ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.264 by root, Mon Oct 13 23:20:12 2008 UTC vs.
Revision 1.497 by root, Tue Jun 25 04:52:30 2019 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
100# ifndef EV_USE_KQUEUE 120# if HAVE_LINUX_AIO_ABI_H
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 121# ifndef EV_USE_LINUXAIO
102# define EV_USE_KQUEUE 1 122# define EV_USE_LINUXAIO EV_FEATURE_BACKENDS
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_LINUXAIO
126# define EV_USE_LINUXAIO 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT 129# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
109# if HAVE_PORT_H && HAVE_PORT_CREATE 130# ifndef EV_USE_KQUEUE
110# define EV_USE_PORT 1 131# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
111# else
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_KQUEUE
135# define EV_USE_KQUEUE 0
114# endif 136# endif
115 137
138# if HAVE_PORT_H && HAVE_PORT_CREATE
116# ifndef EV_USE_INOTIFY 139# ifndef EV_USE_PORT
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 140# define EV_USE_PORT EV_FEATURE_BACKENDS
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif 141# endif
142# else
143# undef EV_USE_PORT
144# define EV_USE_PORT 0
122# endif 145# endif
123 146
147# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_INOTIFY
125# if HAVE_EVENTFD 149# define EV_USE_INOTIFY EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_INOTIFY
153# define EV_USE_INOTIFY 0
154# endif
155
156# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
157# ifndef EV_USE_SIGNALFD
158# define EV_USE_SIGNALFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_SIGNALFD
162# define EV_USE_SIGNALFD 0
163# endif
164
165# if HAVE_EVENTFD
166# ifndef EV_USE_EVENTFD
167# define EV_USE_EVENTFD EV_FEATURE_OS
168# endif
169# else
170# undef EV_USE_EVENTFD
171# define EV_USE_EVENTFD 0
130# endif 172# endif
131 173
132#endif 174#endif
133 175
134#include <math.h> 176/* OS X, in its infinite idiocy, actually HARDCODES
177 * a limit of 1024 into their select. Where people have brains,
178 * OS X engineers apparently have a vacuum. Or maybe they were
179 * ordered to have a vacuum, or they do anything for money.
180 * This might help. Or not.
181 * Note that this must be defined early, as other include files
182 * will rely on this define as well.
183 */
184#define _DARWIN_UNLIMITED_SELECT 1
185
135#include <stdlib.h> 186#include <stdlib.h>
187#include <string.h>
136#include <fcntl.h> 188#include <fcntl.h>
137#include <stddef.h> 189#include <stddef.h>
138 190
139#include <stdio.h> 191#include <stdio.h>
140 192
141#include <assert.h> 193#include <assert.h>
142#include <errno.h> 194#include <errno.h>
143#include <sys/types.h> 195#include <sys/types.h>
144#include <time.h> 196#include <time.h>
197#include <limits.h>
145 198
146#include <signal.h> 199#include <signal.h>
147 200
148#ifdef EV_H 201#ifdef EV_H
149# include EV_H 202# include EV_H
150#else 203#else
151# include "ev.h" 204# include "ev.h"
205#endif
206
207#if EV_NO_THREADS
208# undef EV_NO_SMP
209# define EV_NO_SMP 1
210# undef ECB_NO_THREADS
211# define ECB_NO_THREADS 1
212#endif
213#if EV_NO_SMP
214# undef EV_NO_SMP
215# define ECB_NO_SMP 1
152#endif 216#endif
153 217
154#ifndef _WIN32 218#ifndef _WIN32
155# include <sys/time.h> 219# include <sys/time.h>
156# include <sys/wait.h> 220# include <sys/wait.h>
157# include <unistd.h> 221# include <unistd.h>
158#else 222#else
159# include <io.h> 223# include <io.h>
160# define WIN32_LEAN_AND_MEAN 224# define WIN32_LEAN_AND_MEAN
225# include <winsock2.h>
161# include <windows.h> 226# include <windows.h>
162# ifndef EV_SELECT_IS_WINSOCKET 227# ifndef EV_SELECT_IS_WINSOCKET
163# define EV_SELECT_IS_WINSOCKET 1 228# define EV_SELECT_IS_WINSOCKET 1
164# endif 229# endif
230# undef EV_AVOID_STDIO
165#endif 231#endif
166 232
167/* this block tries to deduce configuration from header-defined symbols and defaults */ 233/* this block tries to deduce configuration from header-defined symbols and defaults */
168 234
235/* try to deduce the maximum number of signals on this platform */
236#if defined EV_NSIG
237/* use what's provided */
238#elif defined NSIG
239# define EV_NSIG (NSIG)
240#elif defined _NSIG
241# define EV_NSIG (_NSIG)
242#elif defined SIGMAX
243# define EV_NSIG (SIGMAX+1)
244#elif defined SIG_MAX
245# define EV_NSIG (SIG_MAX+1)
246#elif defined _SIG_MAX
247# define EV_NSIG (_SIG_MAX+1)
248#elif defined MAXSIG
249# define EV_NSIG (MAXSIG+1)
250#elif defined MAX_SIG
251# define EV_NSIG (MAX_SIG+1)
252#elif defined SIGARRAYSIZE
253# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
254#elif defined _sys_nsig
255# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
256#else
257# define EV_NSIG (8 * sizeof (sigset_t) + 1)
258#endif
259
260#ifndef EV_USE_FLOOR
261# define EV_USE_FLOOR 0
262#endif
263
264#ifndef EV_USE_CLOCK_SYSCALL
265# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
266# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
267# else
268# define EV_USE_CLOCK_SYSCALL 0
269# endif
270#endif
271
272#if !(_POSIX_TIMERS > 0)
273# ifndef EV_USE_MONOTONIC
274# define EV_USE_MONOTONIC 0
275# endif
276# ifndef EV_USE_REALTIME
277# define EV_USE_REALTIME 0
278# endif
279#endif
280
169#ifndef EV_USE_MONOTONIC 281#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 282# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1 283# define EV_USE_MONOTONIC EV_FEATURE_OS
172# else 284# else
173# define EV_USE_MONOTONIC 0 285# define EV_USE_MONOTONIC 0
174# endif 286# endif
175#endif 287#endif
176 288
177#ifndef EV_USE_REALTIME 289#ifndef EV_USE_REALTIME
178# define EV_USE_REALTIME 0 290# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
179#endif 291#endif
180 292
181#ifndef EV_USE_NANOSLEEP 293#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L 294# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1 295# define EV_USE_NANOSLEEP EV_FEATURE_OS
184# else 296# else
185# define EV_USE_NANOSLEEP 0 297# define EV_USE_NANOSLEEP 0
186# endif 298# endif
187#endif 299#endif
188 300
189#ifndef EV_USE_SELECT 301#ifndef EV_USE_SELECT
190# define EV_USE_SELECT 1 302# define EV_USE_SELECT EV_FEATURE_BACKENDS
191#endif 303#endif
192 304
193#ifndef EV_USE_POLL 305#ifndef EV_USE_POLL
194# ifdef _WIN32 306# ifdef _WIN32
195# define EV_USE_POLL 0 307# define EV_USE_POLL 0
196# else 308# else
197# define EV_USE_POLL 1 309# define EV_USE_POLL EV_FEATURE_BACKENDS
198# endif 310# endif
199#endif 311#endif
200 312
201#ifndef EV_USE_EPOLL 313#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 314# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1 315# define EV_USE_EPOLL EV_FEATURE_BACKENDS
204# else 316# else
205# define EV_USE_EPOLL 0 317# define EV_USE_EPOLL 0
206# endif 318# endif
207#endif 319#endif
208 320
212 324
213#ifndef EV_USE_PORT 325#ifndef EV_USE_PORT
214# define EV_USE_PORT 0 326# define EV_USE_PORT 0
215#endif 327#endif
216 328
329#ifndef EV_USE_LINUXAIO
330# if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
331# define EV_USE_LINUXAIO 1
332# else
333# define EV_USE_LINUXAIO 0
334# endif
335#endif
336
217#ifndef EV_USE_INOTIFY 337#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 338# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1 339# define EV_USE_INOTIFY EV_FEATURE_OS
220# else 340# else
221# define EV_USE_INOTIFY 0 341# define EV_USE_INOTIFY 0
222# endif 342# endif
223#endif 343#endif
224 344
225#ifndef EV_PID_HASHSIZE 345#ifndef EV_PID_HASHSIZE
226# if EV_MINIMAL 346# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
230# endif
231#endif 347#endif
232 348
233#ifndef EV_INOTIFY_HASHSIZE 349#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL 350# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif 351#endif
240 352
241#ifndef EV_USE_EVENTFD 353#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 354# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1 355# define EV_USE_EVENTFD EV_FEATURE_OS
244# else 356# else
245# define EV_USE_EVENTFD 0 357# define EV_USE_EVENTFD 0
358# endif
359#endif
360
361#ifndef EV_USE_SIGNALFD
362# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
363# define EV_USE_SIGNALFD EV_FEATURE_OS
364# else
365# define EV_USE_SIGNALFD 0
246# endif 366# endif
247#endif 367#endif
248 368
249#if 0 /* debugging */ 369#if 0 /* debugging */
250# define EV_VERIFY 3 370# define EV_VERIFY 3
251# define EV_USE_4HEAP 1 371# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1 372# define EV_HEAP_CACHE_AT 1
253#endif 373#endif
254 374
255#ifndef EV_VERIFY 375#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL 376# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
257#endif 377#endif
258 378
259#ifndef EV_USE_4HEAP 379#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL 380# define EV_USE_4HEAP EV_FEATURE_DATA
261#endif 381#endif
262 382
263#ifndef EV_HEAP_CACHE_AT 383#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL 384# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
385#endif
386
387#ifdef __ANDROID__
388/* supposedly, android doesn't typedef fd_mask */
389# undef EV_USE_SELECT
390# define EV_USE_SELECT 0
391/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
392# undef EV_USE_CLOCK_SYSCALL
393# define EV_USE_CLOCK_SYSCALL 0
394#endif
395
396/* aix's poll.h seems to cause lots of trouble */
397#ifdef _AIX
398/* AIX has a completely broken poll.h header */
399# undef EV_USE_POLL
400# define EV_USE_POLL 0
401#endif
402
403/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
404/* which makes programs even slower. might work on other unices, too. */
405#if EV_USE_CLOCK_SYSCALL
406# include <sys/syscall.h>
407# ifdef SYS_clock_gettime
408# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
409# undef EV_USE_MONOTONIC
410# define EV_USE_MONOTONIC 1
411# else
412# undef EV_USE_CLOCK_SYSCALL
413# define EV_USE_CLOCK_SYSCALL 0
414# endif
265#endif 415#endif
266 416
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 417/* this block fixes any misconfiguration where we know we run into trouble otherwise */
268 418
269#ifndef CLOCK_MONOTONIC 419#ifndef CLOCK_MONOTONIC
280# undef EV_USE_INOTIFY 430# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0 431# define EV_USE_INOTIFY 0
282#endif 432#endif
283 433
284#if !EV_USE_NANOSLEEP 434#if !EV_USE_NANOSLEEP
285# ifndef _WIN32 435/* hp-ux has it in sys/time.h, which we unconditionally include above */
436# if !defined _WIN32 && !defined __hpux
286# include <sys/select.h> 437# include <sys/select.h>
287# endif 438# endif
288#endif 439#endif
289 440
441#if EV_USE_LINUXAIO
442# include <sys/syscall.h>
443# if !SYS_io_getevents || !EV_USE_EPOLL /* ev_linxaio uses ev_poll.c:ev_epoll_create */
444# undef EV_USE_LINUXAIO
445# define EV_USE_LINUXAIO 0
446# endif
447#endif
448
290#if EV_USE_INOTIFY 449#if EV_USE_INOTIFY
291# include <sys/utsname.h> 450# include <sys/statfs.h>
292# include <sys/inotify.h> 451# include <sys/inotify.h>
293/* some very old inotify.h headers don't have IN_DONT_FOLLOW */ 452/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
294# ifndef IN_DONT_FOLLOW 453# ifndef IN_DONT_FOLLOW
295# undef EV_USE_INOTIFY 454# undef EV_USE_INOTIFY
296# define EV_USE_INOTIFY 0 455# define EV_USE_INOTIFY 0
297# endif 456# endif
298#endif 457#endif
299 458
300#if EV_SELECT_IS_WINSOCKET
301# include <winsock.h>
302#endif
303
304#if EV_USE_EVENTFD 459#if EV_USE_EVENTFD
305/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 460/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
306# include <stdint.h> 461# include <stdint.h>
307# ifdef __cplusplus 462# ifndef EFD_NONBLOCK
308extern "C" { 463# define EFD_NONBLOCK O_NONBLOCK
309# endif 464# endif
310int eventfd (unsigned int initval, int flags); 465# ifndef EFD_CLOEXEC
311# ifdef __cplusplus 466# ifdef O_CLOEXEC
312} 467# define EFD_CLOEXEC O_CLOEXEC
468# else
469# define EFD_CLOEXEC 02000000
470# endif
313# endif 471# endif
472EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
473#endif
474
475#if EV_USE_SIGNALFD
476/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
477# include <stdint.h>
478# ifndef SFD_NONBLOCK
479# define SFD_NONBLOCK O_NONBLOCK
480# endif
481# ifndef SFD_CLOEXEC
482# ifdef O_CLOEXEC
483# define SFD_CLOEXEC O_CLOEXEC
484# else
485# define SFD_CLOEXEC 02000000
486# endif
487# endif
488EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
489
490struct signalfd_siginfo
491{
492 uint32_t ssi_signo;
493 char pad[128 - sizeof (uint32_t)];
494};
314#endif 495#endif
315 496
316/**/ 497/**/
317 498
318#if EV_VERIFY >= 3 499#if EV_VERIFY >= 3
319# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 500# define EV_FREQUENT_CHECK ev_verify (EV_A)
320#else 501#else
321# define EV_FREQUENT_CHECK do { } while (0) 502# define EV_FREQUENT_CHECK do { } while (0)
322#endif 503#endif
323 504
324/* 505/*
325 * This is used to avoid floating point rounding problems. 506 * This is used to work around floating point rounding problems.
326 * It is added to ev_rt_now when scheduling periodics
327 * to ensure progress, time-wise, even when rounding
328 * errors are against us.
329 * This value is good at least till the year 4000. 507 * This value is good at least till the year 4000.
330 * Better solutions welcome.
331 */ 508 */
332#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 509#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
510/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
333 511
334#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 512#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
335#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 513#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
336/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
337 514
515#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
516#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
517
518/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
519/* ECB.H BEGIN */
520/*
521 * libecb - http://software.schmorp.de/pkg/libecb
522 *
523 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
524 * Copyright (©) 2011 Emanuele Giaquinta
525 * All rights reserved.
526 *
527 * Redistribution and use in source and binary forms, with or without modifica-
528 * tion, are permitted provided that the following conditions are met:
529 *
530 * 1. Redistributions of source code must retain the above copyright notice,
531 * this list of conditions and the following disclaimer.
532 *
533 * 2. Redistributions in binary form must reproduce the above copyright
534 * notice, this list of conditions and the following disclaimer in the
535 * documentation and/or other materials provided with the distribution.
536 *
537 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
538 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
539 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
540 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
541 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
542 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
543 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
544 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
545 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
546 * OF THE POSSIBILITY OF SUCH DAMAGE.
547 *
548 * Alternatively, the contents of this file may be used under the terms of
549 * the GNU General Public License ("GPL") version 2 or any later version,
550 * in which case the provisions of the GPL are applicable instead of
551 * the above. If you wish to allow the use of your version of this file
552 * only under the terms of the GPL and not to allow others to use your
553 * version of this file under the BSD license, indicate your decision
554 * by deleting the provisions above and replace them with the notice
555 * and other provisions required by the GPL. If you do not delete the
556 * provisions above, a recipient may use your version of this file under
557 * either the BSD or the GPL.
558 */
559
560#ifndef ECB_H
561#define ECB_H
562
563/* 16 bits major, 16 bits minor */
564#define ECB_VERSION 0x00010006
565
566#ifdef _WIN32
567 typedef signed char int8_t;
568 typedef unsigned char uint8_t;
569 typedef signed short int16_t;
570 typedef unsigned short uint16_t;
571 typedef signed int int32_t;
572 typedef unsigned int uint32_t;
338#if __GNUC__ >= 4 573 #if __GNUC__
574 typedef signed long long int64_t;
575 typedef unsigned long long uint64_t;
576 #else /* _MSC_VER || __BORLANDC__ */
577 typedef signed __int64 int64_t;
578 typedef unsigned __int64 uint64_t;
579 #endif
580 #ifdef _WIN64
581 #define ECB_PTRSIZE 8
582 typedef uint64_t uintptr_t;
583 typedef int64_t intptr_t;
584 #else
585 #define ECB_PTRSIZE 4
586 typedef uint32_t uintptr_t;
587 typedef int32_t intptr_t;
588 #endif
589#else
590 #include <inttypes.h>
591 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
592 #define ECB_PTRSIZE 8
593 #else
594 #define ECB_PTRSIZE 4
595 #endif
596#endif
597
598#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
599#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
600
601/* work around x32 idiocy by defining proper macros */
602#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
603 #if _ILP32
604 #define ECB_AMD64_X32 1
605 #else
606 #define ECB_AMD64 1
607 #endif
608#endif
609
610/* many compilers define _GNUC_ to some versions but then only implement
611 * what their idiot authors think are the "more important" extensions,
612 * causing enormous grief in return for some better fake benchmark numbers.
613 * or so.
614 * we try to detect these and simply assume they are not gcc - if they have
615 * an issue with that they should have done it right in the first place.
616 */
617#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
618 #define ECB_GCC_VERSION(major,minor) 0
619#else
620 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
621#endif
622
623#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
624
625#if __clang__ && defined __has_builtin
626 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
627#else
628 #define ECB_CLANG_BUILTIN(x) 0
629#endif
630
631#if __clang__ && defined __has_extension
632 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
633#else
634 #define ECB_CLANG_EXTENSION(x) 0
635#endif
636
637#define ECB_CPP (__cplusplus+0)
638#define ECB_CPP11 (__cplusplus >= 201103L)
639#define ECB_CPP14 (__cplusplus >= 201402L)
640#define ECB_CPP17 (__cplusplus >= 201703L)
641
642#if ECB_CPP
643 #define ECB_C 0
644 #define ECB_STDC_VERSION 0
645#else
646 #define ECB_C 1
647 #define ECB_STDC_VERSION __STDC_VERSION__
648#endif
649
650#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
651#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
652#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
653
654#if ECB_CPP
655 #define ECB_EXTERN_C extern "C"
656 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
657 #define ECB_EXTERN_C_END }
658#else
659 #define ECB_EXTERN_C extern
660 #define ECB_EXTERN_C_BEG
661 #define ECB_EXTERN_C_END
662#endif
663
664/*****************************************************************************/
665
666/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
667/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
668
669#if ECB_NO_THREADS
670 #define ECB_NO_SMP 1
671#endif
672
673#if ECB_NO_SMP
674 #define ECB_MEMORY_FENCE do { } while (0)
675#endif
676
677/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
678#if __xlC__ && ECB_CPP
679 #include <builtins.h>
680#endif
681
682#if 1400 <= _MSC_VER
683 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
684#endif
685
686#ifndef ECB_MEMORY_FENCE
687 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
688 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
689 #if __i386 || __i386__
690 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
691 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
692 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
693 #elif ECB_GCC_AMD64
694 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
695 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
696 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
697 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
698 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
699 #elif defined __ARM_ARCH_2__ \
700 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
701 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
702 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
703 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
704 || defined __ARM_ARCH_5TEJ__
705 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
706 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
707 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
708 || defined __ARM_ARCH_6T2__
709 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
710 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
711 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
712 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
713 #elif __aarch64__
714 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
715 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
716 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
717 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
718 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
719 #elif defined __s390__ || defined __s390x__
720 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
721 #elif defined __mips__
722 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
723 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
724 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
725 #elif defined __alpha__
726 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
727 #elif defined __hppa__
728 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
729 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
730 #elif defined __ia64__
731 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
732 #elif defined __m68k__
733 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
734 #elif defined __m88k__
735 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
736 #elif defined __sh__
737 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
738 #endif
739 #endif
740#endif
741
742#ifndef ECB_MEMORY_FENCE
743 #if ECB_GCC_VERSION(4,7)
744 /* see comment below (stdatomic.h) about the C11 memory model. */
745 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
746 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
747 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
748 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
749
750 #elif ECB_CLANG_EXTENSION(c_atomic)
751 /* see comment below (stdatomic.h) about the C11 memory model. */
752 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
753 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
754 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
755 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
756
757 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
758 #define ECB_MEMORY_FENCE __sync_synchronize ()
759 #elif _MSC_VER >= 1500 /* VC++ 2008 */
760 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
761 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
762 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
763 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
764 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
765 #elif _MSC_VER >= 1400 /* VC++ 2005 */
766 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
767 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
768 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
769 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
770 #elif defined _WIN32
771 #include <WinNT.h>
772 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
773 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
774 #include <mbarrier.h>
775 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
776 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
777 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
778 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
779 #elif __xlC__
780 #define ECB_MEMORY_FENCE __sync ()
781 #endif
782#endif
783
784#ifndef ECB_MEMORY_FENCE
785 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
786 /* we assume that these memory fences work on all variables/all memory accesses, */
787 /* not just C11 atomics and atomic accesses */
788 #include <stdatomic.h>
789 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
790 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
791 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
792 #endif
793#endif
794
795#ifndef ECB_MEMORY_FENCE
796 #if !ECB_AVOID_PTHREADS
797 /*
798 * if you get undefined symbol references to pthread_mutex_lock,
799 * or failure to find pthread.h, then you should implement
800 * the ECB_MEMORY_FENCE operations for your cpu/compiler
801 * OR provide pthread.h and link against the posix thread library
802 * of your system.
803 */
804 #include <pthread.h>
805 #define ECB_NEEDS_PTHREADS 1
806 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
807
808 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
809 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
810 #endif
811#endif
812
813#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
814 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
815#endif
816
817#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
818 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
819#endif
820
821#if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
822 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
823#endif
824
825/*****************************************************************************/
826
827#if ECB_CPP
828 #define ecb_inline static inline
829#elif ECB_GCC_VERSION(2,5)
830 #define ecb_inline static __inline__
831#elif ECB_C99
832 #define ecb_inline static inline
833#else
834 #define ecb_inline static
835#endif
836
837#if ECB_GCC_VERSION(3,3)
838 #define ecb_restrict __restrict__
839#elif ECB_C99
840 #define ecb_restrict restrict
841#else
842 #define ecb_restrict
843#endif
844
845typedef int ecb_bool;
846
847#define ECB_CONCAT_(a, b) a ## b
848#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
849#define ECB_STRINGIFY_(a) # a
850#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
851#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
852
853#define ecb_function_ ecb_inline
854
855#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
856 #define ecb_attribute(attrlist) __attribute__ (attrlist)
857#else
858 #define ecb_attribute(attrlist)
859#endif
860
861#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
862 #define ecb_is_constant(expr) __builtin_constant_p (expr)
863#else
864 /* possible C11 impl for integral types
865 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
866 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
867
868 #define ecb_is_constant(expr) 0
869#endif
870
871#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
339# define expect(expr,value) __builtin_expect ((expr),(value)) 872 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
340# define noinline __attribute__ ((noinline))
341#else 873#else
342# define expect(expr,value) (expr) 874 #define ecb_expect(expr,value) (expr)
343# define noinline
344# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
345# define inline
346# endif 875#endif
347#endif
348 876
877#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
878 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
879#else
880 #define ecb_prefetch(addr,rw,locality)
881#endif
882
883/* no emulation for ecb_decltype */
884#if ECB_CPP11
885 // older implementations might have problems with decltype(x)::type, work around it
886 template<class T> struct ecb_decltype_t { typedef T type; };
887 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
888#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
889 #define ecb_decltype(x) __typeof__ (x)
890#endif
891
892#if _MSC_VER >= 1300
893 #define ecb_deprecated __declspec (deprecated)
894#else
895 #define ecb_deprecated ecb_attribute ((__deprecated__))
896#endif
897
898#if _MSC_VER >= 1500
899 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
900#elif ECB_GCC_VERSION(4,5)
901 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
902#else
903 #define ecb_deprecated_message(msg) ecb_deprecated
904#endif
905
906#if _MSC_VER >= 1400
907 #define ecb_noinline __declspec (noinline)
908#else
909 #define ecb_noinline ecb_attribute ((__noinline__))
910#endif
911
912#define ecb_unused ecb_attribute ((__unused__))
913#define ecb_const ecb_attribute ((__const__))
914#define ecb_pure ecb_attribute ((__pure__))
915
916#if ECB_C11 || __IBMC_NORETURN
917 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
918 #define ecb_noreturn _Noreturn
919#elif ECB_CPP11
920 #define ecb_noreturn [[noreturn]]
921#elif _MSC_VER >= 1200
922 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
923 #define ecb_noreturn __declspec (noreturn)
924#else
925 #define ecb_noreturn ecb_attribute ((__noreturn__))
926#endif
927
928#if ECB_GCC_VERSION(4,3)
929 #define ecb_artificial ecb_attribute ((__artificial__))
930 #define ecb_hot ecb_attribute ((__hot__))
931 #define ecb_cold ecb_attribute ((__cold__))
932#else
933 #define ecb_artificial
934 #define ecb_hot
935 #define ecb_cold
936#endif
937
938/* put around conditional expressions if you are very sure that the */
939/* expression is mostly true or mostly false. note that these return */
940/* booleans, not the expression. */
349#define expect_false(expr) expect ((expr) != 0, 0) 941#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
350#define expect_true(expr) expect ((expr) != 0, 1) 942#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
943/* for compatibility to the rest of the world */
944#define ecb_likely(expr) ecb_expect_true (expr)
945#define ecb_unlikely(expr) ecb_expect_false (expr)
946
947/* count trailing zero bits and count # of one bits */
948#if ECB_GCC_VERSION(3,4) \
949 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
950 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
951 && ECB_CLANG_BUILTIN(__builtin_popcount))
952 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
953 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
954 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
955 #define ecb_ctz32(x) __builtin_ctz (x)
956 #define ecb_ctz64(x) __builtin_ctzll (x)
957 #define ecb_popcount32(x) __builtin_popcount (x)
958 /* no popcountll */
959#else
960 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
961 ecb_function_ ecb_const int
962 ecb_ctz32 (uint32_t x)
963 {
964#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
965 unsigned long r;
966 _BitScanForward (&r, x);
967 return (int)r;
968#else
969 int r = 0;
970
971 x &= ~x + 1; /* this isolates the lowest bit */
972
973#if ECB_branchless_on_i386
974 r += !!(x & 0xaaaaaaaa) << 0;
975 r += !!(x & 0xcccccccc) << 1;
976 r += !!(x & 0xf0f0f0f0) << 2;
977 r += !!(x & 0xff00ff00) << 3;
978 r += !!(x & 0xffff0000) << 4;
979#else
980 if (x & 0xaaaaaaaa) r += 1;
981 if (x & 0xcccccccc) r += 2;
982 if (x & 0xf0f0f0f0) r += 4;
983 if (x & 0xff00ff00) r += 8;
984 if (x & 0xffff0000) r += 16;
985#endif
986
987 return r;
988#endif
989 }
990
991 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
992 ecb_function_ ecb_const int
993 ecb_ctz64 (uint64_t x)
994 {
995#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
996 unsigned long r;
997 _BitScanForward64 (&r, x);
998 return (int)r;
999#else
1000 int shift = x & 0xffffffff ? 0 : 32;
1001 return ecb_ctz32 (x >> shift) + shift;
1002#endif
1003 }
1004
1005 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1006 ecb_function_ ecb_const int
1007 ecb_popcount32 (uint32_t x)
1008 {
1009 x -= (x >> 1) & 0x55555555;
1010 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1011 x = ((x >> 4) + x) & 0x0f0f0f0f;
1012 x *= 0x01010101;
1013
1014 return x >> 24;
1015 }
1016
1017 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1018 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1019 {
1020#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1021 unsigned long r;
1022 _BitScanReverse (&r, x);
1023 return (int)r;
1024#else
1025 int r = 0;
1026
1027 if (x >> 16) { x >>= 16; r += 16; }
1028 if (x >> 8) { x >>= 8; r += 8; }
1029 if (x >> 4) { x >>= 4; r += 4; }
1030 if (x >> 2) { x >>= 2; r += 2; }
1031 if (x >> 1) { r += 1; }
1032
1033 return r;
1034#endif
1035 }
1036
1037 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1038 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1039 {
1040#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1041 unsigned long r;
1042 _BitScanReverse64 (&r, x);
1043 return (int)r;
1044#else
1045 int r = 0;
1046
1047 if (x >> 32) { x >>= 32; r += 32; }
1048
1049 return r + ecb_ld32 (x);
1050#endif
1051 }
1052#endif
1053
1054ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1055ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1056ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1057ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1058
1059ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1060ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1061{
1062 return ( (x * 0x0802U & 0x22110U)
1063 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1064}
1065
1066ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1067ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1068{
1069 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1070 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1071 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1072 x = ( x >> 8 ) | ( x << 8);
1073
1074 return x;
1075}
1076
1077ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1078ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1079{
1080 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1081 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1082 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1083 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1084 x = ( x >> 16 ) | ( x << 16);
1085
1086 return x;
1087}
1088
1089/* popcount64 is only available on 64 bit cpus as gcc builtin */
1090/* so for this version we are lazy */
1091ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1092ecb_function_ ecb_const int
1093ecb_popcount64 (uint64_t x)
1094{
1095 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1096}
1097
1098ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1099ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1100ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1101ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1102ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1103ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1104ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1105ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1106
1107ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1108ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1109ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1110ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1111ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1112ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1113ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1114ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1115
1116#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1117 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1118 #define ecb_bswap16(x) __builtin_bswap16 (x)
1119 #else
1120 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1121 #endif
1122 #define ecb_bswap32(x) __builtin_bswap32 (x)
1123 #define ecb_bswap64(x) __builtin_bswap64 (x)
1124#elif _MSC_VER
1125 #include <stdlib.h>
1126 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1127 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1128 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1129#else
1130 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1131 ecb_function_ ecb_const uint16_t
1132 ecb_bswap16 (uint16_t x)
1133 {
1134 return ecb_rotl16 (x, 8);
1135 }
1136
1137 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1138 ecb_function_ ecb_const uint32_t
1139 ecb_bswap32 (uint32_t x)
1140 {
1141 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1142 }
1143
1144 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1145 ecb_function_ ecb_const uint64_t
1146 ecb_bswap64 (uint64_t x)
1147 {
1148 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1149 }
1150#endif
1151
1152#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1153 #define ecb_unreachable() __builtin_unreachable ()
1154#else
1155 /* this seems to work fine, but gcc always emits a warning for it :/ */
1156 ecb_inline ecb_noreturn void ecb_unreachable (void);
1157 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1158#endif
1159
1160/* try to tell the compiler that some condition is definitely true */
1161#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1162
1163ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1164ecb_inline ecb_const uint32_t
1165ecb_byteorder_helper (void)
1166{
1167 /* the union code still generates code under pressure in gcc, */
1168 /* but less than using pointers, and always seems to */
1169 /* successfully return a constant. */
1170 /* the reason why we have this horrible preprocessor mess */
1171 /* is to avoid it in all cases, at least on common architectures */
1172 /* or when using a recent enough gcc version (>= 4.6) */
1173#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1174 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1175 #define ECB_LITTLE_ENDIAN 1
1176 return 0x44332211;
1177#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1178 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1179 #define ECB_BIG_ENDIAN 1
1180 return 0x11223344;
1181#else
1182 union
1183 {
1184 uint8_t c[4];
1185 uint32_t u;
1186 } u = { 0x11, 0x22, 0x33, 0x44 };
1187 return u.u;
1188#endif
1189}
1190
1191ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1192ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1193ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1194ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1195
1196#if ECB_GCC_VERSION(3,0) || ECB_C99
1197 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1198#else
1199 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1200#endif
1201
1202#if ECB_CPP
1203 template<typename T>
1204 static inline T ecb_div_rd (T val, T div)
1205 {
1206 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1207 }
1208 template<typename T>
1209 static inline T ecb_div_ru (T val, T div)
1210 {
1211 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1212 }
1213#else
1214 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1215 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1216#endif
1217
1218#if ecb_cplusplus_does_not_suck
1219 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1220 template<typename T, int N>
1221 static inline int ecb_array_length (const T (&arr)[N])
1222 {
1223 return N;
1224 }
1225#else
1226 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1227#endif
1228
1229ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1230ecb_function_ ecb_const uint32_t
1231ecb_binary16_to_binary32 (uint32_t x)
1232{
1233 unsigned int s = (x & 0x8000) << (31 - 15);
1234 int e = (x >> 10) & 0x001f;
1235 unsigned int m = x & 0x03ff;
1236
1237 if (ecb_expect_false (e == 31))
1238 /* infinity or NaN */
1239 e = 255 - (127 - 15);
1240 else if (ecb_expect_false (!e))
1241 {
1242 if (ecb_expect_true (!m))
1243 /* zero, handled by code below by forcing e to 0 */
1244 e = 0 - (127 - 15);
1245 else
1246 {
1247 /* subnormal, renormalise */
1248 unsigned int s = 10 - ecb_ld32 (m);
1249
1250 m = (m << s) & 0x3ff; /* mask implicit bit */
1251 e -= s - 1;
1252 }
1253 }
1254
1255 /* e and m now are normalised, or zero, (or inf or nan) */
1256 e += 127 - 15;
1257
1258 return s | (e << 23) | (m << (23 - 10));
1259}
1260
1261ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1262ecb_function_ ecb_const uint16_t
1263ecb_binary32_to_binary16 (uint32_t x)
1264{
1265 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1266 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1267 unsigned int m = x & 0x007fffff;
1268
1269 x &= 0x7fffffff;
1270
1271 /* if it's within range of binary16 normals, use fast path */
1272 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1273 {
1274 /* mantissa round-to-even */
1275 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1276
1277 /* handle overflow */
1278 if (ecb_expect_false (m >= 0x00800000))
1279 {
1280 m >>= 1;
1281 e += 1;
1282 }
1283
1284 return s | (e << 10) | (m >> (23 - 10));
1285 }
1286
1287 /* handle large numbers and infinity */
1288 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1289 return s | 0x7c00;
1290
1291 /* handle zero, subnormals and small numbers */
1292 if (ecb_expect_true (x < 0x38800000))
1293 {
1294 /* zero */
1295 if (ecb_expect_true (!x))
1296 return s;
1297
1298 /* handle subnormals */
1299
1300 /* too small, will be zero */
1301 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1302 return s;
1303
1304 m |= 0x00800000; /* make implicit bit explicit */
1305
1306 /* very tricky - we need to round to the nearest e (+10) bit value */
1307 {
1308 unsigned int bits = 14 - e;
1309 unsigned int half = (1 << (bits - 1)) - 1;
1310 unsigned int even = (m >> bits) & 1;
1311
1312 /* if this overflows, we will end up with a normalised number */
1313 m = (m + half + even) >> bits;
1314 }
1315
1316 return s | m;
1317 }
1318
1319 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1320 m >>= 13;
1321
1322 return s | 0x7c00 | m | !m;
1323}
1324
1325/*******************************************************************************/
1326/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1327
1328/* basically, everything uses "ieee pure-endian" floating point numbers */
1329/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1330#if 0 \
1331 || __i386 || __i386__ \
1332 || ECB_GCC_AMD64 \
1333 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1334 || defined __s390__ || defined __s390x__ \
1335 || defined __mips__ \
1336 || defined __alpha__ \
1337 || defined __hppa__ \
1338 || defined __ia64__ \
1339 || defined __m68k__ \
1340 || defined __m88k__ \
1341 || defined __sh__ \
1342 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1343 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1344 || defined __aarch64__
1345 #define ECB_STDFP 1
1346 #include <string.h> /* for memcpy */
1347#else
1348 #define ECB_STDFP 0
1349#endif
1350
1351#ifndef ECB_NO_LIBM
1352
1353 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1354
1355 /* only the oldest of old doesn't have this one. solaris. */
1356 #ifdef INFINITY
1357 #define ECB_INFINITY INFINITY
1358 #else
1359 #define ECB_INFINITY HUGE_VAL
1360 #endif
1361
1362 #ifdef NAN
1363 #define ECB_NAN NAN
1364 #else
1365 #define ECB_NAN ECB_INFINITY
1366 #endif
1367
1368 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1369 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1370 #define ecb_frexpf(x,e) frexpf ((x), (e))
1371 #else
1372 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1373 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1374 #endif
1375
1376 /* convert a float to ieee single/binary32 */
1377 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1378 ecb_function_ ecb_const uint32_t
1379 ecb_float_to_binary32 (float x)
1380 {
1381 uint32_t r;
1382
1383 #if ECB_STDFP
1384 memcpy (&r, &x, 4);
1385 #else
1386 /* slow emulation, works for anything but -0 */
1387 uint32_t m;
1388 int e;
1389
1390 if (x == 0e0f ) return 0x00000000U;
1391 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1392 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1393 if (x != x ) return 0x7fbfffffU;
1394
1395 m = ecb_frexpf (x, &e) * 0x1000000U;
1396
1397 r = m & 0x80000000U;
1398
1399 if (r)
1400 m = -m;
1401
1402 if (e <= -126)
1403 {
1404 m &= 0xffffffU;
1405 m >>= (-125 - e);
1406 e = -126;
1407 }
1408
1409 r |= (e + 126) << 23;
1410 r |= m & 0x7fffffU;
1411 #endif
1412
1413 return r;
1414 }
1415
1416 /* converts an ieee single/binary32 to a float */
1417 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1418 ecb_function_ ecb_const float
1419 ecb_binary32_to_float (uint32_t x)
1420 {
1421 float r;
1422
1423 #if ECB_STDFP
1424 memcpy (&r, &x, 4);
1425 #else
1426 /* emulation, only works for normals and subnormals and +0 */
1427 int neg = x >> 31;
1428 int e = (x >> 23) & 0xffU;
1429
1430 x &= 0x7fffffU;
1431
1432 if (e)
1433 x |= 0x800000U;
1434 else
1435 e = 1;
1436
1437 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1438 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1439
1440 r = neg ? -r : r;
1441 #endif
1442
1443 return r;
1444 }
1445
1446 /* convert a double to ieee double/binary64 */
1447 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1448 ecb_function_ ecb_const uint64_t
1449 ecb_double_to_binary64 (double x)
1450 {
1451 uint64_t r;
1452
1453 #if ECB_STDFP
1454 memcpy (&r, &x, 8);
1455 #else
1456 /* slow emulation, works for anything but -0 */
1457 uint64_t m;
1458 int e;
1459
1460 if (x == 0e0 ) return 0x0000000000000000U;
1461 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1462 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1463 if (x != x ) return 0X7ff7ffffffffffffU;
1464
1465 m = frexp (x, &e) * 0x20000000000000U;
1466
1467 r = m & 0x8000000000000000;;
1468
1469 if (r)
1470 m = -m;
1471
1472 if (e <= -1022)
1473 {
1474 m &= 0x1fffffffffffffU;
1475 m >>= (-1021 - e);
1476 e = -1022;
1477 }
1478
1479 r |= ((uint64_t)(e + 1022)) << 52;
1480 r |= m & 0xfffffffffffffU;
1481 #endif
1482
1483 return r;
1484 }
1485
1486 /* converts an ieee double/binary64 to a double */
1487 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1488 ecb_function_ ecb_const double
1489 ecb_binary64_to_double (uint64_t x)
1490 {
1491 double r;
1492
1493 #if ECB_STDFP
1494 memcpy (&r, &x, 8);
1495 #else
1496 /* emulation, only works for normals and subnormals and +0 */
1497 int neg = x >> 63;
1498 int e = (x >> 52) & 0x7ffU;
1499
1500 x &= 0xfffffffffffffU;
1501
1502 if (e)
1503 x |= 0x10000000000000U;
1504 else
1505 e = 1;
1506
1507 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1508 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1509
1510 r = neg ? -r : r;
1511 #endif
1512
1513 return r;
1514 }
1515
1516 /* convert a float to ieee half/binary16 */
1517 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1518 ecb_function_ ecb_const uint16_t
1519 ecb_float_to_binary16 (float x)
1520 {
1521 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1522 }
1523
1524 /* convert an ieee half/binary16 to float */
1525 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1526 ecb_function_ ecb_const float
1527 ecb_binary16_to_float (uint16_t x)
1528 {
1529 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1530 }
1531
1532#endif
1533
1534#endif
1535
1536/* ECB.H END */
1537
1538#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1539/* if your architecture doesn't need memory fences, e.g. because it is
1540 * single-cpu/core, or if you use libev in a project that doesn't use libev
1541 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1542 * libev, in which cases the memory fences become nops.
1543 * alternatively, you can remove this #error and link against libpthread,
1544 * which will then provide the memory fences.
1545 */
1546# error "memory fences not defined for your architecture, please report"
1547#endif
1548
1549#ifndef ECB_MEMORY_FENCE
1550# define ECB_MEMORY_FENCE do { } while (0)
1551# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1552# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1553#endif
1554
1555#define expect_false(cond) ecb_expect_false (cond)
1556#define expect_true(cond) ecb_expect_true (cond)
1557#define noinline ecb_noinline
1558
351#define inline_size static inline 1559#define inline_size ecb_inline
352 1560
353#if EV_MINIMAL 1561#if EV_FEATURE_CODE
354# define inline_speed static noinline
355#else
356# define inline_speed static inline 1562# define inline_speed ecb_inline
1563#else
1564# define inline_speed noinline static
357#endif 1565#endif
358 1566
359#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1567#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1568
1569#if EV_MINPRI == EV_MAXPRI
1570# define ABSPRI(w) (((W)w), 0)
1571#else
360#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1572# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1573#endif
361 1574
362#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1575#define EMPTY /* required for microsofts broken pseudo-c compiler */
363#define EMPTY2(a,b) /* used to suppress some warnings */
364 1576
365typedef ev_watcher *W; 1577typedef ev_watcher *W;
366typedef ev_watcher_list *WL; 1578typedef ev_watcher_list *WL;
367typedef ev_watcher_time *WT; 1579typedef ev_watcher_time *WT;
368 1580
369#define ev_active(w) ((W)(w))->active 1581#define ev_active(w) ((W)(w))->active
370#define ev_at(w) ((WT)(w))->at 1582#define ev_at(w) ((WT)(w))->at
371 1583
1584#if EV_USE_REALTIME
1585/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1586/* giving it a reasonably high chance of working on typical architectures */
1587static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1588#endif
1589
372#if EV_USE_MONOTONIC 1590#if EV_USE_MONOTONIC
373/* sig_atomic_t is used to avoid per-thread variables or locking but still */
374/* giving it a reasonably high chance of working on typical architetcures */
375static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1591static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1592#endif
1593
1594#ifndef EV_FD_TO_WIN32_HANDLE
1595# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1596#endif
1597#ifndef EV_WIN32_HANDLE_TO_FD
1598# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1599#endif
1600#ifndef EV_WIN32_CLOSE_FD
1601# define EV_WIN32_CLOSE_FD(fd) close (fd)
376#endif 1602#endif
377 1603
378#ifdef _WIN32 1604#ifdef _WIN32
379# include "ev_win32.c" 1605# include "ev_win32.c"
380#endif 1606#endif
381 1607
382/*****************************************************************************/ 1608/*****************************************************************************/
383 1609
1610#if EV_USE_LINUXAIO
1611# include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1612#endif
1613
1614/* define a suitable floor function (only used by periodics atm) */
1615
1616#if EV_USE_FLOOR
1617# include <math.h>
1618# define ev_floor(v) floor (v)
1619#else
1620
1621#include <float.h>
1622
1623/* a floor() replacement function, should be independent of ev_tstamp type */
1624noinline
1625static ev_tstamp
1626ev_floor (ev_tstamp v)
1627{
1628 /* the choice of shift factor is not terribly important */
1629#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1630 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1631#else
1632 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1633#endif
1634
1635 /* argument too large for an unsigned long? */
1636 if (expect_false (v >= shift))
1637 {
1638 ev_tstamp f;
1639
1640 if (v == v - 1.)
1641 return v; /* very large number */
1642
1643 f = shift * ev_floor (v * (1. / shift));
1644 return f + ev_floor (v - f);
1645 }
1646
1647 /* special treatment for negative args? */
1648 if (expect_false (v < 0.))
1649 {
1650 ev_tstamp f = -ev_floor (-v);
1651
1652 return f - (f == v ? 0 : 1);
1653 }
1654
1655 /* fits into an unsigned long */
1656 return (unsigned long)v;
1657}
1658
1659#endif
1660
1661/*****************************************************************************/
1662
1663#ifdef __linux
1664# include <sys/utsname.h>
1665#endif
1666
1667noinline ecb_cold
1668static unsigned int
1669ev_linux_version (void)
1670{
1671#ifdef __linux
1672 unsigned int v = 0;
1673 struct utsname buf;
1674 int i;
1675 char *p = buf.release;
1676
1677 if (uname (&buf))
1678 return 0;
1679
1680 for (i = 3+1; --i; )
1681 {
1682 unsigned int c = 0;
1683
1684 for (;;)
1685 {
1686 if (*p >= '0' && *p <= '9')
1687 c = c * 10 + *p++ - '0';
1688 else
1689 {
1690 p += *p == '.';
1691 break;
1692 }
1693 }
1694
1695 v = (v << 8) | c;
1696 }
1697
1698 return v;
1699#else
1700 return 0;
1701#endif
1702}
1703
1704/*****************************************************************************/
1705
1706#if EV_AVOID_STDIO
1707noinline ecb_cold
1708static void
1709ev_printerr (const char *msg)
1710{
1711 write (STDERR_FILENO, msg, strlen (msg));
1712}
1713#endif
1714
384static void (*syserr_cb)(const char *msg); 1715static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
385 1716
1717ecb_cold
386void 1718void
387ev_set_syserr_cb (void (*cb)(const char *msg)) 1719ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
388{ 1720{
389 syserr_cb = cb; 1721 syserr_cb = cb;
390} 1722}
391 1723
392static void noinline 1724noinline ecb_cold
1725static void
393syserr (const char *msg) 1726ev_syserr (const char *msg)
394{ 1727{
395 if (!msg) 1728 if (!msg)
396 msg = "(libev) system error"; 1729 msg = "(libev) system error";
397 1730
398 if (syserr_cb) 1731 if (syserr_cb)
399 syserr_cb (msg); 1732 syserr_cb (msg);
400 else 1733 else
401 { 1734 {
1735#if EV_AVOID_STDIO
1736 ev_printerr (msg);
1737 ev_printerr (": ");
1738 ev_printerr (strerror (errno));
1739 ev_printerr ("\n");
1740#else
402 perror (msg); 1741 perror (msg);
1742#endif
403 abort (); 1743 abort ();
404 } 1744 }
405} 1745}
406 1746
407static void * 1747static void *
408ev_realloc_emul (void *ptr, long size) 1748ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
409{ 1749{
410 /* some systems, notably openbsd and darwin, fail to properly 1750 /* some systems, notably openbsd and darwin, fail to properly
411 * implement realloc (x, 0) (as required by both ansi c-98 and 1751 * implement realloc (x, 0) (as required by both ansi c-89 and
412 * the single unix specification, so work around them here. 1752 * the single unix specification, so work around them here.
1753 * recently, also (at least) fedora and debian started breaking it,
1754 * despite documenting it otherwise.
413 */ 1755 */
414 1756
415 if (size) 1757 if (size)
416 return realloc (ptr, size); 1758 return realloc (ptr, size);
417 1759
418 free (ptr); 1760 free (ptr);
419 return 0; 1761 return 0;
420} 1762}
421 1763
422static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1764static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
423 1765
1766ecb_cold
424void 1767void
425ev_set_allocator (void *(*cb)(void *ptr, long size)) 1768ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
426{ 1769{
427 alloc = cb; 1770 alloc = cb;
428} 1771}
429 1772
430inline_speed void * 1773inline_speed void *
432{ 1775{
433 ptr = alloc (ptr, size); 1776 ptr = alloc (ptr, size);
434 1777
435 if (!ptr && size) 1778 if (!ptr && size)
436 { 1779 {
1780#if EV_AVOID_STDIO
1781 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1782#else
437 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1783 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1784#endif
438 abort (); 1785 abort ();
439 } 1786 }
440 1787
441 return ptr; 1788 return ptr;
442} 1789}
444#define ev_malloc(size) ev_realloc (0, (size)) 1791#define ev_malloc(size) ev_realloc (0, (size))
445#define ev_free(ptr) ev_realloc ((ptr), 0) 1792#define ev_free(ptr) ev_realloc ((ptr), 0)
446 1793
447/*****************************************************************************/ 1794/*****************************************************************************/
448 1795
1796/* set in reify when reification needed */
1797#define EV_ANFD_REIFY 1
1798
1799/* file descriptor info structure */
449typedef struct 1800typedef struct
450{ 1801{
451 WL head; 1802 WL head;
452 unsigned char events; 1803 unsigned char events; /* the events watched for */
1804 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1805 unsigned char emask; /* some backends store the actual kernel mask in here */
453 unsigned char reify; 1806 unsigned char unused;
1807#if EV_USE_EPOLL
1808 unsigned int egen; /* generation counter to counter epoll bugs */
1809#endif
454#if EV_SELECT_IS_WINSOCKET 1810#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
455 SOCKET handle; 1811 SOCKET handle;
456#endif 1812#endif
1813#if EV_USE_IOCP
1814 OVERLAPPED or, ow;
1815#endif
457} ANFD; 1816} ANFD;
458 1817
1818/* stores the pending event set for a given watcher */
459typedef struct 1819typedef struct
460{ 1820{
461 W w; 1821 W w;
462 int events; 1822 int events; /* the pending event set for the given watcher */
463} ANPENDING; 1823} ANPENDING;
464 1824
465#if EV_USE_INOTIFY 1825#if EV_USE_INOTIFY
466/* hash table entry per inotify-id */ 1826/* hash table entry per inotify-id */
467typedef struct 1827typedef struct
470} ANFS; 1830} ANFS;
471#endif 1831#endif
472 1832
473/* Heap Entry */ 1833/* Heap Entry */
474#if EV_HEAP_CACHE_AT 1834#if EV_HEAP_CACHE_AT
1835 /* a heap element */
475 typedef struct { 1836 typedef struct {
476 ev_tstamp at; 1837 ev_tstamp at;
477 WT w; 1838 WT w;
478 } ANHE; 1839 } ANHE;
479 1840
480 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1841 #define ANHE_w(he) (he).w /* access watcher, read-write */
481 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1842 #define ANHE_at(he) (he).at /* access cached at, read-only */
482 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 1843 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
483#else 1844#else
1845 /* a heap element */
484 typedef WT ANHE; 1846 typedef WT ANHE;
485 1847
486 #define ANHE_w(he) (he) 1848 #define ANHE_w(he) (he)
487 #define ANHE_at(he) (he)->at 1849 #define ANHE_at(he) (he)->at
488 #define ANHE_at_cache(he) 1850 #define ANHE_at_cache(he)
499 #undef VAR 1861 #undef VAR
500 }; 1862 };
501 #include "ev_wrap.h" 1863 #include "ev_wrap.h"
502 1864
503 static struct ev_loop default_loop_struct; 1865 static struct ev_loop default_loop_struct;
504 struct ev_loop *ev_default_loop_ptr; 1866 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
505 1867
506#else 1868#else
507 1869
508 ev_tstamp ev_rt_now; 1870 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
509 #define VAR(name,decl) static decl; 1871 #define VAR(name,decl) static decl;
510 #include "ev_vars.h" 1872 #include "ev_vars.h"
511 #undef VAR 1873 #undef VAR
512 1874
513 static int ev_default_loop_ptr; 1875 static int ev_default_loop_ptr;
514 1876
515#endif 1877#endif
516 1878
1879#if EV_FEATURE_API
1880# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1881# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1882# define EV_INVOKE_PENDING invoke_cb (EV_A)
1883#else
1884# define EV_RELEASE_CB (void)0
1885# define EV_ACQUIRE_CB (void)0
1886# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1887#endif
1888
1889#define EVBREAK_RECURSE 0x80
1890
517/*****************************************************************************/ 1891/*****************************************************************************/
518 1892
1893#ifndef EV_HAVE_EV_TIME
519ev_tstamp 1894ev_tstamp
520ev_time (void) 1895ev_time (void) EV_NOEXCEPT
521{ 1896{
522#if EV_USE_REALTIME 1897#if EV_USE_REALTIME
1898 if (expect_true (have_realtime))
1899 {
523 struct timespec ts; 1900 struct timespec ts;
524 clock_gettime (CLOCK_REALTIME, &ts); 1901 clock_gettime (CLOCK_REALTIME, &ts);
525 return ts.tv_sec + ts.tv_nsec * 1e-9; 1902 return ts.tv_sec + ts.tv_nsec * 1e-9;
526#else 1903 }
1904#endif
1905
527 struct timeval tv; 1906 struct timeval tv;
528 gettimeofday (&tv, 0); 1907 gettimeofday (&tv, 0);
529 return tv.tv_sec + tv.tv_usec * 1e-6; 1908 return tv.tv_sec + tv.tv_usec * 1e-6;
530#endif
531} 1909}
1910#endif
532 1911
533ev_tstamp inline_size 1912inline_size ev_tstamp
534get_clock (void) 1913get_clock (void)
535{ 1914{
536#if EV_USE_MONOTONIC 1915#if EV_USE_MONOTONIC
537 if (expect_true (have_monotonic)) 1916 if (expect_true (have_monotonic))
538 { 1917 {
545 return ev_time (); 1924 return ev_time ();
546} 1925}
547 1926
548#if EV_MULTIPLICITY 1927#if EV_MULTIPLICITY
549ev_tstamp 1928ev_tstamp
550ev_now (EV_P) 1929ev_now (EV_P) EV_NOEXCEPT
551{ 1930{
552 return ev_rt_now; 1931 return ev_rt_now;
553} 1932}
554#endif 1933#endif
555 1934
556void 1935void
557ev_sleep (ev_tstamp delay) 1936ev_sleep (ev_tstamp delay) EV_NOEXCEPT
558{ 1937{
559 if (delay > 0.) 1938 if (delay > 0.)
560 { 1939 {
561#if EV_USE_NANOSLEEP 1940#if EV_USE_NANOSLEEP
562 struct timespec ts; 1941 struct timespec ts;
563 1942
564 ts.tv_sec = (time_t)delay; 1943 EV_TS_SET (ts, delay);
565 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
566
567 nanosleep (&ts, 0); 1944 nanosleep (&ts, 0);
568#elif defined(_WIN32) 1945#elif defined _WIN32
1946 /* maybe this should round up, as ms is very low resolution */
1947 /* compared to select (µs) or nanosleep (ns) */
569 Sleep ((unsigned long)(delay * 1e3)); 1948 Sleep ((unsigned long)(delay * 1e3));
570#else 1949#else
571 struct timeval tv; 1950 struct timeval tv;
572 1951
573 tv.tv_sec = (time_t)delay;
574 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
575
576 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 1952 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
577 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 1953 /* something not guaranteed by newer posix versions, but guaranteed */
578 /* by older ones */ 1954 /* by older ones */
1955 EV_TV_SET (tv, delay);
579 select (0, 0, 0, 0, &tv); 1956 select (0, 0, 0, 0, &tv);
580#endif 1957#endif
581 } 1958 }
582} 1959}
583 1960
584/*****************************************************************************/ 1961/*****************************************************************************/
585 1962
586#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1963#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
587 1964
588int inline_size 1965/* find a suitable new size for the given array, */
1966/* hopefully by rounding to a nice-to-malloc size */
1967inline_size int
589array_nextsize (int elem, int cur, int cnt) 1968array_nextsize (int elem, int cur, int cnt)
590{ 1969{
591 int ncur = cur + 1; 1970 int ncur = cur + 1;
592 1971
593 do 1972 do
594 ncur <<= 1; 1973 ncur <<= 1;
595 while (cnt > ncur); 1974 while (cnt > ncur);
596 1975
597 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1976 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
598 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1977 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
599 { 1978 {
600 ncur *= elem; 1979 ncur *= elem;
601 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1980 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
602 ncur = ncur - sizeof (void *) * 4; 1981 ncur = ncur - sizeof (void *) * 4;
604 } 1983 }
605 1984
606 return ncur; 1985 return ncur;
607} 1986}
608 1987
609static noinline void * 1988noinline ecb_cold
1989static void *
610array_realloc (int elem, void *base, int *cur, int cnt) 1990array_realloc (int elem, void *base, int *cur, int cnt)
611{ 1991{
612 *cur = array_nextsize (elem, *cur, cnt); 1992 *cur = array_nextsize (elem, *cur, cnt);
613 return ev_realloc (base, elem * *cur); 1993 return ev_realloc (base, elem * *cur);
614} 1994}
1995
1996#define array_needsize_noinit(base,offset,count)
1997
1998#define array_needsize_zerofill(base,offset,count) \
1999 memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
615 2000
616#define array_needsize(type,base,cur,cnt,init) \ 2001#define array_needsize(type,base,cur,cnt,init) \
617 if (expect_false ((cnt) > (cur))) \ 2002 if (expect_false ((cnt) > (cur))) \
618 { \ 2003 { \
619 int ocur_ = (cur); \ 2004 ecb_unused int ocur_ = (cur); \
620 (base) = (type *)array_realloc \ 2005 (base) = (type *)array_realloc \
621 (sizeof (type), (base), &(cur), (cnt)); \ 2006 (sizeof (type), (base), &(cur), (cnt)); \
622 init ((base) + (ocur_), (cur) - ocur_); \ 2007 init ((base), ocur_, ((cur) - ocur_)); \
623 } 2008 }
624 2009
625#if 0 2010#if 0
626#define array_slim(type,stem) \ 2011#define array_slim(type,stem) \
627 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 2012 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
631 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 2016 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
632 } 2017 }
633#endif 2018#endif
634 2019
635#define array_free(stem, idx) \ 2020#define array_free(stem, idx) \
636 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 2021 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
637 2022
638/*****************************************************************************/ 2023/*****************************************************************************/
639 2024
2025/* dummy callback for pending events */
640void noinline 2026noinline
2027static void
2028pendingcb (EV_P_ ev_prepare *w, int revents)
2029{
2030}
2031
2032noinline
2033void
641ev_feed_event (EV_P_ void *w, int revents) 2034ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
642{ 2035{
643 W w_ = (W)w; 2036 W w_ = (W)w;
644 int pri = ABSPRI (w_); 2037 int pri = ABSPRI (w_);
645 2038
646 if (expect_false (w_->pending)) 2039 if (expect_false (w_->pending))
647 pendings [pri][w_->pending - 1].events |= revents; 2040 pendings [pri][w_->pending - 1].events |= revents;
648 else 2041 else
649 { 2042 {
650 w_->pending = ++pendingcnt [pri]; 2043 w_->pending = ++pendingcnt [pri];
651 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 2044 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
652 pendings [pri][w_->pending - 1].w = w_; 2045 pendings [pri][w_->pending - 1].w = w_;
653 pendings [pri][w_->pending - 1].events = revents; 2046 pendings [pri][w_->pending - 1].events = revents;
654 } 2047 }
655}
656 2048
657void inline_speed 2049 pendingpri = NUMPRI - 1;
2050}
2051
2052inline_speed void
2053feed_reverse (EV_P_ W w)
2054{
2055 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2056 rfeeds [rfeedcnt++] = w;
2057}
2058
2059inline_size void
2060feed_reverse_done (EV_P_ int revents)
2061{
2062 do
2063 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2064 while (rfeedcnt);
2065}
2066
2067inline_speed void
658queue_events (EV_P_ W *events, int eventcnt, int type) 2068queue_events (EV_P_ W *events, int eventcnt, int type)
659{ 2069{
660 int i; 2070 int i;
661 2071
662 for (i = 0; i < eventcnt; ++i) 2072 for (i = 0; i < eventcnt; ++i)
663 ev_feed_event (EV_A_ events [i], type); 2073 ev_feed_event (EV_A_ events [i], type);
664} 2074}
665 2075
666/*****************************************************************************/ 2076/*****************************************************************************/
667 2077
668void inline_size 2078inline_speed void
669anfds_init (ANFD *base, int count)
670{
671 while (count--)
672 {
673 base->head = 0;
674 base->events = EV_NONE;
675 base->reify = 0;
676
677 ++base;
678 }
679}
680
681void inline_speed
682fd_event (EV_P_ int fd, int revents) 2079fd_event_nocheck (EV_P_ int fd, int revents)
683{ 2080{
684 ANFD *anfd = anfds + fd; 2081 ANFD *anfd = anfds + fd;
685 ev_io *w; 2082 ev_io *w;
686 2083
687 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2084 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
691 if (ev) 2088 if (ev)
692 ev_feed_event (EV_A_ (W)w, ev); 2089 ev_feed_event (EV_A_ (W)w, ev);
693 } 2090 }
694} 2091}
695 2092
696void 2093/* do not submit kernel events for fds that have reify set */
2094/* because that means they changed while we were polling for new events */
2095inline_speed void
697ev_feed_fd_event (EV_P_ int fd, int revents) 2096fd_event (EV_P_ int fd, int revents)
2097{
2098 ANFD *anfd = anfds + fd;
2099
2100 if (expect_true (!anfd->reify))
2101 fd_event_nocheck (EV_A_ fd, revents);
2102}
2103
2104void
2105ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
698{ 2106{
699 if (fd >= 0 && fd < anfdmax) 2107 if (fd >= 0 && fd < anfdmax)
700 fd_event (EV_A_ fd, revents); 2108 fd_event_nocheck (EV_A_ fd, revents);
701} 2109}
702 2110
703void inline_size 2111/* make sure the external fd watch events are in-sync */
2112/* with the kernel/libev internal state */
2113inline_size void
704fd_reify (EV_P) 2114fd_reify (EV_P)
705{ 2115{
706 int i; 2116 int i;
2117
2118#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2119 for (i = 0; i < fdchangecnt; ++i)
2120 {
2121 int fd = fdchanges [i];
2122 ANFD *anfd = anfds + fd;
2123
2124 if (anfd->reify & EV__IOFDSET && anfd->head)
2125 {
2126 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2127
2128 if (handle != anfd->handle)
2129 {
2130 unsigned long arg;
2131
2132 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2133
2134 /* handle changed, but fd didn't - we need to do it in two steps */
2135 backend_modify (EV_A_ fd, anfd->events, 0);
2136 anfd->events = 0;
2137 anfd->handle = handle;
2138 }
2139 }
2140 }
2141#endif
707 2142
708 for (i = 0; i < fdchangecnt; ++i) 2143 for (i = 0; i < fdchangecnt; ++i)
709 { 2144 {
710 int fd = fdchanges [i]; 2145 int fd = fdchanges [i];
711 ANFD *anfd = anfds + fd; 2146 ANFD *anfd = anfds + fd;
712 ev_io *w; 2147 ev_io *w;
713 2148
714 unsigned char events = 0; 2149 unsigned char o_events = anfd->events;
2150 unsigned char o_reify = anfd->reify;
715 2151
716 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2152 anfd->reify = 0;
717 events |= (unsigned char)w->events;
718 2153
719#if EV_SELECT_IS_WINSOCKET 2154 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
720 if (events)
721 { 2155 {
722 unsigned long arg; 2156 anfd->events = 0;
723 #ifdef EV_FD_TO_WIN32_HANDLE 2157
724 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 2158 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
725 #else 2159 anfd->events |= (unsigned char)w->events;
726 anfd->handle = _get_osfhandle (fd); 2160
727 #endif 2161 if (o_events != anfd->events)
728 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 2162 o_reify = EV__IOFDSET; /* actually |= */
729 } 2163 }
730#endif
731 2164
732 { 2165 if (o_reify & EV__IOFDSET)
733 unsigned char o_events = anfd->events;
734 unsigned char o_reify = anfd->reify;
735
736 anfd->reify = 0;
737 anfd->events = events;
738
739 if (o_events != events || o_reify & EV_IOFDSET)
740 backend_modify (EV_A_ fd, o_events, events); 2166 backend_modify (EV_A_ fd, o_events, anfd->events);
741 }
742 } 2167 }
743 2168
744 fdchangecnt = 0; 2169 fdchangecnt = 0;
745} 2170}
746 2171
2172/* something about the given fd changed */
747void inline_size 2173inline_size
2174void
748fd_change (EV_P_ int fd, int flags) 2175fd_change (EV_P_ int fd, int flags)
749{ 2176{
750 unsigned char reify = anfds [fd].reify; 2177 unsigned char reify = anfds [fd].reify;
751 anfds [fd].reify |= flags; 2178 anfds [fd].reify |= flags;
752 2179
753 if (expect_true (!reify)) 2180 if (expect_true (!reify))
754 { 2181 {
755 ++fdchangecnt; 2182 ++fdchangecnt;
756 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2183 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
757 fdchanges [fdchangecnt - 1] = fd; 2184 fdchanges [fdchangecnt - 1] = fd;
758 } 2185 }
759} 2186}
760 2187
761void inline_speed 2188/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2189inline_speed ecb_cold void
762fd_kill (EV_P_ int fd) 2190fd_kill (EV_P_ int fd)
763{ 2191{
764 ev_io *w; 2192 ev_io *w;
765 2193
766 while ((w = (ev_io *)anfds [fd].head)) 2194 while ((w = (ev_io *)anfds [fd].head))
768 ev_io_stop (EV_A_ w); 2196 ev_io_stop (EV_A_ w);
769 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2197 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
770 } 2198 }
771} 2199}
772 2200
773int inline_size 2201/* check whether the given fd is actually valid, for error recovery */
2202inline_size ecb_cold int
774fd_valid (int fd) 2203fd_valid (int fd)
775{ 2204{
776#ifdef _WIN32 2205#ifdef _WIN32
777 return _get_osfhandle (fd) != -1; 2206 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
778#else 2207#else
779 return fcntl (fd, F_GETFD) != -1; 2208 return fcntl (fd, F_GETFD) != -1;
780#endif 2209#endif
781} 2210}
782 2211
783/* called on EBADF to verify fds */ 2212/* called on EBADF to verify fds */
784static void noinline 2213noinline ecb_cold
2214static void
785fd_ebadf (EV_P) 2215fd_ebadf (EV_P)
786{ 2216{
787 int fd; 2217 int fd;
788 2218
789 for (fd = 0; fd < anfdmax; ++fd) 2219 for (fd = 0; fd < anfdmax; ++fd)
791 if (!fd_valid (fd) && errno == EBADF) 2221 if (!fd_valid (fd) && errno == EBADF)
792 fd_kill (EV_A_ fd); 2222 fd_kill (EV_A_ fd);
793} 2223}
794 2224
795/* called on ENOMEM in select/poll to kill some fds and retry */ 2225/* called on ENOMEM in select/poll to kill some fds and retry */
796static void noinline 2226noinline ecb_cold
2227static void
797fd_enomem (EV_P) 2228fd_enomem (EV_P)
798{ 2229{
799 int fd; 2230 int fd;
800 2231
801 for (fd = anfdmax; fd--; ) 2232 for (fd = anfdmax; fd--; )
802 if (anfds [fd].events) 2233 if (anfds [fd].events)
803 { 2234 {
804 fd_kill (EV_A_ fd); 2235 fd_kill (EV_A_ fd);
805 return; 2236 break;
806 } 2237 }
807} 2238}
808 2239
809/* usually called after fork if backend needs to re-arm all fds from scratch */ 2240/* usually called after fork if backend needs to re-arm all fds from scratch */
810static void noinline 2241noinline
2242static void
811fd_rearm_all (EV_P) 2243fd_rearm_all (EV_P)
812{ 2244{
813 int fd; 2245 int fd;
814 2246
815 for (fd = 0; fd < anfdmax; ++fd) 2247 for (fd = 0; fd < anfdmax; ++fd)
816 if (anfds [fd].events) 2248 if (anfds [fd].events)
817 { 2249 {
818 anfds [fd].events = 0; 2250 anfds [fd].events = 0;
2251 anfds [fd].emask = 0;
819 fd_change (EV_A_ fd, EV_IOFDSET | 1); 2252 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
820 } 2253 }
821} 2254}
822 2255
2256/* used to prepare libev internal fd's */
2257/* this is not fork-safe */
2258inline_speed void
2259fd_intern (int fd)
2260{
2261#ifdef _WIN32
2262 unsigned long arg = 1;
2263 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2264#else
2265 fcntl (fd, F_SETFD, FD_CLOEXEC);
2266 fcntl (fd, F_SETFL, O_NONBLOCK);
2267#endif
2268}
2269
823/*****************************************************************************/ 2270/*****************************************************************************/
824 2271
825/* 2272/*
826 * the heap functions want a real array index. array index 0 uis guaranteed to not 2273 * the heap functions want a real array index. array index 0 is guaranteed to not
827 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 2274 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
828 * the branching factor of the d-tree. 2275 * the branching factor of the d-tree.
829 */ 2276 */
830 2277
831/* 2278/*
840#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 2287#define HEAP0 (DHEAP - 1) /* index of first element in heap */
841#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 2288#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
842#define UPHEAP_DONE(p,k) ((p) == (k)) 2289#define UPHEAP_DONE(p,k) ((p) == (k))
843 2290
844/* away from the root */ 2291/* away from the root */
845void inline_speed 2292inline_speed void
846downheap (ANHE *heap, int N, int k) 2293downheap (ANHE *heap, int N, int k)
847{ 2294{
848 ANHE he = heap [k]; 2295 ANHE he = heap [k];
849 ANHE *E = heap + N + HEAP0; 2296 ANHE *E = heap + N + HEAP0;
850 2297
890#define HEAP0 1 2337#define HEAP0 1
891#define HPARENT(k) ((k) >> 1) 2338#define HPARENT(k) ((k) >> 1)
892#define UPHEAP_DONE(p,k) (!(p)) 2339#define UPHEAP_DONE(p,k) (!(p))
893 2340
894/* away from the root */ 2341/* away from the root */
895void inline_speed 2342inline_speed void
896downheap (ANHE *heap, int N, int k) 2343downheap (ANHE *heap, int N, int k)
897{ 2344{
898 ANHE he = heap [k]; 2345 ANHE he = heap [k];
899 2346
900 for (;;) 2347 for (;;)
901 { 2348 {
902 int c = k << 1; 2349 int c = k << 1;
903 2350
904 if (c > N + HEAP0 - 1) 2351 if (c >= N + HEAP0)
905 break; 2352 break;
906 2353
907 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 2354 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
908 ? 1 : 0; 2355 ? 1 : 0;
909 2356
920 ev_active (ANHE_w (he)) = k; 2367 ev_active (ANHE_w (he)) = k;
921} 2368}
922#endif 2369#endif
923 2370
924/* towards the root */ 2371/* towards the root */
925void inline_speed 2372inline_speed void
926upheap (ANHE *heap, int k) 2373upheap (ANHE *heap, int k)
927{ 2374{
928 ANHE he = heap [k]; 2375 ANHE he = heap [k];
929 2376
930 for (;;) 2377 for (;;)
941 2388
942 heap [k] = he; 2389 heap [k] = he;
943 ev_active (ANHE_w (he)) = k; 2390 ev_active (ANHE_w (he)) = k;
944} 2391}
945 2392
946void inline_size 2393/* move an element suitably so it is in a correct place */
2394inline_size void
947adjustheap (ANHE *heap, int N, int k) 2395adjustheap (ANHE *heap, int N, int k)
948{ 2396{
949 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 2397 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
950 upheap (heap, k); 2398 upheap (heap, k);
951 else 2399 else
952 downheap (heap, N, k); 2400 downheap (heap, N, k);
953} 2401}
954 2402
955/* rebuild the heap: this function is used only once and executed rarely */ 2403/* rebuild the heap: this function is used only once and executed rarely */
956void inline_size 2404inline_size void
957reheap (ANHE *heap, int N) 2405reheap (ANHE *heap, int N)
958{ 2406{
959 int i; 2407 int i;
960 2408
961 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 2409 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
964 upheap (heap, i + HEAP0); 2412 upheap (heap, i + HEAP0);
965} 2413}
966 2414
967/*****************************************************************************/ 2415/*****************************************************************************/
968 2416
2417/* associate signal watchers to a signal signal */
969typedef struct 2418typedef struct
970{ 2419{
2420 EV_ATOMIC_T pending;
2421#if EV_MULTIPLICITY
2422 EV_P;
2423#endif
971 WL head; 2424 WL head;
972 EV_ATOMIC_T gotsig;
973} ANSIG; 2425} ANSIG;
974 2426
975static ANSIG *signals; 2427static ANSIG signals [EV_NSIG - 1];
976static int signalmax;
977
978static EV_ATOMIC_T gotsig;
979
980void inline_size
981signals_init (ANSIG *base, int count)
982{
983 while (count--)
984 {
985 base->head = 0;
986 base->gotsig = 0;
987
988 ++base;
989 }
990}
991 2428
992/*****************************************************************************/ 2429/*****************************************************************************/
993 2430
994void inline_speed 2431#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
995fd_intern (int fd)
996{
997#ifdef _WIN32
998 unsigned long arg = 1;
999 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1000#else
1001 fcntl (fd, F_SETFD, FD_CLOEXEC);
1002 fcntl (fd, F_SETFL, O_NONBLOCK);
1003#endif
1004}
1005 2432
1006static void noinline 2433noinline ecb_cold
2434static void
1007evpipe_init (EV_P) 2435evpipe_init (EV_P)
1008{ 2436{
1009 if (!ev_is_active (&pipeev)) 2437 if (!ev_is_active (&pipe_w))
2438 {
2439 int fds [2];
2440
2441# if EV_USE_EVENTFD
2442 fds [0] = -1;
2443 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2444 if (fds [1] < 0 && errno == EINVAL)
2445 fds [1] = eventfd (0, 0);
2446
2447 if (fds [1] < 0)
2448# endif
2449 {
2450 while (pipe (fds))
2451 ev_syserr ("(libev) error creating signal/async pipe");
2452
2453 fd_intern (fds [0]);
2454 }
2455
2456 evpipe [0] = fds [0];
2457
2458 if (evpipe [1] < 0)
2459 evpipe [1] = fds [1]; /* first call, set write fd */
2460 else
2461 {
2462 /* on subsequent calls, do not change evpipe [1] */
2463 /* so that evpipe_write can always rely on its value. */
2464 /* this branch does not do anything sensible on windows, */
2465 /* so must not be executed on windows */
2466
2467 dup2 (fds [1], evpipe [1]);
2468 close (fds [1]);
2469 }
2470
2471 fd_intern (evpipe [1]);
2472
2473 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2474 ev_io_start (EV_A_ &pipe_w);
2475 ev_unref (EV_A); /* watcher should not keep loop alive */
1010 { 2476 }
2477}
2478
2479inline_speed void
2480evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2481{
2482 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2483
2484 if (expect_true (*flag))
2485 return;
2486
2487 *flag = 1;
2488 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2489
2490 pipe_write_skipped = 1;
2491
2492 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2493
2494 if (pipe_write_wanted)
2495 {
2496 int old_errno;
2497
2498 pipe_write_skipped = 0;
2499 ECB_MEMORY_FENCE_RELEASE;
2500
2501 old_errno = errno; /* save errno because write will clobber it */
2502
1011#if EV_USE_EVENTFD 2503#if EV_USE_EVENTFD
1012 if ((evfd = eventfd (0, 0)) >= 0) 2504 if (evpipe [0] < 0)
1013 { 2505 {
1014 evpipe [0] = -1; 2506 uint64_t counter = 1;
1015 fd_intern (evfd); 2507 write (evpipe [1], &counter, sizeof (uint64_t));
1016 ev_io_set (&pipeev, evfd, EV_READ);
1017 } 2508 }
1018 else 2509 else
1019#endif 2510#endif
1020 { 2511 {
1021 while (pipe (evpipe)) 2512#ifdef _WIN32
1022 syserr ("(libev) error creating signal/async pipe"); 2513 WSABUF buf;
1023 2514 DWORD sent;
1024 fd_intern (evpipe [0]); 2515 buf.buf = (char *)&buf;
1025 fd_intern (evpipe [1]); 2516 buf.len = 1;
1026 ev_io_set (&pipeev, evpipe [0], EV_READ); 2517 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2518#else
2519 write (evpipe [1], &(evpipe [1]), 1);
2520#endif
1027 } 2521 }
1028 2522
1029 ev_io_start (EV_A_ &pipeev); 2523 errno = old_errno;
1030 ev_unref (EV_A); /* watcher should not keep loop alive */
1031 }
1032}
1033
1034void inline_size
1035evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1036{
1037 if (!*flag)
1038 { 2524 }
1039 int old_errno = errno; /* save errno because write might clobber it */ 2525}
1040 2526
1041 *flag = 1; 2527/* called whenever the libev signal pipe */
2528/* got some events (signal, async) */
2529static void
2530pipecb (EV_P_ ev_io *iow, int revents)
2531{
2532 int i;
1042 2533
2534 if (revents & EV_READ)
2535 {
1043#if EV_USE_EVENTFD 2536#if EV_USE_EVENTFD
1044 if (evfd >= 0) 2537 if (evpipe [0] < 0)
1045 { 2538 {
1046 uint64_t counter = 1; 2539 uint64_t counter;
1047 write (evfd, &counter, sizeof (uint64_t)); 2540 read (evpipe [1], &counter, sizeof (uint64_t));
1048 } 2541 }
1049 else 2542 else
1050#endif 2543#endif
1051 write (evpipe [1], &old_errno, 1); 2544 {
1052
1053 errno = old_errno;
1054 }
1055}
1056
1057static void
1058pipecb (EV_P_ ev_io *iow, int revents)
1059{
1060#if EV_USE_EVENTFD
1061 if (evfd >= 0)
1062 {
1063 uint64_t counter;
1064 read (evfd, &counter, sizeof (uint64_t));
1065 }
1066 else
1067#endif
1068 {
1069 char dummy; 2545 char dummy[4];
2546#ifdef _WIN32
2547 WSABUF buf;
2548 DWORD recvd;
2549 DWORD flags = 0;
2550 buf.buf = dummy;
2551 buf.len = sizeof (dummy);
2552 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2553#else
1070 read (evpipe [0], &dummy, 1); 2554 read (evpipe [0], &dummy, sizeof (dummy));
2555#endif
2556 }
2557 }
2558
2559 pipe_write_skipped = 0;
2560
2561 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2562
2563#if EV_SIGNAL_ENABLE
2564 if (sig_pending)
1071 } 2565 {
2566 sig_pending = 0;
1072 2567
1073 if (gotsig && ev_is_default_loop (EV_A)) 2568 ECB_MEMORY_FENCE;
1074 {
1075 int signum;
1076 gotsig = 0;
1077 2569
1078 for (signum = signalmax; signum--; ) 2570 for (i = EV_NSIG - 1; i--; )
1079 if (signals [signum].gotsig) 2571 if (expect_false (signals [i].pending))
1080 ev_feed_signal_event (EV_A_ signum + 1); 2572 ev_feed_signal_event (EV_A_ i + 1);
1081 } 2573 }
2574#endif
1082 2575
1083#if EV_ASYNC_ENABLE 2576#if EV_ASYNC_ENABLE
1084 if (gotasync) 2577 if (async_pending)
1085 { 2578 {
1086 int i; 2579 async_pending = 0;
1087 gotasync = 0; 2580
2581 ECB_MEMORY_FENCE;
1088 2582
1089 for (i = asynccnt; i--; ) 2583 for (i = asynccnt; i--; )
1090 if (asyncs [i]->sent) 2584 if (asyncs [i]->sent)
1091 { 2585 {
1092 asyncs [i]->sent = 0; 2586 asyncs [i]->sent = 0;
2587 ECB_MEMORY_FENCE_RELEASE;
1093 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2588 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1094 } 2589 }
1095 } 2590 }
1096#endif 2591#endif
1097} 2592}
1098 2593
1099/*****************************************************************************/ 2594/*****************************************************************************/
1100 2595
2596void
2597ev_feed_signal (int signum) EV_NOEXCEPT
2598{
2599#if EV_MULTIPLICITY
2600 EV_P;
2601 ECB_MEMORY_FENCE_ACQUIRE;
2602 EV_A = signals [signum - 1].loop;
2603
2604 if (!EV_A)
2605 return;
2606#endif
2607
2608 signals [signum - 1].pending = 1;
2609 evpipe_write (EV_A_ &sig_pending);
2610}
2611
1101static void 2612static void
1102ev_sighandler (int signum) 2613ev_sighandler (int signum)
1103{ 2614{
2615#ifdef _WIN32
2616 signal (signum, ev_sighandler);
2617#endif
2618
2619 ev_feed_signal (signum);
2620}
2621
2622noinline
2623void
2624ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2625{
2626 WL w;
2627
2628 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2629 return;
2630
2631 --signum;
2632
1104#if EV_MULTIPLICITY 2633#if EV_MULTIPLICITY
1105 struct ev_loop *loop = &default_loop_struct; 2634 /* it is permissible to try to feed a signal to the wrong loop */
1106#endif 2635 /* or, likely more useful, feeding a signal nobody is waiting for */
1107 2636
1108#if _WIN32 2637 if (expect_false (signals [signum].loop != EV_A))
1109 signal (signum, ev_sighandler);
1110#endif
1111
1112 signals [signum - 1].gotsig = 1;
1113 evpipe_write (EV_A_ &gotsig);
1114}
1115
1116void noinline
1117ev_feed_signal_event (EV_P_ int signum)
1118{
1119 WL w;
1120
1121#if EV_MULTIPLICITY
1122 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1123#endif
1124
1125 --signum;
1126
1127 if (signum < 0 || signum >= signalmax)
1128 return; 2638 return;
2639#endif
1129 2640
1130 signals [signum].gotsig = 0; 2641 signals [signum].pending = 0;
2642 ECB_MEMORY_FENCE_RELEASE;
1131 2643
1132 for (w = signals [signum].head; w; w = w->next) 2644 for (w = signals [signum].head; w; w = w->next)
1133 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2645 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1134} 2646}
1135 2647
2648#if EV_USE_SIGNALFD
2649static void
2650sigfdcb (EV_P_ ev_io *iow, int revents)
2651{
2652 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2653
2654 for (;;)
2655 {
2656 ssize_t res = read (sigfd, si, sizeof (si));
2657
2658 /* not ISO-C, as res might be -1, but works with SuS */
2659 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2660 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2661
2662 if (res < (ssize_t)sizeof (si))
2663 break;
2664 }
2665}
2666#endif
2667
2668#endif
2669
1136/*****************************************************************************/ 2670/*****************************************************************************/
1137 2671
2672#if EV_CHILD_ENABLE
1138static WL childs [EV_PID_HASHSIZE]; 2673static WL childs [EV_PID_HASHSIZE];
1139
1140#ifndef _WIN32
1141 2674
1142static ev_signal childev; 2675static ev_signal childev;
1143 2676
1144#ifndef WIFCONTINUED 2677#ifndef WIFCONTINUED
1145# define WIFCONTINUED(status) 0 2678# define WIFCONTINUED(status) 0
1146#endif 2679#endif
1147 2680
1148void inline_speed 2681/* handle a single child status event */
2682inline_speed void
1149child_reap (EV_P_ int chain, int pid, int status) 2683child_reap (EV_P_ int chain, int pid, int status)
1150{ 2684{
1151 ev_child *w; 2685 ev_child *w;
1152 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2686 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1153 2687
1154 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2688 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1155 { 2689 {
1156 if ((w->pid == pid || !w->pid) 2690 if ((w->pid == pid || !w->pid)
1157 && (!traced || (w->flags & 1))) 2691 && (!traced || (w->flags & 1)))
1158 { 2692 {
1159 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2693 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1166 2700
1167#ifndef WCONTINUED 2701#ifndef WCONTINUED
1168# define WCONTINUED 0 2702# define WCONTINUED 0
1169#endif 2703#endif
1170 2704
2705/* called on sigchld etc., calls waitpid */
1171static void 2706static void
1172childcb (EV_P_ ev_signal *sw, int revents) 2707childcb (EV_P_ ev_signal *sw, int revents)
1173{ 2708{
1174 int pid, status; 2709 int pid, status;
1175 2710
1183 /* make sure we are called again until all children have been reaped */ 2718 /* make sure we are called again until all children have been reaped */
1184 /* we need to do it this way so that the callback gets called before we continue */ 2719 /* we need to do it this way so that the callback gets called before we continue */
1185 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2720 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1186 2721
1187 child_reap (EV_A_ pid, pid, status); 2722 child_reap (EV_A_ pid, pid, status);
1188 if (EV_PID_HASHSIZE > 1) 2723 if ((EV_PID_HASHSIZE) > 1)
1189 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2724 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1190} 2725}
1191 2726
1192#endif 2727#endif
1193 2728
1194/*****************************************************************************/ 2729/*****************************************************************************/
1195 2730
2731#if EV_USE_IOCP
2732# include "ev_iocp.c"
2733#endif
1196#if EV_USE_PORT 2734#if EV_USE_PORT
1197# include "ev_port.c" 2735# include "ev_port.c"
1198#endif 2736#endif
1199#if EV_USE_KQUEUE 2737#if EV_USE_KQUEUE
1200# include "ev_kqueue.c" 2738# include "ev_kqueue.c"
1201#endif 2739#endif
1202#if EV_USE_EPOLL 2740#if EV_USE_EPOLL
1203# include "ev_epoll.c" 2741# include "ev_epoll.c"
1204#endif 2742#endif
2743#if EV_USE_LINUXAIO
2744# include "ev_linuxaio.c"
2745#endif
1205#if EV_USE_POLL 2746#if EV_USE_POLL
1206# include "ev_poll.c" 2747# include "ev_poll.c"
1207#endif 2748#endif
1208#if EV_USE_SELECT 2749#if EV_USE_SELECT
1209# include "ev_select.c" 2750# include "ev_select.c"
1210#endif 2751#endif
1211 2752
1212int 2753ecb_cold int
1213ev_version_major (void) 2754ev_version_major (void) EV_NOEXCEPT
1214{ 2755{
1215 return EV_VERSION_MAJOR; 2756 return EV_VERSION_MAJOR;
1216} 2757}
1217 2758
1218int 2759ecb_cold int
1219ev_version_minor (void) 2760ev_version_minor (void) EV_NOEXCEPT
1220{ 2761{
1221 return EV_VERSION_MINOR; 2762 return EV_VERSION_MINOR;
1222} 2763}
1223 2764
1224/* return true if we are running with elevated privileges and should ignore env variables */ 2765/* return true if we are running with elevated privileges and should ignore env variables */
1225int inline_size 2766inline_size ecb_cold int
1226enable_secure (void) 2767enable_secure (void)
1227{ 2768{
1228#ifdef _WIN32 2769#ifdef _WIN32
1229 return 0; 2770 return 0;
1230#else 2771#else
1231 return getuid () != geteuid () 2772 return getuid () != geteuid ()
1232 || getgid () != getegid (); 2773 || getgid () != getegid ();
1233#endif 2774#endif
1234} 2775}
1235 2776
2777ecb_cold
1236unsigned int 2778unsigned int
1237ev_supported_backends (void) 2779ev_supported_backends (void) EV_NOEXCEPT
1238{ 2780{
1239 unsigned int flags = 0; 2781 unsigned int flags = 0;
1240 2782
1241 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2783 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1242 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2784 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
1243 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL; 2785 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2786 if (EV_USE_LINUXAIO) flags |= EVBACKEND_LINUXAIO;
1244 if (EV_USE_POLL ) flags |= EVBACKEND_POLL; 2787 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1245 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2788 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
1246 2789
1247 return flags; 2790 return flags;
1248} 2791}
1249 2792
2793ecb_cold
1250unsigned int 2794unsigned int
1251ev_recommended_backends (void) 2795ev_recommended_backends (void) EV_NOEXCEPT
1252{ 2796{
1253 unsigned int flags = ev_supported_backends (); 2797 unsigned int flags = ev_supported_backends ();
1254 2798
1255#ifndef __NetBSD__ 2799#ifndef __NetBSD__
1256 /* kqueue is borked on everything but netbsd apparently */ 2800 /* kqueue is borked on everything but netbsd apparently */
1257 /* it usually doesn't work correctly on anything but sockets and pipes */ 2801 /* it usually doesn't work correctly on anything but sockets and pipes */
1258 flags &= ~EVBACKEND_KQUEUE; 2802 flags &= ~EVBACKEND_KQUEUE;
1259#endif 2803#endif
1260#ifdef __APPLE__ 2804#ifdef __APPLE__
1261 // flags &= ~EVBACKEND_KQUEUE; for documentation 2805 /* only select works correctly on that "unix-certified" platform */
2806 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2807 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2808#endif
2809#ifdef __FreeBSD__
2810 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2811#endif
2812
2813 /* TODO: linuxaio is very experimental */
2814#if !EV_RECOMMEND_LINUXAIO
1262 flags &= ~EVBACKEND_POLL; 2815 flags &= ~EVBACKEND_LINUXAIO;
1263#endif 2816#endif
1264 2817
1265 return flags; 2818 return flags;
1266} 2819}
1267 2820
2821ecb_cold
1268unsigned int 2822unsigned int
1269ev_embeddable_backends (void) 2823ev_embeddable_backends (void) EV_NOEXCEPT
1270{ 2824{
1271 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2825 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1272 2826
1273 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 2827 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1274 /* please fix it and tell me how to detect the fix */ 2828 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1275 flags &= ~EVBACKEND_EPOLL; 2829 flags &= ~EVBACKEND_EPOLL;
1276 2830
1277 return flags; 2831 return flags;
1278} 2832}
1279 2833
1280unsigned int 2834unsigned int
1281ev_backend (EV_P) 2835ev_backend (EV_P) EV_NOEXCEPT
1282{ 2836{
1283 return backend; 2837 return backend;
1284} 2838}
1285 2839
2840#if EV_FEATURE_API
1286unsigned int 2841unsigned int
1287ev_loop_count (EV_P) 2842ev_iteration (EV_P) EV_NOEXCEPT
1288{ 2843{
1289 return loop_count; 2844 return loop_count;
1290} 2845}
1291 2846
2847unsigned int
2848ev_depth (EV_P) EV_NOEXCEPT
2849{
2850 return loop_depth;
2851}
2852
1292void 2853void
1293ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2854ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
1294{ 2855{
1295 io_blocktime = interval; 2856 io_blocktime = interval;
1296} 2857}
1297 2858
1298void 2859void
1299ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2860ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
1300{ 2861{
1301 timeout_blocktime = interval; 2862 timeout_blocktime = interval;
1302} 2863}
1303 2864
1304static void noinline 2865void
2866ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
2867{
2868 userdata = data;
2869}
2870
2871void *
2872ev_userdata (EV_P) EV_NOEXCEPT
2873{
2874 return userdata;
2875}
2876
2877void
2878ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
2879{
2880 invoke_cb = invoke_pending_cb;
2881}
2882
2883void
2884ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
2885{
2886 release_cb = release;
2887 acquire_cb = acquire;
2888}
2889#endif
2890
2891/* initialise a loop structure, must be zero-initialised */
2892noinline ecb_cold
2893static void
1305loop_init (EV_P_ unsigned int flags) 2894loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
1306{ 2895{
1307 if (!backend) 2896 if (!backend)
1308 { 2897 {
2898 origflags = flags;
2899
2900#if EV_USE_REALTIME
2901 if (!have_realtime)
2902 {
2903 struct timespec ts;
2904
2905 if (!clock_gettime (CLOCK_REALTIME, &ts))
2906 have_realtime = 1;
2907 }
2908#endif
2909
1309#if EV_USE_MONOTONIC 2910#if EV_USE_MONOTONIC
2911 if (!have_monotonic)
1310 { 2912 {
1311 struct timespec ts; 2913 struct timespec ts;
2914
1312 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2915 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1313 have_monotonic = 1; 2916 have_monotonic = 1;
1314 } 2917 }
1315#endif
1316
1317 ev_rt_now = ev_time ();
1318 mn_now = get_clock ();
1319 now_floor = mn_now;
1320 rtmn_diff = ev_rt_now - mn_now;
1321
1322 io_blocktime = 0.;
1323 timeout_blocktime = 0.;
1324 backend = 0;
1325 backend_fd = -1;
1326 gotasync = 0;
1327#if EV_USE_INOTIFY
1328 fs_fd = -2;
1329#endif 2918#endif
1330 2919
1331 /* pid check not overridable via env */ 2920 /* pid check not overridable via env */
1332#ifndef _WIN32 2921#ifndef _WIN32
1333 if (flags & EVFLAG_FORKCHECK) 2922 if (flags & EVFLAG_FORKCHECK)
1337 if (!(flags & EVFLAG_NOENV) 2926 if (!(flags & EVFLAG_NOENV)
1338 && !enable_secure () 2927 && !enable_secure ()
1339 && getenv ("LIBEV_FLAGS")) 2928 && getenv ("LIBEV_FLAGS"))
1340 flags = atoi (getenv ("LIBEV_FLAGS")); 2929 flags = atoi (getenv ("LIBEV_FLAGS"));
1341 2930
1342 if (!(flags & 0x0000ffffU)) 2931 ev_rt_now = ev_time ();
2932 mn_now = get_clock ();
2933 now_floor = mn_now;
2934 rtmn_diff = ev_rt_now - mn_now;
2935#if EV_FEATURE_API
2936 invoke_cb = ev_invoke_pending;
2937#endif
2938
2939 io_blocktime = 0.;
2940 timeout_blocktime = 0.;
2941 backend = 0;
2942 backend_fd = -1;
2943 sig_pending = 0;
2944#if EV_ASYNC_ENABLE
2945 async_pending = 0;
2946#endif
2947 pipe_write_skipped = 0;
2948 pipe_write_wanted = 0;
2949 evpipe [0] = -1;
2950 evpipe [1] = -1;
2951#if EV_USE_INOTIFY
2952 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2953#endif
2954#if EV_USE_SIGNALFD
2955 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2956#endif
2957
2958 if (!(flags & EVBACKEND_MASK))
1343 flags |= ev_recommended_backends (); 2959 flags |= ev_recommended_backends ();
1344 2960
2961#if EV_USE_IOCP
2962 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2963#endif
1345#if EV_USE_PORT 2964#if EV_USE_PORT
1346 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2965 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1347#endif 2966#endif
1348#if EV_USE_KQUEUE 2967#if EV_USE_KQUEUE
1349 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2968 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
2969#endif
2970#if EV_USE_LINUXAIO
2971 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
1350#endif 2972#endif
1351#if EV_USE_EPOLL 2973#if EV_USE_EPOLL
1352 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags); 2974 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1353#endif 2975#endif
1354#if EV_USE_POLL 2976#if EV_USE_POLL
1355 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags); 2977 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1356#endif 2978#endif
1357#if EV_USE_SELECT 2979#if EV_USE_SELECT
1358 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2980 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
1359#endif 2981#endif
1360 2982
2983 ev_prepare_init (&pending_w, pendingcb);
2984
2985#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1361 ev_init (&pipeev, pipecb); 2986 ev_init (&pipe_w, pipecb);
1362 ev_set_priority (&pipeev, EV_MAXPRI); 2987 ev_set_priority (&pipe_w, EV_MAXPRI);
2988#endif
1363 } 2989 }
1364} 2990}
1365 2991
1366static void noinline 2992/* free up a loop structure */
2993ecb_cold
2994void
1367loop_destroy (EV_P) 2995ev_loop_destroy (EV_P)
1368{ 2996{
1369 int i; 2997 int i;
1370 2998
2999#if EV_MULTIPLICITY
3000 /* mimic free (0) */
3001 if (!EV_A)
3002 return;
3003#endif
3004
3005#if EV_CLEANUP_ENABLE
3006 /* queue cleanup watchers (and execute them) */
3007 if (expect_false (cleanupcnt))
3008 {
3009 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3010 EV_INVOKE_PENDING;
3011 }
3012#endif
3013
3014#if EV_CHILD_ENABLE
3015 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3016 {
3017 ev_ref (EV_A); /* child watcher */
3018 ev_signal_stop (EV_A_ &childev);
3019 }
3020#endif
3021
1371 if (ev_is_active (&pipeev)) 3022 if (ev_is_active (&pipe_w))
1372 { 3023 {
1373 ev_ref (EV_A); /* signal watcher */ 3024 /*ev_ref (EV_A);*/
1374 ev_io_stop (EV_A_ &pipeev); 3025 /*ev_io_stop (EV_A_ &pipe_w);*/
1375 3026
3027 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3028 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3029 }
3030
1376#if EV_USE_EVENTFD 3031#if EV_USE_SIGNALFD
1377 if (evfd >= 0) 3032 if (ev_is_active (&sigfd_w))
1378 close (evfd); 3033 close (sigfd);
1379#endif 3034#endif
1380
1381 if (evpipe [0] >= 0)
1382 {
1383 close (evpipe [0]);
1384 close (evpipe [1]);
1385 }
1386 }
1387 3035
1388#if EV_USE_INOTIFY 3036#if EV_USE_INOTIFY
1389 if (fs_fd >= 0) 3037 if (fs_fd >= 0)
1390 close (fs_fd); 3038 close (fs_fd);
1391#endif 3039#endif
1392 3040
1393 if (backend_fd >= 0) 3041 if (backend_fd >= 0)
1394 close (backend_fd); 3042 close (backend_fd);
1395 3043
3044#if EV_USE_IOCP
3045 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3046#endif
1396#if EV_USE_PORT 3047#if EV_USE_PORT
1397 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 3048 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1398#endif 3049#endif
1399#if EV_USE_KQUEUE 3050#if EV_USE_KQUEUE
1400 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 3051 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3052#endif
3053#if EV_USE_LINUXAIO
3054 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
1401#endif 3055#endif
1402#if EV_USE_EPOLL 3056#if EV_USE_EPOLL
1403 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A); 3057 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1404#endif 3058#endif
1405#if EV_USE_POLL 3059#if EV_USE_POLL
1406 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A); 3060 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1407#endif 3061#endif
1408#if EV_USE_SELECT 3062#if EV_USE_SELECT
1409 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 3063 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
1410#endif 3064#endif
1411 3065
1412 for (i = NUMPRI; i--; ) 3066 for (i = NUMPRI; i--; )
1413 { 3067 {
1414 array_free (pending, [i]); 3068 array_free (pending, [i]);
1415#if EV_IDLE_ENABLE 3069#if EV_IDLE_ENABLE
1416 array_free (idle, [i]); 3070 array_free (idle, [i]);
1417#endif 3071#endif
1418 } 3072 }
1419 3073
1420 ev_free (anfds); anfdmax = 0; 3074 ev_free (anfds); anfds = 0; anfdmax = 0;
1421 3075
1422 /* have to use the microsoft-never-gets-it-right macro */ 3076 /* have to use the microsoft-never-gets-it-right macro */
3077 array_free (rfeed, EMPTY);
1423 array_free (fdchange, EMPTY); 3078 array_free (fdchange, EMPTY);
1424 array_free (timer, EMPTY); 3079 array_free (timer, EMPTY);
1425#if EV_PERIODIC_ENABLE 3080#if EV_PERIODIC_ENABLE
1426 array_free (periodic, EMPTY); 3081 array_free (periodic, EMPTY);
1427#endif 3082#endif
1428#if EV_FORK_ENABLE 3083#if EV_FORK_ENABLE
1429 array_free (fork, EMPTY); 3084 array_free (fork, EMPTY);
1430#endif 3085#endif
3086#if EV_CLEANUP_ENABLE
3087 array_free (cleanup, EMPTY);
3088#endif
1431 array_free (prepare, EMPTY); 3089 array_free (prepare, EMPTY);
1432 array_free (check, EMPTY); 3090 array_free (check, EMPTY);
1433#if EV_ASYNC_ENABLE 3091#if EV_ASYNC_ENABLE
1434 array_free (async, EMPTY); 3092 array_free (async, EMPTY);
1435#endif 3093#endif
1436 3094
1437 backend = 0; 3095 backend = 0;
3096
3097#if EV_MULTIPLICITY
3098 if (ev_is_default_loop (EV_A))
3099#endif
3100 ev_default_loop_ptr = 0;
3101#if EV_MULTIPLICITY
3102 else
3103 ev_free (EV_A);
3104#endif
1438} 3105}
1439 3106
1440#if EV_USE_INOTIFY 3107#if EV_USE_INOTIFY
1441void inline_size infy_fork (EV_P); 3108inline_size void infy_fork (EV_P);
1442#endif 3109#endif
1443 3110
1444void inline_size 3111inline_size void
1445loop_fork (EV_P) 3112loop_fork (EV_P)
1446{ 3113{
1447#if EV_USE_PORT 3114#if EV_USE_PORT
1448 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 3115 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1449#endif 3116#endif
1450#if EV_USE_KQUEUE 3117#if EV_USE_KQUEUE
1451 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 3118 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3119#endif
3120#if EV_USE_LINUXAIO
3121 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
1452#endif 3122#endif
1453#if EV_USE_EPOLL 3123#if EV_USE_EPOLL
1454 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 3124 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1455#endif 3125#endif
1456#if EV_USE_INOTIFY 3126#if EV_USE_INOTIFY
1457 infy_fork (EV_A); 3127 infy_fork (EV_A);
1458#endif 3128#endif
1459 3129
1460 if (ev_is_active (&pipeev)) 3130#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3131 if (ev_is_active (&pipe_w) && postfork != 2)
1461 { 3132 {
1462 /* this "locks" the handlers against writing to the pipe */ 3133 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1463 /* while we modify the fd vars */
1464 gotsig = 1;
1465#if EV_ASYNC_ENABLE
1466 gotasync = 1;
1467#endif
1468 3134
1469 ev_ref (EV_A); 3135 ev_ref (EV_A);
1470 ev_io_stop (EV_A_ &pipeev); 3136 ev_io_stop (EV_A_ &pipe_w);
1471
1472#if EV_USE_EVENTFD
1473 if (evfd >= 0)
1474 close (evfd);
1475#endif
1476 3137
1477 if (evpipe [0] >= 0) 3138 if (evpipe [0] >= 0)
1478 { 3139 EV_WIN32_CLOSE_FD (evpipe [0]);
1479 close (evpipe [0]);
1480 close (evpipe [1]);
1481 }
1482 3140
1483 evpipe_init (EV_A); 3141 evpipe_init (EV_A);
1484 /* now iterate over everything, in case we missed something */ 3142 /* iterate over everything, in case we missed something before */
1485 pipecb (EV_A_ &pipeev, EV_READ); 3143 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1486 } 3144 }
3145#endif
1487 3146
1488 postfork = 0; 3147 postfork = 0;
1489} 3148}
1490 3149
1491#if EV_MULTIPLICITY 3150#if EV_MULTIPLICITY
1492 3151
3152ecb_cold
1493struct ev_loop * 3153struct ev_loop *
1494ev_loop_new (unsigned int flags) 3154ev_loop_new (unsigned int flags) EV_NOEXCEPT
1495{ 3155{
1496 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 3156 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1497 3157
1498 memset (loop, 0, sizeof (struct ev_loop)); 3158 memset (EV_A, 0, sizeof (struct ev_loop));
1499
1500 loop_init (EV_A_ flags); 3159 loop_init (EV_A_ flags);
1501 3160
1502 if (ev_backend (EV_A)) 3161 if (ev_backend (EV_A))
1503 return loop; 3162 return EV_A;
1504 3163
3164 ev_free (EV_A);
1505 return 0; 3165 return 0;
1506} 3166}
1507 3167
1508void 3168#endif /* multiplicity */
1509ev_loop_destroy (EV_P)
1510{
1511 loop_destroy (EV_A);
1512 ev_free (loop);
1513}
1514
1515void
1516ev_loop_fork (EV_P)
1517{
1518 postfork = 1; /* must be in line with ev_default_fork */
1519}
1520 3169
1521#if EV_VERIFY 3170#if EV_VERIFY
1522static void noinline 3171noinline ecb_cold
3172static void
1523verify_watcher (EV_P_ W w) 3173verify_watcher (EV_P_ W w)
1524{ 3174{
1525 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 3175 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1526 3176
1527 if (w->pending) 3177 if (w->pending)
1528 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 3178 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1529} 3179}
1530 3180
1531static void noinline 3181noinline ecb_cold
3182static void
1532verify_heap (EV_P_ ANHE *heap, int N) 3183verify_heap (EV_P_ ANHE *heap, int N)
1533{ 3184{
1534 int i; 3185 int i;
1535 3186
1536 for (i = HEAP0; i < N + HEAP0; ++i) 3187 for (i = HEAP0; i < N + HEAP0; ++i)
1537 { 3188 {
1538 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 3189 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1539 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 3190 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1540 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 3191 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1541 3192
1542 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 3193 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1543 } 3194 }
1544} 3195}
1545 3196
1546static void noinline 3197noinline ecb_cold
3198static void
1547array_verify (EV_P_ W *ws, int cnt) 3199array_verify (EV_P_ W *ws, int cnt)
1548{ 3200{
1549 while (cnt--) 3201 while (cnt--)
1550 { 3202 {
1551 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 3203 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1552 verify_watcher (EV_A_ ws [cnt]); 3204 verify_watcher (EV_A_ ws [cnt]);
1553 } 3205 }
1554} 3206}
1555#endif 3207#endif
1556 3208
1557void 3209#if EV_FEATURE_API
1558ev_loop_verify (EV_P) 3210void ecb_cold
3211ev_verify (EV_P) EV_NOEXCEPT
1559{ 3212{
1560#if EV_VERIFY 3213#if EV_VERIFY
1561 int i; 3214 int i;
1562 WL w; 3215 WL w, w2;
1563 3216
1564 assert (activecnt >= -1); 3217 assert (activecnt >= -1);
1565 3218
1566 assert (fdchangemax >= fdchangecnt); 3219 assert (fdchangemax >= fdchangecnt);
1567 for (i = 0; i < fdchangecnt; ++i) 3220 for (i = 0; i < fdchangecnt; ++i)
1568 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 3221 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1569 3222
1570 assert (anfdmax >= 0); 3223 assert (anfdmax >= 0);
1571 for (i = 0; i < anfdmax; ++i) 3224 for (i = 0; i < anfdmax; ++i)
3225 {
3226 int j = 0;
3227
1572 for (w = anfds [i].head; w; w = w->next) 3228 for (w = w2 = anfds [i].head; w; w = w->next)
1573 { 3229 {
1574 verify_watcher (EV_A_ (W)w); 3230 verify_watcher (EV_A_ (W)w);
3231
3232 if (j++ & 1)
3233 {
3234 assert (("libev: io watcher list contains a loop", w != w2));
3235 w2 = w2->next;
3236 }
3237
1575 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 3238 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1576 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 3239 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1577 } 3240 }
3241 }
1578 3242
1579 assert (timermax >= timercnt); 3243 assert (timermax >= timercnt);
1580 verify_heap (EV_A_ timers, timercnt); 3244 verify_heap (EV_A_ timers, timercnt);
1581 3245
1582#if EV_PERIODIC_ENABLE 3246#if EV_PERIODIC_ENABLE
1597#if EV_FORK_ENABLE 3261#if EV_FORK_ENABLE
1598 assert (forkmax >= forkcnt); 3262 assert (forkmax >= forkcnt);
1599 array_verify (EV_A_ (W *)forks, forkcnt); 3263 array_verify (EV_A_ (W *)forks, forkcnt);
1600#endif 3264#endif
1601 3265
3266#if EV_CLEANUP_ENABLE
3267 assert (cleanupmax >= cleanupcnt);
3268 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3269#endif
3270
1602#if EV_ASYNC_ENABLE 3271#if EV_ASYNC_ENABLE
1603 assert (asyncmax >= asynccnt); 3272 assert (asyncmax >= asynccnt);
1604 array_verify (EV_A_ (W *)asyncs, asynccnt); 3273 array_verify (EV_A_ (W *)asyncs, asynccnt);
1605#endif 3274#endif
1606 3275
3276#if EV_PREPARE_ENABLE
1607 assert (preparemax >= preparecnt); 3277 assert (preparemax >= preparecnt);
1608 array_verify (EV_A_ (W *)prepares, preparecnt); 3278 array_verify (EV_A_ (W *)prepares, preparecnt);
3279#endif
1609 3280
3281#if EV_CHECK_ENABLE
1610 assert (checkmax >= checkcnt); 3282 assert (checkmax >= checkcnt);
1611 array_verify (EV_A_ (W *)checks, checkcnt); 3283 array_verify (EV_A_ (W *)checks, checkcnt);
3284#endif
1612 3285
1613# if 0 3286# if 0
3287#if EV_CHILD_ENABLE
1614 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 3288 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1615 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 3289 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3290#endif
1616# endif 3291# endif
1617#endif 3292#endif
1618} 3293}
1619 3294#endif
1620#endif /* multiplicity */
1621 3295
1622#if EV_MULTIPLICITY 3296#if EV_MULTIPLICITY
3297ecb_cold
1623struct ev_loop * 3298struct ev_loop *
1624ev_default_loop_init (unsigned int flags)
1625#else 3299#else
1626int 3300int
3301#endif
1627ev_default_loop (unsigned int flags) 3302ev_default_loop (unsigned int flags) EV_NOEXCEPT
1628#endif
1629{ 3303{
1630 if (!ev_default_loop_ptr) 3304 if (!ev_default_loop_ptr)
1631 { 3305 {
1632#if EV_MULTIPLICITY 3306#if EV_MULTIPLICITY
1633 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3307 EV_P = ev_default_loop_ptr = &default_loop_struct;
1634#else 3308#else
1635 ev_default_loop_ptr = 1; 3309 ev_default_loop_ptr = 1;
1636#endif 3310#endif
1637 3311
1638 loop_init (EV_A_ flags); 3312 loop_init (EV_A_ flags);
1639 3313
1640 if (ev_backend (EV_A)) 3314 if (ev_backend (EV_A))
1641 { 3315 {
1642#ifndef _WIN32 3316#if EV_CHILD_ENABLE
1643 ev_signal_init (&childev, childcb, SIGCHLD); 3317 ev_signal_init (&childev, childcb, SIGCHLD);
1644 ev_set_priority (&childev, EV_MAXPRI); 3318 ev_set_priority (&childev, EV_MAXPRI);
1645 ev_signal_start (EV_A_ &childev); 3319 ev_signal_start (EV_A_ &childev);
1646 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3320 ev_unref (EV_A); /* child watcher should not keep loop alive */
1647#endif 3321#endif
1652 3326
1653 return ev_default_loop_ptr; 3327 return ev_default_loop_ptr;
1654} 3328}
1655 3329
1656void 3330void
1657ev_default_destroy (void) 3331ev_loop_fork (EV_P) EV_NOEXCEPT
1658{ 3332{
1659#if EV_MULTIPLICITY 3333 postfork = 1;
1660 struct ev_loop *loop = ev_default_loop_ptr;
1661#endif
1662
1663#ifndef _WIN32
1664 ev_ref (EV_A); /* child watcher */
1665 ev_signal_stop (EV_A_ &childev);
1666#endif
1667
1668 loop_destroy (EV_A);
1669}
1670
1671void
1672ev_default_fork (void)
1673{
1674#if EV_MULTIPLICITY
1675 struct ev_loop *loop = ev_default_loop_ptr;
1676#endif
1677
1678 if (backend)
1679 postfork = 1; /* must be in line with ev_loop_fork */
1680} 3334}
1681 3335
1682/*****************************************************************************/ 3336/*****************************************************************************/
1683 3337
1684void 3338void
1685ev_invoke (EV_P_ void *w, int revents) 3339ev_invoke (EV_P_ void *w, int revents)
1686{ 3340{
1687 EV_CB_INVOKE ((W)w, revents); 3341 EV_CB_INVOKE ((W)w, revents);
1688} 3342}
1689 3343
1690void inline_speed 3344unsigned int
1691call_pending (EV_P) 3345ev_pending_count (EV_P) EV_NOEXCEPT
1692{ 3346{
1693 int pri; 3347 int pri;
3348 unsigned int count = 0;
1694 3349
1695 for (pri = NUMPRI; pri--; ) 3350 for (pri = NUMPRI; pri--; )
3351 count += pendingcnt [pri];
3352
3353 return count;
3354}
3355
3356noinline
3357void
3358ev_invoke_pending (EV_P)
3359{
3360 pendingpri = NUMPRI;
3361
3362 do
3363 {
3364 --pendingpri;
3365
3366 /* pendingpri possibly gets modified in the inner loop */
1696 while (pendingcnt [pri]) 3367 while (pendingcnt [pendingpri])
1697 {
1698 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1699
1700 if (expect_true (p->w))
1701 { 3368 {
1702 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 3369 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1703 3370
1704 p->w->pending = 0; 3371 p->w->pending = 0;
1705 EV_CB_INVOKE (p->w, p->events); 3372 EV_CB_INVOKE (p->w, p->events);
1706 EV_FREQUENT_CHECK; 3373 EV_FREQUENT_CHECK;
1707 } 3374 }
1708 } 3375 }
3376 while (pendingpri);
1709} 3377}
1710 3378
1711#if EV_IDLE_ENABLE 3379#if EV_IDLE_ENABLE
1712void inline_size 3380/* make idle watchers pending. this handles the "call-idle */
3381/* only when higher priorities are idle" logic */
3382inline_size void
1713idle_reify (EV_P) 3383idle_reify (EV_P)
1714{ 3384{
1715 if (expect_false (idleall)) 3385 if (expect_false (idleall))
1716 { 3386 {
1717 int pri; 3387 int pri;
1729 } 3399 }
1730 } 3400 }
1731} 3401}
1732#endif 3402#endif
1733 3403
1734void inline_size 3404/* make timers pending */
3405inline_size void
1735timers_reify (EV_P) 3406timers_reify (EV_P)
1736{ 3407{
1737 EV_FREQUENT_CHECK; 3408 EV_FREQUENT_CHECK;
1738 3409
1739 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 3410 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1740 { 3411 {
1741 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 3412 do
1742
1743 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1744
1745 /* first reschedule or stop timer */
1746 if (w->repeat)
1747 { 3413 {
3414 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3415
3416 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3417
3418 /* first reschedule or stop timer */
3419 if (w->repeat)
3420 {
1748 ev_at (w) += w->repeat; 3421 ev_at (w) += w->repeat;
1749 if (ev_at (w) < mn_now) 3422 if (ev_at (w) < mn_now)
1750 ev_at (w) = mn_now; 3423 ev_at (w) = mn_now;
1751 3424
1752 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3425 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1753 3426
1754 ANHE_at_cache (timers [HEAP0]); 3427 ANHE_at_cache (timers [HEAP0]);
1755 downheap (timers, timercnt, HEAP0); 3428 downheap (timers, timercnt, HEAP0);
3429 }
3430 else
3431 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3432
3433 EV_FREQUENT_CHECK;
3434 feed_reverse (EV_A_ (W)w);
1756 } 3435 }
1757 else 3436 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1758 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1759 3437
1760 EV_FREQUENT_CHECK; 3438 feed_reverse_done (EV_A_ EV_TIMER);
1761 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1762 } 3439 }
1763} 3440}
1764 3441
1765#if EV_PERIODIC_ENABLE 3442#if EV_PERIODIC_ENABLE
1766void inline_size 3443
3444noinline
3445static void
3446periodic_recalc (EV_P_ ev_periodic *w)
3447{
3448 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3449 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3450
3451 /* the above almost always errs on the low side */
3452 while (at <= ev_rt_now)
3453 {
3454 ev_tstamp nat = at + w->interval;
3455
3456 /* when resolution fails us, we use ev_rt_now */
3457 if (expect_false (nat == at))
3458 {
3459 at = ev_rt_now;
3460 break;
3461 }
3462
3463 at = nat;
3464 }
3465
3466 ev_at (w) = at;
3467}
3468
3469/* make periodics pending */
3470inline_size void
1767periodics_reify (EV_P) 3471periodics_reify (EV_P)
1768{ 3472{
1769 EV_FREQUENT_CHECK; 3473 EV_FREQUENT_CHECK;
1770 3474
1771 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 3475 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1772 { 3476 {
1773 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 3477 do
1774
1775 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1776
1777 /* first reschedule or stop timer */
1778 if (w->reschedule_cb)
1779 { 3478 {
3479 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3480
3481 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3482
3483 /* first reschedule or stop timer */
3484 if (w->reschedule_cb)
3485 {
1780 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3486 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1781 3487
1782 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 3488 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1783 3489
1784 ANHE_at_cache (periodics [HEAP0]); 3490 ANHE_at_cache (periodics [HEAP0]);
1785 downheap (periodics, periodiccnt, HEAP0); 3491 downheap (periodics, periodiccnt, HEAP0);
3492 }
3493 else if (w->interval)
3494 {
3495 periodic_recalc (EV_A_ w);
3496 ANHE_at_cache (periodics [HEAP0]);
3497 downheap (periodics, periodiccnt, HEAP0);
3498 }
3499 else
3500 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3501
3502 EV_FREQUENT_CHECK;
3503 feed_reverse (EV_A_ (W)w);
1786 } 3504 }
1787 else if (w->interval) 3505 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1788 {
1789 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1790 /* if next trigger time is not sufficiently in the future, put it there */
1791 /* this might happen because of floating point inexactness */
1792 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1793 {
1794 ev_at (w) += w->interval;
1795 3506
1796 /* if interval is unreasonably low we might still have a time in the past */
1797 /* so correct this. this will make the periodic very inexact, but the user */
1798 /* has effectively asked to get triggered more often than possible */
1799 if (ev_at (w) < ev_rt_now)
1800 ev_at (w) = ev_rt_now;
1801 }
1802
1803 ANHE_at_cache (periodics [HEAP0]);
1804 downheap (periodics, periodiccnt, HEAP0);
1805 }
1806 else
1807 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1808
1809 EV_FREQUENT_CHECK;
1810 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3507 feed_reverse_done (EV_A_ EV_PERIODIC);
1811 } 3508 }
1812} 3509}
1813 3510
1814static void noinline 3511/* simply recalculate all periodics */
3512/* TODO: maybe ensure that at least one event happens when jumping forward? */
3513noinline ecb_cold
3514static void
1815periodics_reschedule (EV_P) 3515periodics_reschedule (EV_P)
1816{ 3516{
1817 int i; 3517 int i;
1818 3518
1819 /* adjust periodics after time jump */ 3519 /* adjust periodics after time jump */
1822 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 3522 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1823 3523
1824 if (w->reschedule_cb) 3524 if (w->reschedule_cb)
1825 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3525 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1826 else if (w->interval) 3526 else if (w->interval)
1827 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3527 periodic_recalc (EV_A_ w);
1828 3528
1829 ANHE_at_cache (periodics [i]); 3529 ANHE_at_cache (periodics [i]);
1830 } 3530 }
1831 3531
1832 reheap (periodics, periodiccnt); 3532 reheap (periodics, periodiccnt);
1833} 3533}
1834#endif 3534#endif
1835 3535
1836void inline_speed 3536/* adjust all timers by a given offset */
3537noinline ecb_cold
3538static void
3539timers_reschedule (EV_P_ ev_tstamp adjust)
3540{
3541 int i;
3542
3543 for (i = 0; i < timercnt; ++i)
3544 {
3545 ANHE *he = timers + i + HEAP0;
3546 ANHE_w (*he)->at += adjust;
3547 ANHE_at_cache (*he);
3548 }
3549}
3550
3551/* fetch new monotonic and realtime times from the kernel */
3552/* also detect if there was a timejump, and act accordingly */
3553inline_speed void
1837time_update (EV_P_ ev_tstamp max_block) 3554time_update (EV_P_ ev_tstamp max_block)
1838{ 3555{
1839 int i;
1840
1841#if EV_USE_MONOTONIC 3556#if EV_USE_MONOTONIC
1842 if (expect_true (have_monotonic)) 3557 if (expect_true (have_monotonic))
1843 { 3558 {
3559 int i;
1844 ev_tstamp odiff = rtmn_diff; 3560 ev_tstamp odiff = rtmn_diff;
1845 3561
1846 mn_now = get_clock (); 3562 mn_now = get_clock ();
1847 3563
1848 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3564 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1864 * doesn't hurt either as we only do this on time-jumps or 3580 * doesn't hurt either as we only do this on time-jumps or
1865 * in the unlikely event of having been preempted here. 3581 * in the unlikely event of having been preempted here.
1866 */ 3582 */
1867 for (i = 4; --i; ) 3583 for (i = 4; --i; )
1868 { 3584 {
3585 ev_tstamp diff;
1869 rtmn_diff = ev_rt_now - mn_now; 3586 rtmn_diff = ev_rt_now - mn_now;
1870 3587
3588 diff = odiff - rtmn_diff;
3589
1871 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3590 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1872 return; /* all is well */ 3591 return; /* all is well */
1873 3592
1874 ev_rt_now = ev_time (); 3593 ev_rt_now = ev_time ();
1875 mn_now = get_clock (); 3594 mn_now = get_clock ();
1876 now_floor = mn_now; 3595 now_floor = mn_now;
1877 } 3596 }
1878 3597
3598 /* no timer adjustment, as the monotonic clock doesn't jump */
3599 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1879# if EV_PERIODIC_ENABLE 3600# if EV_PERIODIC_ENABLE
1880 periodics_reschedule (EV_A); 3601 periodics_reschedule (EV_A);
1881# endif 3602# endif
1882 /* no timer adjustment, as the monotonic clock doesn't jump */
1883 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1884 } 3603 }
1885 else 3604 else
1886#endif 3605#endif
1887 { 3606 {
1888 ev_rt_now = ev_time (); 3607 ev_rt_now = ev_time ();
1889 3608
1890 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3609 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1891 { 3610 {
3611 /* adjust timers. this is easy, as the offset is the same for all of them */
3612 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1892#if EV_PERIODIC_ENABLE 3613#if EV_PERIODIC_ENABLE
1893 periodics_reschedule (EV_A); 3614 periodics_reschedule (EV_A);
1894#endif 3615#endif
1895 /* adjust timers. this is easy, as the offset is the same for all of them */
1896 for (i = 0; i < timercnt; ++i)
1897 {
1898 ANHE *he = timers + i + HEAP0;
1899 ANHE_w (*he)->at += ev_rt_now - mn_now;
1900 ANHE_at_cache (*he);
1901 }
1902 } 3616 }
1903 3617
1904 mn_now = ev_rt_now; 3618 mn_now = ev_rt_now;
1905 } 3619 }
1906} 3620}
1907 3621
1908void 3622int
1909ev_ref (EV_P)
1910{
1911 ++activecnt;
1912}
1913
1914void
1915ev_unref (EV_P)
1916{
1917 --activecnt;
1918}
1919
1920void
1921ev_now_update (EV_P)
1922{
1923 time_update (EV_A_ 1e100);
1924}
1925
1926static int loop_done;
1927
1928void
1929ev_loop (EV_P_ int flags) 3623ev_run (EV_P_ int flags)
1930{ 3624{
3625#if EV_FEATURE_API
3626 ++loop_depth;
3627#endif
3628
3629 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3630
1931 loop_done = EVUNLOOP_CANCEL; 3631 loop_done = EVBREAK_CANCEL;
1932 3632
1933 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3633 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1934 3634
1935 do 3635 do
1936 { 3636 {
1937#if EV_VERIFY >= 2 3637#if EV_VERIFY >= 2
1938 ev_loop_verify (EV_A); 3638 ev_verify (EV_A);
1939#endif 3639#endif
1940 3640
1941#ifndef _WIN32 3641#ifndef _WIN32
1942 if (expect_false (curpid)) /* penalise the forking check even more */ 3642 if (expect_false (curpid)) /* penalise the forking check even more */
1943 if (expect_false (getpid () != curpid)) 3643 if (expect_false (getpid () != curpid))
1951 /* we might have forked, so queue fork handlers */ 3651 /* we might have forked, so queue fork handlers */
1952 if (expect_false (postfork)) 3652 if (expect_false (postfork))
1953 if (forkcnt) 3653 if (forkcnt)
1954 { 3654 {
1955 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3655 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1956 call_pending (EV_A); 3656 EV_INVOKE_PENDING;
1957 } 3657 }
1958#endif 3658#endif
1959 3659
3660#if EV_PREPARE_ENABLE
1960 /* queue prepare watchers (and execute them) */ 3661 /* queue prepare watchers (and execute them) */
1961 if (expect_false (preparecnt)) 3662 if (expect_false (preparecnt))
1962 { 3663 {
1963 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3664 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1964 call_pending (EV_A); 3665 EV_INVOKE_PENDING;
1965 } 3666 }
3667#endif
1966 3668
1967 if (expect_false (!activecnt)) 3669 if (expect_false (loop_done))
1968 break; 3670 break;
1969 3671
1970 /* we might have forked, so reify kernel state if necessary */ 3672 /* we might have forked, so reify kernel state if necessary */
1971 if (expect_false (postfork)) 3673 if (expect_false (postfork))
1972 loop_fork (EV_A); 3674 loop_fork (EV_A);
1977 /* calculate blocking time */ 3679 /* calculate blocking time */
1978 { 3680 {
1979 ev_tstamp waittime = 0.; 3681 ev_tstamp waittime = 0.;
1980 ev_tstamp sleeptime = 0.; 3682 ev_tstamp sleeptime = 0.;
1981 3683
3684 /* remember old timestamp for io_blocktime calculation */
3685 ev_tstamp prev_mn_now = mn_now;
3686
3687 /* update time to cancel out callback processing overhead */
3688 time_update (EV_A_ 1e100);
3689
3690 /* from now on, we want a pipe-wake-up */
3691 pipe_write_wanted = 1;
3692
3693 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3694
1982 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3695 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1983 { 3696 {
1984 /* update time to cancel out callback processing overhead */
1985 time_update (EV_A_ 1e100);
1986
1987 waittime = MAX_BLOCKTIME; 3697 waittime = MAX_BLOCKTIME;
1988 3698
1989 if (timercnt) 3699 if (timercnt)
1990 { 3700 {
1991 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3701 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1992 if (waittime > to) waittime = to; 3702 if (waittime > to) waittime = to;
1993 } 3703 }
1994 3704
1995#if EV_PERIODIC_ENABLE 3705#if EV_PERIODIC_ENABLE
1996 if (periodiccnt) 3706 if (periodiccnt)
1997 { 3707 {
1998 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3708 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1999 if (waittime > to) waittime = to; 3709 if (waittime > to) waittime = to;
2000 } 3710 }
2001#endif 3711#endif
2002 3712
3713 /* don't let timeouts decrease the waittime below timeout_blocktime */
2003 if (expect_false (waittime < timeout_blocktime)) 3714 if (expect_false (waittime < timeout_blocktime))
2004 waittime = timeout_blocktime; 3715 waittime = timeout_blocktime;
2005 3716
2006 sleeptime = waittime - backend_fudge; 3717 /* at this point, we NEED to wait, so we have to ensure */
3718 /* to pass a minimum nonzero value to the backend */
3719 if (expect_false (waittime < backend_mintime))
3720 waittime = backend_mintime;
2007 3721
3722 /* extra check because io_blocktime is commonly 0 */
2008 if (expect_true (sleeptime > io_blocktime)) 3723 if (expect_false (io_blocktime))
2009 sleeptime = io_blocktime;
2010
2011 if (sleeptime)
2012 { 3724 {
3725 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3726
3727 if (sleeptime > waittime - backend_mintime)
3728 sleeptime = waittime - backend_mintime;
3729
3730 if (expect_true (sleeptime > 0.))
3731 {
2013 ev_sleep (sleeptime); 3732 ev_sleep (sleeptime);
2014 waittime -= sleeptime; 3733 waittime -= sleeptime;
3734 }
2015 } 3735 }
2016 } 3736 }
2017 3737
3738#if EV_FEATURE_API
2018 ++loop_count; 3739 ++loop_count;
3740#endif
3741 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2019 backend_poll (EV_A_ waittime); 3742 backend_poll (EV_A_ waittime);
3743 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3744
3745 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3746
3747 ECB_MEMORY_FENCE_ACQUIRE;
3748 if (pipe_write_skipped)
3749 {
3750 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3751 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3752 }
3753
2020 3754
2021 /* update ev_rt_now, do magic */ 3755 /* update ev_rt_now, do magic */
2022 time_update (EV_A_ waittime + sleeptime); 3756 time_update (EV_A_ waittime + sleeptime);
2023 } 3757 }
2024 3758
2031#if EV_IDLE_ENABLE 3765#if EV_IDLE_ENABLE
2032 /* queue idle watchers unless other events are pending */ 3766 /* queue idle watchers unless other events are pending */
2033 idle_reify (EV_A); 3767 idle_reify (EV_A);
2034#endif 3768#endif
2035 3769
3770#if EV_CHECK_ENABLE
2036 /* queue check watchers, to be executed first */ 3771 /* queue check watchers, to be executed first */
2037 if (expect_false (checkcnt)) 3772 if (expect_false (checkcnt))
2038 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3773 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3774#endif
2039 3775
2040 call_pending (EV_A); 3776 EV_INVOKE_PENDING;
2041 } 3777 }
2042 while (expect_true ( 3778 while (expect_true (
2043 activecnt 3779 activecnt
2044 && !loop_done 3780 && !loop_done
2045 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3781 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2046 )); 3782 ));
2047 3783
2048 if (loop_done == EVUNLOOP_ONE) 3784 if (loop_done == EVBREAK_ONE)
2049 loop_done = EVUNLOOP_CANCEL; 3785 loop_done = EVBREAK_CANCEL;
2050}
2051 3786
3787#if EV_FEATURE_API
3788 --loop_depth;
3789#endif
3790
3791 return activecnt;
3792}
3793
2052void 3794void
2053ev_unloop (EV_P_ int how) 3795ev_break (EV_P_ int how) EV_NOEXCEPT
2054{ 3796{
2055 loop_done = how; 3797 loop_done = how;
2056} 3798}
2057 3799
3800void
3801ev_ref (EV_P) EV_NOEXCEPT
3802{
3803 ++activecnt;
3804}
3805
3806void
3807ev_unref (EV_P) EV_NOEXCEPT
3808{
3809 --activecnt;
3810}
3811
3812void
3813ev_now_update (EV_P) EV_NOEXCEPT
3814{
3815 time_update (EV_A_ 1e100);
3816}
3817
3818void
3819ev_suspend (EV_P) EV_NOEXCEPT
3820{
3821 ev_now_update (EV_A);
3822}
3823
3824void
3825ev_resume (EV_P) EV_NOEXCEPT
3826{
3827 ev_tstamp mn_prev = mn_now;
3828
3829 ev_now_update (EV_A);
3830 timers_reschedule (EV_A_ mn_now - mn_prev);
3831#if EV_PERIODIC_ENABLE
3832 /* TODO: really do this? */
3833 periodics_reschedule (EV_A);
3834#endif
3835}
3836
2058/*****************************************************************************/ 3837/*****************************************************************************/
3838/* singly-linked list management, used when the expected list length is short */
2059 3839
2060void inline_size 3840inline_size void
2061wlist_add (WL *head, WL elem) 3841wlist_add (WL *head, WL elem)
2062{ 3842{
2063 elem->next = *head; 3843 elem->next = *head;
2064 *head = elem; 3844 *head = elem;
2065} 3845}
2066 3846
2067void inline_size 3847inline_size void
2068wlist_del (WL *head, WL elem) 3848wlist_del (WL *head, WL elem)
2069{ 3849{
2070 while (*head) 3850 while (*head)
2071 { 3851 {
2072 if (*head == elem) 3852 if (expect_true (*head == elem))
2073 { 3853 {
2074 *head = elem->next; 3854 *head = elem->next;
2075 return; 3855 break;
2076 } 3856 }
2077 3857
2078 head = &(*head)->next; 3858 head = &(*head)->next;
2079 } 3859 }
2080} 3860}
2081 3861
2082void inline_speed 3862/* internal, faster, version of ev_clear_pending */
3863inline_speed void
2083clear_pending (EV_P_ W w) 3864clear_pending (EV_P_ W w)
2084{ 3865{
2085 if (w->pending) 3866 if (w->pending)
2086 { 3867 {
2087 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3868 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2088 w->pending = 0; 3869 w->pending = 0;
2089 } 3870 }
2090} 3871}
2091 3872
2092int 3873int
2093ev_clear_pending (EV_P_ void *w) 3874ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
2094{ 3875{
2095 W w_ = (W)w; 3876 W w_ = (W)w;
2096 int pending = w_->pending; 3877 int pending = w_->pending;
2097 3878
2098 if (expect_true (pending)) 3879 if (expect_true (pending))
2099 { 3880 {
2100 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3881 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3882 p->w = (W)&pending_w;
2101 w_->pending = 0; 3883 w_->pending = 0;
2102 p->w = 0;
2103 return p->events; 3884 return p->events;
2104 } 3885 }
2105 else 3886 else
2106 return 0; 3887 return 0;
2107} 3888}
2108 3889
2109void inline_size 3890inline_size void
2110pri_adjust (EV_P_ W w) 3891pri_adjust (EV_P_ W w)
2111{ 3892{
2112 int pri = w->priority; 3893 int pri = ev_priority (w);
2113 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3894 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2114 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3895 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2115 w->priority = pri; 3896 ev_set_priority (w, pri);
2116} 3897}
2117 3898
2118void inline_speed 3899inline_speed void
2119ev_start (EV_P_ W w, int active) 3900ev_start (EV_P_ W w, int active)
2120{ 3901{
2121 pri_adjust (EV_A_ w); 3902 pri_adjust (EV_A_ w);
2122 w->active = active; 3903 w->active = active;
2123 ev_ref (EV_A); 3904 ev_ref (EV_A);
2124} 3905}
2125 3906
2126void inline_size 3907inline_size void
2127ev_stop (EV_P_ W w) 3908ev_stop (EV_P_ W w)
2128{ 3909{
2129 ev_unref (EV_A); 3910 ev_unref (EV_A);
2130 w->active = 0; 3911 w->active = 0;
2131} 3912}
2132 3913
2133/*****************************************************************************/ 3914/*****************************************************************************/
2134 3915
2135void noinline 3916noinline
3917void
2136ev_io_start (EV_P_ ev_io *w) 3918ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
2137{ 3919{
2138 int fd = w->fd; 3920 int fd = w->fd;
2139 3921
2140 if (expect_false (ev_is_active (w))) 3922 if (expect_false (ev_is_active (w)))
2141 return; 3923 return;
2142 3924
2143 assert (("ev_io_start called with negative fd", fd >= 0)); 3925 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3926 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2144 3927
2145 EV_FREQUENT_CHECK; 3928 EV_FREQUENT_CHECK;
2146 3929
2147 ev_start (EV_A_ (W)w, 1); 3930 ev_start (EV_A_ (W)w, 1);
2148 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3931 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
2149 wlist_add (&anfds[fd].head, (WL)w); 3932 wlist_add (&anfds[fd].head, (WL)w);
2150 3933
3934 /* common bug, apparently */
3935 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3936
2151 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3937 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2152 w->events &= ~EV_IOFDSET; 3938 w->events &= ~EV__IOFDSET;
2153 3939
2154 EV_FREQUENT_CHECK; 3940 EV_FREQUENT_CHECK;
2155} 3941}
2156 3942
2157void noinline 3943noinline
3944void
2158ev_io_stop (EV_P_ ev_io *w) 3945ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
2159{ 3946{
2160 clear_pending (EV_A_ (W)w); 3947 clear_pending (EV_A_ (W)w);
2161 if (expect_false (!ev_is_active (w))) 3948 if (expect_false (!ev_is_active (w)))
2162 return; 3949 return;
2163 3950
2164 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3951 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2165 3952
2166 EV_FREQUENT_CHECK; 3953 EV_FREQUENT_CHECK;
2167 3954
2168 wlist_del (&anfds[w->fd].head, (WL)w); 3955 wlist_del (&anfds[w->fd].head, (WL)w);
2169 ev_stop (EV_A_ (W)w); 3956 ev_stop (EV_A_ (W)w);
2170 3957
2171 fd_change (EV_A_ w->fd, 1); 3958 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2172 3959
2173 EV_FREQUENT_CHECK; 3960 EV_FREQUENT_CHECK;
2174} 3961}
2175 3962
2176void noinline 3963noinline
3964void
2177ev_timer_start (EV_P_ ev_timer *w) 3965ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
2178{ 3966{
2179 if (expect_false (ev_is_active (w))) 3967 if (expect_false (ev_is_active (w)))
2180 return; 3968 return;
2181 3969
2182 ev_at (w) += mn_now; 3970 ev_at (w) += mn_now;
2183 3971
2184 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3972 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2185 3973
2186 EV_FREQUENT_CHECK; 3974 EV_FREQUENT_CHECK;
2187 3975
2188 ++timercnt; 3976 ++timercnt;
2189 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 3977 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2190 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 3978 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
2191 ANHE_w (timers [ev_active (w)]) = (WT)w; 3979 ANHE_w (timers [ev_active (w)]) = (WT)w;
2192 ANHE_at_cache (timers [ev_active (w)]); 3980 ANHE_at_cache (timers [ev_active (w)]);
2193 upheap (timers, ev_active (w)); 3981 upheap (timers, ev_active (w));
2194 3982
2195 EV_FREQUENT_CHECK; 3983 EV_FREQUENT_CHECK;
2196 3984
2197 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3985 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2198} 3986}
2199 3987
2200void noinline 3988noinline
3989void
2201ev_timer_stop (EV_P_ ev_timer *w) 3990ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
2202{ 3991{
2203 clear_pending (EV_A_ (W)w); 3992 clear_pending (EV_A_ (W)w);
2204 if (expect_false (!ev_is_active (w))) 3993 if (expect_false (!ev_is_active (w)))
2205 return; 3994 return;
2206 3995
2207 EV_FREQUENT_CHECK; 3996 EV_FREQUENT_CHECK;
2208 3997
2209 { 3998 {
2210 int active = ev_active (w); 3999 int active = ev_active (w);
2211 4000
2212 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 4001 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2213 4002
2214 --timercnt; 4003 --timercnt;
2215 4004
2216 if (expect_true (active < timercnt + HEAP0)) 4005 if (expect_true (active < timercnt + HEAP0))
2217 { 4006 {
2218 timers [active] = timers [timercnt + HEAP0]; 4007 timers [active] = timers [timercnt + HEAP0];
2219 adjustheap (timers, timercnt, active); 4008 adjustheap (timers, timercnt, active);
2220 } 4009 }
2221 } 4010 }
2222 4011
2223 EV_FREQUENT_CHECK;
2224
2225 ev_at (w) -= mn_now; 4012 ev_at (w) -= mn_now;
2226 4013
2227 ev_stop (EV_A_ (W)w); 4014 ev_stop (EV_A_ (W)w);
2228}
2229 4015
4016 EV_FREQUENT_CHECK;
4017}
4018
2230void noinline 4019noinline
4020void
2231ev_timer_again (EV_P_ ev_timer *w) 4021ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
2232{ 4022{
2233 EV_FREQUENT_CHECK; 4023 EV_FREQUENT_CHECK;
4024
4025 clear_pending (EV_A_ (W)w);
2234 4026
2235 if (ev_is_active (w)) 4027 if (ev_is_active (w))
2236 { 4028 {
2237 if (w->repeat) 4029 if (w->repeat)
2238 { 4030 {
2250 } 4042 }
2251 4043
2252 EV_FREQUENT_CHECK; 4044 EV_FREQUENT_CHECK;
2253} 4045}
2254 4046
4047ev_tstamp
4048ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4049{
4050 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
4051}
4052
2255#if EV_PERIODIC_ENABLE 4053#if EV_PERIODIC_ENABLE
2256void noinline 4054noinline
4055void
2257ev_periodic_start (EV_P_ ev_periodic *w) 4056ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
2258{ 4057{
2259 if (expect_false (ev_is_active (w))) 4058 if (expect_false (ev_is_active (w)))
2260 return; 4059 return;
2261 4060
2262 if (w->reschedule_cb) 4061 if (w->reschedule_cb)
2263 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 4062 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2264 else if (w->interval) 4063 else if (w->interval)
2265 { 4064 {
2266 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 4065 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2267 /* this formula differs from the one in periodic_reify because we do not always round up */ 4066 periodic_recalc (EV_A_ w);
2268 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2269 } 4067 }
2270 else 4068 else
2271 ev_at (w) = w->offset; 4069 ev_at (w) = w->offset;
2272 4070
2273 EV_FREQUENT_CHECK; 4071 EV_FREQUENT_CHECK;
2274 4072
2275 ++periodiccnt; 4073 ++periodiccnt;
2276 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1); 4074 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2277 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 4075 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
2278 ANHE_w (periodics [ev_active (w)]) = (WT)w; 4076 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2279 ANHE_at_cache (periodics [ev_active (w)]); 4077 ANHE_at_cache (periodics [ev_active (w)]);
2280 upheap (periodics, ev_active (w)); 4078 upheap (periodics, ev_active (w));
2281 4079
2282 EV_FREQUENT_CHECK; 4080 EV_FREQUENT_CHECK;
2283 4081
2284 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 4082 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2285} 4083}
2286 4084
2287void noinline 4085noinline
4086void
2288ev_periodic_stop (EV_P_ ev_periodic *w) 4087ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
2289{ 4088{
2290 clear_pending (EV_A_ (W)w); 4089 clear_pending (EV_A_ (W)w);
2291 if (expect_false (!ev_is_active (w))) 4090 if (expect_false (!ev_is_active (w)))
2292 return; 4091 return;
2293 4092
2294 EV_FREQUENT_CHECK; 4093 EV_FREQUENT_CHECK;
2295 4094
2296 { 4095 {
2297 int active = ev_active (w); 4096 int active = ev_active (w);
2298 4097
2299 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 4098 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2300 4099
2301 --periodiccnt; 4100 --periodiccnt;
2302 4101
2303 if (expect_true (active < periodiccnt + HEAP0)) 4102 if (expect_true (active < periodiccnt + HEAP0))
2304 { 4103 {
2305 periodics [active] = periodics [periodiccnt + HEAP0]; 4104 periodics [active] = periodics [periodiccnt + HEAP0];
2306 adjustheap (periodics, periodiccnt, active); 4105 adjustheap (periodics, periodiccnt, active);
2307 } 4106 }
2308 } 4107 }
2309 4108
2310 EV_FREQUENT_CHECK;
2311
2312 ev_stop (EV_A_ (W)w); 4109 ev_stop (EV_A_ (W)w);
2313}
2314 4110
4111 EV_FREQUENT_CHECK;
4112}
4113
2315void noinline 4114noinline
4115void
2316ev_periodic_again (EV_P_ ev_periodic *w) 4116ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
2317{ 4117{
2318 /* TODO: use adjustheap and recalculation */ 4118 /* TODO: use adjustheap and recalculation */
2319 ev_periodic_stop (EV_A_ w); 4119 ev_periodic_stop (EV_A_ w);
2320 ev_periodic_start (EV_A_ w); 4120 ev_periodic_start (EV_A_ w);
2321} 4121}
2323 4123
2324#ifndef SA_RESTART 4124#ifndef SA_RESTART
2325# define SA_RESTART 0 4125# define SA_RESTART 0
2326#endif 4126#endif
2327 4127
4128#if EV_SIGNAL_ENABLE
4129
2328void noinline 4130noinline
4131void
2329ev_signal_start (EV_P_ ev_signal *w) 4132ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
2330{ 4133{
2331#if EV_MULTIPLICITY
2332 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2333#endif
2334 if (expect_false (ev_is_active (w))) 4134 if (expect_false (ev_is_active (w)))
2335 return; 4135 return;
2336 4136
2337 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4137 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2338 4138
2339 evpipe_init (EV_A); 4139#if EV_MULTIPLICITY
4140 assert (("libev: a signal must not be attached to two different loops",
4141 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2340 4142
2341 EV_FREQUENT_CHECK; 4143 signals [w->signum - 1].loop = EV_A;
4144 ECB_MEMORY_FENCE_RELEASE;
4145#endif
2342 4146
4147 EV_FREQUENT_CHECK;
4148
4149#if EV_USE_SIGNALFD
4150 if (sigfd == -2)
2343 { 4151 {
2344#ifndef _WIN32 4152 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2345 sigset_t full, prev; 4153 if (sigfd < 0 && errno == EINVAL)
2346 sigfillset (&full); 4154 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2347 sigprocmask (SIG_SETMASK, &full, &prev);
2348#endif
2349 4155
2350 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 4156 if (sigfd >= 0)
4157 {
4158 fd_intern (sigfd); /* doing it twice will not hurt */
2351 4159
2352#ifndef _WIN32 4160 sigemptyset (&sigfd_set);
2353 sigprocmask (SIG_SETMASK, &prev, 0); 4161
2354#endif 4162 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4163 ev_set_priority (&sigfd_w, EV_MAXPRI);
4164 ev_io_start (EV_A_ &sigfd_w);
4165 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4166 }
2355 } 4167 }
4168
4169 if (sigfd >= 0)
4170 {
4171 /* TODO: check .head */
4172 sigaddset (&sigfd_set, w->signum);
4173 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4174
4175 signalfd (sigfd, &sigfd_set, 0);
4176 }
4177#endif
2356 4178
2357 ev_start (EV_A_ (W)w, 1); 4179 ev_start (EV_A_ (W)w, 1);
2358 wlist_add (&signals [w->signum - 1].head, (WL)w); 4180 wlist_add (&signals [w->signum - 1].head, (WL)w);
2359 4181
2360 if (!((WL)w)->next) 4182 if (!((WL)w)->next)
4183# if EV_USE_SIGNALFD
4184 if (sigfd < 0) /*TODO*/
4185# endif
2361 { 4186 {
2362#if _WIN32 4187# ifdef _WIN32
4188 evpipe_init (EV_A);
4189
2363 signal (w->signum, ev_sighandler); 4190 signal (w->signum, ev_sighandler);
2364#else 4191# else
2365 struct sigaction sa; 4192 struct sigaction sa;
4193
4194 evpipe_init (EV_A);
4195
2366 sa.sa_handler = ev_sighandler; 4196 sa.sa_handler = ev_sighandler;
2367 sigfillset (&sa.sa_mask); 4197 sigfillset (&sa.sa_mask);
2368 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 4198 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2369 sigaction (w->signum, &sa, 0); 4199 sigaction (w->signum, &sa, 0);
4200
4201 if (origflags & EVFLAG_NOSIGMASK)
4202 {
4203 sigemptyset (&sa.sa_mask);
4204 sigaddset (&sa.sa_mask, w->signum);
4205 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4206 }
2370#endif 4207#endif
2371 } 4208 }
2372 4209
2373 EV_FREQUENT_CHECK; 4210 EV_FREQUENT_CHECK;
2374} 4211}
2375 4212
2376void noinline 4213noinline
4214void
2377ev_signal_stop (EV_P_ ev_signal *w) 4215ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
2378{ 4216{
2379 clear_pending (EV_A_ (W)w); 4217 clear_pending (EV_A_ (W)w);
2380 if (expect_false (!ev_is_active (w))) 4218 if (expect_false (!ev_is_active (w)))
2381 return; 4219 return;
2382 4220
2384 4222
2385 wlist_del (&signals [w->signum - 1].head, (WL)w); 4223 wlist_del (&signals [w->signum - 1].head, (WL)w);
2386 ev_stop (EV_A_ (W)w); 4224 ev_stop (EV_A_ (W)w);
2387 4225
2388 if (!signals [w->signum - 1].head) 4226 if (!signals [w->signum - 1].head)
2389 signal (w->signum, SIG_DFL); 4227 {
2390
2391 EV_FREQUENT_CHECK;
2392}
2393
2394void
2395ev_child_start (EV_P_ ev_child *w)
2396{
2397#if EV_MULTIPLICITY 4228#if EV_MULTIPLICITY
4229 signals [w->signum - 1].loop = 0; /* unattach from signal */
4230#endif
4231#if EV_USE_SIGNALFD
4232 if (sigfd >= 0)
4233 {
4234 sigset_t ss;
4235
4236 sigemptyset (&ss);
4237 sigaddset (&ss, w->signum);
4238 sigdelset (&sigfd_set, w->signum);
4239
4240 signalfd (sigfd, &sigfd_set, 0);
4241 sigprocmask (SIG_UNBLOCK, &ss, 0);
4242 }
4243 else
4244#endif
4245 signal (w->signum, SIG_DFL);
4246 }
4247
4248 EV_FREQUENT_CHECK;
4249}
4250
4251#endif
4252
4253#if EV_CHILD_ENABLE
4254
4255void
4256ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4257{
4258#if EV_MULTIPLICITY
2398 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4259 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2399#endif 4260#endif
2400 if (expect_false (ev_is_active (w))) 4261 if (expect_false (ev_is_active (w)))
2401 return; 4262 return;
2402 4263
2403 EV_FREQUENT_CHECK; 4264 EV_FREQUENT_CHECK;
2404 4265
2405 ev_start (EV_A_ (W)w, 1); 4266 ev_start (EV_A_ (W)w, 1);
2406 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4267 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2407 4268
2408 EV_FREQUENT_CHECK; 4269 EV_FREQUENT_CHECK;
2409} 4270}
2410 4271
2411void 4272void
2412ev_child_stop (EV_P_ ev_child *w) 4273ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
2413{ 4274{
2414 clear_pending (EV_A_ (W)w); 4275 clear_pending (EV_A_ (W)w);
2415 if (expect_false (!ev_is_active (w))) 4276 if (expect_false (!ev_is_active (w)))
2416 return; 4277 return;
2417 4278
2418 EV_FREQUENT_CHECK; 4279 EV_FREQUENT_CHECK;
2419 4280
2420 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4281 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2421 ev_stop (EV_A_ (W)w); 4282 ev_stop (EV_A_ (W)w);
2422 4283
2423 EV_FREQUENT_CHECK; 4284 EV_FREQUENT_CHECK;
2424} 4285}
4286
4287#endif
2425 4288
2426#if EV_STAT_ENABLE 4289#if EV_STAT_ENABLE
2427 4290
2428# ifdef _WIN32 4291# ifdef _WIN32
2429# undef lstat 4292# undef lstat
2430# define lstat(a,b) _stati64 (a,b) 4293# define lstat(a,b) _stati64 (a,b)
2431# endif 4294# endif
2432 4295
2433#define DEF_STAT_INTERVAL 5.0074891 4296#define DEF_STAT_INTERVAL 5.0074891
4297#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2434#define MIN_STAT_INTERVAL 0.1074891 4298#define MIN_STAT_INTERVAL 0.1074891
2435 4299
2436static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4300noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2437 4301
2438#if EV_USE_INOTIFY 4302#if EV_USE_INOTIFY
2439# define EV_INOTIFY_BUFSIZE 8192
2440 4303
2441static void noinline 4304/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4305# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4306
4307noinline
4308static void
2442infy_add (EV_P_ ev_stat *w) 4309infy_add (EV_P_ ev_stat *w)
2443{ 4310{
2444 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4311 w->wd = inotify_add_watch (fs_fd, w->path,
4312 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4313 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4314 | IN_DONT_FOLLOW | IN_MASK_ADD);
2445 4315
2446 if (w->wd < 0) 4316 if (w->wd >= 0)
4317 {
4318 struct statfs sfs;
4319
4320 /* now local changes will be tracked by inotify, but remote changes won't */
4321 /* unless the filesystem is known to be local, we therefore still poll */
4322 /* also do poll on <2.6.25, but with normal frequency */
4323
4324 if (!fs_2625)
4325 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4326 else if (!statfs (w->path, &sfs)
4327 && (sfs.f_type == 0x1373 /* devfs */
4328 || sfs.f_type == 0x4006 /* fat */
4329 || sfs.f_type == 0x4d44 /* msdos */
4330 || sfs.f_type == 0xEF53 /* ext2/3 */
4331 || sfs.f_type == 0x72b6 /* jffs2 */
4332 || sfs.f_type == 0x858458f6 /* ramfs */
4333 || sfs.f_type == 0x5346544e /* ntfs */
4334 || sfs.f_type == 0x3153464a /* jfs */
4335 || sfs.f_type == 0x9123683e /* btrfs */
4336 || sfs.f_type == 0x52654973 /* reiser3 */
4337 || sfs.f_type == 0x01021994 /* tmpfs */
4338 || sfs.f_type == 0x58465342 /* xfs */))
4339 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4340 else
4341 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2447 { 4342 }
2448 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 4343 else
4344 {
4345 /* can't use inotify, continue to stat */
4346 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2449 4347
2450 /* monitor some parent directory for speedup hints */ 4348 /* if path is not there, monitor some parent directory for speedup hints */
2451 /* note that exceeding the hardcoded limit is not a correctness issue, */ 4349 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2452 /* but an efficiency issue only */ 4350 /* but an efficiency issue only */
2453 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4351 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2454 { 4352 {
2455 char path [4096]; 4353 char path [4096];
2456 strcpy (path, w->path); 4354 strcpy (path, w->path);
2460 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4358 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2461 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4359 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2462 4360
2463 char *pend = strrchr (path, '/'); 4361 char *pend = strrchr (path, '/');
2464 4362
2465 if (!pend) 4363 if (!pend || pend == path)
2466 break; /* whoops, no '/', complain to your admin */ 4364 break;
2467 4365
2468 *pend = 0; 4366 *pend = 0;
2469 w->wd = inotify_add_watch (fs_fd, path, mask); 4367 w->wd = inotify_add_watch (fs_fd, path, mask);
2470 } 4368 }
2471 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4369 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2472 } 4370 }
2473 } 4371 }
2474 else
2475 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2476 4372
2477 if (w->wd >= 0) 4373 if (w->wd >= 0)
2478 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4374 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2479}
2480 4375
2481static void noinline 4376 /* now re-arm timer, if required */
4377 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4378 ev_timer_again (EV_A_ &w->timer);
4379 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4380}
4381
4382noinline
4383static void
2482infy_del (EV_P_ ev_stat *w) 4384infy_del (EV_P_ ev_stat *w)
2483{ 4385{
2484 int slot; 4386 int slot;
2485 int wd = w->wd; 4387 int wd = w->wd;
2486 4388
2487 if (wd < 0) 4389 if (wd < 0)
2488 return; 4390 return;
2489 4391
2490 w->wd = -2; 4392 w->wd = -2;
2491 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4393 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2492 wlist_del (&fs_hash [slot].head, (WL)w); 4394 wlist_del (&fs_hash [slot].head, (WL)w);
2493 4395
2494 /* remove this watcher, if others are watching it, they will rearm */ 4396 /* remove this watcher, if others are watching it, they will rearm */
2495 inotify_rm_watch (fs_fd, wd); 4397 inotify_rm_watch (fs_fd, wd);
2496} 4398}
2497 4399
2498static void noinline 4400noinline
4401static void
2499infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4402infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2500{ 4403{
2501 if (slot < 0) 4404 if (slot < 0)
2502 /* overflow, need to check for all hash slots */ 4405 /* overflow, need to check for all hash slots */
2503 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4406 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2504 infy_wd (EV_A_ slot, wd, ev); 4407 infy_wd (EV_A_ slot, wd, ev);
2505 else 4408 else
2506 { 4409 {
2507 WL w_; 4410 WL w_;
2508 4411
2509 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4412 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2510 { 4413 {
2511 ev_stat *w = (ev_stat *)w_; 4414 ev_stat *w = (ev_stat *)w_;
2512 w_ = w_->next; /* lets us remove this watcher and all before it */ 4415 w_ = w_->next; /* lets us remove this watcher and all before it */
2513 4416
2514 if (w->wd == wd || wd == -1) 4417 if (w->wd == wd || wd == -1)
2515 { 4418 {
2516 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4419 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2517 { 4420 {
4421 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2518 w->wd = -1; 4422 w->wd = -1;
2519 infy_add (EV_A_ w); /* re-add, no matter what */ 4423 infy_add (EV_A_ w); /* re-add, no matter what */
2520 } 4424 }
2521 4425
2522 stat_timer_cb (EV_A_ &w->timer, 0); 4426 stat_timer_cb (EV_A_ &w->timer, 0);
2527 4431
2528static void 4432static void
2529infy_cb (EV_P_ ev_io *w, int revents) 4433infy_cb (EV_P_ ev_io *w, int revents)
2530{ 4434{
2531 char buf [EV_INOTIFY_BUFSIZE]; 4435 char buf [EV_INOTIFY_BUFSIZE];
2532 struct inotify_event *ev = (struct inotify_event *)buf;
2533 int ofs; 4436 int ofs;
2534 int len = read (fs_fd, buf, sizeof (buf)); 4437 int len = read (fs_fd, buf, sizeof (buf));
2535 4438
2536 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4439 for (ofs = 0; ofs < len; )
4440 {
4441 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2537 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4442 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4443 ofs += sizeof (struct inotify_event) + ev->len;
4444 }
2538} 4445}
2539 4446
2540void inline_size 4447inline_size ecb_cold
2541infy_init (EV_P) 4448void
4449ev_check_2625 (EV_P)
2542{ 4450{
2543 if (fs_fd != -2)
2544 return;
2545
2546 /* kernels < 2.6.25 are borked 4451 /* kernels < 2.6.25 are borked
2547 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 4452 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2548 */ 4453 */
2549 { 4454 if (ev_linux_version () < 0x020619)
2550 struct utsname buf; 4455 return;
2551 int major, minor, micro;
2552 4456
4457 fs_2625 = 1;
4458}
4459
4460inline_size int
4461infy_newfd (void)
4462{
4463#if defined IN_CLOEXEC && defined IN_NONBLOCK
4464 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4465 if (fd >= 0)
4466 return fd;
4467#endif
4468 return inotify_init ();
4469}
4470
4471inline_size void
4472infy_init (EV_P)
4473{
4474 if (fs_fd != -2)
4475 return;
4476
2553 fs_fd = -1; 4477 fs_fd = -1;
2554 4478
2555 if (uname (&buf)) 4479 ev_check_2625 (EV_A);
2556 return;
2557 4480
2558 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2559 return;
2560
2561 if (major < 2
2562 || (major == 2 && minor < 6)
2563 || (major == 2 && minor == 6 && micro < 25))
2564 return;
2565 }
2566
2567 fs_fd = inotify_init (); 4481 fs_fd = infy_newfd ();
2568 4482
2569 if (fs_fd >= 0) 4483 if (fs_fd >= 0)
2570 { 4484 {
4485 fd_intern (fs_fd);
2571 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4486 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2572 ev_set_priority (&fs_w, EV_MAXPRI); 4487 ev_set_priority (&fs_w, EV_MAXPRI);
2573 ev_io_start (EV_A_ &fs_w); 4488 ev_io_start (EV_A_ &fs_w);
4489 ev_unref (EV_A);
2574 } 4490 }
2575} 4491}
2576 4492
2577void inline_size 4493inline_size void
2578infy_fork (EV_P) 4494infy_fork (EV_P)
2579{ 4495{
2580 int slot; 4496 int slot;
2581 4497
2582 if (fs_fd < 0) 4498 if (fs_fd < 0)
2583 return; 4499 return;
2584 4500
4501 ev_ref (EV_A);
4502 ev_io_stop (EV_A_ &fs_w);
2585 close (fs_fd); 4503 close (fs_fd);
2586 fs_fd = inotify_init (); 4504 fs_fd = infy_newfd ();
2587 4505
4506 if (fs_fd >= 0)
4507 {
4508 fd_intern (fs_fd);
4509 ev_io_set (&fs_w, fs_fd, EV_READ);
4510 ev_io_start (EV_A_ &fs_w);
4511 ev_unref (EV_A);
4512 }
4513
2588 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4514 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2589 { 4515 {
2590 WL w_ = fs_hash [slot].head; 4516 WL w_ = fs_hash [slot].head;
2591 fs_hash [slot].head = 0; 4517 fs_hash [slot].head = 0;
2592 4518
2593 while (w_) 4519 while (w_)
2598 w->wd = -1; 4524 w->wd = -1;
2599 4525
2600 if (fs_fd >= 0) 4526 if (fs_fd >= 0)
2601 infy_add (EV_A_ w); /* re-add, no matter what */ 4527 infy_add (EV_A_ w); /* re-add, no matter what */
2602 else 4528 else
4529 {
4530 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4531 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2603 ev_timer_start (EV_A_ &w->timer); 4532 ev_timer_again (EV_A_ &w->timer);
4533 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4534 }
2604 } 4535 }
2605 } 4536 }
2606} 4537}
2607 4538
2608#endif 4539#endif
2612#else 4543#else
2613# define EV_LSTAT(p,b) lstat (p, b) 4544# define EV_LSTAT(p,b) lstat (p, b)
2614#endif 4545#endif
2615 4546
2616void 4547void
2617ev_stat_stat (EV_P_ ev_stat *w) 4548ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
2618{ 4549{
2619 if (lstat (w->path, &w->attr) < 0) 4550 if (lstat (w->path, &w->attr) < 0)
2620 w->attr.st_nlink = 0; 4551 w->attr.st_nlink = 0;
2621 else if (!w->attr.st_nlink) 4552 else if (!w->attr.st_nlink)
2622 w->attr.st_nlink = 1; 4553 w->attr.st_nlink = 1;
2623} 4554}
2624 4555
2625static void noinline 4556noinline
4557static void
2626stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4558stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2627{ 4559{
2628 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4560 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2629 4561
2630 /* we copy this here each the time so that */ 4562 ev_statdata prev = w->attr;
2631 /* prev has the old value when the callback gets invoked */
2632 w->prev = w->attr;
2633 ev_stat_stat (EV_A_ w); 4563 ev_stat_stat (EV_A_ w);
2634 4564
2635 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4565 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2636 if ( 4566 if (
2637 w->prev.st_dev != w->attr.st_dev 4567 prev.st_dev != w->attr.st_dev
2638 || w->prev.st_ino != w->attr.st_ino 4568 || prev.st_ino != w->attr.st_ino
2639 || w->prev.st_mode != w->attr.st_mode 4569 || prev.st_mode != w->attr.st_mode
2640 || w->prev.st_nlink != w->attr.st_nlink 4570 || prev.st_nlink != w->attr.st_nlink
2641 || w->prev.st_uid != w->attr.st_uid 4571 || prev.st_uid != w->attr.st_uid
2642 || w->prev.st_gid != w->attr.st_gid 4572 || prev.st_gid != w->attr.st_gid
2643 || w->prev.st_rdev != w->attr.st_rdev 4573 || prev.st_rdev != w->attr.st_rdev
2644 || w->prev.st_size != w->attr.st_size 4574 || prev.st_size != w->attr.st_size
2645 || w->prev.st_atime != w->attr.st_atime 4575 || prev.st_atime != w->attr.st_atime
2646 || w->prev.st_mtime != w->attr.st_mtime 4576 || prev.st_mtime != w->attr.st_mtime
2647 || w->prev.st_ctime != w->attr.st_ctime 4577 || prev.st_ctime != w->attr.st_ctime
2648 ) { 4578 ) {
4579 /* we only update w->prev on actual differences */
4580 /* in case we test more often than invoke the callback, */
4581 /* to ensure that prev is always different to attr */
4582 w->prev = prev;
4583
2649 #if EV_USE_INOTIFY 4584 #if EV_USE_INOTIFY
2650 if (fs_fd >= 0) 4585 if (fs_fd >= 0)
2651 { 4586 {
2652 infy_del (EV_A_ w); 4587 infy_del (EV_A_ w);
2653 infy_add (EV_A_ w); 4588 infy_add (EV_A_ w);
2658 ev_feed_event (EV_A_ w, EV_STAT); 4593 ev_feed_event (EV_A_ w, EV_STAT);
2659 } 4594 }
2660} 4595}
2661 4596
2662void 4597void
2663ev_stat_start (EV_P_ ev_stat *w) 4598ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
2664{ 4599{
2665 if (expect_false (ev_is_active (w))) 4600 if (expect_false (ev_is_active (w)))
2666 return; 4601 return;
2667 4602
2668 /* since we use memcmp, we need to clear any padding data etc. */
2669 memset (&w->prev, 0, sizeof (ev_statdata));
2670 memset (&w->attr, 0, sizeof (ev_statdata));
2671
2672 ev_stat_stat (EV_A_ w); 4603 ev_stat_stat (EV_A_ w);
2673 4604
4605 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2674 if (w->interval < MIN_STAT_INTERVAL) 4606 w->interval = MIN_STAT_INTERVAL;
2675 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2676 4607
2677 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4608 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2678 ev_set_priority (&w->timer, ev_priority (w)); 4609 ev_set_priority (&w->timer, ev_priority (w));
2679 4610
2680#if EV_USE_INOTIFY 4611#if EV_USE_INOTIFY
2681 infy_init (EV_A); 4612 infy_init (EV_A);
2682 4613
2683 if (fs_fd >= 0) 4614 if (fs_fd >= 0)
2684 infy_add (EV_A_ w); 4615 infy_add (EV_A_ w);
2685 else 4616 else
2686#endif 4617#endif
4618 {
2687 ev_timer_start (EV_A_ &w->timer); 4619 ev_timer_again (EV_A_ &w->timer);
4620 ev_unref (EV_A);
4621 }
2688 4622
2689 ev_start (EV_A_ (W)w, 1); 4623 ev_start (EV_A_ (W)w, 1);
2690 4624
2691 EV_FREQUENT_CHECK; 4625 EV_FREQUENT_CHECK;
2692} 4626}
2693 4627
2694void 4628void
2695ev_stat_stop (EV_P_ ev_stat *w) 4629ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
2696{ 4630{
2697 clear_pending (EV_A_ (W)w); 4631 clear_pending (EV_A_ (W)w);
2698 if (expect_false (!ev_is_active (w))) 4632 if (expect_false (!ev_is_active (w)))
2699 return; 4633 return;
2700 4634
2701 EV_FREQUENT_CHECK; 4635 EV_FREQUENT_CHECK;
2702 4636
2703#if EV_USE_INOTIFY 4637#if EV_USE_INOTIFY
2704 infy_del (EV_A_ w); 4638 infy_del (EV_A_ w);
2705#endif 4639#endif
4640
4641 if (ev_is_active (&w->timer))
4642 {
4643 ev_ref (EV_A);
2706 ev_timer_stop (EV_A_ &w->timer); 4644 ev_timer_stop (EV_A_ &w->timer);
4645 }
2707 4646
2708 ev_stop (EV_A_ (W)w); 4647 ev_stop (EV_A_ (W)w);
2709 4648
2710 EV_FREQUENT_CHECK; 4649 EV_FREQUENT_CHECK;
2711} 4650}
2712#endif 4651#endif
2713 4652
2714#if EV_IDLE_ENABLE 4653#if EV_IDLE_ENABLE
2715void 4654void
2716ev_idle_start (EV_P_ ev_idle *w) 4655ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
2717{ 4656{
2718 if (expect_false (ev_is_active (w))) 4657 if (expect_false (ev_is_active (w)))
2719 return; 4658 return;
2720 4659
2721 pri_adjust (EV_A_ (W)w); 4660 pri_adjust (EV_A_ (W)w);
2726 int active = ++idlecnt [ABSPRI (w)]; 4665 int active = ++idlecnt [ABSPRI (w)];
2727 4666
2728 ++idleall; 4667 ++idleall;
2729 ev_start (EV_A_ (W)w, active); 4668 ev_start (EV_A_ (W)w, active);
2730 4669
2731 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4670 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
2732 idles [ABSPRI (w)][active - 1] = w; 4671 idles [ABSPRI (w)][active - 1] = w;
2733 } 4672 }
2734 4673
2735 EV_FREQUENT_CHECK; 4674 EV_FREQUENT_CHECK;
2736} 4675}
2737 4676
2738void 4677void
2739ev_idle_stop (EV_P_ ev_idle *w) 4678ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
2740{ 4679{
2741 clear_pending (EV_A_ (W)w); 4680 clear_pending (EV_A_ (W)w);
2742 if (expect_false (!ev_is_active (w))) 4681 if (expect_false (!ev_is_active (w)))
2743 return; 4682 return;
2744 4683
2756 4695
2757 EV_FREQUENT_CHECK; 4696 EV_FREQUENT_CHECK;
2758} 4697}
2759#endif 4698#endif
2760 4699
4700#if EV_PREPARE_ENABLE
2761void 4701void
2762ev_prepare_start (EV_P_ ev_prepare *w) 4702ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
2763{ 4703{
2764 if (expect_false (ev_is_active (w))) 4704 if (expect_false (ev_is_active (w)))
2765 return; 4705 return;
2766 4706
2767 EV_FREQUENT_CHECK; 4707 EV_FREQUENT_CHECK;
2768 4708
2769 ev_start (EV_A_ (W)w, ++preparecnt); 4709 ev_start (EV_A_ (W)w, ++preparecnt);
2770 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4710 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
2771 prepares [preparecnt - 1] = w; 4711 prepares [preparecnt - 1] = w;
2772 4712
2773 EV_FREQUENT_CHECK; 4713 EV_FREQUENT_CHECK;
2774} 4714}
2775 4715
2776void 4716void
2777ev_prepare_stop (EV_P_ ev_prepare *w) 4717ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
2778{ 4718{
2779 clear_pending (EV_A_ (W)w); 4719 clear_pending (EV_A_ (W)w);
2780 if (expect_false (!ev_is_active (w))) 4720 if (expect_false (!ev_is_active (w)))
2781 return; 4721 return;
2782 4722
2791 4731
2792 ev_stop (EV_A_ (W)w); 4732 ev_stop (EV_A_ (W)w);
2793 4733
2794 EV_FREQUENT_CHECK; 4734 EV_FREQUENT_CHECK;
2795} 4735}
4736#endif
2796 4737
4738#if EV_CHECK_ENABLE
2797void 4739void
2798ev_check_start (EV_P_ ev_check *w) 4740ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
2799{ 4741{
2800 if (expect_false (ev_is_active (w))) 4742 if (expect_false (ev_is_active (w)))
2801 return; 4743 return;
2802 4744
2803 EV_FREQUENT_CHECK; 4745 EV_FREQUENT_CHECK;
2804 4746
2805 ev_start (EV_A_ (W)w, ++checkcnt); 4747 ev_start (EV_A_ (W)w, ++checkcnt);
2806 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4748 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
2807 checks [checkcnt - 1] = w; 4749 checks [checkcnt - 1] = w;
2808 4750
2809 EV_FREQUENT_CHECK; 4751 EV_FREQUENT_CHECK;
2810} 4752}
2811 4753
2812void 4754void
2813ev_check_stop (EV_P_ ev_check *w) 4755ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
2814{ 4756{
2815 clear_pending (EV_A_ (W)w); 4757 clear_pending (EV_A_ (W)w);
2816 if (expect_false (!ev_is_active (w))) 4758 if (expect_false (!ev_is_active (w)))
2817 return; 4759 return;
2818 4760
2827 4769
2828 ev_stop (EV_A_ (W)w); 4770 ev_stop (EV_A_ (W)w);
2829 4771
2830 EV_FREQUENT_CHECK; 4772 EV_FREQUENT_CHECK;
2831} 4773}
4774#endif
2832 4775
2833#if EV_EMBED_ENABLE 4776#if EV_EMBED_ENABLE
2834void noinline 4777noinline
4778void
2835ev_embed_sweep (EV_P_ ev_embed *w) 4779ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
2836{ 4780{
2837 ev_loop (w->other, EVLOOP_NONBLOCK); 4781 ev_run (w->other, EVRUN_NOWAIT);
2838} 4782}
2839 4783
2840static void 4784static void
2841embed_io_cb (EV_P_ ev_io *io, int revents) 4785embed_io_cb (EV_P_ ev_io *io, int revents)
2842{ 4786{
2843 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4787 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2844 4788
2845 if (ev_cb (w)) 4789 if (ev_cb (w))
2846 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4790 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2847 else 4791 else
2848 ev_loop (w->other, EVLOOP_NONBLOCK); 4792 ev_run (w->other, EVRUN_NOWAIT);
2849} 4793}
2850 4794
2851static void 4795static void
2852embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4796embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2853{ 4797{
2854 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4798 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2855 4799
2856 { 4800 {
2857 struct ev_loop *loop = w->other; 4801 EV_P = w->other;
2858 4802
2859 while (fdchangecnt) 4803 while (fdchangecnt)
2860 { 4804 {
2861 fd_reify (EV_A); 4805 fd_reify (EV_A);
2862 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4806 ev_run (EV_A_ EVRUN_NOWAIT);
2863 } 4807 }
2864 } 4808 }
2865} 4809}
2866 4810
2867static void 4811static void
2868embed_fork_cb (EV_P_ ev_fork *fork_w, int revents) 4812embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2869{ 4813{
2870 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 4814 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2871 4815
4816 ev_embed_stop (EV_A_ w);
4817
2872 { 4818 {
2873 struct ev_loop *loop = w->other; 4819 EV_P = w->other;
2874 4820
2875 ev_loop_fork (EV_A); 4821 ev_loop_fork (EV_A);
4822 ev_run (EV_A_ EVRUN_NOWAIT);
2876 } 4823 }
4824
4825 ev_embed_start (EV_A_ w);
2877} 4826}
2878 4827
2879#if 0 4828#if 0
2880static void 4829static void
2881embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4830embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2883 ev_idle_stop (EV_A_ idle); 4832 ev_idle_stop (EV_A_ idle);
2884} 4833}
2885#endif 4834#endif
2886 4835
2887void 4836void
2888ev_embed_start (EV_P_ ev_embed *w) 4837ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
2889{ 4838{
2890 if (expect_false (ev_is_active (w))) 4839 if (expect_false (ev_is_active (w)))
2891 return; 4840 return;
2892 4841
2893 { 4842 {
2894 struct ev_loop *loop = w->other; 4843 EV_P = w->other;
2895 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4844 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2896 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4845 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2897 } 4846 }
2898 4847
2899 EV_FREQUENT_CHECK; 4848 EV_FREQUENT_CHECK;
2900 4849
2914 4863
2915 EV_FREQUENT_CHECK; 4864 EV_FREQUENT_CHECK;
2916} 4865}
2917 4866
2918void 4867void
2919ev_embed_stop (EV_P_ ev_embed *w) 4868ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
2920{ 4869{
2921 clear_pending (EV_A_ (W)w); 4870 clear_pending (EV_A_ (W)w);
2922 if (expect_false (!ev_is_active (w))) 4871 if (expect_false (!ev_is_active (w)))
2923 return; 4872 return;
2924 4873
2926 4875
2927 ev_io_stop (EV_A_ &w->io); 4876 ev_io_stop (EV_A_ &w->io);
2928 ev_prepare_stop (EV_A_ &w->prepare); 4877 ev_prepare_stop (EV_A_ &w->prepare);
2929 ev_fork_stop (EV_A_ &w->fork); 4878 ev_fork_stop (EV_A_ &w->fork);
2930 4879
4880 ev_stop (EV_A_ (W)w);
4881
2931 EV_FREQUENT_CHECK; 4882 EV_FREQUENT_CHECK;
2932} 4883}
2933#endif 4884#endif
2934 4885
2935#if EV_FORK_ENABLE 4886#if EV_FORK_ENABLE
2936void 4887void
2937ev_fork_start (EV_P_ ev_fork *w) 4888ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
2938{ 4889{
2939 if (expect_false (ev_is_active (w))) 4890 if (expect_false (ev_is_active (w)))
2940 return; 4891 return;
2941 4892
2942 EV_FREQUENT_CHECK; 4893 EV_FREQUENT_CHECK;
2943 4894
2944 ev_start (EV_A_ (W)w, ++forkcnt); 4895 ev_start (EV_A_ (W)w, ++forkcnt);
2945 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4896 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
2946 forks [forkcnt - 1] = w; 4897 forks [forkcnt - 1] = w;
2947 4898
2948 EV_FREQUENT_CHECK; 4899 EV_FREQUENT_CHECK;
2949} 4900}
2950 4901
2951void 4902void
2952ev_fork_stop (EV_P_ ev_fork *w) 4903ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
2953{ 4904{
2954 clear_pending (EV_A_ (W)w); 4905 clear_pending (EV_A_ (W)w);
2955 if (expect_false (!ev_is_active (w))) 4906 if (expect_false (!ev_is_active (w)))
2956 return; 4907 return;
2957 4908
2968 4919
2969 EV_FREQUENT_CHECK; 4920 EV_FREQUENT_CHECK;
2970} 4921}
2971#endif 4922#endif
2972 4923
2973#if EV_ASYNC_ENABLE 4924#if EV_CLEANUP_ENABLE
2974void 4925void
2975ev_async_start (EV_P_ ev_async *w) 4926ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
2976{ 4927{
2977 if (expect_false (ev_is_active (w))) 4928 if (expect_false (ev_is_active (w)))
2978 return; 4929 return;
2979 4930
2980 evpipe_init (EV_A);
2981
2982 EV_FREQUENT_CHECK; 4931 EV_FREQUENT_CHECK;
2983 4932
2984 ev_start (EV_A_ (W)w, ++asynccnt); 4933 ev_start (EV_A_ (W)w, ++cleanupcnt);
2985 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 4934 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
2986 asyncs [asynccnt - 1] = w; 4935 cleanups [cleanupcnt - 1] = w;
2987 4936
4937 /* cleanup watchers should never keep a refcount on the loop */
4938 ev_unref (EV_A);
2988 EV_FREQUENT_CHECK; 4939 EV_FREQUENT_CHECK;
2989} 4940}
2990 4941
2991void 4942void
2992ev_async_stop (EV_P_ ev_async *w) 4943ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
2993{ 4944{
2994 clear_pending (EV_A_ (W)w); 4945 clear_pending (EV_A_ (W)w);
2995 if (expect_false (!ev_is_active (w))) 4946 if (expect_false (!ev_is_active (w)))
2996 return; 4947 return;
2997 4948
2998 EV_FREQUENT_CHECK; 4949 EV_FREQUENT_CHECK;
4950 ev_ref (EV_A);
4951
4952 {
4953 int active = ev_active (w);
4954
4955 cleanups [active - 1] = cleanups [--cleanupcnt];
4956 ev_active (cleanups [active - 1]) = active;
4957 }
4958
4959 ev_stop (EV_A_ (W)w);
4960
4961 EV_FREQUENT_CHECK;
4962}
4963#endif
4964
4965#if EV_ASYNC_ENABLE
4966void
4967ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
4968{
4969 if (expect_false (ev_is_active (w)))
4970 return;
4971
4972 w->sent = 0;
4973
4974 evpipe_init (EV_A);
4975
4976 EV_FREQUENT_CHECK;
4977
4978 ev_start (EV_A_ (W)w, ++asynccnt);
4979 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
4980 asyncs [asynccnt - 1] = w;
4981
4982 EV_FREQUENT_CHECK;
4983}
4984
4985void
4986ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
4987{
4988 clear_pending (EV_A_ (W)w);
4989 if (expect_false (!ev_is_active (w)))
4990 return;
4991
4992 EV_FREQUENT_CHECK;
2999 4993
3000 { 4994 {
3001 int active = ev_active (w); 4995 int active = ev_active (w);
3002 4996
3003 asyncs [active - 1] = asyncs [--asynccnt]; 4997 asyncs [active - 1] = asyncs [--asynccnt];
3008 5002
3009 EV_FREQUENT_CHECK; 5003 EV_FREQUENT_CHECK;
3010} 5004}
3011 5005
3012void 5006void
3013ev_async_send (EV_P_ ev_async *w) 5007ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
3014{ 5008{
3015 w->sent = 1; 5009 w->sent = 1;
3016 evpipe_write (EV_A_ &gotasync); 5010 evpipe_write (EV_A_ &async_pending);
3017} 5011}
3018#endif 5012#endif
3019 5013
3020/*****************************************************************************/ 5014/*****************************************************************************/
3021 5015
3055 5049
3056 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io)); 5050 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3057} 5051}
3058 5052
3059void 5053void
3060ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5054ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
3061{ 5055{
3062 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 5056 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3063
3064 if (expect_false (!once))
3065 {
3066 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
3067 return;
3068 }
3069 5057
3070 once->cb = cb; 5058 once->cb = cb;
3071 once->arg = arg; 5059 once->arg = arg;
3072 5060
3073 ev_init (&once->io, once_cb_io); 5061 ev_init (&once->io, once_cb_io);
3083 ev_timer_set (&once->to, timeout, 0.); 5071 ev_timer_set (&once->to, timeout, 0.);
3084 ev_timer_start (EV_A_ &once->to); 5072 ev_timer_start (EV_A_ &once->to);
3085 } 5073 }
3086} 5074}
3087 5075
5076/*****************************************************************************/
5077
5078#if EV_WALK_ENABLE
5079ecb_cold
5080void
5081ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5082{
5083 int i, j;
5084 ev_watcher_list *wl, *wn;
5085
5086 if (types & (EV_IO | EV_EMBED))
5087 for (i = 0; i < anfdmax; ++i)
5088 for (wl = anfds [i].head; wl; )
5089 {
5090 wn = wl->next;
5091
5092#if EV_EMBED_ENABLE
5093 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5094 {
5095 if (types & EV_EMBED)
5096 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5097 }
5098 else
5099#endif
5100#if EV_USE_INOTIFY
5101 if (ev_cb ((ev_io *)wl) == infy_cb)
5102 ;
5103 else
5104#endif
5105 if ((ev_io *)wl != &pipe_w)
5106 if (types & EV_IO)
5107 cb (EV_A_ EV_IO, wl);
5108
5109 wl = wn;
5110 }
5111
5112 if (types & (EV_TIMER | EV_STAT))
5113 for (i = timercnt + HEAP0; i-- > HEAP0; )
5114#if EV_STAT_ENABLE
5115 /*TODO: timer is not always active*/
5116 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5117 {
5118 if (types & EV_STAT)
5119 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5120 }
5121 else
5122#endif
5123 if (types & EV_TIMER)
5124 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5125
5126#if EV_PERIODIC_ENABLE
5127 if (types & EV_PERIODIC)
5128 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5129 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5130#endif
5131
5132#if EV_IDLE_ENABLE
5133 if (types & EV_IDLE)
5134 for (j = NUMPRI; j--; )
5135 for (i = idlecnt [j]; i--; )
5136 cb (EV_A_ EV_IDLE, idles [j][i]);
5137#endif
5138
5139#if EV_FORK_ENABLE
5140 if (types & EV_FORK)
5141 for (i = forkcnt; i--; )
5142 if (ev_cb (forks [i]) != embed_fork_cb)
5143 cb (EV_A_ EV_FORK, forks [i]);
5144#endif
5145
5146#if EV_ASYNC_ENABLE
5147 if (types & EV_ASYNC)
5148 for (i = asynccnt; i--; )
5149 cb (EV_A_ EV_ASYNC, asyncs [i]);
5150#endif
5151
5152#if EV_PREPARE_ENABLE
5153 if (types & EV_PREPARE)
5154 for (i = preparecnt; i--; )
5155# if EV_EMBED_ENABLE
5156 if (ev_cb (prepares [i]) != embed_prepare_cb)
5157# endif
5158 cb (EV_A_ EV_PREPARE, prepares [i]);
5159#endif
5160
5161#if EV_CHECK_ENABLE
5162 if (types & EV_CHECK)
5163 for (i = checkcnt; i--; )
5164 cb (EV_A_ EV_CHECK, checks [i]);
5165#endif
5166
5167#if EV_SIGNAL_ENABLE
5168 if (types & EV_SIGNAL)
5169 for (i = 0; i < EV_NSIG - 1; ++i)
5170 for (wl = signals [i].head; wl; )
5171 {
5172 wn = wl->next;
5173 cb (EV_A_ EV_SIGNAL, wl);
5174 wl = wn;
5175 }
5176#endif
5177
5178#if EV_CHILD_ENABLE
5179 if (types & EV_CHILD)
5180 for (i = (EV_PID_HASHSIZE); i--; )
5181 for (wl = childs [i]; wl; )
5182 {
5183 wn = wl->next;
5184 cb (EV_A_ EV_CHILD, wl);
5185 wl = wn;
5186 }
5187#endif
5188/* EV_STAT 0x00001000 /* stat data changed */
5189/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5190}
5191#endif
5192
3088#if EV_MULTIPLICITY 5193#if EV_MULTIPLICITY
3089 #include "ev_wrap.h" 5194 #include "ev_wrap.h"
3090#endif 5195#endif
3091 5196
3092#ifdef __cplusplus
3093}
3094#endif
3095

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines