ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.264 by root, Mon Oct 13 23:20:12 2008 UTC vs.
Revision 1.506 by root, Thu Jul 11 05:41:39 2019 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
100# ifndef EV_USE_KQUEUE 120# if HAVE_LINUX_AIO_ABI_H
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 121# ifndef EV_USE_LINUXAIO
102# define EV_USE_KQUEUE 1 122# define EV_USE_LINUXAIO EV_FEATURE_BACKENDS
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_LINUXAIO
126# define EV_USE_LINUXAIO 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT 129# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
109# if HAVE_PORT_H && HAVE_PORT_CREATE 130# ifndef EV_USE_KQUEUE
110# define EV_USE_PORT 1 131# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
111# else
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_KQUEUE
135# define EV_USE_KQUEUE 0
114# endif 136# endif
115 137
138# if HAVE_PORT_H && HAVE_PORT_CREATE
116# ifndef EV_USE_INOTIFY 139# ifndef EV_USE_PORT
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 140# define EV_USE_PORT EV_FEATURE_BACKENDS
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif 141# endif
142# else
143# undef EV_USE_PORT
144# define EV_USE_PORT 0
122# endif 145# endif
123 146
147# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_INOTIFY
125# if HAVE_EVENTFD 149# define EV_USE_INOTIFY EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_INOTIFY
153# define EV_USE_INOTIFY 0
154# endif
155
156# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
157# ifndef EV_USE_SIGNALFD
158# define EV_USE_SIGNALFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_SIGNALFD
162# define EV_USE_SIGNALFD 0
163# endif
164
165# if HAVE_EVENTFD
166# ifndef EV_USE_EVENTFD
167# define EV_USE_EVENTFD EV_FEATURE_OS
168# endif
169# else
170# undef EV_USE_EVENTFD
171# define EV_USE_EVENTFD 0
130# endif 172# endif
131 173
132#endif 174#endif
133 175
134#include <math.h> 176/* OS X, in its infinite idiocy, actually HARDCODES
177 * a limit of 1024 into their select. Where people have brains,
178 * OS X engineers apparently have a vacuum. Or maybe they were
179 * ordered to have a vacuum, or they do anything for money.
180 * This might help. Or not.
181 * Note that this must be defined early, as other include files
182 * will rely on this define as well.
183 */
184#define _DARWIN_UNLIMITED_SELECT 1
185
135#include <stdlib.h> 186#include <stdlib.h>
187#include <string.h>
136#include <fcntl.h> 188#include <fcntl.h>
137#include <stddef.h> 189#include <stddef.h>
138 190
139#include <stdio.h> 191#include <stdio.h>
140 192
141#include <assert.h> 193#include <assert.h>
142#include <errno.h> 194#include <errno.h>
143#include <sys/types.h> 195#include <sys/types.h>
144#include <time.h> 196#include <time.h>
197#include <limits.h>
145 198
146#include <signal.h> 199#include <signal.h>
147 200
148#ifdef EV_H 201#ifdef EV_H
149# include EV_H 202# include EV_H
150#else 203#else
151# include "ev.h" 204# include "ev.h"
205#endif
206
207#if EV_NO_THREADS
208# undef EV_NO_SMP
209# define EV_NO_SMP 1
210# undef ECB_NO_THREADS
211# define ECB_NO_THREADS 1
212#endif
213#if EV_NO_SMP
214# undef EV_NO_SMP
215# define ECB_NO_SMP 1
152#endif 216#endif
153 217
154#ifndef _WIN32 218#ifndef _WIN32
155# include <sys/time.h> 219# include <sys/time.h>
156# include <sys/wait.h> 220# include <sys/wait.h>
157# include <unistd.h> 221# include <unistd.h>
158#else 222#else
159# include <io.h> 223# include <io.h>
160# define WIN32_LEAN_AND_MEAN 224# define WIN32_LEAN_AND_MEAN
225# include <winsock2.h>
161# include <windows.h> 226# include <windows.h>
162# ifndef EV_SELECT_IS_WINSOCKET 227# ifndef EV_SELECT_IS_WINSOCKET
163# define EV_SELECT_IS_WINSOCKET 1 228# define EV_SELECT_IS_WINSOCKET 1
164# endif 229# endif
230# undef EV_AVOID_STDIO
165#endif 231#endif
166 232
167/* this block tries to deduce configuration from header-defined symbols and defaults */ 233/* this block tries to deduce configuration from header-defined symbols and defaults */
168 234
235/* try to deduce the maximum number of signals on this platform */
236#if defined EV_NSIG
237/* use what's provided */
238#elif defined NSIG
239# define EV_NSIG (NSIG)
240#elif defined _NSIG
241# define EV_NSIG (_NSIG)
242#elif defined SIGMAX
243# define EV_NSIG (SIGMAX+1)
244#elif defined SIG_MAX
245# define EV_NSIG (SIG_MAX+1)
246#elif defined _SIG_MAX
247# define EV_NSIG (_SIG_MAX+1)
248#elif defined MAXSIG
249# define EV_NSIG (MAXSIG+1)
250#elif defined MAX_SIG
251# define EV_NSIG (MAX_SIG+1)
252#elif defined SIGARRAYSIZE
253# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
254#elif defined _sys_nsig
255# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
256#else
257# define EV_NSIG (8 * sizeof (sigset_t) + 1)
258#endif
259
260#ifndef EV_USE_FLOOR
261# define EV_USE_FLOOR 0
262#endif
263
264#ifndef EV_USE_CLOCK_SYSCALL
265# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
266# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
267# else
268# define EV_USE_CLOCK_SYSCALL 0
269# endif
270#endif
271
272#if !(_POSIX_TIMERS > 0)
273# ifndef EV_USE_MONOTONIC
274# define EV_USE_MONOTONIC 0
275# endif
276# ifndef EV_USE_REALTIME
277# define EV_USE_REALTIME 0
278# endif
279#endif
280
169#ifndef EV_USE_MONOTONIC 281#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 282# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1 283# define EV_USE_MONOTONIC EV_FEATURE_OS
172# else 284# else
173# define EV_USE_MONOTONIC 0 285# define EV_USE_MONOTONIC 0
174# endif 286# endif
175#endif 287#endif
176 288
177#ifndef EV_USE_REALTIME 289#ifndef EV_USE_REALTIME
178# define EV_USE_REALTIME 0 290# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
179#endif 291#endif
180 292
181#ifndef EV_USE_NANOSLEEP 293#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L 294# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1 295# define EV_USE_NANOSLEEP EV_FEATURE_OS
184# else 296# else
185# define EV_USE_NANOSLEEP 0 297# define EV_USE_NANOSLEEP 0
186# endif 298# endif
187#endif 299#endif
188 300
189#ifndef EV_USE_SELECT 301#ifndef EV_USE_SELECT
190# define EV_USE_SELECT 1 302# define EV_USE_SELECT EV_FEATURE_BACKENDS
191#endif 303#endif
192 304
193#ifndef EV_USE_POLL 305#ifndef EV_USE_POLL
194# ifdef _WIN32 306# ifdef _WIN32
195# define EV_USE_POLL 0 307# define EV_USE_POLL 0
196# else 308# else
197# define EV_USE_POLL 1 309# define EV_USE_POLL EV_FEATURE_BACKENDS
198# endif 310# endif
199#endif 311#endif
200 312
201#ifndef EV_USE_EPOLL 313#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 314# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1 315# define EV_USE_EPOLL EV_FEATURE_BACKENDS
204# else 316# else
205# define EV_USE_EPOLL 0 317# define EV_USE_EPOLL 0
206# endif 318# endif
207#endif 319#endif
208 320
212 324
213#ifndef EV_USE_PORT 325#ifndef EV_USE_PORT
214# define EV_USE_PORT 0 326# define EV_USE_PORT 0
215#endif 327#endif
216 328
329#ifndef EV_USE_LINUXAIO
330# if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
331# define EV_USE_LINUXAIO 1
332# else
333# define EV_USE_LINUXAIO 0
334# endif
335#endif
336
337#ifndef EV_USE_IOURING
338# if __linux
339# define EV_USE_IOURING 0
340# else
341# define EV_USE_IOURING 0
342# endif
343#endif
344
217#ifndef EV_USE_INOTIFY 345#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 346# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1 347# define EV_USE_INOTIFY EV_FEATURE_OS
220# else 348# else
221# define EV_USE_INOTIFY 0 349# define EV_USE_INOTIFY 0
222# endif 350# endif
223#endif 351#endif
224 352
225#ifndef EV_PID_HASHSIZE 353#ifndef EV_PID_HASHSIZE
226# if EV_MINIMAL 354# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
230# endif
231#endif 355#endif
232 356
233#ifndef EV_INOTIFY_HASHSIZE 357#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL 358# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif 359#endif
240 360
241#ifndef EV_USE_EVENTFD 361#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 362# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1 363# define EV_USE_EVENTFD EV_FEATURE_OS
244# else 364# else
245# define EV_USE_EVENTFD 0 365# define EV_USE_EVENTFD 0
366# endif
367#endif
368
369#ifndef EV_USE_SIGNALFD
370# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
371# define EV_USE_SIGNALFD EV_FEATURE_OS
372# else
373# define EV_USE_SIGNALFD 0
246# endif 374# endif
247#endif 375#endif
248 376
249#if 0 /* debugging */ 377#if 0 /* debugging */
250# define EV_VERIFY 3 378# define EV_VERIFY 3
251# define EV_USE_4HEAP 1 379# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1 380# define EV_HEAP_CACHE_AT 1
253#endif 381#endif
254 382
255#ifndef EV_VERIFY 383#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL 384# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
257#endif 385#endif
258 386
259#ifndef EV_USE_4HEAP 387#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL 388# define EV_USE_4HEAP EV_FEATURE_DATA
261#endif 389#endif
262 390
263#ifndef EV_HEAP_CACHE_AT 391#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL 392# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
393#endif
394
395#ifdef __ANDROID__
396/* supposedly, android doesn't typedef fd_mask */
397# undef EV_USE_SELECT
398# define EV_USE_SELECT 0
399/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
400# undef EV_USE_CLOCK_SYSCALL
401# define EV_USE_CLOCK_SYSCALL 0
402#endif
403
404/* aix's poll.h seems to cause lots of trouble */
405#ifdef _AIX
406/* AIX has a completely broken poll.h header */
407# undef EV_USE_POLL
408# define EV_USE_POLL 0
409#endif
410
411/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
412/* which makes programs even slower. might work on other unices, too. */
413#if EV_USE_CLOCK_SYSCALL
414# include <sys/syscall.h>
415# ifdef SYS_clock_gettime
416# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
417# undef EV_USE_MONOTONIC
418# define EV_USE_MONOTONIC 1
419# define EV_NEED_SYSCALL 1
420# else
421# undef EV_USE_CLOCK_SYSCALL
422# define EV_USE_CLOCK_SYSCALL 0
423# endif
265#endif 424#endif
266 425
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 426/* this block fixes any misconfiguration where we know we run into trouble otherwise */
268 427
269#ifndef CLOCK_MONOTONIC 428#ifndef CLOCK_MONOTONIC
280# undef EV_USE_INOTIFY 439# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0 440# define EV_USE_INOTIFY 0
282#endif 441#endif
283 442
284#if !EV_USE_NANOSLEEP 443#if !EV_USE_NANOSLEEP
285# ifndef _WIN32 444/* hp-ux has it in sys/time.h, which we unconditionally include above */
445# if !defined _WIN32 && !defined __hpux
286# include <sys/select.h> 446# include <sys/select.h>
287# endif 447# endif
288#endif 448#endif
289 449
450#if EV_USE_LINUXAIO
451# include <sys/syscall.h>
452# if SYS_io_getevents && EV_USE_EPOLL /* linuxaio backend requires epoll backend */
453# define EV_NEED_SYSCALL 1
454# else
455# undef EV_USE_LINUXAIO
456# define EV_USE_LINUXAIO 0
457# endif
458#endif
459
460#if EV_USE_IOURING
461# include <sys/syscall.h>
462# if !SYS_io_uring_setup && __linux && !__alpha
463# define SYS_io_uring_setup 425
464# define SYS_io_uring_enter 426
465# define SYS_io_uring_wregister 427
466# endif
467# if SYS_io_uring_setup && EV_USE_EPOLL /* iouring backend requires epoll backend */
468# define EV_NEED_SYSCALL 1
469# else
470# undef EV_USE_IOURING
471# define EV_USE_IOURING 0
472# endif
473#endif
474
290#if EV_USE_INOTIFY 475#if EV_USE_INOTIFY
291# include <sys/utsname.h> 476# include <sys/statfs.h>
292# include <sys/inotify.h> 477# include <sys/inotify.h>
293/* some very old inotify.h headers don't have IN_DONT_FOLLOW */ 478/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
294# ifndef IN_DONT_FOLLOW 479# ifndef IN_DONT_FOLLOW
295# undef EV_USE_INOTIFY 480# undef EV_USE_INOTIFY
296# define EV_USE_INOTIFY 0 481# define EV_USE_INOTIFY 0
297# endif 482# endif
298#endif 483#endif
299 484
300#if EV_SELECT_IS_WINSOCKET
301# include <winsock.h>
302#endif
303
304#if EV_USE_EVENTFD 485#if EV_USE_EVENTFD
305/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 486/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
306# include <stdint.h> 487# include <stdint.h>
307# ifdef __cplusplus 488# ifndef EFD_NONBLOCK
308extern "C" { 489# define EFD_NONBLOCK O_NONBLOCK
309# endif 490# endif
310int eventfd (unsigned int initval, int flags); 491# ifndef EFD_CLOEXEC
311# ifdef __cplusplus 492# ifdef O_CLOEXEC
312} 493# define EFD_CLOEXEC O_CLOEXEC
494# else
495# define EFD_CLOEXEC 02000000
496# endif
313# endif 497# endif
498EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
499#endif
500
501#if EV_USE_SIGNALFD
502/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
503# include <stdint.h>
504# ifndef SFD_NONBLOCK
505# define SFD_NONBLOCK O_NONBLOCK
314#endif 506# endif
507# ifndef SFD_CLOEXEC
508# ifdef O_CLOEXEC
509# define SFD_CLOEXEC O_CLOEXEC
510# else
511# define SFD_CLOEXEC 02000000
512# endif
513# endif
514EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
315 515
316/**/ 516struct signalfd_siginfo
517{
518 uint32_t ssi_signo;
519 char pad[128 - sizeof (uint32_t)];
520};
521#endif
522
523/*****************************************************************************/
317 524
318#if EV_VERIFY >= 3 525#if EV_VERIFY >= 3
319# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 526# define EV_FREQUENT_CHECK ev_verify (EV_A)
320#else 527#else
321# define EV_FREQUENT_CHECK do { } while (0) 528# define EV_FREQUENT_CHECK do { } while (0)
322#endif 529#endif
323 530
324/* 531/*
325 * This is used to avoid floating point rounding problems. 532 * This is used to work around floating point rounding problems.
326 * It is added to ev_rt_now when scheduling periodics
327 * to ensure progress, time-wise, even when rounding
328 * errors are against us.
329 * This value is good at least till the year 4000. 533 * This value is good at least till the year 4000.
330 * Better solutions welcome.
331 */ 534 */
332#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 535#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
536/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
333 537
334#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 538#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
335#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 539#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
336/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
337 540
541/* find a portable timestamp that is "always" in the future but fits into time_t.
542 * this is quite hard, and we are mostly guessing - we handle 32 bit signed/unsigned time_t,
543 * and sizes larger than 32 bit, and maybe the unlikely floating point time_t */
544#define EV_TSTAMP_HUGE \
545 (sizeof (time_t) >= 8 ? 10000000000000. \
546 : 0 < (time_t)4294967295 ? 4294967295. \
547 : 2147483647.) \
548
549#define EV_TS_TO_MS(a) a * 1e3 + 0.9999
550#define EV_TS_FROM_US(us) us * 1e-6
551#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
552#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
553#define EV_TV_GET(tv) ((tv).tv_sec + (tv).tv_usec * 1e-6)
554#define EV_TS_GET(ts) ((ts).tv_sec + (ts).tv_nsec * 1e-9)
555
556/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
557/* ECB.H BEGIN */
558/*
559 * libecb - http://software.schmorp.de/pkg/libecb
560 *
561 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
562 * Copyright (©) 2011 Emanuele Giaquinta
563 * All rights reserved.
564 *
565 * Redistribution and use in source and binary forms, with or without modifica-
566 * tion, are permitted provided that the following conditions are met:
567 *
568 * 1. Redistributions of source code must retain the above copyright notice,
569 * this list of conditions and the following disclaimer.
570 *
571 * 2. Redistributions in binary form must reproduce the above copyright
572 * notice, this list of conditions and the following disclaimer in the
573 * documentation and/or other materials provided with the distribution.
574 *
575 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
576 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
577 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
578 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
579 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
580 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
581 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
582 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
583 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
584 * OF THE POSSIBILITY OF SUCH DAMAGE.
585 *
586 * Alternatively, the contents of this file may be used under the terms of
587 * the GNU General Public License ("GPL") version 2 or any later version,
588 * in which case the provisions of the GPL are applicable instead of
589 * the above. If you wish to allow the use of your version of this file
590 * only under the terms of the GPL and not to allow others to use your
591 * version of this file under the BSD license, indicate your decision
592 * by deleting the provisions above and replace them with the notice
593 * and other provisions required by the GPL. If you do not delete the
594 * provisions above, a recipient may use your version of this file under
595 * either the BSD or the GPL.
596 */
597
598#ifndef ECB_H
599#define ECB_H
600
601/* 16 bits major, 16 bits minor */
602#define ECB_VERSION 0x00010006
603
604#ifdef _WIN32
605 typedef signed char int8_t;
606 typedef unsigned char uint8_t;
607 typedef signed short int16_t;
608 typedef unsigned short uint16_t;
609 typedef signed int int32_t;
610 typedef unsigned int uint32_t;
338#if __GNUC__ >= 4 611 #if __GNUC__
339# define expect(expr,value) __builtin_expect ((expr),(value)) 612 typedef signed long long int64_t;
340# define noinline __attribute__ ((noinline)) 613 typedef unsigned long long uint64_t;
614 #else /* _MSC_VER || __BORLANDC__ */
615 typedef signed __int64 int64_t;
616 typedef unsigned __int64 uint64_t;
617 #endif
618 #ifdef _WIN64
619 #define ECB_PTRSIZE 8
620 typedef uint64_t uintptr_t;
621 typedef int64_t intptr_t;
622 #else
623 #define ECB_PTRSIZE 4
624 typedef uint32_t uintptr_t;
625 typedef int32_t intptr_t;
626 #endif
341#else 627#else
342# define expect(expr,value) (expr) 628 #include <inttypes.h>
343# define noinline 629 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
344# if __STDC_VERSION__ < 199901L && __GNUC__ < 2 630 #define ECB_PTRSIZE 8
345# define inline 631 #else
632 #define ECB_PTRSIZE 4
633 #endif
346# endif 634#endif
635
636#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
637#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
638
639/* work around x32 idiocy by defining proper macros */
640#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
641 #if _ILP32
642 #define ECB_AMD64_X32 1
643 #else
644 #define ECB_AMD64 1
347#endif 645 #endif
646#endif
348 647
349#define expect_false(expr) expect ((expr) != 0, 0) 648/* many compilers define _GNUC_ to some versions but then only implement
350#define expect_true(expr) expect ((expr) != 0, 1) 649 * what their idiot authors think are the "more important" extensions,
351#define inline_size static inline 650 * causing enormous grief in return for some better fake benchmark numbers.
352 651 * or so.
353#if EV_MINIMAL 652 * we try to detect these and simply assume they are not gcc - if they have
354# define inline_speed static noinline 653 * an issue with that they should have done it right in the first place.
654 */
655#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
656 #define ECB_GCC_VERSION(major,minor) 0
355#else 657#else
658 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
659#endif
660
661#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
662
663#if __clang__ && defined __has_builtin
664 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
665#else
666 #define ECB_CLANG_BUILTIN(x) 0
667#endif
668
669#if __clang__ && defined __has_extension
670 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
671#else
672 #define ECB_CLANG_EXTENSION(x) 0
673#endif
674
675#define ECB_CPP (__cplusplus+0)
676#define ECB_CPP11 (__cplusplus >= 201103L)
677#define ECB_CPP14 (__cplusplus >= 201402L)
678#define ECB_CPP17 (__cplusplus >= 201703L)
679
680#if ECB_CPP
681 #define ECB_C 0
682 #define ECB_STDC_VERSION 0
683#else
684 #define ECB_C 1
685 #define ECB_STDC_VERSION __STDC_VERSION__
686#endif
687
688#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
689#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
690#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
691
692#if ECB_CPP
693 #define ECB_EXTERN_C extern "C"
694 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
695 #define ECB_EXTERN_C_END }
696#else
697 #define ECB_EXTERN_C extern
698 #define ECB_EXTERN_C_BEG
699 #define ECB_EXTERN_C_END
700#endif
701
702/*****************************************************************************/
703
704/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
705/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
706
707#if ECB_NO_THREADS
708 #define ECB_NO_SMP 1
709#endif
710
711#if ECB_NO_SMP
712 #define ECB_MEMORY_FENCE do { } while (0)
713#endif
714
715/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
716#if __xlC__ && ECB_CPP
717 #include <builtins.h>
718#endif
719
720#if 1400 <= _MSC_VER
721 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
722#endif
723
724#ifndef ECB_MEMORY_FENCE
725 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
726 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
727 #if __i386 || __i386__
728 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
729 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
730 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
731 #elif ECB_GCC_AMD64
732 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
733 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
734 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
735 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
736 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
737 #elif defined __ARM_ARCH_2__ \
738 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
739 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
740 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
741 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
742 || defined __ARM_ARCH_5TEJ__
743 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
744 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
745 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
746 || defined __ARM_ARCH_6T2__
747 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
748 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
749 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
750 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
751 #elif __aarch64__
752 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
753 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
754 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
755 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
756 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
757 #elif defined __s390__ || defined __s390x__
758 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
759 #elif defined __mips__
760 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
761 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
762 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
763 #elif defined __alpha__
764 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
765 #elif defined __hppa__
766 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
767 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
768 #elif defined __ia64__
769 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
770 #elif defined __m68k__
771 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
772 #elif defined __m88k__
773 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
774 #elif defined __sh__
775 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
776 #endif
777 #endif
778#endif
779
780#ifndef ECB_MEMORY_FENCE
781 #if ECB_GCC_VERSION(4,7)
782 /* see comment below (stdatomic.h) about the C11 memory model. */
783 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
784 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
785 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
786 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
787
788 #elif ECB_CLANG_EXTENSION(c_atomic)
789 /* see comment below (stdatomic.h) about the C11 memory model. */
790 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
791 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
792 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
793 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
794
795 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
796 #define ECB_MEMORY_FENCE __sync_synchronize ()
797 #elif _MSC_VER >= 1500 /* VC++ 2008 */
798 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
799 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
800 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
801 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
802 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
803 #elif _MSC_VER >= 1400 /* VC++ 2005 */
804 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
805 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
806 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
807 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
808 #elif defined _WIN32
809 #include <WinNT.h>
810 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
811 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
812 #include <mbarrier.h>
813 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
814 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
815 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
816 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
817 #elif __xlC__
818 #define ECB_MEMORY_FENCE __sync ()
819 #endif
820#endif
821
822#ifndef ECB_MEMORY_FENCE
823 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
824 /* we assume that these memory fences work on all variables/all memory accesses, */
825 /* not just C11 atomics and atomic accesses */
826 #include <stdatomic.h>
827 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
828 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
829 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
830 #endif
831#endif
832
833#ifndef ECB_MEMORY_FENCE
834 #if !ECB_AVOID_PTHREADS
835 /*
836 * if you get undefined symbol references to pthread_mutex_lock,
837 * or failure to find pthread.h, then you should implement
838 * the ECB_MEMORY_FENCE operations for your cpu/compiler
839 * OR provide pthread.h and link against the posix thread library
840 * of your system.
841 */
842 #include <pthread.h>
843 #define ECB_NEEDS_PTHREADS 1
844 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
845
846 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
847 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
848 #endif
849#endif
850
851#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
852 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
853#endif
854
855#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
856 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
857#endif
858
859#if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
860 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
861#endif
862
863/*****************************************************************************/
864
865#if ECB_CPP
866 #define ecb_inline static inline
867#elif ECB_GCC_VERSION(2,5)
868 #define ecb_inline static __inline__
869#elif ECB_C99
870 #define ecb_inline static inline
871#else
872 #define ecb_inline static
873#endif
874
875#if ECB_GCC_VERSION(3,3)
876 #define ecb_restrict __restrict__
877#elif ECB_C99
878 #define ecb_restrict restrict
879#else
880 #define ecb_restrict
881#endif
882
883typedef int ecb_bool;
884
885#define ECB_CONCAT_(a, b) a ## b
886#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
887#define ECB_STRINGIFY_(a) # a
888#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
889#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
890
891#define ecb_function_ ecb_inline
892
893#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
894 #define ecb_attribute(attrlist) __attribute__ (attrlist)
895#else
896 #define ecb_attribute(attrlist)
897#endif
898
899#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
900 #define ecb_is_constant(expr) __builtin_constant_p (expr)
901#else
902 /* possible C11 impl for integral types
903 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
904 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
905
906 #define ecb_is_constant(expr) 0
907#endif
908
909#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
910 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
911#else
912 #define ecb_expect(expr,value) (expr)
913#endif
914
915#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
916 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
917#else
918 #define ecb_prefetch(addr,rw,locality)
919#endif
920
921/* no emulation for ecb_decltype */
922#if ECB_CPP11
923 // older implementations might have problems with decltype(x)::type, work around it
924 template<class T> struct ecb_decltype_t { typedef T type; };
925 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
926#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
927 #define ecb_decltype(x) __typeof__ (x)
928#endif
929
930#if _MSC_VER >= 1300
931 #define ecb_deprecated __declspec (deprecated)
932#else
933 #define ecb_deprecated ecb_attribute ((__deprecated__))
934#endif
935
936#if _MSC_VER >= 1500
937 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
938#elif ECB_GCC_VERSION(4,5)
939 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
940#else
941 #define ecb_deprecated_message(msg) ecb_deprecated
942#endif
943
944#if _MSC_VER >= 1400
945 #define ecb_noinline __declspec (noinline)
946#else
947 #define ecb_noinline ecb_attribute ((__noinline__))
948#endif
949
950#define ecb_unused ecb_attribute ((__unused__))
951#define ecb_const ecb_attribute ((__const__))
952#define ecb_pure ecb_attribute ((__pure__))
953
954#if ECB_C11 || __IBMC_NORETURN
955 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
956 #define ecb_noreturn _Noreturn
957#elif ECB_CPP11
958 #define ecb_noreturn [[noreturn]]
959#elif _MSC_VER >= 1200
960 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
961 #define ecb_noreturn __declspec (noreturn)
962#else
963 #define ecb_noreturn ecb_attribute ((__noreturn__))
964#endif
965
966#if ECB_GCC_VERSION(4,3)
967 #define ecb_artificial ecb_attribute ((__artificial__))
968 #define ecb_hot ecb_attribute ((__hot__))
969 #define ecb_cold ecb_attribute ((__cold__))
970#else
971 #define ecb_artificial
972 #define ecb_hot
973 #define ecb_cold
974#endif
975
976/* put around conditional expressions if you are very sure that the */
977/* expression is mostly true or mostly false. note that these return */
978/* booleans, not the expression. */
979#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
980#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
981/* for compatibility to the rest of the world */
982#define ecb_likely(expr) ecb_expect_true (expr)
983#define ecb_unlikely(expr) ecb_expect_false (expr)
984
985/* count trailing zero bits and count # of one bits */
986#if ECB_GCC_VERSION(3,4) \
987 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
988 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
989 && ECB_CLANG_BUILTIN(__builtin_popcount))
990 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
991 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
992 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
993 #define ecb_ctz32(x) __builtin_ctz (x)
994 #define ecb_ctz64(x) __builtin_ctzll (x)
995 #define ecb_popcount32(x) __builtin_popcount (x)
996 /* no popcountll */
997#else
998 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
999 ecb_function_ ecb_const int
1000 ecb_ctz32 (uint32_t x)
1001 {
1002#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1003 unsigned long r;
1004 _BitScanForward (&r, x);
1005 return (int)r;
1006#else
1007 int r = 0;
1008
1009 x &= ~x + 1; /* this isolates the lowest bit */
1010
1011#if ECB_branchless_on_i386
1012 r += !!(x & 0xaaaaaaaa) << 0;
1013 r += !!(x & 0xcccccccc) << 1;
1014 r += !!(x & 0xf0f0f0f0) << 2;
1015 r += !!(x & 0xff00ff00) << 3;
1016 r += !!(x & 0xffff0000) << 4;
1017#else
1018 if (x & 0xaaaaaaaa) r += 1;
1019 if (x & 0xcccccccc) r += 2;
1020 if (x & 0xf0f0f0f0) r += 4;
1021 if (x & 0xff00ff00) r += 8;
1022 if (x & 0xffff0000) r += 16;
1023#endif
1024
1025 return r;
1026#endif
1027 }
1028
1029 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
1030 ecb_function_ ecb_const int
1031 ecb_ctz64 (uint64_t x)
1032 {
1033#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1034 unsigned long r;
1035 _BitScanForward64 (&r, x);
1036 return (int)r;
1037#else
1038 int shift = x & 0xffffffff ? 0 : 32;
1039 return ecb_ctz32 (x >> shift) + shift;
1040#endif
1041 }
1042
1043 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1044 ecb_function_ ecb_const int
1045 ecb_popcount32 (uint32_t x)
1046 {
1047 x -= (x >> 1) & 0x55555555;
1048 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1049 x = ((x >> 4) + x) & 0x0f0f0f0f;
1050 x *= 0x01010101;
1051
1052 return x >> 24;
1053 }
1054
1055 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1056 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1057 {
1058#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1059 unsigned long r;
1060 _BitScanReverse (&r, x);
1061 return (int)r;
1062#else
1063 int r = 0;
1064
1065 if (x >> 16) { x >>= 16; r += 16; }
1066 if (x >> 8) { x >>= 8; r += 8; }
1067 if (x >> 4) { x >>= 4; r += 4; }
1068 if (x >> 2) { x >>= 2; r += 2; }
1069 if (x >> 1) { r += 1; }
1070
1071 return r;
1072#endif
1073 }
1074
1075 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1076 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1077 {
1078#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1079 unsigned long r;
1080 _BitScanReverse64 (&r, x);
1081 return (int)r;
1082#else
1083 int r = 0;
1084
1085 if (x >> 32) { x >>= 32; r += 32; }
1086
1087 return r + ecb_ld32 (x);
1088#endif
1089 }
1090#endif
1091
1092ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1093ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1094ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1095ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1096
1097ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1098ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1099{
1100 return ( (x * 0x0802U & 0x22110U)
1101 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1102}
1103
1104ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1105ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1106{
1107 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1108 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1109 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1110 x = ( x >> 8 ) | ( x << 8);
1111
1112 return x;
1113}
1114
1115ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1116ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1117{
1118 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1119 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1120 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1121 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1122 x = ( x >> 16 ) | ( x << 16);
1123
1124 return x;
1125}
1126
1127/* popcount64 is only available on 64 bit cpus as gcc builtin */
1128/* so for this version we are lazy */
1129ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1130ecb_function_ ecb_const int
1131ecb_popcount64 (uint64_t x)
1132{
1133 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1134}
1135
1136ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1137ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1138ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1139ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1140ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1141ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1142ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1143ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1144
1145ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1146ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1147ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1148ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1149ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1150ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1151ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1152ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1153
1154#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1155 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1156 #define ecb_bswap16(x) __builtin_bswap16 (x)
1157 #else
1158 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1159 #endif
1160 #define ecb_bswap32(x) __builtin_bswap32 (x)
1161 #define ecb_bswap64(x) __builtin_bswap64 (x)
1162#elif _MSC_VER
1163 #include <stdlib.h>
1164 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1165 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1166 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1167#else
1168 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1169 ecb_function_ ecb_const uint16_t
1170 ecb_bswap16 (uint16_t x)
1171 {
1172 return ecb_rotl16 (x, 8);
1173 }
1174
1175 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1176 ecb_function_ ecb_const uint32_t
1177 ecb_bswap32 (uint32_t x)
1178 {
1179 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1180 }
1181
1182 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1183 ecb_function_ ecb_const uint64_t
1184 ecb_bswap64 (uint64_t x)
1185 {
1186 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1187 }
1188#endif
1189
1190#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1191 #define ecb_unreachable() __builtin_unreachable ()
1192#else
1193 /* this seems to work fine, but gcc always emits a warning for it :/ */
1194 ecb_inline ecb_noreturn void ecb_unreachable (void);
1195 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1196#endif
1197
1198/* try to tell the compiler that some condition is definitely true */
1199#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1200
1201ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1202ecb_inline ecb_const uint32_t
1203ecb_byteorder_helper (void)
1204{
1205 /* the union code still generates code under pressure in gcc, */
1206 /* but less than using pointers, and always seems to */
1207 /* successfully return a constant. */
1208 /* the reason why we have this horrible preprocessor mess */
1209 /* is to avoid it in all cases, at least on common architectures */
1210 /* or when using a recent enough gcc version (>= 4.6) */
1211#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1212 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1213 #define ECB_LITTLE_ENDIAN 1
1214 return 0x44332211;
1215#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1216 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1217 #define ECB_BIG_ENDIAN 1
1218 return 0x11223344;
1219#else
1220 union
1221 {
1222 uint8_t c[4];
1223 uint32_t u;
1224 } u = { 0x11, 0x22, 0x33, 0x44 };
1225 return u.u;
1226#endif
1227}
1228
1229ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1230ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1231ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1232ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1233
1234#if ECB_GCC_VERSION(3,0) || ECB_C99
1235 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1236#else
1237 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1238#endif
1239
1240#if ECB_CPP
1241 template<typename T>
1242 static inline T ecb_div_rd (T val, T div)
1243 {
1244 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1245 }
1246 template<typename T>
1247 static inline T ecb_div_ru (T val, T div)
1248 {
1249 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1250 }
1251#else
1252 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1253 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1254#endif
1255
1256#if ecb_cplusplus_does_not_suck
1257 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1258 template<typename T, int N>
1259 static inline int ecb_array_length (const T (&arr)[N])
1260 {
1261 return N;
1262 }
1263#else
1264 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1265#endif
1266
1267ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1268ecb_function_ ecb_const uint32_t
1269ecb_binary16_to_binary32 (uint32_t x)
1270{
1271 unsigned int s = (x & 0x8000) << (31 - 15);
1272 int e = (x >> 10) & 0x001f;
1273 unsigned int m = x & 0x03ff;
1274
1275 if (ecb_expect_false (e == 31))
1276 /* infinity or NaN */
1277 e = 255 - (127 - 15);
1278 else if (ecb_expect_false (!e))
1279 {
1280 if (ecb_expect_true (!m))
1281 /* zero, handled by code below by forcing e to 0 */
1282 e = 0 - (127 - 15);
1283 else
1284 {
1285 /* subnormal, renormalise */
1286 unsigned int s = 10 - ecb_ld32 (m);
1287
1288 m = (m << s) & 0x3ff; /* mask implicit bit */
1289 e -= s - 1;
1290 }
1291 }
1292
1293 /* e and m now are normalised, or zero, (or inf or nan) */
1294 e += 127 - 15;
1295
1296 return s | (e << 23) | (m << (23 - 10));
1297}
1298
1299ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1300ecb_function_ ecb_const uint16_t
1301ecb_binary32_to_binary16 (uint32_t x)
1302{
1303 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1304 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1305 unsigned int m = x & 0x007fffff;
1306
1307 x &= 0x7fffffff;
1308
1309 /* if it's within range of binary16 normals, use fast path */
1310 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1311 {
1312 /* mantissa round-to-even */
1313 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1314
1315 /* handle overflow */
1316 if (ecb_expect_false (m >= 0x00800000))
1317 {
1318 m >>= 1;
1319 e += 1;
1320 }
1321
1322 return s | (e << 10) | (m >> (23 - 10));
1323 }
1324
1325 /* handle large numbers and infinity */
1326 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1327 return s | 0x7c00;
1328
1329 /* handle zero, subnormals and small numbers */
1330 if (ecb_expect_true (x < 0x38800000))
1331 {
1332 /* zero */
1333 if (ecb_expect_true (!x))
1334 return s;
1335
1336 /* handle subnormals */
1337
1338 /* too small, will be zero */
1339 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1340 return s;
1341
1342 m |= 0x00800000; /* make implicit bit explicit */
1343
1344 /* very tricky - we need to round to the nearest e (+10) bit value */
1345 {
1346 unsigned int bits = 14 - e;
1347 unsigned int half = (1 << (bits - 1)) - 1;
1348 unsigned int even = (m >> bits) & 1;
1349
1350 /* if this overflows, we will end up with a normalised number */
1351 m = (m + half + even) >> bits;
1352 }
1353
1354 return s | m;
1355 }
1356
1357 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1358 m >>= 13;
1359
1360 return s | 0x7c00 | m | !m;
1361}
1362
1363/*******************************************************************************/
1364/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1365
1366/* basically, everything uses "ieee pure-endian" floating point numbers */
1367/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1368#if 0 \
1369 || __i386 || __i386__ \
1370 || ECB_GCC_AMD64 \
1371 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1372 || defined __s390__ || defined __s390x__ \
1373 || defined __mips__ \
1374 || defined __alpha__ \
1375 || defined __hppa__ \
1376 || defined __ia64__ \
1377 || defined __m68k__ \
1378 || defined __m88k__ \
1379 || defined __sh__ \
1380 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1381 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1382 || defined __aarch64__
1383 #define ECB_STDFP 1
1384 #include <string.h> /* for memcpy */
1385#else
1386 #define ECB_STDFP 0
1387#endif
1388
1389#ifndef ECB_NO_LIBM
1390
1391 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1392
1393 /* only the oldest of old doesn't have this one. solaris. */
1394 #ifdef INFINITY
1395 #define ECB_INFINITY INFINITY
1396 #else
1397 #define ECB_INFINITY HUGE_VAL
1398 #endif
1399
1400 #ifdef NAN
1401 #define ECB_NAN NAN
1402 #else
1403 #define ECB_NAN ECB_INFINITY
1404 #endif
1405
1406 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1407 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1408 #define ecb_frexpf(x,e) frexpf ((x), (e))
1409 #else
1410 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1411 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1412 #endif
1413
1414 /* convert a float to ieee single/binary32 */
1415 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1416 ecb_function_ ecb_const uint32_t
1417 ecb_float_to_binary32 (float x)
1418 {
1419 uint32_t r;
1420
1421 #if ECB_STDFP
1422 memcpy (&r, &x, 4);
1423 #else
1424 /* slow emulation, works for anything but -0 */
1425 uint32_t m;
1426 int e;
1427
1428 if (x == 0e0f ) return 0x00000000U;
1429 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1430 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1431 if (x != x ) return 0x7fbfffffU;
1432
1433 m = ecb_frexpf (x, &e) * 0x1000000U;
1434
1435 r = m & 0x80000000U;
1436
1437 if (r)
1438 m = -m;
1439
1440 if (e <= -126)
1441 {
1442 m &= 0xffffffU;
1443 m >>= (-125 - e);
1444 e = -126;
1445 }
1446
1447 r |= (e + 126) << 23;
1448 r |= m & 0x7fffffU;
1449 #endif
1450
1451 return r;
1452 }
1453
1454 /* converts an ieee single/binary32 to a float */
1455 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1456 ecb_function_ ecb_const float
1457 ecb_binary32_to_float (uint32_t x)
1458 {
1459 float r;
1460
1461 #if ECB_STDFP
1462 memcpy (&r, &x, 4);
1463 #else
1464 /* emulation, only works for normals and subnormals and +0 */
1465 int neg = x >> 31;
1466 int e = (x >> 23) & 0xffU;
1467
1468 x &= 0x7fffffU;
1469
1470 if (e)
1471 x |= 0x800000U;
1472 else
1473 e = 1;
1474
1475 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1476 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1477
1478 r = neg ? -r : r;
1479 #endif
1480
1481 return r;
1482 }
1483
1484 /* convert a double to ieee double/binary64 */
1485 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1486 ecb_function_ ecb_const uint64_t
1487 ecb_double_to_binary64 (double x)
1488 {
1489 uint64_t r;
1490
1491 #if ECB_STDFP
1492 memcpy (&r, &x, 8);
1493 #else
1494 /* slow emulation, works for anything but -0 */
1495 uint64_t m;
1496 int e;
1497
1498 if (x == 0e0 ) return 0x0000000000000000U;
1499 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1500 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1501 if (x != x ) return 0X7ff7ffffffffffffU;
1502
1503 m = frexp (x, &e) * 0x20000000000000U;
1504
1505 r = m & 0x8000000000000000;;
1506
1507 if (r)
1508 m = -m;
1509
1510 if (e <= -1022)
1511 {
1512 m &= 0x1fffffffffffffU;
1513 m >>= (-1021 - e);
1514 e = -1022;
1515 }
1516
1517 r |= ((uint64_t)(e + 1022)) << 52;
1518 r |= m & 0xfffffffffffffU;
1519 #endif
1520
1521 return r;
1522 }
1523
1524 /* converts an ieee double/binary64 to a double */
1525 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1526 ecb_function_ ecb_const double
1527 ecb_binary64_to_double (uint64_t x)
1528 {
1529 double r;
1530
1531 #if ECB_STDFP
1532 memcpy (&r, &x, 8);
1533 #else
1534 /* emulation, only works for normals and subnormals and +0 */
1535 int neg = x >> 63;
1536 int e = (x >> 52) & 0x7ffU;
1537
1538 x &= 0xfffffffffffffU;
1539
1540 if (e)
1541 x |= 0x10000000000000U;
1542 else
1543 e = 1;
1544
1545 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1546 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1547
1548 r = neg ? -r : r;
1549 #endif
1550
1551 return r;
1552 }
1553
1554 /* convert a float to ieee half/binary16 */
1555 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1556 ecb_function_ ecb_const uint16_t
1557 ecb_float_to_binary16 (float x)
1558 {
1559 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1560 }
1561
1562 /* convert an ieee half/binary16 to float */
1563 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1564 ecb_function_ ecb_const float
1565 ecb_binary16_to_float (uint16_t x)
1566 {
1567 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1568 }
1569
1570#endif
1571
1572#endif
1573
1574/* ECB.H END */
1575
1576#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1577/* if your architecture doesn't need memory fences, e.g. because it is
1578 * single-cpu/core, or if you use libev in a project that doesn't use libev
1579 * from multiple threads, then you can define ECB_NO_THREADS when compiling
1580 * libev, in which cases the memory fences become nops.
1581 * alternatively, you can remove this #error and link against libpthread,
1582 * which will then provide the memory fences.
1583 */
1584# error "memory fences not defined for your architecture, please report"
1585#endif
1586
1587#ifndef ECB_MEMORY_FENCE
1588# define ECB_MEMORY_FENCE do { } while (0)
1589# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1590# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1591#endif
1592
1593#define inline_size ecb_inline
1594
1595#if EV_FEATURE_CODE
356# define inline_speed static inline 1596# define inline_speed ecb_inline
1597#else
1598# define inline_speed ecb_noinline static
357#endif 1599#endif
358 1600
1601/*****************************************************************************/
1602/* raw syscall wrappers */
1603
1604#if EV_NEED_SYSCALL
1605
1606#include <sys/syscall.h>
1607
1608/*
1609 * define some syscall wrappers for common architectures
1610 * this is mostly for nice looks during debugging, not performance.
1611 * our syscalls return < 0, not == -1, on error. which is good
1612 * enough for linux aio.
1613 * TODO: arm is also common nowadays, maybe even mips and x86
1614 * TODO: after implementing this, it suddenly looks like overkill, but its hard to remove...
1615 */
1616#if __GNUC__ && __linux && ECB_AMD64 && !defined __OPTIMIZE_SIZE__
1617 /* the costly errno access probably kills this for size optimisation */
1618
1619 #define ev_syscall(nr,narg,arg1,arg2,arg3,arg4,arg5,arg6) \
1620 ({ \
1621 long res; \
1622 register unsigned long r6 __asm__ ("r9" ); \
1623 register unsigned long r5 __asm__ ("r8" ); \
1624 register unsigned long r4 __asm__ ("r10"); \
1625 register unsigned long r3 __asm__ ("rdx"); \
1626 register unsigned long r2 __asm__ ("rsi"); \
1627 register unsigned long r1 __asm__ ("rdi"); \
1628 if (narg >= 6) r6 = (unsigned long)(arg6); \
1629 if (narg >= 5) r5 = (unsigned long)(arg5); \
1630 if (narg >= 4) r4 = (unsigned long)(arg4); \
1631 if (narg >= 3) r3 = (unsigned long)(arg3); \
1632 if (narg >= 2) r2 = (unsigned long)(arg2); \
1633 if (narg >= 1) r1 = (unsigned long)(arg1); \
1634 __asm__ __volatile__ ( \
1635 "syscall\n\t" \
1636 : "=a" (res) \
1637 : "0" (nr), "r" (r1), "r" (r2), "r" (r3), "r" (r4), "r" (r5) \
1638 : "cc", "r11", "cx", "memory"); \
1639 errno = -res; \
1640 res; \
1641 })
1642
1643#endif
1644
1645#ifdef ev_syscall
1646 #define ev_syscall0(nr) ev_syscall (nr, 0, 0, 0, 0, 0, 0, 0)
1647 #define ev_syscall1(nr,arg1) ev_syscall (nr, 1, arg1, 0, 0, 0, 0, 0)
1648 #define ev_syscall2(nr,arg1,arg2) ev_syscall (nr, 2, arg1, arg2, 0, 0, 0, 0)
1649 #define ev_syscall3(nr,arg1,arg2,arg3) ev_syscall (nr, 3, arg1, arg2, arg3, 0, 0, 0)
1650 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) ev_syscall (nr, 3, arg1, arg2, arg3, arg4, 0, 0)
1651 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) ev_syscall (nr, 5, arg1, arg2, arg3, arg4, arg5, 0)
1652 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) ev_syscall (nr, 6, arg1, arg2, arg3, arg4, arg5,arg6)
1653#else
1654 #define ev_syscall0(nr) syscall (nr)
1655 #define ev_syscall1(nr,arg1) syscall (nr, arg1)
1656 #define ev_syscall2(nr,arg1,arg2) syscall (nr, arg1, arg2)
1657 #define ev_syscall3(nr,arg1,arg2,arg3) syscall (nr, arg1, arg2, arg3)
1658 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) syscall (nr, arg1, arg2, arg3, arg4)
1659 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) syscall (nr, arg1, arg2, arg3, arg4, arg5)
1660 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) syscall (nr, arg1, arg2, arg3, arg4, arg5,arg6)
1661#endif
1662
1663#endif
1664
1665/*****************************************************************************/
1666
359#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1667#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1668
1669#if EV_MINPRI == EV_MAXPRI
1670# define ABSPRI(w) (((W)w), 0)
1671#else
360#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1672# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1673#endif
361 1674
362#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1675#define EMPTY /* required for microsofts broken pseudo-c compiler */
363#define EMPTY2(a,b) /* used to suppress some warnings */
364 1676
365typedef ev_watcher *W; 1677typedef ev_watcher *W;
366typedef ev_watcher_list *WL; 1678typedef ev_watcher_list *WL;
367typedef ev_watcher_time *WT; 1679typedef ev_watcher_time *WT;
368 1680
369#define ev_active(w) ((W)(w))->active 1681#define ev_active(w) ((W)(w))->active
370#define ev_at(w) ((WT)(w))->at 1682#define ev_at(w) ((WT)(w))->at
371 1683
1684#if EV_USE_REALTIME
1685/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1686/* giving it a reasonably high chance of working on typical architectures */
1687static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1688#endif
1689
372#if EV_USE_MONOTONIC 1690#if EV_USE_MONOTONIC
373/* sig_atomic_t is used to avoid per-thread variables or locking but still */
374/* giving it a reasonably high chance of working on typical architetcures */
375static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1691static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1692#endif
1693
1694#ifndef EV_FD_TO_WIN32_HANDLE
1695# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1696#endif
1697#ifndef EV_WIN32_HANDLE_TO_FD
1698# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1699#endif
1700#ifndef EV_WIN32_CLOSE_FD
1701# define EV_WIN32_CLOSE_FD(fd) close (fd)
376#endif 1702#endif
377 1703
378#ifdef _WIN32 1704#ifdef _WIN32
379# include "ev_win32.c" 1705# include "ev_win32.c"
380#endif 1706#endif
381 1707
382/*****************************************************************************/ 1708/*****************************************************************************/
383 1709
1710#if EV_USE_LINUXAIO
1711# include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1712#endif
1713
1714/* define a suitable floor function (only used by periodics atm) */
1715
1716#if EV_USE_FLOOR
1717# include <math.h>
1718# define ev_floor(v) floor (v)
1719#else
1720
1721#include <float.h>
1722
1723/* a floor() replacement function, should be independent of ev_tstamp type */
1724ecb_noinline
1725static ev_tstamp
1726ev_floor (ev_tstamp v)
1727{
1728 /* the choice of shift factor is not terribly important */
1729#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1730 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1731#else
1732 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1733#endif
1734
1735 /* special treatment for negative arguments */
1736 if (ecb_expect_false (v < 0.))
1737 {
1738 ev_tstamp f = -ev_floor (-v);
1739
1740 return f - (f == v ? 0 : 1);
1741 }
1742
1743 /* argument too large for an unsigned long? then reduce it */
1744 if (ecb_expect_false (v >= shift))
1745 {
1746 ev_tstamp f;
1747
1748 if (v == v - 1.)
1749 return v; /* very large numbers are assumed to be integer */
1750
1751 f = shift * ev_floor (v * (1. / shift));
1752 return f + ev_floor (v - f);
1753 }
1754
1755 /* fits into an unsigned long */
1756 return (unsigned long)v;
1757}
1758
1759#endif
1760
1761/*****************************************************************************/
1762
1763#ifdef __linux
1764# include <sys/utsname.h>
1765#endif
1766
1767ecb_noinline ecb_cold
1768static unsigned int
1769ev_linux_version (void)
1770{
1771#ifdef __linux
1772 unsigned int v = 0;
1773 struct utsname buf;
1774 int i;
1775 char *p = buf.release;
1776
1777 if (uname (&buf))
1778 return 0;
1779
1780 for (i = 3+1; --i; )
1781 {
1782 unsigned int c = 0;
1783
1784 for (;;)
1785 {
1786 if (*p >= '0' && *p <= '9')
1787 c = c * 10 + *p++ - '0';
1788 else
1789 {
1790 p += *p == '.';
1791 break;
1792 }
1793 }
1794
1795 v = (v << 8) | c;
1796 }
1797
1798 return v;
1799#else
1800 return 0;
1801#endif
1802}
1803
1804/*****************************************************************************/
1805
1806#if EV_AVOID_STDIO
1807ecb_noinline ecb_cold
1808static void
1809ev_printerr (const char *msg)
1810{
1811 write (STDERR_FILENO, msg, strlen (msg));
1812}
1813#endif
1814
384static void (*syserr_cb)(const char *msg); 1815static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
385 1816
1817ecb_cold
386void 1818void
387ev_set_syserr_cb (void (*cb)(const char *msg)) 1819ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
388{ 1820{
389 syserr_cb = cb; 1821 syserr_cb = cb;
390} 1822}
391 1823
392static void noinline 1824ecb_noinline ecb_cold
1825static void
393syserr (const char *msg) 1826ev_syserr (const char *msg)
394{ 1827{
395 if (!msg) 1828 if (!msg)
396 msg = "(libev) system error"; 1829 msg = "(libev) system error";
397 1830
398 if (syserr_cb) 1831 if (syserr_cb)
399 syserr_cb (msg); 1832 syserr_cb (msg);
400 else 1833 else
401 { 1834 {
1835#if EV_AVOID_STDIO
1836 ev_printerr (msg);
1837 ev_printerr (": ");
1838 ev_printerr (strerror (errno));
1839 ev_printerr ("\n");
1840#else
402 perror (msg); 1841 perror (msg);
1842#endif
403 abort (); 1843 abort ();
404 } 1844 }
405} 1845}
406 1846
407static void * 1847static void *
408ev_realloc_emul (void *ptr, long size) 1848ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
409{ 1849{
410 /* some systems, notably openbsd and darwin, fail to properly 1850 /* some systems, notably openbsd and darwin, fail to properly
411 * implement realloc (x, 0) (as required by both ansi c-98 and 1851 * implement realloc (x, 0) (as required by both ansi c-89 and
412 * the single unix specification, so work around them here. 1852 * the single unix specification, so work around them here.
1853 * recently, also (at least) fedora and debian started breaking it,
1854 * despite documenting it otherwise.
413 */ 1855 */
414 1856
415 if (size) 1857 if (size)
416 return realloc (ptr, size); 1858 return realloc (ptr, size);
417 1859
418 free (ptr); 1860 free (ptr);
419 return 0; 1861 return 0;
420} 1862}
421 1863
422static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1864static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
423 1865
1866ecb_cold
424void 1867void
425ev_set_allocator (void *(*cb)(void *ptr, long size)) 1868ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
426{ 1869{
427 alloc = cb; 1870 alloc = cb;
428} 1871}
429 1872
430inline_speed void * 1873inline_speed void *
432{ 1875{
433 ptr = alloc (ptr, size); 1876 ptr = alloc (ptr, size);
434 1877
435 if (!ptr && size) 1878 if (!ptr && size)
436 { 1879 {
1880#if EV_AVOID_STDIO
1881 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1882#else
437 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1883 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1884#endif
438 abort (); 1885 abort ();
439 } 1886 }
440 1887
441 return ptr; 1888 return ptr;
442} 1889}
444#define ev_malloc(size) ev_realloc (0, (size)) 1891#define ev_malloc(size) ev_realloc (0, (size))
445#define ev_free(ptr) ev_realloc ((ptr), 0) 1892#define ev_free(ptr) ev_realloc ((ptr), 0)
446 1893
447/*****************************************************************************/ 1894/*****************************************************************************/
448 1895
1896/* set in reify when reification needed */
1897#define EV_ANFD_REIFY 1
1898
1899/* file descriptor info structure */
449typedef struct 1900typedef struct
450{ 1901{
451 WL head; 1902 WL head;
452 unsigned char events; 1903 unsigned char events; /* the events watched for */
453 unsigned char reify; 1904 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1905 unsigned char emask; /* some backends store the actual kernel mask in here */
1906 unsigned char eflags; /* flags field for use by backends */
1907#if EV_USE_EPOLL
1908 unsigned int egen; /* generation counter to counter epoll bugs */
1909#endif
454#if EV_SELECT_IS_WINSOCKET 1910#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
455 SOCKET handle; 1911 SOCKET handle;
456#endif 1912#endif
1913#if EV_USE_IOCP
1914 OVERLAPPED or, ow;
1915#endif
457} ANFD; 1916} ANFD;
458 1917
1918/* stores the pending event set for a given watcher */
459typedef struct 1919typedef struct
460{ 1920{
461 W w; 1921 W w;
462 int events; 1922 int events; /* the pending event set for the given watcher */
463} ANPENDING; 1923} ANPENDING;
464 1924
465#if EV_USE_INOTIFY 1925#if EV_USE_INOTIFY
466/* hash table entry per inotify-id */ 1926/* hash table entry per inotify-id */
467typedef struct 1927typedef struct
470} ANFS; 1930} ANFS;
471#endif 1931#endif
472 1932
473/* Heap Entry */ 1933/* Heap Entry */
474#if EV_HEAP_CACHE_AT 1934#if EV_HEAP_CACHE_AT
1935 /* a heap element */
475 typedef struct { 1936 typedef struct {
476 ev_tstamp at; 1937 ev_tstamp at;
477 WT w; 1938 WT w;
478 } ANHE; 1939 } ANHE;
479 1940
480 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1941 #define ANHE_w(he) (he).w /* access watcher, read-write */
481 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1942 #define ANHE_at(he) (he).at /* access cached at, read-only */
482 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 1943 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
483#else 1944#else
1945 /* a heap element */
484 typedef WT ANHE; 1946 typedef WT ANHE;
485 1947
486 #define ANHE_w(he) (he) 1948 #define ANHE_w(he) (he)
487 #define ANHE_at(he) (he)->at 1949 #define ANHE_at(he) (he)->at
488 #define ANHE_at_cache(he) 1950 #define ANHE_at_cache(he)
499 #undef VAR 1961 #undef VAR
500 }; 1962 };
501 #include "ev_wrap.h" 1963 #include "ev_wrap.h"
502 1964
503 static struct ev_loop default_loop_struct; 1965 static struct ev_loop default_loop_struct;
504 struct ev_loop *ev_default_loop_ptr; 1966 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
505 1967
506#else 1968#else
507 1969
508 ev_tstamp ev_rt_now; 1970 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
509 #define VAR(name,decl) static decl; 1971 #define VAR(name,decl) static decl;
510 #include "ev_vars.h" 1972 #include "ev_vars.h"
511 #undef VAR 1973 #undef VAR
512 1974
513 static int ev_default_loop_ptr; 1975 static int ev_default_loop_ptr;
514 1976
515#endif 1977#endif
516 1978
1979#if EV_FEATURE_API
1980# define EV_RELEASE_CB if (ecb_expect_false (release_cb)) release_cb (EV_A)
1981# define EV_ACQUIRE_CB if (ecb_expect_false (acquire_cb)) acquire_cb (EV_A)
1982# define EV_INVOKE_PENDING invoke_cb (EV_A)
1983#else
1984# define EV_RELEASE_CB (void)0
1985# define EV_ACQUIRE_CB (void)0
1986# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1987#endif
1988
1989#define EVBREAK_RECURSE 0x80
1990
517/*****************************************************************************/ 1991/*****************************************************************************/
518 1992
1993#ifndef EV_HAVE_EV_TIME
519ev_tstamp 1994ev_tstamp
520ev_time (void) 1995ev_time (void) EV_NOEXCEPT
521{ 1996{
522#if EV_USE_REALTIME 1997#if EV_USE_REALTIME
1998 if (ecb_expect_true (have_realtime))
1999 {
523 struct timespec ts; 2000 struct timespec ts;
524 clock_gettime (CLOCK_REALTIME, &ts); 2001 clock_gettime (CLOCK_REALTIME, &ts);
525 return ts.tv_sec + ts.tv_nsec * 1e-9; 2002 return EV_TS_GET (ts);
526#else 2003 }
2004#endif
2005
527 struct timeval tv; 2006 struct timeval tv;
528 gettimeofday (&tv, 0); 2007 gettimeofday (&tv, 0);
529 return tv.tv_sec + tv.tv_usec * 1e-6; 2008 return EV_TV_GET (tv);
530#endif
531} 2009}
2010#endif
532 2011
533ev_tstamp inline_size 2012inline_size ev_tstamp
534get_clock (void) 2013get_clock (void)
535{ 2014{
536#if EV_USE_MONOTONIC 2015#if EV_USE_MONOTONIC
537 if (expect_true (have_monotonic)) 2016 if (ecb_expect_true (have_monotonic))
538 { 2017 {
539 struct timespec ts; 2018 struct timespec ts;
540 clock_gettime (CLOCK_MONOTONIC, &ts); 2019 clock_gettime (CLOCK_MONOTONIC, &ts);
541 return ts.tv_sec + ts.tv_nsec * 1e-9; 2020 return EV_TS_GET (ts);
542 } 2021 }
543#endif 2022#endif
544 2023
545 return ev_time (); 2024 return ev_time ();
546} 2025}
547 2026
548#if EV_MULTIPLICITY 2027#if EV_MULTIPLICITY
549ev_tstamp 2028ev_tstamp
550ev_now (EV_P) 2029ev_now (EV_P) EV_NOEXCEPT
551{ 2030{
552 return ev_rt_now; 2031 return ev_rt_now;
553} 2032}
554#endif 2033#endif
555 2034
556void 2035void
557ev_sleep (ev_tstamp delay) 2036ev_sleep (ev_tstamp delay) EV_NOEXCEPT
558{ 2037{
559 if (delay > 0.) 2038 if (delay > 0.)
560 { 2039 {
561#if EV_USE_NANOSLEEP 2040#if EV_USE_NANOSLEEP
562 struct timespec ts; 2041 struct timespec ts;
563 2042
564 ts.tv_sec = (time_t)delay; 2043 EV_TS_SET (ts, delay);
565 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
566
567 nanosleep (&ts, 0); 2044 nanosleep (&ts, 0);
568#elif defined(_WIN32) 2045#elif defined _WIN32
2046 /* maybe this should round up, as ms is very low resolution */
2047 /* compared to select (µs) or nanosleep (ns) */
569 Sleep ((unsigned long)(delay * 1e3)); 2048 Sleep ((unsigned long)(EV_TS_TO_MS (delay)));
570#else 2049#else
571 struct timeval tv; 2050 struct timeval tv;
572 2051
573 tv.tv_sec = (time_t)delay;
574 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
575
576 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 2052 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
577 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 2053 /* something not guaranteed by newer posix versions, but guaranteed */
578 /* by older ones */ 2054 /* by older ones */
2055 EV_TV_SET (tv, delay);
579 select (0, 0, 0, 0, &tv); 2056 select (0, 0, 0, 0, &tv);
580#endif 2057#endif
581 } 2058 }
582} 2059}
583 2060
584/*****************************************************************************/ 2061/*****************************************************************************/
585 2062
586#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 2063#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
587 2064
588int inline_size 2065/* find a suitable new size for the given array, */
2066/* hopefully by rounding to a nice-to-malloc size */
2067inline_size int
589array_nextsize (int elem, int cur, int cnt) 2068array_nextsize (int elem, int cur, int cnt)
590{ 2069{
591 int ncur = cur + 1; 2070 int ncur = cur + 1;
592 2071
593 do 2072 do
594 ncur <<= 1; 2073 ncur <<= 1;
595 while (cnt > ncur); 2074 while (cnt > ncur);
596 2075
597 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 2076 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
598 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 2077 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
599 { 2078 {
600 ncur *= elem; 2079 ncur *= elem;
601 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 2080 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
602 ncur = ncur - sizeof (void *) * 4; 2081 ncur = ncur - sizeof (void *) * 4;
604 } 2083 }
605 2084
606 return ncur; 2085 return ncur;
607} 2086}
608 2087
609static noinline void * 2088ecb_noinline ecb_cold
2089static void *
610array_realloc (int elem, void *base, int *cur, int cnt) 2090array_realloc (int elem, void *base, int *cur, int cnt)
611{ 2091{
612 *cur = array_nextsize (elem, *cur, cnt); 2092 *cur = array_nextsize (elem, *cur, cnt);
613 return ev_realloc (base, elem * *cur); 2093 return ev_realloc (base, elem * *cur);
614} 2094}
615 2095
2096#define array_needsize_noinit(base,offset,count)
2097
2098#define array_needsize_zerofill(base,offset,count) \
2099 memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
2100
616#define array_needsize(type,base,cur,cnt,init) \ 2101#define array_needsize(type,base,cur,cnt,init) \
617 if (expect_false ((cnt) > (cur))) \ 2102 if (ecb_expect_false ((cnt) > (cur))) \
618 { \ 2103 { \
619 int ocur_ = (cur); \ 2104 ecb_unused int ocur_ = (cur); \
620 (base) = (type *)array_realloc \ 2105 (base) = (type *)array_realloc \
621 (sizeof (type), (base), &(cur), (cnt)); \ 2106 (sizeof (type), (base), &(cur), (cnt)); \
622 init ((base) + (ocur_), (cur) - ocur_); \ 2107 init ((base), ocur_, ((cur) - ocur_)); \
623 } 2108 }
624 2109
625#if 0 2110#if 0
626#define array_slim(type,stem) \ 2111#define array_slim(type,stem) \
627 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 2112 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
631 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 2116 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
632 } 2117 }
633#endif 2118#endif
634 2119
635#define array_free(stem, idx) \ 2120#define array_free(stem, idx) \
636 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 2121 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
637 2122
638/*****************************************************************************/ 2123/*****************************************************************************/
639 2124
640void noinline 2125/* dummy callback for pending events */
2126ecb_noinline
2127static void
2128pendingcb (EV_P_ ev_prepare *w, int revents)
2129{
2130}
2131
2132ecb_noinline
2133void
641ev_feed_event (EV_P_ void *w, int revents) 2134ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
642{ 2135{
643 W w_ = (W)w; 2136 W w_ = (W)w;
644 int pri = ABSPRI (w_); 2137 int pri = ABSPRI (w_);
645 2138
646 if (expect_false (w_->pending)) 2139 if (ecb_expect_false (w_->pending))
647 pendings [pri][w_->pending - 1].events |= revents; 2140 pendings [pri][w_->pending - 1].events |= revents;
648 else 2141 else
649 { 2142 {
650 w_->pending = ++pendingcnt [pri]; 2143 w_->pending = ++pendingcnt [pri];
651 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 2144 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
652 pendings [pri][w_->pending - 1].w = w_; 2145 pendings [pri][w_->pending - 1].w = w_;
653 pendings [pri][w_->pending - 1].events = revents; 2146 pendings [pri][w_->pending - 1].events = revents;
654 } 2147 }
655}
656 2148
657void inline_speed 2149 pendingpri = NUMPRI - 1;
2150}
2151
2152inline_speed void
2153feed_reverse (EV_P_ W w)
2154{
2155 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2156 rfeeds [rfeedcnt++] = w;
2157}
2158
2159inline_size void
2160feed_reverse_done (EV_P_ int revents)
2161{
2162 do
2163 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2164 while (rfeedcnt);
2165}
2166
2167inline_speed void
658queue_events (EV_P_ W *events, int eventcnt, int type) 2168queue_events (EV_P_ W *events, int eventcnt, int type)
659{ 2169{
660 int i; 2170 int i;
661 2171
662 for (i = 0; i < eventcnt; ++i) 2172 for (i = 0; i < eventcnt; ++i)
663 ev_feed_event (EV_A_ events [i], type); 2173 ev_feed_event (EV_A_ events [i], type);
664} 2174}
665 2175
666/*****************************************************************************/ 2176/*****************************************************************************/
667 2177
668void inline_size 2178inline_speed void
669anfds_init (ANFD *base, int count)
670{
671 while (count--)
672 {
673 base->head = 0;
674 base->events = EV_NONE;
675 base->reify = 0;
676
677 ++base;
678 }
679}
680
681void inline_speed
682fd_event (EV_P_ int fd, int revents) 2179fd_event_nocheck (EV_P_ int fd, int revents)
683{ 2180{
684 ANFD *anfd = anfds + fd; 2181 ANFD *anfd = anfds + fd;
685 ev_io *w; 2182 ev_io *w;
686 2183
687 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2184 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
691 if (ev) 2188 if (ev)
692 ev_feed_event (EV_A_ (W)w, ev); 2189 ev_feed_event (EV_A_ (W)w, ev);
693 } 2190 }
694} 2191}
695 2192
696void 2193/* do not submit kernel events for fds that have reify set */
2194/* because that means they changed while we were polling for new events */
2195inline_speed void
697ev_feed_fd_event (EV_P_ int fd, int revents) 2196fd_event (EV_P_ int fd, int revents)
2197{
2198 ANFD *anfd = anfds + fd;
2199
2200 if (ecb_expect_true (!anfd->reify))
2201 fd_event_nocheck (EV_A_ fd, revents);
2202}
2203
2204void
2205ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
698{ 2206{
699 if (fd >= 0 && fd < anfdmax) 2207 if (fd >= 0 && fd < anfdmax)
700 fd_event (EV_A_ fd, revents); 2208 fd_event_nocheck (EV_A_ fd, revents);
701} 2209}
702 2210
703void inline_size 2211/* make sure the external fd watch events are in-sync */
2212/* with the kernel/libev internal state */
2213inline_size void
704fd_reify (EV_P) 2214fd_reify (EV_P)
705{ 2215{
706 int i; 2216 int i;
2217
2218#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2219 for (i = 0; i < fdchangecnt; ++i)
2220 {
2221 int fd = fdchanges [i];
2222 ANFD *anfd = anfds + fd;
2223
2224 if (anfd->reify & EV__IOFDSET && anfd->head)
2225 {
2226 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2227
2228 if (handle != anfd->handle)
2229 {
2230 unsigned long arg;
2231
2232 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2233
2234 /* handle changed, but fd didn't - we need to do it in two steps */
2235 backend_modify (EV_A_ fd, anfd->events, 0);
2236 anfd->events = 0;
2237 anfd->handle = handle;
2238 }
2239 }
2240 }
2241#endif
707 2242
708 for (i = 0; i < fdchangecnt; ++i) 2243 for (i = 0; i < fdchangecnt; ++i)
709 { 2244 {
710 int fd = fdchanges [i]; 2245 int fd = fdchanges [i];
711 ANFD *anfd = anfds + fd; 2246 ANFD *anfd = anfds + fd;
712 ev_io *w; 2247 ev_io *w;
713 2248
714 unsigned char events = 0; 2249 unsigned char o_events = anfd->events;
2250 unsigned char o_reify = anfd->reify;
715 2251
716 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2252 anfd->reify = 0;
717 events |= (unsigned char)w->events;
718 2253
719#if EV_SELECT_IS_WINSOCKET 2254 /*if (ecb_expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
720 if (events)
721 { 2255 {
722 unsigned long arg; 2256 anfd->events = 0;
723 #ifdef EV_FD_TO_WIN32_HANDLE 2257
724 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 2258 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
725 #else 2259 anfd->events |= (unsigned char)w->events;
726 anfd->handle = _get_osfhandle (fd); 2260
727 #endif 2261 if (o_events != anfd->events)
728 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 2262 o_reify = EV__IOFDSET; /* actually |= */
729 } 2263 }
730#endif
731 2264
732 { 2265 if (o_reify & EV__IOFDSET)
733 unsigned char o_events = anfd->events;
734 unsigned char o_reify = anfd->reify;
735
736 anfd->reify = 0;
737 anfd->events = events;
738
739 if (o_events != events || o_reify & EV_IOFDSET)
740 backend_modify (EV_A_ fd, o_events, events); 2266 backend_modify (EV_A_ fd, o_events, anfd->events);
741 }
742 } 2267 }
743 2268
744 fdchangecnt = 0; 2269 fdchangecnt = 0;
745} 2270}
746 2271
2272/* something about the given fd changed */
747void inline_size 2273inline_size
2274void
748fd_change (EV_P_ int fd, int flags) 2275fd_change (EV_P_ int fd, int flags)
749{ 2276{
750 unsigned char reify = anfds [fd].reify; 2277 unsigned char reify = anfds [fd].reify;
751 anfds [fd].reify |= flags; 2278 anfds [fd].reify |= flags;
752 2279
753 if (expect_true (!reify)) 2280 if (ecb_expect_true (!reify))
754 { 2281 {
755 ++fdchangecnt; 2282 ++fdchangecnt;
756 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2283 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
757 fdchanges [fdchangecnt - 1] = fd; 2284 fdchanges [fdchangecnt - 1] = fd;
758 } 2285 }
759} 2286}
760 2287
761void inline_speed 2288/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2289inline_speed ecb_cold void
762fd_kill (EV_P_ int fd) 2290fd_kill (EV_P_ int fd)
763{ 2291{
764 ev_io *w; 2292 ev_io *w;
765 2293
766 while ((w = (ev_io *)anfds [fd].head)) 2294 while ((w = (ev_io *)anfds [fd].head))
768 ev_io_stop (EV_A_ w); 2296 ev_io_stop (EV_A_ w);
769 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2297 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
770 } 2298 }
771} 2299}
772 2300
773int inline_size 2301/* check whether the given fd is actually valid, for error recovery */
2302inline_size ecb_cold int
774fd_valid (int fd) 2303fd_valid (int fd)
775{ 2304{
776#ifdef _WIN32 2305#ifdef _WIN32
777 return _get_osfhandle (fd) != -1; 2306 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
778#else 2307#else
779 return fcntl (fd, F_GETFD) != -1; 2308 return fcntl (fd, F_GETFD) != -1;
780#endif 2309#endif
781} 2310}
782 2311
783/* called on EBADF to verify fds */ 2312/* called on EBADF to verify fds */
784static void noinline 2313ecb_noinline ecb_cold
2314static void
785fd_ebadf (EV_P) 2315fd_ebadf (EV_P)
786{ 2316{
787 int fd; 2317 int fd;
788 2318
789 for (fd = 0; fd < anfdmax; ++fd) 2319 for (fd = 0; fd < anfdmax; ++fd)
791 if (!fd_valid (fd) && errno == EBADF) 2321 if (!fd_valid (fd) && errno == EBADF)
792 fd_kill (EV_A_ fd); 2322 fd_kill (EV_A_ fd);
793} 2323}
794 2324
795/* called on ENOMEM in select/poll to kill some fds and retry */ 2325/* called on ENOMEM in select/poll to kill some fds and retry */
796static void noinline 2326ecb_noinline ecb_cold
2327static void
797fd_enomem (EV_P) 2328fd_enomem (EV_P)
798{ 2329{
799 int fd; 2330 int fd;
800 2331
801 for (fd = anfdmax; fd--; ) 2332 for (fd = anfdmax; fd--; )
802 if (anfds [fd].events) 2333 if (anfds [fd].events)
803 { 2334 {
804 fd_kill (EV_A_ fd); 2335 fd_kill (EV_A_ fd);
805 return; 2336 break;
806 } 2337 }
807} 2338}
808 2339
809/* usually called after fork if backend needs to re-arm all fds from scratch */ 2340/* usually called after fork if backend needs to re-arm all fds from scratch */
810static void noinline 2341ecb_noinline
2342static void
811fd_rearm_all (EV_P) 2343fd_rearm_all (EV_P)
812{ 2344{
813 int fd; 2345 int fd;
814 2346
815 for (fd = 0; fd < anfdmax; ++fd) 2347 for (fd = 0; fd < anfdmax; ++fd)
816 if (anfds [fd].events) 2348 if (anfds [fd].events)
817 { 2349 {
818 anfds [fd].events = 0; 2350 anfds [fd].events = 0;
2351 anfds [fd].emask = 0;
819 fd_change (EV_A_ fd, EV_IOFDSET | 1); 2352 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
820 } 2353 }
821} 2354}
822 2355
2356/* used to prepare libev internal fd's */
2357/* this is not fork-safe */
2358inline_speed void
2359fd_intern (int fd)
2360{
2361#ifdef _WIN32
2362 unsigned long arg = 1;
2363 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2364#else
2365 fcntl (fd, F_SETFD, FD_CLOEXEC);
2366 fcntl (fd, F_SETFL, O_NONBLOCK);
2367#endif
2368}
2369
823/*****************************************************************************/ 2370/*****************************************************************************/
824 2371
825/* 2372/*
826 * the heap functions want a real array index. array index 0 uis guaranteed to not 2373 * the heap functions want a real array index. array index 0 is guaranteed to not
827 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 2374 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
828 * the branching factor of the d-tree. 2375 * the branching factor of the d-tree.
829 */ 2376 */
830 2377
831/* 2378/*
840#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 2387#define HEAP0 (DHEAP - 1) /* index of first element in heap */
841#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 2388#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
842#define UPHEAP_DONE(p,k) ((p) == (k)) 2389#define UPHEAP_DONE(p,k) ((p) == (k))
843 2390
844/* away from the root */ 2391/* away from the root */
845void inline_speed 2392inline_speed void
846downheap (ANHE *heap, int N, int k) 2393downheap (ANHE *heap, int N, int k)
847{ 2394{
848 ANHE he = heap [k]; 2395 ANHE he = heap [k];
849 ANHE *E = heap + N + HEAP0; 2396 ANHE *E = heap + N + HEAP0;
850 2397
853 ev_tstamp minat; 2400 ev_tstamp minat;
854 ANHE *minpos; 2401 ANHE *minpos;
855 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1; 2402 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
856 2403
857 /* find minimum child */ 2404 /* find minimum child */
858 if (expect_true (pos + DHEAP - 1 < E)) 2405 if (ecb_expect_true (pos + DHEAP - 1 < E))
859 { 2406 {
860 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 2407 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
861 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 2408 if ( minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
862 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 2409 if ( minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
863 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 2410 if ( minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
864 } 2411 }
865 else if (pos < E) 2412 else if (pos < E)
866 { 2413 {
867 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 2414 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
868 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 2415 if (pos + 1 < E && minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
869 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 2416 if (pos + 2 < E && minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
870 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 2417 if (pos + 3 < E && minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
871 } 2418 }
872 else 2419 else
873 break; 2420 break;
874 2421
875 if (ANHE_at (he) <= minat) 2422 if (ANHE_at (he) <= minat)
883 2430
884 heap [k] = he; 2431 heap [k] = he;
885 ev_active (ANHE_w (he)) = k; 2432 ev_active (ANHE_w (he)) = k;
886} 2433}
887 2434
888#else /* 4HEAP */ 2435#else /* not 4HEAP */
889 2436
890#define HEAP0 1 2437#define HEAP0 1
891#define HPARENT(k) ((k) >> 1) 2438#define HPARENT(k) ((k) >> 1)
892#define UPHEAP_DONE(p,k) (!(p)) 2439#define UPHEAP_DONE(p,k) (!(p))
893 2440
894/* away from the root */ 2441/* away from the root */
895void inline_speed 2442inline_speed void
896downheap (ANHE *heap, int N, int k) 2443downheap (ANHE *heap, int N, int k)
897{ 2444{
898 ANHE he = heap [k]; 2445 ANHE he = heap [k];
899 2446
900 for (;;) 2447 for (;;)
901 { 2448 {
902 int c = k << 1; 2449 int c = k << 1;
903 2450
904 if (c > N + HEAP0 - 1) 2451 if (c >= N + HEAP0)
905 break; 2452 break;
906 2453
907 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 2454 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
908 ? 1 : 0; 2455 ? 1 : 0;
909 2456
920 ev_active (ANHE_w (he)) = k; 2467 ev_active (ANHE_w (he)) = k;
921} 2468}
922#endif 2469#endif
923 2470
924/* towards the root */ 2471/* towards the root */
925void inline_speed 2472inline_speed void
926upheap (ANHE *heap, int k) 2473upheap (ANHE *heap, int k)
927{ 2474{
928 ANHE he = heap [k]; 2475 ANHE he = heap [k];
929 2476
930 for (;;) 2477 for (;;)
941 2488
942 heap [k] = he; 2489 heap [k] = he;
943 ev_active (ANHE_w (he)) = k; 2490 ev_active (ANHE_w (he)) = k;
944} 2491}
945 2492
946void inline_size 2493/* move an element suitably so it is in a correct place */
2494inline_size void
947adjustheap (ANHE *heap, int N, int k) 2495adjustheap (ANHE *heap, int N, int k)
948{ 2496{
949 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 2497 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
950 upheap (heap, k); 2498 upheap (heap, k);
951 else 2499 else
952 downheap (heap, N, k); 2500 downheap (heap, N, k);
953} 2501}
954 2502
955/* rebuild the heap: this function is used only once and executed rarely */ 2503/* rebuild the heap: this function is used only once and executed rarely */
956void inline_size 2504inline_size void
957reheap (ANHE *heap, int N) 2505reheap (ANHE *heap, int N)
958{ 2506{
959 int i; 2507 int i;
960 2508
961 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 2509 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
964 upheap (heap, i + HEAP0); 2512 upheap (heap, i + HEAP0);
965} 2513}
966 2514
967/*****************************************************************************/ 2515/*****************************************************************************/
968 2516
2517/* associate signal watchers to a signal signal */
969typedef struct 2518typedef struct
970{ 2519{
2520 EV_ATOMIC_T pending;
2521#if EV_MULTIPLICITY
2522 EV_P;
2523#endif
971 WL head; 2524 WL head;
972 EV_ATOMIC_T gotsig;
973} ANSIG; 2525} ANSIG;
974 2526
975static ANSIG *signals; 2527static ANSIG signals [EV_NSIG - 1];
976static int signalmax;
977
978static EV_ATOMIC_T gotsig;
979
980void inline_size
981signals_init (ANSIG *base, int count)
982{
983 while (count--)
984 {
985 base->head = 0;
986 base->gotsig = 0;
987
988 ++base;
989 }
990}
991 2528
992/*****************************************************************************/ 2529/*****************************************************************************/
993 2530
994void inline_speed 2531#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
995fd_intern (int fd)
996{
997#ifdef _WIN32
998 unsigned long arg = 1;
999 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1000#else
1001 fcntl (fd, F_SETFD, FD_CLOEXEC);
1002 fcntl (fd, F_SETFL, O_NONBLOCK);
1003#endif
1004}
1005 2532
1006static void noinline 2533ecb_noinline ecb_cold
2534static void
1007evpipe_init (EV_P) 2535evpipe_init (EV_P)
1008{ 2536{
1009 if (!ev_is_active (&pipeev)) 2537 if (!ev_is_active (&pipe_w))
2538 {
2539 int fds [2];
2540
2541# if EV_USE_EVENTFD
2542 fds [0] = -1;
2543 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2544 if (fds [1] < 0 && errno == EINVAL)
2545 fds [1] = eventfd (0, 0);
2546
2547 if (fds [1] < 0)
2548# endif
2549 {
2550 while (pipe (fds))
2551 ev_syserr ("(libev) error creating signal/async pipe");
2552
2553 fd_intern (fds [0]);
2554 }
2555
2556 evpipe [0] = fds [0];
2557
2558 if (evpipe [1] < 0)
2559 evpipe [1] = fds [1]; /* first call, set write fd */
2560 else
2561 {
2562 /* on subsequent calls, do not change evpipe [1] */
2563 /* so that evpipe_write can always rely on its value. */
2564 /* this branch does not do anything sensible on windows, */
2565 /* so must not be executed on windows */
2566
2567 dup2 (fds [1], evpipe [1]);
2568 close (fds [1]);
2569 }
2570
2571 fd_intern (evpipe [1]);
2572
2573 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2574 ev_io_start (EV_A_ &pipe_w);
2575 ev_unref (EV_A); /* watcher should not keep loop alive */
1010 { 2576 }
2577}
2578
2579inline_speed void
2580evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2581{
2582 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2583
2584 if (ecb_expect_true (*flag))
2585 return;
2586
2587 *flag = 1;
2588 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2589
2590 pipe_write_skipped = 1;
2591
2592 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2593
2594 if (pipe_write_wanted)
2595 {
2596 int old_errno;
2597
2598 pipe_write_skipped = 0;
2599 ECB_MEMORY_FENCE_RELEASE;
2600
2601 old_errno = errno; /* save errno because write will clobber it */
2602
1011#if EV_USE_EVENTFD 2603#if EV_USE_EVENTFD
1012 if ((evfd = eventfd (0, 0)) >= 0) 2604 if (evpipe [0] < 0)
1013 { 2605 {
1014 evpipe [0] = -1; 2606 uint64_t counter = 1;
1015 fd_intern (evfd); 2607 write (evpipe [1], &counter, sizeof (uint64_t));
1016 ev_io_set (&pipeev, evfd, EV_READ);
1017 } 2608 }
1018 else 2609 else
1019#endif 2610#endif
1020 { 2611 {
1021 while (pipe (evpipe)) 2612#ifdef _WIN32
1022 syserr ("(libev) error creating signal/async pipe"); 2613 WSABUF buf;
1023 2614 DWORD sent;
1024 fd_intern (evpipe [0]); 2615 buf.buf = (char *)&buf;
1025 fd_intern (evpipe [1]); 2616 buf.len = 1;
1026 ev_io_set (&pipeev, evpipe [0], EV_READ); 2617 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2618#else
2619 write (evpipe [1], &(evpipe [1]), 1);
2620#endif
1027 } 2621 }
1028 2622
1029 ev_io_start (EV_A_ &pipeev); 2623 errno = old_errno;
1030 ev_unref (EV_A); /* watcher should not keep loop alive */
1031 }
1032}
1033
1034void inline_size
1035evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1036{
1037 if (!*flag)
1038 { 2624 }
1039 int old_errno = errno; /* save errno because write might clobber it */ 2625}
1040 2626
1041 *flag = 1; 2627/* called whenever the libev signal pipe */
2628/* got some events (signal, async) */
2629static void
2630pipecb (EV_P_ ev_io *iow, int revents)
2631{
2632 int i;
1042 2633
2634 if (revents & EV_READ)
2635 {
1043#if EV_USE_EVENTFD 2636#if EV_USE_EVENTFD
1044 if (evfd >= 0) 2637 if (evpipe [0] < 0)
1045 { 2638 {
1046 uint64_t counter = 1; 2639 uint64_t counter;
1047 write (evfd, &counter, sizeof (uint64_t)); 2640 read (evpipe [1], &counter, sizeof (uint64_t));
1048 } 2641 }
1049 else 2642 else
1050#endif 2643#endif
1051 write (evpipe [1], &old_errno, 1); 2644 {
1052
1053 errno = old_errno;
1054 }
1055}
1056
1057static void
1058pipecb (EV_P_ ev_io *iow, int revents)
1059{
1060#if EV_USE_EVENTFD
1061 if (evfd >= 0)
1062 {
1063 uint64_t counter;
1064 read (evfd, &counter, sizeof (uint64_t));
1065 }
1066 else
1067#endif
1068 {
1069 char dummy; 2645 char dummy[4];
2646#ifdef _WIN32
2647 WSABUF buf;
2648 DWORD recvd;
2649 DWORD flags = 0;
2650 buf.buf = dummy;
2651 buf.len = sizeof (dummy);
2652 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2653#else
1070 read (evpipe [0], &dummy, 1); 2654 read (evpipe [0], &dummy, sizeof (dummy));
2655#endif
2656 }
2657 }
2658
2659 pipe_write_skipped = 0;
2660
2661 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2662
2663#if EV_SIGNAL_ENABLE
2664 if (sig_pending)
1071 } 2665 {
2666 sig_pending = 0;
1072 2667
1073 if (gotsig && ev_is_default_loop (EV_A)) 2668 ECB_MEMORY_FENCE;
1074 {
1075 int signum;
1076 gotsig = 0;
1077 2669
1078 for (signum = signalmax; signum--; ) 2670 for (i = EV_NSIG - 1; i--; )
1079 if (signals [signum].gotsig) 2671 if (ecb_expect_false (signals [i].pending))
1080 ev_feed_signal_event (EV_A_ signum + 1); 2672 ev_feed_signal_event (EV_A_ i + 1);
1081 } 2673 }
2674#endif
1082 2675
1083#if EV_ASYNC_ENABLE 2676#if EV_ASYNC_ENABLE
1084 if (gotasync) 2677 if (async_pending)
1085 { 2678 {
1086 int i; 2679 async_pending = 0;
1087 gotasync = 0; 2680
2681 ECB_MEMORY_FENCE;
1088 2682
1089 for (i = asynccnt; i--; ) 2683 for (i = asynccnt; i--; )
1090 if (asyncs [i]->sent) 2684 if (asyncs [i]->sent)
1091 { 2685 {
1092 asyncs [i]->sent = 0; 2686 asyncs [i]->sent = 0;
2687 ECB_MEMORY_FENCE_RELEASE;
1093 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2688 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1094 } 2689 }
1095 } 2690 }
1096#endif 2691#endif
1097} 2692}
1098 2693
1099/*****************************************************************************/ 2694/*****************************************************************************/
1100 2695
2696void
2697ev_feed_signal (int signum) EV_NOEXCEPT
2698{
2699#if EV_MULTIPLICITY
2700 EV_P;
2701 ECB_MEMORY_FENCE_ACQUIRE;
2702 EV_A = signals [signum - 1].loop;
2703
2704 if (!EV_A)
2705 return;
2706#endif
2707
2708 signals [signum - 1].pending = 1;
2709 evpipe_write (EV_A_ &sig_pending);
2710}
2711
1101static void 2712static void
1102ev_sighandler (int signum) 2713ev_sighandler (int signum)
1103{ 2714{
2715#ifdef _WIN32
2716 signal (signum, ev_sighandler);
2717#endif
2718
2719 ev_feed_signal (signum);
2720}
2721
2722ecb_noinline
2723void
2724ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2725{
2726 WL w;
2727
2728 if (ecb_expect_false (signum <= 0 || signum >= EV_NSIG))
2729 return;
2730
2731 --signum;
2732
1104#if EV_MULTIPLICITY 2733#if EV_MULTIPLICITY
1105 struct ev_loop *loop = &default_loop_struct; 2734 /* it is permissible to try to feed a signal to the wrong loop */
1106#endif 2735 /* or, likely more useful, feeding a signal nobody is waiting for */
1107 2736
1108#if _WIN32 2737 if (ecb_expect_false (signals [signum].loop != EV_A))
1109 signal (signum, ev_sighandler);
1110#endif
1111
1112 signals [signum - 1].gotsig = 1;
1113 evpipe_write (EV_A_ &gotsig);
1114}
1115
1116void noinline
1117ev_feed_signal_event (EV_P_ int signum)
1118{
1119 WL w;
1120
1121#if EV_MULTIPLICITY
1122 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1123#endif
1124
1125 --signum;
1126
1127 if (signum < 0 || signum >= signalmax)
1128 return; 2738 return;
2739#endif
1129 2740
1130 signals [signum].gotsig = 0; 2741 signals [signum].pending = 0;
2742 ECB_MEMORY_FENCE_RELEASE;
1131 2743
1132 for (w = signals [signum].head; w; w = w->next) 2744 for (w = signals [signum].head; w; w = w->next)
1133 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2745 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1134} 2746}
1135 2747
2748#if EV_USE_SIGNALFD
2749static void
2750sigfdcb (EV_P_ ev_io *iow, int revents)
2751{
2752 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2753
2754 for (;;)
2755 {
2756 ssize_t res = read (sigfd, si, sizeof (si));
2757
2758 /* not ISO-C, as res might be -1, but works with SuS */
2759 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2760 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2761
2762 if (res < (ssize_t)sizeof (si))
2763 break;
2764 }
2765}
2766#endif
2767
2768#endif
2769
1136/*****************************************************************************/ 2770/*****************************************************************************/
1137 2771
2772#if EV_CHILD_ENABLE
1138static WL childs [EV_PID_HASHSIZE]; 2773static WL childs [EV_PID_HASHSIZE];
1139
1140#ifndef _WIN32
1141 2774
1142static ev_signal childev; 2775static ev_signal childev;
1143 2776
1144#ifndef WIFCONTINUED 2777#ifndef WIFCONTINUED
1145# define WIFCONTINUED(status) 0 2778# define WIFCONTINUED(status) 0
1146#endif 2779#endif
1147 2780
1148void inline_speed 2781/* handle a single child status event */
2782inline_speed void
1149child_reap (EV_P_ int chain, int pid, int status) 2783child_reap (EV_P_ int chain, int pid, int status)
1150{ 2784{
1151 ev_child *w; 2785 ev_child *w;
1152 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2786 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1153 2787
1154 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2788 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1155 { 2789 {
1156 if ((w->pid == pid || !w->pid) 2790 if ((w->pid == pid || !w->pid)
1157 && (!traced || (w->flags & 1))) 2791 && (!traced || (w->flags & 1)))
1158 { 2792 {
1159 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2793 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1166 2800
1167#ifndef WCONTINUED 2801#ifndef WCONTINUED
1168# define WCONTINUED 0 2802# define WCONTINUED 0
1169#endif 2803#endif
1170 2804
2805/* called on sigchld etc., calls waitpid */
1171static void 2806static void
1172childcb (EV_P_ ev_signal *sw, int revents) 2807childcb (EV_P_ ev_signal *sw, int revents)
1173{ 2808{
1174 int pid, status; 2809 int pid, status;
1175 2810
1183 /* make sure we are called again until all children have been reaped */ 2818 /* make sure we are called again until all children have been reaped */
1184 /* we need to do it this way so that the callback gets called before we continue */ 2819 /* we need to do it this way so that the callback gets called before we continue */
1185 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2820 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1186 2821
1187 child_reap (EV_A_ pid, pid, status); 2822 child_reap (EV_A_ pid, pid, status);
1188 if (EV_PID_HASHSIZE > 1) 2823 if ((EV_PID_HASHSIZE) > 1)
1189 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2824 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1190} 2825}
1191 2826
1192#endif 2827#endif
1193 2828
1194/*****************************************************************************/ 2829/*****************************************************************************/
1195 2830
2831#if EV_USE_IOCP
2832# include "ev_iocp.c"
2833#endif
1196#if EV_USE_PORT 2834#if EV_USE_PORT
1197# include "ev_port.c" 2835# include "ev_port.c"
1198#endif 2836#endif
1199#if EV_USE_KQUEUE 2837#if EV_USE_KQUEUE
1200# include "ev_kqueue.c" 2838# include "ev_kqueue.c"
1201#endif 2839#endif
1202#if EV_USE_EPOLL 2840#if EV_USE_EPOLL
1203# include "ev_epoll.c" 2841# include "ev_epoll.c"
1204#endif 2842#endif
2843#if EV_USE_LINUXAIO
2844# include "ev_linuxaio.c"
2845#endif
2846#if EV_USE_IOURING
2847# include "ev_iouring.c"
2848#endif
1205#if EV_USE_POLL 2849#if EV_USE_POLL
1206# include "ev_poll.c" 2850# include "ev_poll.c"
1207#endif 2851#endif
1208#if EV_USE_SELECT 2852#if EV_USE_SELECT
1209# include "ev_select.c" 2853# include "ev_select.c"
1210#endif 2854#endif
1211 2855
1212int 2856ecb_cold int
1213ev_version_major (void) 2857ev_version_major (void) EV_NOEXCEPT
1214{ 2858{
1215 return EV_VERSION_MAJOR; 2859 return EV_VERSION_MAJOR;
1216} 2860}
1217 2861
1218int 2862ecb_cold int
1219ev_version_minor (void) 2863ev_version_minor (void) EV_NOEXCEPT
1220{ 2864{
1221 return EV_VERSION_MINOR; 2865 return EV_VERSION_MINOR;
1222} 2866}
1223 2867
1224/* return true if we are running with elevated privileges and should ignore env variables */ 2868/* return true if we are running with elevated privileges and should ignore env variables */
1225int inline_size 2869inline_size ecb_cold int
1226enable_secure (void) 2870enable_secure (void)
1227{ 2871{
1228#ifdef _WIN32 2872#ifdef _WIN32
1229 return 0; 2873 return 0;
1230#else 2874#else
1231 return getuid () != geteuid () 2875 return getuid () != geteuid ()
1232 || getgid () != getegid (); 2876 || getgid () != getegid ();
1233#endif 2877#endif
1234} 2878}
1235 2879
2880ecb_cold
1236unsigned int 2881unsigned int
1237ev_supported_backends (void) 2882ev_supported_backends (void) EV_NOEXCEPT
1238{ 2883{
1239 unsigned int flags = 0; 2884 unsigned int flags = 0;
1240 2885
1241 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2886 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1242 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2887 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
1243 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL; 2888 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2889 if (EV_USE_LINUXAIO) flags |= EVBACKEND_LINUXAIO;
2890 if (EV_USE_IOURING ) flags |= EVBACKEND_IOURING;
1244 if (EV_USE_POLL ) flags |= EVBACKEND_POLL; 2891 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1245 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2892 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
1246 2893
1247 return flags; 2894 return flags;
1248} 2895}
1249 2896
2897ecb_cold
1250unsigned int 2898unsigned int
1251ev_recommended_backends (void) 2899ev_recommended_backends (void) EV_NOEXCEPT
1252{ 2900{
1253 unsigned int flags = ev_supported_backends (); 2901 unsigned int flags = ev_supported_backends ();
1254 2902
1255#ifndef __NetBSD__ 2903#ifndef __NetBSD__
1256 /* kqueue is borked on everything but netbsd apparently */ 2904 /* kqueue is borked on everything but netbsd apparently */
1257 /* it usually doesn't work correctly on anything but sockets and pipes */ 2905 /* it usually doesn't work correctly on anything but sockets and pipes */
1258 flags &= ~EVBACKEND_KQUEUE; 2906 flags &= ~EVBACKEND_KQUEUE;
1259#endif 2907#endif
1260#ifdef __APPLE__ 2908#ifdef __APPLE__
1261 // flags &= ~EVBACKEND_KQUEUE; for documentation 2909 /* only select works correctly on that "unix-certified" platform */
2910 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2911 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2912#endif
2913#ifdef __FreeBSD__
2914 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2915#endif
2916
2917 /* TODO: linuxaio is very experimental */
2918#if !EV_RECOMMEND_LINUXAIO
2919 flags &= ~EVBACKEND_LINUXAIO;
2920#endif
2921 /* TODO: linuxaio is super experimental */
2922#if !EV_RECOMMEND_IOURING
1262 flags &= ~EVBACKEND_POLL; 2923 flags &= ~EVBACKEND_IOURING;
1263#endif 2924#endif
1264 2925
1265 return flags; 2926 return flags;
1266} 2927}
1267 2928
2929ecb_cold
1268unsigned int 2930unsigned int
1269ev_embeddable_backends (void) 2931ev_embeddable_backends (void) EV_NOEXCEPT
1270{ 2932{
1271 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2933 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1272 2934
1273 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 2935 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1274 /* please fix it and tell me how to detect the fix */ 2936 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1275 flags &= ~EVBACKEND_EPOLL; 2937 flags &= ~EVBACKEND_EPOLL;
2938
2939 /* EVBACKEND_LINUXAIO is theoretically embeddable, but suffers from a performance overhead */
2940
2941 /* EVBACKEND_IOURING is practically embeddable, but the current implementation is not
2942 * because our backend_fd is the epoll fd we need as fallback.
2943 * if the kernel ever is fixed, this might change...
2944 */
1276 2945
1277 return flags; 2946 return flags;
1278} 2947}
1279 2948
1280unsigned int 2949unsigned int
1281ev_backend (EV_P) 2950ev_backend (EV_P) EV_NOEXCEPT
1282{ 2951{
1283 return backend; 2952 return backend;
1284} 2953}
1285 2954
2955#if EV_FEATURE_API
1286unsigned int 2956unsigned int
1287ev_loop_count (EV_P) 2957ev_iteration (EV_P) EV_NOEXCEPT
1288{ 2958{
1289 return loop_count; 2959 return loop_count;
1290} 2960}
1291 2961
2962unsigned int
2963ev_depth (EV_P) EV_NOEXCEPT
2964{
2965 return loop_depth;
2966}
2967
1292void 2968void
1293ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2969ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
1294{ 2970{
1295 io_blocktime = interval; 2971 io_blocktime = interval;
1296} 2972}
1297 2973
1298void 2974void
1299ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2975ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
1300{ 2976{
1301 timeout_blocktime = interval; 2977 timeout_blocktime = interval;
1302} 2978}
1303 2979
1304static void noinline 2980void
2981ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
2982{
2983 userdata = data;
2984}
2985
2986void *
2987ev_userdata (EV_P) EV_NOEXCEPT
2988{
2989 return userdata;
2990}
2991
2992void
2993ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
2994{
2995 invoke_cb = invoke_pending_cb;
2996}
2997
2998void
2999ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
3000{
3001 release_cb = release;
3002 acquire_cb = acquire;
3003}
3004#endif
3005
3006/* initialise a loop structure, must be zero-initialised */
3007ecb_noinline ecb_cold
3008static void
1305loop_init (EV_P_ unsigned int flags) 3009loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
1306{ 3010{
1307 if (!backend) 3011 if (!backend)
1308 { 3012 {
3013 origflags = flags;
3014
3015#if EV_USE_REALTIME
3016 if (!have_realtime)
3017 {
3018 struct timespec ts;
3019
3020 if (!clock_gettime (CLOCK_REALTIME, &ts))
3021 have_realtime = 1;
3022 }
3023#endif
3024
1309#if EV_USE_MONOTONIC 3025#if EV_USE_MONOTONIC
3026 if (!have_monotonic)
1310 { 3027 {
1311 struct timespec ts; 3028 struct timespec ts;
3029
1312 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 3030 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1313 have_monotonic = 1; 3031 have_monotonic = 1;
1314 } 3032 }
1315#endif
1316
1317 ev_rt_now = ev_time ();
1318 mn_now = get_clock ();
1319 now_floor = mn_now;
1320 rtmn_diff = ev_rt_now - mn_now;
1321
1322 io_blocktime = 0.;
1323 timeout_blocktime = 0.;
1324 backend = 0;
1325 backend_fd = -1;
1326 gotasync = 0;
1327#if EV_USE_INOTIFY
1328 fs_fd = -2;
1329#endif 3033#endif
1330 3034
1331 /* pid check not overridable via env */ 3035 /* pid check not overridable via env */
1332#ifndef _WIN32 3036#ifndef _WIN32
1333 if (flags & EVFLAG_FORKCHECK) 3037 if (flags & EVFLAG_FORKCHECK)
1337 if (!(flags & EVFLAG_NOENV) 3041 if (!(flags & EVFLAG_NOENV)
1338 && !enable_secure () 3042 && !enable_secure ()
1339 && getenv ("LIBEV_FLAGS")) 3043 && getenv ("LIBEV_FLAGS"))
1340 flags = atoi (getenv ("LIBEV_FLAGS")); 3044 flags = atoi (getenv ("LIBEV_FLAGS"));
1341 3045
1342 if (!(flags & 0x0000ffffU)) 3046 ev_rt_now = ev_time ();
3047 mn_now = get_clock ();
3048 now_floor = mn_now;
3049 rtmn_diff = ev_rt_now - mn_now;
3050#if EV_FEATURE_API
3051 invoke_cb = ev_invoke_pending;
3052#endif
3053
3054 io_blocktime = 0.;
3055 timeout_blocktime = 0.;
3056 backend = 0;
3057 backend_fd = -1;
3058 sig_pending = 0;
3059#if EV_ASYNC_ENABLE
3060 async_pending = 0;
3061#endif
3062 pipe_write_skipped = 0;
3063 pipe_write_wanted = 0;
3064 evpipe [0] = -1;
3065 evpipe [1] = -1;
3066#if EV_USE_INOTIFY
3067 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
3068#endif
3069#if EV_USE_SIGNALFD
3070 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
3071#endif
3072
3073 if (!(flags & EVBACKEND_MASK))
1343 flags |= ev_recommended_backends (); 3074 flags |= ev_recommended_backends ();
1344 3075
3076#if EV_USE_IOCP
3077 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
3078#endif
1345#if EV_USE_PORT 3079#if EV_USE_PORT
1346 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 3080 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1347#endif 3081#endif
1348#if EV_USE_KQUEUE 3082#if EV_USE_KQUEUE
1349 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 3083 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
3084#endif
3085#if EV_USE_IOURING
3086 if (!backend && (flags & EVBACKEND_IOURING )) backend = iouring_init (EV_A_ flags);
3087#endif
3088#if EV_USE_LINUXAIO
3089 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
1350#endif 3090#endif
1351#if EV_USE_EPOLL 3091#if EV_USE_EPOLL
1352 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags); 3092 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1353#endif 3093#endif
1354#if EV_USE_POLL 3094#if EV_USE_POLL
1355 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags); 3095 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1356#endif 3096#endif
1357#if EV_USE_SELECT 3097#if EV_USE_SELECT
1358 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 3098 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
1359#endif 3099#endif
1360 3100
3101 ev_prepare_init (&pending_w, pendingcb);
3102
3103#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1361 ev_init (&pipeev, pipecb); 3104 ev_init (&pipe_w, pipecb);
1362 ev_set_priority (&pipeev, EV_MAXPRI); 3105 ev_set_priority (&pipe_w, EV_MAXPRI);
3106#endif
1363 } 3107 }
1364} 3108}
1365 3109
1366static void noinline 3110/* free up a loop structure */
3111ecb_cold
3112void
1367loop_destroy (EV_P) 3113ev_loop_destroy (EV_P)
1368{ 3114{
1369 int i; 3115 int i;
1370 3116
3117#if EV_MULTIPLICITY
3118 /* mimic free (0) */
3119 if (!EV_A)
3120 return;
3121#endif
3122
3123#if EV_CLEANUP_ENABLE
3124 /* queue cleanup watchers (and execute them) */
3125 if (ecb_expect_false (cleanupcnt))
3126 {
3127 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3128 EV_INVOKE_PENDING;
3129 }
3130#endif
3131
3132#if EV_CHILD_ENABLE
3133 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3134 {
3135 ev_ref (EV_A); /* child watcher */
3136 ev_signal_stop (EV_A_ &childev);
3137 }
3138#endif
3139
1371 if (ev_is_active (&pipeev)) 3140 if (ev_is_active (&pipe_w))
1372 { 3141 {
1373 ev_ref (EV_A); /* signal watcher */ 3142 /*ev_ref (EV_A);*/
1374 ev_io_stop (EV_A_ &pipeev); 3143 /*ev_io_stop (EV_A_ &pipe_w);*/
1375 3144
3145 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3146 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3147 }
3148
1376#if EV_USE_EVENTFD 3149#if EV_USE_SIGNALFD
1377 if (evfd >= 0) 3150 if (ev_is_active (&sigfd_w))
1378 close (evfd); 3151 close (sigfd);
1379#endif 3152#endif
1380
1381 if (evpipe [0] >= 0)
1382 {
1383 close (evpipe [0]);
1384 close (evpipe [1]);
1385 }
1386 }
1387 3153
1388#if EV_USE_INOTIFY 3154#if EV_USE_INOTIFY
1389 if (fs_fd >= 0) 3155 if (fs_fd >= 0)
1390 close (fs_fd); 3156 close (fs_fd);
1391#endif 3157#endif
1392 3158
1393 if (backend_fd >= 0) 3159 if (backend_fd >= 0)
1394 close (backend_fd); 3160 close (backend_fd);
1395 3161
3162#if EV_USE_IOCP
3163 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3164#endif
1396#if EV_USE_PORT 3165#if EV_USE_PORT
1397 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 3166 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1398#endif 3167#endif
1399#if EV_USE_KQUEUE 3168#if EV_USE_KQUEUE
1400 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 3169 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3170#endif
3171#if EV_USE_IOURING
3172 if (backend == EVBACKEND_IOURING ) iouring_destroy (EV_A);
3173#endif
3174#if EV_USE_LINUXAIO
3175 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
1401#endif 3176#endif
1402#if EV_USE_EPOLL 3177#if EV_USE_EPOLL
1403 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A); 3178 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1404#endif 3179#endif
1405#if EV_USE_POLL 3180#if EV_USE_POLL
1406 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A); 3181 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1407#endif 3182#endif
1408#if EV_USE_SELECT 3183#if EV_USE_SELECT
1409 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 3184 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
1410#endif 3185#endif
1411 3186
1412 for (i = NUMPRI; i--; ) 3187 for (i = NUMPRI; i--; )
1413 { 3188 {
1414 array_free (pending, [i]); 3189 array_free (pending, [i]);
1415#if EV_IDLE_ENABLE 3190#if EV_IDLE_ENABLE
1416 array_free (idle, [i]); 3191 array_free (idle, [i]);
1417#endif 3192#endif
1418 } 3193 }
1419 3194
1420 ev_free (anfds); anfdmax = 0; 3195 ev_free (anfds); anfds = 0; anfdmax = 0;
1421 3196
1422 /* have to use the microsoft-never-gets-it-right macro */ 3197 /* have to use the microsoft-never-gets-it-right macro */
3198 array_free (rfeed, EMPTY);
1423 array_free (fdchange, EMPTY); 3199 array_free (fdchange, EMPTY);
1424 array_free (timer, EMPTY); 3200 array_free (timer, EMPTY);
1425#if EV_PERIODIC_ENABLE 3201#if EV_PERIODIC_ENABLE
1426 array_free (periodic, EMPTY); 3202 array_free (periodic, EMPTY);
1427#endif 3203#endif
1428#if EV_FORK_ENABLE 3204#if EV_FORK_ENABLE
1429 array_free (fork, EMPTY); 3205 array_free (fork, EMPTY);
1430#endif 3206#endif
3207#if EV_CLEANUP_ENABLE
3208 array_free (cleanup, EMPTY);
3209#endif
1431 array_free (prepare, EMPTY); 3210 array_free (prepare, EMPTY);
1432 array_free (check, EMPTY); 3211 array_free (check, EMPTY);
1433#if EV_ASYNC_ENABLE 3212#if EV_ASYNC_ENABLE
1434 array_free (async, EMPTY); 3213 array_free (async, EMPTY);
1435#endif 3214#endif
1436 3215
1437 backend = 0; 3216 backend = 0;
3217
3218#if EV_MULTIPLICITY
3219 if (ev_is_default_loop (EV_A))
3220#endif
3221 ev_default_loop_ptr = 0;
3222#if EV_MULTIPLICITY
3223 else
3224 ev_free (EV_A);
3225#endif
1438} 3226}
1439 3227
1440#if EV_USE_INOTIFY 3228#if EV_USE_INOTIFY
1441void inline_size infy_fork (EV_P); 3229inline_size void infy_fork (EV_P);
1442#endif 3230#endif
1443 3231
1444void inline_size 3232inline_size void
1445loop_fork (EV_P) 3233loop_fork (EV_P)
1446{ 3234{
1447#if EV_USE_PORT 3235#if EV_USE_PORT
1448 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 3236 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1449#endif 3237#endif
1450#if EV_USE_KQUEUE 3238#if EV_USE_KQUEUE
1451 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 3239 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3240#endif
3241#if EV_USE_IOURING
3242 if (backend == EVBACKEND_IOURING ) iouring_fork (EV_A);
3243#endif
3244#if EV_USE_LINUXAIO
3245 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
1452#endif 3246#endif
1453#if EV_USE_EPOLL 3247#if EV_USE_EPOLL
1454 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 3248 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1455#endif 3249#endif
1456#if EV_USE_INOTIFY 3250#if EV_USE_INOTIFY
1457 infy_fork (EV_A); 3251 infy_fork (EV_A);
1458#endif 3252#endif
1459 3253
1460 if (ev_is_active (&pipeev)) 3254#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3255 if (ev_is_active (&pipe_w) && postfork != 2)
1461 { 3256 {
1462 /* this "locks" the handlers against writing to the pipe */ 3257 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1463 /* while we modify the fd vars */
1464 gotsig = 1;
1465#if EV_ASYNC_ENABLE
1466 gotasync = 1;
1467#endif
1468 3258
1469 ev_ref (EV_A); 3259 ev_ref (EV_A);
1470 ev_io_stop (EV_A_ &pipeev); 3260 ev_io_stop (EV_A_ &pipe_w);
1471
1472#if EV_USE_EVENTFD
1473 if (evfd >= 0)
1474 close (evfd);
1475#endif
1476 3261
1477 if (evpipe [0] >= 0) 3262 if (evpipe [0] >= 0)
1478 { 3263 EV_WIN32_CLOSE_FD (evpipe [0]);
1479 close (evpipe [0]);
1480 close (evpipe [1]);
1481 }
1482 3264
1483 evpipe_init (EV_A); 3265 evpipe_init (EV_A);
1484 /* now iterate over everything, in case we missed something */ 3266 /* iterate over everything, in case we missed something before */
1485 pipecb (EV_A_ &pipeev, EV_READ); 3267 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1486 } 3268 }
3269#endif
1487 3270
1488 postfork = 0; 3271 postfork = 0;
1489} 3272}
1490 3273
1491#if EV_MULTIPLICITY 3274#if EV_MULTIPLICITY
1492 3275
3276ecb_cold
1493struct ev_loop * 3277struct ev_loop *
1494ev_loop_new (unsigned int flags) 3278ev_loop_new (unsigned int flags) EV_NOEXCEPT
1495{ 3279{
1496 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 3280 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1497 3281
1498 memset (loop, 0, sizeof (struct ev_loop)); 3282 memset (EV_A, 0, sizeof (struct ev_loop));
1499
1500 loop_init (EV_A_ flags); 3283 loop_init (EV_A_ flags);
1501 3284
1502 if (ev_backend (EV_A)) 3285 if (ev_backend (EV_A))
1503 return loop; 3286 return EV_A;
1504 3287
3288 ev_free (EV_A);
1505 return 0; 3289 return 0;
1506} 3290}
1507 3291
1508void 3292#endif /* multiplicity */
1509ev_loop_destroy (EV_P)
1510{
1511 loop_destroy (EV_A);
1512 ev_free (loop);
1513}
1514
1515void
1516ev_loop_fork (EV_P)
1517{
1518 postfork = 1; /* must be in line with ev_default_fork */
1519}
1520 3293
1521#if EV_VERIFY 3294#if EV_VERIFY
1522static void noinline 3295ecb_noinline ecb_cold
3296static void
1523verify_watcher (EV_P_ W w) 3297verify_watcher (EV_P_ W w)
1524{ 3298{
1525 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 3299 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1526 3300
1527 if (w->pending) 3301 if (w->pending)
1528 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 3302 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1529} 3303}
1530 3304
1531static void noinline 3305ecb_noinline ecb_cold
3306static void
1532verify_heap (EV_P_ ANHE *heap, int N) 3307verify_heap (EV_P_ ANHE *heap, int N)
1533{ 3308{
1534 int i; 3309 int i;
1535 3310
1536 for (i = HEAP0; i < N + HEAP0; ++i) 3311 for (i = HEAP0; i < N + HEAP0; ++i)
1537 { 3312 {
1538 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 3313 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1539 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 3314 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1540 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 3315 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1541 3316
1542 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 3317 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1543 } 3318 }
1544} 3319}
1545 3320
1546static void noinline 3321ecb_noinline ecb_cold
3322static void
1547array_verify (EV_P_ W *ws, int cnt) 3323array_verify (EV_P_ W *ws, int cnt)
1548{ 3324{
1549 while (cnt--) 3325 while (cnt--)
1550 { 3326 {
1551 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 3327 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1552 verify_watcher (EV_A_ ws [cnt]); 3328 verify_watcher (EV_A_ ws [cnt]);
1553 } 3329 }
1554} 3330}
1555#endif 3331#endif
1556 3332
1557void 3333#if EV_FEATURE_API
1558ev_loop_verify (EV_P) 3334void ecb_cold
3335ev_verify (EV_P) EV_NOEXCEPT
1559{ 3336{
1560#if EV_VERIFY 3337#if EV_VERIFY
1561 int i; 3338 int i;
1562 WL w; 3339 WL w, w2;
1563 3340
1564 assert (activecnt >= -1); 3341 assert (activecnt >= -1);
1565 3342
1566 assert (fdchangemax >= fdchangecnt); 3343 assert (fdchangemax >= fdchangecnt);
1567 for (i = 0; i < fdchangecnt; ++i) 3344 for (i = 0; i < fdchangecnt; ++i)
1568 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 3345 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1569 3346
1570 assert (anfdmax >= 0); 3347 assert (anfdmax >= 0);
1571 for (i = 0; i < anfdmax; ++i) 3348 for (i = 0; i < anfdmax; ++i)
3349 {
3350 int j = 0;
3351
1572 for (w = anfds [i].head; w; w = w->next) 3352 for (w = w2 = anfds [i].head; w; w = w->next)
1573 { 3353 {
1574 verify_watcher (EV_A_ (W)w); 3354 verify_watcher (EV_A_ (W)w);
3355
3356 if (j++ & 1)
3357 {
3358 assert (("libev: io watcher list contains a loop", w != w2));
3359 w2 = w2->next;
3360 }
3361
1575 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 3362 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1576 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 3363 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1577 } 3364 }
3365 }
1578 3366
1579 assert (timermax >= timercnt); 3367 assert (timermax >= timercnt);
1580 verify_heap (EV_A_ timers, timercnt); 3368 verify_heap (EV_A_ timers, timercnt);
1581 3369
1582#if EV_PERIODIC_ENABLE 3370#if EV_PERIODIC_ENABLE
1597#if EV_FORK_ENABLE 3385#if EV_FORK_ENABLE
1598 assert (forkmax >= forkcnt); 3386 assert (forkmax >= forkcnt);
1599 array_verify (EV_A_ (W *)forks, forkcnt); 3387 array_verify (EV_A_ (W *)forks, forkcnt);
1600#endif 3388#endif
1601 3389
3390#if EV_CLEANUP_ENABLE
3391 assert (cleanupmax >= cleanupcnt);
3392 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3393#endif
3394
1602#if EV_ASYNC_ENABLE 3395#if EV_ASYNC_ENABLE
1603 assert (asyncmax >= asynccnt); 3396 assert (asyncmax >= asynccnt);
1604 array_verify (EV_A_ (W *)asyncs, asynccnt); 3397 array_verify (EV_A_ (W *)asyncs, asynccnt);
1605#endif 3398#endif
1606 3399
3400#if EV_PREPARE_ENABLE
1607 assert (preparemax >= preparecnt); 3401 assert (preparemax >= preparecnt);
1608 array_verify (EV_A_ (W *)prepares, preparecnt); 3402 array_verify (EV_A_ (W *)prepares, preparecnt);
3403#endif
1609 3404
3405#if EV_CHECK_ENABLE
1610 assert (checkmax >= checkcnt); 3406 assert (checkmax >= checkcnt);
1611 array_verify (EV_A_ (W *)checks, checkcnt); 3407 array_verify (EV_A_ (W *)checks, checkcnt);
3408#endif
1612 3409
1613# if 0 3410# if 0
3411#if EV_CHILD_ENABLE
1614 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 3412 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1615 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 3413 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3414#endif
1616# endif 3415# endif
1617#endif 3416#endif
1618} 3417}
1619 3418#endif
1620#endif /* multiplicity */
1621 3419
1622#if EV_MULTIPLICITY 3420#if EV_MULTIPLICITY
3421ecb_cold
1623struct ev_loop * 3422struct ev_loop *
1624ev_default_loop_init (unsigned int flags)
1625#else 3423#else
1626int 3424int
3425#endif
1627ev_default_loop (unsigned int flags) 3426ev_default_loop (unsigned int flags) EV_NOEXCEPT
1628#endif
1629{ 3427{
1630 if (!ev_default_loop_ptr) 3428 if (!ev_default_loop_ptr)
1631 { 3429 {
1632#if EV_MULTIPLICITY 3430#if EV_MULTIPLICITY
1633 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3431 EV_P = ev_default_loop_ptr = &default_loop_struct;
1634#else 3432#else
1635 ev_default_loop_ptr = 1; 3433 ev_default_loop_ptr = 1;
1636#endif 3434#endif
1637 3435
1638 loop_init (EV_A_ flags); 3436 loop_init (EV_A_ flags);
1639 3437
1640 if (ev_backend (EV_A)) 3438 if (ev_backend (EV_A))
1641 { 3439 {
1642#ifndef _WIN32 3440#if EV_CHILD_ENABLE
1643 ev_signal_init (&childev, childcb, SIGCHLD); 3441 ev_signal_init (&childev, childcb, SIGCHLD);
1644 ev_set_priority (&childev, EV_MAXPRI); 3442 ev_set_priority (&childev, EV_MAXPRI);
1645 ev_signal_start (EV_A_ &childev); 3443 ev_signal_start (EV_A_ &childev);
1646 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3444 ev_unref (EV_A); /* child watcher should not keep loop alive */
1647#endif 3445#endif
1652 3450
1653 return ev_default_loop_ptr; 3451 return ev_default_loop_ptr;
1654} 3452}
1655 3453
1656void 3454void
1657ev_default_destroy (void) 3455ev_loop_fork (EV_P) EV_NOEXCEPT
1658{ 3456{
1659#if EV_MULTIPLICITY 3457 postfork = 1;
1660 struct ev_loop *loop = ev_default_loop_ptr;
1661#endif
1662
1663#ifndef _WIN32
1664 ev_ref (EV_A); /* child watcher */
1665 ev_signal_stop (EV_A_ &childev);
1666#endif
1667
1668 loop_destroy (EV_A);
1669}
1670
1671void
1672ev_default_fork (void)
1673{
1674#if EV_MULTIPLICITY
1675 struct ev_loop *loop = ev_default_loop_ptr;
1676#endif
1677
1678 if (backend)
1679 postfork = 1; /* must be in line with ev_loop_fork */
1680} 3458}
1681 3459
1682/*****************************************************************************/ 3460/*****************************************************************************/
1683 3461
1684void 3462void
1685ev_invoke (EV_P_ void *w, int revents) 3463ev_invoke (EV_P_ void *w, int revents)
1686{ 3464{
1687 EV_CB_INVOKE ((W)w, revents); 3465 EV_CB_INVOKE ((W)w, revents);
1688} 3466}
1689 3467
1690void inline_speed 3468unsigned int
1691call_pending (EV_P) 3469ev_pending_count (EV_P) EV_NOEXCEPT
1692{ 3470{
1693 int pri; 3471 int pri;
3472 unsigned int count = 0;
1694 3473
1695 for (pri = NUMPRI; pri--; ) 3474 for (pri = NUMPRI; pri--; )
3475 count += pendingcnt [pri];
3476
3477 return count;
3478}
3479
3480ecb_noinline
3481void
3482ev_invoke_pending (EV_P)
3483{
3484 pendingpri = NUMPRI;
3485
3486 do
3487 {
3488 --pendingpri;
3489
3490 /* pendingpri possibly gets modified in the inner loop */
1696 while (pendingcnt [pri]) 3491 while (pendingcnt [pendingpri])
1697 {
1698 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1699
1700 if (expect_true (p->w))
1701 { 3492 {
1702 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 3493 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1703 3494
1704 p->w->pending = 0; 3495 p->w->pending = 0;
1705 EV_CB_INVOKE (p->w, p->events); 3496 EV_CB_INVOKE (p->w, p->events);
1706 EV_FREQUENT_CHECK; 3497 EV_FREQUENT_CHECK;
1707 } 3498 }
1708 } 3499 }
3500 while (pendingpri);
1709} 3501}
1710 3502
1711#if EV_IDLE_ENABLE 3503#if EV_IDLE_ENABLE
1712void inline_size 3504/* make idle watchers pending. this handles the "call-idle */
3505/* only when higher priorities are idle" logic */
3506inline_size void
1713idle_reify (EV_P) 3507idle_reify (EV_P)
1714{ 3508{
1715 if (expect_false (idleall)) 3509 if (ecb_expect_false (idleall))
1716 { 3510 {
1717 int pri; 3511 int pri;
1718 3512
1719 for (pri = NUMPRI; pri--; ) 3513 for (pri = NUMPRI; pri--; )
1720 { 3514 {
1729 } 3523 }
1730 } 3524 }
1731} 3525}
1732#endif 3526#endif
1733 3527
1734void inline_size 3528/* make timers pending */
3529inline_size void
1735timers_reify (EV_P) 3530timers_reify (EV_P)
1736{ 3531{
1737 EV_FREQUENT_CHECK; 3532 EV_FREQUENT_CHECK;
1738 3533
1739 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 3534 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1740 { 3535 {
1741 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 3536 do
1742
1743 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1744
1745 /* first reschedule or stop timer */
1746 if (w->repeat)
1747 { 3537 {
3538 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3539
3540 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3541
3542 /* first reschedule or stop timer */
3543 if (w->repeat)
3544 {
1748 ev_at (w) += w->repeat; 3545 ev_at (w) += w->repeat;
1749 if (ev_at (w) < mn_now) 3546 if (ev_at (w) < mn_now)
1750 ev_at (w) = mn_now; 3547 ev_at (w) = mn_now;
1751 3548
1752 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3549 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1753 3550
1754 ANHE_at_cache (timers [HEAP0]); 3551 ANHE_at_cache (timers [HEAP0]);
1755 downheap (timers, timercnt, HEAP0); 3552 downheap (timers, timercnt, HEAP0);
3553 }
3554 else
3555 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3556
3557 EV_FREQUENT_CHECK;
3558 feed_reverse (EV_A_ (W)w);
1756 } 3559 }
1757 else 3560 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1758 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1759 3561
1760 EV_FREQUENT_CHECK; 3562 feed_reverse_done (EV_A_ EV_TIMER);
1761 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1762 } 3563 }
1763} 3564}
1764 3565
1765#if EV_PERIODIC_ENABLE 3566#if EV_PERIODIC_ENABLE
1766void inline_size 3567
3568ecb_noinline
3569static void
3570periodic_recalc (EV_P_ ev_periodic *w)
3571{
3572 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3573 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3574
3575 /* the above almost always errs on the low side */
3576 while (at <= ev_rt_now)
3577 {
3578 ev_tstamp nat = at + w->interval;
3579
3580 /* when resolution fails us, we use ev_rt_now */
3581 if (ecb_expect_false (nat == at))
3582 {
3583 at = ev_rt_now;
3584 break;
3585 }
3586
3587 at = nat;
3588 }
3589
3590 ev_at (w) = at;
3591}
3592
3593/* make periodics pending */
3594inline_size void
1767periodics_reify (EV_P) 3595periodics_reify (EV_P)
1768{ 3596{
1769 EV_FREQUENT_CHECK; 3597 EV_FREQUENT_CHECK;
1770 3598
1771 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 3599 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1772 { 3600 {
1773 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 3601 do
1774
1775 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1776
1777 /* first reschedule or stop timer */
1778 if (w->reschedule_cb)
1779 { 3602 {
3603 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3604
3605 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3606
3607 /* first reschedule or stop timer */
3608 if (w->reschedule_cb)
3609 {
1780 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3610 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1781 3611
1782 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 3612 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1783 3613
1784 ANHE_at_cache (periodics [HEAP0]); 3614 ANHE_at_cache (periodics [HEAP0]);
1785 downheap (periodics, periodiccnt, HEAP0); 3615 downheap (periodics, periodiccnt, HEAP0);
3616 }
3617 else if (w->interval)
3618 {
3619 periodic_recalc (EV_A_ w);
3620 ANHE_at_cache (periodics [HEAP0]);
3621 downheap (periodics, periodiccnt, HEAP0);
3622 }
3623 else
3624 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3625
3626 EV_FREQUENT_CHECK;
3627 feed_reverse (EV_A_ (W)w);
1786 } 3628 }
1787 else if (w->interval) 3629 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1788 {
1789 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1790 /* if next trigger time is not sufficiently in the future, put it there */
1791 /* this might happen because of floating point inexactness */
1792 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1793 {
1794 ev_at (w) += w->interval;
1795 3630
1796 /* if interval is unreasonably low we might still have a time in the past */
1797 /* so correct this. this will make the periodic very inexact, but the user */
1798 /* has effectively asked to get triggered more often than possible */
1799 if (ev_at (w) < ev_rt_now)
1800 ev_at (w) = ev_rt_now;
1801 }
1802
1803 ANHE_at_cache (periodics [HEAP0]);
1804 downheap (periodics, periodiccnt, HEAP0);
1805 }
1806 else
1807 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1808
1809 EV_FREQUENT_CHECK;
1810 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3631 feed_reverse_done (EV_A_ EV_PERIODIC);
1811 } 3632 }
1812} 3633}
1813 3634
1814static void noinline 3635/* simply recalculate all periodics */
3636/* TODO: maybe ensure that at least one event happens when jumping forward? */
3637ecb_noinline ecb_cold
3638static void
1815periodics_reschedule (EV_P) 3639periodics_reschedule (EV_P)
1816{ 3640{
1817 int i; 3641 int i;
1818 3642
1819 /* adjust periodics after time jump */ 3643 /* adjust periodics after time jump */
1822 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 3646 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1823 3647
1824 if (w->reschedule_cb) 3648 if (w->reschedule_cb)
1825 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3649 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1826 else if (w->interval) 3650 else if (w->interval)
1827 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3651 periodic_recalc (EV_A_ w);
1828 3652
1829 ANHE_at_cache (periodics [i]); 3653 ANHE_at_cache (periodics [i]);
1830 } 3654 }
1831 3655
1832 reheap (periodics, periodiccnt); 3656 reheap (periodics, periodiccnt);
1833} 3657}
1834#endif 3658#endif
1835 3659
1836void inline_speed 3660/* adjust all timers by a given offset */
3661ecb_noinline ecb_cold
3662static void
3663timers_reschedule (EV_P_ ev_tstamp adjust)
3664{
3665 int i;
3666
3667 for (i = 0; i < timercnt; ++i)
3668 {
3669 ANHE *he = timers + i + HEAP0;
3670 ANHE_w (*he)->at += adjust;
3671 ANHE_at_cache (*he);
3672 }
3673}
3674
3675/* fetch new monotonic and realtime times from the kernel */
3676/* also detect if there was a timejump, and act accordingly */
3677inline_speed void
1837time_update (EV_P_ ev_tstamp max_block) 3678time_update (EV_P_ ev_tstamp max_block)
1838{ 3679{
1839 int i;
1840
1841#if EV_USE_MONOTONIC 3680#if EV_USE_MONOTONIC
1842 if (expect_true (have_monotonic)) 3681 if (ecb_expect_true (have_monotonic))
1843 { 3682 {
3683 int i;
1844 ev_tstamp odiff = rtmn_diff; 3684 ev_tstamp odiff = rtmn_diff;
1845 3685
1846 mn_now = get_clock (); 3686 mn_now = get_clock ();
1847 3687
1848 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3688 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1849 /* interpolate in the meantime */ 3689 /* interpolate in the meantime */
1850 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 3690 if (ecb_expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1851 { 3691 {
1852 ev_rt_now = rtmn_diff + mn_now; 3692 ev_rt_now = rtmn_diff + mn_now;
1853 return; 3693 return;
1854 } 3694 }
1855 3695
1864 * doesn't hurt either as we only do this on time-jumps or 3704 * doesn't hurt either as we only do this on time-jumps or
1865 * in the unlikely event of having been preempted here. 3705 * in the unlikely event of having been preempted here.
1866 */ 3706 */
1867 for (i = 4; --i; ) 3707 for (i = 4; --i; )
1868 { 3708 {
3709 ev_tstamp diff;
1869 rtmn_diff = ev_rt_now - mn_now; 3710 rtmn_diff = ev_rt_now - mn_now;
1870 3711
3712 diff = odiff - rtmn_diff;
3713
1871 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3714 if (ecb_expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1872 return; /* all is well */ 3715 return; /* all is well */
1873 3716
1874 ev_rt_now = ev_time (); 3717 ev_rt_now = ev_time ();
1875 mn_now = get_clock (); 3718 mn_now = get_clock ();
1876 now_floor = mn_now; 3719 now_floor = mn_now;
1877 } 3720 }
1878 3721
3722 /* no timer adjustment, as the monotonic clock doesn't jump */
3723 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1879# if EV_PERIODIC_ENABLE 3724# if EV_PERIODIC_ENABLE
1880 periodics_reschedule (EV_A); 3725 periodics_reschedule (EV_A);
1881# endif 3726# endif
1882 /* no timer adjustment, as the monotonic clock doesn't jump */
1883 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1884 } 3727 }
1885 else 3728 else
1886#endif 3729#endif
1887 { 3730 {
1888 ev_rt_now = ev_time (); 3731 ev_rt_now = ev_time ();
1889 3732
1890 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3733 if (ecb_expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1891 { 3734 {
3735 /* adjust timers. this is easy, as the offset is the same for all of them */
3736 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1892#if EV_PERIODIC_ENABLE 3737#if EV_PERIODIC_ENABLE
1893 periodics_reschedule (EV_A); 3738 periodics_reschedule (EV_A);
1894#endif 3739#endif
1895 /* adjust timers. this is easy, as the offset is the same for all of them */
1896 for (i = 0; i < timercnt; ++i)
1897 {
1898 ANHE *he = timers + i + HEAP0;
1899 ANHE_w (*he)->at += ev_rt_now - mn_now;
1900 ANHE_at_cache (*he);
1901 }
1902 } 3740 }
1903 3741
1904 mn_now = ev_rt_now; 3742 mn_now = ev_rt_now;
1905 } 3743 }
1906} 3744}
1907 3745
1908void 3746int
1909ev_ref (EV_P)
1910{
1911 ++activecnt;
1912}
1913
1914void
1915ev_unref (EV_P)
1916{
1917 --activecnt;
1918}
1919
1920void
1921ev_now_update (EV_P)
1922{
1923 time_update (EV_A_ 1e100);
1924}
1925
1926static int loop_done;
1927
1928void
1929ev_loop (EV_P_ int flags) 3747ev_run (EV_P_ int flags)
1930{ 3748{
3749#if EV_FEATURE_API
3750 ++loop_depth;
3751#endif
3752
3753 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3754
1931 loop_done = EVUNLOOP_CANCEL; 3755 loop_done = EVBREAK_CANCEL;
1932 3756
1933 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3757 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1934 3758
1935 do 3759 do
1936 { 3760 {
1937#if EV_VERIFY >= 2 3761#if EV_VERIFY >= 2
1938 ev_loop_verify (EV_A); 3762 ev_verify (EV_A);
1939#endif 3763#endif
1940 3764
1941#ifndef _WIN32 3765#ifndef _WIN32
1942 if (expect_false (curpid)) /* penalise the forking check even more */ 3766 if (ecb_expect_false (curpid)) /* penalise the forking check even more */
1943 if (expect_false (getpid () != curpid)) 3767 if (ecb_expect_false (getpid () != curpid))
1944 { 3768 {
1945 curpid = getpid (); 3769 curpid = getpid ();
1946 postfork = 1; 3770 postfork = 1;
1947 } 3771 }
1948#endif 3772#endif
1949 3773
1950#if EV_FORK_ENABLE 3774#if EV_FORK_ENABLE
1951 /* we might have forked, so queue fork handlers */ 3775 /* we might have forked, so queue fork handlers */
1952 if (expect_false (postfork)) 3776 if (ecb_expect_false (postfork))
1953 if (forkcnt) 3777 if (forkcnt)
1954 { 3778 {
1955 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3779 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1956 call_pending (EV_A); 3780 EV_INVOKE_PENDING;
1957 } 3781 }
1958#endif 3782#endif
1959 3783
3784#if EV_PREPARE_ENABLE
1960 /* queue prepare watchers (and execute them) */ 3785 /* queue prepare watchers (and execute them) */
1961 if (expect_false (preparecnt)) 3786 if (ecb_expect_false (preparecnt))
1962 { 3787 {
1963 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3788 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1964 call_pending (EV_A); 3789 EV_INVOKE_PENDING;
1965 } 3790 }
3791#endif
1966 3792
1967 if (expect_false (!activecnt)) 3793 if (ecb_expect_false (loop_done))
1968 break; 3794 break;
1969 3795
1970 /* we might have forked, so reify kernel state if necessary */ 3796 /* we might have forked, so reify kernel state if necessary */
1971 if (expect_false (postfork)) 3797 if (ecb_expect_false (postfork))
1972 loop_fork (EV_A); 3798 loop_fork (EV_A);
1973 3799
1974 /* update fd-related kernel structures */ 3800 /* update fd-related kernel structures */
1975 fd_reify (EV_A); 3801 fd_reify (EV_A);
1976 3802
1977 /* calculate blocking time */ 3803 /* calculate blocking time */
1978 { 3804 {
1979 ev_tstamp waittime = 0.; 3805 ev_tstamp waittime = 0.;
1980 ev_tstamp sleeptime = 0.; 3806 ev_tstamp sleeptime = 0.;
1981 3807
3808 /* remember old timestamp for io_blocktime calculation */
3809 ev_tstamp prev_mn_now = mn_now;
3810
3811 /* update time to cancel out callback processing overhead */
3812 time_update (EV_A_ 1e100);
3813
3814 /* from now on, we want a pipe-wake-up */
3815 pipe_write_wanted = 1;
3816
3817 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3818
1982 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3819 if (ecb_expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1983 { 3820 {
1984 /* update time to cancel out callback processing overhead */
1985 time_update (EV_A_ 1e100);
1986
1987 waittime = MAX_BLOCKTIME; 3821 waittime = MAX_BLOCKTIME;
1988 3822
1989 if (timercnt) 3823 if (timercnt)
1990 { 3824 {
1991 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3825 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1992 if (waittime > to) waittime = to; 3826 if (waittime > to) waittime = to;
1993 } 3827 }
1994 3828
1995#if EV_PERIODIC_ENABLE 3829#if EV_PERIODIC_ENABLE
1996 if (periodiccnt) 3830 if (periodiccnt)
1997 { 3831 {
1998 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3832 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1999 if (waittime > to) waittime = to; 3833 if (waittime > to) waittime = to;
2000 } 3834 }
2001#endif 3835#endif
2002 3836
3837 /* don't let timeouts decrease the waittime below timeout_blocktime */
2003 if (expect_false (waittime < timeout_blocktime)) 3838 if (ecb_expect_false (waittime < timeout_blocktime))
2004 waittime = timeout_blocktime; 3839 waittime = timeout_blocktime;
2005 3840
2006 sleeptime = waittime - backend_fudge; 3841 /* at this point, we NEED to wait, so we have to ensure */
3842 /* to pass a minimum nonzero value to the backend */
3843 if (ecb_expect_false (waittime < backend_mintime))
3844 waittime = backend_mintime;
2007 3845
3846 /* extra check because io_blocktime is commonly 0 */
2008 if (expect_true (sleeptime > io_blocktime)) 3847 if (ecb_expect_false (io_blocktime))
2009 sleeptime = io_blocktime;
2010
2011 if (sleeptime)
2012 { 3848 {
3849 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3850
3851 if (sleeptime > waittime - backend_mintime)
3852 sleeptime = waittime - backend_mintime;
3853
3854 if (ecb_expect_true (sleeptime > 0.))
3855 {
2013 ev_sleep (sleeptime); 3856 ev_sleep (sleeptime);
2014 waittime -= sleeptime; 3857 waittime -= sleeptime;
3858 }
2015 } 3859 }
2016 } 3860 }
2017 3861
3862#if EV_FEATURE_API
2018 ++loop_count; 3863 ++loop_count;
3864#endif
3865 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2019 backend_poll (EV_A_ waittime); 3866 backend_poll (EV_A_ waittime);
3867 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3868
3869 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3870
3871 ECB_MEMORY_FENCE_ACQUIRE;
3872 if (pipe_write_skipped)
3873 {
3874 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3875 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3876 }
2020 3877
2021 /* update ev_rt_now, do magic */ 3878 /* update ev_rt_now, do magic */
2022 time_update (EV_A_ waittime + sleeptime); 3879 time_update (EV_A_ waittime + sleeptime);
2023 } 3880 }
2024 3881
2031#if EV_IDLE_ENABLE 3888#if EV_IDLE_ENABLE
2032 /* queue idle watchers unless other events are pending */ 3889 /* queue idle watchers unless other events are pending */
2033 idle_reify (EV_A); 3890 idle_reify (EV_A);
2034#endif 3891#endif
2035 3892
3893#if EV_CHECK_ENABLE
2036 /* queue check watchers, to be executed first */ 3894 /* queue check watchers, to be executed first */
2037 if (expect_false (checkcnt)) 3895 if (ecb_expect_false (checkcnt))
2038 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3896 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3897#endif
2039 3898
2040 call_pending (EV_A); 3899 EV_INVOKE_PENDING;
2041 } 3900 }
2042 while (expect_true ( 3901 while (ecb_expect_true (
2043 activecnt 3902 activecnt
2044 && !loop_done 3903 && !loop_done
2045 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3904 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2046 )); 3905 ));
2047 3906
2048 if (loop_done == EVUNLOOP_ONE) 3907 if (loop_done == EVBREAK_ONE)
2049 loop_done = EVUNLOOP_CANCEL; 3908 loop_done = EVBREAK_CANCEL;
2050}
2051 3909
3910#if EV_FEATURE_API
3911 --loop_depth;
3912#endif
3913
3914 return activecnt;
3915}
3916
2052void 3917void
2053ev_unloop (EV_P_ int how) 3918ev_break (EV_P_ int how) EV_NOEXCEPT
2054{ 3919{
2055 loop_done = how; 3920 loop_done = how;
2056} 3921}
2057 3922
3923void
3924ev_ref (EV_P) EV_NOEXCEPT
3925{
3926 ++activecnt;
3927}
3928
3929void
3930ev_unref (EV_P) EV_NOEXCEPT
3931{
3932 --activecnt;
3933}
3934
3935void
3936ev_now_update (EV_P) EV_NOEXCEPT
3937{
3938 time_update (EV_A_ 1e100);
3939}
3940
3941void
3942ev_suspend (EV_P) EV_NOEXCEPT
3943{
3944 ev_now_update (EV_A);
3945}
3946
3947void
3948ev_resume (EV_P) EV_NOEXCEPT
3949{
3950 ev_tstamp mn_prev = mn_now;
3951
3952 ev_now_update (EV_A);
3953 timers_reschedule (EV_A_ mn_now - mn_prev);
3954#if EV_PERIODIC_ENABLE
3955 /* TODO: really do this? */
3956 periodics_reschedule (EV_A);
3957#endif
3958}
3959
2058/*****************************************************************************/ 3960/*****************************************************************************/
3961/* singly-linked list management, used when the expected list length is short */
2059 3962
2060void inline_size 3963inline_size void
2061wlist_add (WL *head, WL elem) 3964wlist_add (WL *head, WL elem)
2062{ 3965{
2063 elem->next = *head; 3966 elem->next = *head;
2064 *head = elem; 3967 *head = elem;
2065} 3968}
2066 3969
2067void inline_size 3970inline_size void
2068wlist_del (WL *head, WL elem) 3971wlist_del (WL *head, WL elem)
2069{ 3972{
2070 while (*head) 3973 while (*head)
2071 { 3974 {
2072 if (*head == elem) 3975 if (ecb_expect_true (*head == elem))
2073 { 3976 {
2074 *head = elem->next; 3977 *head = elem->next;
2075 return; 3978 break;
2076 } 3979 }
2077 3980
2078 head = &(*head)->next; 3981 head = &(*head)->next;
2079 } 3982 }
2080} 3983}
2081 3984
2082void inline_speed 3985/* internal, faster, version of ev_clear_pending */
3986inline_speed void
2083clear_pending (EV_P_ W w) 3987clear_pending (EV_P_ W w)
2084{ 3988{
2085 if (w->pending) 3989 if (w->pending)
2086 { 3990 {
2087 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3991 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2088 w->pending = 0; 3992 w->pending = 0;
2089 } 3993 }
2090} 3994}
2091 3995
2092int 3996int
2093ev_clear_pending (EV_P_ void *w) 3997ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
2094{ 3998{
2095 W w_ = (W)w; 3999 W w_ = (W)w;
2096 int pending = w_->pending; 4000 int pending = w_->pending;
2097 4001
2098 if (expect_true (pending)) 4002 if (ecb_expect_true (pending))
2099 { 4003 {
2100 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 4004 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
4005 p->w = (W)&pending_w;
2101 w_->pending = 0; 4006 w_->pending = 0;
2102 p->w = 0;
2103 return p->events; 4007 return p->events;
2104 } 4008 }
2105 else 4009 else
2106 return 0; 4010 return 0;
2107} 4011}
2108 4012
2109void inline_size 4013inline_size void
2110pri_adjust (EV_P_ W w) 4014pri_adjust (EV_P_ W w)
2111{ 4015{
2112 int pri = w->priority; 4016 int pri = ev_priority (w);
2113 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 4017 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2114 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 4018 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2115 w->priority = pri; 4019 ev_set_priority (w, pri);
2116} 4020}
2117 4021
2118void inline_speed 4022inline_speed void
2119ev_start (EV_P_ W w, int active) 4023ev_start (EV_P_ W w, int active)
2120{ 4024{
2121 pri_adjust (EV_A_ w); 4025 pri_adjust (EV_A_ w);
2122 w->active = active; 4026 w->active = active;
2123 ev_ref (EV_A); 4027 ev_ref (EV_A);
2124} 4028}
2125 4029
2126void inline_size 4030inline_size void
2127ev_stop (EV_P_ W w) 4031ev_stop (EV_P_ W w)
2128{ 4032{
2129 ev_unref (EV_A); 4033 ev_unref (EV_A);
2130 w->active = 0; 4034 w->active = 0;
2131} 4035}
2132 4036
2133/*****************************************************************************/ 4037/*****************************************************************************/
2134 4038
2135void noinline 4039ecb_noinline
4040void
2136ev_io_start (EV_P_ ev_io *w) 4041ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
2137{ 4042{
2138 int fd = w->fd; 4043 int fd = w->fd;
2139 4044
2140 if (expect_false (ev_is_active (w))) 4045 if (ecb_expect_false (ev_is_active (w)))
2141 return; 4046 return;
2142 4047
2143 assert (("ev_io_start called with negative fd", fd >= 0)); 4048 assert (("libev: ev_io_start called with negative fd", fd >= 0));
4049 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2144 4050
4051#if EV_VERIFY >= 2
4052 assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
4053#endif
2145 EV_FREQUENT_CHECK; 4054 EV_FREQUENT_CHECK;
2146 4055
2147 ev_start (EV_A_ (W)w, 1); 4056 ev_start (EV_A_ (W)w, 1);
2148 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 4057 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
2149 wlist_add (&anfds[fd].head, (WL)w); 4058 wlist_add (&anfds[fd].head, (WL)w);
2150 4059
4060 /* common bug, apparently */
4061 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
4062
2151 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 4063 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2152 w->events &= ~EV_IOFDSET; 4064 w->events &= ~EV__IOFDSET;
2153 4065
2154 EV_FREQUENT_CHECK; 4066 EV_FREQUENT_CHECK;
2155} 4067}
2156 4068
2157void noinline 4069ecb_noinline
4070void
2158ev_io_stop (EV_P_ ev_io *w) 4071ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
2159{ 4072{
2160 clear_pending (EV_A_ (W)w); 4073 clear_pending (EV_A_ (W)w);
2161 if (expect_false (!ev_is_active (w))) 4074 if (ecb_expect_false (!ev_is_active (w)))
2162 return; 4075 return;
2163 4076
2164 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 4077 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2165 4078
4079#if EV_VERIFY >= 2
4080 assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
4081#endif
2166 EV_FREQUENT_CHECK; 4082 EV_FREQUENT_CHECK;
2167 4083
2168 wlist_del (&anfds[w->fd].head, (WL)w); 4084 wlist_del (&anfds[w->fd].head, (WL)w);
2169 ev_stop (EV_A_ (W)w); 4085 ev_stop (EV_A_ (W)w);
2170 4086
2171 fd_change (EV_A_ w->fd, 1); 4087 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2172 4088
2173 EV_FREQUENT_CHECK; 4089 EV_FREQUENT_CHECK;
2174} 4090}
2175 4091
2176void noinline 4092ecb_noinline
4093void
2177ev_timer_start (EV_P_ ev_timer *w) 4094ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
2178{ 4095{
2179 if (expect_false (ev_is_active (w))) 4096 if (ecb_expect_false (ev_is_active (w)))
2180 return; 4097 return;
2181 4098
2182 ev_at (w) += mn_now; 4099 ev_at (w) += mn_now;
2183 4100
2184 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 4101 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2185 4102
2186 EV_FREQUENT_CHECK; 4103 EV_FREQUENT_CHECK;
2187 4104
2188 ++timercnt; 4105 ++timercnt;
2189 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 4106 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2190 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 4107 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
2191 ANHE_w (timers [ev_active (w)]) = (WT)w; 4108 ANHE_w (timers [ev_active (w)]) = (WT)w;
2192 ANHE_at_cache (timers [ev_active (w)]); 4109 ANHE_at_cache (timers [ev_active (w)]);
2193 upheap (timers, ev_active (w)); 4110 upheap (timers, ev_active (w));
2194 4111
2195 EV_FREQUENT_CHECK; 4112 EV_FREQUENT_CHECK;
2196 4113
2197 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 4114 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2198} 4115}
2199 4116
2200void noinline 4117ecb_noinline
4118void
2201ev_timer_stop (EV_P_ ev_timer *w) 4119ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
2202{ 4120{
2203 clear_pending (EV_A_ (W)w); 4121 clear_pending (EV_A_ (W)w);
2204 if (expect_false (!ev_is_active (w))) 4122 if (ecb_expect_false (!ev_is_active (w)))
2205 return; 4123 return;
2206 4124
2207 EV_FREQUENT_CHECK; 4125 EV_FREQUENT_CHECK;
2208 4126
2209 { 4127 {
2210 int active = ev_active (w); 4128 int active = ev_active (w);
2211 4129
2212 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 4130 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2213 4131
2214 --timercnt; 4132 --timercnt;
2215 4133
2216 if (expect_true (active < timercnt + HEAP0)) 4134 if (ecb_expect_true (active < timercnt + HEAP0))
2217 { 4135 {
2218 timers [active] = timers [timercnt + HEAP0]; 4136 timers [active] = timers [timercnt + HEAP0];
2219 adjustheap (timers, timercnt, active); 4137 adjustheap (timers, timercnt, active);
2220 } 4138 }
2221 } 4139 }
2222 4140
2223 EV_FREQUENT_CHECK;
2224
2225 ev_at (w) -= mn_now; 4141 ev_at (w) -= mn_now;
2226 4142
2227 ev_stop (EV_A_ (W)w); 4143 ev_stop (EV_A_ (W)w);
2228}
2229 4144
2230void noinline 4145 EV_FREQUENT_CHECK;
4146}
4147
4148ecb_noinline
4149void
2231ev_timer_again (EV_P_ ev_timer *w) 4150ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
2232{ 4151{
2233 EV_FREQUENT_CHECK; 4152 EV_FREQUENT_CHECK;
4153
4154 clear_pending (EV_A_ (W)w);
2234 4155
2235 if (ev_is_active (w)) 4156 if (ev_is_active (w))
2236 { 4157 {
2237 if (w->repeat) 4158 if (w->repeat)
2238 { 4159 {
2250 } 4171 }
2251 4172
2252 EV_FREQUENT_CHECK; 4173 EV_FREQUENT_CHECK;
2253} 4174}
2254 4175
4176ev_tstamp
4177ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4178{
4179 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
4180}
4181
2255#if EV_PERIODIC_ENABLE 4182#if EV_PERIODIC_ENABLE
2256void noinline 4183ecb_noinline
4184void
2257ev_periodic_start (EV_P_ ev_periodic *w) 4185ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
2258{ 4186{
2259 if (expect_false (ev_is_active (w))) 4187 if (ecb_expect_false (ev_is_active (w)))
2260 return; 4188 return;
2261 4189
2262 if (w->reschedule_cb) 4190 if (w->reschedule_cb)
2263 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 4191 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2264 else if (w->interval) 4192 else if (w->interval)
2265 { 4193 {
2266 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 4194 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2267 /* this formula differs from the one in periodic_reify because we do not always round up */ 4195 periodic_recalc (EV_A_ w);
2268 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2269 } 4196 }
2270 else 4197 else
2271 ev_at (w) = w->offset; 4198 ev_at (w) = w->offset;
2272 4199
2273 EV_FREQUENT_CHECK; 4200 EV_FREQUENT_CHECK;
2274 4201
2275 ++periodiccnt; 4202 ++periodiccnt;
2276 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1); 4203 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2277 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 4204 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
2278 ANHE_w (periodics [ev_active (w)]) = (WT)w; 4205 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2279 ANHE_at_cache (periodics [ev_active (w)]); 4206 ANHE_at_cache (periodics [ev_active (w)]);
2280 upheap (periodics, ev_active (w)); 4207 upheap (periodics, ev_active (w));
2281 4208
2282 EV_FREQUENT_CHECK; 4209 EV_FREQUENT_CHECK;
2283 4210
2284 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 4211 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2285} 4212}
2286 4213
2287void noinline 4214ecb_noinline
4215void
2288ev_periodic_stop (EV_P_ ev_periodic *w) 4216ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
2289{ 4217{
2290 clear_pending (EV_A_ (W)w); 4218 clear_pending (EV_A_ (W)w);
2291 if (expect_false (!ev_is_active (w))) 4219 if (ecb_expect_false (!ev_is_active (w)))
2292 return; 4220 return;
2293 4221
2294 EV_FREQUENT_CHECK; 4222 EV_FREQUENT_CHECK;
2295 4223
2296 { 4224 {
2297 int active = ev_active (w); 4225 int active = ev_active (w);
2298 4226
2299 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 4227 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2300 4228
2301 --periodiccnt; 4229 --periodiccnt;
2302 4230
2303 if (expect_true (active < periodiccnt + HEAP0)) 4231 if (ecb_expect_true (active < periodiccnt + HEAP0))
2304 { 4232 {
2305 periodics [active] = periodics [periodiccnt + HEAP0]; 4233 periodics [active] = periodics [periodiccnt + HEAP0];
2306 adjustheap (periodics, periodiccnt, active); 4234 adjustheap (periodics, periodiccnt, active);
2307 } 4235 }
2308 } 4236 }
2309 4237
2310 EV_FREQUENT_CHECK;
2311
2312 ev_stop (EV_A_ (W)w); 4238 ev_stop (EV_A_ (W)w);
2313}
2314 4239
2315void noinline 4240 EV_FREQUENT_CHECK;
4241}
4242
4243ecb_noinline
4244void
2316ev_periodic_again (EV_P_ ev_periodic *w) 4245ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
2317{ 4246{
2318 /* TODO: use adjustheap and recalculation */ 4247 /* TODO: use adjustheap and recalculation */
2319 ev_periodic_stop (EV_A_ w); 4248 ev_periodic_stop (EV_A_ w);
2320 ev_periodic_start (EV_A_ w); 4249 ev_periodic_start (EV_A_ w);
2321} 4250}
2323 4252
2324#ifndef SA_RESTART 4253#ifndef SA_RESTART
2325# define SA_RESTART 0 4254# define SA_RESTART 0
2326#endif 4255#endif
2327 4256
2328void noinline 4257#if EV_SIGNAL_ENABLE
4258
4259ecb_noinline
4260void
2329ev_signal_start (EV_P_ ev_signal *w) 4261ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
2330{ 4262{
4263 if (ecb_expect_false (ev_is_active (w)))
4264 return;
4265
4266 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4267
2331#if EV_MULTIPLICITY 4268#if EV_MULTIPLICITY
2332 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4269 assert (("libev: a signal must not be attached to two different loops",
2333#endif 4270 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2334 if (expect_false (ev_is_active (w)))
2335 return;
2336 4271
2337 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4272 signals [w->signum - 1].loop = EV_A;
4273 ECB_MEMORY_FENCE_RELEASE;
4274#endif
2338 4275
2339 evpipe_init (EV_A);
2340
2341 EV_FREQUENT_CHECK; 4276 EV_FREQUENT_CHECK;
2342 4277
4278#if EV_USE_SIGNALFD
4279 if (sigfd == -2)
2343 { 4280 {
2344#ifndef _WIN32 4281 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2345 sigset_t full, prev; 4282 if (sigfd < 0 && errno == EINVAL)
2346 sigfillset (&full); 4283 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2347 sigprocmask (SIG_SETMASK, &full, &prev);
2348#endif
2349 4284
2350 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 4285 if (sigfd >= 0)
4286 {
4287 fd_intern (sigfd); /* doing it twice will not hurt */
2351 4288
2352#ifndef _WIN32 4289 sigemptyset (&sigfd_set);
2353 sigprocmask (SIG_SETMASK, &prev, 0); 4290
2354#endif 4291 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4292 ev_set_priority (&sigfd_w, EV_MAXPRI);
4293 ev_io_start (EV_A_ &sigfd_w);
4294 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4295 }
2355 } 4296 }
4297
4298 if (sigfd >= 0)
4299 {
4300 /* TODO: check .head */
4301 sigaddset (&sigfd_set, w->signum);
4302 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4303
4304 signalfd (sigfd, &sigfd_set, 0);
4305 }
4306#endif
2356 4307
2357 ev_start (EV_A_ (W)w, 1); 4308 ev_start (EV_A_ (W)w, 1);
2358 wlist_add (&signals [w->signum - 1].head, (WL)w); 4309 wlist_add (&signals [w->signum - 1].head, (WL)w);
2359 4310
2360 if (!((WL)w)->next) 4311 if (!((WL)w)->next)
4312# if EV_USE_SIGNALFD
4313 if (sigfd < 0) /*TODO*/
4314# endif
2361 { 4315 {
2362#if _WIN32 4316# ifdef _WIN32
4317 evpipe_init (EV_A);
4318
2363 signal (w->signum, ev_sighandler); 4319 signal (w->signum, ev_sighandler);
2364#else 4320# else
2365 struct sigaction sa; 4321 struct sigaction sa;
4322
4323 evpipe_init (EV_A);
4324
2366 sa.sa_handler = ev_sighandler; 4325 sa.sa_handler = ev_sighandler;
2367 sigfillset (&sa.sa_mask); 4326 sigfillset (&sa.sa_mask);
2368 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 4327 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2369 sigaction (w->signum, &sa, 0); 4328 sigaction (w->signum, &sa, 0);
4329
4330 if (origflags & EVFLAG_NOSIGMASK)
4331 {
4332 sigemptyset (&sa.sa_mask);
4333 sigaddset (&sa.sa_mask, w->signum);
4334 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4335 }
2370#endif 4336#endif
2371 } 4337 }
2372 4338
2373 EV_FREQUENT_CHECK; 4339 EV_FREQUENT_CHECK;
2374} 4340}
2375 4341
2376void noinline 4342ecb_noinline
4343void
2377ev_signal_stop (EV_P_ ev_signal *w) 4344ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
2378{ 4345{
2379 clear_pending (EV_A_ (W)w); 4346 clear_pending (EV_A_ (W)w);
2380 if (expect_false (!ev_is_active (w))) 4347 if (ecb_expect_false (!ev_is_active (w)))
2381 return; 4348 return;
2382 4349
2383 EV_FREQUENT_CHECK; 4350 EV_FREQUENT_CHECK;
2384 4351
2385 wlist_del (&signals [w->signum - 1].head, (WL)w); 4352 wlist_del (&signals [w->signum - 1].head, (WL)w);
2386 ev_stop (EV_A_ (W)w); 4353 ev_stop (EV_A_ (W)w);
2387 4354
2388 if (!signals [w->signum - 1].head) 4355 if (!signals [w->signum - 1].head)
2389 signal (w->signum, SIG_DFL); 4356 {
2390
2391 EV_FREQUENT_CHECK;
2392}
2393
2394void
2395ev_child_start (EV_P_ ev_child *w)
2396{
2397#if EV_MULTIPLICITY 4357#if EV_MULTIPLICITY
4358 signals [w->signum - 1].loop = 0; /* unattach from signal */
4359#endif
4360#if EV_USE_SIGNALFD
4361 if (sigfd >= 0)
4362 {
4363 sigset_t ss;
4364
4365 sigemptyset (&ss);
4366 sigaddset (&ss, w->signum);
4367 sigdelset (&sigfd_set, w->signum);
4368
4369 signalfd (sigfd, &sigfd_set, 0);
4370 sigprocmask (SIG_UNBLOCK, &ss, 0);
4371 }
4372 else
4373#endif
4374 signal (w->signum, SIG_DFL);
4375 }
4376
4377 EV_FREQUENT_CHECK;
4378}
4379
4380#endif
4381
4382#if EV_CHILD_ENABLE
4383
4384void
4385ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4386{
4387#if EV_MULTIPLICITY
2398 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4388 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2399#endif 4389#endif
2400 if (expect_false (ev_is_active (w))) 4390 if (ecb_expect_false (ev_is_active (w)))
2401 return; 4391 return;
2402 4392
2403 EV_FREQUENT_CHECK; 4393 EV_FREQUENT_CHECK;
2404 4394
2405 ev_start (EV_A_ (W)w, 1); 4395 ev_start (EV_A_ (W)w, 1);
2406 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4396 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2407 4397
2408 EV_FREQUENT_CHECK; 4398 EV_FREQUENT_CHECK;
2409} 4399}
2410 4400
2411void 4401void
2412ev_child_stop (EV_P_ ev_child *w) 4402ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
2413{ 4403{
2414 clear_pending (EV_A_ (W)w); 4404 clear_pending (EV_A_ (W)w);
2415 if (expect_false (!ev_is_active (w))) 4405 if (ecb_expect_false (!ev_is_active (w)))
2416 return; 4406 return;
2417 4407
2418 EV_FREQUENT_CHECK; 4408 EV_FREQUENT_CHECK;
2419 4409
2420 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4410 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2421 ev_stop (EV_A_ (W)w); 4411 ev_stop (EV_A_ (W)w);
2422 4412
2423 EV_FREQUENT_CHECK; 4413 EV_FREQUENT_CHECK;
2424} 4414}
4415
4416#endif
2425 4417
2426#if EV_STAT_ENABLE 4418#if EV_STAT_ENABLE
2427 4419
2428# ifdef _WIN32 4420# ifdef _WIN32
2429# undef lstat 4421# undef lstat
2430# define lstat(a,b) _stati64 (a,b) 4422# define lstat(a,b) _stati64 (a,b)
2431# endif 4423# endif
2432 4424
2433#define DEF_STAT_INTERVAL 5.0074891 4425#define DEF_STAT_INTERVAL 5.0074891
4426#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2434#define MIN_STAT_INTERVAL 0.1074891 4427#define MIN_STAT_INTERVAL 0.1074891
2435 4428
2436static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4429ecb_noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2437 4430
2438#if EV_USE_INOTIFY 4431#if EV_USE_INOTIFY
2439# define EV_INOTIFY_BUFSIZE 8192
2440 4432
2441static void noinline 4433/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4434# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4435
4436ecb_noinline
4437static void
2442infy_add (EV_P_ ev_stat *w) 4438infy_add (EV_P_ ev_stat *w)
2443{ 4439{
2444 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4440 w->wd = inotify_add_watch (fs_fd, w->path,
4441 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4442 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4443 | IN_DONT_FOLLOW | IN_MASK_ADD);
2445 4444
2446 if (w->wd < 0) 4445 if (w->wd >= 0)
4446 {
4447 struct statfs sfs;
4448
4449 /* now local changes will be tracked by inotify, but remote changes won't */
4450 /* unless the filesystem is known to be local, we therefore still poll */
4451 /* also do poll on <2.6.25, but with normal frequency */
4452
4453 if (!fs_2625)
4454 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4455 else if (!statfs (w->path, &sfs)
4456 && (sfs.f_type == 0x1373 /* devfs */
4457 || sfs.f_type == 0x4006 /* fat */
4458 || sfs.f_type == 0x4d44 /* msdos */
4459 || sfs.f_type == 0xEF53 /* ext2/3 */
4460 || sfs.f_type == 0x72b6 /* jffs2 */
4461 || sfs.f_type == 0x858458f6 /* ramfs */
4462 || sfs.f_type == 0x5346544e /* ntfs */
4463 || sfs.f_type == 0x3153464a /* jfs */
4464 || sfs.f_type == 0x9123683e /* btrfs */
4465 || sfs.f_type == 0x52654973 /* reiser3 */
4466 || sfs.f_type == 0x01021994 /* tmpfs */
4467 || sfs.f_type == 0x58465342 /* xfs */))
4468 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4469 else
4470 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2447 { 4471 }
2448 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 4472 else
4473 {
4474 /* can't use inotify, continue to stat */
4475 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2449 4476
2450 /* monitor some parent directory for speedup hints */ 4477 /* if path is not there, monitor some parent directory for speedup hints */
2451 /* note that exceeding the hardcoded limit is not a correctness issue, */ 4478 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2452 /* but an efficiency issue only */ 4479 /* but an efficiency issue only */
2453 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4480 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2454 { 4481 {
2455 char path [4096]; 4482 char path [4096];
2456 strcpy (path, w->path); 4483 strcpy (path, w->path);
2460 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4487 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2461 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4488 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2462 4489
2463 char *pend = strrchr (path, '/'); 4490 char *pend = strrchr (path, '/');
2464 4491
2465 if (!pend) 4492 if (!pend || pend == path)
2466 break; /* whoops, no '/', complain to your admin */ 4493 break;
2467 4494
2468 *pend = 0; 4495 *pend = 0;
2469 w->wd = inotify_add_watch (fs_fd, path, mask); 4496 w->wd = inotify_add_watch (fs_fd, path, mask);
2470 } 4497 }
2471 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4498 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2472 } 4499 }
2473 } 4500 }
2474 else
2475 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2476 4501
2477 if (w->wd >= 0) 4502 if (w->wd >= 0)
2478 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4503 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2479}
2480 4504
2481static void noinline 4505 /* now re-arm timer, if required */
4506 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4507 ev_timer_again (EV_A_ &w->timer);
4508 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4509}
4510
4511ecb_noinline
4512static void
2482infy_del (EV_P_ ev_stat *w) 4513infy_del (EV_P_ ev_stat *w)
2483{ 4514{
2484 int slot; 4515 int slot;
2485 int wd = w->wd; 4516 int wd = w->wd;
2486 4517
2487 if (wd < 0) 4518 if (wd < 0)
2488 return; 4519 return;
2489 4520
2490 w->wd = -2; 4521 w->wd = -2;
2491 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4522 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2492 wlist_del (&fs_hash [slot].head, (WL)w); 4523 wlist_del (&fs_hash [slot].head, (WL)w);
2493 4524
2494 /* remove this watcher, if others are watching it, they will rearm */ 4525 /* remove this watcher, if others are watching it, they will rearm */
2495 inotify_rm_watch (fs_fd, wd); 4526 inotify_rm_watch (fs_fd, wd);
2496} 4527}
2497 4528
2498static void noinline 4529ecb_noinline
4530static void
2499infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4531infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2500{ 4532{
2501 if (slot < 0) 4533 if (slot < 0)
2502 /* overflow, need to check for all hash slots */ 4534 /* overflow, need to check for all hash slots */
2503 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4535 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2504 infy_wd (EV_A_ slot, wd, ev); 4536 infy_wd (EV_A_ slot, wd, ev);
2505 else 4537 else
2506 { 4538 {
2507 WL w_; 4539 WL w_;
2508 4540
2509 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4541 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2510 { 4542 {
2511 ev_stat *w = (ev_stat *)w_; 4543 ev_stat *w = (ev_stat *)w_;
2512 w_ = w_->next; /* lets us remove this watcher and all before it */ 4544 w_ = w_->next; /* lets us remove this watcher and all before it */
2513 4545
2514 if (w->wd == wd || wd == -1) 4546 if (w->wd == wd || wd == -1)
2515 { 4547 {
2516 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4548 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2517 { 4549 {
4550 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2518 w->wd = -1; 4551 w->wd = -1;
2519 infy_add (EV_A_ w); /* re-add, no matter what */ 4552 infy_add (EV_A_ w); /* re-add, no matter what */
2520 } 4553 }
2521 4554
2522 stat_timer_cb (EV_A_ &w->timer, 0); 4555 stat_timer_cb (EV_A_ &w->timer, 0);
2527 4560
2528static void 4561static void
2529infy_cb (EV_P_ ev_io *w, int revents) 4562infy_cb (EV_P_ ev_io *w, int revents)
2530{ 4563{
2531 char buf [EV_INOTIFY_BUFSIZE]; 4564 char buf [EV_INOTIFY_BUFSIZE];
2532 struct inotify_event *ev = (struct inotify_event *)buf;
2533 int ofs; 4565 int ofs;
2534 int len = read (fs_fd, buf, sizeof (buf)); 4566 int len = read (fs_fd, buf, sizeof (buf));
2535 4567
2536 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4568 for (ofs = 0; ofs < len; )
4569 {
4570 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2537 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4571 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4572 ofs += sizeof (struct inotify_event) + ev->len;
4573 }
2538} 4574}
2539 4575
2540void inline_size 4576inline_size ecb_cold
2541infy_init (EV_P) 4577void
4578ev_check_2625 (EV_P)
2542{ 4579{
2543 if (fs_fd != -2)
2544 return;
2545
2546 /* kernels < 2.6.25 are borked 4580 /* kernels < 2.6.25 are borked
2547 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 4581 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2548 */ 4582 */
2549 { 4583 if (ev_linux_version () < 0x020619)
2550 struct utsname buf; 4584 return;
2551 int major, minor, micro;
2552 4585
4586 fs_2625 = 1;
4587}
4588
4589inline_size int
4590infy_newfd (void)
4591{
4592#if defined IN_CLOEXEC && defined IN_NONBLOCK
4593 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4594 if (fd >= 0)
4595 return fd;
4596#endif
4597 return inotify_init ();
4598}
4599
4600inline_size void
4601infy_init (EV_P)
4602{
4603 if (fs_fd != -2)
4604 return;
4605
2553 fs_fd = -1; 4606 fs_fd = -1;
2554 4607
2555 if (uname (&buf)) 4608 ev_check_2625 (EV_A);
2556 return;
2557 4609
2558 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2559 return;
2560
2561 if (major < 2
2562 || (major == 2 && minor < 6)
2563 || (major == 2 && minor == 6 && micro < 25))
2564 return;
2565 }
2566
2567 fs_fd = inotify_init (); 4610 fs_fd = infy_newfd ();
2568 4611
2569 if (fs_fd >= 0) 4612 if (fs_fd >= 0)
2570 { 4613 {
4614 fd_intern (fs_fd);
2571 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4615 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2572 ev_set_priority (&fs_w, EV_MAXPRI); 4616 ev_set_priority (&fs_w, EV_MAXPRI);
2573 ev_io_start (EV_A_ &fs_w); 4617 ev_io_start (EV_A_ &fs_w);
4618 ev_unref (EV_A);
2574 } 4619 }
2575} 4620}
2576 4621
2577void inline_size 4622inline_size void
2578infy_fork (EV_P) 4623infy_fork (EV_P)
2579{ 4624{
2580 int slot; 4625 int slot;
2581 4626
2582 if (fs_fd < 0) 4627 if (fs_fd < 0)
2583 return; 4628 return;
2584 4629
4630 ev_ref (EV_A);
4631 ev_io_stop (EV_A_ &fs_w);
2585 close (fs_fd); 4632 close (fs_fd);
2586 fs_fd = inotify_init (); 4633 fs_fd = infy_newfd ();
2587 4634
4635 if (fs_fd >= 0)
4636 {
4637 fd_intern (fs_fd);
4638 ev_io_set (&fs_w, fs_fd, EV_READ);
4639 ev_io_start (EV_A_ &fs_w);
4640 ev_unref (EV_A);
4641 }
4642
2588 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4643 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2589 { 4644 {
2590 WL w_ = fs_hash [slot].head; 4645 WL w_ = fs_hash [slot].head;
2591 fs_hash [slot].head = 0; 4646 fs_hash [slot].head = 0;
2592 4647
2593 while (w_) 4648 while (w_)
2598 w->wd = -1; 4653 w->wd = -1;
2599 4654
2600 if (fs_fd >= 0) 4655 if (fs_fd >= 0)
2601 infy_add (EV_A_ w); /* re-add, no matter what */ 4656 infy_add (EV_A_ w); /* re-add, no matter what */
2602 else 4657 else
4658 {
4659 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4660 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2603 ev_timer_start (EV_A_ &w->timer); 4661 ev_timer_again (EV_A_ &w->timer);
4662 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4663 }
2604 } 4664 }
2605 } 4665 }
2606} 4666}
2607 4667
2608#endif 4668#endif
2612#else 4672#else
2613# define EV_LSTAT(p,b) lstat (p, b) 4673# define EV_LSTAT(p,b) lstat (p, b)
2614#endif 4674#endif
2615 4675
2616void 4676void
2617ev_stat_stat (EV_P_ ev_stat *w) 4677ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
2618{ 4678{
2619 if (lstat (w->path, &w->attr) < 0) 4679 if (lstat (w->path, &w->attr) < 0)
2620 w->attr.st_nlink = 0; 4680 w->attr.st_nlink = 0;
2621 else if (!w->attr.st_nlink) 4681 else if (!w->attr.st_nlink)
2622 w->attr.st_nlink = 1; 4682 w->attr.st_nlink = 1;
2623} 4683}
2624 4684
2625static void noinline 4685ecb_noinline
4686static void
2626stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4687stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2627{ 4688{
2628 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4689 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2629 4690
2630 /* we copy this here each the time so that */ 4691 ev_statdata prev = w->attr;
2631 /* prev has the old value when the callback gets invoked */
2632 w->prev = w->attr;
2633 ev_stat_stat (EV_A_ w); 4692 ev_stat_stat (EV_A_ w);
2634 4693
2635 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4694 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2636 if ( 4695 if (
2637 w->prev.st_dev != w->attr.st_dev 4696 prev.st_dev != w->attr.st_dev
2638 || w->prev.st_ino != w->attr.st_ino 4697 || prev.st_ino != w->attr.st_ino
2639 || w->prev.st_mode != w->attr.st_mode 4698 || prev.st_mode != w->attr.st_mode
2640 || w->prev.st_nlink != w->attr.st_nlink 4699 || prev.st_nlink != w->attr.st_nlink
2641 || w->prev.st_uid != w->attr.st_uid 4700 || prev.st_uid != w->attr.st_uid
2642 || w->prev.st_gid != w->attr.st_gid 4701 || prev.st_gid != w->attr.st_gid
2643 || w->prev.st_rdev != w->attr.st_rdev 4702 || prev.st_rdev != w->attr.st_rdev
2644 || w->prev.st_size != w->attr.st_size 4703 || prev.st_size != w->attr.st_size
2645 || w->prev.st_atime != w->attr.st_atime 4704 || prev.st_atime != w->attr.st_atime
2646 || w->prev.st_mtime != w->attr.st_mtime 4705 || prev.st_mtime != w->attr.st_mtime
2647 || w->prev.st_ctime != w->attr.st_ctime 4706 || prev.st_ctime != w->attr.st_ctime
2648 ) { 4707 ) {
4708 /* we only update w->prev on actual differences */
4709 /* in case we test more often than invoke the callback, */
4710 /* to ensure that prev is always different to attr */
4711 w->prev = prev;
4712
2649 #if EV_USE_INOTIFY 4713 #if EV_USE_INOTIFY
2650 if (fs_fd >= 0) 4714 if (fs_fd >= 0)
2651 { 4715 {
2652 infy_del (EV_A_ w); 4716 infy_del (EV_A_ w);
2653 infy_add (EV_A_ w); 4717 infy_add (EV_A_ w);
2658 ev_feed_event (EV_A_ w, EV_STAT); 4722 ev_feed_event (EV_A_ w, EV_STAT);
2659 } 4723 }
2660} 4724}
2661 4725
2662void 4726void
2663ev_stat_start (EV_P_ ev_stat *w) 4727ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
2664{ 4728{
2665 if (expect_false (ev_is_active (w))) 4729 if (ecb_expect_false (ev_is_active (w)))
2666 return; 4730 return;
2667 4731
2668 /* since we use memcmp, we need to clear any padding data etc. */
2669 memset (&w->prev, 0, sizeof (ev_statdata));
2670 memset (&w->attr, 0, sizeof (ev_statdata));
2671
2672 ev_stat_stat (EV_A_ w); 4732 ev_stat_stat (EV_A_ w);
2673 4733
4734 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2674 if (w->interval < MIN_STAT_INTERVAL) 4735 w->interval = MIN_STAT_INTERVAL;
2675 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2676 4736
2677 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4737 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2678 ev_set_priority (&w->timer, ev_priority (w)); 4738 ev_set_priority (&w->timer, ev_priority (w));
2679 4739
2680#if EV_USE_INOTIFY 4740#if EV_USE_INOTIFY
2681 infy_init (EV_A); 4741 infy_init (EV_A);
2682 4742
2683 if (fs_fd >= 0) 4743 if (fs_fd >= 0)
2684 infy_add (EV_A_ w); 4744 infy_add (EV_A_ w);
2685 else 4745 else
2686#endif 4746#endif
4747 {
2687 ev_timer_start (EV_A_ &w->timer); 4748 ev_timer_again (EV_A_ &w->timer);
4749 ev_unref (EV_A);
4750 }
2688 4751
2689 ev_start (EV_A_ (W)w, 1); 4752 ev_start (EV_A_ (W)w, 1);
2690 4753
2691 EV_FREQUENT_CHECK; 4754 EV_FREQUENT_CHECK;
2692} 4755}
2693 4756
2694void 4757void
2695ev_stat_stop (EV_P_ ev_stat *w) 4758ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
2696{ 4759{
2697 clear_pending (EV_A_ (W)w); 4760 clear_pending (EV_A_ (W)w);
2698 if (expect_false (!ev_is_active (w))) 4761 if (ecb_expect_false (!ev_is_active (w)))
2699 return; 4762 return;
2700 4763
2701 EV_FREQUENT_CHECK; 4764 EV_FREQUENT_CHECK;
2702 4765
2703#if EV_USE_INOTIFY 4766#if EV_USE_INOTIFY
2704 infy_del (EV_A_ w); 4767 infy_del (EV_A_ w);
2705#endif 4768#endif
4769
4770 if (ev_is_active (&w->timer))
4771 {
4772 ev_ref (EV_A);
2706 ev_timer_stop (EV_A_ &w->timer); 4773 ev_timer_stop (EV_A_ &w->timer);
4774 }
2707 4775
2708 ev_stop (EV_A_ (W)w); 4776 ev_stop (EV_A_ (W)w);
2709 4777
2710 EV_FREQUENT_CHECK; 4778 EV_FREQUENT_CHECK;
2711} 4779}
2712#endif 4780#endif
2713 4781
2714#if EV_IDLE_ENABLE 4782#if EV_IDLE_ENABLE
2715void 4783void
2716ev_idle_start (EV_P_ ev_idle *w) 4784ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
2717{ 4785{
2718 if (expect_false (ev_is_active (w))) 4786 if (ecb_expect_false (ev_is_active (w)))
2719 return; 4787 return;
2720 4788
2721 pri_adjust (EV_A_ (W)w); 4789 pri_adjust (EV_A_ (W)w);
2722 4790
2723 EV_FREQUENT_CHECK; 4791 EV_FREQUENT_CHECK;
2726 int active = ++idlecnt [ABSPRI (w)]; 4794 int active = ++idlecnt [ABSPRI (w)];
2727 4795
2728 ++idleall; 4796 ++idleall;
2729 ev_start (EV_A_ (W)w, active); 4797 ev_start (EV_A_ (W)w, active);
2730 4798
2731 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4799 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
2732 idles [ABSPRI (w)][active - 1] = w; 4800 idles [ABSPRI (w)][active - 1] = w;
2733 } 4801 }
2734 4802
2735 EV_FREQUENT_CHECK; 4803 EV_FREQUENT_CHECK;
2736} 4804}
2737 4805
2738void 4806void
2739ev_idle_stop (EV_P_ ev_idle *w) 4807ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
2740{ 4808{
2741 clear_pending (EV_A_ (W)w); 4809 clear_pending (EV_A_ (W)w);
2742 if (expect_false (!ev_is_active (w))) 4810 if (ecb_expect_false (!ev_is_active (w)))
2743 return; 4811 return;
2744 4812
2745 EV_FREQUENT_CHECK; 4813 EV_FREQUENT_CHECK;
2746 4814
2747 { 4815 {
2756 4824
2757 EV_FREQUENT_CHECK; 4825 EV_FREQUENT_CHECK;
2758} 4826}
2759#endif 4827#endif
2760 4828
4829#if EV_PREPARE_ENABLE
2761void 4830void
2762ev_prepare_start (EV_P_ ev_prepare *w) 4831ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
2763{ 4832{
2764 if (expect_false (ev_is_active (w))) 4833 if (ecb_expect_false (ev_is_active (w)))
2765 return; 4834 return;
2766 4835
2767 EV_FREQUENT_CHECK; 4836 EV_FREQUENT_CHECK;
2768 4837
2769 ev_start (EV_A_ (W)w, ++preparecnt); 4838 ev_start (EV_A_ (W)w, ++preparecnt);
2770 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4839 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
2771 prepares [preparecnt - 1] = w; 4840 prepares [preparecnt - 1] = w;
2772 4841
2773 EV_FREQUENT_CHECK; 4842 EV_FREQUENT_CHECK;
2774} 4843}
2775 4844
2776void 4845void
2777ev_prepare_stop (EV_P_ ev_prepare *w) 4846ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
2778{ 4847{
2779 clear_pending (EV_A_ (W)w); 4848 clear_pending (EV_A_ (W)w);
2780 if (expect_false (!ev_is_active (w))) 4849 if (ecb_expect_false (!ev_is_active (w)))
2781 return; 4850 return;
2782 4851
2783 EV_FREQUENT_CHECK; 4852 EV_FREQUENT_CHECK;
2784 4853
2785 { 4854 {
2791 4860
2792 ev_stop (EV_A_ (W)w); 4861 ev_stop (EV_A_ (W)w);
2793 4862
2794 EV_FREQUENT_CHECK; 4863 EV_FREQUENT_CHECK;
2795} 4864}
4865#endif
2796 4866
4867#if EV_CHECK_ENABLE
2797void 4868void
2798ev_check_start (EV_P_ ev_check *w) 4869ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
2799{ 4870{
2800 if (expect_false (ev_is_active (w))) 4871 if (ecb_expect_false (ev_is_active (w)))
2801 return; 4872 return;
2802 4873
2803 EV_FREQUENT_CHECK; 4874 EV_FREQUENT_CHECK;
2804 4875
2805 ev_start (EV_A_ (W)w, ++checkcnt); 4876 ev_start (EV_A_ (W)w, ++checkcnt);
2806 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4877 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
2807 checks [checkcnt - 1] = w; 4878 checks [checkcnt - 1] = w;
2808 4879
2809 EV_FREQUENT_CHECK; 4880 EV_FREQUENT_CHECK;
2810} 4881}
2811 4882
2812void 4883void
2813ev_check_stop (EV_P_ ev_check *w) 4884ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
2814{ 4885{
2815 clear_pending (EV_A_ (W)w); 4886 clear_pending (EV_A_ (W)w);
2816 if (expect_false (!ev_is_active (w))) 4887 if (ecb_expect_false (!ev_is_active (w)))
2817 return; 4888 return;
2818 4889
2819 EV_FREQUENT_CHECK; 4890 EV_FREQUENT_CHECK;
2820 4891
2821 { 4892 {
2827 4898
2828 ev_stop (EV_A_ (W)w); 4899 ev_stop (EV_A_ (W)w);
2829 4900
2830 EV_FREQUENT_CHECK; 4901 EV_FREQUENT_CHECK;
2831} 4902}
4903#endif
2832 4904
2833#if EV_EMBED_ENABLE 4905#if EV_EMBED_ENABLE
2834void noinline 4906ecb_noinline
4907void
2835ev_embed_sweep (EV_P_ ev_embed *w) 4908ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
2836{ 4909{
2837 ev_loop (w->other, EVLOOP_NONBLOCK); 4910 ev_run (w->other, EVRUN_NOWAIT);
2838} 4911}
2839 4912
2840static void 4913static void
2841embed_io_cb (EV_P_ ev_io *io, int revents) 4914embed_io_cb (EV_P_ ev_io *io, int revents)
2842{ 4915{
2843 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4916 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2844 4917
2845 if (ev_cb (w)) 4918 if (ev_cb (w))
2846 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4919 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2847 else 4920 else
2848 ev_loop (w->other, EVLOOP_NONBLOCK); 4921 ev_run (w->other, EVRUN_NOWAIT);
2849} 4922}
2850 4923
2851static void 4924static void
2852embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4925embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2853{ 4926{
2854 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4927 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2855 4928
2856 { 4929 {
2857 struct ev_loop *loop = w->other; 4930 EV_P = w->other;
2858 4931
2859 while (fdchangecnt) 4932 while (fdchangecnt)
2860 { 4933 {
2861 fd_reify (EV_A); 4934 fd_reify (EV_A);
2862 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4935 ev_run (EV_A_ EVRUN_NOWAIT);
2863 } 4936 }
2864 } 4937 }
2865} 4938}
2866 4939
2867static void 4940static void
2868embed_fork_cb (EV_P_ ev_fork *fork_w, int revents) 4941embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2869{ 4942{
2870 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 4943 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2871 4944
4945 ev_embed_stop (EV_A_ w);
4946
2872 { 4947 {
2873 struct ev_loop *loop = w->other; 4948 EV_P = w->other;
2874 4949
2875 ev_loop_fork (EV_A); 4950 ev_loop_fork (EV_A);
4951 ev_run (EV_A_ EVRUN_NOWAIT);
2876 } 4952 }
4953
4954 ev_embed_start (EV_A_ w);
2877} 4955}
2878 4956
2879#if 0 4957#if 0
2880static void 4958static void
2881embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4959embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2883 ev_idle_stop (EV_A_ idle); 4961 ev_idle_stop (EV_A_ idle);
2884} 4962}
2885#endif 4963#endif
2886 4964
2887void 4965void
2888ev_embed_start (EV_P_ ev_embed *w) 4966ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
2889{ 4967{
2890 if (expect_false (ev_is_active (w))) 4968 if (ecb_expect_false (ev_is_active (w)))
2891 return; 4969 return;
2892 4970
2893 { 4971 {
2894 struct ev_loop *loop = w->other; 4972 EV_P = w->other;
2895 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4973 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2896 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4974 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2897 } 4975 }
2898 4976
2899 EV_FREQUENT_CHECK; 4977 EV_FREQUENT_CHECK;
2900 4978
2914 4992
2915 EV_FREQUENT_CHECK; 4993 EV_FREQUENT_CHECK;
2916} 4994}
2917 4995
2918void 4996void
2919ev_embed_stop (EV_P_ ev_embed *w) 4997ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
2920{ 4998{
2921 clear_pending (EV_A_ (W)w); 4999 clear_pending (EV_A_ (W)w);
2922 if (expect_false (!ev_is_active (w))) 5000 if (ecb_expect_false (!ev_is_active (w)))
2923 return; 5001 return;
2924 5002
2925 EV_FREQUENT_CHECK; 5003 EV_FREQUENT_CHECK;
2926 5004
2927 ev_io_stop (EV_A_ &w->io); 5005 ev_io_stop (EV_A_ &w->io);
2928 ev_prepare_stop (EV_A_ &w->prepare); 5006 ev_prepare_stop (EV_A_ &w->prepare);
2929 ev_fork_stop (EV_A_ &w->fork); 5007 ev_fork_stop (EV_A_ &w->fork);
2930 5008
5009 ev_stop (EV_A_ (W)w);
5010
2931 EV_FREQUENT_CHECK; 5011 EV_FREQUENT_CHECK;
2932} 5012}
2933#endif 5013#endif
2934 5014
2935#if EV_FORK_ENABLE 5015#if EV_FORK_ENABLE
2936void 5016void
2937ev_fork_start (EV_P_ ev_fork *w) 5017ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
2938{ 5018{
2939 if (expect_false (ev_is_active (w))) 5019 if (ecb_expect_false (ev_is_active (w)))
2940 return; 5020 return;
2941 5021
2942 EV_FREQUENT_CHECK; 5022 EV_FREQUENT_CHECK;
2943 5023
2944 ev_start (EV_A_ (W)w, ++forkcnt); 5024 ev_start (EV_A_ (W)w, ++forkcnt);
2945 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 5025 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
2946 forks [forkcnt - 1] = w; 5026 forks [forkcnt - 1] = w;
2947 5027
2948 EV_FREQUENT_CHECK; 5028 EV_FREQUENT_CHECK;
2949} 5029}
2950 5030
2951void 5031void
2952ev_fork_stop (EV_P_ ev_fork *w) 5032ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
2953{ 5033{
2954 clear_pending (EV_A_ (W)w); 5034 clear_pending (EV_A_ (W)w);
2955 if (expect_false (!ev_is_active (w))) 5035 if (ecb_expect_false (!ev_is_active (w)))
2956 return; 5036 return;
2957 5037
2958 EV_FREQUENT_CHECK; 5038 EV_FREQUENT_CHECK;
2959 5039
2960 { 5040 {
2968 5048
2969 EV_FREQUENT_CHECK; 5049 EV_FREQUENT_CHECK;
2970} 5050}
2971#endif 5051#endif
2972 5052
5053#if EV_CLEANUP_ENABLE
5054void
5055ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5056{
5057 if (ecb_expect_false (ev_is_active (w)))
5058 return;
5059
5060 EV_FREQUENT_CHECK;
5061
5062 ev_start (EV_A_ (W)w, ++cleanupcnt);
5063 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
5064 cleanups [cleanupcnt - 1] = w;
5065
5066 /* cleanup watchers should never keep a refcount on the loop */
5067 ev_unref (EV_A);
5068 EV_FREQUENT_CHECK;
5069}
5070
5071void
5072ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5073{
5074 clear_pending (EV_A_ (W)w);
5075 if (ecb_expect_false (!ev_is_active (w)))
5076 return;
5077
5078 EV_FREQUENT_CHECK;
5079 ev_ref (EV_A);
5080
5081 {
5082 int active = ev_active (w);
5083
5084 cleanups [active - 1] = cleanups [--cleanupcnt];
5085 ev_active (cleanups [active - 1]) = active;
5086 }
5087
5088 ev_stop (EV_A_ (W)w);
5089
5090 EV_FREQUENT_CHECK;
5091}
5092#endif
5093
2973#if EV_ASYNC_ENABLE 5094#if EV_ASYNC_ENABLE
2974void 5095void
2975ev_async_start (EV_P_ ev_async *w) 5096ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
2976{ 5097{
2977 if (expect_false (ev_is_active (w))) 5098 if (ecb_expect_false (ev_is_active (w)))
2978 return; 5099 return;
2979 5100
5101 w->sent = 0;
5102
2980 evpipe_init (EV_A); 5103 evpipe_init (EV_A);
2981 5104
2982 EV_FREQUENT_CHECK; 5105 EV_FREQUENT_CHECK;
2983 5106
2984 ev_start (EV_A_ (W)w, ++asynccnt); 5107 ev_start (EV_A_ (W)w, ++asynccnt);
2985 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 5108 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
2986 asyncs [asynccnt - 1] = w; 5109 asyncs [asynccnt - 1] = w;
2987 5110
2988 EV_FREQUENT_CHECK; 5111 EV_FREQUENT_CHECK;
2989} 5112}
2990 5113
2991void 5114void
2992ev_async_stop (EV_P_ ev_async *w) 5115ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
2993{ 5116{
2994 clear_pending (EV_A_ (W)w); 5117 clear_pending (EV_A_ (W)w);
2995 if (expect_false (!ev_is_active (w))) 5118 if (ecb_expect_false (!ev_is_active (w)))
2996 return; 5119 return;
2997 5120
2998 EV_FREQUENT_CHECK; 5121 EV_FREQUENT_CHECK;
2999 5122
3000 { 5123 {
3008 5131
3009 EV_FREQUENT_CHECK; 5132 EV_FREQUENT_CHECK;
3010} 5133}
3011 5134
3012void 5135void
3013ev_async_send (EV_P_ ev_async *w) 5136ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
3014{ 5137{
3015 w->sent = 1; 5138 w->sent = 1;
3016 evpipe_write (EV_A_ &gotasync); 5139 evpipe_write (EV_A_ &async_pending);
3017} 5140}
3018#endif 5141#endif
3019 5142
3020/*****************************************************************************/ 5143/*****************************************************************************/
3021 5144
3055 5178
3056 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io)); 5179 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3057} 5180}
3058 5181
3059void 5182void
3060ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5183ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
3061{ 5184{
3062 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 5185 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3063
3064 if (expect_false (!once))
3065 {
3066 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
3067 return;
3068 }
3069 5186
3070 once->cb = cb; 5187 once->cb = cb;
3071 once->arg = arg; 5188 once->arg = arg;
3072 5189
3073 ev_init (&once->io, once_cb_io); 5190 ev_init (&once->io, once_cb_io);
3083 ev_timer_set (&once->to, timeout, 0.); 5200 ev_timer_set (&once->to, timeout, 0.);
3084 ev_timer_start (EV_A_ &once->to); 5201 ev_timer_start (EV_A_ &once->to);
3085 } 5202 }
3086} 5203}
3087 5204
5205/*****************************************************************************/
5206
5207#if EV_WALK_ENABLE
5208ecb_cold
5209void
5210ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5211{
5212 int i, j;
5213 ev_watcher_list *wl, *wn;
5214
5215 if (types & (EV_IO | EV_EMBED))
5216 for (i = 0; i < anfdmax; ++i)
5217 for (wl = anfds [i].head; wl; )
5218 {
5219 wn = wl->next;
5220
5221#if EV_EMBED_ENABLE
5222 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5223 {
5224 if (types & EV_EMBED)
5225 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5226 }
5227 else
5228#endif
5229#if EV_USE_INOTIFY
5230 if (ev_cb ((ev_io *)wl) == infy_cb)
5231 ;
5232 else
5233#endif
5234 if ((ev_io *)wl != &pipe_w)
5235 if (types & EV_IO)
5236 cb (EV_A_ EV_IO, wl);
5237
5238 wl = wn;
5239 }
5240
5241 if (types & (EV_TIMER | EV_STAT))
5242 for (i = timercnt + HEAP0; i-- > HEAP0; )
5243#if EV_STAT_ENABLE
5244 /*TODO: timer is not always active*/
5245 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5246 {
5247 if (types & EV_STAT)
5248 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5249 }
5250 else
5251#endif
5252 if (types & EV_TIMER)
5253 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5254
5255#if EV_PERIODIC_ENABLE
5256 if (types & EV_PERIODIC)
5257 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5258 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5259#endif
5260
5261#if EV_IDLE_ENABLE
5262 if (types & EV_IDLE)
5263 for (j = NUMPRI; j--; )
5264 for (i = idlecnt [j]; i--; )
5265 cb (EV_A_ EV_IDLE, idles [j][i]);
5266#endif
5267
5268#if EV_FORK_ENABLE
5269 if (types & EV_FORK)
5270 for (i = forkcnt; i--; )
5271 if (ev_cb (forks [i]) != embed_fork_cb)
5272 cb (EV_A_ EV_FORK, forks [i]);
5273#endif
5274
5275#if EV_ASYNC_ENABLE
5276 if (types & EV_ASYNC)
5277 for (i = asynccnt; i--; )
5278 cb (EV_A_ EV_ASYNC, asyncs [i]);
5279#endif
5280
5281#if EV_PREPARE_ENABLE
5282 if (types & EV_PREPARE)
5283 for (i = preparecnt; i--; )
5284# if EV_EMBED_ENABLE
5285 if (ev_cb (prepares [i]) != embed_prepare_cb)
5286# endif
5287 cb (EV_A_ EV_PREPARE, prepares [i]);
5288#endif
5289
5290#if EV_CHECK_ENABLE
5291 if (types & EV_CHECK)
5292 for (i = checkcnt; i--; )
5293 cb (EV_A_ EV_CHECK, checks [i]);
5294#endif
5295
5296#if EV_SIGNAL_ENABLE
5297 if (types & EV_SIGNAL)
5298 for (i = 0; i < EV_NSIG - 1; ++i)
5299 for (wl = signals [i].head; wl; )
5300 {
5301 wn = wl->next;
5302 cb (EV_A_ EV_SIGNAL, wl);
5303 wl = wn;
5304 }
5305#endif
5306
5307#if EV_CHILD_ENABLE
5308 if (types & EV_CHILD)
5309 for (i = (EV_PID_HASHSIZE); i--; )
5310 for (wl = childs [i]; wl; )
5311 {
5312 wn = wl->next;
5313 cb (EV_A_ EV_CHILD, wl);
5314 wl = wn;
5315 }
5316#endif
5317/* EV_STAT 0x00001000 /* stat data changed */
5318/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5319}
5320#endif
5321
3088#if EV_MULTIPLICITY 5322#if EV_MULTIPLICITY
3089 #include "ev_wrap.h" 5323 #include "ev_wrap.h"
3090#endif 5324#endif
3091 5325
3092#ifdef __cplusplus
3093}
3094#endif
3095

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines