ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.199 by root, Tue Dec 25 07:05:45 2007 UTC vs.
Revision 1.265 by root, Thu Oct 23 04:56:49 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
39 39
40#ifdef __cplusplus 40#ifdef __cplusplus
41extern "C" { 41extern "C" {
42#endif 42#endif
43 43
44/* this big block deduces configuration from config.h */
44#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 47# include EV_CONFIG_H
47# else 48# else
48# include "config.h" 49# include "config.h"
118# else 119# else
119# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
120# endif 121# endif
121# endif 122# endif
122 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
123#endif 132#endif
124 133
125#include <math.h> 134#include <math.h>
126#include <stdlib.h> 135#include <stdlib.h>
127#include <fcntl.h> 136#include <fcntl.h>
145#ifndef _WIN32 154#ifndef _WIN32
146# include <sys/time.h> 155# include <sys/time.h>
147# include <sys/wait.h> 156# include <sys/wait.h>
148# include <unistd.h> 157# include <unistd.h>
149#else 158#else
159# include <io.h>
150# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
151# include <windows.h> 161# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
154# endif 164# endif
155#endif 165#endif
156 166
157/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
158 168
159#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
160# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
161#endif 175#endif
162 176
163#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
165#endif 179#endif
166 180
167#ifndef EV_USE_NANOSLEEP 181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
168# define EV_USE_NANOSLEEP 0 185# define EV_USE_NANOSLEEP 0
186# endif
169#endif 187#endif
170 188
171#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
173#endif 191#endif
179# define EV_USE_POLL 1 197# define EV_USE_POLL 1
180# endif 198# endif
181#endif 199#endif
182 200
183#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
184# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
185#endif 207#endif
186 208
187#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
189#endif 211#endif
191#ifndef EV_USE_PORT 213#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 214# define EV_USE_PORT 0
193#endif 215#endif
194 216
195#ifndef EV_USE_INOTIFY 217#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1
220# else
196# define EV_USE_INOTIFY 0 221# define EV_USE_INOTIFY 0
222# endif
197#endif 223#endif
198 224
199#ifndef EV_PID_HASHSIZE 225#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 226# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1 227# define EV_PID_HASHSIZE 1
210# else 236# else
211# define EV_INOTIFY_HASHSIZE 16 237# define EV_INOTIFY_HASHSIZE 16
212# endif 238# endif
213#endif 239#endif
214 240
215/**/ 241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
216 268
217#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
220#endif 272#endif
234# include <sys/select.h> 286# include <sys/select.h>
235# endif 287# endif
236#endif 288#endif
237 289
238#if EV_USE_INOTIFY 290#if EV_USE_INOTIFY
291# include <sys/utsname.h>
239# include <sys/inotify.h> 292# include <sys/inotify.h>
293/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
294# ifndef IN_DONT_FOLLOW
295# undef EV_USE_INOTIFY
296# define EV_USE_INOTIFY 0
297# endif
240#endif 298#endif
241 299
242#if EV_SELECT_IS_WINSOCKET 300#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 301# include <winsock.h>
244#endif 302#endif
245 303
304#if EV_USE_EVENTFD
305/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
306# include <stdint.h>
307# ifdef __cplusplus
308extern "C" {
309# endif
310int eventfd (unsigned int initval, int flags);
311# ifdef __cplusplus
312}
313# endif
314#endif
315
246/**/ 316/**/
317
318#if EV_VERIFY >= 3
319# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
320#else
321# define EV_FREQUENT_CHECK do { } while (0)
322#endif
247 323
248/* 324/*
249 * This is used to avoid floating point rounding problems. 325 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics 326 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding 327 * to ensure progress, time-wise, even when rounding
263# define expect(expr,value) __builtin_expect ((expr),(value)) 339# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 340# define noinline __attribute__ ((noinline))
265#else 341#else
266# define expect(expr,value) (expr) 342# define expect(expr,value) (expr)
267# define noinline 343# define noinline
268# if __STDC_VERSION__ < 199901L 344# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 345# define inline
270# endif 346# endif
271#endif 347#endif
272 348
273#define expect_false(expr) expect ((expr) != 0, 0) 349#define expect_false(expr) expect ((expr) != 0, 0)
288 364
289typedef ev_watcher *W; 365typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 366typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 367typedef ev_watcher_time *WT;
292 368
369#define ev_active(w) ((W)(w))->active
370#define ev_at(w) ((WT)(w))->at
371
293#if EV_USE_MONOTONIC 372#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 373/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */ 374/* giving it a reasonably high chance of working on typical architetcures */
296static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 375static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif 376#endif
298 377
299#ifdef _WIN32 378#ifdef _WIN32
300# include "ev_win32.c" 379# include "ev_win32.c"
301#endif 380#endif
323 perror (msg); 402 perror (msg);
324 abort (); 403 abort ();
325 } 404 }
326} 405}
327 406
407static void *
408ev_realloc_emul (void *ptr, long size)
409{
410 /* some systems, notably openbsd and darwin, fail to properly
411 * implement realloc (x, 0) (as required by both ansi c-98 and
412 * the single unix specification, so work around them here.
413 */
414
415 if (size)
416 return realloc (ptr, size);
417
418 free (ptr);
419 return 0;
420}
421
328static void *(*alloc)(void *ptr, long size); 422static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 423
330void 424void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 425ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 426{
333 alloc = cb; 427 alloc = cb;
334} 428}
335 429
336inline_speed void * 430inline_speed void *
337ev_realloc (void *ptr, long size) 431ev_realloc (void *ptr, long size)
338{ 432{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 433 ptr = alloc (ptr, size);
340 434
341 if (!ptr && size) 435 if (!ptr && size)
342 { 436 {
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 437 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
344 abort (); 438 abort ();
355typedef struct 449typedef struct
356{ 450{
357 WL head; 451 WL head;
358 unsigned char events; 452 unsigned char events;
359 unsigned char reify; 453 unsigned char reify;
454 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
455 unsigned char unused; /* currently unused padding */
360#if EV_SELECT_IS_WINSOCKET 456#if EV_SELECT_IS_WINSOCKET
361 SOCKET handle; 457 SOCKET handle;
362#endif 458#endif
363} ANFD; 459} ANFD;
364 460
367 W w; 463 W w;
368 int events; 464 int events;
369} ANPENDING; 465} ANPENDING;
370 466
371#if EV_USE_INOTIFY 467#if EV_USE_INOTIFY
468/* hash table entry per inotify-id */
372typedef struct 469typedef struct
373{ 470{
374 WL head; 471 WL head;
375} ANFS; 472} ANFS;
473#endif
474
475/* Heap Entry */
476#if EV_HEAP_CACHE_AT
477 typedef struct {
478 ev_tstamp at;
479 WT w;
480 } ANHE;
481
482 #define ANHE_w(he) (he).w /* access watcher, read-write */
483 #define ANHE_at(he) (he).at /* access cached at, read-only */
484 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
485#else
486 typedef WT ANHE;
487
488 #define ANHE_w(he) (he)
489 #define ANHE_at(he) (he)->at
490 #define ANHE_at_cache(he)
376#endif 491#endif
377 492
378#if EV_MULTIPLICITY 493#if EV_MULTIPLICITY
379 494
380 struct ev_loop 495 struct ev_loop
451 ts.tv_sec = (time_t)delay; 566 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 567 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453 568
454 nanosleep (&ts, 0); 569 nanosleep (&ts, 0);
455#elif defined(_WIN32) 570#elif defined(_WIN32)
456 Sleep (delay * 1e3); 571 Sleep ((unsigned long)(delay * 1e3));
457#else 572#else
458 struct timeval tv; 573 struct timeval tv;
459 574
460 tv.tv_sec = (time_t)delay; 575 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 576 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462 577
578 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
579 /* somehting nto guaranteed by newer posix versions, but guaranteed */
580 /* by older ones */
463 select (0, 0, 0, 0, &tv); 581 select (0, 0, 0, 0, &tv);
464#endif 582#endif
465 } 583 }
466} 584}
467 585
468/*****************************************************************************/ 586/*****************************************************************************/
587
588#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
469 589
470int inline_size 590int inline_size
471array_nextsize (int elem, int cur, int cnt) 591array_nextsize (int elem, int cur, int cnt)
472{ 592{
473 int ncur = cur + 1; 593 int ncur = cur + 1;
474 594
475 do 595 do
476 ncur <<= 1; 596 ncur <<= 1;
477 while (cnt > ncur); 597 while (cnt > ncur);
478 598
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 599 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 600 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 601 {
482 ncur *= elem; 602 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 603 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 604 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 605 ncur /= elem;
486 } 606 }
487 607
488 return ncur; 608 return ncur;
492array_realloc (int elem, void *base, int *cur, int cnt) 612array_realloc (int elem, void *base, int *cur, int cnt)
493{ 613{
494 *cur = array_nextsize (elem, *cur, cnt); 614 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur); 615 return ev_realloc (base, elem * *cur);
496} 616}
617
618#define array_init_zero(base,count) \
619 memset ((void *)(base), 0, sizeof (*(base)) * (count))
497 620
498#define array_needsize(type,base,cur,cnt,init) \ 621#define array_needsize(type,base,cur,cnt,init) \
499 if (expect_false ((cnt) > (cur))) \ 622 if (expect_false ((cnt) > (cur))) \
500 { \ 623 { \
501 int ocur_ = (cur); \ 624 int ocur_ = (cur); \
545 ev_feed_event (EV_A_ events [i], type); 668 ev_feed_event (EV_A_ events [i], type);
546} 669}
547 670
548/*****************************************************************************/ 671/*****************************************************************************/
549 672
550void inline_size
551anfds_init (ANFD *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->events = EV_NONE;
557 base->reify = 0;
558
559 ++base;
560 }
561}
562
563void inline_speed 673void inline_speed
564fd_event (EV_P_ int fd, int revents) 674fd_event (EV_P_ int fd, int revents)
565{ 675{
566 ANFD *anfd = anfds + fd; 676 ANFD *anfd = anfds + fd;
567 ev_io *w; 677 ev_io *w;
599 events |= (unsigned char)w->events; 709 events |= (unsigned char)w->events;
600 710
601#if EV_SELECT_IS_WINSOCKET 711#if EV_SELECT_IS_WINSOCKET
602 if (events) 712 if (events)
603 { 713 {
604 unsigned long argp; 714 unsigned long arg;
715 #ifdef EV_FD_TO_WIN32_HANDLE
716 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
717 #else
605 anfd->handle = _get_osfhandle (fd); 718 anfd->handle = _get_osfhandle (fd);
719 #endif
606 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 720 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
607 } 721 }
608#endif 722#endif
609 723
610 { 724 {
611 unsigned char o_events = anfd->events; 725 unsigned char o_events = anfd->events;
664{ 778{
665 int fd; 779 int fd;
666 780
667 for (fd = 0; fd < anfdmax; ++fd) 781 for (fd = 0; fd < anfdmax; ++fd)
668 if (anfds [fd].events) 782 if (anfds [fd].events)
669 if (!fd_valid (fd) == -1 && errno == EBADF) 783 if (!fd_valid (fd) && errno == EBADF)
670 fd_kill (EV_A_ fd); 784 fd_kill (EV_A_ fd);
671} 785}
672 786
673/* called on ENOMEM in select/poll to kill some fds and retry */ 787/* called on ENOMEM in select/poll to kill some fds and retry */
674static void noinline 788static void noinline
698 } 812 }
699} 813}
700 814
701/*****************************************************************************/ 815/*****************************************************************************/
702 816
817/*
818 * the heap functions want a real array index. array index 0 uis guaranteed to not
819 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
820 * the branching factor of the d-tree.
821 */
822
823/*
824 * at the moment we allow libev the luxury of two heaps,
825 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
826 * which is more cache-efficient.
827 * the difference is about 5% with 50000+ watchers.
828 */
829#if EV_USE_4HEAP
830
831#define DHEAP 4
832#define HEAP0 (DHEAP - 1) /* index of first element in heap */
833#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
834#define UPHEAP_DONE(p,k) ((p) == (k))
835
836/* away from the root */
703void inline_speed 837void inline_speed
704upheap (WT *heap, int k) 838downheap (ANHE *heap, int N, int k)
705{ 839{
706 WT w = heap [k]; 840 ANHE he = heap [k];
841 ANHE *E = heap + N + HEAP0;
707 842
708 while (k) 843 for (;;)
709 { 844 {
710 int p = (k - 1) >> 1; 845 ev_tstamp minat;
846 ANHE *minpos;
847 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
711 848
712 if (heap [p]->at <= w->at) 849 /* find minimum child */
850 if (expect_true (pos + DHEAP - 1 < E))
851 {
852 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
853 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
854 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
855 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
856 }
857 else if (pos < E)
858 {
859 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
860 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
861 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
862 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
863 }
864 else
713 break; 865 break;
714 866
867 if (ANHE_at (he) <= minat)
868 break;
869
870 heap [k] = *minpos;
871 ev_active (ANHE_w (*minpos)) = k;
872
873 k = minpos - heap;
874 }
875
876 heap [k] = he;
877 ev_active (ANHE_w (he)) = k;
878}
879
880#else /* 4HEAP */
881
882#define HEAP0 1
883#define HPARENT(k) ((k) >> 1)
884#define UPHEAP_DONE(p,k) (!(p))
885
886/* away from the root */
887void inline_speed
888downheap (ANHE *heap, int N, int k)
889{
890 ANHE he = heap [k];
891
892 for (;;)
893 {
894 int c = k << 1;
895
896 if (c > N + HEAP0 - 1)
897 break;
898
899 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
900 ? 1 : 0;
901
902 if (ANHE_at (he) <= ANHE_at (heap [c]))
903 break;
904
905 heap [k] = heap [c];
906 ev_active (ANHE_w (heap [k])) = k;
907
908 k = c;
909 }
910
911 heap [k] = he;
912 ev_active (ANHE_w (he)) = k;
913}
914#endif
915
916/* towards the root */
917void inline_speed
918upheap (ANHE *heap, int k)
919{
920 ANHE he = heap [k];
921
922 for (;;)
923 {
924 int p = HPARENT (k);
925
926 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
927 break;
928
715 heap [k] = heap [p]; 929 heap [k] = heap [p];
716 ((W)heap [k])->active = k + 1; 930 ev_active (ANHE_w (heap [k])) = k;
717 k = p; 931 k = p;
718 } 932 }
719 933
720 heap [k] = w; 934 heap [k] = he;
721 ((W)heap [k])->active = k + 1; 935 ev_active (ANHE_w (he)) = k;
722}
723
724void inline_speed
725downheap (WT *heap, int N, int k)
726{
727 WT w = heap [k];
728
729 for (;;)
730 {
731 int c = (k << 1) + 1;
732
733 if (c >= N)
734 break;
735
736 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
737 ? 1 : 0;
738
739 if (w->at <= heap [c]->at)
740 break;
741
742 heap [k] = heap [c];
743 ((W)heap [k])->active = k + 1;
744
745 k = c;
746 }
747
748 heap [k] = w;
749 ((W)heap [k])->active = k + 1;
750} 936}
751 937
752void inline_size 938void inline_size
753adjustheap (WT *heap, int N, int k) 939adjustheap (ANHE *heap, int N, int k)
754{ 940{
941 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
755 upheap (heap, k); 942 upheap (heap, k);
943 else
756 downheap (heap, N, k); 944 downheap (heap, N, k);
945}
946
947/* rebuild the heap: this function is used only once and executed rarely */
948void inline_size
949reheap (ANHE *heap, int N)
950{
951 int i;
952
953 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
954 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
955 for (i = 0; i < N; ++i)
956 upheap (heap, i + HEAP0);
757} 957}
758 958
759/*****************************************************************************/ 959/*****************************************************************************/
760 960
761typedef struct 961typedef struct
762{ 962{
763 WL head; 963 WL head;
764 sig_atomic_t volatile gotsig; 964 EV_ATOMIC_T gotsig;
765} ANSIG; 965} ANSIG;
766 966
767static ANSIG *signals; 967static ANSIG *signals;
768static int signalmax; 968static int signalmax;
769 969
770static int sigpipe [2]; 970static EV_ATOMIC_T gotsig;
771static sig_atomic_t volatile gotsig;
772static ev_io sigev;
773 971
774void inline_size 972/*****************************************************************************/
775signals_init (ANSIG *base, int count)
776{
777 while (count--)
778 {
779 base->head = 0;
780 base->gotsig = 0;
781
782 ++base;
783 }
784}
785
786static void
787sighandler (int signum)
788{
789#if _WIN32
790 signal (signum, sighandler);
791#endif
792
793 signals [signum - 1].gotsig = 1;
794
795 if (!gotsig)
796 {
797 int old_errno = errno;
798 gotsig = 1;
799 write (sigpipe [1], &signum, 1);
800 errno = old_errno;
801 }
802}
803
804void noinline
805ev_feed_signal_event (EV_P_ int signum)
806{
807 WL w;
808
809#if EV_MULTIPLICITY
810 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
811#endif
812
813 --signum;
814
815 if (signum < 0 || signum >= signalmax)
816 return;
817
818 signals [signum].gotsig = 0;
819
820 for (w = signals [signum].head; w; w = w->next)
821 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
822}
823
824static void
825sigcb (EV_P_ ev_io *iow, int revents)
826{
827 int signum;
828
829 read (sigpipe [0], &revents, 1);
830 gotsig = 0;
831
832 for (signum = signalmax; signum--; )
833 if (signals [signum].gotsig)
834 ev_feed_signal_event (EV_A_ signum + 1);
835}
836 973
837void inline_speed 974void inline_speed
838fd_intern (int fd) 975fd_intern (int fd)
839{ 976{
840#ifdef _WIN32 977#ifdef _WIN32
841 int arg = 1; 978 unsigned long arg = 1;
842 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 979 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
843#else 980#else
844 fcntl (fd, F_SETFD, FD_CLOEXEC); 981 fcntl (fd, F_SETFD, FD_CLOEXEC);
845 fcntl (fd, F_SETFL, O_NONBLOCK); 982 fcntl (fd, F_SETFL, O_NONBLOCK);
846#endif 983#endif
847} 984}
848 985
849static void noinline 986static void noinline
850siginit (EV_P) 987evpipe_init (EV_P)
851{ 988{
989 if (!ev_is_active (&pipeev))
990 {
991#if EV_USE_EVENTFD
992 if ((evfd = eventfd (0, 0)) >= 0)
993 {
994 evpipe [0] = -1;
995 fd_intern (evfd);
996 ev_io_set (&pipeev, evfd, EV_READ);
997 }
998 else
999#endif
1000 {
1001 while (pipe (evpipe))
1002 syserr ("(libev) error creating signal/async pipe");
1003
852 fd_intern (sigpipe [0]); 1004 fd_intern (evpipe [0]);
853 fd_intern (sigpipe [1]); 1005 fd_intern (evpipe [1]);
1006 ev_io_set (&pipeev, evpipe [0], EV_READ);
1007 }
854 1008
855 ev_io_set (&sigev, sigpipe [0], EV_READ);
856 ev_io_start (EV_A_ &sigev); 1009 ev_io_start (EV_A_ &pipeev);
857 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1010 ev_unref (EV_A); /* watcher should not keep loop alive */
1011 }
1012}
1013
1014void inline_size
1015evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1016{
1017 if (!*flag)
1018 {
1019 int old_errno = errno; /* save errno because write might clobber it */
1020
1021 *flag = 1;
1022
1023#if EV_USE_EVENTFD
1024 if (evfd >= 0)
1025 {
1026 uint64_t counter = 1;
1027 write (evfd, &counter, sizeof (uint64_t));
1028 }
1029 else
1030#endif
1031 write (evpipe [1], &old_errno, 1);
1032
1033 errno = old_errno;
1034 }
1035}
1036
1037static void
1038pipecb (EV_P_ ev_io *iow, int revents)
1039{
1040#if EV_USE_EVENTFD
1041 if (evfd >= 0)
1042 {
1043 uint64_t counter;
1044 read (evfd, &counter, sizeof (uint64_t));
1045 }
1046 else
1047#endif
1048 {
1049 char dummy;
1050 read (evpipe [0], &dummy, 1);
1051 }
1052
1053 if (gotsig && ev_is_default_loop (EV_A))
1054 {
1055 int signum;
1056 gotsig = 0;
1057
1058 for (signum = signalmax; signum--; )
1059 if (signals [signum].gotsig)
1060 ev_feed_signal_event (EV_A_ signum + 1);
1061 }
1062
1063#if EV_ASYNC_ENABLE
1064 if (gotasync)
1065 {
1066 int i;
1067 gotasync = 0;
1068
1069 for (i = asynccnt; i--; )
1070 if (asyncs [i]->sent)
1071 {
1072 asyncs [i]->sent = 0;
1073 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1074 }
1075 }
1076#endif
858} 1077}
859 1078
860/*****************************************************************************/ 1079/*****************************************************************************/
861 1080
1081static void
1082ev_sighandler (int signum)
1083{
1084#if EV_MULTIPLICITY
1085 struct ev_loop *loop = &default_loop_struct;
1086#endif
1087
1088#if _WIN32
1089 signal (signum, ev_sighandler);
1090#endif
1091
1092 signals [signum - 1].gotsig = 1;
1093 evpipe_write (EV_A_ &gotsig);
1094}
1095
1096void noinline
1097ev_feed_signal_event (EV_P_ int signum)
1098{
1099 WL w;
1100
1101#if EV_MULTIPLICITY
1102 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1103#endif
1104
1105 --signum;
1106
1107 if (signum < 0 || signum >= signalmax)
1108 return;
1109
1110 signals [signum].gotsig = 0;
1111
1112 for (w = signals [signum].head; w; w = w->next)
1113 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1114}
1115
1116/*****************************************************************************/
1117
862static WL childs [EV_PID_HASHSIZE]; 1118static WL childs [EV_PID_HASHSIZE];
863 1119
864#ifndef _WIN32 1120#ifndef _WIN32
865 1121
866static ev_signal childev; 1122static ev_signal childev;
867 1123
1124#ifndef WIFCONTINUED
1125# define WIFCONTINUED(status) 0
1126#endif
1127
868void inline_speed 1128void inline_speed
869child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1129child_reap (EV_P_ int chain, int pid, int status)
870{ 1130{
871 ev_child *w; 1131 ev_child *w;
1132 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
872 1133
873 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1134 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1135 {
874 if (w->pid == pid || !w->pid) 1136 if ((w->pid == pid || !w->pid)
1137 && (!traced || (w->flags & 1)))
875 { 1138 {
876 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1139 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
877 w->rpid = pid; 1140 w->rpid = pid;
878 w->rstatus = status; 1141 w->rstatus = status;
879 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1142 ev_feed_event (EV_A_ (W)w, EV_CHILD);
880 } 1143 }
1144 }
881} 1145}
882 1146
883#ifndef WCONTINUED 1147#ifndef WCONTINUED
884# define WCONTINUED 0 1148# define WCONTINUED 0
885#endif 1149#endif
894 if (!WCONTINUED 1158 if (!WCONTINUED
895 || errno != EINVAL 1159 || errno != EINVAL
896 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1160 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
897 return; 1161 return;
898 1162
899 /* make sure we are called again until all childs have been reaped */ 1163 /* make sure we are called again until all children have been reaped */
900 /* we need to do it this way so that the callback gets called before we continue */ 1164 /* we need to do it this way so that the callback gets called before we continue */
901 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1165 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
902 1166
903 child_reap (EV_A_ sw, pid, pid, status); 1167 child_reap (EV_A_ pid, pid, status);
904 if (EV_PID_HASHSIZE > 1) 1168 if (EV_PID_HASHSIZE > 1)
905 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1169 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
906} 1170}
907 1171
908#endif 1172#endif
909 1173
910/*****************************************************************************/ 1174/*****************************************************************************/
1028 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1292 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1029 have_monotonic = 1; 1293 have_monotonic = 1;
1030 } 1294 }
1031#endif 1295#endif
1032 1296
1033 ev_rt_now = ev_time (); 1297 ev_rt_now = ev_time ();
1034 mn_now = get_clock (); 1298 mn_now = get_clock ();
1035 now_floor = mn_now; 1299 now_floor = mn_now;
1036 rtmn_diff = ev_rt_now - mn_now; 1300 rtmn_diff = ev_rt_now - mn_now;
1037 1301
1038 io_blocktime = 0.; 1302 io_blocktime = 0.;
1039 timeout_blocktime = 0.; 1303 timeout_blocktime = 0.;
1304 backend = 0;
1305 backend_fd = -1;
1306 gotasync = 0;
1307#if EV_USE_INOTIFY
1308 fs_fd = -2;
1309#endif
1040 1310
1041 /* pid check not overridable via env */ 1311 /* pid check not overridable via env */
1042#ifndef _WIN32 1312#ifndef _WIN32
1043 if (flags & EVFLAG_FORKCHECK) 1313 if (flags & EVFLAG_FORKCHECK)
1044 curpid = getpid (); 1314 curpid = getpid ();
1047 if (!(flags & EVFLAG_NOENV) 1317 if (!(flags & EVFLAG_NOENV)
1048 && !enable_secure () 1318 && !enable_secure ()
1049 && getenv ("LIBEV_FLAGS")) 1319 && getenv ("LIBEV_FLAGS"))
1050 flags = atoi (getenv ("LIBEV_FLAGS")); 1320 flags = atoi (getenv ("LIBEV_FLAGS"));
1051 1321
1052 if (!(flags & 0x0000ffffUL)) 1322 if (!(flags & 0x0000ffffU))
1053 flags |= ev_recommended_backends (); 1323 flags |= ev_recommended_backends ();
1054
1055 backend = 0;
1056 backend_fd = -1;
1057#if EV_USE_INOTIFY
1058 fs_fd = -2;
1059#endif
1060 1324
1061#if EV_USE_PORT 1325#if EV_USE_PORT
1062 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1326 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1063#endif 1327#endif
1064#if EV_USE_KQUEUE 1328#if EV_USE_KQUEUE
1072#endif 1336#endif
1073#if EV_USE_SELECT 1337#if EV_USE_SELECT
1074 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1338 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1075#endif 1339#endif
1076 1340
1077 ev_init (&sigev, sigcb); 1341 ev_init (&pipeev, pipecb);
1078 ev_set_priority (&sigev, EV_MAXPRI); 1342 ev_set_priority (&pipeev, EV_MAXPRI);
1079 } 1343 }
1080} 1344}
1081 1345
1082static void noinline 1346static void noinline
1083loop_destroy (EV_P) 1347loop_destroy (EV_P)
1084{ 1348{
1085 int i; 1349 int i;
1350
1351 if (ev_is_active (&pipeev))
1352 {
1353 ev_ref (EV_A); /* signal watcher */
1354 ev_io_stop (EV_A_ &pipeev);
1355
1356#if EV_USE_EVENTFD
1357 if (evfd >= 0)
1358 close (evfd);
1359#endif
1360
1361 if (evpipe [0] >= 0)
1362 {
1363 close (evpipe [0]);
1364 close (evpipe [1]);
1365 }
1366 }
1086 1367
1087#if EV_USE_INOTIFY 1368#if EV_USE_INOTIFY
1088 if (fs_fd >= 0) 1369 if (fs_fd >= 0)
1089 close (fs_fd); 1370 close (fs_fd);
1090#endif 1371#endif
1127#if EV_FORK_ENABLE 1408#if EV_FORK_ENABLE
1128 array_free (fork, EMPTY); 1409 array_free (fork, EMPTY);
1129#endif 1410#endif
1130 array_free (prepare, EMPTY); 1411 array_free (prepare, EMPTY);
1131 array_free (check, EMPTY); 1412 array_free (check, EMPTY);
1413#if EV_ASYNC_ENABLE
1414 array_free (async, EMPTY);
1415#endif
1132 1416
1133 backend = 0; 1417 backend = 0;
1134} 1418}
1135 1419
1420#if EV_USE_INOTIFY
1136void inline_size infy_fork (EV_P); 1421void inline_size infy_fork (EV_P);
1422#endif
1137 1423
1138void inline_size 1424void inline_size
1139loop_fork (EV_P) 1425loop_fork (EV_P)
1140{ 1426{
1141#if EV_USE_PORT 1427#if EV_USE_PORT
1149#endif 1435#endif
1150#if EV_USE_INOTIFY 1436#if EV_USE_INOTIFY
1151 infy_fork (EV_A); 1437 infy_fork (EV_A);
1152#endif 1438#endif
1153 1439
1154 if (ev_is_active (&sigev)) 1440 if (ev_is_active (&pipeev))
1155 { 1441 {
1156 /* default loop */ 1442 /* this "locks" the handlers against writing to the pipe */
1443 /* while we modify the fd vars */
1444 gotsig = 1;
1445#if EV_ASYNC_ENABLE
1446 gotasync = 1;
1447#endif
1157 1448
1158 ev_ref (EV_A); 1449 ev_ref (EV_A);
1159 ev_io_stop (EV_A_ &sigev); 1450 ev_io_stop (EV_A_ &pipeev);
1451
1452#if EV_USE_EVENTFD
1453 if (evfd >= 0)
1454 close (evfd);
1455#endif
1456
1457 if (evpipe [0] >= 0)
1458 {
1160 close (sigpipe [0]); 1459 close (evpipe [0]);
1161 close (sigpipe [1]); 1460 close (evpipe [1]);
1461 }
1162 1462
1163 while (pipe (sigpipe))
1164 syserr ("(libev) error creating pipe");
1165
1166 siginit (EV_A); 1463 evpipe_init (EV_A);
1464 /* now iterate over everything, in case we missed something */
1465 pipecb (EV_A_ &pipeev, EV_READ);
1167 } 1466 }
1168 1467
1169 postfork = 0; 1468 postfork = 0;
1170} 1469}
1171 1470
1172#if EV_MULTIPLICITY 1471#if EV_MULTIPLICITY
1472
1173struct ev_loop * 1473struct ev_loop *
1174ev_loop_new (unsigned int flags) 1474ev_loop_new (unsigned int flags)
1175{ 1475{
1176 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1476 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1177 1477
1193} 1493}
1194 1494
1195void 1495void
1196ev_loop_fork (EV_P) 1496ev_loop_fork (EV_P)
1197{ 1497{
1198 postfork = 1; 1498 postfork = 1; /* must be in line with ev_default_fork */
1199} 1499}
1200 1500
1501#if EV_VERIFY
1502static void noinline
1503verify_watcher (EV_P_ W w)
1504{
1505 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1506
1507 if (w->pending)
1508 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1509}
1510
1511static void noinline
1512verify_heap (EV_P_ ANHE *heap, int N)
1513{
1514 int i;
1515
1516 for (i = HEAP0; i < N + HEAP0; ++i)
1517 {
1518 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1519 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1520 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1521
1522 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1523 }
1524}
1525
1526static void noinline
1527array_verify (EV_P_ W *ws, int cnt)
1528{
1529 while (cnt--)
1530 {
1531 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1532 verify_watcher (EV_A_ ws [cnt]);
1533 }
1534}
1535#endif
1536
1537void
1538ev_loop_verify (EV_P)
1539{
1540#if EV_VERIFY
1541 int i;
1542 WL w;
1543
1544 assert (activecnt >= -1);
1545
1546 assert (fdchangemax >= fdchangecnt);
1547 for (i = 0; i < fdchangecnt; ++i)
1548 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1549
1550 assert (anfdmax >= 0);
1551 for (i = 0; i < anfdmax; ++i)
1552 for (w = anfds [i].head; w; w = w->next)
1553 {
1554 verify_watcher (EV_A_ (W)w);
1555 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1556 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1557 }
1558
1559 assert (timermax >= timercnt);
1560 verify_heap (EV_A_ timers, timercnt);
1561
1562#if EV_PERIODIC_ENABLE
1563 assert (periodicmax >= periodiccnt);
1564 verify_heap (EV_A_ periodics, periodiccnt);
1565#endif
1566
1567 for (i = NUMPRI; i--; )
1568 {
1569 assert (pendingmax [i] >= pendingcnt [i]);
1570#if EV_IDLE_ENABLE
1571 assert (idleall >= 0);
1572 assert (idlemax [i] >= idlecnt [i]);
1573 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1574#endif
1575 }
1576
1577#if EV_FORK_ENABLE
1578 assert (forkmax >= forkcnt);
1579 array_verify (EV_A_ (W *)forks, forkcnt);
1580#endif
1581
1582#if EV_ASYNC_ENABLE
1583 assert (asyncmax >= asynccnt);
1584 array_verify (EV_A_ (W *)asyncs, asynccnt);
1585#endif
1586
1587 assert (preparemax >= preparecnt);
1588 array_verify (EV_A_ (W *)prepares, preparecnt);
1589
1590 assert (checkmax >= checkcnt);
1591 array_verify (EV_A_ (W *)checks, checkcnt);
1592
1593# if 0
1594 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1595 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1201#endif 1596# endif
1597#endif
1598}
1599
1600#endif /* multiplicity */
1202 1601
1203#if EV_MULTIPLICITY 1602#if EV_MULTIPLICITY
1204struct ev_loop * 1603struct ev_loop *
1205ev_default_loop_init (unsigned int flags) 1604ev_default_loop_init (unsigned int flags)
1206#else 1605#else
1207int 1606int
1208ev_default_loop (unsigned int flags) 1607ev_default_loop (unsigned int flags)
1209#endif 1608#endif
1210{ 1609{
1211 if (sigpipe [0] == sigpipe [1])
1212 if (pipe (sigpipe))
1213 return 0;
1214
1215 if (!ev_default_loop_ptr) 1610 if (!ev_default_loop_ptr)
1216 { 1611 {
1217#if EV_MULTIPLICITY 1612#if EV_MULTIPLICITY
1218 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1613 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1219#else 1614#else
1222 1617
1223 loop_init (EV_A_ flags); 1618 loop_init (EV_A_ flags);
1224 1619
1225 if (ev_backend (EV_A)) 1620 if (ev_backend (EV_A))
1226 { 1621 {
1227 siginit (EV_A);
1228
1229#ifndef _WIN32 1622#ifndef _WIN32
1230 ev_signal_init (&childev, childcb, SIGCHLD); 1623 ev_signal_init (&childev, childcb, SIGCHLD);
1231 ev_set_priority (&childev, EV_MAXPRI); 1624 ev_set_priority (&childev, EV_MAXPRI);
1232 ev_signal_start (EV_A_ &childev); 1625 ev_signal_start (EV_A_ &childev);
1233 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1626 ev_unref (EV_A); /* child watcher should not keep loop alive */
1250#ifndef _WIN32 1643#ifndef _WIN32
1251 ev_ref (EV_A); /* child watcher */ 1644 ev_ref (EV_A); /* child watcher */
1252 ev_signal_stop (EV_A_ &childev); 1645 ev_signal_stop (EV_A_ &childev);
1253#endif 1646#endif
1254 1647
1255 ev_ref (EV_A); /* signal watcher */
1256 ev_io_stop (EV_A_ &sigev);
1257
1258 close (sigpipe [0]); sigpipe [0] = 0;
1259 close (sigpipe [1]); sigpipe [1] = 0;
1260
1261 loop_destroy (EV_A); 1648 loop_destroy (EV_A);
1262} 1649}
1263 1650
1264void 1651void
1265ev_default_fork (void) 1652ev_default_fork (void)
1267#if EV_MULTIPLICITY 1654#if EV_MULTIPLICITY
1268 struct ev_loop *loop = ev_default_loop_ptr; 1655 struct ev_loop *loop = ev_default_loop_ptr;
1269#endif 1656#endif
1270 1657
1271 if (backend) 1658 if (backend)
1272 postfork = 1; 1659 postfork = 1; /* must be in line with ev_loop_fork */
1273} 1660}
1274 1661
1275/*****************************************************************************/ 1662/*****************************************************************************/
1276 1663
1277void 1664void
1294 { 1681 {
1295 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1682 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1296 1683
1297 p->w->pending = 0; 1684 p->w->pending = 0;
1298 EV_CB_INVOKE (p->w, p->events); 1685 EV_CB_INVOKE (p->w, p->events);
1686 EV_FREQUENT_CHECK;
1299 } 1687 }
1300 } 1688 }
1301} 1689}
1302
1303void inline_size
1304timers_reify (EV_P)
1305{
1306 while (timercnt && ((WT)timers [0])->at <= mn_now)
1307 {
1308 ev_timer *w = (ev_timer *)timers [0];
1309
1310 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1311
1312 /* first reschedule or stop timer */
1313 if (w->repeat)
1314 {
1315 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1316
1317 ((WT)w)->at += w->repeat;
1318 if (((WT)w)->at < mn_now)
1319 ((WT)w)->at = mn_now;
1320
1321 downheap (timers, timercnt, 0);
1322 }
1323 else
1324 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1325
1326 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1327 }
1328}
1329
1330#if EV_PERIODIC_ENABLE
1331void inline_size
1332periodics_reify (EV_P)
1333{
1334 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1335 {
1336 ev_periodic *w = (ev_periodic *)periodics [0];
1337
1338 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1339
1340 /* first reschedule or stop timer */
1341 if (w->reschedule_cb)
1342 {
1343 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1344 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1345 downheap (periodics, periodiccnt, 0);
1346 }
1347 else if (w->interval)
1348 {
1349 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1350 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1351 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1352 downheap (periodics, periodiccnt, 0);
1353 }
1354 else
1355 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1356
1357 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1358 }
1359}
1360
1361static void noinline
1362periodics_reschedule (EV_P)
1363{
1364 int i;
1365
1366 /* adjust periodics after time jump */
1367 for (i = 0; i < periodiccnt; ++i)
1368 {
1369 ev_periodic *w = (ev_periodic *)periodics [i];
1370
1371 if (w->reschedule_cb)
1372 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1373 else if (w->interval)
1374 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1375 }
1376
1377 /* now rebuild the heap */
1378 for (i = periodiccnt >> 1; i--; )
1379 downheap (periodics, periodiccnt, i);
1380}
1381#endif
1382 1690
1383#if EV_IDLE_ENABLE 1691#if EV_IDLE_ENABLE
1384void inline_size 1692void inline_size
1385idle_reify (EV_P) 1693idle_reify (EV_P)
1386{ 1694{
1398 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1706 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1399 break; 1707 break;
1400 } 1708 }
1401 } 1709 }
1402 } 1710 }
1711}
1712#endif
1713
1714void inline_size
1715timers_reify (EV_P)
1716{
1717 EV_FREQUENT_CHECK;
1718
1719 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1720 {
1721 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1722
1723 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1724
1725 /* first reschedule or stop timer */
1726 if (w->repeat)
1727 {
1728 ev_at (w) += w->repeat;
1729 if (ev_at (w) < mn_now)
1730 ev_at (w) = mn_now;
1731
1732 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1733
1734 ANHE_at_cache (timers [HEAP0]);
1735 downheap (timers, timercnt, HEAP0);
1736 }
1737 else
1738 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1739
1740 EV_FREQUENT_CHECK;
1741 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1742 }
1743}
1744
1745#if EV_PERIODIC_ENABLE
1746void inline_size
1747periodics_reify (EV_P)
1748{
1749 EV_FREQUENT_CHECK;
1750
1751 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1752 {
1753 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1754
1755 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1756
1757 /* first reschedule or stop timer */
1758 if (w->reschedule_cb)
1759 {
1760 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1761
1762 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1763
1764 ANHE_at_cache (periodics [HEAP0]);
1765 downheap (periodics, periodiccnt, HEAP0);
1766 }
1767 else if (w->interval)
1768 {
1769 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1770 /* if next trigger time is not sufficiently in the future, put it there */
1771 /* this might happen because of floating point inexactness */
1772 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1773 {
1774 ev_at (w) += w->interval;
1775
1776 /* if interval is unreasonably low we might still have a time in the past */
1777 /* so correct this. this will make the periodic very inexact, but the user */
1778 /* has effectively asked to get triggered more often than possible */
1779 if (ev_at (w) < ev_rt_now)
1780 ev_at (w) = ev_rt_now;
1781 }
1782
1783 ANHE_at_cache (periodics [HEAP0]);
1784 downheap (periodics, periodiccnt, HEAP0);
1785 }
1786 else
1787 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1788
1789 EV_FREQUENT_CHECK;
1790 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1791 }
1792}
1793
1794static void noinline
1795periodics_reschedule (EV_P)
1796{
1797 int i;
1798
1799 /* adjust periodics after time jump */
1800 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1801 {
1802 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1803
1804 if (w->reschedule_cb)
1805 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1806 else if (w->interval)
1807 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1808
1809 ANHE_at_cache (periodics [i]);
1810 }
1811
1812 reheap (periodics, periodiccnt);
1403} 1813}
1404#endif 1814#endif
1405 1815
1406void inline_speed 1816void inline_speed
1407time_update (EV_P_ ev_tstamp max_block) 1817time_update (EV_P_ ev_tstamp max_block)
1436 */ 1846 */
1437 for (i = 4; --i; ) 1847 for (i = 4; --i; )
1438 { 1848 {
1439 rtmn_diff = ev_rt_now - mn_now; 1849 rtmn_diff = ev_rt_now - mn_now;
1440 1850
1441 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1851 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1442 return; /* all is well */ 1852 return; /* all is well */
1443 1853
1444 ev_rt_now = ev_time (); 1854 ev_rt_now = ev_time ();
1445 mn_now = get_clock (); 1855 mn_now = get_clock ();
1446 now_floor = mn_now; 1856 now_floor = mn_now;
1462#if EV_PERIODIC_ENABLE 1872#if EV_PERIODIC_ENABLE
1463 periodics_reschedule (EV_A); 1873 periodics_reschedule (EV_A);
1464#endif 1874#endif
1465 /* adjust timers. this is easy, as the offset is the same for all of them */ 1875 /* adjust timers. this is easy, as the offset is the same for all of them */
1466 for (i = 0; i < timercnt; ++i) 1876 for (i = 0; i < timercnt; ++i)
1877 {
1878 ANHE *he = timers + i + HEAP0;
1467 ((WT)timers [i])->at += ev_rt_now - mn_now; 1879 ANHE_w (*he)->at += ev_rt_now - mn_now;
1880 ANHE_at_cache (*he);
1881 }
1468 } 1882 }
1469 1883
1470 mn_now = ev_rt_now; 1884 mn_now = ev_rt_now;
1471 } 1885 }
1472} 1886}
1481ev_unref (EV_P) 1895ev_unref (EV_P)
1482{ 1896{
1483 --activecnt; 1897 --activecnt;
1484} 1898}
1485 1899
1900void
1901ev_now_update (EV_P)
1902{
1903 time_update (EV_A_ 1e100);
1904}
1905
1486static int loop_done; 1906static int loop_done;
1487 1907
1488void 1908void
1489ev_loop (EV_P_ int flags) 1909ev_loop (EV_P_ int flags)
1490{ 1910{
1491 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1911 loop_done = EVUNLOOP_CANCEL;
1492 ? EVUNLOOP_ONE
1493 : EVUNLOOP_CANCEL;
1494 1912
1495 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1913 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1496 1914
1497 do 1915 do
1498 { 1916 {
1917#if EV_VERIFY >= 2
1918 ev_loop_verify (EV_A);
1919#endif
1920
1499#ifndef _WIN32 1921#ifndef _WIN32
1500 if (expect_false (curpid)) /* penalise the forking check even more */ 1922 if (expect_false (curpid)) /* penalise the forking check even more */
1501 if (expect_false (getpid () != curpid)) 1923 if (expect_false (getpid () != curpid))
1502 { 1924 {
1503 curpid = getpid (); 1925 curpid = getpid ();
1544 1966
1545 waittime = MAX_BLOCKTIME; 1967 waittime = MAX_BLOCKTIME;
1546 1968
1547 if (timercnt) 1969 if (timercnt)
1548 { 1970 {
1549 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1971 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1550 if (waittime > to) waittime = to; 1972 if (waittime > to) waittime = to;
1551 } 1973 }
1552 1974
1553#if EV_PERIODIC_ENABLE 1975#if EV_PERIODIC_ENABLE
1554 if (periodiccnt) 1976 if (periodiccnt)
1555 { 1977 {
1556 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1978 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1557 if (waittime > to) waittime = to; 1979 if (waittime > to) waittime = to;
1558 } 1980 }
1559#endif 1981#endif
1560 1982
1561 if (expect_false (waittime < timeout_blocktime)) 1983 if (expect_false (waittime < timeout_blocktime))
1594 /* queue check watchers, to be executed first */ 2016 /* queue check watchers, to be executed first */
1595 if (expect_false (checkcnt)) 2017 if (expect_false (checkcnt))
1596 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2018 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1597 2019
1598 call_pending (EV_A); 2020 call_pending (EV_A);
1599
1600 } 2021 }
1601 while (expect_true (activecnt && !loop_done)); 2022 while (expect_true (
2023 activecnt
2024 && !loop_done
2025 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2026 ));
1602 2027
1603 if (loop_done == EVUNLOOP_ONE) 2028 if (loop_done == EVUNLOOP_ONE)
1604 loop_done = EVUNLOOP_CANCEL; 2029 loop_done = EVUNLOOP_CANCEL;
1605} 2030}
1606 2031
1694 2119
1695 if (expect_false (ev_is_active (w))) 2120 if (expect_false (ev_is_active (w)))
1696 return; 2121 return;
1697 2122
1698 assert (("ev_io_start called with negative fd", fd >= 0)); 2123 assert (("ev_io_start called with negative fd", fd >= 0));
2124 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE))));
2125
2126 EV_FREQUENT_CHECK;
1699 2127
1700 ev_start (EV_A_ (W)w, 1); 2128 ev_start (EV_A_ (W)w, 1);
1701 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2129 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1702 wlist_add (&anfds[fd].head, (WL)w); 2130 wlist_add (&anfds[fd].head, (WL)w);
1703 2131
1704 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2132 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1705 w->events &= ~EV_IOFDSET; 2133 w->events &= ~EV_IOFDSET;
2134
2135 EV_FREQUENT_CHECK;
1706} 2136}
1707 2137
1708void noinline 2138void noinline
1709ev_io_stop (EV_P_ ev_io *w) 2139ev_io_stop (EV_P_ ev_io *w)
1710{ 2140{
1711 clear_pending (EV_A_ (W)w); 2141 clear_pending (EV_A_ (W)w);
1712 if (expect_false (!ev_is_active (w))) 2142 if (expect_false (!ev_is_active (w)))
1713 return; 2143 return;
1714 2144
1715 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2145 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2146
2147 EV_FREQUENT_CHECK;
1716 2148
1717 wlist_del (&anfds[w->fd].head, (WL)w); 2149 wlist_del (&anfds[w->fd].head, (WL)w);
1718 ev_stop (EV_A_ (W)w); 2150 ev_stop (EV_A_ (W)w);
1719 2151
1720 fd_change (EV_A_ w->fd, 1); 2152 fd_change (EV_A_ w->fd, 1);
2153
2154 EV_FREQUENT_CHECK;
1721} 2155}
1722 2156
1723void noinline 2157void noinline
1724ev_timer_start (EV_P_ ev_timer *w) 2158ev_timer_start (EV_P_ ev_timer *w)
1725{ 2159{
1726 if (expect_false (ev_is_active (w))) 2160 if (expect_false (ev_is_active (w)))
1727 return; 2161 return;
1728 2162
1729 ((WT)w)->at += mn_now; 2163 ev_at (w) += mn_now;
1730 2164
1731 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2165 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1732 2166
2167 EV_FREQUENT_CHECK;
2168
2169 ++timercnt;
1733 ev_start (EV_A_ (W)w, ++timercnt); 2170 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1734 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2171 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1735 timers [timercnt - 1] = (WT)w; 2172 ANHE_w (timers [ev_active (w)]) = (WT)w;
1736 upheap (timers, timercnt - 1); 2173 ANHE_at_cache (timers [ev_active (w)]);
2174 upheap (timers, ev_active (w));
1737 2175
2176 EV_FREQUENT_CHECK;
2177
1738 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2178 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1739} 2179}
1740 2180
1741void noinline 2181void noinline
1742ev_timer_stop (EV_P_ ev_timer *w) 2182ev_timer_stop (EV_P_ ev_timer *w)
1743{ 2183{
1744 clear_pending (EV_A_ (W)w); 2184 clear_pending (EV_A_ (W)w);
1745 if (expect_false (!ev_is_active (w))) 2185 if (expect_false (!ev_is_active (w)))
1746 return; 2186 return;
1747 2187
1748 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2188 EV_FREQUENT_CHECK;
1749 2189
1750 { 2190 {
1751 int active = ((W)w)->active; 2191 int active = ev_active (w);
1752 2192
2193 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2194
2195 --timercnt;
2196
1753 if (expect_true (--active < --timercnt)) 2197 if (expect_true (active < timercnt + HEAP0))
1754 { 2198 {
1755 timers [active] = timers [timercnt]; 2199 timers [active] = timers [timercnt + HEAP0];
1756 adjustheap (timers, timercnt, active); 2200 adjustheap (timers, timercnt, active);
1757 } 2201 }
1758 } 2202 }
1759 2203
1760 ((WT)w)->at -= mn_now; 2204 EV_FREQUENT_CHECK;
2205
2206 ev_at (w) -= mn_now;
1761 2207
1762 ev_stop (EV_A_ (W)w); 2208 ev_stop (EV_A_ (W)w);
1763} 2209}
1764 2210
1765void noinline 2211void noinline
1766ev_timer_again (EV_P_ ev_timer *w) 2212ev_timer_again (EV_P_ ev_timer *w)
1767{ 2213{
2214 EV_FREQUENT_CHECK;
2215
1768 if (ev_is_active (w)) 2216 if (ev_is_active (w))
1769 { 2217 {
1770 if (w->repeat) 2218 if (w->repeat)
1771 { 2219 {
1772 ((WT)w)->at = mn_now + w->repeat; 2220 ev_at (w) = mn_now + w->repeat;
2221 ANHE_at_cache (timers [ev_active (w)]);
1773 adjustheap (timers, timercnt, ((W)w)->active - 1); 2222 adjustheap (timers, timercnt, ev_active (w));
1774 } 2223 }
1775 else 2224 else
1776 ev_timer_stop (EV_A_ w); 2225 ev_timer_stop (EV_A_ w);
1777 } 2226 }
1778 else if (w->repeat) 2227 else if (w->repeat)
1779 { 2228 {
1780 w->at = w->repeat; 2229 ev_at (w) = w->repeat;
1781 ev_timer_start (EV_A_ w); 2230 ev_timer_start (EV_A_ w);
1782 } 2231 }
2232
2233 EV_FREQUENT_CHECK;
1783} 2234}
1784 2235
1785#if EV_PERIODIC_ENABLE 2236#if EV_PERIODIC_ENABLE
1786void noinline 2237void noinline
1787ev_periodic_start (EV_P_ ev_periodic *w) 2238ev_periodic_start (EV_P_ ev_periodic *w)
1788{ 2239{
1789 if (expect_false (ev_is_active (w))) 2240 if (expect_false (ev_is_active (w)))
1790 return; 2241 return;
1791 2242
1792 if (w->reschedule_cb) 2243 if (w->reschedule_cb)
1793 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2244 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1794 else if (w->interval) 2245 else if (w->interval)
1795 { 2246 {
1796 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2247 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1797 /* this formula differs from the one in periodic_reify because we do not always round up */ 2248 /* this formula differs from the one in periodic_reify because we do not always round up */
1798 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2249 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1799 } 2250 }
1800 else 2251 else
1801 ((WT)w)->at = w->offset; 2252 ev_at (w) = w->offset;
1802 2253
2254 EV_FREQUENT_CHECK;
2255
2256 ++periodiccnt;
1803 ev_start (EV_A_ (W)w, ++periodiccnt); 2257 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1804 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2258 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1805 periodics [periodiccnt - 1] = (WT)w; 2259 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1806 upheap (periodics, periodiccnt - 1); 2260 ANHE_at_cache (periodics [ev_active (w)]);
2261 upheap (periodics, ev_active (w));
1807 2262
2263 EV_FREQUENT_CHECK;
2264
1808 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2265 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1809} 2266}
1810 2267
1811void noinline 2268void noinline
1812ev_periodic_stop (EV_P_ ev_periodic *w) 2269ev_periodic_stop (EV_P_ ev_periodic *w)
1813{ 2270{
1814 clear_pending (EV_A_ (W)w); 2271 clear_pending (EV_A_ (W)w);
1815 if (expect_false (!ev_is_active (w))) 2272 if (expect_false (!ev_is_active (w)))
1816 return; 2273 return;
1817 2274
1818 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2275 EV_FREQUENT_CHECK;
1819 2276
1820 { 2277 {
1821 int active = ((W)w)->active; 2278 int active = ev_active (w);
1822 2279
2280 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2281
2282 --periodiccnt;
2283
1823 if (expect_true (--active < --periodiccnt)) 2284 if (expect_true (active < periodiccnt + HEAP0))
1824 { 2285 {
1825 periodics [active] = periodics [periodiccnt]; 2286 periodics [active] = periodics [periodiccnt + HEAP0];
1826 adjustheap (periodics, periodiccnt, active); 2287 adjustheap (periodics, periodiccnt, active);
1827 } 2288 }
1828 } 2289 }
1829 2290
2291 EV_FREQUENT_CHECK;
2292
1830 ev_stop (EV_A_ (W)w); 2293 ev_stop (EV_A_ (W)w);
1831} 2294}
1832 2295
1833void noinline 2296void noinline
1834ev_periodic_again (EV_P_ ev_periodic *w) 2297ev_periodic_again (EV_P_ ev_periodic *w)
1851#endif 2314#endif
1852 if (expect_false (ev_is_active (w))) 2315 if (expect_false (ev_is_active (w)))
1853 return; 2316 return;
1854 2317
1855 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2318 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2319
2320 evpipe_init (EV_A);
2321
2322 EV_FREQUENT_CHECK;
1856 2323
1857 { 2324 {
1858#ifndef _WIN32 2325#ifndef _WIN32
1859 sigset_t full, prev; 2326 sigset_t full, prev;
1860 sigfillset (&full); 2327 sigfillset (&full);
1861 sigprocmask (SIG_SETMASK, &full, &prev); 2328 sigprocmask (SIG_SETMASK, &full, &prev);
1862#endif 2329#endif
1863 2330
1864 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2331 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
1865 2332
1866#ifndef _WIN32 2333#ifndef _WIN32
1867 sigprocmask (SIG_SETMASK, &prev, 0); 2334 sigprocmask (SIG_SETMASK, &prev, 0);
1868#endif 2335#endif
1869 } 2336 }
1872 wlist_add (&signals [w->signum - 1].head, (WL)w); 2339 wlist_add (&signals [w->signum - 1].head, (WL)w);
1873 2340
1874 if (!((WL)w)->next) 2341 if (!((WL)w)->next)
1875 { 2342 {
1876#if _WIN32 2343#if _WIN32
1877 signal (w->signum, sighandler); 2344 signal (w->signum, ev_sighandler);
1878#else 2345#else
1879 struct sigaction sa; 2346 struct sigaction sa;
1880 sa.sa_handler = sighandler; 2347 sa.sa_handler = ev_sighandler;
1881 sigfillset (&sa.sa_mask); 2348 sigfillset (&sa.sa_mask);
1882 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2349 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1883 sigaction (w->signum, &sa, 0); 2350 sigaction (w->signum, &sa, 0);
1884#endif 2351#endif
1885 } 2352 }
2353
2354 EV_FREQUENT_CHECK;
1886} 2355}
1887 2356
1888void noinline 2357void noinline
1889ev_signal_stop (EV_P_ ev_signal *w) 2358ev_signal_stop (EV_P_ ev_signal *w)
1890{ 2359{
1891 clear_pending (EV_A_ (W)w); 2360 clear_pending (EV_A_ (W)w);
1892 if (expect_false (!ev_is_active (w))) 2361 if (expect_false (!ev_is_active (w)))
1893 return; 2362 return;
1894 2363
2364 EV_FREQUENT_CHECK;
2365
1895 wlist_del (&signals [w->signum - 1].head, (WL)w); 2366 wlist_del (&signals [w->signum - 1].head, (WL)w);
1896 ev_stop (EV_A_ (W)w); 2367 ev_stop (EV_A_ (W)w);
1897 2368
1898 if (!signals [w->signum - 1].head) 2369 if (!signals [w->signum - 1].head)
1899 signal (w->signum, SIG_DFL); 2370 signal (w->signum, SIG_DFL);
2371
2372 EV_FREQUENT_CHECK;
1900} 2373}
1901 2374
1902void 2375void
1903ev_child_start (EV_P_ ev_child *w) 2376ev_child_start (EV_P_ ev_child *w)
1904{ 2377{
1906 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2379 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1907#endif 2380#endif
1908 if (expect_false (ev_is_active (w))) 2381 if (expect_false (ev_is_active (w)))
1909 return; 2382 return;
1910 2383
2384 EV_FREQUENT_CHECK;
2385
1911 ev_start (EV_A_ (W)w, 1); 2386 ev_start (EV_A_ (W)w, 1);
1912 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2387 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2388
2389 EV_FREQUENT_CHECK;
1913} 2390}
1914 2391
1915void 2392void
1916ev_child_stop (EV_P_ ev_child *w) 2393ev_child_stop (EV_P_ ev_child *w)
1917{ 2394{
1918 clear_pending (EV_A_ (W)w); 2395 clear_pending (EV_A_ (W)w);
1919 if (expect_false (!ev_is_active (w))) 2396 if (expect_false (!ev_is_active (w)))
1920 return; 2397 return;
1921 2398
2399 EV_FREQUENT_CHECK;
2400
1922 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2401 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1923 ev_stop (EV_A_ (W)w); 2402 ev_stop (EV_A_ (W)w);
2403
2404 EV_FREQUENT_CHECK;
1924} 2405}
1925 2406
1926#if EV_STAT_ENABLE 2407#if EV_STAT_ENABLE
1927 2408
1928# ifdef _WIN32 2409# ifdef _WIN32
1946 if (w->wd < 0) 2427 if (w->wd < 0)
1947 { 2428 {
1948 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2429 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1949 2430
1950 /* monitor some parent directory for speedup hints */ 2431 /* monitor some parent directory for speedup hints */
2432 /* note that exceeding the hardcoded limit is not a correctness issue, */
2433 /* but an efficiency issue only */
1951 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2434 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1952 { 2435 {
1953 char path [4096]; 2436 char path [4096];
1954 strcpy (path, w->path); 2437 strcpy (path, w->path);
1955 2438
1995 2478
1996static void noinline 2479static void noinline
1997infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2480infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1998{ 2481{
1999 if (slot < 0) 2482 if (slot < 0)
2000 /* overflow, need to check for all hahs slots */ 2483 /* overflow, need to check for all hash slots */
2001 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2484 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2002 infy_wd (EV_A_ slot, wd, ev); 2485 infy_wd (EV_A_ slot, wd, ev);
2003 else 2486 else
2004 { 2487 {
2005 WL w_; 2488 WL w_;
2039infy_init (EV_P) 2522infy_init (EV_P)
2040{ 2523{
2041 if (fs_fd != -2) 2524 if (fs_fd != -2)
2042 return; 2525 return;
2043 2526
2527 /* kernels < 2.6.25 are borked
2528 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2529 */
2530 {
2531 struct utsname buf;
2532 int major, minor, micro;
2533
2534 fs_fd = -1;
2535
2536 if (uname (&buf))
2537 return;
2538
2539 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2540 return;
2541
2542 if (major < 2
2543 || (major == 2 && minor < 6)
2544 || (major == 2 && minor == 6 && micro < 25))
2545 return;
2546 }
2547
2044 fs_fd = inotify_init (); 2548 fs_fd = inotify_init ();
2045 2549
2046 if (fs_fd >= 0) 2550 if (fs_fd >= 0)
2047 { 2551 {
2048 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 2552 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2077 if (fs_fd >= 0) 2581 if (fs_fd >= 0)
2078 infy_add (EV_A_ w); /* re-add, no matter what */ 2582 infy_add (EV_A_ w); /* re-add, no matter what */
2079 else 2583 else
2080 ev_timer_start (EV_A_ &w->timer); 2584 ev_timer_start (EV_A_ &w->timer);
2081 } 2585 }
2082
2083 } 2586 }
2084} 2587}
2085 2588
2589#endif
2590
2591#ifdef _WIN32
2592# define EV_LSTAT(p,b) _stati64 (p, b)
2593#else
2594# define EV_LSTAT(p,b) lstat (p, b)
2086#endif 2595#endif
2087 2596
2088void 2597void
2089ev_stat_stat (EV_P_ ev_stat *w) 2598ev_stat_stat (EV_P_ ev_stat *w)
2090{ 2599{
2117 || w->prev.st_atime != w->attr.st_atime 2626 || w->prev.st_atime != w->attr.st_atime
2118 || w->prev.st_mtime != w->attr.st_mtime 2627 || w->prev.st_mtime != w->attr.st_mtime
2119 || w->prev.st_ctime != w->attr.st_ctime 2628 || w->prev.st_ctime != w->attr.st_ctime
2120 ) { 2629 ) {
2121 #if EV_USE_INOTIFY 2630 #if EV_USE_INOTIFY
2631 if (fs_fd >= 0)
2632 {
2122 infy_del (EV_A_ w); 2633 infy_del (EV_A_ w);
2123 infy_add (EV_A_ w); 2634 infy_add (EV_A_ w);
2124 ev_stat_stat (EV_A_ w); /* avoid race... */ 2635 ev_stat_stat (EV_A_ w); /* avoid race... */
2636 }
2125 #endif 2637 #endif
2126 2638
2127 ev_feed_event (EV_A_ w, EV_STAT); 2639 ev_feed_event (EV_A_ w, EV_STAT);
2128 } 2640 }
2129} 2641}
2154 else 2666 else
2155#endif 2667#endif
2156 ev_timer_start (EV_A_ &w->timer); 2668 ev_timer_start (EV_A_ &w->timer);
2157 2669
2158 ev_start (EV_A_ (W)w, 1); 2670 ev_start (EV_A_ (W)w, 1);
2671
2672 EV_FREQUENT_CHECK;
2159} 2673}
2160 2674
2161void 2675void
2162ev_stat_stop (EV_P_ ev_stat *w) 2676ev_stat_stop (EV_P_ ev_stat *w)
2163{ 2677{
2164 clear_pending (EV_A_ (W)w); 2678 clear_pending (EV_A_ (W)w);
2165 if (expect_false (!ev_is_active (w))) 2679 if (expect_false (!ev_is_active (w)))
2166 return; 2680 return;
2167 2681
2682 EV_FREQUENT_CHECK;
2683
2168#if EV_USE_INOTIFY 2684#if EV_USE_INOTIFY
2169 infy_del (EV_A_ w); 2685 infy_del (EV_A_ w);
2170#endif 2686#endif
2171 ev_timer_stop (EV_A_ &w->timer); 2687 ev_timer_stop (EV_A_ &w->timer);
2172 2688
2173 ev_stop (EV_A_ (W)w); 2689 ev_stop (EV_A_ (W)w);
2690
2691 EV_FREQUENT_CHECK;
2174} 2692}
2175#endif 2693#endif
2176 2694
2177#if EV_IDLE_ENABLE 2695#if EV_IDLE_ENABLE
2178void 2696void
2180{ 2698{
2181 if (expect_false (ev_is_active (w))) 2699 if (expect_false (ev_is_active (w)))
2182 return; 2700 return;
2183 2701
2184 pri_adjust (EV_A_ (W)w); 2702 pri_adjust (EV_A_ (W)w);
2703
2704 EV_FREQUENT_CHECK;
2185 2705
2186 { 2706 {
2187 int active = ++idlecnt [ABSPRI (w)]; 2707 int active = ++idlecnt [ABSPRI (w)];
2188 2708
2189 ++idleall; 2709 ++idleall;
2190 ev_start (EV_A_ (W)w, active); 2710 ev_start (EV_A_ (W)w, active);
2191 2711
2192 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2712 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2193 idles [ABSPRI (w)][active - 1] = w; 2713 idles [ABSPRI (w)][active - 1] = w;
2194 } 2714 }
2715
2716 EV_FREQUENT_CHECK;
2195} 2717}
2196 2718
2197void 2719void
2198ev_idle_stop (EV_P_ ev_idle *w) 2720ev_idle_stop (EV_P_ ev_idle *w)
2199{ 2721{
2200 clear_pending (EV_A_ (W)w); 2722 clear_pending (EV_A_ (W)w);
2201 if (expect_false (!ev_is_active (w))) 2723 if (expect_false (!ev_is_active (w)))
2202 return; 2724 return;
2203 2725
2726 EV_FREQUENT_CHECK;
2727
2204 { 2728 {
2205 int active = ((W)w)->active; 2729 int active = ev_active (w);
2206 2730
2207 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2731 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2208 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2732 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2209 2733
2210 ev_stop (EV_A_ (W)w); 2734 ev_stop (EV_A_ (W)w);
2211 --idleall; 2735 --idleall;
2212 } 2736 }
2737
2738 EV_FREQUENT_CHECK;
2213} 2739}
2214#endif 2740#endif
2215 2741
2216void 2742void
2217ev_prepare_start (EV_P_ ev_prepare *w) 2743ev_prepare_start (EV_P_ ev_prepare *w)
2218{ 2744{
2219 if (expect_false (ev_is_active (w))) 2745 if (expect_false (ev_is_active (w)))
2220 return; 2746 return;
2747
2748 EV_FREQUENT_CHECK;
2221 2749
2222 ev_start (EV_A_ (W)w, ++preparecnt); 2750 ev_start (EV_A_ (W)w, ++preparecnt);
2223 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2751 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2224 prepares [preparecnt - 1] = w; 2752 prepares [preparecnt - 1] = w;
2753
2754 EV_FREQUENT_CHECK;
2225} 2755}
2226 2756
2227void 2757void
2228ev_prepare_stop (EV_P_ ev_prepare *w) 2758ev_prepare_stop (EV_P_ ev_prepare *w)
2229{ 2759{
2230 clear_pending (EV_A_ (W)w); 2760 clear_pending (EV_A_ (W)w);
2231 if (expect_false (!ev_is_active (w))) 2761 if (expect_false (!ev_is_active (w)))
2232 return; 2762 return;
2233 2763
2764 EV_FREQUENT_CHECK;
2765
2234 { 2766 {
2235 int active = ((W)w)->active; 2767 int active = ev_active (w);
2768
2236 prepares [active - 1] = prepares [--preparecnt]; 2769 prepares [active - 1] = prepares [--preparecnt];
2237 ((W)prepares [active - 1])->active = active; 2770 ev_active (prepares [active - 1]) = active;
2238 } 2771 }
2239 2772
2240 ev_stop (EV_A_ (W)w); 2773 ev_stop (EV_A_ (W)w);
2774
2775 EV_FREQUENT_CHECK;
2241} 2776}
2242 2777
2243void 2778void
2244ev_check_start (EV_P_ ev_check *w) 2779ev_check_start (EV_P_ ev_check *w)
2245{ 2780{
2246 if (expect_false (ev_is_active (w))) 2781 if (expect_false (ev_is_active (w)))
2247 return; 2782 return;
2783
2784 EV_FREQUENT_CHECK;
2248 2785
2249 ev_start (EV_A_ (W)w, ++checkcnt); 2786 ev_start (EV_A_ (W)w, ++checkcnt);
2250 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2787 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2251 checks [checkcnt - 1] = w; 2788 checks [checkcnt - 1] = w;
2789
2790 EV_FREQUENT_CHECK;
2252} 2791}
2253 2792
2254void 2793void
2255ev_check_stop (EV_P_ ev_check *w) 2794ev_check_stop (EV_P_ ev_check *w)
2256{ 2795{
2257 clear_pending (EV_A_ (W)w); 2796 clear_pending (EV_A_ (W)w);
2258 if (expect_false (!ev_is_active (w))) 2797 if (expect_false (!ev_is_active (w)))
2259 return; 2798 return;
2260 2799
2800 EV_FREQUENT_CHECK;
2801
2261 { 2802 {
2262 int active = ((W)w)->active; 2803 int active = ev_active (w);
2804
2263 checks [active - 1] = checks [--checkcnt]; 2805 checks [active - 1] = checks [--checkcnt];
2264 ((W)checks [active - 1])->active = active; 2806 ev_active (checks [active - 1]) = active;
2265 } 2807 }
2266 2808
2267 ev_stop (EV_A_ (W)w); 2809 ev_stop (EV_A_ (W)w);
2810
2811 EV_FREQUENT_CHECK;
2268} 2812}
2269 2813
2270#if EV_EMBED_ENABLE 2814#if EV_EMBED_ENABLE
2271void noinline 2815void noinline
2272ev_embed_sweep (EV_P_ ev_embed *w) 2816ev_embed_sweep (EV_P_ ev_embed *w)
2299 ev_loop (EV_A_ EVLOOP_NONBLOCK); 2843 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2300 } 2844 }
2301 } 2845 }
2302} 2846}
2303 2847
2848static void
2849embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2850{
2851 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2852
2853 {
2854 struct ev_loop *loop = w->other;
2855
2856 ev_loop_fork (EV_A);
2857 }
2858}
2859
2304#if 0 2860#if 0
2305static void 2861static void
2306embed_idle_cb (EV_P_ ev_idle *idle, int revents) 2862embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2307{ 2863{
2308 ev_idle_stop (EV_A_ idle); 2864 ev_idle_stop (EV_A_ idle);
2319 struct ev_loop *loop = w->other; 2875 struct ev_loop *loop = w->other;
2320 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2876 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2321 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2877 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2322 } 2878 }
2323 2879
2880 EV_FREQUENT_CHECK;
2881
2324 ev_set_priority (&w->io, ev_priority (w)); 2882 ev_set_priority (&w->io, ev_priority (w));
2325 ev_io_start (EV_A_ &w->io); 2883 ev_io_start (EV_A_ &w->io);
2326 2884
2327 ev_prepare_init (&w->prepare, embed_prepare_cb); 2885 ev_prepare_init (&w->prepare, embed_prepare_cb);
2328 ev_set_priority (&w->prepare, EV_MINPRI); 2886 ev_set_priority (&w->prepare, EV_MINPRI);
2329 ev_prepare_start (EV_A_ &w->prepare); 2887 ev_prepare_start (EV_A_ &w->prepare);
2330 2888
2889 ev_fork_init (&w->fork, embed_fork_cb);
2890 ev_fork_start (EV_A_ &w->fork);
2891
2331 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2892 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2332 2893
2333 ev_start (EV_A_ (W)w, 1); 2894 ev_start (EV_A_ (W)w, 1);
2895
2896 EV_FREQUENT_CHECK;
2334} 2897}
2335 2898
2336void 2899void
2337ev_embed_stop (EV_P_ ev_embed *w) 2900ev_embed_stop (EV_P_ ev_embed *w)
2338{ 2901{
2339 clear_pending (EV_A_ (W)w); 2902 clear_pending (EV_A_ (W)w);
2340 if (expect_false (!ev_is_active (w))) 2903 if (expect_false (!ev_is_active (w)))
2341 return; 2904 return;
2342 2905
2906 EV_FREQUENT_CHECK;
2907
2343 ev_io_stop (EV_A_ &w->io); 2908 ev_io_stop (EV_A_ &w->io);
2344 ev_prepare_stop (EV_A_ &w->prepare); 2909 ev_prepare_stop (EV_A_ &w->prepare);
2910 ev_fork_stop (EV_A_ &w->fork);
2345 2911
2346 ev_stop (EV_A_ (W)w); 2912 EV_FREQUENT_CHECK;
2347} 2913}
2348#endif 2914#endif
2349 2915
2350#if EV_FORK_ENABLE 2916#if EV_FORK_ENABLE
2351void 2917void
2352ev_fork_start (EV_P_ ev_fork *w) 2918ev_fork_start (EV_P_ ev_fork *w)
2353{ 2919{
2354 if (expect_false (ev_is_active (w))) 2920 if (expect_false (ev_is_active (w)))
2355 return; 2921 return;
2922
2923 EV_FREQUENT_CHECK;
2356 2924
2357 ev_start (EV_A_ (W)w, ++forkcnt); 2925 ev_start (EV_A_ (W)w, ++forkcnt);
2358 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2926 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2359 forks [forkcnt - 1] = w; 2927 forks [forkcnt - 1] = w;
2928
2929 EV_FREQUENT_CHECK;
2360} 2930}
2361 2931
2362void 2932void
2363ev_fork_stop (EV_P_ ev_fork *w) 2933ev_fork_stop (EV_P_ ev_fork *w)
2364{ 2934{
2365 clear_pending (EV_A_ (W)w); 2935 clear_pending (EV_A_ (W)w);
2366 if (expect_false (!ev_is_active (w))) 2936 if (expect_false (!ev_is_active (w)))
2367 return; 2937 return;
2368 2938
2939 EV_FREQUENT_CHECK;
2940
2369 { 2941 {
2370 int active = ((W)w)->active; 2942 int active = ev_active (w);
2943
2371 forks [active - 1] = forks [--forkcnt]; 2944 forks [active - 1] = forks [--forkcnt];
2372 ((W)forks [active - 1])->active = active; 2945 ev_active (forks [active - 1]) = active;
2373 } 2946 }
2374 2947
2375 ev_stop (EV_A_ (W)w); 2948 ev_stop (EV_A_ (W)w);
2949
2950 EV_FREQUENT_CHECK;
2951}
2952#endif
2953
2954#if EV_ASYNC_ENABLE
2955void
2956ev_async_start (EV_P_ ev_async *w)
2957{
2958 if (expect_false (ev_is_active (w)))
2959 return;
2960
2961 evpipe_init (EV_A);
2962
2963 EV_FREQUENT_CHECK;
2964
2965 ev_start (EV_A_ (W)w, ++asynccnt);
2966 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2967 asyncs [asynccnt - 1] = w;
2968
2969 EV_FREQUENT_CHECK;
2970}
2971
2972void
2973ev_async_stop (EV_P_ ev_async *w)
2974{
2975 clear_pending (EV_A_ (W)w);
2976 if (expect_false (!ev_is_active (w)))
2977 return;
2978
2979 EV_FREQUENT_CHECK;
2980
2981 {
2982 int active = ev_active (w);
2983
2984 asyncs [active - 1] = asyncs [--asynccnt];
2985 ev_active (asyncs [active - 1]) = active;
2986 }
2987
2988 ev_stop (EV_A_ (W)w);
2989
2990 EV_FREQUENT_CHECK;
2991}
2992
2993void
2994ev_async_send (EV_P_ ev_async *w)
2995{
2996 w->sent = 1;
2997 evpipe_write (EV_A_ &gotasync);
2376} 2998}
2377#endif 2999#endif
2378 3000
2379/*****************************************************************************/ 3001/*****************************************************************************/
2380 3002
2390once_cb (EV_P_ struct ev_once *once, int revents) 3012once_cb (EV_P_ struct ev_once *once, int revents)
2391{ 3013{
2392 void (*cb)(int revents, void *arg) = once->cb; 3014 void (*cb)(int revents, void *arg) = once->cb;
2393 void *arg = once->arg; 3015 void *arg = once->arg;
2394 3016
2395 ev_io_stop (EV_A_ &once->io); 3017 ev_io_stop (EV_A_ &once->io);
2396 ev_timer_stop (EV_A_ &once->to); 3018 ev_timer_stop (EV_A_ &once->to);
2397 ev_free (once); 3019 ev_free (once);
2398 3020
2399 cb (revents, arg); 3021 cb (revents, arg);
2400} 3022}
2401 3023
2402static void 3024static void
2403once_cb_io (EV_P_ ev_io *w, int revents) 3025once_cb_io (EV_P_ ev_io *w, int revents)
2404{ 3026{
2405 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3027 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3028
3029 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2406} 3030}
2407 3031
2408static void 3032static void
2409once_cb_to (EV_P_ ev_timer *w, int revents) 3033once_cb_to (EV_P_ ev_timer *w, int revents)
2410{ 3034{
2411 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3035 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3036
3037 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2412} 3038}
2413 3039
2414void 3040void
2415ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3041ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2416{ 3042{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines