if (expect_false (!ev_is_active (w)))
2699 return; 4574 return;
2700 4575
2701 EV_FREQUENT_CHECK; 4576 EV_FREQUENT_CHECK;
2702 4577
2703#if EV_USE_INOTIFY 4578#if EV_USE_INOTIFY
2704 infy_del (EV_A_ w); 4579 infy_del (EV_A_ w);
2705#endif 4580#endif
4581
4582 if (ev_is_active (&w->timer))
4583 {
4584 ev_ref (EV_A);
2706 ev_timer_stop (EV_A_ &w->timer); 4585 ev_timer_stop (EV_A_ &w->timer);
4586 }
2707 4587
2708 ev_stop (EV_A_ (W)w); 4588 ev_stop (EV_A_ (W)w);
2709 4589
2710 EV_FREQUENT_CHECK; 4590 EV_FREQUENT_CHECK;
2711} 4591}
2712#endif 4592#endif
2713 4593
2714#if EV_IDLE_ENABLE 4594#if EV_IDLE_ENABLE
2715void 4595void
2716ev_idle_start (EV_P_ ev_idle *w) 4596ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2717{ 4597{
2718 if (expect_false (ev_is_active (w))) 4598 if (expect_false (ev_is_active (w)))
2719 return; 4599 return;
2720 4600
2721 pri_adjust (EV_A_ (W)w); 4601 pri_adjust (EV_A_ (W)w);
2734 4614
2735 EV_FREQUENT_CHECK; 4615 EV_FREQUENT_CHECK;
2736} 4616}
2737 4617
2738void 4618void
2739ev_idle_stop (EV_P_ ev_idle *w) 4619ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2740{ 4620{
2741 clear_pending (EV_A_ (W)w); 4621 clear_pending (EV_A_ (W)w);
2742 if (expect_false (!ev_is_active (w))) 4622 if (expect_false (!ev_is_active (w)))
2743 return; 4623 return;
2744 4624
2756 4636
2757 EV_FREQUENT_CHECK; 4637 EV_FREQUENT_CHECK;
2758} 4638}
2759#endif 4639#endif
2760 4640
4641#if EV_PREPARE_ENABLE
2761void 4642void
2762ev_prepare_start (EV_P_ ev_prepare *w) 4643ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2763{ 4644{
2764 if (expect_false (ev_is_active (w))) 4645 if (expect_false (ev_is_active (w)))
2765 return; 4646 return;
2766 4647
2767 EV_FREQUENT_CHECK; 4648 EV_FREQUENT_CHECK;
2772 4653
2773 EV_FREQUENT_CHECK; 4654 EV_FREQUENT_CHECK;
2774} 4655}
2775 4656
2776void 4657void
2777ev_prepare_stop (EV_P_ ev_prepare *w) 4658ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2778{ 4659{
2779 clear_pending (EV_A_ (W)w); 4660 clear_pending (EV_A_ (W)w);
2780 if (expect_false (!ev_is_active (w))) 4661 if (expect_false (!ev_is_active (w)))
2781 return; 4662 return;
2782 4663
2791 4672
2792 ev_stop (EV_A_ (W)w); 4673 ev_stop (EV_A_ (W)w);
2793 4674
2794 EV_FREQUENT_CHECK; 4675 EV_FREQUENT_CHECK;
2795} 4676}
4677#endif
2796 4678
4679#if EV_CHECK_ENABLE
2797void 4680void
2798ev_check_start (EV_P_ ev_check *w) 4681ev_check_start (EV_P_ ev_check *w) EV_THROW
2799{ 4682{
2800 if (expect_false (ev_is_active (w))) 4683 if (expect_false (ev_is_active (w)))
2801 return; 4684 return;
2802 4685
2803 EV_FREQUENT_CHECK; 4686 EV_FREQUENT_CHECK;
2808 4691
2809 EV_FREQUENT_CHECK; 4692 EV_FREQUENT_CHECK;
2810} 4693}
2811 4694
2812void 4695void
2813ev_check_stop (EV_P_ ev_check *w) 4696ev_check_stop (EV_P_ ev_check *w) EV_THROW
2814{ 4697{
2815 clear_pending (EV_A_ (W)w); 4698 clear_pending (EV_A_ (W)w);
2816 if (expect_false (!ev_is_active (w))) 4699 if (expect_false (!ev_is_active (w)))
2817 return; 4700 return;
2818 4701
2827 4710
2828 ev_stop (EV_A_ (W)w); 4711 ev_stop (EV_A_ (W)w);
2829 4712
2830 EV_FREQUENT_CHECK; 4713 EV_FREQUENT_CHECK;
2831} 4714}
4715#endif
2832 4716
2833#if EV_EMBED_ENABLE 4717#if EV_EMBED_ENABLE
2834void noinline 4718noinline
4719void
2835ev_embed_sweep (EV_P_ ev_embed *w) 4720ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2836{ 4721{
2837 ev_loop (w->other, EVLOOP_NONBLOCK); 4722 ev_run (w->other, EVRUN_NOWAIT);
2838} 4723}
2839 4724
2840static void 4725static void
2841embed_io_cb (EV_P_ ev_io *io, int revents) 4726embed_io_cb (EV_P_ ev_io *io, int revents)
2842{ 4727{
2843 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4728 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2844 4729
2845 if (ev_cb (w)) 4730 if (ev_cb (w))
2846 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4731 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2847 else 4732 else
2848 ev_loop (w->other, EVLOOP_NONBLOCK); 4733 ev_run (w->other, EVRUN_NOWAIT);
2849} 4734}
2850 4735
2851static void 4736static void
2852embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4737embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2853{ 4738{
2854 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4739 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2855 4740
2856 { 4741 {
2857 struct ev_loop *loop = w->other; 4742 EV_P = w->other;
2858 4743
2859 while (fdchangecnt) 4744 while (fdchangecnt)
2860 { 4745 {
2861 fd_reify (EV_A); 4746 fd_reify (EV_A);
2862 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4747 ev_run (EV_A_ EVRUN_NOWAIT);
2863 } 4748 }
2864 } 4749 }
2865} 4750}
2866 4751
2867static void 4752static void
2868embed_fork_cb (EV_P_ ev_fork *fork_w, int revents) 4753embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2869{ 4754{
2870 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 4755 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2871 4756
4757 ev_embed_stop (EV_A_ w);
4758
2872 { 4759 {
2873 struct ev_loop *loop = w->other; 4760 EV_P = w->other;
2874 4761
2875 ev_loop_fork (EV_A); 4762 ev_loop_fork (EV_A);
4763 ev_run (EV_A_ EVRUN_NOWAIT);
2876 } 4764 }
4765
4766 ev_embed_start (EV_A_ w);
2877} 4767}
2878 4768
2879#if 0 4769#if 0
2880static void 4770static void
2881embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4771embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2883 ev_idle_stop (EV_A_ idle); 4773 ev_idle_stop (EV_A_ idle);
2884} 4774}
2885#endif 4775#endif
2886 4776
2887void 4777void
2888ev_embed_start (EV_P_ ev_embed *w) 4778ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2889{ 4779{
2890 if (expect_false (ev_is_active (w))) 4780 if (expect_false (ev_is_active (w)))
2891 return; 4781 return;
2892 4782
2893 { 4783 {
2894 struct ev_loop *loop = w->other; 4784 EV_P = w->other;
2895 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4785 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2896 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4786 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2897 } 4787 }
2898 4788
2899 EV_FREQUENT_CHECK; 4789 EV_FREQUENT_CHECK;
2900 4790
2914 4804
2915 EV_FREQUENT_CHECK; 4805 EV_FREQUENT_CHECK;
2916} 4806}
2917 4807
2918void 4808void
2919ev_embed_stop (EV_P_ ev_embed *w) 4809ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2920{ 4810{
2921 clear_pending (EV_A_ (W)w); 4811 clear_pending (EV_A_ (W)w);
2922 if (expect_false (!ev_is_active (w))) 4812 if (expect_false (!ev_is_active (w)))
2923 return; 4813 return;
2924 4814
2926 4816
2927 ev_io_stop (EV_A_ &w->io); 4817 ev_io_stop (EV_A_ &w->io);
2928 ev_prepare_stop (EV_A_ &w->prepare); 4818 ev_prepare_stop (EV_A_ &w->prepare);
2929 ev_fork_stop (EV_A_ &w->fork); 4819 ev_fork_stop (EV_A_ &w->fork);
2930 4820
4821 ev_stop (EV_A_ (W)w);
4822
2931 EV_FREQUENT_CHECK; 4823 EV_FREQUENT_CHECK;
2932} 4824}
2933#endif 4825#endif
2934 4826
2935#if EV_FORK_ENABLE 4827#if EV_FORK_ENABLE
2936void 4828void
2937ev_fork_start (EV_P_ ev_fork *w) 4829ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2938{ 4830{
2939 if (expect_false (ev_is_active (w))) 4831 if (expect_false (ev_is_active (w)))
2940 return; 4832 return;
2941 4833
2942 EV_FREQUENT_CHECK; 4834 EV_FREQUENT_CHECK;
2947 4839
2948 EV_FREQUENT_CHECK; 4840 EV_FREQUENT_CHECK;
2949} 4841}
2950 4842
2951void 4843void
2952ev_fork_stop (EV_P_ ev_fork *w) 4844ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2953{ 4845{
2954 clear_pending (EV_A_ (W)w); 4846 clear_pending (EV_A_ (W)w);
2955 if (expect_false (!ev_is_active (w))) 4847 if (expect_false (!ev_is_active (w)))
2956 return; 4848 return;
2957 4849
2968 4860
2969 EV_FREQUENT_CHECK; 4861 EV_FREQUENT_CHECK;
2970} 4862}
2971#endif 4863#endif
2972 4864
2973#if EV_ASYNC_ENABLE 4865#if EV_CLEANUP_ENABLE
2974void 4866void
2975ev_async_start (EV_P_ ev_async *w) 4867ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
2976{ 4868{
2977 if (expect_false (ev_is_active (w))) 4869 if (expect_false (ev_is_active (w)))
2978 return; 4870 return;
4871
4872 EV_FREQUENT_CHECK;
4873
4874 ev_start (EV_A_ (W)w, ++cleanupcnt);
4875 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4876 cleanups [cleanupcnt - 1] = w;
4877
4878 /* cleanup watchers should never keep a refcount on the loop */
4879 ev_unref (EV_A);
4880 EV_FREQUENT_CHECK;
4881}
4882
4883void
4884ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4885{
4886 clear_pending (EV_A_ (W)w);
4887 if (expect_false (!ev_is_active (w)))
4888 return;
4889
4890 EV_FREQUENT_CHECK;
4891 ev_ref (EV_A);
4892
4893 {
4894 int active = ev_active (w);
4895
4896 cleanups [active - 1] = cleanups [--cleanupcnt];
4897 ev_active (cleanups [active - 1]) = active;
4898 }
4899
4900 ev_stop (EV_A_ (W)w);
4901
4902 EV_FREQUENT_CHECK;
4903}
4904#endif
4905
4906#if EV_ASYNC_ENABLE
4907void
4908ev_async_start (EV_P_ ev_async *w) EV_THROW
4909{
4910 if (expect_false (ev_is_active (w)))
4911 return;
4912
4913 w->sent = 0;
2979 4914
2980 evpipe_init (EV_A); 4915 evpipe_init (EV_A);
2981 4916
2982 EV_FREQUENT_CHECK; 4917 EV_FREQUENT_CHECK;
2983 4918
2987 4922
2988 EV_FREQUENT_CHECK; 4923 EV_FREQUENT_CHECK;
2989} 4924}
2990 4925
2991void 4926void
2992ev_async_stop (EV_P_ ev_async *w) 4927ev_async_stop (EV_P_ ev_async *w) EV_THROW
2993{ 4928{
2994 clear_pending (EV_A_ (W)w); 4929 clear_pending (EV_A_ (W)w);
2995 if (expect_false (!ev_is_active (w))) 4930 if (expect_false (!ev_is_active (w)))
2996 return; 4931 return;
2997 4932
3008 4943
3009 EV_FREQUENT_CHECK; 4944 EV_FREQUENT_CHECK;
3010} 4945}
3011 4946
3012void 4947void
3013ev_async_send (EV_P_ ev_async *w) 4948ev_async_send (EV_P_ ev_async *w) EV_THROW
3014{ 4949{
3015 w->sent = 1; 4950 w->sent = 1;
3016 evpipe_write (EV_A_ &gotasync); 4951 evpipe_write (EV_A_ &async_pending);
3017} 4952}
3018#endif 4953#endif
3019 4954
3020/*****************************************************************************/ 4955/*****************************************************************************/
3021 4956
3055 4990
3056 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io)); 4991 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3057} 4992}
3058 4993
3059void 4994void
3060ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4995ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
3061{ 4996{
3062 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4997 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3063 4998
3064 if (expect_false (!once)) 4999 if (expect_false (!once))
3065 { 5000 {
3066 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 5001 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3067 return; 5002 return;
3068 } 5003 }
3069 5004
3070 once->cb = cb; 5005 once->cb = cb;
3071 once->arg = arg; 5006 once->arg = arg;
3083 ev_timer_set (&once->to, timeout, 0.); 5018 ev_timer_set (&once->to, timeout, 0.);
3084 ev_timer_start (EV_A_ &once->to); 5019 ev_timer_start (EV_A_ &once->to);
3085 } 5020 }
3086} 5021}
3087 5022
5023/*****************************************************************************/
5024
5025#if EV_WALK_ENABLE
5026ecb_cold
5027void
5028ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
5029{
5030 int i, j;
5031 ev_watcher_list *wl, *wn;
5032
5033 if (types & (EV_IO | EV_EMBED))
5034 for (i = 0; i < anfdmax; ++i)
5035 for (wl = anfds [i].head; wl; )
5036 {
5037 wn = wl->next;
5038
5039#if EV_EMBED_ENABLE
5040 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5041 {
5042 if (types & EV_EMBED)
5043 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5044 }
5045 else
5046#endif
5047#if EV_USE_INOTIFY
5048 if (ev_cb ((ev_io *)wl) == infy_cb)
5049 ;
5050 else
5051#endif
5052 if ((ev_io *)wl != &pipe_w)
5053 if (types & EV_IO)
5054 cb (EV_A_ EV_IO, wl);
5055
5056 wl = wn;
5057 }
5058
5059 if (types & (EV_TIMER | EV_STAT))
5060 for (i = timercnt + HEAP0; i-- > HEAP0; )
5061#if EV_STAT_ENABLE
5062 /*TODO: timer is not always active*/
5063 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5064 {
5065 if (types & EV_STAT)
5066 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5067 }
5068 else
5069#endif
5070 if (types & EV_TIMER)
5071 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5072
5073#if EV_PERIODIC_ENABLE
5074 if (types & EV_PERIODIC)
5075 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5076 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5077#endif
5078
5079#if EV_IDLE_ENABLE
5080 if (types & EV_IDLE)
5081 for (j = NUMPRI; j--; )
5082 for (i = idlecnt [j]; i--; )
5083 cb (EV_A_ EV_IDLE, idles [j][i]);
5084#endif
5085
5086#if EV_FORK_ENABLE
5087 if (types & EV_FORK)
5088 for (i = forkcnt; i--; )
5089 if (ev_cb (forks [i]) != embed_fork_cb)
5090 cb (EV_A_ EV_FORK, forks [i]);
5091#endif
5092
5093#if EV_ASYNC_ENABLE
5094 if (types & EV_ASYNC)
5095 for (i = asynccnt; i--; )
5096 cb (EV_A_ EV_ASYNC, asyncs [i]);
5097#endif
5098
5099#if EV_PREPARE_ENABLE
5100 if (types & EV_PREPARE)
5101 for (i = preparecnt; i--; )
5102# if EV_EMBED_ENABLE
5103 if (ev_cb (prepares [i]) != embed_prepare_cb)
5104# endif
5105 cb (EV_A_ EV_PREPARE, prepares [i]);
5106#endif
5107
5108#if EV_CHECK_ENABLE
5109 if (types & EV_CHECK)
5110 for (i = checkcnt; i--; )
5111 cb (EV_A_ EV_CHECK, checks [i]);
5112#endif
5113
5114#if EV_SIGNAL_ENABLE
5115 if (types & EV_SIGNAL)
5116 for (i = 0; i < EV_NSIG - 1; ++i)
5117 for (wl = signals [i].head; wl; )
5118 {
5119 wn = wl->next;
5120 cb (EV_A_ EV_SIGNAL, wl);
5121 wl = wn;
5122 }
5123#endif
5124
5125#if EV_CHILD_ENABLE
5126 if (types & EV_CHILD)
5127 for (i = (EV_PID_HASHSIZE); i--; )
5128 for (wl = childs [i]; wl; )
5129 {
5130 wn = wl->next;
5131 cb (EV_A_ EV_CHILD, wl);
5132 wl = wn;
5133 }
5134#endif
5135/* EV_STAT 0x00001000 /* stat data changed */
5136/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5137}
5138#endif
5139
3088#if EV_MULTIPLICITY 5140#if EV_MULTIPLICITY
3089 #include "ev_wrap.h" 5141 #include "ev_wrap.h"
3090#endif 5142#endif
3091 5143
3092#ifdef __cplusplus
3093}
3094#endif
3095

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines