ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.60 by root, Sun Nov 4 18:29:44 2007 UTC vs.
Revision 1.264 by root, Mon Oct 13 23:20:12 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
33 51
34# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
55# endif
56# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 57# define EV_USE_REALTIME 1
58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
37# endif 66# endif
38 67
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
40# define EV_USE_SELECT 1 70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
41# endif 74# endif
42 75
43# if HAVE_POLL && HAVE_POLL_H 76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
44# define EV_USE_POLL 1 78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
45# endif 82# endif
46 83
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
48# define EV_USE_EPOLL 1 86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
49# endif 90# endif
50 91
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
52# define EV_USE_KQUEUE 1 94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
53# endif 98# endif
99
100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
54 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
55#endif 132#endif
56 133
57#include <math.h> 134#include <math.h>
58#include <stdlib.h> 135#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 136#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 137#include <stddef.h>
63 138
64#include <stdio.h> 139#include <stdio.h>
65 140
66#include <assert.h> 141#include <assert.h>
67#include <errno.h> 142#include <errno.h>
68#include <sys/types.h> 143#include <sys/types.h>
144#include <time.h>
145
146#include <signal.h>
147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
69#ifndef WIN32 154#ifndef _WIN32
155# include <sys/time.h>
70# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
158#else
159# include <io.h>
160# define WIN32_LEAN_AND_MEAN
161# include <windows.h>
162# ifndef EV_SELECT_IS_WINSOCKET
163# define EV_SELECT_IS_WINSOCKET 1
71#endif 164# endif
72#include <sys/time.h> 165#endif
73#include <time.h>
74 166
75/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
76 168
77#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
78# define EV_USE_MONOTONIC 1 171# define EV_USE_MONOTONIC 1
172# else
173# define EV_USE_MONOTONIC 0
174# endif
175#endif
176
177#ifndef EV_USE_REALTIME
178# define EV_USE_REALTIME 0
179#endif
180
181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
185# define EV_USE_NANOSLEEP 0
186# endif
79#endif 187#endif
80 188
81#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
83#endif 191#endif
84 192
85#ifndef EV_USE_POLL 193#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 194# ifdef _WIN32
195# define EV_USE_POLL 0
196# else
197# define EV_USE_POLL 1
198# endif
87#endif 199#endif
88 200
89#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
90# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
91#endif 207#endif
92 208
93#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
95#endif 211#endif
96 212
97#ifndef EV_USE_REALTIME 213#ifndef EV_USE_PORT
214# define EV_USE_PORT 0
215#endif
216
217#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
98# define EV_USE_REALTIME 1 219# define EV_USE_INOTIFY 1
220# else
221# define EV_USE_INOTIFY 0
99#endif 222# endif
223#endif
100 224
101/**/ 225#ifndef EV_PID_HASHSIZE
226# if EV_MINIMAL
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
230# endif
231#endif
232
233#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif
240
241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
102 268
103#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
104# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
105# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
106#endif 272#endif
108#ifndef CLOCK_REALTIME 274#ifndef CLOCK_REALTIME
109# undef EV_USE_REALTIME 275# undef EV_USE_REALTIME
110# define EV_USE_REALTIME 0 276# define EV_USE_REALTIME 0
111#endif 277#endif
112 278
279#if !EV_STAT_ENABLE
280# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0
282#endif
283
284#if !EV_USE_NANOSLEEP
285# ifndef _WIN32
286# include <sys/select.h>
287# endif
288#endif
289
290#if EV_USE_INOTIFY
291# include <sys/utsname.h>
292# include <sys/inotify.h>
293/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
294# ifndef IN_DONT_FOLLOW
295# undef EV_USE_INOTIFY
296# define EV_USE_INOTIFY 0
297# endif
298#endif
299
300#if EV_SELECT_IS_WINSOCKET
301# include <winsock.h>
302#endif
303
304#if EV_USE_EVENTFD
305/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
306# include <stdint.h>
307# ifdef __cplusplus
308extern "C" {
309# endif
310int eventfd (unsigned int initval, int flags);
311# ifdef __cplusplus
312}
313# endif
314#endif
315
113/**/ 316/**/
114 317
318#if EV_VERIFY >= 3
319# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
320#else
321# define EV_FREQUENT_CHECK do { } while (0)
322#endif
323
324/*
325 * This is used to avoid floating point rounding problems.
326 * It is added to ev_rt_now when scheduling periodics
327 * to ensure progress, time-wise, even when rounding
328 * errors are against us.
329 * This value is good at least till the year 4000.
330 * Better solutions welcome.
331 */
332#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
333
115#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 334#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
116#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 335#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
117#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
118/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 336/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
119 337
120#include "ev.h"
121
122#if __GNUC__ >= 3 338#if __GNUC__ >= 4
123# define expect(expr,value) __builtin_expect ((expr),(value)) 339# define expect(expr,value) __builtin_expect ((expr),(value))
124# define inline inline 340# define noinline __attribute__ ((noinline))
125#else 341#else
126# define expect(expr,value) (expr) 342# define expect(expr,value) (expr)
127# define inline static 343# define noinline
344# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
345# define inline
346# endif
128#endif 347#endif
129 348
130#define expect_false(expr) expect ((expr) != 0, 0) 349#define expect_false(expr) expect ((expr) != 0, 0)
131#define expect_true(expr) expect ((expr) != 0, 1) 350#define expect_true(expr) expect ((expr) != 0, 1)
351#define inline_size static inline
352
353#if EV_MINIMAL
354# define inline_speed static noinline
355#else
356# define inline_speed static inline
357#endif
132 358
133#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 359#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
134#define ABSPRI(w) ((w)->priority - EV_MINPRI) 360#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
135 361
362#define EMPTY /* required for microsofts broken pseudo-c compiler */
363#define EMPTY2(a,b) /* used to suppress some warnings */
364
136typedef struct ev_watcher *W; 365typedef ev_watcher *W;
137typedef struct ev_watcher_list *WL; 366typedef ev_watcher_list *WL;
138typedef struct ev_watcher_time *WT; 367typedef ev_watcher_time *WT;
139 368
369#define ev_active(w) ((W)(w))->active
370#define ev_at(w) ((WT)(w))->at
371
372#if EV_USE_MONOTONIC
373/* sig_atomic_t is used to avoid per-thread variables or locking but still */
374/* giving it a reasonably high chance of working on typical architetcures */
140static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 375static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
376#endif
377
378#ifdef _WIN32
379# include "ev_win32.c"
380#endif
141 381
142/*****************************************************************************/ 382/*****************************************************************************/
143 383
384static void (*syserr_cb)(const char *msg);
385
386void
387ev_set_syserr_cb (void (*cb)(const char *msg))
388{
389 syserr_cb = cb;
390}
391
392static void noinline
393syserr (const char *msg)
394{
395 if (!msg)
396 msg = "(libev) system error";
397
398 if (syserr_cb)
399 syserr_cb (msg);
400 else
401 {
402 perror (msg);
403 abort ();
404 }
405}
406
407static void *
408ev_realloc_emul (void *ptr, long size)
409{
410 /* some systems, notably openbsd and darwin, fail to properly
411 * implement realloc (x, 0) (as required by both ansi c-98 and
412 * the single unix specification, so work around them here.
413 */
414
415 if (size)
416 return realloc (ptr, size);
417
418 free (ptr);
419 return 0;
420}
421
422static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
423
424void
425ev_set_allocator (void *(*cb)(void *ptr, long size))
426{
427 alloc = cb;
428}
429
430inline_speed void *
431ev_realloc (void *ptr, long size)
432{
433 ptr = alloc (ptr, size);
434
435 if (!ptr && size)
436 {
437 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
438 abort ();
439 }
440
441 return ptr;
442}
443
444#define ev_malloc(size) ev_realloc (0, (size))
445#define ev_free(ptr) ev_realloc ((ptr), 0)
446
447/*****************************************************************************/
448
144typedef struct 449typedef struct
145{ 450{
146 struct ev_watcher_list *head; 451 WL head;
147 unsigned char events; 452 unsigned char events;
148 unsigned char reify; 453 unsigned char reify;
454#if EV_SELECT_IS_WINSOCKET
455 SOCKET handle;
456#endif
149} ANFD; 457} ANFD;
150 458
151typedef struct 459typedef struct
152{ 460{
153 W w; 461 W w;
154 int events; 462 int events;
155} ANPENDING; 463} ANPENDING;
156 464
465#if EV_USE_INOTIFY
466/* hash table entry per inotify-id */
467typedef struct
468{
469 WL head;
470} ANFS;
471#endif
472
473/* Heap Entry */
474#if EV_HEAP_CACHE_AT
475 typedef struct {
476 ev_tstamp at;
477 WT w;
478 } ANHE;
479
480 #define ANHE_w(he) (he).w /* access watcher, read-write */
481 #define ANHE_at(he) (he).at /* access cached at, read-only */
482 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
483#else
484 typedef WT ANHE;
485
486 #define ANHE_w(he) (he)
487 #define ANHE_at(he) (he)->at
488 #define ANHE_at_cache(he)
489#endif
490
157#if EV_MULTIPLICITY 491#if EV_MULTIPLICITY
158 492
159struct ev_loop 493 struct ev_loop
160{ 494 {
495 ev_tstamp ev_rt_now;
496 #define ev_rt_now ((loop)->ev_rt_now)
161# define VAR(name,decl) decl; 497 #define VAR(name,decl) decl;
162# include "ev_vars.h" 498 #include "ev_vars.h"
163};
164# undef VAR 499 #undef VAR
500 };
165# include "ev_wrap.h" 501 #include "ev_wrap.h"
502
503 static struct ev_loop default_loop_struct;
504 struct ev_loop *ev_default_loop_ptr;
166 505
167#else 506#else
168 507
508 ev_tstamp ev_rt_now;
169# define VAR(name,decl) static decl; 509 #define VAR(name,decl) static decl;
170# include "ev_vars.h" 510 #include "ev_vars.h"
171# undef VAR 511 #undef VAR
512
513 static int ev_default_loop_ptr;
172 514
173#endif 515#endif
174 516
175/*****************************************************************************/ 517/*****************************************************************************/
176 518
177inline ev_tstamp 519ev_tstamp
178ev_time (void) 520ev_time (void)
179{ 521{
180#if EV_USE_REALTIME 522#if EV_USE_REALTIME
181 struct timespec ts; 523 struct timespec ts;
182 clock_gettime (CLOCK_REALTIME, &ts); 524 clock_gettime (CLOCK_REALTIME, &ts);
186 gettimeofday (&tv, 0); 528 gettimeofday (&tv, 0);
187 return tv.tv_sec + tv.tv_usec * 1e-6; 529 return tv.tv_sec + tv.tv_usec * 1e-6;
188#endif 530#endif
189} 531}
190 532
191inline ev_tstamp 533ev_tstamp inline_size
192get_clock (void) 534get_clock (void)
193{ 535{
194#if EV_USE_MONOTONIC 536#if EV_USE_MONOTONIC
195 if (expect_true (have_monotonic)) 537 if (expect_true (have_monotonic))
196 { 538 {
201#endif 543#endif
202 544
203 return ev_time (); 545 return ev_time ();
204} 546}
205 547
548#if EV_MULTIPLICITY
206ev_tstamp 549ev_tstamp
207ev_now (EV_P) 550ev_now (EV_P)
208{ 551{
209 return rt_now; 552 return ev_rt_now;
210} 553}
554#endif
211 555
212#define array_roundsize(base,n) ((n) | 4 & ~3) 556void
213 557ev_sleep (ev_tstamp delay)
214#define array_needsize(base,cur,cnt,init) \ 558{
215 if (expect_false ((cnt) > cur)) \ 559 if (delay > 0.)
216 { \
217 int newcnt = cur; \
218 do \
219 { \
220 newcnt = array_roundsize (base, newcnt << 1); \
221 } \
222 while ((cnt) > newcnt); \
223 \
224 base = realloc (base, sizeof (*base) * (newcnt)); \
225 init (base + cur, newcnt - cur); \
226 cur = newcnt; \
227 } 560 {
561#if EV_USE_NANOSLEEP
562 struct timespec ts;
563
564 ts.tv_sec = (time_t)delay;
565 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
566
567 nanosleep (&ts, 0);
568#elif defined(_WIN32)
569 Sleep ((unsigned long)(delay * 1e3));
570#else
571 struct timeval tv;
572
573 tv.tv_sec = (time_t)delay;
574 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
575
576 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
577 /* somehting nto guaranteed by newer posix versions, but guaranteed */
578 /* by older ones */
579 select (0, 0, 0, 0, &tv);
580#endif
581 }
582}
228 583
229/*****************************************************************************/ 584/*****************************************************************************/
230 585
231static void 586#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
587
588int inline_size
589array_nextsize (int elem, int cur, int cnt)
590{
591 int ncur = cur + 1;
592
593 do
594 ncur <<= 1;
595 while (cnt > ncur);
596
597 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
598 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
599 {
600 ncur *= elem;
601 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
602 ncur = ncur - sizeof (void *) * 4;
603 ncur /= elem;
604 }
605
606 return ncur;
607}
608
609static noinline void *
610array_realloc (int elem, void *base, int *cur, int cnt)
611{
612 *cur = array_nextsize (elem, *cur, cnt);
613 return ev_realloc (base, elem * *cur);
614}
615
616#define array_needsize(type,base,cur,cnt,init) \
617 if (expect_false ((cnt) > (cur))) \
618 { \
619 int ocur_ = (cur); \
620 (base) = (type *)array_realloc \
621 (sizeof (type), (base), &(cur), (cnt)); \
622 init ((base) + (ocur_), (cur) - ocur_); \
623 }
624
625#if 0
626#define array_slim(type,stem) \
627 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
628 { \
629 stem ## max = array_roundsize (stem ## cnt >> 1); \
630 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
631 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
632 }
633#endif
634
635#define array_free(stem, idx) \
636 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
637
638/*****************************************************************************/
639
640void noinline
641ev_feed_event (EV_P_ void *w, int revents)
642{
643 W w_ = (W)w;
644 int pri = ABSPRI (w_);
645
646 if (expect_false (w_->pending))
647 pendings [pri][w_->pending - 1].events |= revents;
648 else
649 {
650 w_->pending = ++pendingcnt [pri];
651 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
652 pendings [pri][w_->pending - 1].w = w_;
653 pendings [pri][w_->pending - 1].events = revents;
654 }
655}
656
657void inline_speed
658queue_events (EV_P_ W *events, int eventcnt, int type)
659{
660 int i;
661
662 for (i = 0; i < eventcnt; ++i)
663 ev_feed_event (EV_A_ events [i], type);
664}
665
666/*****************************************************************************/
667
668void inline_size
232anfds_init (ANFD *base, int count) 669anfds_init (ANFD *base, int count)
233{ 670{
234 while (count--) 671 while (count--)
235 { 672 {
236 base->head = 0; 673 base->head = 0;
239 676
240 ++base; 677 ++base;
241 } 678 }
242} 679}
243 680
244static void 681void inline_speed
245event (EV_P_ W w, int events)
246{
247 if (w->pending)
248 {
249 pendings [ABSPRI (w)][w->pending - 1].events |= events;
250 return;
251 }
252
253 w->pending = ++pendingcnt [ABSPRI (w)];
254 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
255 pendings [ABSPRI (w)][w->pending - 1].w = w;
256 pendings [ABSPRI (w)][w->pending - 1].events = events;
257}
258
259static void
260queue_events (EV_P_ W *events, int eventcnt, int type)
261{
262 int i;
263
264 for (i = 0; i < eventcnt; ++i)
265 event (EV_A_ events [i], type);
266}
267
268static void
269fd_event (EV_P_ int fd, int events) 682fd_event (EV_P_ int fd, int revents)
270{ 683{
271 ANFD *anfd = anfds + fd; 684 ANFD *anfd = anfds + fd;
272 struct ev_io *w; 685 ev_io *w;
273 686
274 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 687 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
275 { 688 {
276 int ev = w->events & events; 689 int ev = w->events & revents;
277 690
278 if (ev) 691 if (ev)
279 event (EV_A_ (W)w, ev); 692 ev_feed_event (EV_A_ (W)w, ev);
280 } 693 }
281} 694}
282 695
283/*****************************************************************************/ 696void
697ev_feed_fd_event (EV_P_ int fd, int revents)
698{
699 if (fd >= 0 && fd < anfdmax)
700 fd_event (EV_A_ fd, revents);
701}
284 702
285static void 703void inline_size
286fd_reify (EV_P) 704fd_reify (EV_P)
287{ 705{
288 int i; 706 int i;
289 707
290 for (i = 0; i < fdchangecnt; ++i) 708 for (i = 0; i < fdchangecnt; ++i)
291 { 709 {
292 int fd = fdchanges [i]; 710 int fd = fdchanges [i];
293 ANFD *anfd = anfds + fd; 711 ANFD *anfd = anfds + fd;
294 struct ev_io *w; 712 ev_io *w;
295 713
296 int events = 0; 714 unsigned char events = 0;
297 715
298 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 716 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
299 events |= w->events; 717 events |= (unsigned char)w->events;
300 718
301 anfd->reify = 0; 719#if EV_SELECT_IS_WINSOCKET
302 720 if (events)
303 if (anfd->events != events)
304 { 721 {
305 method_modify (EV_A_ fd, anfd->events, events); 722 unsigned long arg;
306 anfd->events = events; 723 #ifdef EV_FD_TO_WIN32_HANDLE
724 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
725 #else
726 anfd->handle = _get_osfhandle (fd);
727 #endif
728 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
307 } 729 }
730#endif
731
732 {
733 unsigned char o_events = anfd->events;
734 unsigned char o_reify = anfd->reify;
735
736 anfd->reify = 0;
737 anfd->events = events;
738
739 if (o_events != events || o_reify & EV_IOFDSET)
740 backend_modify (EV_A_ fd, o_events, events);
741 }
308 } 742 }
309 743
310 fdchangecnt = 0; 744 fdchangecnt = 0;
311} 745}
312 746
313static void 747void inline_size
314fd_change (EV_P_ int fd) 748fd_change (EV_P_ int fd, int flags)
315{ 749{
316 if (anfds [fd].reify || fdchangecnt < 0) 750 unsigned char reify = anfds [fd].reify;
317 return;
318
319 anfds [fd].reify = 1; 751 anfds [fd].reify |= flags;
320 752
753 if (expect_true (!reify))
754 {
321 ++fdchangecnt; 755 ++fdchangecnt;
322 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 756 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
323 fdchanges [fdchangecnt - 1] = fd; 757 fdchanges [fdchangecnt - 1] = fd;
758 }
324} 759}
325 760
326static void 761void inline_speed
327fd_kill (EV_P_ int fd) 762fd_kill (EV_P_ int fd)
328{ 763{
329 struct ev_io *w; 764 ev_io *w;
330 765
331 while ((w = (struct ev_io *)anfds [fd].head)) 766 while ((w = (ev_io *)anfds [fd].head))
332 { 767 {
333 ev_io_stop (EV_A_ w); 768 ev_io_stop (EV_A_ w);
334 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 769 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
335 } 770 }
771}
772
773int inline_size
774fd_valid (int fd)
775{
776#ifdef _WIN32
777 return _get_osfhandle (fd) != -1;
778#else
779 return fcntl (fd, F_GETFD) != -1;
780#endif
336} 781}
337 782
338/* called on EBADF to verify fds */ 783/* called on EBADF to verify fds */
339static void 784static void noinline
340fd_ebadf (EV_P) 785fd_ebadf (EV_P)
341{ 786{
342 int fd; 787 int fd;
343 788
344 for (fd = 0; fd < anfdmax; ++fd) 789 for (fd = 0; fd < anfdmax; ++fd)
345 if (anfds [fd].events) 790 if (anfds [fd].events)
346 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 791 if (!fd_valid (fd) && errno == EBADF)
347 fd_kill (EV_A_ fd); 792 fd_kill (EV_A_ fd);
348} 793}
349 794
350/* called on ENOMEM in select/poll to kill some fds and retry */ 795/* called on ENOMEM in select/poll to kill some fds and retry */
351static void 796static void noinline
352fd_enomem (EV_P) 797fd_enomem (EV_P)
353{ 798{
354 int fd = anfdmax; 799 int fd;
355 800
356 while (fd--) 801 for (fd = anfdmax; fd--; )
357 if (anfds [fd].events) 802 if (anfds [fd].events)
358 { 803 {
359 close (fd);
360 fd_kill (EV_A_ fd); 804 fd_kill (EV_A_ fd);
361 return; 805 return;
362 } 806 }
363} 807}
364 808
365/* susually called after fork if method needs to re-arm all fds from scratch */ 809/* usually called after fork if backend needs to re-arm all fds from scratch */
366static void 810static void noinline
367fd_rearm_all (EV_P) 811fd_rearm_all (EV_P)
368{ 812{
369 int fd; 813 int fd;
370 814
371 /* this should be highly optimised to not do anything but set a flag */
372 for (fd = 0; fd < anfdmax; ++fd) 815 for (fd = 0; fd < anfdmax; ++fd)
373 if (anfds [fd].events) 816 if (anfds [fd].events)
374 { 817 {
375 anfds [fd].events = 0; 818 anfds [fd].events = 0;
376 fd_change (EV_A_ fd); 819 fd_change (EV_A_ fd, EV_IOFDSET | 1);
377 } 820 }
378} 821}
379 822
380/*****************************************************************************/ 823/*****************************************************************************/
381 824
382static void 825/*
383upheap (WT *heap, int k) 826 * the heap functions want a real array index. array index 0 uis guaranteed to not
384{ 827 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
385 WT w = heap [k]; 828 * the branching factor of the d-tree.
829 */
386 830
387 while (k && heap [k >> 1]->at > w->at) 831/*
388 { 832 * at the moment we allow libev the luxury of two heaps,
389 heap [k] = heap [k >> 1]; 833 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
390 heap [k]->active = k + 1; 834 * which is more cache-efficient.
391 k >>= 1; 835 * the difference is about 5% with 50000+ watchers.
392 } 836 */
837#if EV_USE_4HEAP
393 838
394 heap [k] = w; 839#define DHEAP 4
395 heap [k]->active = k + 1; 840#define HEAP0 (DHEAP - 1) /* index of first element in heap */
841#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
842#define UPHEAP_DONE(p,k) ((p) == (k))
396 843
397} 844/* away from the root */
398 845void inline_speed
399static void
400downheap (WT *heap, int N, int k) 846downheap (ANHE *heap, int N, int k)
401{ 847{
402 WT w = heap [k]; 848 ANHE he = heap [k];
849 ANHE *E = heap + N + HEAP0;
403 850
404 while (k < (N >> 1)) 851 for (;;)
405 { 852 {
406 int j = k << 1; 853 ev_tstamp minat;
854 ANHE *minpos;
855 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
407 856
408 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 857 /* find minimum child */
858 if (expect_true (pos + DHEAP - 1 < E))
409 ++j; 859 {
410 860 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
411 if (w->at <= heap [j]->at) 861 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
862 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
863 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
864 }
865 else if (pos < E)
866 {
867 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
868 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
869 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
870 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
871 }
872 else
412 break; 873 break;
413 874
875 if (ANHE_at (he) <= minat)
876 break;
877
878 heap [k] = *minpos;
879 ev_active (ANHE_w (*minpos)) = k;
880
881 k = minpos - heap;
882 }
883
884 heap [k] = he;
885 ev_active (ANHE_w (he)) = k;
886}
887
888#else /* 4HEAP */
889
890#define HEAP0 1
891#define HPARENT(k) ((k) >> 1)
892#define UPHEAP_DONE(p,k) (!(p))
893
894/* away from the root */
895void inline_speed
896downheap (ANHE *heap, int N, int k)
897{
898 ANHE he = heap [k];
899
900 for (;;)
901 {
902 int c = k << 1;
903
904 if (c > N + HEAP0 - 1)
905 break;
906
907 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
908 ? 1 : 0;
909
910 if (ANHE_at (he) <= ANHE_at (heap [c]))
911 break;
912
414 heap [k] = heap [j]; 913 heap [k] = heap [c];
415 heap [k]->active = k + 1; 914 ev_active (ANHE_w (heap [k])) = k;
915
416 k = j; 916 k = c;
417 } 917 }
418 918
419 heap [k] = w; 919 heap [k] = he;
420 heap [k]->active = k + 1; 920 ev_active (ANHE_w (he)) = k;
921}
922#endif
923
924/* towards the root */
925void inline_speed
926upheap (ANHE *heap, int k)
927{
928 ANHE he = heap [k];
929
930 for (;;)
931 {
932 int p = HPARENT (k);
933
934 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
935 break;
936
937 heap [k] = heap [p];
938 ev_active (ANHE_w (heap [k])) = k;
939 k = p;
940 }
941
942 heap [k] = he;
943 ev_active (ANHE_w (he)) = k;
944}
945
946void inline_size
947adjustheap (ANHE *heap, int N, int k)
948{
949 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
950 upheap (heap, k);
951 else
952 downheap (heap, N, k);
953}
954
955/* rebuild the heap: this function is used only once and executed rarely */
956void inline_size
957reheap (ANHE *heap, int N)
958{
959 int i;
960
961 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
962 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
963 for (i = 0; i < N; ++i)
964 upheap (heap, i + HEAP0);
421} 965}
422 966
423/*****************************************************************************/ 967/*****************************************************************************/
424 968
425typedef struct 969typedef struct
426{ 970{
427 struct ev_watcher_list *head; 971 WL head;
428 sig_atomic_t volatile gotsig; 972 EV_ATOMIC_T gotsig;
429} ANSIG; 973} ANSIG;
430 974
431static ANSIG *signals; 975static ANSIG *signals;
432static int signalmax; 976static int signalmax;
433 977
434static int sigpipe [2]; 978static EV_ATOMIC_T gotsig;
435static sig_atomic_t volatile gotsig;
436static struct ev_io sigev;
437 979
438static void 980void inline_size
439signals_init (ANSIG *base, int count) 981signals_init (ANSIG *base, int count)
440{ 982{
441 while (count--) 983 while (count--)
442 { 984 {
443 base->head = 0; 985 base->head = 0;
445 987
446 ++base; 988 ++base;
447 } 989 }
448} 990}
449 991
992/*****************************************************************************/
993
994void inline_speed
995fd_intern (int fd)
996{
997#ifdef _WIN32
998 unsigned long arg = 1;
999 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1000#else
1001 fcntl (fd, F_SETFD, FD_CLOEXEC);
1002 fcntl (fd, F_SETFL, O_NONBLOCK);
1003#endif
1004}
1005
1006static void noinline
1007evpipe_init (EV_P)
1008{
1009 if (!ev_is_active (&pipeev))
1010 {
1011#if EV_USE_EVENTFD
1012 if ((evfd = eventfd (0, 0)) >= 0)
1013 {
1014 evpipe [0] = -1;
1015 fd_intern (evfd);
1016 ev_io_set (&pipeev, evfd, EV_READ);
1017 }
1018 else
1019#endif
1020 {
1021 while (pipe (evpipe))
1022 syserr ("(libev) error creating signal/async pipe");
1023
1024 fd_intern (evpipe [0]);
1025 fd_intern (evpipe [1]);
1026 ev_io_set (&pipeev, evpipe [0], EV_READ);
1027 }
1028
1029 ev_io_start (EV_A_ &pipeev);
1030 ev_unref (EV_A); /* watcher should not keep loop alive */
1031 }
1032}
1033
1034void inline_size
1035evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1036{
1037 if (!*flag)
1038 {
1039 int old_errno = errno; /* save errno because write might clobber it */
1040
1041 *flag = 1;
1042
1043#if EV_USE_EVENTFD
1044 if (evfd >= 0)
1045 {
1046 uint64_t counter = 1;
1047 write (evfd, &counter, sizeof (uint64_t));
1048 }
1049 else
1050#endif
1051 write (evpipe [1], &old_errno, 1);
1052
1053 errno = old_errno;
1054 }
1055}
1056
450static void 1057static void
1058pipecb (EV_P_ ev_io *iow, int revents)
1059{
1060#if EV_USE_EVENTFD
1061 if (evfd >= 0)
1062 {
1063 uint64_t counter;
1064 read (evfd, &counter, sizeof (uint64_t));
1065 }
1066 else
1067#endif
1068 {
1069 char dummy;
1070 read (evpipe [0], &dummy, 1);
1071 }
1072
1073 if (gotsig && ev_is_default_loop (EV_A))
1074 {
1075 int signum;
1076 gotsig = 0;
1077
1078 for (signum = signalmax; signum--; )
1079 if (signals [signum].gotsig)
1080 ev_feed_signal_event (EV_A_ signum + 1);
1081 }
1082
1083#if EV_ASYNC_ENABLE
1084 if (gotasync)
1085 {
1086 int i;
1087 gotasync = 0;
1088
1089 for (i = asynccnt; i--; )
1090 if (asyncs [i]->sent)
1091 {
1092 asyncs [i]->sent = 0;
1093 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1094 }
1095 }
1096#endif
1097}
1098
1099/*****************************************************************************/
1100
1101static void
451sighandler (int signum) 1102ev_sighandler (int signum)
452{ 1103{
1104#if EV_MULTIPLICITY
1105 struct ev_loop *loop = &default_loop_struct;
1106#endif
1107
1108#if _WIN32
1109 signal (signum, ev_sighandler);
1110#endif
1111
453 signals [signum - 1].gotsig = 1; 1112 signals [signum - 1].gotsig = 1;
454 1113 evpipe_write (EV_A_ &gotsig);
455 if (!gotsig)
456 {
457 int old_errno = errno;
458 gotsig = 1;
459 write (sigpipe [1], &signum, 1);
460 errno = old_errno;
461 }
462} 1114}
463 1115
464static void 1116void noinline
465sigcb (EV_P_ struct ev_io *iow, int revents) 1117ev_feed_signal_event (EV_P_ int signum)
466{ 1118{
467 struct ev_watcher_list *w; 1119 WL w;
1120
1121#if EV_MULTIPLICITY
1122 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1123#endif
1124
468 int signum; 1125 --signum;
469 1126
470 read (sigpipe [0], &revents, 1); 1127 if (signum < 0 || signum >= signalmax)
471 gotsig = 0; 1128 return;
472 1129
473 for (signum = signalmax; signum--; )
474 if (signals [signum].gotsig)
475 {
476 signals [signum].gotsig = 0; 1130 signals [signum].gotsig = 0;
477 1131
478 for (w = signals [signum].head; w; w = w->next) 1132 for (w = signals [signum].head; w; w = w->next)
479 event (EV_A_ (W)w, EV_SIGNAL); 1133 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
480 }
481}
482
483static void
484siginit (EV_P)
485{
486#ifndef WIN32
487 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
488 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
489
490 /* rather than sort out wether we really need nb, set it */
491 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
492 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
493#endif
494
495 ev_io_set (&sigev, sigpipe [0], EV_READ);
496 ev_io_start (EV_A_ &sigev);
497 ev_unref (EV_A); /* child watcher should not keep loop alive */
498} 1134}
499 1135
500/*****************************************************************************/ 1136/*****************************************************************************/
501 1137
1138static WL childs [EV_PID_HASHSIZE];
1139
502#ifndef WIN32 1140#ifndef _WIN32
503 1141
504static struct ev_child *childs [PID_HASHSIZE];
505static struct ev_signal childev; 1142static ev_signal childev;
1143
1144#ifndef WIFCONTINUED
1145# define WIFCONTINUED(status) 0
1146#endif
1147
1148void inline_speed
1149child_reap (EV_P_ int chain, int pid, int status)
1150{
1151 ev_child *w;
1152 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1153
1154 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1155 {
1156 if ((w->pid == pid || !w->pid)
1157 && (!traced || (w->flags & 1)))
1158 {
1159 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1160 w->rpid = pid;
1161 w->rstatus = status;
1162 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1163 }
1164 }
1165}
506 1166
507#ifndef WCONTINUED 1167#ifndef WCONTINUED
508# define WCONTINUED 0 1168# define WCONTINUED 0
509#endif 1169#endif
510 1170
511static void 1171static void
512child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
513{
514 struct ev_child *w;
515
516 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
517 if (w->pid == pid || !w->pid)
518 {
519 w->priority = sw->priority; /* need to do it *now* */
520 w->rpid = pid;
521 w->rstatus = status;
522 event (EV_A_ (W)w, EV_CHILD);
523 }
524}
525
526static void
527childcb (EV_P_ struct ev_signal *sw, int revents) 1172childcb (EV_P_ ev_signal *sw, int revents)
528{ 1173{
529 int pid, status; 1174 int pid, status;
530 1175
1176 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
531 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1177 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
532 { 1178 if (!WCONTINUED
1179 || errno != EINVAL
1180 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1181 return;
1182
533 /* make sure we are called again until all childs have been reaped */ 1183 /* make sure we are called again until all children have been reaped */
1184 /* we need to do it this way so that the callback gets called before we continue */
534 event (EV_A_ (W)sw, EV_SIGNAL); 1185 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
535 1186
536 child_reap (EV_A_ sw, pid, pid, status); 1187 child_reap (EV_A_ pid, pid, status);
1188 if (EV_PID_HASHSIZE > 1)
537 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1189 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
538 }
539} 1190}
540 1191
541#endif 1192#endif
542 1193
543/*****************************************************************************/ 1194/*****************************************************************************/
544 1195
1196#if EV_USE_PORT
1197# include "ev_port.c"
1198#endif
545#if EV_USE_KQUEUE 1199#if EV_USE_KQUEUE
546# include "ev_kqueue.c" 1200# include "ev_kqueue.c"
547#endif 1201#endif
548#if EV_USE_EPOLL 1202#if EV_USE_EPOLL
549# include "ev_epoll.c" 1203# include "ev_epoll.c"
566{ 1220{
567 return EV_VERSION_MINOR; 1221 return EV_VERSION_MINOR;
568} 1222}
569 1223
570/* return true if we are running with elevated privileges and should ignore env variables */ 1224/* return true if we are running with elevated privileges and should ignore env variables */
571static int 1225int inline_size
572enable_secure (void) 1226enable_secure (void)
573{ 1227{
574#ifdef WIN32 1228#ifdef _WIN32
575 return 0; 1229 return 0;
576#else 1230#else
577 return getuid () != geteuid () 1231 return getuid () != geteuid ()
578 || getgid () != getegid (); 1232 || getgid () != getegid ();
579#endif 1233#endif
580} 1234}
581 1235
582int 1236unsigned int
583ev_method (EV_P) 1237ev_supported_backends (void)
584{ 1238{
585 return method; 1239 unsigned int flags = 0;
586}
587 1240
588static void 1241 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
589loop_init (EV_P_ int methods) 1242 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1243 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1244 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1245 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1246
1247 return flags;
1248}
1249
1250unsigned int
1251ev_recommended_backends (void)
590{ 1252{
591 if (!method) 1253 unsigned int flags = ev_supported_backends ();
1254
1255#ifndef __NetBSD__
1256 /* kqueue is borked on everything but netbsd apparently */
1257 /* it usually doesn't work correctly on anything but sockets and pipes */
1258 flags &= ~EVBACKEND_KQUEUE;
1259#endif
1260#ifdef __APPLE__
1261 // flags &= ~EVBACKEND_KQUEUE; for documentation
1262 flags &= ~EVBACKEND_POLL;
1263#endif
1264
1265 return flags;
1266}
1267
1268unsigned int
1269ev_embeddable_backends (void)
1270{
1271 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1272
1273 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1274 /* please fix it and tell me how to detect the fix */
1275 flags &= ~EVBACKEND_EPOLL;
1276
1277 return flags;
1278}
1279
1280unsigned int
1281ev_backend (EV_P)
1282{
1283 return backend;
1284}
1285
1286unsigned int
1287ev_loop_count (EV_P)
1288{
1289 return loop_count;
1290}
1291
1292void
1293ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1294{
1295 io_blocktime = interval;
1296}
1297
1298void
1299ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1300{
1301 timeout_blocktime = interval;
1302}
1303
1304static void noinline
1305loop_init (EV_P_ unsigned int flags)
1306{
1307 if (!backend)
592 { 1308 {
593#if EV_USE_MONOTONIC 1309#if EV_USE_MONOTONIC
594 { 1310 {
595 struct timespec ts; 1311 struct timespec ts;
596 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1312 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
597 have_monotonic = 1; 1313 have_monotonic = 1;
598 } 1314 }
599#endif 1315#endif
600 1316
601 rt_now = ev_time (); 1317 ev_rt_now = ev_time ();
602 mn_now = get_clock (); 1318 mn_now = get_clock ();
603 now_floor = mn_now; 1319 now_floor = mn_now;
604 rtmn_diff = rt_now - mn_now; 1320 rtmn_diff = ev_rt_now - mn_now;
605 1321
606 if (methods == EVMETHOD_AUTO) 1322 io_blocktime = 0.;
607 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1323 timeout_blocktime = 0.;
1324 backend = 0;
1325 backend_fd = -1;
1326 gotasync = 0;
1327#if EV_USE_INOTIFY
1328 fs_fd = -2;
1329#endif
1330
1331 /* pid check not overridable via env */
1332#ifndef _WIN32
1333 if (flags & EVFLAG_FORKCHECK)
1334 curpid = getpid ();
1335#endif
1336
1337 if (!(flags & EVFLAG_NOENV)
1338 && !enable_secure ()
1339 && getenv ("LIBEV_FLAGS"))
608 methods = atoi (getenv ("LIBEV_METHODS")); 1340 flags = atoi (getenv ("LIBEV_FLAGS"));
609 else
610 methods = EVMETHOD_ANY;
611 1341
612 method = 0; 1342 if (!(flags & 0x0000ffffU))
1343 flags |= ev_recommended_backends ();
1344
1345#if EV_USE_PORT
1346 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1347#endif
613#if EV_USE_KQUEUE 1348#if EV_USE_KQUEUE
614 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1349 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
615#endif 1350#endif
616#if EV_USE_EPOLL 1351#if EV_USE_EPOLL
617 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1352 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
618#endif 1353#endif
619#if EV_USE_POLL 1354#if EV_USE_POLL
620 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1355 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
621#endif 1356#endif
622#if EV_USE_SELECT 1357#if EV_USE_SELECT
623 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1358 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
624#endif 1359#endif
625 }
626}
627 1360
628void 1361 ev_init (&pipeev, pipecb);
1362 ev_set_priority (&pipeev, EV_MAXPRI);
1363 }
1364}
1365
1366static void noinline
629loop_destroy (EV_P) 1367loop_destroy (EV_P)
630{ 1368{
1369 int i;
1370
1371 if (ev_is_active (&pipeev))
1372 {
1373 ev_ref (EV_A); /* signal watcher */
1374 ev_io_stop (EV_A_ &pipeev);
1375
1376#if EV_USE_EVENTFD
1377 if (evfd >= 0)
1378 close (evfd);
1379#endif
1380
1381 if (evpipe [0] >= 0)
1382 {
1383 close (evpipe [0]);
1384 close (evpipe [1]);
1385 }
1386 }
1387
1388#if EV_USE_INOTIFY
1389 if (fs_fd >= 0)
1390 close (fs_fd);
1391#endif
1392
1393 if (backend_fd >= 0)
1394 close (backend_fd);
1395
1396#if EV_USE_PORT
1397 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1398#endif
631#if EV_USE_KQUEUE 1399#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1400 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
633#endif 1401#endif
634#if EV_USE_EPOLL 1402#if EV_USE_EPOLL
635 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1403 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
636#endif 1404#endif
637#if EV_USE_POLL 1405#if EV_USE_POLL
638 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1406 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
639#endif 1407#endif
640#if EV_USE_SELECT 1408#if EV_USE_SELECT
641 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1409 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
642#endif 1410#endif
643 1411
644 method = 0; 1412 for (i = NUMPRI; i--; )
645 /*TODO*/ 1413 {
646} 1414 array_free (pending, [i]);
1415#if EV_IDLE_ENABLE
1416 array_free (idle, [i]);
1417#endif
1418 }
647 1419
648void 1420 ev_free (anfds); anfdmax = 0;
1421
1422 /* have to use the microsoft-never-gets-it-right macro */
1423 array_free (fdchange, EMPTY);
1424 array_free (timer, EMPTY);
1425#if EV_PERIODIC_ENABLE
1426 array_free (periodic, EMPTY);
1427#endif
1428#if EV_FORK_ENABLE
1429 array_free (fork, EMPTY);
1430#endif
1431 array_free (prepare, EMPTY);
1432 array_free (check, EMPTY);
1433#if EV_ASYNC_ENABLE
1434 array_free (async, EMPTY);
1435#endif
1436
1437 backend = 0;
1438}
1439
1440#if EV_USE_INOTIFY
1441void inline_size infy_fork (EV_P);
1442#endif
1443
1444void inline_size
649loop_fork (EV_P) 1445loop_fork (EV_P)
650{ 1446{
651 /*TODO*/ 1447#if EV_USE_PORT
1448 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1449#endif
1450#if EV_USE_KQUEUE
1451 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1452#endif
652#if EV_USE_EPOLL 1453#if EV_USE_EPOLL
653 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1454 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1455#endif
1456#if EV_USE_INOTIFY
1457 infy_fork (EV_A);
1458#endif
1459
1460 if (ev_is_active (&pipeev))
1461 {
1462 /* this "locks" the handlers against writing to the pipe */
1463 /* while we modify the fd vars */
1464 gotsig = 1;
1465#if EV_ASYNC_ENABLE
1466 gotasync = 1;
1467#endif
1468
1469 ev_ref (EV_A);
1470 ev_io_stop (EV_A_ &pipeev);
1471
1472#if EV_USE_EVENTFD
1473 if (evfd >= 0)
1474 close (evfd);
1475#endif
1476
1477 if (evpipe [0] >= 0)
1478 {
1479 close (evpipe [0]);
1480 close (evpipe [1]);
1481 }
1482
1483 evpipe_init (EV_A);
1484 /* now iterate over everything, in case we missed something */
1485 pipecb (EV_A_ &pipeev, EV_READ);
1486 }
1487
1488 postfork = 0;
1489}
1490
1491#if EV_MULTIPLICITY
1492
1493struct ev_loop *
1494ev_loop_new (unsigned int flags)
1495{
1496 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1497
1498 memset (loop, 0, sizeof (struct ev_loop));
1499
1500 loop_init (EV_A_ flags);
1501
1502 if (ev_backend (EV_A))
1503 return loop;
1504
1505 return 0;
1506}
1507
1508void
1509ev_loop_destroy (EV_P)
1510{
1511 loop_destroy (EV_A);
1512 ev_free (loop);
1513}
1514
1515void
1516ev_loop_fork (EV_P)
1517{
1518 postfork = 1; /* must be in line with ev_default_fork */
1519}
1520
1521#if EV_VERIFY
1522static void noinline
1523verify_watcher (EV_P_ W w)
1524{
1525 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1526
1527 if (w->pending)
1528 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1529}
1530
1531static void noinline
1532verify_heap (EV_P_ ANHE *heap, int N)
1533{
1534 int i;
1535
1536 for (i = HEAP0; i < N + HEAP0; ++i)
1537 {
1538 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1539 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1540 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1541
1542 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1543 }
1544}
1545
1546static void noinline
1547array_verify (EV_P_ W *ws, int cnt)
1548{
1549 while (cnt--)
1550 {
1551 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1552 verify_watcher (EV_A_ ws [cnt]);
1553 }
1554}
1555#endif
1556
1557void
1558ev_loop_verify (EV_P)
1559{
1560#if EV_VERIFY
1561 int i;
1562 WL w;
1563
1564 assert (activecnt >= -1);
1565
1566 assert (fdchangemax >= fdchangecnt);
1567 for (i = 0; i < fdchangecnt; ++i)
1568 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1569
1570 assert (anfdmax >= 0);
1571 for (i = 0; i < anfdmax; ++i)
1572 for (w = anfds [i].head; w; w = w->next)
1573 {
1574 verify_watcher (EV_A_ (W)w);
1575 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1576 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1577 }
1578
1579 assert (timermax >= timercnt);
1580 verify_heap (EV_A_ timers, timercnt);
1581
1582#if EV_PERIODIC_ENABLE
1583 assert (periodicmax >= periodiccnt);
1584 verify_heap (EV_A_ periodics, periodiccnt);
1585#endif
1586
1587 for (i = NUMPRI; i--; )
1588 {
1589 assert (pendingmax [i] >= pendingcnt [i]);
1590#if EV_IDLE_ENABLE
1591 assert (idleall >= 0);
1592 assert (idlemax [i] >= idlecnt [i]);
1593 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1594#endif
1595 }
1596
1597#if EV_FORK_ENABLE
1598 assert (forkmax >= forkcnt);
1599 array_verify (EV_A_ (W *)forks, forkcnt);
1600#endif
1601
1602#if EV_ASYNC_ENABLE
1603 assert (asyncmax >= asynccnt);
1604 array_verify (EV_A_ (W *)asyncs, asynccnt);
1605#endif
1606
1607 assert (preparemax >= preparecnt);
1608 array_verify (EV_A_ (W *)prepares, preparecnt);
1609
1610 assert (checkmax >= checkcnt);
1611 array_verify (EV_A_ (W *)checks, checkcnt);
1612
1613# if 0
1614 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1615 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
654#endif 1616# endif
655#if EV_USE_KQUEUE
656 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
657#endif 1617#endif
658} 1618}
1619
1620#endif /* multiplicity */
659 1621
660#if EV_MULTIPLICITY 1622#if EV_MULTIPLICITY
661struct ev_loop * 1623struct ev_loop *
662ev_loop_new (int methods) 1624ev_default_loop_init (unsigned int flags)
663{ 1625#else
664 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 1626int
665 1627ev_default_loop (unsigned int flags)
666 loop_init (EV_A_ methods);
667
668 if (ev_method (EV_A))
669 return loop;
670
671 return 0;
672}
673
674void
675ev_loop_destroy (EV_P)
676{
677 loop_destroy (EV_A);
678 free (loop);
679}
680
681void
682ev_loop_fork (EV_P)
683{
684 loop_fork (EV_A);
685}
686
687#endif 1628#endif
688 1629{
1630 if (!ev_default_loop_ptr)
1631 {
689#if EV_MULTIPLICITY 1632#if EV_MULTIPLICITY
690struct ev_loop default_loop_struct; 1633 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
691static struct ev_loop *default_loop;
692
693struct ev_loop *
694#else 1634#else
695static int default_loop;
696
697int
698#endif
699ev_default_loop (int methods)
700{
701 if (sigpipe [0] == sigpipe [1])
702 if (pipe (sigpipe))
703 return 0;
704
705 if (!default_loop)
706 {
707#if EV_MULTIPLICITY
708 struct ev_loop *loop = default_loop = &default_loop_struct;
709#else
710 default_loop = 1; 1635 ev_default_loop_ptr = 1;
711#endif 1636#endif
712 1637
713 loop_init (EV_A_ methods); 1638 loop_init (EV_A_ flags);
714 1639
715 if (ev_method (EV_A)) 1640 if (ev_backend (EV_A))
716 { 1641 {
717 ev_watcher_init (&sigev, sigcb);
718 ev_set_priority (&sigev, EV_MAXPRI);
719 siginit (EV_A);
720
721#ifndef WIN32 1642#ifndef _WIN32
722 ev_signal_init (&childev, childcb, SIGCHLD); 1643 ev_signal_init (&childev, childcb, SIGCHLD);
723 ev_set_priority (&childev, EV_MAXPRI); 1644 ev_set_priority (&childev, EV_MAXPRI);
724 ev_signal_start (EV_A_ &childev); 1645 ev_signal_start (EV_A_ &childev);
725 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1646 ev_unref (EV_A); /* child watcher should not keep loop alive */
726#endif 1647#endif
727 } 1648 }
728 else 1649 else
729 default_loop = 0; 1650 ev_default_loop_ptr = 0;
730 } 1651 }
731 1652
732 return default_loop; 1653 return ev_default_loop_ptr;
733} 1654}
734 1655
735void 1656void
736ev_default_destroy (void) 1657ev_default_destroy (void)
737{ 1658{
738#if EV_MULTIPLICITY 1659#if EV_MULTIPLICITY
739 struct ev_loop *loop = default_loop; 1660 struct ev_loop *loop = ev_default_loop_ptr;
740#endif 1661#endif
741 1662
1663#ifndef _WIN32
742 ev_ref (EV_A); /* child watcher */ 1664 ev_ref (EV_A); /* child watcher */
743 ev_signal_stop (EV_A_ &childev); 1665 ev_signal_stop (EV_A_ &childev);
744 1666#endif
745 ev_ref (EV_A); /* signal watcher */
746 ev_io_stop (EV_A_ &sigev);
747
748 close (sigpipe [0]); sigpipe [0] = 0;
749 close (sigpipe [1]); sigpipe [1] = 0;
750 1667
751 loop_destroy (EV_A); 1668 loop_destroy (EV_A);
752} 1669}
753 1670
754void 1671void
755ev_default_fork (void) 1672ev_default_fork (void)
756{ 1673{
757#if EV_MULTIPLICITY 1674#if EV_MULTIPLICITY
758 struct ev_loop *loop = default_loop; 1675 struct ev_loop *loop = ev_default_loop_ptr;
759#endif 1676#endif
760 1677
761 loop_fork (EV_A); 1678 if (backend)
762 1679 postfork = 1; /* must be in line with ev_loop_fork */
763 ev_io_stop (EV_A_ &sigev);
764 close (sigpipe [0]);
765 close (sigpipe [1]);
766 pipe (sigpipe);
767
768 ev_ref (EV_A); /* signal watcher */
769 siginit (EV_A);
770} 1680}
771 1681
772/*****************************************************************************/ 1682/*****************************************************************************/
773 1683
774static void 1684void
1685ev_invoke (EV_P_ void *w, int revents)
1686{
1687 EV_CB_INVOKE ((W)w, revents);
1688}
1689
1690void inline_speed
775call_pending (EV_P) 1691call_pending (EV_P)
776{ 1692{
777 int pri; 1693 int pri;
778 1694
779 for (pri = NUMPRI; pri--; ) 1695 for (pri = NUMPRI; pri--; )
780 while (pendingcnt [pri]) 1696 while (pendingcnt [pri])
781 { 1697 {
782 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1698 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
783 1699
784 if (p->w) 1700 if (expect_true (p->w))
785 { 1701 {
1702 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1703
786 p->w->pending = 0; 1704 p->w->pending = 0;
787 p->w->cb (EV_A_ p->w, p->events); 1705 EV_CB_INVOKE (p->w, p->events);
1706 EV_FREQUENT_CHECK;
788 } 1707 }
789 } 1708 }
790} 1709}
791 1710
792static void 1711#if EV_IDLE_ENABLE
1712void inline_size
1713idle_reify (EV_P)
1714{
1715 if (expect_false (idleall))
1716 {
1717 int pri;
1718
1719 for (pri = NUMPRI; pri--; )
1720 {
1721 if (pendingcnt [pri])
1722 break;
1723
1724 if (idlecnt [pri])
1725 {
1726 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1727 break;
1728 }
1729 }
1730 }
1731}
1732#endif
1733
1734void inline_size
793timers_reify (EV_P) 1735timers_reify (EV_P)
794{ 1736{
1737 EV_FREQUENT_CHECK;
1738
795 while (timercnt && timers [0]->at <= mn_now) 1739 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
796 { 1740 {
797 struct ev_timer *w = timers [0]; 1741 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1742
1743 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
798 1744
799 /* first reschedule or stop timer */ 1745 /* first reschedule or stop timer */
800 if (w->repeat) 1746 if (w->repeat)
801 { 1747 {
1748 ev_at (w) += w->repeat;
1749 if (ev_at (w) < mn_now)
1750 ev_at (w) = mn_now;
1751
802 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1752 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
803 w->at = mn_now + w->repeat; 1753
1754 ANHE_at_cache (timers [HEAP0]);
804 downheap ((WT *)timers, timercnt, 0); 1755 downheap (timers, timercnt, HEAP0);
805 } 1756 }
806 else 1757 else
807 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1758 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
808 1759
1760 EV_FREQUENT_CHECK;
809 event (EV_A_ (W)w, EV_TIMEOUT); 1761 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
810 } 1762 }
811} 1763}
812 1764
813static void 1765#if EV_PERIODIC_ENABLE
1766void inline_size
814periodics_reify (EV_P) 1767periodics_reify (EV_P)
815{ 1768{
1769 EV_FREQUENT_CHECK;
1770
816 while (periodiccnt && periodics [0]->at <= rt_now) 1771 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
817 { 1772 {
818 struct ev_periodic *w = periodics [0]; 1773 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1774
1775 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
819 1776
820 /* first reschedule or stop timer */ 1777 /* first reschedule or stop timer */
821 if (w->interval) 1778 if (w->reschedule_cb)
822 { 1779 {
823 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1780 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
824 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1781
1782 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1783
1784 ANHE_at_cache (periodics [HEAP0]);
825 downheap ((WT *)periodics, periodiccnt, 0); 1785 downheap (periodics, periodiccnt, HEAP0);
1786 }
1787 else if (w->interval)
1788 {
1789 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1790 /* if next trigger time is not sufficiently in the future, put it there */
1791 /* this might happen because of floating point inexactness */
1792 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1793 {
1794 ev_at (w) += w->interval;
1795
1796 /* if interval is unreasonably low we might still have a time in the past */
1797 /* so correct this. this will make the periodic very inexact, but the user */
1798 /* has effectively asked to get triggered more often than possible */
1799 if (ev_at (w) < ev_rt_now)
1800 ev_at (w) = ev_rt_now;
1801 }
1802
1803 ANHE_at_cache (periodics [HEAP0]);
1804 downheap (periodics, periodiccnt, HEAP0);
826 } 1805 }
827 else 1806 else
828 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1807 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
829 1808
1809 EV_FREQUENT_CHECK;
830 event (EV_A_ (W)w, EV_PERIODIC); 1810 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
831 } 1811 }
832} 1812}
833 1813
834static void 1814static void noinline
835periodics_reschedule (EV_P) 1815periodics_reschedule (EV_P)
836{ 1816{
837 int i; 1817 int i;
838 1818
839 /* adjust periodics after time jump */ 1819 /* adjust periodics after time jump */
840 for (i = 0; i < periodiccnt; ++i) 1820 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
841 { 1821 {
842 struct ev_periodic *w = periodics [i]; 1822 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
843 1823
1824 if (w->reschedule_cb)
1825 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
844 if (w->interval) 1826 else if (w->interval)
1827 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1828
1829 ANHE_at_cache (periodics [i]);
1830 }
1831
1832 reheap (periodics, periodiccnt);
1833}
1834#endif
1835
1836void inline_speed
1837time_update (EV_P_ ev_tstamp max_block)
1838{
1839 int i;
1840
1841#if EV_USE_MONOTONIC
1842 if (expect_true (have_monotonic))
1843 {
1844 ev_tstamp odiff = rtmn_diff;
1845
1846 mn_now = get_clock ();
1847
1848 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1849 /* interpolate in the meantime */
1850 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
845 { 1851 {
846 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1852 ev_rt_now = rtmn_diff + mn_now;
1853 return;
1854 }
847 1855
848 if (fabs (diff) >= 1e-4) 1856 now_floor = mn_now;
1857 ev_rt_now = ev_time ();
1858
1859 /* loop a few times, before making important decisions.
1860 * on the choice of "4": one iteration isn't enough,
1861 * in case we get preempted during the calls to
1862 * ev_time and get_clock. a second call is almost guaranteed
1863 * to succeed in that case, though. and looping a few more times
1864 * doesn't hurt either as we only do this on time-jumps or
1865 * in the unlikely event of having been preempted here.
1866 */
1867 for (i = 4; --i; )
1868 {
1869 rtmn_diff = ev_rt_now - mn_now;
1870
1871 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1872 return; /* all is well */
1873
1874 ev_rt_now = ev_time ();
1875 mn_now = get_clock ();
1876 now_floor = mn_now;
1877 }
1878
1879# if EV_PERIODIC_ENABLE
1880 periodics_reschedule (EV_A);
1881# endif
1882 /* no timer adjustment, as the monotonic clock doesn't jump */
1883 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1884 }
1885 else
1886#endif
1887 {
1888 ev_rt_now = ev_time ();
1889
1890 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1891 {
1892#if EV_PERIODIC_ENABLE
1893 periodics_reschedule (EV_A);
1894#endif
1895 /* adjust timers. this is easy, as the offset is the same for all of them */
1896 for (i = 0; i < timercnt; ++i)
849 { 1897 {
850 ev_periodic_stop (EV_A_ w); 1898 ANHE *he = timers + i + HEAP0;
851 ev_periodic_start (EV_A_ w); 1899 ANHE_w (*he)->at += ev_rt_now - mn_now;
852 1900 ANHE_at_cache (*he);
853 i = 0; /* restart loop, inefficient, but time jumps should be rare */
854 } 1901 }
855 } 1902 }
856 }
857}
858 1903
859inline int
860time_update_monotonic (EV_P)
861{
862 mn_now = get_clock ();
863
864 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
865 {
866 rt_now = rtmn_diff + mn_now;
867 return 0;
868 }
869 else
870 {
871 now_floor = mn_now;
872 rt_now = ev_time ();
873 return 1;
874 }
875}
876
877static void
878time_update (EV_P)
879{
880 int i;
881
882#if EV_USE_MONOTONIC
883 if (expect_true (have_monotonic))
884 {
885 if (time_update_monotonic (EV_A))
886 {
887 ev_tstamp odiff = rtmn_diff;
888
889 for (i = 4; --i; ) /* loop a few times, before making important decisions */
890 {
891 rtmn_diff = rt_now - mn_now;
892
893 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
894 return; /* all is well */
895
896 rt_now = ev_time ();
897 mn_now = get_clock ();
898 now_floor = mn_now;
899 }
900
901 periodics_reschedule (EV_A);
902 /* no timer adjustment, as the monotonic clock doesn't jump */
903 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
904 }
905 }
906 else
907#endif
908 {
909 rt_now = ev_time ();
910
911 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
912 {
913 periodics_reschedule (EV_A);
914
915 /* adjust timers. this is easy, as the offset is the same for all */
916 for (i = 0; i < timercnt; ++i)
917 timers [i]->at += rt_now - mn_now;
918 }
919
920 mn_now = rt_now; 1904 mn_now = ev_rt_now;
921 } 1905 }
922} 1906}
923 1907
924void 1908void
925ev_ref (EV_P) 1909ev_ref (EV_P)
931ev_unref (EV_P) 1915ev_unref (EV_P)
932{ 1916{
933 --activecnt; 1917 --activecnt;
934} 1918}
935 1919
1920void
1921ev_now_update (EV_P)
1922{
1923 time_update (EV_A_ 1e100);
1924}
1925
936static int loop_done; 1926static int loop_done;
937 1927
938void 1928void
939ev_loop (EV_P_ int flags) 1929ev_loop (EV_P_ int flags)
940{ 1930{
941 double block; 1931 loop_done = EVUNLOOP_CANCEL;
942 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1932
1933 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
943 1934
944 do 1935 do
945 { 1936 {
1937#if EV_VERIFY >= 2
1938 ev_loop_verify (EV_A);
1939#endif
1940
1941#ifndef _WIN32
1942 if (expect_false (curpid)) /* penalise the forking check even more */
1943 if (expect_false (getpid () != curpid))
1944 {
1945 curpid = getpid ();
1946 postfork = 1;
1947 }
1948#endif
1949
1950#if EV_FORK_ENABLE
1951 /* we might have forked, so queue fork handlers */
1952 if (expect_false (postfork))
1953 if (forkcnt)
1954 {
1955 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1956 call_pending (EV_A);
1957 }
1958#endif
1959
946 /* queue check watchers (and execute them) */ 1960 /* queue prepare watchers (and execute them) */
947 if (expect_false (preparecnt)) 1961 if (expect_false (preparecnt))
948 { 1962 {
949 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1963 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
950 call_pending (EV_A); 1964 call_pending (EV_A);
951 } 1965 }
952 1966
1967 if (expect_false (!activecnt))
1968 break;
1969
1970 /* we might have forked, so reify kernel state if necessary */
1971 if (expect_false (postfork))
1972 loop_fork (EV_A);
1973
953 /* update fd-related kernel structures */ 1974 /* update fd-related kernel structures */
954 fd_reify (EV_A); 1975 fd_reify (EV_A);
955 1976
956 /* calculate blocking time */ 1977 /* calculate blocking time */
1978 {
1979 ev_tstamp waittime = 0.;
1980 ev_tstamp sleeptime = 0.;
957 1981
958 /* we only need this for !monotonic clockor timers, but as we basically 1982 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
959 always have timers, we just calculate it always */
960#if EV_USE_MONOTONIC
961 if (expect_true (have_monotonic))
962 time_update_monotonic (EV_A);
963 else
964#endif
965 { 1983 {
966 rt_now = ev_time (); 1984 /* update time to cancel out callback processing overhead */
967 mn_now = rt_now; 1985 time_update (EV_A_ 1e100);
968 }
969 1986
970 if (flags & EVLOOP_NONBLOCK || idlecnt)
971 block = 0.;
972 else
973 {
974 block = MAX_BLOCKTIME; 1987 waittime = MAX_BLOCKTIME;
975 1988
976 if (timercnt) 1989 if (timercnt)
977 { 1990 {
978 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1991 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
979 if (block > to) block = to; 1992 if (waittime > to) waittime = to;
980 } 1993 }
981 1994
1995#if EV_PERIODIC_ENABLE
982 if (periodiccnt) 1996 if (periodiccnt)
983 { 1997 {
984 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1998 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
985 if (block > to) block = to; 1999 if (waittime > to) waittime = to;
986 } 2000 }
2001#endif
987 2002
988 if (block < 0.) block = 0.; 2003 if (expect_false (waittime < timeout_blocktime))
2004 waittime = timeout_blocktime;
2005
2006 sleeptime = waittime - backend_fudge;
2007
2008 if (expect_true (sleeptime > io_blocktime))
2009 sleeptime = io_blocktime;
2010
2011 if (sleeptime)
2012 {
2013 ev_sleep (sleeptime);
2014 waittime -= sleeptime;
2015 }
989 } 2016 }
990 2017
991 method_poll (EV_A_ block); 2018 ++loop_count;
2019 backend_poll (EV_A_ waittime);
992 2020
993 /* update rt_now, do magic */ 2021 /* update ev_rt_now, do magic */
994 time_update (EV_A); 2022 time_update (EV_A_ waittime + sleeptime);
2023 }
995 2024
996 /* queue pending timers and reschedule them */ 2025 /* queue pending timers and reschedule them */
997 timers_reify (EV_A); /* relative timers called last */ 2026 timers_reify (EV_A); /* relative timers called last */
2027#if EV_PERIODIC_ENABLE
998 periodics_reify (EV_A); /* absolute timers called first */ 2028 periodics_reify (EV_A); /* absolute timers called first */
2029#endif
999 2030
2031#if EV_IDLE_ENABLE
1000 /* queue idle watchers unless io or timers are pending */ 2032 /* queue idle watchers unless other events are pending */
1001 if (!pendingcnt) 2033 idle_reify (EV_A);
1002 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2034#endif
1003 2035
1004 /* queue check watchers, to be executed first */ 2036 /* queue check watchers, to be executed first */
1005 if (checkcnt) 2037 if (expect_false (checkcnt))
1006 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2038 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1007 2039
1008 call_pending (EV_A); 2040 call_pending (EV_A);
1009 } 2041 }
1010 while (activecnt && !loop_done); 2042 while (expect_true (
2043 activecnt
2044 && !loop_done
2045 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2046 ));
1011 2047
1012 if (loop_done != 2) 2048 if (loop_done == EVUNLOOP_ONE)
1013 loop_done = 0; 2049 loop_done = EVUNLOOP_CANCEL;
1014} 2050}
1015 2051
1016void 2052void
1017ev_unloop (EV_P_ int how) 2053ev_unloop (EV_P_ int how)
1018{ 2054{
1019 loop_done = how; 2055 loop_done = how;
1020} 2056}
1021 2057
1022/*****************************************************************************/ 2058/*****************************************************************************/
1023 2059
1024inline void 2060void inline_size
1025wlist_add (WL *head, WL elem) 2061wlist_add (WL *head, WL elem)
1026{ 2062{
1027 elem->next = *head; 2063 elem->next = *head;
1028 *head = elem; 2064 *head = elem;
1029} 2065}
1030 2066
1031inline void 2067void inline_size
1032wlist_del (WL *head, WL elem) 2068wlist_del (WL *head, WL elem)
1033{ 2069{
1034 while (*head) 2070 while (*head)
1035 { 2071 {
1036 if (*head == elem) 2072 if (*head == elem)
1041 2077
1042 head = &(*head)->next; 2078 head = &(*head)->next;
1043 } 2079 }
1044} 2080}
1045 2081
1046inline void 2082void inline_speed
1047ev_clear_pending (EV_P_ W w) 2083clear_pending (EV_P_ W w)
1048{ 2084{
1049 if (w->pending) 2085 if (w->pending)
1050 { 2086 {
1051 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2087 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1052 w->pending = 0; 2088 w->pending = 0;
1053 } 2089 }
1054} 2090}
1055 2091
1056inline void 2092int
2093ev_clear_pending (EV_P_ void *w)
2094{
2095 W w_ = (W)w;
2096 int pending = w_->pending;
2097
2098 if (expect_true (pending))
2099 {
2100 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2101 w_->pending = 0;
2102 p->w = 0;
2103 return p->events;
2104 }
2105 else
2106 return 0;
2107}
2108
2109void inline_size
2110pri_adjust (EV_P_ W w)
2111{
2112 int pri = w->priority;
2113 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2114 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2115 w->priority = pri;
2116}
2117
2118void inline_speed
1057ev_start (EV_P_ W w, int active) 2119ev_start (EV_P_ W w, int active)
1058{ 2120{
1059 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2121 pri_adjust (EV_A_ w);
1060 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1061
1062 w->active = active; 2122 w->active = active;
1063 ev_ref (EV_A); 2123 ev_ref (EV_A);
1064} 2124}
1065 2125
1066inline void 2126void inline_size
1067ev_stop (EV_P_ W w) 2127ev_stop (EV_P_ W w)
1068{ 2128{
1069 ev_unref (EV_A); 2129 ev_unref (EV_A);
1070 w->active = 0; 2130 w->active = 0;
1071} 2131}
1072 2132
1073/*****************************************************************************/ 2133/*****************************************************************************/
1074 2134
1075void 2135void noinline
1076ev_io_start (EV_P_ struct ev_io *w) 2136ev_io_start (EV_P_ ev_io *w)
1077{ 2137{
1078 int fd = w->fd; 2138 int fd = w->fd;
1079 2139
1080 if (ev_is_active (w)) 2140 if (expect_false (ev_is_active (w)))
1081 return; 2141 return;
1082 2142
1083 assert (("ev_io_start called with negative fd", fd >= 0)); 2143 assert (("ev_io_start called with negative fd", fd >= 0));
1084 2144
2145 EV_FREQUENT_CHECK;
2146
1085 ev_start (EV_A_ (W)w, 1); 2147 ev_start (EV_A_ (W)w, 1);
1086 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 2148 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1087 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2149 wlist_add (&anfds[fd].head, (WL)w);
1088 2150
1089 fd_change (EV_A_ fd); 2151 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1090} 2152 w->events &= ~EV_IOFDSET;
1091 2153
1092void 2154 EV_FREQUENT_CHECK;
2155}
2156
2157void noinline
1093ev_io_stop (EV_P_ struct ev_io *w) 2158ev_io_stop (EV_P_ ev_io *w)
1094{ 2159{
1095 ev_clear_pending (EV_A_ (W)w); 2160 clear_pending (EV_A_ (W)w);
1096 if (!ev_is_active (w)) 2161 if (expect_false (!ev_is_active (w)))
1097 return; 2162 return;
1098 2163
2164 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2165
2166 EV_FREQUENT_CHECK;
2167
1099 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2168 wlist_del (&anfds[w->fd].head, (WL)w);
1100 ev_stop (EV_A_ (W)w); 2169 ev_stop (EV_A_ (W)w);
1101 2170
1102 fd_change (EV_A_ w->fd); 2171 fd_change (EV_A_ w->fd, 1);
1103}
1104 2172
1105void 2173 EV_FREQUENT_CHECK;
2174}
2175
2176void noinline
1106ev_timer_start (EV_P_ struct ev_timer *w) 2177ev_timer_start (EV_P_ ev_timer *w)
1107{ 2178{
1108 if (ev_is_active (w)) 2179 if (expect_false (ev_is_active (w)))
1109 return; 2180 return;
1110 2181
1111 w->at += mn_now; 2182 ev_at (w) += mn_now;
1112 2183
1113 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2184 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1114 2185
2186 EV_FREQUENT_CHECK;
2187
2188 ++timercnt;
1115 ev_start (EV_A_ (W)w, ++timercnt); 2189 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1116 array_needsize (timers, timermax, timercnt, ); 2190 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1117 timers [timercnt - 1] = w; 2191 ANHE_w (timers [ev_active (w)]) = (WT)w;
1118 upheap ((WT *)timers, timercnt - 1); 2192 ANHE_at_cache (timers [ev_active (w)]);
1119} 2193 upheap (timers, ev_active (w));
1120 2194
1121void 2195 EV_FREQUENT_CHECK;
2196
2197 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2198}
2199
2200void noinline
1122ev_timer_stop (EV_P_ struct ev_timer *w) 2201ev_timer_stop (EV_P_ ev_timer *w)
1123{ 2202{
1124 ev_clear_pending (EV_A_ (W)w); 2203 clear_pending (EV_A_ (W)w);
1125 if (!ev_is_active (w)) 2204 if (expect_false (!ev_is_active (w)))
1126 return; 2205 return;
1127 2206
1128 if (w->active < timercnt--) 2207 EV_FREQUENT_CHECK;
2208
2209 {
2210 int active = ev_active (w);
2211
2212 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2213
2214 --timercnt;
2215
2216 if (expect_true (active < timercnt + HEAP0))
1129 { 2217 {
1130 timers [w->active - 1] = timers [timercnt]; 2218 timers [active] = timers [timercnt + HEAP0];
1131 downheap ((WT *)timers, timercnt, w->active - 1); 2219 adjustheap (timers, timercnt, active);
1132 } 2220 }
2221 }
1133 2222
1134 w->at = w->repeat; 2223 EV_FREQUENT_CHECK;
2224
2225 ev_at (w) -= mn_now;
1135 2226
1136 ev_stop (EV_A_ (W)w); 2227 ev_stop (EV_A_ (W)w);
1137} 2228}
1138 2229
1139void 2230void noinline
1140ev_timer_again (EV_P_ struct ev_timer *w) 2231ev_timer_again (EV_P_ ev_timer *w)
1141{ 2232{
2233 EV_FREQUENT_CHECK;
2234
1142 if (ev_is_active (w)) 2235 if (ev_is_active (w))
1143 { 2236 {
1144 if (w->repeat) 2237 if (w->repeat)
1145 { 2238 {
1146 w->at = mn_now + w->repeat; 2239 ev_at (w) = mn_now + w->repeat;
2240 ANHE_at_cache (timers [ev_active (w)]);
1147 downheap ((WT *)timers, timercnt, w->active - 1); 2241 adjustheap (timers, timercnt, ev_active (w));
1148 } 2242 }
1149 else 2243 else
1150 ev_timer_stop (EV_A_ w); 2244 ev_timer_stop (EV_A_ w);
1151 } 2245 }
1152 else if (w->repeat) 2246 else if (w->repeat)
2247 {
2248 ev_at (w) = w->repeat;
1153 ev_timer_start (EV_A_ w); 2249 ev_timer_start (EV_A_ w);
1154} 2250 }
1155 2251
1156void 2252 EV_FREQUENT_CHECK;
2253}
2254
2255#if EV_PERIODIC_ENABLE
2256void noinline
1157ev_periodic_start (EV_P_ struct ev_periodic *w) 2257ev_periodic_start (EV_P_ ev_periodic *w)
1158{ 2258{
1159 if (ev_is_active (w)) 2259 if (expect_false (ev_is_active (w)))
1160 return; 2260 return;
1161 2261
2262 if (w->reschedule_cb)
2263 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2264 else if (w->interval)
2265 {
1162 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2266 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1163
1164 /* this formula differs from the one in periodic_reify because we do not always round up */ 2267 /* this formula differs from the one in periodic_reify because we do not always round up */
1165 if (w->interval)
1166 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 2268 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2269 }
2270 else
2271 ev_at (w) = w->offset;
1167 2272
2273 EV_FREQUENT_CHECK;
2274
2275 ++periodiccnt;
1168 ev_start (EV_A_ (W)w, ++periodiccnt); 2276 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1169 array_needsize (periodics, periodicmax, periodiccnt, ); 2277 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1170 periodics [periodiccnt - 1] = w; 2278 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1171 upheap ((WT *)periodics, periodiccnt - 1); 2279 ANHE_at_cache (periodics [ev_active (w)]);
1172} 2280 upheap (periodics, ev_active (w));
1173 2281
1174void 2282 EV_FREQUENT_CHECK;
2283
2284 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2285}
2286
2287void noinline
1175ev_periodic_stop (EV_P_ struct ev_periodic *w) 2288ev_periodic_stop (EV_P_ ev_periodic *w)
1176{ 2289{
1177 ev_clear_pending (EV_A_ (W)w); 2290 clear_pending (EV_A_ (W)w);
1178 if (!ev_is_active (w)) 2291 if (expect_false (!ev_is_active (w)))
1179 return; 2292 return;
1180 2293
1181 if (w->active < periodiccnt--) 2294 EV_FREQUENT_CHECK;
2295
2296 {
2297 int active = ev_active (w);
2298
2299 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2300
2301 --periodiccnt;
2302
2303 if (expect_true (active < periodiccnt + HEAP0))
1182 { 2304 {
1183 periodics [w->active - 1] = periodics [periodiccnt]; 2305 periodics [active] = periodics [periodiccnt + HEAP0];
1184 downheap ((WT *)periodics, periodiccnt, w->active - 1); 2306 adjustheap (periodics, periodiccnt, active);
1185 } 2307 }
2308 }
2309
2310 EV_FREQUENT_CHECK;
1186 2311
1187 ev_stop (EV_A_ (W)w); 2312 ev_stop (EV_A_ (W)w);
1188} 2313}
1189 2314
1190void 2315void noinline
1191ev_idle_start (EV_P_ struct ev_idle *w) 2316ev_periodic_again (EV_P_ ev_periodic *w)
1192{ 2317{
1193 if (ev_is_active (w)) 2318 /* TODO: use adjustheap and recalculation */
1194 return;
1195
1196 ev_start (EV_A_ (W)w, ++idlecnt);
1197 array_needsize (idles, idlemax, idlecnt, );
1198 idles [idlecnt - 1] = w;
1199}
1200
1201void
1202ev_idle_stop (EV_P_ struct ev_idle *w)
1203{
1204 ev_clear_pending (EV_A_ (W)w);
1205 if (ev_is_active (w))
1206 return;
1207
1208 idles [w->active - 1] = idles [--idlecnt];
1209 ev_stop (EV_A_ (W)w); 2319 ev_periodic_stop (EV_A_ w);
2320 ev_periodic_start (EV_A_ w);
1210} 2321}
1211 2322#endif
1212void
1213ev_prepare_start (EV_P_ struct ev_prepare *w)
1214{
1215 if (ev_is_active (w))
1216 return;
1217
1218 ev_start (EV_A_ (W)w, ++preparecnt);
1219 array_needsize (prepares, preparemax, preparecnt, );
1220 prepares [preparecnt - 1] = w;
1221}
1222
1223void
1224ev_prepare_stop (EV_P_ struct ev_prepare *w)
1225{
1226 ev_clear_pending (EV_A_ (W)w);
1227 if (ev_is_active (w))
1228 return;
1229
1230 prepares [w->active - 1] = prepares [--preparecnt];
1231 ev_stop (EV_A_ (W)w);
1232}
1233
1234void
1235ev_check_start (EV_P_ struct ev_check *w)
1236{
1237 if (ev_is_active (w))
1238 return;
1239
1240 ev_start (EV_A_ (W)w, ++checkcnt);
1241 array_needsize (checks, checkmax, checkcnt, );
1242 checks [checkcnt - 1] = w;
1243}
1244
1245void
1246ev_check_stop (EV_P_ struct ev_check *w)
1247{
1248 ev_clear_pending (EV_A_ (W)w);
1249 if (ev_is_active (w))
1250 return;
1251
1252 checks [w->active - 1] = checks [--checkcnt];
1253 ev_stop (EV_A_ (W)w);
1254}
1255 2323
1256#ifndef SA_RESTART 2324#ifndef SA_RESTART
1257# define SA_RESTART 0 2325# define SA_RESTART 0
1258#endif 2326#endif
1259 2327
1260void 2328void noinline
1261ev_signal_start (EV_P_ struct ev_signal *w) 2329ev_signal_start (EV_P_ ev_signal *w)
1262{ 2330{
1263#if EV_MULTIPLICITY 2331#if EV_MULTIPLICITY
1264 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2332 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1265#endif 2333#endif
1266 if (ev_is_active (w)) 2334 if (expect_false (ev_is_active (w)))
1267 return; 2335 return;
1268 2336
1269 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2337 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1270 2338
2339 evpipe_init (EV_A);
2340
2341 EV_FREQUENT_CHECK;
2342
2343 {
2344#ifndef _WIN32
2345 sigset_t full, prev;
2346 sigfillset (&full);
2347 sigprocmask (SIG_SETMASK, &full, &prev);
2348#endif
2349
2350 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2351
2352#ifndef _WIN32
2353 sigprocmask (SIG_SETMASK, &prev, 0);
2354#endif
2355 }
2356
1271 ev_start (EV_A_ (W)w, 1); 2357 ev_start (EV_A_ (W)w, 1);
1272 array_needsize (signals, signalmax, w->signum, signals_init);
1273 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2358 wlist_add (&signals [w->signum - 1].head, (WL)w);
1274 2359
1275 if (!w->next) 2360 if (!((WL)w)->next)
1276 { 2361 {
2362#if _WIN32
2363 signal (w->signum, ev_sighandler);
2364#else
1277 struct sigaction sa; 2365 struct sigaction sa;
1278 sa.sa_handler = sighandler; 2366 sa.sa_handler = ev_sighandler;
1279 sigfillset (&sa.sa_mask); 2367 sigfillset (&sa.sa_mask);
1280 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2368 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1281 sigaction (w->signum, &sa, 0); 2369 sigaction (w->signum, &sa, 0);
2370#endif
1282 } 2371 }
1283}
1284 2372
1285void 2373 EV_FREQUENT_CHECK;
2374}
2375
2376void noinline
1286ev_signal_stop (EV_P_ struct ev_signal *w) 2377ev_signal_stop (EV_P_ ev_signal *w)
1287{ 2378{
1288 ev_clear_pending (EV_A_ (W)w); 2379 clear_pending (EV_A_ (W)w);
1289 if (!ev_is_active (w)) 2380 if (expect_false (!ev_is_active (w)))
1290 return; 2381 return;
1291 2382
2383 EV_FREQUENT_CHECK;
2384
1292 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2385 wlist_del (&signals [w->signum - 1].head, (WL)w);
1293 ev_stop (EV_A_ (W)w); 2386 ev_stop (EV_A_ (W)w);
1294 2387
1295 if (!signals [w->signum - 1].head) 2388 if (!signals [w->signum - 1].head)
1296 signal (w->signum, SIG_DFL); 2389 signal (w->signum, SIG_DFL);
1297}
1298 2390
2391 EV_FREQUENT_CHECK;
2392}
2393
1299void 2394void
1300ev_child_start (EV_P_ struct ev_child *w) 2395ev_child_start (EV_P_ ev_child *w)
1301{ 2396{
1302#if EV_MULTIPLICITY 2397#if EV_MULTIPLICITY
1303 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2398 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1304#endif 2399#endif
1305 if (ev_is_active (w)) 2400 if (expect_false (ev_is_active (w)))
1306 return; 2401 return;
1307 2402
2403 EV_FREQUENT_CHECK;
2404
1308 ev_start (EV_A_ (W)w, 1); 2405 ev_start (EV_A_ (W)w, 1);
1309 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2406 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1310}
1311 2407
2408 EV_FREQUENT_CHECK;
2409}
2410
1312void 2411void
1313ev_child_stop (EV_P_ struct ev_child *w) 2412ev_child_stop (EV_P_ ev_child *w)
1314{ 2413{
1315 ev_clear_pending (EV_A_ (W)w); 2414 clear_pending (EV_A_ (W)w);
1316 if (ev_is_active (w)) 2415 if (expect_false (!ev_is_active (w)))
1317 return; 2416 return;
1318 2417
2418 EV_FREQUENT_CHECK;
2419
1319 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2420 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1320 ev_stop (EV_A_ (W)w); 2421 ev_stop (EV_A_ (W)w);
2422
2423 EV_FREQUENT_CHECK;
1321} 2424}
2425
2426#if EV_STAT_ENABLE
2427
2428# ifdef _WIN32
2429# undef lstat
2430# define lstat(a,b) _stati64 (a,b)
2431# endif
2432
2433#define DEF_STAT_INTERVAL 5.0074891
2434#define MIN_STAT_INTERVAL 0.1074891
2435
2436static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2437
2438#if EV_USE_INOTIFY
2439# define EV_INOTIFY_BUFSIZE 8192
2440
2441static void noinline
2442infy_add (EV_P_ ev_stat *w)
2443{
2444 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2445
2446 if (w->wd < 0)
2447 {
2448 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2449
2450 /* monitor some parent directory for speedup hints */
2451 /* note that exceeding the hardcoded limit is not a correctness issue, */
2452 /* but an efficiency issue only */
2453 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2454 {
2455 char path [4096];
2456 strcpy (path, w->path);
2457
2458 do
2459 {
2460 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2461 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2462
2463 char *pend = strrchr (path, '/');
2464
2465 if (!pend)
2466 break; /* whoops, no '/', complain to your admin */
2467
2468 *pend = 0;
2469 w->wd = inotify_add_watch (fs_fd, path, mask);
2470 }
2471 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2472 }
2473 }
2474 else
2475 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2476
2477 if (w->wd >= 0)
2478 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2479}
2480
2481static void noinline
2482infy_del (EV_P_ ev_stat *w)
2483{
2484 int slot;
2485 int wd = w->wd;
2486
2487 if (wd < 0)
2488 return;
2489
2490 w->wd = -2;
2491 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2492 wlist_del (&fs_hash [slot].head, (WL)w);
2493
2494 /* remove this watcher, if others are watching it, they will rearm */
2495 inotify_rm_watch (fs_fd, wd);
2496}
2497
2498static void noinline
2499infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2500{
2501 if (slot < 0)
2502 /* overflow, need to check for all hash slots */
2503 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2504 infy_wd (EV_A_ slot, wd, ev);
2505 else
2506 {
2507 WL w_;
2508
2509 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2510 {
2511 ev_stat *w = (ev_stat *)w_;
2512 w_ = w_->next; /* lets us remove this watcher and all before it */
2513
2514 if (w->wd == wd || wd == -1)
2515 {
2516 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2517 {
2518 w->wd = -1;
2519 infy_add (EV_A_ w); /* re-add, no matter what */
2520 }
2521
2522 stat_timer_cb (EV_A_ &w->timer, 0);
2523 }
2524 }
2525 }
2526}
2527
2528static void
2529infy_cb (EV_P_ ev_io *w, int revents)
2530{
2531 char buf [EV_INOTIFY_BUFSIZE];
2532 struct inotify_event *ev = (struct inotify_event *)buf;
2533 int ofs;
2534 int len = read (fs_fd, buf, sizeof (buf));
2535
2536 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2537 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2538}
2539
2540void inline_size
2541infy_init (EV_P)
2542{
2543 if (fs_fd != -2)
2544 return;
2545
2546 /* kernels < 2.6.25 are borked
2547 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2548 */
2549 {
2550 struct utsname buf;
2551 int major, minor, micro;
2552
2553 fs_fd = -1;
2554
2555 if (uname (&buf))
2556 return;
2557
2558 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2559 return;
2560
2561 if (major < 2
2562 || (major == 2 && minor < 6)
2563 || (major == 2 && minor == 6 && micro < 25))
2564 return;
2565 }
2566
2567 fs_fd = inotify_init ();
2568
2569 if (fs_fd >= 0)
2570 {
2571 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2572 ev_set_priority (&fs_w, EV_MAXPRI);
2573 ev_io_start (EV_A_ &fs_w);
2574 }
2575}
2576
2577void inline_size
2578infy_fork (EV_P)
2579{
2580 int slot;
2581
2582 if (fs_fd < 0)
2583 return;
2584
2585 close (fs_fd);
2586 fs_fd = inotify_init ();
2587
2588 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2589 {
2590 WL w_ = fs_hash [slot].head;
2591 fs_hash [slot].head = 0;
2592
2593 while (w_)
2594 {
2595 ev_stat *w = (ev_stat *)w_;
2596 w_ = w_->next; /* lets us add this watcher */
2597
2598 w->wd = -1;
2599
2600 if (fs_fd >= 0)
2601 infy_add (EV_A_ w); /* re-add, no matter what */
2602 else
2603 ev_timer_start (EV_A_ &w->timer);
2604 }
2605 }
2606}
2607
2608#endif
2609
2610#ifdef _WIN32
2611# define EV_LSTAT(p,b) _stati64 (p, b)
2612#else
2613# define EV_LSTAT(p,b) lstat (p, b)
2614#endif
2615
2616void
2617ev_stat_stat (EV_P_ ev_stat *w)
2618{
2619 if (lstat (w->path, &w->attr) < 0)
2620 w->attr.st_nlink = 0;
2621 else if (!w->attr.st_nlink)
2622 w->attr.st_nlink = 1;
2623}
2624
2625static void noinline
2626stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2627{
2628 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2629
2630 /* we copy this here each the time so that */
2631 /* prev has the old value when the callback gets invoked */
2632 w->prev = w->attr;
2633 ev_stat_stat (EV_A_ w);
2634
2635 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2636 if (
2637 w->prev.st_dev != w->attr.st_dev
2638 || w->prev.st_ino != w->attr.st_ino
2639 || w->prev.st_mode != w->attr.st_mode
2640 || w->prev.st_nlink != w->attr.st_nlink
2641 || w->prev.st_uid != w->attr.st_uid
2642 || w->prev.st_gid != w->attr.st_gid
2643 || w->prev.st_rdev != w->attr.st_rdev
2644 || w->prev.st_size != w->attr.st_size
2645 || w->prev.st_atime != w->attr.st_atime
2646 || w->prev.st_mtime != w->attr.st_mtime
2647 || w->prev.st_ctime != w->attr.st_ctime
2648 ) {
2649 #if EV_USE_INOTIFY
2650 if (fs_fd >= 0)
2651 {
2652 infy_del (EV_A_ w);
2653 infy_add (EV_A_ w);
2654 ev_stat_stat (EV_A_ w); /* avoid race... */
2655 }
2656 #endif
2657
2658 ev_feed_event (EV_A_ w, EV_STAT);
2659 }
2660}
2661
2662void
2663ev_stat_start (EV_P_ ev_stat *w)
2664{
2665 if (expect_false (ev_is_active (w)))
2666 return;
2667
2668 /* since we use memcmp, we need to clear any padding data etc. */
2669 memset (&w->prev, 0, sizeof (ev_statdata));
2670 memset (&w->attr, 0, sizeof (ev_statdata));
2671
2672 ev_stat_stat (EV_A_ w);
2673
2674 if (w->interval < MIN_STAT_INTERVAL)
2675 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2676
2677 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2678 ev_set_priority (&w->timer, ev_priority (w));
2679
2680#if EV_USE_INOTIFY
2681 infy_init (EV_A);
2682
2683 if (fs_fd >= 0)
2684 infy_add (EV_A_ w);
2685 else
2686#endif
2687 ev_timer_start (EV_A_ &w->timer);
2688
2689 ev_start (EV_A_ (W)w, 1);
2690
2691 EV_FREQUENT_CHECK;
2692}
2693
2694void
2695ev_stat_stop (EV_P_ ev_stat *w)
2696{
2697 clear_pending (EV_A_ (W)w);
2698 if (expect_false (!ev_is_active (w)))
2699 return;
2700
2701 EV_FREQUENT_CHECK;
2702
2703#if EV_USE_INOTIFY
2704 infy_del (EV_A_ w);
2705#endif
2706 ev_timer_stop (EV_A_ &w->timer);
2707
2708 ev_stop (EV_A_ (W)w);
2709
2710 EV_FREQUENT_CHECK;
2711}
2712#endif
2713
2714#if EV_IDLE_ENABLE
2715void
2716ev_idle_start (EV_P_ ev_idle *w)
2717{
2718 if (expect_false (ev_is_active (w)))
2719 return;
2720
2721 pri_adjust (EV_A_ (W)w);
2722
2723 EV_FREQUENT_CHECK;
2724
2725 {
2726 int active = ++idlecnt [ABSPRI (w)];
2727
2728 ++idleall;
2729 ev_start (EV_A_ (W)w, active);
2730
2731 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2732 idles [ABSPRI (w)][active - 1] = w;
2733 }
2734
2735 EV_FREQUENT_CHECK;
2736}
2737
2738void
2739ev_idle_stop (EV_P_ ev_idle *w)
2740{
2741 clear_pending (EV_A_ (W)w);
2742 if (expect_false (!ev_is_active (w)))
2743 return;
2744
2745 EV_FREQUENT_CHECK;
2746
2747 {
2748 int active = ev_active (w);
2749
2750 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2751 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2752
2753 ev_stop (EV_A_ (W)w);
2754 --idleall;
2755 }
2756
2757 EV_FREQUENT_CHECK;
2758}
2759#endif
2760
2761void
2762ev_prepare_start (EV_P_ ev_prepare *w)
2763{
2764 if (expect_false (ev_is_active (w)))
2765 return;
2766
2767 EV_FREQUENT_CHECK;
2768
2769 ev_start (EV_A_ (W)w, ++preparecnt);
2770 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2771 prepares [preparecnt - 1] = w;
2772
2773 EV_FREQUENT_CHECK;
2774}
2775
2776void
2777ev_prepare_stop (EV_P_ ev_prepare *w)
2778{
2779 clear_pending (EV_A_ (W)w);
2780 if (expect_false (!ev_is_active (w)))
2781 return;
2782
2783 EV_FREQUENT_CHECK;
2784
2785 {
2786 int active = ev_active (w);
2787
2788 prepares [active - 1] = prepares [--preparecnt];
2789 ev_active (prepares [active - 1]) = active;
2790 }
2791
2792 ev_stop (EV_A_ (W)w);
2793
2794 EV_FREQUENT_CHECK;
2795}
2796
2797void
2798ev_check_start (EV_P_ ev_check *w)
2799{
2800 if (expect_false (ev_is_active (w)))
2801 return;
2802
2803 EV_FREQUENT_CHECK;
2804
2805 ev_start (EV_A_ (W)w, ++checkcnt);
2806 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2807 checks [checkcnt - 1] = w;
2808
2809 EV_FREQUENT_CHECK;
2810}
2811
2812void
2813ev_check_stop (EV_P_ ev_check *w)
2814{
2815 clear_pending (EV_A_ (W)w);
2816 if (expect_false (!ev_is_active (w)))
2817 return;
2818
2819 EV_FREQUENT_CHECK;
2820
2821 {
2822 int active = ev_active (w);
2823
2824 checks [active - 1] = checks [--checkcnt];
2825 ev_active (checks [active - 1]) = active;
2826 }
2827
2828 ev_stop (EV_A_ (W)w);
2829
2830 EV_FREQUENT_CHECK;
2831}
2832
2833#if EV_EMBED_ENABLE
2834void noinline
2835ev_embed_sweep (EV_P_ ev_embed *w)
2836{
2837 ev_loop (w->other, EVLOOP_NONBLOCK);
2838}
2839
2840static void
2841embed_io_cb (EV_P_ ev_io *io, int revents)
2842{
2843 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2844
2845 if (ev_cb (w))
2846 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2847 else
2848 ev_loop (w->other, EVLOOP_NONBLOCK);
2849}
2850
2851static void
2852embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2853{
2854 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2855
2856 {
2857 struct ev_loop *loop = w->other;
2858
2859 while (fdchangecnt)
2860 {
2861 fd_reify (EV_A);
2862 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2863 }
2864 }
2865}
2866
2867static void
2868embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2869{
2870 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2871
2872 {
2873 struct ev_loop *loop = w->other;
2874
2875 ev_loop_fork (EV_A);
2876 }
2877}
2878
2879#if 0
2880static void
2881embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2882{
2883 ev_idle_stop (EV_A_ idle);
2884}
2885#endif
2886
2887void
2888ev_embed_start (EV_P_ ev_embed *w)
2889{
2890 if (expect_false (ev_is_active (w)))
2891 return;
2892
2893 {
2894 struct ev_loop *loop = w->other;
2895 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2896 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2897 }
2898
2899 EV_FREQUENT_CHECK;
2900
2901 ev_set_priority (&w->io, ev_priority (w));
2902 ev_io_start (EV_A_ &w->io);
2903
2904 ev_prepare_init (&w->prepare, embed_prepare_cb);
2905 ev_set_priority (&w->prepare, EV_MINPRI);
2906 ev_prepare_start (EV_A_ &w->prepare);
2907
2908 ev_fork_init (&w->fork, embed_fork_cb);
2909 ev_fork_start (EV_A_ &w->fork);
2910
2911 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2912
2913 ev_start (EV_A_ (W)w, 1);
2914
2915 EV_FREQUENT_CHECK;
2916}
2917
2918void
2919ev_embed_stop (EV_P_ ev_embed *w)
2920{
2921 clear_pending (EV_A_ (W)w);
2922 if (expect_false (!ev_is_active (w)))
2923 return;
2924
2925 EV_FREQUENT_CHECK;
2926
2927 ev_io_stop (EV_A_ &w->io);
2928 ev_prepare_stop (EV_A_ &w->prepare);
2929 ev_fork_stop (EV_A_ &w->fork);
2930
2931 EV_FREQUENT_CHECK;
2932}
2933#endif
2934
2935#if EV_FORK_ENABLE
2936void
2937ev_fork_start (EV_P_ ev_fork *w)
2938{
2939 if (expect_false (ev_is_active (w)))
2940 return;
2941
2942 EV_FREQUENT_CHECK;
2943
2944 ev_start (EV_A_ (W)w, ++forkcnt);
2945 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2946 forks [forkcnt - 1] = w;
2947
2948 EV_FREQUENT_CHECK;
2949}
2950
2951void
2952ev_fork_stop (EV_P_ ev_fork *w)
2953{
2954 clear_pending (EV_A_ (W)w);
2955 if (expect_false (!ev_is_active (w)))
2956 return;
2957
2958 EV_FREQUENT_CHECK;
2959
2960 {
2961 int active = ev_active (w);
2962
2963 forks [active - 1] = forks [--forkcnt];
2964 ev_active (forks [active - 1]) = active;
2965 }
2966
2967 ev_stop (EV_A_ (W)w);
2968
2969 EV_FREQUENT_CHECK;
2970}
2971#endif
2972
2973#if EV_ASYNC_ENABLE
2974void
2975ev_async_start (EV_P_ ev_async *w)
2976{
2977 if (expect_false (ev_is_active (w)))
2978 return;
2979
2980 evpipe_init (EV_A);
2981
2982 EV_FREQUENT_CHECK;
2983
2984 ev_start (EV_A_ (W)w, ++asynccnt);
2985 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2986 asyncs [asynccnt - 1] = w;
2987
2988 EV_FREQUENT_CHECK;
2989}
2990
2991void
2992ev_async_stop (EV_P_ ev_async *w)
2993{
2994 clear_pending (EV_A_ (W)w);
2995 if (expect_false (!ev_is_active (w)))
2996 return;
2997
2998 EV_FREQUENT_CHECK;
2999
3000 {
3001 int active = ev_active (w);
3002
3003 asyncs [active - 1] = asyncs [--asynccnt];
3004 ev_active (asyncs [active - 1]) = active;
3005 }
3006
3007 ev_stop (EV_A_ (W)w);
3008
3009 EV_FREQUENT_CHECK;
3010}
3011
3012void
3013ev_async_send (EV_P_ ev_async *w)
3014{
3015 w->sent = 1;
3016 evpipe_write (EV_A_ &gotasync);
3017}
3018#endif
1322 3019
1323/*****************************************************************************/ 3020/*****************************************************************************/
1324 3021
1325struct ev_once 3022struct ev_once
1326{ 3023{
1327 struct ev_io io; 3024 ev_io io;
1328 struct ev_timer to; 3025 ev_timer to;
1329 void (*cb)(int revents, void *arg); 3026 void (*cb)(int revents, void *arg);
1330 void *arg; 3027 void *arg;
1331}; 3028};
1332 3029
1333static void 3030static void
1334once_cb (EV_P_ struct ev_once *once, int revents) 3031once_cb (EV_P_ struct ev_once *once, int revents)
1335{ 3032{
1336 void (*cb)(int revents, void *arg) = once->cb; 3033 void (*cb)(int revents, void *arg) = once->cb;
1337 void *arg = once->arg; 3034 void *arg = once->arg;
1338 3035
1339 ev_io_stop (EV_A_ &once->io); 3036 ev_io_stop (EV_A_ &once->io);
1340 ev_timer_stop (EV_A_ &once->to); 3037 ev_timer_stop (EV_A_ &once->to);
1341 free (once); 3038 ev_free (once);
1342 3039
1343 cb (revents, arg); 3040 cb (revents, arg);
1344} 3041}
1345 3042
1346static void 3043static void
1347once_cb_io (EV_P_ struct ev_io *w, int revents) 3044once_cb_io (EV_P_ ev_io *w, int revents)
1348{ 3045{
1349 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3046 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3047
3048 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1350} 3049}
1351 3050
1352static void 3051static void
1353once_cb_to (EV_P_ struct ev_timer *w, int revents) 3052once_cb_to (EV_P_ ev_timer *w, int revents)
1354{ 3053{
1355 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3054 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3055
3056 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1356} 3057}
1357 3058
1358void 3059void
1359ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3060ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1360{ 3061{
1361 struct ev_once *once = malloc (sizeof (struct ev_once)); 3062 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1362 3063
1363 if (!once) 3064 if (expect_false (!once))
3065 {
1364 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3066 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1365 else 3067 return;
1366 { 3068 }
3069
1367 once->cb = cb; 3070 once->cb = cb;
1368 once->arg = arg; 3071 once->arg = arg;
1369 3072
1370 ev_watcher_init (&once->io, once_cb_io); 3073 ev_init (&once->io, once_cb_io);
1371 if (fd >= 0) 3074 if (fd >= 0)
1372 { 3075 {
1373 ev_io_set (&once->io, fd, events); 3076 ev_io_set (&once->io, fd, events);
1374 ev_io_start (EV_A_ &once->io); 3077 ev_io_start (EV_A_ &once->io);
1375 } 3078 }
1376 3079
1377 ev_watcher_init (&once->to, once_cb_to); 3080 ev_init (&once->to, once_cb_to);
1378 if (timeout >= 0.) 3081 if (timeout >= 0.)
1379 { 3082 {
1380 ev_timer_set (&once->to, timeout, 0.); 3083 ev_timer_set (&once->to, timeout, 0.);
1381 ev_timer_start (EV_A_ &once->to); 3084 ev_timer_start (EV_A_ &once->to);
1382 }
1383 } 3085 }
1384} 3086}
1385 3087
3088#if EV_MULTIPLICITY
3089 #include "ev_wrap.h"
3090#endif
3091
3092#ifdef __cplusplus
3093}
3094#endif
3095

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines