ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.265 by root, Thu Oct 23 04:56:49 2008 UTC vs.
Revision 1.455 by root, Sun Apr 28 12:45:20 2013 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
130# endif 163# endif
131 164
132#endif 165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
152#endif 197#endif
153 198
154#ifndef _WIN32 199#ifndef _WIN32
155# include <sys/time.h> 200# include <sys/time.h>
156# include <sys/wait.h> 201# include <sys/wait.h>
157# include <unistd.h> 202# include <unistd.h>
158#else 203#else
159# include <io.h> 204# include <io.h>
160# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
161# include <windows.h> 207# include <windows.h>
162# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
163# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
164# endif 210# endif
211# undef EV_AVOID_STDIO
165#endif 212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
166 221
167/* this block tries to deduce configuration from header-defined symbols and defaults */ 222/* this block tries to deduce configuration from header-defined symbols and defaults */
168 223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
255
256#ifndef EV_USE_CLOCK_SYSCALL
257# if __linux && __GLIBC__ >= 2
258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259# else
260# define EV_USE_CLOCK_SYSCALL 0
261# endif
262#endif
263
169#ifndef EV_USE_MONOTONIC 264#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1 266# define EV_USE_MONOTONIC EV_FEATURE_OS
172# else 267# else
173# define EV_USE_MONOTONIC 0 268# define EV_USE_MONOTONIC 0
174# endif 269# endif
175#endif 270#endif
176 271
177#ifndef EV_USE_REALTIME 272#ifndef EV_USE_REALTIME
178# define EV_USE_REALTIME 0 273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
179#endif 274#endif
180 275
181#ifndef EV_USE_NANOSLEEP 276#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L 277# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1 278# define EV_USE_NANOSLEEP EV_FEATURE_OS
184# else 279# else
185# define EV_USE_NANOSLEEP 0 280# define EV_USE_NANOSLEEP 0
186# endif 281# endif
187#endif 282#endif
188 283
189#ifndef EV_USE_SELECT 284#ifndef EV_USE_SELECT
190# define EV_USE_SELECT 1 285# define EV_USE_SELECT EV_FEATURE_BACKENDS
191#endif 286#endif
192 287
193#ifndef EV_USE_POLL 288#ifndef EV_USE_POLL
194# ifdef _WIN32 289# ifdef _WIN32
195# define EV_USE_POLL 0 290# define EV_USE_POLL 0
196# else 291# else
197# define EV_USE_POLL 1 292# define EV_USE_POLL EV_FEATURE_BACKENDS
198# endif 293# endif
199#endif 294#endif
200 295
201#ifndef EV_USE_EPOLL 296#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1 298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
204# else 299# else
205# define EV_USE_EPOLL 0 300# define EV_USE_EPOLL 0
206# endif 301# endif
207#endif 302#endif
208 303
214# define EV_USE_PORT 0 309# define EV_USE_PORT 0
215#endif 310#endif
216 311
217#ifndef EV_USE_INOTIFY 312#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1 314# define EV_USE_INOTIFY EV_FEATURE_OS
220# else 315# else
221# define EV_USE_INOTIFY 0 316# define EV_USE_INOTIFY 0
222# endif 317# endif
223#endif 318#endif
224 319
225#ifndef EV_PID_HASHSIZE 320#ifndef EV_PID_HASHSIZE
226# if EV_MINIMAL 321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
230# endif
231#endif 322#endif
232 323
233#ifndef EV_INOTIFY_HASHSIZE 324#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL 325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif 326#endif
240 327
241#ifndef EV_USE_EVENTFD 328#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1 330# define EV_USE_EVENTFD EV_FEATURE_OS
244# else 331# else
245# define EV_USE_EVENTFD 0 332# define EV_USE_EVENTFD 0
333# endif
334#endif
335
336#ifndef EV_USE_SIGNALFD
337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338# define EV_USE_SIGNALFD EV_FEATURE_OS
339# else
340# define EV_USE_SIGNALFD 0
246# endif 341# endif
247#endif 342#endif
248 343
249#if 0 /* debugging */ 344#if 0 /* debugging */
250# define EV_VERIFY 3 345# define EV_VERIFY 3
251# define EV_USE_4HEAP 1 346# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1 347# define EV_HEAP_CACHE_AT 1
253#endif 348#endif
254 349
255#ifndef EV_VERIFY 350#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL 351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
257#endif 352#endif
258 353
259#ifndef EV_USE_4HEAP 354#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL 355# define EV_USE_4HEAP EV_FEATURE_DATA
261#endif 356#endif
262 357
263#ifndef EV_HEAP_CACHE_AT 358#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL 359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362#ifdef ANDROID
363/* supposedly, android doesn't typedef fd_mask */
364# undef EV_USE_SELECT
365# define EV_USE_SELECT 0
366/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
367# undef EV_USE_CLOCK_SYSCALL
368# define EV_USE_CLOCK_SYSCALL 0
369#endif
370
371/* aix's poll.h seems to cause lots of trouble */
372#ifdef _AIX
373/* AIX has a completely broken poll.h header */
374# undef EV_USE_POLL
375# define EV_USE_POLL 0
376#endif
377
378/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
379/* which makes programs even slower. might work on other unices, too. */
380#if EV_USE_CLOCK_SYSCALL
381# include <sys/syscall.h>
382# ifdef SYS_clock_gettime
383# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
384# undef EV_USE_MONOTONIC
385# define EV_USE_MONOTONIC 1
386# else
387# undef EV_USE_CLOCK_SYSCALL
388# define EV_USE_CLOCK_SYSCALL 0
389# endif
265#endif 390#endif
266 391
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 392/* this block fixes any misconfiguration where we know we run into trouble otherwise */
268 393
269#ifndef CLOCK_MONOTONIC 394#ifndef CLOCK_MONOTONIC
280# undef EV_USE_INOTIFY 405# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0 406# define EV_USE_INOTIFY 0
282#endif 407#endif
283 408
284#if !EV_USE_NANOSLEEP 409#if !EV_USE_NANOSLEEP
285# ifndef _WIN32 410/* hp-ux has it in sys/time.h, which we unconditionally include above */
411# if !defined _WIN32 && !defined __hpux
286# include <sys/select.h> 412# include <sys/select.h>
287# endif 413# endif
288#endif 414#endif
289 415
290#if EV_USE_INOTIFY 416#if EV_USE_INOTIFY
291# include <sys/utsname.h> 417# include <sys/statfs.h>
292# include <sys/inotify.h> 418# include <sys/inotify.h>
293/* some very old inotify.h headers don't have IN_DONT_FOLLOW */ 419/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
294# ifndef IN_DONT_FOLLOW 420# ifndef IN_DONT_FOLLOW
295# undef EV_USE_INOTIFY 421# undef EV_USE_INOTIFY
296# define EV_USE_INOTIFY 0 422# define EV_USE_INOTIFY 0
297# endif 423# endif
298#endif 424#endif
299 425
300#if EV_SELECT_IS_WINSOCKET
301# include <winsock.h>
302#endif
303
304#if EV_USE_EVENTFD 426#if EV_USE_EVENTFD
305/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
306# include <stdint.h> 428# include <stdint.h>
307# ifdef __cplusplus 429# ifndef EFD_NONBLOCK
308extern "C" { 430# define EFD_NONBLOCK O_NONBLOCK
309# endif 431# endif
310int eventfd (unsigned int initval, int flags); 432# ifndef EFD_CLOEXEC
311# ifdef __cplusplus 433# ifdef O_CLOEXEC
312} 434# define EFD_CLOEXEC O_CLOEXEC
435# else
436# define EFD_CLOEXEC 02000000
437# endif
313# endif 438# endif
439EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
440#endif
441
442#if EV_USE_SIGNALFD
443/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
444# include <stdint.h>
445# ifndef SFD_NONBLOCK
446# define SFD_NONBLOCK O_NONBLOCK
447# endif
448# ifndef SFD_CLOEXEC
449# ifdef O_CLOEXEC
450# define SFD_CLOEXEC O_CLOEXEC
451# else
452# define SFD_CLOEXEC 02000000
453# endif
454# endif
455EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
456
457struct signalfd_siginfo
458{
459 uint32_t ssi_signo;
460 char pad[128 - sizeof (uint32_t)];
461};
314#endif 462#endif
315 463
316/**/ 464/**/
317 465
318#if EV_VERIFY >= 3 466#if EV_VERIFY >= 3
319# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 467# define EV_FREQUENT_CHECK ev_verify (EV_A)
320#else 468#else
321# define EV_FREQUENT_CHECK do { } while (0) 469# define EV_FREQUENT_CHECK do { } while (0)
322#endif 470#endif
323 471
324/* 472/*
325 * This is used to avoid floating point rounding problems. 473 * This is used to work around floating point rounding problems.
326 * It is added to ev_rt_now when scheduling periodics
327 * to ensure progress, time-wise, even when rounding
328 * errors are against us.
329 * This value is good at least till the year 4000. 474 * This value is good at least till the year 4000.
330 * Better solutions welcome.
331 */ 475 */
332#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 476#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
477/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
333 478
334#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 479#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
335#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 480#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
336/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
337 481
482#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
483#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
484
485/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
486/* ECB.H BEGIN */
487/*
488 * libecb - http://software.schmorp.de/pkg/libecb
489 *
490 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
491 * Copyright (©) 2011 Emanuele Giaquinta
492 * All rights reserved.
493 *
494 * Redistribution and use in source and binary forms, with or without modifica-
495 * tion, are permitted provided that the following conditions are met:
496 *
497 * 1. Redistributions of source code must retain the above copyright notice,
498 * this list of conditions and the following disclaimer.
499 *
500 * 2. Redistributions in binary form must reproduce the above copyright
501 * notice, this list of conditions and the following disclaimer in the
502 * documentation and/or other materials provided with the distribution.
503 *
504 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
505 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
506 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
507 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
508 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
509 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
510 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
511 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
512 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
513 * OF THE POSSIBILITY OF SUCH DAMAGE.
514 */
515
516#ifndef ECB_H
517#define ECB_H
518
519/* 16 bits major, 16 bits minor */
520#define ECB_VERSION 0x00010003
521
522#ifdef _WIN32
523 typedef signed char int8_t;
524 typedef unsigned char uint8_t;
525 typedef signed short int16_t;
526 typedef unsigned short uint16_t;
527 typedef signed int int32_t;
528 typedef unsigned int uint32_t;
338#if __GNUC__ >= 4 529 #if __GNUC__
339# define expect(expr,value) __builtin_expect ((expr),(value)) 530 typedef signed long long int64_t;
340# define noinline __attribute__ ((noinline)) 531 typedef unsigned long long uint64_t;
532 #else /* _MSC_VER || __BORLANDC__ */
533 typedef signed __int64 int64_t;
534 typedef unsigned __int64 uint64_t;
535 #endif
536 #ifdef _WIN64
537 #define ECB_PTRSIZE 8
538 typedef uint64_t uintptr_t;
539 typedef int64_t intptr_t;
540 #else
541 #define ECB_PTRSIZE 4
542 typedef uint32_t uintptr_t;
543 typedef int32_t intptr_t;
544 #endif
341#else 545#else
342# define expect(expr,value) (expr) 546 #include <inttypes.h>
343# define noinline 547 #if UINTMAX_MAX > 0xffffffffU
344# if __STDC_VERSION__ < 199901L && __GNUC__ < 2 548 #define ECB_PTRSIZE 8
345# define inline 549 #else
550 #define ECB_PTRSIZE 4
551 #endif
346# endif 552#endif
553
554/* work around x32 idiocy by defining proper macros */
555#if __x86_64 || _M_AMD64
556 #if __ILP32
557 #define ECB_AMD64_X32 1
558 #else
559 #define ECB_AMD64 1
347#endif 560 #endif
561#endif
348 562
563/* many compilers define _GNUC_ to some versions but then only implement
564 * what their idiot authors think are the "more important" extensions,
565 * causing enormous grief in return for some better fake benchmark numbers.
566 * or so.
567 * we try to detect these and simply assume they are not gcc - if they have
568 * an issue with that they should have done it right in the first place.
569 */
570#ifndef ECB_GCC_VERSION
571 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
572 #define ECB_GCC_VERSION(major,minor) 0
573 #else
574 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
575 #endif
576#endif
577
578#define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
579#define ECB_C99 (__STDC_VERSION__ >= 199901L)
580#define ECB_C11 (__STDC_VERSION__ >= 201112L)
581#define ECB_CPP (__cplusplus+0)
582#define ECB_CPP11 (__cplusplus >= 201103L)
583
584#if ECB_CPP
585 #define ECB_EXTERN_C extern "C"
586 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
587 #define ECB_EXTERN_C_END }
588#else
589 #define ECB_EXTERN_C extern
590 #define ECB_EXTERN_C_BEG
591 #define ECB_EXTERN_C_END
592#endif
593
594/*****************************************************************************/
595
596/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
597/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
598
599#if ECB_NO_THREADS
600 #define ECB_NO_SMP 1
601#endif
602
603#if ECB_NO_SMP
604 #define ECB_MEMORY_FENCE do { } while (0)
605#endif
606
607#ifndef ECB_MEMORY_FENCE
608 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
609 #if __i386 || __i386__
610 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
611 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
612 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
613 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
614 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
615 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
616 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
617 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
618 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
619 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
620 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
621 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
622 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
623 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
624 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
625 #elif __sparc || __sparc__
626 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
627 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
628 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
629 #elif defined __s390__ || defined __s390x__
630 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
631 #elif defined __mips__
632 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
633 #elif defined __alpha__
634 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
635 #elif defined __hppa__
636 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
637 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
638 #elif defined __ia64__
639 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
640 #endif
641 #endif
642#endif
643
644#ifndef ECB_MEMORY_FENCE
645 #if ECB_GCC_VERSION(4,7)
646 /* see comment below (stdatomic.h) about the C11 memory model. */
647 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
648
649 /* The __has_feature syntax from clang is so misdesigned that we cannot use it
650 * without risking compile time errors with other compilers. We *could*
651 * define our own ecb_clang_has_feature, but I just can't be bothered to work
652 * around this shit time and again.
653 * #elif defined __clang && __has_feature (cxx_atomic)
654 * // see comment below (stdatomic.h) about the C11 memory model.
655 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
656 */
657
658 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
659 #define ECB_MEMORY_FENCE __sync_synchronize ()
660 #elif _MSC_VER >= 1400 /* VC++ 2005 */
661 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
662 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
663 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
664 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
665 #elif defined _WIN32
666 #include <WinNT.h>
667 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
668 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
669 #include <mbarrier.h>
670 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
671 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
672 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
673 #elif __xlC__
674 #define ECB_MEMORY_FENCE __sync ()
675 #endif
676#endif
677
678#ifndef ECB_MEMORY_FENCE
679 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
680 /* we assume that these memory fences work on all variables/all memory accesses, */
681 /* not just C11 atomics and atomic accesses */
682 #include <stdatomic.h>
683 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
684 /* any fence other than seq_cst, which isn't very efficient for us. */
685 /* Why that is, we don't know - either the C11 memory model is quite useless */
686 /* for most usages, or gcc and clang have a bug */
687 /* I *currently* lean towards the latter, and inefficiently implement */
688 /* all three of ecb's fences as a seq_cst fence */
689 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
690 #endif
691#endif
692
693#ifndef ECB_MEMORY_FENCE
694 #if !ECB_AVOID_PTHREADS
695 /*
696 * if you get undefined symbol references to pthread_mutex_lock,
697 * or failure to find pthread.h, then you should implement
698 * the ECB_MEMORY_FENCE operations for your cpu/compiler
699 * OR provide pthread.h and link against the posix thread library
700 * of your system.
701 */
702 #include <pthread.h>
703 #define ECB_NEEDS_PTHREADS 1
704 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
705
706 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
707 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
708 #endif
709#endif
710
711#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
712 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
713#endif
714
715#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
716 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
717#endif
718
719/*****************************************************************************/
720
721#if __cplusplus
722 #define ecb_inline static inline
723#elif ECB_GCC_VERSION(2,5)
724 #define ecb_inline static __inline__
725#elif ECB_C99
726 #define ecb_inline static inline
727#else
728 #define ecb_inline static
729#endif
730
731#if ECB_GCC_VERSION(3,3)
732 #define ecb_restrict __restrict__
733#elif ECB_C99
734 #define ecb_restrict restrict
735#else
736 #define ecb_restrict
737#endif
738
739typedef int ecb_bool;
740
741#define ECB_CONCAT_(a, b) a ## b
742#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
743#define ECB_STRINGIFY_(a) # a
744#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
745
746#define ecb_function_ ecb_inline
747
748#if ECB_GCC_VERSION(3,1)
749 #define ecb_attribute(attrlist) __attribute__(attrlist)
750 #define ecb_is_constant(expr) __builtin_constant_p (expr)
751 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
752 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
753#else
754 #define ecb_attribute(attrlist)
755 #define ecb_is_constant(expr) 0
756 #define ecb_expect(expr,value) (expr)
757 #define ecb_prefetch(addr,rw,locality)
758#endif
759
760/* no emulation for ecb_decltype */
761#if ECB_GCC_VERSION(4,5)
762 #define ecb_decltype(x) __decltype(x)
763#elif ECB_GCC_VERSION(3,0)
764 #define ecb_decltype(x) __typeof(x)
765#endif
766
767#define ecb_noinline ecb_attribute ((__noinline__))
768#define ecb_unused ecb_attribute ((__unused__))
769#define ecb_const ecb_attribute ((__const__))
770#define ecb_pure ecb_attribute ((__pure__))
771
772#if ECB_C11
773 #define ecb_noreturn _Noreturn
774#else
775 #define ecb_noreturn ecb_attribute ((__noreturn__))
776#endif
777
778#if ECB_GCC_VERSION(4,3)
779 #define ecb_artificial ecb_attribute ((__artificial__))
780 #define ecb_hot ecb_attribute ((__hot__))
781 #define ecb_cold ecb_attribute ((__cold__))
782#else
783 #define ecb_artificial
784 #define ecb_hot
785 #define ecb_cold
786#endif
787
788/* put around conditional expressions if you are very sure that the */
789/* expression is mostly true or mostly false. note that these return */
790/* booleans, not the expression. */
349#define expect_false(expr) expect ((expr) != 0, 0) 791#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
350#define expect_true(expr) expect ((expr) != 0, 1) 792#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
793/* for compatibility to the rest of the world */
794#define ecb_likely(expr) ecb_expect_true (expr)
795#define ecb_unlikely(expr) ecb_expect_false (expr)
796
797/* count trailing zero bits and count # of one bits */
798#if ECB_GCC_VERSION(3,4)
799 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
800 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
801 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
802 #define ecb_ctz32(x) __builtin_ctz (x)
803 #define ecb_ctz64(x) __builtin_ctzll (x)
804 #define ecb_popcount32(x) __builtin_popcount (x)
805 /* no popcountll */
806#else
807 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
808 ecb_function_ int
809 ecb_ctz32 (uint32_t x)
810 {
811 int r = 0;
812
813 x &= ~x + 1; /* this isolates the lowest bit */
814
815#if ECB_branchless_on_i386
816 r += !!(x & 0xaaaaaaaa) << 0;
817 r += !!(x & 0xcccccccc) << 1;
818 r += !!(x & 0xf0f0f0f0) << 2;
819 r += !!(x & 0xff00ff00) << 3;
820 r += !!(x & 0xffff0000) << 4;
821#else
822 if (x & 0xaaaaaaaa) r += 1;
823 if (x & 0xcccccccc) r += 2;
824 if (x & 0xf0f0f0f0) r += 4;
825 if (x & 0xff00ff00) r += 8;
826 if (x & 0xffff0000) r += 16;
827#endif
828
829 return r;
830 }
831
832 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
833 ecb_function_ int
834 ecb_ctz64 (uint64_t x)
835 {
836 int shift = x & 0xffffffffU ? 0 : 32;
837 return ecb_ctz32 (x >> shift) + shift;
838 }
839
840 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
841 ecb_function_ int
842 ecb_popcount32 (uint32_t x)
843 {
844 x -= (x >> 1) & 0x55555555;
845 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
846 x = ((x >> 4) + x) & 0x0f0f0f0f;
847 x *= 0x01010101;
848
849 return x >> 24;
850 }
851
852 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
853 ecb_function_ int ecb_ld32 (uint32_t x)
854 {
855 int r = 0;
856
857 if (x >> 16) { x >>= 16; r += 16; }
858 if (x >> 8) { x >>= 8; r += 8; }
859 if (x >> 4) { x >>= 4; r += 4; }
860 if (x >> 2) { x >>= 2; r += 2; }
861 if (x >> 1) { r += 1; }
862
863 return r;
864 }
865
866 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
867 ecb_function_ int ecb_ld64 (uint64_t x)
868 {
869 int r = 0;
870
871 if (x >> 32) { x >>= 32; r += 32; }
872
873 return r + ecb_ld32 (x);
874 }
875#endif
876
877ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
878ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
879ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
880ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
881
882ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
883ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
884{
885 return ( (x * 0x0802U & 0x22110U)
886 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
887}
888
889ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
890ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
891{
892 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
893 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
894 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
895 x = ( x >> 8 ) | ( x << 8);
896
897 return x;
898}
899
900ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
901ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
902{
903 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
904 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
905 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
906 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
907 x = ( x >> 16 ) | ( x << 16);
908
909 return x;
910}
911
912/* popcount64 is only available on 64 bit cpus as gcc builtin */
913/* so for this version we are lazy */
914ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
915ecb_function_ int
916ecb_popcount64 (uint64_t x)
917{
918 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
919}
920
921ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
922ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
923ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
924ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
925ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
926ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
927ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
928ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
929
930ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
931ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
932ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
933ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
934ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
935ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
936ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
937ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
938
939#if ECB_GCC_VERSION(4,3)
940 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
941 #define ecb_bswap32(x) __builtin_bswap32 (x)
942 #define ecb_bswap64(x) __builtin_bswap64 (x)
943#else
944 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
945 ecb_function_ uint16_t
946 ecb_bswap16 (uint16_t x)
947 {
948 return ecb_rotl16 (x, 8);
949 }
950
951 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
952 ecb_function_ uint32_t
953 ecb_bswap32 (uint32_t x)
954 {
955 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
956 }
957
958 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
959 ecb_function_ uint64_t
960 ecb_bswap64 (uint64_t x)
961 {
962 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
963 }
964#endif
965
966#if ECB_GCC_VERSION(4,5)
967 #define ecb_unreachable() __builtin_unreachable ()
968#else
969 /* this seems to work fine, but gcc always emits a warning for it :/ */
970 ecb_inline void ecb_unreachable (void) ecb_noreturn;
971 ecb_inline void ecb_unreachable (void) { }
972#endif
973
974/* try to tell the compiler that some condition is definitely true */
975#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
976
977ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
978ecb_inline unsigned char
979ecb_byteorder_helper (void)
980{
981 /* the union code still generates code under pressure in gcc, */
982 /* but less than using pointers, and always seems to */
983 /* successfully return a constant. */
984 /* the reason why we have this horrible preprocessor mess */
985 /* is to avoid it in all cases, at least on common architectures */
986 /* or when using a recent enough gcc version (>= 4.6) */
987#if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
988 return 0x44;
989#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
990 return 0x44;
991#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
992 return 0x11;
993#else
994 union
995 {
996 uint32_t i;
997 uint8_t c;
998 } u = { 0x11223344 };
999 return u.c;
1000#endif
1001}
1002
1003ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
1004ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1005ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
1006ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1007
1008#if ECB_GCC_VERSION(3,0) || ECB_C99
1009 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1010#else
1011 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1012#endif
1013
1014#if __cplusplus
1015 template<typename T>
1016 static inline T ecb_div_rd (T val, T div)
1017 {
1018 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1019 }
1020 template<typename T>
1021 static inline T ecb_div_ru (T val, T div)
1022 {
1023 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1024 }
1025#else
1026 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1027 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1028#endif
1029
1030#if ecb_cplusplus_does_not_suck
1031 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1032 template<typename T, int N>
1033 static inline int ecb_array_length (const T (&arr)[N])
1034 {
1035 return N;
1036 }
1037#else
1038 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1039#endif
1040
1041/*******************************************************************************/
1042/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1043
1044/* basically, everything uses "ieee pure-endian" floating point numbers */
1045/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1046#if 0 \
1047 || __i386 || __i386__ \
1048 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1049 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1050 || defined __arm__ && defined __ARM_EABI__ \
1051 || defined __s390__ || defined __s390x__ \
1052 || defined __mips__ \
1053 || defined __alpha__ \
1054 || defined __hppa__ \
1055 || defined __ia64__ \
1056 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64
1057 #define ECB_STDFP 1
1058 #include <string.h> /* for memcpy */
1059#else
1060 #define ECB_STDFP 0
1061 #include <math.h> /* for frexp*, ldexp* */
1062#endif
1063
1064#ifndef ECB_NO_LIBM
1065
1066 /* convert a float to ieee single/binary32 */
1067 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1068 ecb_function_ uint32_t
1069 ecb_float_to_binary32 (float x)
1070 {
1071 uint32_t r;
1072
1073 #if ECB_STDFP
1074 memcpy (&r, &x, 4);
1075 #else
1076 /* slow emulation, works for anything but -0 */
1077 uint32_t m;
1078 int e;
1079
1080 if (x == 0e0f ) return 0x00000000U;
1081 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1082 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1083 if (x != x ) return 0x7fbfffffU;
1084
1085 m = frexpf (x, &e) * 0x1000000U;
1086
1087 r = m & 0x80000000U;
1088
1089 if (r)
1090 m = -m;
1091
1092 if (e <= -126)
1093 {
1094 m &= 0xffffffU;
1095 m >>= (-125 - e);
1096 e = -126;
1097 }
1098
1099 r |= (e + 126) << 23;
1100 r |= m & 0x7fffffU;
1101 #endif
1102
1103 return r;
1104 }
1105
1106 /* converts an ieee single/binary32 to a float */
1107 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1108 ecb_function_ float
1109 ecb_binary32_to_float (uint32_t x)
1110 {
1111 float r;
1112
1113 #if ECB_STDFP
1114 memcpy (&r, &x, 4);
1115 #else
1116 /* emulation, only works for normals and subnormals and +0 */
1117 int neg = x >> 31;
1118 int e = (x >> 23) & 0xffU;
1119
1120 x &= 0x7fffffU;
1121
1122 if (e)
1123 x |= 0x800000U;
1124 else
1125 e = 1;
1126
1127 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1128 r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1129
1130 r = neg ? -r : r;
1131 #endif
1132
1133 return r;
1134 }
1135
1136 /* convert a double to ieee double/binary64 */
1137 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1138 ecb_function_ uint64_t
1139 ecb_double_to_binary64 (double x)
1140 {
1141 uint64_t r;
1142
1143 #if ECB_STDFP
1144 memcpy (&r, &x, 8);
1145 #else
1146 /* slow emulation, works for anything but -0 */
1147 uint64_t m;
1148 int e;
1149
1150 if (x == 0e0 ) return 0x0000000000000000U;
1151 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1152 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1153 if (x != x ) return 0X7ff7ffffffffffffU;
1154
1155 m = frexp (x, &e) * 0x20000000000000U;
1156
1157 r = m & 0x8000000000000000;;
1158
1159 if (r)
1160 m = -m;
1161
1162 if (e <= -1022)
1163 {
1164 m &= 0x1fffffffffffffU;
1165 m >>= (-1021 - e);
1166 e = -1022;
1167 }
1168
1169 r |= ((uint64_t)(e + 1022)) << 52;
1170 r |= m & 0xfffffffffffffU;
1171 #endif
1172
1173 return r;
1174 }
1175
1176 /* converts an ieee double/binary64 to a double */
1177 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1178 ecb_function_ double
1179 ecb_binary64_to_double (uint64_t x)
1180 {
1181 double r;
1182
1183 #if ECB_STDFP
1184 memcpy (&r, &x, 8);
1185 #else
1186 /* emulation, only works for normals and subnormals and +0 */
1187 int neg = x >> 63;
1188 int e = (x >> 52) & 0x7ffU;
1189
1190 x &= 0xfffffffffffffU;
1191
1192 if (e)
1193 x |= 0x10000000000000U;
1194 else
1195 e = 1;
1196
1197 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1198 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1199
1200 r = neg ? -r : r;
1201 #endif
1202
1203 return r;
1204 }
1205
1206#endif
1207
1208#endif
1209
1210/* ECB.H END */
1211
1212#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1213/* if your architecture doesn't need memory fences, e.g. because it is
1214 * single-cpu/core, or if you use libev in a project that doesn't use libev
1215 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1216 * libev, in which cases the memory fences become nops.
1217 * alternatively, you can remove this #error and link against libpthread,
1218 * which will then provide the memory fences.
1219 */
1220# error "memory fences not defined for your architecture, please report"
1221#endif
1222
1223#ifndef ECB_MEMORY_FENCE
1224# define ECB_MEMORY_FENCE do { } while (0)
1225# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1226# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1227#endif
1228
1229#define expect_false(cond) ecb_expect_false (cond)
1230#define expect_true(cond) ecb_expect_true (cond)
1231#define noinline ecb_noinline
1232
351#define inline_size static inline 1233#define inline_size ecb_inline
352 1234
353#if EV_MINIMAL 1235#if EV_FEATURE_CODE
1236# define inline_speed ecb_inline
1237#else
354# define inline_speed static noinline 1238# define inline_speed static noinline
1239#endif
1240
1241#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1242
1243#if EV_MINPRI == EV_MAXPRI
1244# define ABSPRI(w) (((W)w), 0)
355#else 1245#else
356# define inline_speed static inline
357#endif
358
359#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
360#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1246# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1247#endif
361 1248
362#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1249#define EMPTY /* required for microsofts broken pseudo-c compiler */
363#define EMPTY2(a,b) /* used to suppress some warnings */ 1250#define EMPTY2(a,b) /* used to suppress some warnings */
364 1251
365typedef ev_watcher *W; 1252typedef ev_watcher *W;
367typedef ev_watcher_time *WT; 1254typedef ev_watcher_time *WT;
368 1255
369#define ev_active(w) ((W)(w))->active 1256#define ev_active(w) ((W)(w))->active
370#define ev_at(w) ((WT)(w))->at 1257#define ev_at(w) ((WT)(w))->at
371 1258
1259#if EV_USE_REALTIME
1260/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1261/* giving it a reasonably high chance of working on typical architectures */
1262static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1263#endif
1264
372#if EV_USE_MONOTONIC 1265#if EV_USE_MONOTONIC
373/* sig_atomic_t is used to avoid per-thread variables or locking but still */
374/* giving it a reasonably high chance of working on typical architetcures */
375static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1266static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1267#endif
1268
1269#ifndef EV_FD_TO_WIN32_HANDLE
1270# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1271#endif
1272#ifndef EV_WIN32_HANDLE_TO_FD
1273# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1274#endif
1275#ifndef EV_WIN32_CLOSE_FD
1276# define EV_WIN32_CLOSE_FD(fd) close (fd)
376#endif 1277#endif
377 1278
378#ifdef _WIN32 1279#ifdef _WIN32
379# include "ev_win32.c" 1280# include "ev_win32.c"
380#endif 1281#endif
381 1282
382/*****************************************************************************/ 1283/*****************************************************************************/
383 1284
1285/* define a suitable floor function (only used by periodics atm) */
1286
1287#if EV_USE_FLOOR
1288# include <math.h>
1289# define ev_floor(v) floor (v)
1290#else
1291
1292#include <float.h>
1293
1294/* a floor() replacement function, should be independent of ev_tstamp type */
1295static ev_tstamp noinline
1296ev_floor (ev_tstamp v)
1297{
1298 /* the choice of shift factor is not terribly important */
1299#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1300 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1301#else
1302 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1303#endif
1304
1305 /* argument too large for an unsigned long? */
1306 if (expect_false (v >= shift))
1307 {
1308 ev_tstamp f;
1309
1310 if (v == v - 1.)
1311 return v; /* very large number */
1312
1313 f = shift * ev_floor (v * (1. / shift));
1314 return f + ev_floor (v - f);
1315 }
1316
1317 /* special treatment for negative args? */
1318 if (expect_false (v < 0.))
1319 {
1320 ev_tstamp f = -ev_floor (-v);
1321
1322 return f - (f == v ? 0 : 1);
1323 }
1324
1325 /* fits into an unsigned long */
1326 return (unsigned long)v;
1327}
1328
1329#endif
1330
1331/*****************************************************************************/
1332
1333#ifdef __linux
1334# include <sys/utsname.h>
1335#endif
1336
1337static unsigned int noinline ecb_cold
1338ev_linux_version (void)
1339{
1340#ifdef __linux
1341 unsigned int v = 0;
1342 struct utsname buf;
1343 int i;
1344 char *p = buf.release;
1345
1346 if (uname (&buf))
1347 return 0;
1348
1349 for (i = 3+1; --i; )
1350 {
1351 unsigned int c = 0;
1352
1353 for (;;)
1354 {
1355 if (*p >= '0' && *p <= '9')
1356 c = c * 10 + *p++ - '0';
1357 else
1358 {
1359 p += *p == '.';
1360 break;
1361 }
1362 }
1363
1364 v = (v << 8) | c;
1365 }
1366
1367 return v;
1368#else
1369 return 0;
1370#endif
1371}
1372
1373/*****************************************************************************/
1374
1375#if EV_AVOID_STDIO
1376static void noinline ecb_cold
1377ev_printerr (const char *msg)
1378{
1379 write (STDERR_FILENO, msg, strlen (msg));
1380}
1381#endif
1382
384static void (*syserr_cb)(const char *msg); 1383static void (*syserr_cb)(const char *msg) EV_THROW;
385 1384
386void 1385void ecb_cold
387ev_set_syserr_cb (void (*cb)(const char *msg)) 1386ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
388{ 1387{
389 syserr_cb = cb; 1388 syserr_cb = cb;
390} 1389}
391 1390
392static void noinline 1391static void noinline ecb_cold
393syserr (const char *msg) 1392ev_syserr (const char *msg)
394{ 1393{
395 if (!msg) 1394 if (!msg)
396 msg = "(libev) system error"; 1395 msg = "(libev) system error";
397 1396
398 if (syserr_cb) 1397 if (syserr_cb)
399 syserr_cb (msg); 1398 syserr_cb (msg);
400 else 1399 else
401 { 1400 {
1401#if EV_AVOID_STDIO
1402 ev_printerr (msg);
1403 ev_printerr (": ");
1404 ev_printerr (strerror (errno));
1405 ev_printerr ("\n");
1406#else
402 perror (msg); 1407 perror (msg);
1408#endif
403 abort (); 1409 abort ();
404 } 1410 }
405} 1411}
406 1412
407static void * 1413static void *
408ev_realloc_emul (void *ptr, long size) 1414ev_realloc_emul (void *ptr, long size) EV_THROW
409{ 1415{
410 /* some systems, notably openbsd and darwin, fail to properly 1416 /* some systems, notably openbsd and darwin, fail to properly
411 * implement realloc (x, 0) (as required by both ansi c-98 and 1417 * implement realloc (x, 0) (as required by both ansi c-89 and
412 * the single unix specification, so work around them here. 1418 * the single unix specification, so work around them here.
1419 * recently, also (at least) fedora and debian started breaking it,
1420 * despite documenting it otherwise.
413 */ 1421 */
414 1422
415 if (size) 1423 if (size)
416 return realloc (ptr, size); 1424 return realloc (ptr, size);
417 1425
418 free (ptr); 1426 free (ptr);
419 return 0; 1427 return 0;
420} 1428}
421 1429
422static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1430static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
423 1431
424void 1432void ecb_cold
425ev_set_allocator (void *(*cb)(void *ptr, long size)) 1433ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
426{ 1434{
427 alloc = cb; 1435 alloc = cb;
428} 1436}
429 1437
430inline_speed void * 1438inline_speed void *
432{ 1440{
433 ptr = alloc (ptr, size); 1441 ptr = alloc (ptr, size);
434 1442
435 if (!ptr && size) 1443 if (!ptr && size)
436 { 1444 {
1445#if EV_AVOID_STDIO
1446 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1447#else
437 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1448 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1449#endif
438 abort (); 1450 abort ();
439 } 1451 }
440 1452
441 return ptr; 1453 return ptr;
442} 1454}
444#define ev_malloc(size) ev_realloc (0, (size)) 1456#define ev_malloc(size) ev_realloc (0, (size))
445#define ev_free(ptr) ev_realloc ((ptr), 0) 1457#define ev_free(ptr) ev_realloc ((ptr), 0)
446 1458
447/*****************************************************************************/ 1459/*****************************************************************************/
448 1460
1461/* set in reify when reification needed */
1462#define EV_ANFD_REIFY 1
1463
1464/* file descriptor info structure */
449typedef struct 1465typedef struct
450{ 1466{
451 WL head; 1467 WL head;
452 unsigned char events; 1468 unsigned char events; /* the events watched for */
453 unsigned char reify; 1469 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
454 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 1470 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
455 unsigned char unused; /* currently unused padding */ 1471 unsigned char unused;
1472#if EV_USE_EPOLL
1473 unsigned int egen; /* generation counter to counter epoll bugs */
1474#endif
456#if EV_SELECT_IS_WINSOCKET 1475#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
457 SOCKET handle; 1476 SOCKET handle;
458#endif 1477#endif
1478#if EV_USE_IOCP
1479 OVERLAPPED or, ow;
1480#endif
459} ANFD; 1481} ANFD;
460 1482
1483/* stores the pending event set for a given watcher */
461typedef struct 1484typedef struct
462{ 1485{
463 W w; 1486 W w;
464 int events; 1487 int events; /* the pending event set for the given watcher */
465} ANPENDING; 1488} ANPENDING;
466 1489
467#if EV_USE_INOTIFY 1490#if EV_USE_INOTIFY
468/* hash table entry per inotify-id */ 1491/* hash table entry per inotify-id */
469typedef struct 1492typedef struct
472} ANFS; 1495} ANFS;
473#endif 1496#endif
474 1497
475/* Heap Entry */ 1498/* Heap Entry */
476#if EV_HEAP_CACHE_AT 1499#if EV_HEAP_CACHE_AT
1500 /* a heap element */
477 typedef struct { 1501 typedef struct {
478 ev_tstamp at; 1502 ev_tstamp at;
479 WT w; 1503 WT w;
480 } ANHE; 1504 } ANHE;
481 1505
482 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1506 #define ANHE_w(he) (he).w /* access watcher, read-write */
483 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1507 #define ANHE_at(he) (he).at /* access cached at, read-only */
484 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 1508 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
485#else 1509#else
1510 /* a heap element */
486 typedef WT ANHE; 1511 typedef WT ANHE;
487 1512
488 #define ANHE_w(he) (he) 1513 #define ANHE_w(he) (he)
489 #define ANHE_at(he) (he)->at 1514 #define ANHE_at(he) (he)->at
490 #define ANHE_at_cache(he) 1515 #define ANHE_at_cache(he)
501 #undef VAR 1526 #undef VAR
502 }; 1527 };
503 #include "ev_wrap.h" 1528 #include "ev_wrap.h"
504 1529
505 static struct ev_loop default_loop_struct; 1530 static struct ev_loop default_loop_struct;
506 struct ev_loop *ev_default_loop_ptr; 1531 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
507 1532
508#else 1533#else
509 1534
510 ev_tstamp ev_rt_now; 1535 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
511 #define VAR(name,decl) static decl; 1536 #define VAR(name,decl) static decl;
512 #include "ev_vars.h" 1537 #include "ev_vars.h"
513 #undef VAR 1538 #undef VAR
514 1539
515 static int ev_default_loop_ptr; 1540 static int ev_default_loop_ptr;
516 1541
517#endif 1542#endif
518 1543
1544#if EV_FEATURE_API
1545# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1546# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1547# define EV_INVOKE_PENDING invoke_cb (EV_A)
1548#else
1549# define EV_RELEASE_CB (void)0
1550# define EV_ACQUIRE_CB (void)0
1551# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1552#endif
1553
1554#define EVBREAK_RECURSE 0x80
1555
519/*****************************************************************************/ 1556/*****************************************************************************/
520 1557
1558#ifndef EV_HAVE_EV_TIME
521ev_tstamp 1559ev_tstamp
522ev_time (void) 1560ev_time (void) EV_THROW
523{ 1561{
524#if EV_USE_REALTIME 1562#if EV_USE_REALTIME
1563 if (expect_true (have_realtime))
1564 {
525 struct timespec ts; 1565 struct timespec ts;
526 clock_gettime (CLOCK_REALTIME, &ts); 1566 clock_gettime (CLOCK_REALTIME, &ts);
527 return ts.tv_sec + ts.tv_nsec * 1e-9; 1567 return ts.tv_sec + ts.tv_nsec * 1e-9;
528#else 1568 }
1569#endif
1570
529 struct timeval tv; 1571 struct timeval tv;
530 gettimeofday (&tv, 0); 1572 gettimeofday (&tv, 0);
531 return tv.tv_sec + tv.tv_usec * 1e-6; 1573 return tv.tv_sec + tv.tv_usec * 1e-6;
532#endif
533} 1574}
1575#endif
534 1576
535ev_tstamp inline_size 1577inline_size ev_tstamp
536get_clock (void) 1578get_clock (void)
537{ 1579{
538#if EV_USE_MONOTONIC 1580#if EV_USE_MONOTONIC
539 if (expect_true (have_monotonic)) 1581 if (expect_true (have_monotonic))
540 { 1582 {
547 return ev_time (); 1589 return ev_time ();
548} 1590}
549 1591
550#if EV_MULTIPLICITY 1592#if EV_MULTIPLICITY
551ev_tstamp 1593ev_tstamp
552ev_now (EV_P) 1594ev_now (EV_P) EV_THROW
553{ 1595{
554 return ev_rt_now; 1596 return ev_rt_now;
555} 1597}
556#endif 1598#endif
557 1599
558void 1600void
559ev_sleep (ev_tstamp delay) 1601ev_sleep (ev_tstamp delay) EV_THROW
560{ 1602{
561 if (delay > 0.) 1603 if (delay > 0.)
562 { 1604 {
563#if EV_USE_NANOSLEEP 1605#if EV_USE_NANOSLEEP
564 struct timespec ts; 1606 struct timespec ts;
565 1607
566 ts.tv_sec = (time_t)delay; 1608 EV_TS_SET (ts, delay);
567 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
568
569 nanosleep (&ts, 0); 1609 nanosleep (&ts, 0);
570#elif defined(_WIN32) 1610#elif defined _WIN32
571 Sleep ((unsigned long)(delay * 1e3)); 1611 Sleep ((unsigned long)(delay * 1e3));
572#else 1612#else
573 struct timeval tv; 1613 struct timeval tv;
574 1614
575 tv.tv_sec = (time_t)delay;
576 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
577
578 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 1615 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
579 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 1616 /* something not guaranteed by newer posix versions, but guaranteed */
580 /* by older ones */ 1617 /* by older ones */
1618 EV_TV_SET (tv, delay);
581 select (0, 0, 0, 0, &tv); 1619 select (0, 0, 0, 0, &tv);
582#endif 1620#endif
583 } 1621 }
584} 1622}
585 1623
586/*****************************************************************************/ 1624/*****************************************************************************/
587 1625
588#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1626#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
589 1627
590int inline_size 1628/* find a suitable new size for the given array, */
1629/* hopefully by rounding to a nice-to-malloc size */
1630inline_size int
591array_nextsize (int elem, int cur, int cnt) 1631array_nextsize (int elem, int cur, int cnt)
592{ 1632{
593 int ncur = cur + 1; 1633 int ncur = cur + 1;
594 1634
595 do 1635 do
596 ncur <<= 1; 1636 ncur <<= 1;
597 while (cnt > ncur); 1637 while (cnt > ncur);
598 1638
599 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1639 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
600 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1640 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
601 { 1641 {
602 ncur *= elem; 1642 ncur *= elem;
603 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1643 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
604 ncur = ncur - sizeof (void *) * 4; 1644 ncur = ncur - sizeof (void *) * 4;
606 } 1646 }
607 1647
608 return ncur; 1648 return ncur;
609} 1649}
610 1650
611static noinline void * 1651static void * noinline ecb_cold
612array_realloc (int elem, void *base, int *cur, int cnt) 1652array_realloc (int elem, void *base, int *cur, int cnt)
613{ 1653{
614 *cur = array_nextsize (elem, *cur, cnt); 1654 *cur = array_nextsize (elem, *cur, cnt);
615 return ev_realloc (base, elem * *cur); 1655 return ev_realloc (base, elem * *cur);
616} 1656}
619 memset ((void *)(base), 0, sizeof (*(base)) * (count)) 1659 memset ((void *)(base), 0, sizeof (*(base)) * (count))
620 1660
621#define array_needsize(type,base,cur,cnt,init) \ 1661#define array_needsize(type,base,cur,cnt,init) \
622 if (expect_false ((cnt) > (cur))) \ 1662 if (expect_false ((cnt) > (cur))) \
623 { \ 1663 { \
624 int ocur_ = (cur); \ 1664 int ecb_unused ocur_ = (cur); \
625 (base) = (type *)array_realloc \ 1665 (base) = (type *)array_realloc \
626 (sizeof (type), (base), &(cur), (cnt)); \ 1666 (sizeof (type), (base), &(cur), (cnt)); \
627 init ((base) + (ocur_), (cur) - ocur_); \ 1667 init ((base) + (ocur_), (cur) - ocur_); \
628 } 1668 }
629 1669
636 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1676 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
637 } 1677 }
638#endif 1678#endif
639 1679
640#define array_free(stem, idx) \ 1680#define array_free(stem, idx) \
641 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
642 1682
643/*****************************************************************************/ 1683/*****************************************************************************/
644 1684
1685/* dummy callback for pending events */
1686static void noinline
1687pendingcb (EV_P_ ev_prepare *w, int revents)
1688{
1689}
1690
645void noinline 1691void noinline
646ev_feed_event (EV_P_ void *w, int revents) 1692ev_feed_event (EV_P_ void *w, int revents) EV_THROW
647{ 1693{
648 W w_ = (W)w; 1694 W w_ = (W)w;
649 int pri = ABSPRI (w_); 1695 int pri = ABSPRI (w_);
650 1696
651 if (expect_false (w_->pending)) 1697 if (expect_false (w_->pending))
655 w_->pending = ++pendingcnt [pri]; 1701 w_->pending = ++pendingcnt [pri];
656 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1702 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
657 pendings [pri][w_->pending - 1].w = w_; 1703 pendings [pri][w_->pending - 1].w = w_;
658 pendings [pri][w_->pending - 1].events = revents; 1704 pendings [pri][w_->pending - 1].events = revents;
659 } 1705 }
660}
661 1706
662void inline_speed 1707 pendingpri = NUMPRI - 1;
1708}
1709
1710inline_speed void
1711feed_reverse (EV_P_ W w)
1712{
1713 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1714 rfeeds [rfeedcnt++] = w;
1715}
1716
1717inline_size void
1718feed_reverse_done (EV_P_ int revents)
1719{
1720 do
1721 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1722 while (rfeedcnt);
1723}
1724
1725inline_speed void
663queue_events (EV_P_ W *events, int eventcnt, int type) 1726queue_events (EV_P_ W *events, int eventcnt, int type)
664{ 1727{
665 int i; 1728 int i;
666 1729
667 for (i = 0; i < eventcnt; ++i) 1730 for (i = 0; i < eventcnt; ++i)
668 ev_feed_event (EV_A_ events [i], type); 1731 ev_feed_event (EV_A_ events [i], type);
669} 1732}
670 1733
671/*****************************************************************************/ 1734/*****************************************************************************/
672 1735
673void inline_speed 1736inline_speed void
674fd_event (EV_P_ int fd, int revents) 1737fd_event_nocheck (EV_P_ int fd, int revents)
675{ 1738{
676 ANFD *anfd = anfds + fd; 1739 ANFD *anfd = anfds + fd;
677 ev_io *w; 1740 ev_io *w;
678 1741
679 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1742 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
683 if (ev) 1746 if (ev)
684 ev_feed_event (EV_A_ (W)w, ev); 1747 ev_feed_event (EV_A_ (W)w, ev);
685 } 1748 }
686} 1749}
687 1750
1751/* do not submit kernel events for fds that have reify set */
1752/* because that means they changed while we were polling for new events */
1753inline_speed void
1754fd_event (EV_P_ int fd, int revents)
1755{
1756 ANFD *anfd = anfds + fd;
1757
1758 if (expect_true (!anfd->reify))
1759 fd_event_nocheck (EV_A_ fd, revents);
1760}
1761
688void 1762void
689ev_feed_fd_event (EV_P_ int fd, int revents) 1763ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
690{ 1764{
691 if (fd >= 0 && fd < anfdmax) 1765 if (fd >= 0 && fd < anfdmax)
692 fd_event (EV_A_ fd, revents); 1766 fd_event_nocheck (EV_A_ fd, revents);
693} 1767}
694 1768
695void inline_size 1769/* make sure the external fd watch events are in-sync */
1770/* with the kernel/libev internal state */
1771inline_size void
696fd_reify (EV_P) 1772fd_reify (EV_P)
697{ 1773{
698 int i; 1774 int i;
1775
1776#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1777 for (i = 0; i < fdchangecnt; ++i)
1778 {
1779 int fd = fdchanges [i];
1780 ANFD *anfd = anfds + fd;
1781
1782 if (anfd->reify & EV__IOFDSET && anfd->head)
1783 {
1784 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1785
1786 if (handle != anfd->handle)
1787 {
1788 unsigned long arg;
1789
1790 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1791
1792 /* handle changed, but fd didn't - we need to do it in two steps */
1793 backend_modify (EV_A_ fd, anfd->events, 0);
1794 anfd->events = 0;
1795 anfd->handle = handle;
1796 }
1797 }
1798 }
1799#endif
699 1800
700 for (i = 0; i < fdchangecnt; ++i) 1801 for (i = 0; i < fdchangecnt; ++i)
701 { 1802 {
702 int fd = fdchanges [i]; 1803 int fd = fdchanges [i];
703 ANFD *anfd = anfds + fd; 1804 ANFD *anfd = anfds + fd;
704 ev_io *w; 1805 ev_io *w;
705 1806
706 unsigned char events = 0; 1807 unsigned char o_events = anfd->events;
1808 unsigned char o_reify = anfd->reify;
707 1809
708 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1810 anfd->reify = 0;
709 events |= (unsigned char)w->events;
710 1811
711#if EV_SELECT_IS_WINSOCKET 1812 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
712 if (events)
713 { 1813 {
714 unsigned long arg; 1814 anfd->events = 0;
715 #ifdef EV_FD_TO_WIN32_HANDLE 1815
716 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1816 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
717 #else 1817 anfd->events |= (unsigned char)w->events;
718 anfd->handle = _get_osfhandle (fd); 1818
719 #endif 1819 if (o_events != anfd->events)
720 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 1820 o_reify = EV__IOFDSET; /* actually |= */
721 } 1821 }
722#endif
723 1822
724 { 1823 if (o_reify & EV__IOFDSET)
725 unsigned char o_events = anfd->events;
726 unsigned char o_reify = anfd->reify;
727
728 anfd->reify = 0;
729 anfd->events = events;
730
731 if (o_events != events || o_reify & EV_IOFDSET)
732 backend_modify (EV_A_ fd, o_events, events); 1824 backend_modify (EV_A_ fd, o_events, anfd->events);
733 }
734 } 1825 }
735 1826
736 fdchangecnt = 0; 1827 fdchangecnt = 0;
737} 1828}
738 1829
739void inline_size 1830/* something about the given fd changed */
1831inline_size void
740fd_change (EV_P_ int fd, int flags) 1832fd_change (EV_P_ int fd, int flags)
741{ 1833{
742 unsigned char reify = anfds [fd].reify; 1834 unsigned char reify = anfds [fd].reify;
743 anfds [fd].reify |= flags; 1835 anfds [fd].reify |= flags;
744 1836
748 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1840 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
749 fdchanges [fdchangecnt - 1] = fd; 1841 fdchanges [fdchangecnt - 1] = fd;
750 } 1842 }
751} 1843}
752 1844
753void inline_speed 1845/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1846inline_speed void ecb_cold
754fd_kill (EV_P_ int fd) 1847fd_kill (EV_P_ int fd)
755{ 1848{
756 ev_io *w; 1849 ev_io *w;
757 1850
758 while ((w = (ev_io *)anfds [fd].head)) 1851 while ((w = (ev_io *)anfds [fd].head))
760 ev_io_stop (EV_A_ w); 1853 ev_io_stop (EV_A_ w);
761 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1854 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
762 } 1855 }
763} 1856}
764 1857
765int inline_size 1858/* check whether the given fd is actually valid, for error recovery */
1859inline_size int ecb_cold
766fd_valid (int fd) 1860fd_valid (int fd)
767{ 1861{
768#ifdef _WIN32 1862#ifdef _WIN32
769 return _get_osfhandle (fd) != -1; 1863 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
770#else 1864#else
771 return fcntl (fd, F_GETFD) != -1; 1865 return fcntl (fd, F_GETFD) != -1;
772#endif 1866#endif
773} 1867}
774 1868
775/* called on EBADF to verify fds */ 1869/* called on EBADF to verify fds */
776static void noinline 1870static void noinline ecb_cold
777fd_ebadf (EV_P) 1871fd_ebadf (EV_P)
778{ 1872{
779 int fd; 1873 int fd;
780 1874
781 for (fd = 0; fd < anfdmax; ++fd) 1875 for (fd = 0; fd < anfdmax; ++fd)
783 if (!fd_valid (fd) && errno == EBADF) 1877 if (!fd_valid (fd) && errno == EBADF)
784 fd_kill (EV_A_ fd); 1878 fd_kill (EV_A_ fd);
785} 1879}
786 1880
787/* called on ENOMEM in select/poll to kill some fds and retry */ 1881/* called on ENOMEM in select/poll to kill some fds and retry */
788static void noinline 1882static void noinline ecb_cold
789fd_enomem (EV_P) 1883fd_enomem (EV_P)
790{ 1884{
791 int fd; 1885 int fd;
792 1886
793 for (fd = anfdmax; fd--; ) 1887 for (fd = anfdmax; fd--; )
794 if (anfds [fd].events) 1888 if (anfds [fd].events)
795 { 1889 {
796 fd_kill (EV_A_ fd); 1890 fd_kill (EV_A_ fd);
797 return; 1891 break;
798 } 1892 }
799} 1893}
800 1894
801/* usually called after fork if backend needs to re-arm all fds from scratch */ 1895/* usually called after fork if backend needs to re-arm all fds from scratch */
802static void noinline 1896static void noinline
806 1900
807 for (fd = 0; fd < anfdmax; ++fd) 1901 for (fd = 0; fd < anfdmax; ++fd)
808 if (anfds [fd].events) 1902 if (anfds [fd].events)
809 { 1903 {
810 anfds [fd].events = 0; 1904 anfds [fd].events = 0;
1905 anfds [fd].emask = 0;
811 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1906 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
812 } 1907 }
813} 1908}
814 1909
1910/* used to prepare libev internal fd's */
1911/* this is not fork-safe */
1912inline_speed void
1913fd_intern (int fd)
1914{
1915#ifdef _WIN32
1916 unsigned long arg = 1;
1917 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1918#else
1919 fcntl (fd, F_SETFD, FD_CLOEXEC);
1920 fcntl (fd, F_SETFL, O_NONBLOCK);
1921#endif
1922}
1923
815/*****************************************************************************/ 1924/*****************************************************************************/
816 1925
817/* 1926/*
818 * the heap functions want a real array index. array index 0 uis guaranteed to not 1927 * the heap functions want a real array index. array index 0 is guaranteed to not
819 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1928 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
820 * the branching factor of the d-tree. 1929 * the branching factor of the d-tree.
821 */ 1930 */
822 1931
823/* 1932/*
832#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1941#define HEAP0 (DHEAP - 1) /* index of first element in heap */
833#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1942#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
834#define UPHEAP_DONE(p,k) ((p) == (k)) 1943#define UPHEAP_DONE(p,k) ((p) == (k))
835 1944
836/* away from the root */ 1945/* away from the root */
837void inline_speed 1946inline_speed void
838downheap (ANHE *heap, int N, int k) 1947downheap (ANHE *heap, int N, int k)
839{ 1948{
840 ANHE he = heap [k]; 1949 ANHE he = heap [k];
841 ANHE *E = heap + N + HEAP0; 1950 ANHE *E = heap + N + HEAP0;
842 1951
882#define HEAP0 1 1991#define HEAP0 1
883#define HPARENT(k) ((k) >> 1) 1992#define HPARENT(k) ((k) >> 1)
884#define UPHEAP_DONE(p,k) (!(p)) 1993#define UPHEAP_DONE(p,k) (!(p))
885 1994
886/* away from the root */ 1995/* away from the root */
887void inline_speed 1996inline_speed void
888downheap (ANHE *heap, int N, int k) 1997downheap (ANHE *heap, int N, int k)
889{ 1998{
890 ANHE he = heap [k]; 1999 ANHE he = heap [k];
891 2000
892 for (;;) 2001 for (;;)
893 { 2002 {
894 int c = k << 1; 2003 int c = k << 1;
895 2004
896 if (c > N + HEAP0 - 1) 2005 if (c >= N + HEAP0)
897 break; 2006 break;
898 2007
899 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 2008 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
900 ? 1 : 0; 2009 ? 1 : 0;
901 2010
912 ev_active (ANHE_w (he)) = k; 2021 ev_active (ANHE_w (he)) = k;
913} 2022}
914#endif 2023#endif
915 2024
916/* towards the root */ 2025/* towards the root */
917void inline_speed 2026inline_speed void
918upheap (ANHE *heap, int k) 2027upheap (ANHE *heap, int k)
919{ 2028{
920 ANHE he = heap [k]; 2029 ANHE he = heap [k];
921 2030
922 for (;;) 2031 for (;;)
933 2042
934 heap [k] = he; 2043 heap [k] = he;
935 ev_active (ANHE_w (he)) = k; 2044 ev_active (ANHE_w (he)) = k;
936} 2045}
937 2046
938void inline_size 2047/* move an element suitably so it is in a correct place */
2048inline_size void
939adjustheap (ANHE *heap, int N, int k) 2049adjustheap (ANHE *heap, int N, int k)
940{ 2050{
941 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 2051 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
942 upheap (heap, k); 2052 upheap (heap, k);
943 else 2053 else
944 downheap (heap, N, k); 2054 downheap (heap, N, k);
945} 2055}
946 2056
947/* rebuild the heap: this function is used only once and executed rarely */ 2057/* rebuild the heap: this function is used only once and executed rarely */
948void inline_size 2058inline_size void
949reheap (ANHE *heap, int N) 2059reheap (ANHE *heap, int N)
950{ 2060{
951 int i; 2061 int i;
952 2062
953 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 2063 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
956 upheap (heap, i + HEAP0); 2066 upheap (heap, i + HEAP0);
957} 2067}
958 2068
959/*****************************************************************************/ 2069/*****************************************************************************/
960 2070
2071/* associate signal watchers to a signal signal */
961typedef struct 2072typedef struct
962{ 2073{
2074 EV_ATOMIC_T pending;
2075#if EV_MULTIPLICITY
2076 EV_P;
2077#endif
963 WL head; 2078 WL head;
964 EV_ATOMIC_T gotsig;
965} ANSIG; 2079} ANSIG;
966 2080
967static ANSIG *signals; 2081static ANSIG signals [EV_NSIG - 1];
968static int signalmax;
969
970static EV_ATOMIC_T gotsig;
971 2082
972/*****************************************************************************/ 2083/*****************************************************************************/
973 2084
974void inline_speed 2085#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
975fd_intern (int fd)
976{
977#ifdef _WIN32
978 unsigned long arg = 1;
979 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
980#else
981 fcntl (fd, F_SETFD, FD_CLOEXEC);
982 fcntl (fd, F_SETFL, O_NONBLOCK);
983#endif
984}
985 2086
986static void noinline 2087static void noinline ecb_cold
987evpipe_init (EV_P) 2088evpipe_init (EV_P)
988{ 2089{
989 if (!ev_is_active (&pipeev)) 2090 if (!ev_is_active (&pipe_w))
2091 {
2092 int fds [2];
2093
2094# if EV_USE_EVENTFD
2095 fds [0] = -1;
2096 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2097 if (fds [1] < 0 && errno == EINVAL)
2098 fds [1] = eventfd (0, 0);
2099
2100 if (fds [1] < 0)
2101# endif
2102 {
2103 while (pipe (fds))
2104 ev_syserr ("(libev) error creating signal/async pipe");
2105
2106 fd_intern (fds [0]);
2107 }
2108
2109 evpipe [0] = fds [0];
2110
2111 if (evpipe [1] < 0)
2112 evpipe [1] = fds [1]; /* first call, set write fd */
2113 else
2114 {
2115 /* on subsequent calls, do not change evpipe [1] */
2116 /* so that evpipe_write can always rely on its value. */
2117 /* this branch does not do anything sensible on windows, */
2118 /* so must not be executed on windows */
2119
2120 dup2 (fds [1], evpipe [1]);
2121 close (fds [1]);
2122 }
2123
2124 fd_intern (evpipe [1]);
2125
2126 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2127 ev_io_start (EV_A_ &pipe_w);
2128 ev_unref (EV_A); /* watcher should not keep loop alive */
990 { 2129 }
2130}
2131
2132inline_speed void
2133evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2134{
2135 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2136
2137 if (expect_true (*flag))
2138 return;
2139
2140 *flag = 1;
2141 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2142
2143 pipe_write_skipped = 1;
2144
2145 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2146
2147 if (pipe_write_wanted)
2148 {
2149 int old_errno;
2150
2151 pipe_write_skipped = 0;
2152 ECB_MEMORY_FENCE_RELEASE;
2153
2154 old_errno = errno; /* save errno because write will clobber it */
2155
991#if EV_USE_EVENTFD 2156#if EV_USE_EVENTFD
992 if ((evfd = eventfd (0, 0)) >= 0) 2157 if (evpipe [0] < 0)
993 { 2158 {
994 evpipe [0] = -1; 2159 uint64_t counter = 1;
995 fd_intern (evfd); 2160 write (evpipe [1], &counter, sizeof (uint64_t));
996 ev_io_set (&pipeev, evfd, EV_READ);
997 } 2161 }
998 else 2162 else
999#endif 2163#endif
1000 { 2164 {
1001 while (pipe (evpipe)) 2165#ifdef _WIN32
1002 syserr ("(libev) error creating signal/async pipe"); 2166 WSABUF buf;
1003 2167 DWORD sent;
1004 fd_intern (evpipe [0]); 2168 buf.buf = &buf;
1005 fd_intern (evpipe [1]); 2169 buf.len = 1;
1006 ev_io_set (&pipeev, evpipe [0], EV_READ); 2170 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2171#else
2172 write (evpipe [1], &(evpipe [1]), 1);
2173#endif
1007 } 2174 }
1008 2175
1009 ev_io_start (EV_A_ &pipeev); 2176 errno = old_errno;
1010 ev_unref (EV_A); /* watcher should not keep loop alive */
1011 }
1012}
1013
1014void inline_size
1015evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1016{
1017 if (!*flag)
1018 { 2177 }
1019 int old_errno = errno; /* save errno because write might clobber it */ 2178}
1020 2179
1021 *flag = 1; 2180/* called whenever the libev signal pipe */
2181/* got some events (signal, async) */
2182static void
2183pipecb (EV_P_ ev_io *iow, int revents)
2184{
2185 int i;
1022 2186
2187 if (revents & EV_READ)
2188 {
1023#if EV_USE_EVENTFD 2189#if EV_USE_EVENTFD
1024 if (evfd >= 0) 2190 if (evpipe [0] < 0)
1025 { 2191 {
1026 uint64_t counter = 1; 2192 uint64_t counter;
1027 write (evfd, &counter, sizeof (uint64_t)); 2193 read (evpipe [1], &counter, sizeof (uint64_t));
1028 } 2194 }
1029 else 2195 else
1030#endif 2196#endif
1031 write (evpipe [1], &old_errno, 1); 2197 {
1032
1033 errno = old_errno;
1034 }
1035}
1036
1037static void
1038pipecb (EV_P_ ev_io *iow, int revents)
1039{
1040#if EV_USE_EVENTFD
1041 if (evfd >= 0)
1042 {
1043 uint64_t counter;
1044 read (evfd, &counter, sizeof (uint64_t));
1045 }
1046 else
1047#endif
1048 {
1049 char dummy; 2198 char dummy[4];
2199#ifdef _WIN32
2200 WSABUF buf;
2201 DWORD recvd;
2202 DWORD flags = 0;
2203 buf.buf = dummy;
2204 buf.len = sizeof (dummy);
2205 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2206#else
1050 read (evpipe [0], &dummy, 1); 2207 read (evpipe [0], &dummy, sizeof (dummy));
2208#endif
2209 }
2210 }
2211
2212 pipe_write_skipped = 0;
2213
2214 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2215
2216#if EV_SIGNAL_ENABLE
2217 if (sig_pending)
1051 } 2218 {
2219 sig_pending = 0;
1052 2220
1053 if (gotsig && ev_is_default_loop (EV_A)) 2221 ECB_MEMORY_FENCE;
1054 {
1055 int signum;
1056 gotsig = 0;
1057 2222
1058 for (signum = signalmax; signum--; ) 2223 for (i = EV_NSIG - 1; i--; )
1059 if (signals [signum].gotsig) 2224 if (expect_false (signals [i].pending))
1060 ev_feed_signal_event (EV_A_ signum + 1); 2225 ev_feed_signal_event (EV_A_ i + 1);
1061 } 2226 }
2227#endif
1062 2228
1063#if EV_ASYNC_ENABLE 2229#if EV_ASYNC_ENABLE
1064 if (gotasync) 2230 if (async_pending)
1065 { 2231 {
1066 int i; 2232 async_pending = 0;
1067 gotasync = 0; 2233
2234 ECB_MEMORY_FENCE;
1068 2235
1069 for (i = asynccnt; i--; ) 2236 for (i = asynccnt; i--; )
1070 if (asyncs [i]->sent) 2237 if (asyncs [i]->sent)
1071 { 2238 {
1072 asyncs [i]->sent = 0; 2239 asyncs [i]->sent = 0;
2240 ECB_MEMORY_FENCE_RELEASE;
1073 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2241 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1074 } 2242 }
1075 } 2243 }
1076#endif 2244#endif
1077} 2245}
1078 2246
1079/*****************************************************************************/ 2247/*****************************************************************************/
1080 2248
2249void
2250ev_feed_signal (int signum) EV_THROW
2251{
2252#if EV_MULTIPLICITY
2253 EV_P;
2254 ECB_MEMORY_FENCE_ACQUIRE;
2255 EV_A = signals [signum - 1].loop;
2256
2257 if (!EV_A)
2258 return;
2259#endif
2260
2261 signals [signum - 1].pending = 1;
2262 evpipe_write (EV_A_ &sig_pending);
2263}
2264
1081static void 2265static void
1082ev_sighandler (int signum) 2266ev_sighandler (int signum)
1083{ 2267{
2268#ifdef _WIN32
2269 signal (signum, ev_sighandler);
2270#endif
2271
2272 ev_feed_signal (signum);
2273}
2274
2275void noinline
2276ev_feed_signal_event (EV_P_ int signum) EV_THROW
2277{
2278 WL w;
2279
2280 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2281 return;
2282
2283 --signum;
2284
1084#if EV_MULTIPLICITY 2285#if EV_MULTIPLICITY
1085 struct ev_loop *loop = &default_loop_struct; 2286 /* it is permissible to try to feed a signal to the wrong loop */
1086#endif 2287 /* or, likely more useful, feeding a signal nobody is waiting for */
1087 2288
1088#if _WIN32 2289 if (expect_false (signals [signum].loop != EV_A))
1089 signal (signum, ev_sighandler);
1090#endif
1091
1092 signals [signum - 1].gotsig = 1;
1093 evpipe_write (EV_A_ &gotsig);
1094}
1095
1096void noinline
1097ev_feed_signal_event (EV_P_ int signum)
1098{
1099 WL w;
1100
1101#if EV_MULTIPLICITY
1102 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1103#endif
1104
1105 --signum;
1106
1107 if (signum < 0 || signum >= signalmax)
1108 return; 2290 return;
2291#endif
1109 2292
1110 signals [signum].gotsig = 0; 2293 signals [signum].pending = 0;
2294 ECB_MEMORY_FENCE_RELEASE;
1111 2295
1112 for (w = signals [signum].head; w; w = w->next) 2296 for (w = signals [signum].head; w; w = w->next)
1113 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2297 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1114} 2298}
1115 2299
2300#if EV_USE_SIGNALFD
2301static void
2302sigfdcb (EV_P_ ev_io *iow, int revents)
2303{
2304 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2305
2306 for (;;)
2307 {
2308 ssize_t res = read (sigfd, si, sizeof (si));
2309
2310 /* not ISO-C, as res might be -1, but works with SuS */
2311 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2312 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2313
2314 if (res < (ssize_t)sizeof (si))
2315 break;
2316 }
2317}
2318#endif
2319
2320#endif
2321
1116/*****************************************************************************/ 2322/*****************************************************************************/
1117 2323
2324#if EV_CHILD_ENABLE
1118static WL childs [EV_PID_HASHSIZE]; 2325static WL childs [EV_PID_HASHSIZE];
1119
1120#ifndef _WIN32
1121 2326
1122static ev_signal childev; 2327static ev_signal childev;
1123 2328
1124#ifndef WIFCONTINUED 2329#ifndef WIFCONTINUED
1125# define WIFCONTINUED(status) 0 2330# define WIFCONTINUED(status) 0
1126#endif 2331#endif
1127 2332
1128void inline_speed 2333/* handle a single child status event */
2334inline_speed void
1129child_reap (EV_P_ int chain, int pid, int status) 2335child_reap (EV_P_ int chain, int pid, int status)
1130{ 2336{
1131 ev_child *w; 2337 ev_child *w;
1132 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2338 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1133 2339
1134 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2340 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1135 { 2341 {
1136 if ((w->pid == pid || !w->pid) 2342 if ((w->pid == pid || !w->pid)
1137 && (!traced || (w->flags & 1))) 2343 && (!traced || (w->flags & 1)))
1138 { 2344 {
1139 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2345 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1146 2352
1147#ifndef WCONTINUED 2353#ifndef WCONTINUED
1148# define WCONTINUED 0 2354# define WCONTINUED 0
1149#endif 2355#endif
1150 2356
2357/* called on sigchld etc., calls waitpid */
1151static void 2358static void
1152childcb (EV_P_ ev_signal *sw, int revents) 2359childcb (EV_P_ ev_signal *sw, int revents)
1153{ 2360{
1154 int pid, status; 2361 int pid, status;
1155 2362
1163 /* make sure we are called again until all children have been reaped */ 2370 /* make sure we are called again until all children have been reaped */
1164 /* we need to do it this way so that the callback gets called before we continue */ 2371 /* we need to do it this way so that the callback gets called before we continue */
1165 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2372 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1166 2373
1167 child_reap (EV_A_ pid, pid, status); 2374 child_reap (EV_A_ pid, pid, status);
1168 if (EV_PID_HASHSIZE > 1) 2375 if ((EV_PID_HASHSIZE) > 1)
1169 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2376 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1170} 2377}
1171 2378
1172#endif 2379#endif
1173 2380
1174/*****************************************************************************/ 2381/*****************************************************************************/
1175 2382
2383#if EV_USE_IOCP
2384# include "ev_iocp.c"
2385#endif
1176#if EV_USE_PORT 2386#if EV_USE_PORT
1177# include "ev_port.c" 2387# include "ev_port.c"
1178#endif 2388#endif
1179#if EV_USE_KQUEUE 2389#if EV_USE_KQUEUE
1180# include "ev_kqueue.c" 2390# include "ev_kqueue.c"
1187#endif 2397#endif
1188#if EV_USE_SELECT 2398#if EV_USE_SELECT
1189# include "ev_select.c" 2399# include "ev_select.c"
1190#endif 2400#endif
1191 2401
1192int 2402int ecb_cold
1193ev_version_major (void) 2403ev_version_major (void) EV_THROW
1194{ 2404{
1195 return EV_VERSION_MAJOR; 2405 return EV_VERSION_MAJOR;
1196} 2406}
1197 2407
1198int 2408int ecb_cold
1199ev_version_minor (void) 2409ev_version_minor (void) EV_THROW
1200{ 2410{
1201 return EV_VERSION_MINOR; 2411 return EV_VERSION_MINOR;
1202} 2412}
1203 2413
1204/* return true if we are running with elevated privileges and should ignore env variables */ 2414/* return true if we are running with elevated privileges and should ignore env variables */
1205int inline_size 2415int inline_size ecb_cold
1206enable_secure (void) 2416enable_secure (void)
1207{ 2417{
1208#ifdef _WIN32 2418#ifdef _WIN32
1209 return 0; 2419 return 0;
1210#else 2420#else
1211 return getuid () != geteuid () 2421 return getuid () != geteuid ()
1212 || getgid () != getegid (); 2422 || getgid () != getegid ();
1213#endif 2423#endif
1214} 2424}
1215 2425
1216unsigned int 2426unsigned int ecb_cold
1217ev_supported_backends (void) 2427ev_supported_backends (void) EV_THROW
1218{ 2428{
1219 unsigned int flags = 0; 2429 unsigned int flags = 0;
1220 2430
1221 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2431 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1222 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2432 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1225 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2435 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1226 2436
1227 return flags; 2437 return flags;
1228} 2438}
1229 2439
1230unsigned int 2440unsigned int ecb_cold
1231ev_recommended_backends (void) 2441ev_recommended_backends (void) EV_THROW
1232{ 2442{
1233 unsigned int flags = ev_supported_backends (); 2443 unsigned int flags = ev_supported_backends ();
1234 2444
1235#ifndef __NetBSD__ 2445#ifndef __NetBSD__
1236 /* kqueue is borked on everything but netbsd apparently */ 2446 /* kqueue is borked on everything but netbsd apparently */
1237 /* it usually doesn't work correctly on anything but sockets and pipes */ 2447 /* it usually doesn't work correctly on anything but sockets and pipes */
1238 flags &= ~EVBACKEND_KQUEUE; 2448 flags &= ~EVBACKEND_KQUEUE;
1239#endif 2449#endif
1240#ifdef __APPLE__ 2450#ifdef __APPLE__
1241 // flags &= ~EVBACKEND_KQUEUE; for documentation 2451 /* only select works correctly on that "unix-certified" platform */
1242 flags &= ~EVBACKEND_POLL; 2452 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2453 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2454#endif
2455#ifdef __FreeBSD__
2456 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1243#endif 2457#endif
1244 2458
1245 return flags; 2459 return flags;
1246} 2460}
1247 2461
2462unsigned int ecb_cold
2463ev_embeddable_backends (void) EV_THROW
2464{
2465 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2466
2467 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2468 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2469 flags &= ~EVBACKEND_EPOLL;
2470
2471 return flags;
2472}
2473
1248unsigned int 2474unsigned int
1249ev_embeddable_backends (void) 2475ev_backend (EV_P) EV_THROW
1250{ 2476{
1251 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2477 return backend;
1252
1253 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1254 /* please fix it and tell me how to detect the fix */
1255 flags &= ~EVBACKEND_EPOLL;
1256
1257 return flags;
1258} 2478}
1259 2479
2480#if EV_FEATURE_API
1260unsigned int 2481unsigned int
1261ev_backend (EV_P) 2482ev_iteration (EV_P) EV_THROW
1262{ 2483{
1263 return backend; 2484 return loop_count;
1264} 2485}
1265 2486
1266unsigned int 2487unsigned int
1267ev_loop_count (EV_P) 2488ev_depth (EV_P) EV_THROW
1268{ 2489{
1269 return loop_count; 2490 return loop_depth;
1270} 2491}
1271 2492
1272void 2493void
1273ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2494ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1274{ 2495{
1275 io_blocktime = interval; 2496 io_blocktime = interval;
1276} 2497}
1277 2498
1278void 2499void
1279ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2500ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1280{ 2501{
1281 timeout_blocktime = interval; 2502 timeout_blocktime = interval;
1282} 2503}
1283 2504
2505void
2506ev_set_userdata (EV_P_ void *data) EV_THROW
2507{
2508 userdata = data;
2509}
2510
2511void *
2512ev_userdata (EV_P) EV_THROW
2513{
2514 return userdata;
2515}
2516
2517void
2518ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2519{
2520 invoke_cb = invoke_pending_cb;
2521}
2522
2523void
2524ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2525{
2526 release_cb = release;
2527 acquire_cb = acquire;
2528}
2529#endif
2530
2531/* initialise a loop structure, must be zero-initialised */
1284static void noinline 2532static void noinline ecb_cold
1285loop_init (EV_P_ unsigned int flags) 2533loop_init (EV_P_ unsigned int flags) EV_THROW
1286{ 2534{
1287 if (!backend) 2535 if (!backend)
1288 { 2536 {
2537 origflags = flags;
2538
2539#if EV_USE_REALTIME
2540 if (!have_realtime)
2541 {
2542 struct timespec ts;
2543
2544 if (!clock_gettime (CLOCK_REALTIME, &ts))
2545 have_realtime = 1;
2546 }
2547#endif
2548
1289#if EV_USE_MONOTONIC 2549#if EV_USE_MONOTONIC
2550 if (!have_monotonic)
1290 { 2551 {
1291 struct timespec ts; 2552 struct timespec ts;
2553
1292 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2554 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1293 have_monotonic = 1; 2555 have_monotonic = 1;
1294 } 2556 }
1295#endif
1296
1297 ev_rt_now = ev_time ();
1298 mn_now = get_clock ();
1299 now_floor = mn_now;
1300 rtmn_diff = ev_rt_now - mn_now;
1301
1302 io_blocktime = 0.;
1303 timeout_blocktime = 0.;
1304 backend = 0;
1305 backend_fd = -1;
1306 gotasync = 0;
1307#if EV_USE_INOTIFY
1308 fs_fd = -2;
1309#endif 2557#endif
1310 2558
1311 /* pid check not overridable via env */ 2559 /* pid check not overridable via env */
1312#ifndef _WIN32 2560#ifndef _WIN32
1313 if (flags & EVFLAG_FORKCHECK) 2561 if (flags & EVFLAG_FORKCHECK)
1317 if (!(flags & EVFLAG_NOENV) 2565 if (!(flags & EVFLAG_NOENV)
1318 && !enable_secure () 2566 && !enable_secure ()
1319 && getenv ("LIBEV_FLAGS")) 2567 && getenv ("LIBEV_FLAGS"))
1320 flags = atoi (getenv ("LIBEV_FLAGS")); 2568 flags = atoi (getenv ("LIBEV_FLAGS"));
1321 2569
1322 if (!(flags & 0x0000ffffU)) 2570 ev_rt_now = ev_time ();
2571 mn_now = get_clock ();
2572 now_floor = mn_now;
2573 rtmn_diff = ev_rt_now - mn_now;
2574#if EV_FEATURE_API
2575 invoke_cb = ev_invoke_pending;
2576#endif
2577
2578 io_blocktime = 0.;
2579 timeout_blocktime = 0.;
2580 backend = 0;
2581 backend_fd = -1;
2582 sig_pending = 0;
2583#if EV_ASYNC_ENABLE
2584 async_pending = 0;
2585#endif
2586 pipe_write_skipped = 0;
2587 pipe_write_wanted = 0;
2588 evpipe [0] = -1;
2589 evpipe [1] = -1;
2590#if EV_USE_INOTIFY
2591 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2592#endif
2593#if EV_USE_SIGNALFD
2594 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2595#endif
2596
2597 if (!(flags & EVBACKEND_MASK))
1323 flags |= ev_recommended_backends (); 2598 flags |= ev_recommended_backends ();
1324 2599
2600#if EV_USE_IOCP
2601 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2602#endif
1325#if EV_USE_PORT 2603#if EV_USE_PORT
1326 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2604 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1327#endif 2605#endif
1328#if EV_USE_KQUEUE 2606#if EV_USE_KQUEUE
1329 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2607 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1336#endif 2614#endif
1337#if EV_USE_SELECT 2615#if EV_USE_SELECT
1338 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2616 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1339#endif 2617#endif
1340 2618
2619 ev_prepare_init (&pending_w, pendingcb);
2620
2621#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1341 ev_init (&pipeev, pipecb); 2622 ev_init (&pipe_w, pipecb);
1342 ev_set_priority (&pipeev, EV_MAXPRI); 2623 ev_set_priority (&pipe_w, EV_MAXPRI);
2624#endif
1343 } 2625 }
1344} 2626}
1345 2627
1346static void noinline 2628/* free up a loop structure */
2629void ecb_cold
1347loop_destroy (EV_P) 2630ev_loop_destroy (EV_P)
1348{ 2631{
1349 int i; 2632 int i;
1350 2633
2634#if EV_MULTIPLICITY
2635 /* mimic free (0) */
2636 if (!EV_A)
2637 return;
2638#endif
2639
2640#if EV_CLEANUP_ENABLE
2641 /* queue cleanup watchers (and execute them) */
2642 if (expect_false (cleanupcnt))
2643 {
2644 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2645 EV_INVOKE_PENDING;
2646 }
2647#endif
2648
2649#if EV_CHILD_ENABLE
2650 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2651 {
2652 ev_ref (EV_A); /* child watcher */
2653 ev_signal_stop (EV_A_ &childev);
2654 }
2655#endif
2656
1351 if (ev_is_active (&pipeev)) 2657 if (ev_is_active (&pipe_w))
1352 { 2658 {
1353 ev_ref (EV_A); /* signal watcher */ 2659 /*ev_ref (EV_A);*/
1354 ev_io_stop (EV_A_ &pipeev); 2660 /*ev_io_stop (EV_A_ &pipe_w);*/
1355 2661
2662 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2663 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2664 }
2665
1356#if EV_USE_EVENTFD 2666#if EV_USE_SIGNALFD
1357 if (evfd >= 0) 2667 if (ev_is_active (&sigfd_w))
1358 close (evfd); 2668 close (sigfd);
1359#endif 2669#endif
1360
1361 if (evpipe [0] >= 0)
1362 {
1363 close (evpipe [0]);
1364 close (evpipe [1]);
1365 }
1366 }
1367 2670
1368#if EV_USE_INOTIFY 2671#if EV_USE_INOTIFY
1369 if (fs_fd >= 0) 2672 if (fs_fd >= 0)
1370 close (fs_fd); 2673 close (fs_fd);
1371#endif 2674#endif
1372 2675
1373 if (backend_fd >= 0) 2676 if (backend_fd >= 0)
1374 close (backend_fd); 2677 close (backend_fd);
1375 2678
2679#if EV_USE_IOCP
2680 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2681#endif
1376#if EV_USE_PORT 2682#if EV_USE_PORT
1377 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2683 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1378#endif 2684#endif
1379#if EV_USE_KQUEUE 2685#if EV_USE_KQUEUE
1380 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2686 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1395#if EV_IDLE_ENABLE 2701#if EV_IDLE_ENABLE
1396 array_free (idle, [i]); 2702 array_free (idle, [i]);
1397#endif 2703#endif
1398 } 2704 }
1399 2705
1400 ev_free (anfds); anfdmax = 0; 2706 ev_free (anfds); anfds = 0; anfdmax = 0;
1401 2707
1402 /* have to use the microsoft-never-gets-it-right macro */ 2708 /* have to use the microsoft-never-gets-it-right macro */
2709 array_free (rfeed, EMPTY);
1403 array_free (fdchange, EMPTY); 2710 array_free (fdchange, EMPTY);
1404 array_free (timer, EMPTY); 2711 array_free (timer, EMPTY);
1405#if EV_PERIODIC_ENABLE 2712#if EV_PERIODIC_ENABLE
1406 array_free (periodic, EMPTY); 2713 array_free (periodic, EMPTY);
1407#endif 2714#endif
1408#if EV_FORK_ENABLE 2715#if EV_FORK_ENABLE
1409 array_free (fork, EMPTY); 2716 array_free (fork, EMPTY);
1410#endif 2717#endif
2718#if EV_CLEANUP_ENABLE
2719 array_free (cleanup, EMPTY);
2720#endif
1411 array_free (prepare, EMPTY); 2721 array_free (prepare, EMPTY);
1412 array_free (check, EMPTY); 2722 array_free (check, EMPTY);
1413#if EV_ASYNC_ENABLE 2723#if EV_ASYNC_ENABLE
1414 array_free (async, EMPTY); 2724 array_free (async, EMPTY);
1415#endif 2725#endif
1416 2726
1417 backend = 0; 2727 backend = 0;
2728
2729#if EV_MULTIPLICITY
2730 if (ev_is_default_loop (EV_A))
2731#endif
2732 ev_default_loop_ptr = 0;
2733#if EV_MULTIPLICITY
2734 else
2735 ev_free (EV_A);
2736#endif
1418} 2737}
1419 2738
1420#if EV_USE_INOTIFY 2739#if EV_USE_INOTIFY
1421void inline_size infy_fork (EV_P); 2740inline_size void infy_fork (EV_P);
1422#endif 2741#endif
1423 2742
1424void inline_size 2743inline_size void
1425loop_fork (EV_P) 2744loop_fork (EV_P)
1426{ 2745{
1427#if EV_USE_PORT 2746#if EV_USE_PORT
1428 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2747 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1429#endif 2748#endif
1435#endif 2754#endif
1436#if EV_USE_INOTIFY 2755#if EV_USE_INOTIFY
1437 infy_fork (EV_A); 2756 infy_fork (EV_A);
1438#endif 2757#endif
1439 2758
2759#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1440 if (ev_is_active (&pipeev)) 2760 if (ev_is_active (&pipe_w))
1441 { 2761 {
1442 /* this "locks" the handlers against writing to the pipe */ 2762 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1443 /* while we modify the fd vars */
1444 gotsig = 1;
1445#if EV_ASYNC_ENABLE
1446 gotasync = 1;
1447#endif
1448 2763
1449 ev_ref (EV_A); 2764 ev_ref (EV_A);
1450 ev_io_stop (EV_A_ &pipeev); 2765 ev_io_stop (EV_A_ &pipe_w);
1451
1452#if EV_USE_EVENTFD
1453 if (evfd >= 0)
1454 close (evfd);
1455#endif
1456 2766
1457 if (evpipe [0] >= 0) 2767 if (evpipe [0] >= 0)
1458 { 2768 EV_WIN32_CLOSE_FD (evpipe [0]);
1459 close (evpipe [0]);
1460 close (evpipe [1]);
1461 }
1462 2769
1463 evpipe_init (EV_A); 2770 evpipe_init (EV_A);
1464 /* now iterate over everything, in case we missed something */ 2771 /* iterate over everything, in case we missed something before */
1465 pipecb (EV_A_ &pipeev, EV_READ); 2772 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1466 } 2773 }
2774#endif
1467 2775
1468 postfork = 0; 2776 postfork = 0;
1469} 2777}
1470 2778
1471#if EV_MULTIPLICITY 2779#if EV_MULTIPLICITY
1472 2780
1473struct ev_loop * 2781struct ev_loop * ecb_cold
1474ev_loop_new (unsigned int flags) 2782ev_loop_new (unsigned int flags) EV_THROW
1475{ 2783{
1476 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2784 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1477 2785
1478 memset (loop, 0, sizeof (struct ev_loop)); 2786 memset (EV_A, 0, sizeof (struct ev_loop));
1479
1480 loop_init (EV_A_ flags); 2787 loop_init (EV_A_ flags);
1481 2788
1482 if (ev_backend (EV_A)) 2789 if (ev_backend (EV_A))
1483 return loop; 2790 return EV_A;
1484 2791
2792 ev_free (EV_A);
1485 return 0; 2793 return 0;
1486} 2794}
1487 2795
1488void 2796#endif /* multiplicity */
1489ev_loop_destroy (EV_P)
1490{
1491 loop_destroy (EV_A);
1492 ev_free (loop);
1493}
1494
1495void
1496ev_loop_fork (EV_P)
1497{
1498 postfork = 1; /* must be in line with ev_default_fork */
1499}
1500 2797
1501#if EV_VERIFY 2798#if EV_VERIFY
1502static void noinline 2799static void noinline ecb_cold
1503verify_watcher (EV_P_ W w) 2800verify_watcher (EV_P_ W w)
1504{ 2801{
1505 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 2802 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1506 2803
1507 if (w->pending) 2804 if (w->pending)
1508 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 2805 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1509} 2806}
1510 2807
1511static void noinline 2808static void noinline ecb_cold
1512verify_heap (EV_P_ ANHE *heap, int N) 2809verify_heap (EV_P_ ANHE *heap, int N)
1513{ 2810{
1514 int i; 2811 int i;
1515 2812
1516 for (i = HEAP0; i < N + HEAP0; ++i) 2813 for (i = HEAP0; i < N + HEAP0; ++i)
1517 { 2814 {
1518 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 2815 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1519 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 2816 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1520 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 2817 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1521 2818
1522 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 2819 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1523 } 2820 }
1524} 2821}
1525 2822
1526static void noinline 2823static void noinline ecb_cold
1527array_verify (EV_P_ W *ws, int cnt) 2824array_verify (EV_P_ W *ws, int cnt)
1528{ 2825{
1529 while (cnt--) 2826 while (cnt--)
1530 { 2827 {
1531 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 2828 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1532 verify_watcher (EV_A_ ws [cnt]); 2829 verify_watcher (EV_A_ ws [cnt]);
1533 } 2830 }
1534} 2831}
1535#endif 2832#endif
1536 2833
1537void 2834#if EV_FEATURE_API
1538ev_loop_verify (EV_P) 2835void ecb_cold
2836ev_verify (EV_P) EV_THROW
1539{ 2837{
1540#if EV_VERIFY 2838#if EV_VERIFY
1541 int i; 2839 int i;
1542 WL w; 2840 WL w, w2;
1543 2841
1544 assert (activecnt >= -1); 2842 assert (activecnt >= -1);
1545 2843
1546 assert (fdchangemax >= fdchangecnt); 2844 assert (fdchangemax >= fdchangecnt);
1547 for (i = 0; i < fdchangecnt; ++i) 2845 for (i = 0; i < fdchangecnt; ++i)
1548 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 2846 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1549 2847
1550 assert (anfdmax >= 0); 2848 assert (anfdmax >= 0);
1551 for (i = 0; i < anfdmax; ++i) 2849 for (i = 0; i < anfdmax; ++i)
2850 {
2851 int j = 0;
2852
1552 for (w = anfds [i].head; w; w = w->next) 2853 for (w = w2 = anfds [i].head; w; w = w->next)
1553 { 2854 {
1554 verify_watcher (EV_A_ (W)w); 2855 verify_watcher (EV_A_ (W)w);
2856
2857 if (j++ & 1)
2858 {
2859 assert (("libev: io watcher list contains a loop", w != w2));
2860 w2 = w2->next;
2861 }
2862
1555 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 2863 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1556 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 2864 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1557 } 2865 }
2866 }
1558 2867
1559 assert (timermax >= timercnt); 2868 assert (timermax >= timercnt);
1560 verify_heap (EV_A_ timers, timercnt); 2869 verify_heap (EV_A_ timers, timercnt);
1561 2870
1562#if EV_PERIODIC_ENABLE 2871#if EV_PERIODIC_ENABLE
1577#if EV_FORK_ENABLE 2886#if EV_FORK_ENABLE
1578 assert (forkmax >= forkcnt); 2887 assert (forkmax >= forkcnt);
1579 array_verify (EV_A_ (W *)forks, forkcnt); 2888 array_verify (EV_A_ (W *)forks, forkcnt);
1580#endif 2889#endif
1581 2890
2891#if EV_CLEANUP_ENABLE
2892 assert (cleanupmax >= cleanupcnt);
2893 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2894#endif
2895
1582#if EV_ASYNC_ENABLE 2896#if EV_ASYNC_ENABLE
1583 assert (asyncmax >= asynccnt); 2897 assert (asyncmax >= asynccnt);
1584 array_verify (EV_A_ (W *)asyncs, asynccnt); 2898 array_verify (EV_A_ (W *)asyncs, asynccnt);
1585#endif 2899#endif
1586 2900
2901#if EV_PREPARE_ENABLE
1587 assert (preparemax >= preparecnt); 2902 assert (preparemax >= preparecnt);
1588 array_verify (EV_A_ (W *)prepares, preparecnt); 2903 array_verify (EV_A_ (W *)prepares, preparecnt);
2904#endif
1589 2905
2906#if EV_CHECK_ENABLE
1590 assert (checkmax >= checkcnt); 2907 assert (checkmax >= checkcnt);
1591 array_verify (EV_A_ (W *)checks, checkcnt); 2908 array_verify (EV_A_ (W *)checks, checkcnt);
2909#endif
1592 2910
1593# if 0 2911# if 0
2912#if EV_CHILD_ENABLE
1594 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2913 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1595 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 2914 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2915#endif
1596# endif 2916# endif
1597#endif 2917#endif
1598} 2918}
1599 2919#endif
1600#endif /* multiplicity */
1601 2920
1602#if EV_MULTIPLICITY 2921#if EV_MULTIPLICITY
1603struct ev_loop * 2922struct ev_loop * ecb_cold
1604ev_default_loop_init (unsigned int flags)
1605#else 2923#else
1606int 2924int
2925#endif
1607ev_default_loop (unsigned int flags) 2926ev_default_loop (unsigned int flags) EV_THROW
1608#endif
1609{ 2927{
1610 if (!ev_default_loop_ptr) 2928 if (!ev_default_loop_ptr)
1611 { 2929 {
1612#if EV_MULTIPLICITY 2930#if EV_MULTIPLICITY
1613 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2931 EV_P = ev_default_loop_ptr = &default_loop_struct;
1614#else 2932#else
1615 ev_default_loop_ptr = 1; 2933 ev_default_loop_ptr = 1;
1616#endif 2934#endif
1617 2935
1618 loop_init (EV_A_ flags); 2936 loop_init (EV_A_ flags);
1619 2937
1620 if (ev_backend (EV_A)) 2938 if (ev_backend (EV_A))
1621 { 2939 {
1622#ifndef _WIN32 2940#if EV_CHILD_ENABLE
1623 ev_signal_init (&childev, childcb, SIGCHLD); 2941 ev_signal_init (&childev, childcb, SIGCHLD);
1624 ev_set_priority (&childev, EV_MAXPRI); 2942 ev_set_priority (&childev, EV_MAXPRI);
1625 ev_signal_start (EV_A_ &childev); 2943 ev_signal_start (EV_A_ &childev);
1626 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2944 ev_unref (EV_A); /* child watcher should not keep loop alive */
1627#endif 2945#endif
1632 2950
1633 return ev_default_loop_ptr; 2951 return ev_default_loop_ptr;
1634} 2952}
1635 2953
1636void 2954void
1637ev_default_destroy (void) 2955ev_loop_fork (EV_P) EV_THROW
1638{ 2956{
1639#if EV_MULTIPLICITY 2957 postfork = 1;
1640 struct ev_loop *loop = ev_default_loop_ptr;
1641#endif
1642
1643#ifndef _WIN32
1644 ev_ref (EV_A); /* child watcher */
1645 ev_signal_stop (EV_A_ &childev);
1646#endif
1647
1648 loop_destroy (EV_A);
1649}
1650
1651void
1652ev_default_fork (void)
1653{
1654#if EV_MULTIPLICITY
1655 struct ev_loop *loop = ev_default_loop_ptr;
1656#endif
1657
1658 if (backend)
1659 postfork = 1; /* must be in line with ev_loop_fork */
1660} 2958}
1661 2959
1662/*****************************************************************************/ 2960/*****************************************************************************/
1663 2961
1664void 2962void
1665ev_invoke (EV_P_ void *w, int revents) 2963ev_invoke (EV_P_ void *w, int revents)
1666{ 2964{
1667 EV_CB_INVOKE ((W)w, revents); 2965 EV_CB_INVOKE ((W)w, revents);
1668} 2966}
1669 2967
1670void inline_speed 2968unsigned int
1671call_pending (EV_P) 2969ev_pending_count (EV_P) EV_THROW
1672{ 2970{
1673 int pri; 2971 int pri;
2972 unsigned int count = 0;
1674 2973
1675 for (pri = NUMPRI; pri--; ) 2974 for (pri = NUMPRI; pri--; )
2975 count += pendingcnt [pri];
2976
2977 return count;
2978}
2979
2980void noinline
2981ev_invoke_pending (EV_P)
2982{
2983 pendingpri = NUMPRI;
2984
2985 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
2986 {
2987 --pendingpri;
2988
1676 while (pendingcnt [pri]) 2989 while (pendingcnt [pendingpri])
1677 {
1678 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1679
1680 if (expect_true (p->w))
1681 { 2990 {
1682 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2991 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1683 2992
1684 p->w->pending = 0; 2993 p->w->pending = 0;
1685 EV_CB_INVOKE (p->w, p->events); 2994 EV_CB_INVOKE (p->w, p->events);
1686 EV_FREQUENT_CHECK; 2995 EV_FREQUENT_CHECK;
1687 } 2996 }
1688 } 2997 }
1689} 2998}
1690 2999
1691#if EV_IDLE_ENABLE 3000#if EV_IDLE_ENABLE
1692void inline_size 3001/* make idle watchers pending. this handles the "call-idle */
3002/* only when higher priorities are idle" logic */
3003inline_size void
1693idle_reify (EV_P) 3004idle_reify (EV_P)
1694{ 3005{
1695 if (expect_false (idleall)) 3006 if (expect_false (idleall))
1696 { 3007 {
1697 int pri; 3008 int pri;
1709 } 3020 }
1710 } 3021 }
1711} 3022}
1712#endif 3023#endif
1713 3024
1714void inline_size 3025/* make timers pending */
3026inline_size void
1715timers_reify (EV_P) 3027timers_reify (EV_P)
1716{ 3028{
1717 EV_FREQUENT_CHECK; 3029 EV_FREQUENT_CHECK;
1718 3030
1719 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 3031 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1720 { 3032 {
1721 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 3033 do
1722
1723 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1724
1725 /* first reschedule or stop timer */
1726 if (w->repeat)
1727 { 3034 {
3035 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3036
3037 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3038
3039 /* first reschedule or stop timer */
3040 if (w->repeat)
3041 {
1728 ev_at (w) += w->repeat; 3042 ev_at (w) += w->repeat;
1729 if (ev_at (w) < mn_now) 3043 if (ev_at (w) < mn_now)
1730 ev_at (w) = mn_now; 3044 ev_at (w) = mn_now;
1731 3045
1732 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3046 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1733 3047
1734 ANHE_at_cache (timers [HEAP0]); 3048 ANHE_at_cache (timers [HEAP0]);
1735 downheap (timers, timercnt, HEAP0); 3049 downheap (timers, timercnt, HEAP0);
3050 }
3051 else
3052 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3053
3054 EV_FREQUENT_CHECK;
3055 feed_reverse (EV_A_ (W)w);
1736 } 3056 }
1737 else 3057 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1738 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1739 3058
1740 EV_FREQUENT_CHECK; 3059 feed_reverse_done (EV_A_ EV_TIMER);
1741 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1742 } 3060 }
1743} 3061}
1744 3062
1745#if EV_PERIODIC_ENABLE 3063#if EV_PERIODIC_ENABLE
1746void inline_size 3064
3065static void noinline
3066periodic_recalc (EV_P_ ev_periodic *w)
3067{
3068 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3069 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3070
3071 /* the above almost always errs on the low side */
3072 while (at <= ev_rt_now)
3073 {
3074 ev_tstamp nat = at + w->interval;
3075
3076 /* when resolution fails us, we use ev_rt_now */
3077 if (expect_false (nat == at))
3078 {
3079 at = ev_rt_now;
3080 break;
3081 }
3082
3083 at = nat;
3084 }
3085
3086 ev_at (w) = at;
3087}
3088
3089/* make periodics pending */
3090inline_size void
1747periodics_reify (EV_P) 3091periodics_reify (EV_P)
1748{ 3092{
1749 EV_FREQUENT_CHECK; 3093 EV_FREQUENT_CHECK;
1750 3094
1751 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 3095 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1752 { 3096 {
1753 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 3097 do
1754
1755 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1756
1757 /* first reschedule or stop timer */
1758 if (w->reschedule_cb)
1759 { 3098 {
3099 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3100
3101 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3102
3103 /* first reschedule or stop timer */
3104 if (w->reschedule_cb)
3105 {
1760 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3106 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1761 3107
1762 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 3108 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1763 3109
1764 ANHE_at_cache (periodics [HEAP0]); 3110 ANHE_at_cache (periodics [HEAP0]);
1765 downheap (periodics, periodiccnt, HEAP0); 3111 downheap (periodics, periodiccnt, HEAP0);
3112 }
3113 else if (w->interval)
3114 {
3115 periodic_recalc (EV_A_ w);
3116 ANHE_at_cache (periodics [HEAP0]);
3117 downheap (periodics, periodiccnt, HEAP0);
3118 }
3119 else
3120 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3121
3122 EV_FREQUENT_CHECK;
3123 feed_reverse (EV_A_ (W)w);
1766 } 3124 }
1767 else if (w->interval) 3125 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1768 {
1769 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1770 /* if next trigger time is not sufficiently in the future, put it there */
1771 /* this might happen because of floating point inexactness */
1772 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1773 {
1774 ev_at (w) += w->interval;
1775 3126
1776 /* if interval is unreasonably low we might still have a time in the past */
1777 /* so correct this. this will make the periodic very inexact, but the user */
1778 /* has effectively asked to get triggered more often than possible */
1779 if (ev_at (w) < ev_rt_now)
1780 ev_at (w) = ev_rt_now;
1781 }
1782
1783 ANHE_at_cache (periodics [HEAP0]);
1784 downheap (periodics, periodiccnt, HEAP0);
1785 }
1786 else
1787 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1788
1789 EV_FREQUENT_CHECK;
1790 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3127 feed_reverse_done (EV_A_ EV_PERIODIC);
1791 } 3128 }
1792} 3129}
1793 3130
3131/* simply recalculate all periodics */
3132/* TODO: maybe ensure that at least one event happens when jumping forward? */
1794static void noinline 3133static void noinline ecb_cold
1795periodics_reschedule (EV_P) 3134periodics_reschedule (EV_P)
1796{ 3135{
1797 int i; 3136 int i;
1798 3137
1799 /* adjust periodics after time jump */ 3138 /* adjust periodics after time jump */
1802 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 3141 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1803 3142
1804 if (w->reschedule_cb) 3143 if (w->reschedule_cb)
1805 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3144 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1806 else if (w->interval) 3145 else if (w->interval)
1807 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3146 periodic_recalc (EV_A_ w);
1808 3147
1809 ANHE_at_cache (periodics [i]); 3148 ANHE_at_cache (periodics [i]);
1810 } 3149 }
1811 3150
1812 reheap (periodics, periodiccnt); 3151 reheap (periodics, periodiccnt);
1813} 3152}
1814#endif 3153#endif
1815 3154
1816void inline_speed 3155/* adjust all timers by a given offset */
3156static void noinline ecb_cold
3157timers_reschedule (EV_P_ ev_tstamp adjust)
3158{
3159 int i;
3160
3161 for (i = 0; i < timercnt; ++i)
3162 {
3163 ANHE *he = timers + i + HEAP0;
3164 ANHE_w (*he)->at += adjust;
3165 ANHE_at_cache (*he);
3166 }
3167}
3168
3169/* fetch new monotonic and realtime times from the kernel */
3170/* also detect if there was a timejump, and act accordingly */
3171inline_speed void
1817time_update (EV_P_ ev_tstamp max_block) 3172time_update (EV_P_ ev_tstamp max_block)
1818{ 3173{
1819 int i;
1820
1821#if EV_USE_MONOTONIC 3174#if EV_USE_MONOTONIC
1822 if (expect_true (have_monotonic)) 3175 if (expect_true (have_monotonic))
1823 { 3176 {
3177 int i;
1824 ev_tstamp odiff = rtmn_diff; 3178 ev_tstamp odiff = rtmn_diff;
1825 3179
1826 mn_now = get_clock (); 3180 mn_now = get_clock ();
1827 3181
1828 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3182 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1844 * doesn't hurt either as we only do this on time-jumps or 3198 * doesn't hurt either as we only do this on time-jumps or
1845 * in the unlikely event of having been preempted here. 3199 * in the unlikely event of having been preempted here.
1846 */ 3200 */
1847 for (i = 4; --i; ) 3201 for (i = 4; --i; )
1848 { 3202 {
3203 ev_tstamp diff;
1849 rtmn_diff = ev_rt_now - mn_now; 3204 rtmn_diff = ev_rt_now - mn_now;
1850 3205
3206 diff = odiff - rtmn_diff;
3207
1851 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3208 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1852 return; /* all is well */ 3209 return; /* all is well */
1853 3210
1854 ev_rt_now = ev_time (); 3211 ev_rt_now = ev_time ();
1855 mn_now = get_clock (); 3212 mn_now = get_clock ();
1856 now_floor = mn_now; 3213 now_floor = mn_now;
1857 } 3214 }
1858 3215
3216 /* no timer adjustment, as the monotonic clock doesn't jump */
3217 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1859# if EV_PERIODIC_ENABLE 3218# if EV_PERIODIC_ENABLE
1860 periodics_reschedule (EV_A); 3219 periodics_reschedule (EV_A);
1861# endif 3220# endif
1862 /* no timer adjustment, as the monotonic clock doesn't jump */
1863 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1864 } 3221 }
1865 else 3222 else
1866#endif 3223#endif
1867 { 3224 {
1868 ev_rt_now = ev_time (); 3225 ev_rt_now = ev_time ();
1869 3226
1870 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3227 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1871 { 3228 {
3229 /* adjust timers. this is easy, as the offset is the same for all of them */
3230 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1872#if EV_PERIODIC_ENABLE 3231#if EV_PERIODIC_ENABLE
1873 periodics_reschedule (EV_A); 3232 periodics_reschedule (EV_A);
1874#endif 3233#endif
1875 /* adjust timers. this is easy, as the offset is the same for all of them */
1876 for (i = 0; i < timercnt; ++i)
1877 {
1878 ANHE *he = timers + i + HEAP0;
1879 ANHE_w (*he)->at += ev_rt_now - mn_now;
1880 ANHE_at_cache (*he);
1881 }
1882 } 3234 }
1883 3235
1884 mn_now = ev_rt_now; 3236 mn_now = ev_rt_now;
1885 } 3237 }
1886} 3238}
1887 3239
1888void 3240int
1889ev_ref (EV_P)
1890{
1891 ++activecnt;
1892}
1893
1894void
1895ev_unref (EV_P)
1896{
1897 --activecnt;
1898}
1899
1900void
1901ev_now_update (EV_P)
1902{
1903 time_update (EV_A_ 1e100);
1904}
1905
1906static int loop_done;
1907
1908void
1909ev_loop (EV_P_ int flags) 3241ev_run (EV_P_ int flags)
1910{ 3242{
3243#if EV_FEATURE_API
3244 ++loop_depth;
3245#endif
3246
3247 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3248
1911 loop_done = EVUNLOOP_CANCEL; 3249 loop_done = EVBREAK_CANCEL;
1912 3250
1913 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3251 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1914 3252
1915 do 3253 do
1916 { 3254 {
1917#if EV_VERIFY >= 2 3255#if EV_VERIFY >= 2
1918 ev_loop_verify (EV_A); 3256 ev_verify (EV_A);
1919#endif 3257#endif
1920 3258
1921#ifndef _WIN32 3259#ifndef _WIN32
1922 if (expect_false (curpid)) /* penalise the forking check even more */ 3260 if (expect_false (curpid)) /* penalise the forking check even more */
1923 if (expect_false (getpid () != curpid)) 3261 if (expect_false (getpid () != curpid))
1931 /* we might have forked, so queue fork handlers */ 3269 /* we might have forked, so queue fork handlers */
1932 if (expect_false (postfork)) 3270 if (expect_false (postfork))
1933 if (forkcnt) 3271 if (forkcnt)
1934 { 3272 {
1935 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3273 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1936 call_pending (EV_A); 3274 EV_INVOKE_PENDING;
1937 } 3275 }
1938#endif 3276#endif
1939 3277
3278#if EV_PREPARE_ENABLE
1940 /* queue prepare watchers (and execute them) */ 3279 /* queue prepare watchers (and execute them) */
1941 if (expect_false (preparecnt)) 3280 if (expect_false (preparecnt))
1942 { 3281 {
1943 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3282 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1944 call_pending (EV_A); 3283 EV_INVOKE_PENDING;
1945 } 3284 }
3285#endif
1946 3286
1947 if (expect_false (!activecnt)) 3287 if (expect_false (loop_done))
1948 break; 3288 break;
1949 3289
1950 /* we might have forked, so reify kernel state if necessary */ 3290 /* we might have forked, so reify kernel state if necessary */
1951 if (expect_false (postfork)) 3291 if (expect_false (postfork))
1952 loop_fork (EV_A); 3292 loop_fork (EV_A);
1957 /* calculate blocking time */ 3297 /* calculate blocking time */
1958 { 3298 {
1959 ev_tstamp waittime = 0.; 3299 ev_tstamp waittime = 0.;
1960 ev_tstamp sleeptime = 0.; 3300 ev_tstamp sleeptime = 0.;
1961 3301
3302 /* remember old timestamp for io_blocktime calculation */
3303 ev_tstamp prev_mn_now = mn_now;
3304
3305 /* update time to cancel out callback processing overhead */
3306 time_update (EV_A_ 1e100);
3307
3308 /* from now on, we want a pipe-wake-up */
3309 pipe_write_wanted = 1;
3310
3311 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3312
1962 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3313 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1963 { 3314 {
1964 /* update time to cancel out callback processing overhead */
1965 time_update (EV_A_ 1e100);
1966
1967 waittime = MAX_BLOCKTIME; 3315 waittime = MAX_BLOCKTIME;
1968 3316
1969 if (timercnt) 3317 if (timercnt)
1970 { 3318 {
1971 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3319 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1972 if (waittime > to) waittime = to; 3320 if (waittime > to) waittime = to;
1973 } 3321 }
1974 3322
1975#if EV_PERIODIC_ENABLE 3323#if EV_PERIODIC_ENABLE
1976 if (periodiccnt) 3324 if (periodiccnt)
1977 { 3325 {
1978 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3326 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1979 if (waittime > to) waittime = to; 3327 if (waittime > to) waittime = to;
1980 } 3328 }
1981#endif 3329#endif
1982 3330
3331 /* don't let timeouts decrease the waittime below timeout_blocktime */
1983 if (expect_false (waittime < timeout_blocktime)) 3332 if (expect_false (waittime < timeout_blocktime))
1984 waittime = timeout_blocktime; 3333 waittime = timeout_blocktime;
1985 3334
1986 sleeptime = waittime - backend_fudge; 3335 /* at this point, we NEED to wait, so we have to ensure */
3336 /* to pass a minimum nonzero value to the backend */
3337 if (expect_false (waittime < backend_mintime))
3338 waittime = backend_mintime;
1987 3339
3340 /* extra check because io_blocktime is commonly 0 */
1988 if (expect_true (sleeptime > io_blocktime)) 3341 if (expect_false (io_blocktime))
1989 sleeptime = io_blocktime;
1990
1991 if (sleeptime)
1992 { 3342 {
3343 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3344
3345 if (sleeptime > waittime - backend_mintime)
3346 sleeptime = waittime - backend_mintime;
3347
3348 if (expect_true (sleeptime > 0.))
3349 {
1993 ev_sleep (sleeptime); 3350 ev_sleep (sleeptime);
1994 waittime -= sleeptime; 3351 waittime -= sleeptime;
3352 }
1995 } 3353 }
1996 } 3354 }
1997 3355
3356#if EV_FEATURE_API
1998 ++loop_count; 3357 ++loop_count;
3358#endif
3359 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1999 backend_poll (EV_A_ waittime); 3360 backend_poll (EV_A_ waittime);
3361 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3362
3363 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3364
3365 ECB_MEMORY_FENCE_ACQUIRE;
3366 if (pipe_write_skipped)
3367 {
3368 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3369 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3370 }
3371
2000 3372
2001 /* update ev_rt_now, do magic */ 3373 /* update ev_rt_now, do magic */
2002 time_update (EV_A_ waittime + sleeptime); 3374 time_update (EV_A_ waittime + sleeptime);
2003 } 3375 }
2004 3376
2011#if EV_IDLE_ENABLE 3383#if EV_IDLE_ENABLE
2012 /* queue idle watchers unless other events are pending */ 3384 /* queue idle watchers unless other events are pending */
2013 idle_reify (EV_A); 3385 idle_reify (EV_A);
2014#endif 3386#endif
2015 3387
3388#if EV_CHECK_ENABLE
2016 /* queue check watchers, to be executed first */ 3389 /* queue check watchers, to be executed first */
2017 if (expect_false (checkcnt)) 3390 if (expect_false (checkcnt))
2018 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3391 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3392#endif
2019 3393
2020 call_pending (EV_A); 3394 EV_INVOKE_PENDING;
2021 } 3395 }
2022 while (expect_true ( 3396 while (expect_true (
2023 activecnt 3397 activecnt
2024 && !loop_done 3398 && !loop_done
2025 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3399 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2026 )); 3400 ));
2027 3401
2028 if (loop_done == EVUNLOOP_ONE) 3402 if (loop_done == EVBREAK_ONE)
2029 loop_done = EVUNLOOP_CANCEL; 3403 loop_done = EVBREAK_CANCEL;
3404
3405#if EV_FEATURE_API
3406 --loop_depth;
3407#endif
3408
3409 return activecnt;
2030} 3410}
2031 3411
2032void 3412void
2033ev_unloop (EV_P_ int how) 3413ev_break (EV_P_ int how) EV_THROW
2034{ 3414{
2035 loop_done = how; 3415 loop_done = how;
2036} 3416}
2037 3417
3418void
3419ev_ref (EV_P) EV_THROW
3420{
3421 ++activecnt;
3422}
3423
3424void
3425ev_unref (EV_P) EV_THROW
3426{
3427 --activecnt;
3428}
3429
3430void
3431ev_now_update (EV_P) EV_THROW
3432{
3433 time_update (EV_A_ 1e100);
3434}
3435
3436void
3437ev_suspend (EV_P) EV_THROW
3438{
3439 ev_now_update (EV_A);
3440}
3441
3442void
3443ev_resume (EV_P) EV_THROW
3444{
3445 ev_tstamp mn_prev = mn_now;
3446
3447 ev_now_update (EV_A);
3448 timers_reschedule (EV_A_ mn_now - mn_prev);
3449#if EV_PERIODIC_ENABLE
3450 /* TODO: really do this? */
3451 periodics_reschedule (EV_A);
3452#endif
3453}
3454
2038/*****************************************************************************/ 3455/*****************************************************************************/
3456/* singly-linked list management, used when the expected list length is short */
2039 3457
2040void inline_size 3458inline_size void
2041wlist_add (WL *head, WL elem) 3459wlist_add (WL *head, WL elem)
2042{ 3460{
2043 elem->next = *head; 3461 elem->next = *head;
2044 *head = elem; 3462 *head = elem;
2045} 3463}
2046 3464
2047void inline_size 3465inline_size void
2048wlist_del (WL *head, WL elem) 3466wlist_del (WL *head, WL elem)
2049{ 3467{
2050 while (*head) 3468 while (*head)
2051 { 3469 {
2052 if (*head == elem) 3470 if (expect_true (*head == elem))
2053 { 3471 {
2054 *head = elem->next; 3472 *head = elem->next;
2055 return; 3473 break;
2056 } 3474 }
2057 3475
2058 head = &(*head)->next; 3476 head = &(*head)->next;
2059 } 3477 }
2060} 3478}
2061 3479
2062void inline_speed 3480/* internal, faster, version of ev_clear_pending */
3481inline_speed void
2063clear_pending (EV_P_ W w) 3482clear_pending (EV_P_ W w)
2064{ 3483{
2065 if (w->pending) 3484 if (w->pending)
2066 { 3485 {
2067 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3486 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2068 w->pending = 0; 3487 w->pending = 0;
2069 } 3488 }
2070} 3489}
2071 3490
2072int 3491int
2073ev_clear_pending (EV_P_ void *w) 3492ev_clear_pending (EV_P_ void *w) EV_THROW
2074{ 3493{
2075 W w_ = (W)w; 3494 W w_ = (W)w;
2076 int pending = w_->pending; 3495 int pending = w_->pending;
2077 3496
2078 if (expect_true (pending)) 3497 if (expect_true (pending))
2079 { 3498 {
2080 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3499 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3500 p->w = (W)&pending_w;
2081 w_->pending = 0; 3501 w_->pending = 0;
2082 p->w = 0;
2083 return p->events; 3502 return p->events;
2084 } 3503 }
2085 else 3504 else
2086 return 0; 3505 return 0;
2087} 3506}
2088 3507
2089void inline_size 3508inline_size void
2090pri_adjust (EV_P_ W w) 3509pri_adjust (EV_P_ W w)
2091{ 3510{
2092 int pri = w->priority; 3511 int pri = ev_priority (w);
2093 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3512 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2094 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3513 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2095 w->priority = pri; 3514 ev_set_priority (w, pri);
2096} 3515}
2097 3516
2098void inline_speed 3517inline_speed void
2099ev_start (EV_P_ W w, int active) 3518ev_start (EV_P_ W w, int active)
2100{ 3519{
2101 pri_adjust (EV_A_ w); 3520 pri_adjust (EV_A_ w);
2102 w->active = active; 3521 w->active = active;
2103 ev_ref (EV_A); 3522 ev_ref (EV_A);
2104} 3523}
2105 3524
2106void inline_size 3525inline_size void
2107ev_stop (EV_P_ W w) 3526ev_stop (EV_P_ W w)
2108{ 3527{
2109 ev_unref (EV_A); 3528 ev_unref (EV_A);
2110 w->active = 0; 3529 w->active = 0;
2111} 3530}
2112 3531
2113/*****************************************************************************/ 3532/*****************************************************************************/
2114 3533
2115void noinline 3534void noinline
2116ev_io_start (EV_P_ ev_io *w) 3535ev_io_start (EV_P_ ev_io *w) EV_THROW
2117{ 3536{
2118 int fd = w->fd; 3537 int fd = w->fd;
2119 3538
2120 if (expect_false (ev_is_active (w))) 3539 if (expect_false (ev_is_active (w)))
2121 return; 3540 return;
2122 3541
2123 assert (("ev_io_start called with negative fd", fd >= 0)); 3542 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2124 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE)))); 3543 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2125 3544
2126 EV_FREQUENT_CHECK; 3545 EV_FREQUENT_CHECK;
2127 3546
2128 ev_start (EV_A_ (W)w, 1); 3547 ev_start (EV_A_ (W)w, 1);
2129 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 3548 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2130 wlist_add (&anfds[fd].head, (WL)w); 3549 wlist_add (&anfds[fd].head, (WL)w);
2131 3550
3551 /* common bug, apparently */
3552 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3553
2132 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3554 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2133 w->events &= ~EV_IOFDSET; 3555 w->events &= ~EV__IOFDSET;
2134 3556
2135 EV_FREQUENT_CHECK; 3557 EV_FREQUENT_CHECK;
2136} 3558}
2137 3559
2138void noinline 3560void noinline
2139ev_io_stop (EV_P_ ev_io *w) 3561ev_io_stop (EV_P_ ev_io *w) EV_THROW
2140{ 3562{
2141 clear_pending (EV_A_ (W)w); 3563 clear_pending (EV_A_ (W)w);
2142 if (expect_false (!ev_is_active (w))) 3564 if (expect_false (!ev_is_active (w)))
2143 return; 3565 return;
2144 3566
2145 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3567 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2146 3568
2147 EV_FREQUENT_CHECK; 3569 EV_FREQUENT_CHECK;
2148 3570
2149 wlist_del (&anfds[w->fd].head, (WL)w); 3571 wlist_del (&anfds[w->fd].head, (WL)w);
2150 ev_stop (EV_A_ (W)w); 3572 ev_stop (EV_A_ (W)w);
2151 3573
2152 fd_change (EV_A_ w->fd, 1); 3574 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2153 3575
2154 EV_FREQUENT_CHECK; 3576 EV_FREQUENT_CHECK;
2155} 3577}
2156 3578
2157void noinline 3579void noinline
2158ev_timer_start (EV_P_ ev_timer *w) 3580ev_timer_start (EV_P_ ev_timer *w) EV_THROW
2159{ 3581{
2160 if (expect_false (ev_is_active (w))) 3582 if (expect_false (ev_is_active (w)))
2161 return; 3583 return;
2162 3584
2163 ev_at (w) += mn_now; 3585 ev_at (w) += mn_now;
2164 3586
2165 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3587 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2166 3588
2167 EV_FREQUENT_CHECK; 3589 EV_FREQUENT_CHECK;
2168 3590
2169 ++timercnt; 3591 ++timercnt;
2170 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 3592 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2173 ANHE_at_cache (timers [ev_active (w)]); 3595 ANHE_at_cache (timers [ev_active (w)]);
2174 upheap (timers, ev_active (w)); 3596 upheap (timers, ev_active (w));
2175 3597
2176 EV_FREQUENT_CHECK; 3598 EV_FREQUENT_CHECK;
2177 3599
2178 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3600 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2179} 3601}
2180 3602
2181void noinline 3603void noinline
2182ev_timer_stop (EV_P_ ev_timer *w) 3604ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
2183{ 3605{
2184 clear_pending (EV_A_ (W)w); 3606 clear_pending (EV_A_ (W)w);
2185 if (expect_false (!ev_is_active (w))) 3607 if (expect_false (!ev_is_active (w)))
2186 return; 3608 return;
2187 3609
2188 EV_FREQUENT_CHECK; 3610 EV_FREQUENT_CHECK;
2189 3611
2190 { 3612 {
2191 int active = ev_active (w); 3613 int active = ev_active (w);
2192 3614
2193 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 3615 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2194 3616
2195 --timercnt; 3617 --timercnt;
2196 3618
2197 if (expect_true (active < timercnt + HEAP0)) 3619 if (expect_true (active < timercnt + HEAP0))
2198 { 3620 {
2199 timers [active] = timers [timercnt + HEAP0]; 3621 timers [active] = timers [timercnt + HEAP0];
2200 adjustheap (timers, timercnt, active); 3622 adjustheap (timers, timercnt, active);
2201 } 3623 }
2202 } 3624 }
2203 3625
2204 EV_FREQUENT_CHECK;
2205
2206 ev_at (w) -= mn_now; 3626 ev_at (w) -= mn_now;
2207 3627
2208 ev_stop (EV_A_ (W)w); 3628 ev_stop (EV_A_ (W)w);
3629
3630 EV_FREQUENT_CHECK;
2209} 3631}
2210 3632
2211void noinline 3633void noinline
2212ev_timer_again (EV_P_ ev_timer *w) 3634ev_timer_again (EV_P_ ev_timer *w) EV_THROW
2213{ 3635{
2214 EV_FREQUENT_CHECK; 3636 EV_FREQUENT_CHECK;
3637
3638 clear_pending (EV_A_ (W)w);
2215 3639
2216 if (ev_is_active (w)) 3640 if (ev_is_active (w))
2217 { 3641 {
2218 if (w->repeat) 3642 if (w->repeat)
2219 { 3643 {
2231 } 3655 }
2232 3656
2233 EV_FREQUENT_CHECK; 3657 EV_FREQUENT_CHECK;
2234} 3658}
2235 3659
3660ev_tstamp
3661ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3662{
3663 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3664}
3665
2236#if EV_PERIODIC_ENABLE 3666#if EV_PERIODIC_ENABLE
2237void noinline 3667void noinline
2238ev_periodic_start (EV_P_ ev_periodic *w) 3668ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
2239{ 3669{
2240 if (expect_false (ev_is_active (w))) 3670 if (expect_false (ev_is_active (w)))
2241 return; 3671 return;
2242 3672
2243 if (w->reschedule_cb) 3673 if (w->reschedule_cb)
2244 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3674 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2245 else if (w->interval) 3675 else if (w->interval)
2246 { 3676 {
2247 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3677 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2248 /* this formula differs from the one in periodic_reify because we do not always round up */ 3678 periodic_recalc (EV_A_ w);
2249 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2250 } 3679 }
2251 else 3680 else
2252 ev_at (w) = w->offset; 3681 ev_at (w) = w->offset;
2253 3682
2254 EV_FREQUENT_CHECK; 3683 EV_FREQUENT_CHECK;
2260 ANHE_at_cache (periodics [ev_active (w)]); 3689 ANHE_at_cache (periodics [ev_active (w)]);
2261 upheap (periodics, ev_active (w)); 3690 upheap (periodics, ev_active (w));
2262 3691
2263 EV_FREQUENT_CHECK; 3692 EV_FREQUENT_CHECK;
2264 3693
2265 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 3694 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2266} 3695}
2267 3696
2268void noinline 3697void noinline
2269ev_periodic_stop (EV_P_ ev_periodic *w) 3698ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
2270{ 3699{
2271 clear_pending (EV_A_ (W)w); 3700 clear_pending (EV_A_ (W)w);
2272 if (expect_false (!ev_is_active (w))) 3701 if (expect_false (!ev_is_active (w)))
2273 return; 3702 return;
2274 3703
2275 EV_FREQUENT_CHECK; 3704 EV_FREQUENT_CHECK;
2276 3705
2277 { 3706 {
2278 int active = ev_active (w); 3707 int active = ev_active (w);
2279 3708
2280 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 3709 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2281 3710
2282 --periodiccnt; 3711 --periodiccnt;
2283 3712
2284 if (expect_true (active < periodiccnt + HEAP0)) 3713 if (expect_true (active < periodiccnt + HEAP0))
2285 { 3714 {
2286 periodics [active] = periodics [periodiccnt + HEAP0]; 3715 periodics [active] = periodics [periodiccnt + HEAP0];
2287 adjustheap (periodics, periodiccnt, active); 3716 adjustheap (periodics, periodiccnt, active);
2288 } 3717 }
2289 } 3718 }
2290 3719
2291 EV_FREQUENT_CHECK;
2292
2293 ev_stop (EV_A_ (W)w); 3720 ev_stop (EV_A_ (W)w);
3721
3722 EV_FREQUENT_CHECK;
2294} 3723}
2295 3724
2296void noinline 3725void noinline
2297ev_periodic_again (EV_P_ ev_periodic *w) 3726ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
2298{ 3727{
2299 /* TODO: use adjustheap and recalculation */ 3728 /* TODO: use adjustheap and recalculation */
2300 ev_periodic_stop (EV_A_ w); 3729 ev_periodic_stop (EV_A_ w);
2301 ev_periodic_start (EV_A_ w); 3730 ev_periodic_start (EV_A_ w);
2302} 3731}
2304 3733
2305#ifndef SA_RESTART 3734#ifndef SA_RESTART
2306# define SA_RESTART 0 3735# define SA_RESTART 0
2307#endif 3736#endif
2308 3737
3738#if EV_SIGNAL_ENABLE
3739
2309void noinline 3740void noinline
2310ev_signal_start (EV_P_ ev_signal *w) 3741ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2311{ 3742{
2312#if EV_MULTIPLICITY
2313 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2314#endif
2315 if (expect_false (ev_is_active (w))) 3743 if (expect_false (ev_is_active (w)))
2316 return; 3744 return;
2317 3745
2318 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3746 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2319 3747
2320 evpipe_init (EV_A); 3748#if EV_MULTIPLICITY
3749 assert (("libev: a signal must not be attached to two different loops",
3750 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2321 3751
2322 EV_FREQUENT_CHECK; 3752 signals [w->signum - 1].loop = EV_A;
3753 ECB_MEMORY_FENCE_RELEASE;
3754#endif
2323 3755
3756 EV_FREQUENT_CHECK;
3757
3758#if EV_USE_SIGNALFD
3759 if (sigfd == -2)
2324 { 3760 {
2325#ifndef _WIN32 3761 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2326 sigset_t full, prev; 3762 if (sigfd < 0 && errno == EINVAL)
2327 sigfillset (&full); 3763 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2328 sigprocmask (SIG_SETMASK, &full, &prev);
2329#endif
2330 3764
2331 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero); 3765 if (sigfd >= 0)
3766 {
3767 fd_intern (sigfd); /* doing it twice will not hurt */
2332 3768
2333#ifndef _WIN32 3769 sigemptyset (&sigfd_set);
2334 sigprocmask (SIG_SETMASK, &prev, 0); 3770
2335#endif 3771 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3772 ev_set_priority (&sigfd_w, EV_MAXPRI);
3773 ev_io_start (EV_A_ &sigfd_w);
3774 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3775 }
2336 } 3776 }
3777
3778 if (sigfd >= 0)
3779 {
3780 /* TODO: check .head */
3781 sigaddset (&sigfd_set, w->signum);
3782 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3783
3784 signalfd (sigfd, &sigfd_set, 0);
3785 }
3786#endif
2337 3787
2338 ev_start (EV_A_ (W)w, 1); 3788 ev_start (EV_A_ (W)w, 1);
2339 wlist_add (&signals [w->signum - 1].head, (WL)w); 3789 wlist_add (&signals [w->signum - 1].head, (WL)w);
2340 3790
2341 if (!((WL)w)->next) 3791 if (!((WL)w)->next)
3792# if EV_USE_SIGNALFD
3793 if (sigfd < 0) /*TODO*/
3794# endif
2342 { 3795 {
2343#if _WIN32 3796# ifdef _WIN32
3797 evpipe_init (EV_A);
3798
2344 signal (w->signum, ev_sighandler); 3799 signal (w->signum, ev_sighandler);
2345#else 3800# else
2346 struct sigaction sa; 3801 struct sigaction sa;
3802
3803 evpipe_init (EV_A);
3804
2347 sa.sa_handler = ev_sighandler; 3805 sa.sa_handler = ev_sighandler;
2348 sigfillset (&sa.sa_mask); 3806 sigfillset (&sa.sa_mask);
2349 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3807 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2350 sigaction (w->signum, &sa, 0); 3808 sigaction (w->signum, &sa, 0);
3809
3810 if (origflags & EVFLAG_NOSIGMASK)
3811 {
3812 sigemptyset (&sa.sa_mask);
3813 sigaddset (&sa.sa_mask, w->signum);
3814 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3815 }
2351#endif 3816#endif
2352 } 3817 }
2353 3818
2354 EV_FREQUENT_CHECK; 3819 EV_FREQUENT_CHECK;
2355} 3820}
2356 3821
2357void noinline 3822void noinline
2358ev_signal_stop (EV_P_ ev_signal *w) 3823ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2359{ 3824{
2360 clear_pending (EV_A_ (W)w); 3825 clear_pending (EV_A_ (W)w);
2361 if (expect_false (!ev_is_active (w))) 3826 if (expect_false (!ev_is_active (w)))
2362 return; 3827 return;
2363 3828
2365 3830
2366 wlist_del (&signals [w->signum - 1].head, (WL)w); 3831 wlist_del (&signals [w->signum - 1].head, (WL)w);
2367 ev_stop (EV_A_ (W)w); 3832 ev_stop (EV_A_ (W)w);
2368 3833
2369 if (!signals [w->signum - 1].head) 3834 if (!signals [w->signum - 1].head)
3835 {
3836#if EV_MULTIPLICITY
3837 signals [w->signum - 1].loop = 0; /* unattach from signal */
3838#endif
3839#if EV_USE_SIGNALFD
3840 if (sigfd >= 0)
3841 {
3842 sigset_t ss;
3843
3844 sigemptyset (&ss);
3845 sigaddset (&ss, w->signum);
3846 sigdelset (&sigfd_set, w->signum);
3847
3848 signalfd (sigfd, &sigfd_set, 0);
3849 sigprocmask (SIG_UNBLOCK, &ss, 0);
3850 }
3851 else
3852#endif
2370 signal (w->signum, SIG_DFL); 3853 signal (w->signum, SIG_DFL);
3854 }
2371 3855
2372 EV_FREQUENT_CHECK; 3856 EV_FREQUENT_CHECK;
2373} 3857}
3858
3859#endif
3860
3861#if EV_CHILD_ENABLE
2374 3862
2375void 3863void
2376ev_child_start (EV_P_ ev_child *w) 3864ev_child_start (EV_P_ ev_child *w) EV_THROW
2377{ 3865{
2378#if EV_MULTIPLICITY 3866#if EV_MULTIPLICITY
2379 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3867 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2380#endif 3868#endif
2381 if (expect_false (ev_is_active (w))) 3869 if (expect_false (ev_is_active (w)))
2382 return; 3870 return;
2383 3871
2384 EV_FREQUENT_CHECK; 3872 EV_FREQUENT_CHECK;
2385 3873
2386 ev_start (EV_A_ (W)w, 1); 3874 ev_start (EV_A_ (W)w, 1);
2387 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3875 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2388 3876
2389 EV_FREQUENT_CHECK; 3877 EV_FREQUENT_CHECK;
2390} 3878}
2391 3879
2392void 3880void
2393ev_child_stop (EV_P_ ev_child *w) 3881ev_child_stop (EV_P_ ev_child *w) EV_THROW
2394{ 3882{
2395 clear_pending (EV_A_ (W)w); 3883 clear_pending (EV_A_ (W)w);
2396 if (expect_false (!ev_is_active (w))) 3884 if (expect_false (!ev_is_active (w)))
2397 return; 3885 return;
2398 3886
2399 EV_FREQUENT_CHECK; 3887 EV_FREQUENT_CHECK;
2400 3888
2401 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3889 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2402 ev_stop (EV_A_ (W)w); 3890 ev_stop (EV_A_ (W)w);
2403 3891
2404 EV_FREQUENT_CHECK; 3892 EV_FREQUENT_CHECK;
2405} 3893}
3894
3895#endif
2406 3896
2407#if EV_STAT_ENABLE 3897#if EV_STAT_ENABLE
2408 3898
2409# ifdef _WIN32 3899# ifdef _WIN32
2410# undef lstat 3900# undef lstat
2411# define lstat(a,b) _stati64 (a,b) 3901# define lstat(a,b) _stati64 (a,b)
2412# endif 3902# endif
2413 3903
2414#define DEF_STAT_INTERVAL 5.0074891 3904#define DEF_STAT_INTERVAL 5.0074891
3905#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2415#define MIN_STAT_INTERVAL 0.1074891 3906#define MIN_STAT_INTERVAL 0.1074891
2416 3907
2417static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3908static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2418 3909
2419#if EV_USE_INOTIFY 3910#if EV_USE_INOTIFY
2420# define EV_INOTIFY_BUFSIZE 8192 3911
3912/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3913# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2421 3914
2422static void noinline 3915static void noinline
2423infy_add (EV_P_ ev_stat *w) 3916infy_add (EV_P_ ev_stat *w)
2424{ 3917{
2425 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3918 w->wd = inotify_add_watch (fs_fd, w->path,
3919 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
3920 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
3921 | IN_DONT_FOLLOW | IN_MASK_ADD);
2426 3922
2427 if (w->wd < 0) 3923 if (w->wd >= 0)
3924 {
3925 struct statfs sfs;
3926
3927 /* now local changes will be tracked by inotify, but remote changes won't */
3928 /* unless the filesystem is known to be local, we therefore still poll */
3929 /* also do poll on <2.6.25, but with normal frequency */
3930
3931 if (!fs_2625)
3932 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3933 else if (!statfs (w->path, &sfs)
3934 && (sfs.f_type == 0x1373 /* devfs */
3935 || sfs.f_type == 0x4006 /* fat */
3936 || sfs.f_type == 0x4d44 /* msdos */
3937 || sfs.f_type == 0xEF53 /* ext2/3 */
3938 || sfs.f_type == 0x72b6 /* jffs2 */
3939 || sfs.f_type == 0x858458f6 /* ramfs */
3940 || sfs.f_type == 0x5346544e /* ntfs */
3941 || sfs.f_type == 0x3153464a /* jfs */
3942 || sfs.f_type == 0x9123683e /* btrfs */
3943 || sfs.f_type == 0x52654973 /* reiser3 */
3944 || sfs.f_type == 0x01021994 /* tmpfs */
3945 || sfs.f_type == 0x58465342 /* xfs */))
3946 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3947 else
3948 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2428 { 3949 }
2429 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3950 else
3951 {
3952 /* can't use inotify, continue to stat */
3953 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2430 3954
2431 /* monitor some parent directory for speedup hints */ 3955 /* if path is not there, monitor some parent directory for speedup hints */
2432 /* note that exceeding the hardcoded limit is not a correctness issue, */ 3956 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2433 /* but an efficiency issue only */ 3957 /* but an efficiency issue only */
2434 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3958 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2435 { 3959 {
2436 char path [4096]; 3960 char path [4096];
2437 strcpy (path, w->path); 3961 strcpy (path, w->path);
2441 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3965 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2442 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3966 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2443 3967
2444 char *pend = strrchr (path, '/'); 3968 char *pend = strrchr (path, '/');
2445 3969
2446 if (!pend) 3970 if (!pend || pend == path)
2447 break; /* whoops, no '/', complain to your admin */ 3971 break;
2448 3972
2449 *pend = 0; 3973 *pend = 0;
2450 w->wd = inotify_add_watch (fs_fd, path, mask); 3974 w->wd = inotify_add_watch (fs_fd, path, mask);
2451 } 3975 }
2452 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3976 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2453 } 3977 }
2454 } 3978 }
2455 else
2456 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2457 3979
2458 if (w->wd >= 0) 3980 if (w->wd >= 0)
2459 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3981 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3982
3983 /* now re-arm timer, if required */
3984 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3985 ev_timer_again (EV_A_ &w->timer);
3986 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2460} 3987}
2461 3988
2462static void noinline 3989static void noinline
2463infy_del (EV_P_ ev_stat *w) 3990infy_del (EV_P_ ev_stat *w)
2464{ 3991{
2467 3994
2468 if (wd < 0) 3995 if (wd < 0)
2469 return; 3996 return;
2470 3997
2471 w->wd = -2; 3998 w->wd = -2;
2472 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3999 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2473 wlist_del (&fs_hash [slot].head, (WL)w); 4000 wlist_del (&fs_hash [slot].head, (WL)w);
2474 4001
2475 /* remove this watcher, if others are watching it, they will rearm */ 4002 /* remove this watcher, if others are watching it, they will rearm */
2476 inotify_rm_watch (fs_fd, wd); 4003 inotify_rm_watch (fs_fd, wd);
2477} 4004}
2479static void noinline 4006static void noinline
2480infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4007infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2481{ 4008{
2482 if (slot < 0) 4009 if (slot < 0)
2483 /* overflow, need to check for all hash slots */ 4010 /* overflow, need to check for all hash slots */
2484 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4011 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2485 infy_wd (EV_A_ slot, wd, ev); 4012 infy_wd (EV_A_ slot, wd, ev);
2486 else 4013 else
2487 { 4014 {
2488 WL w_; 4015 WL w_;
2489 4016
2490 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4017 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2491 { 4018 {
2492 ev_stat *w = (ev_stat *)w_; 4019 ev_stat *w = (ev_stat *)w_;
2493 w_ = w_->next; /* lets us remove this watcher and all before it */ 4020 w_ = w_->next; /* lets us remove this watcher and all before it */
2494 4021
2495 if (w->wd == wd || wd == -1) 4022 if (w->wd == wd || wd == -1)
2496 { 4023 {
2497 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4024 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2498 { 4025 {
4026 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2499 w->wd = -1; 4027 w->wd = -1;
2500 infy_add (EV_A_ w); /* re-add, no matter what */ 4028 infy_add (EV_A_ w); /* re-add, no matter what */
2501 } 4029 }
2502 4030
2503 stat_timer_cb (EV_A_ &w->timer, 0); 4031 stat_timer_cb (EV_A_ &w->timer, 0);
2508 4036
2509static void 4037static void
2510infy_cb (EV_P_ ev_io *w, int revents) 4038infy_cb (EV_P_ ev_io *w, int revents)
2511{ 4039{
2512 char buf [EV_INOTIFY_BUFSIZE]; 4040 char buf [EV_INOTIFY_BUFSIZE];
2513 struct inotify_event *ev = (struct inotify_event *)buf;
2514 int ofs; 4041 int ofs;
2515 int len = read (fs_fd, buf, sizeof (buf)); 4042 int len = read (fs_fd, buf, sizeof (buf));
2516 4043
2517 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4044 for (ofs = 0; ofs < len; )
4045 {
4046 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2518 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4047 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4048 ofs += sizeof (struct inotify_event) + ev->len;
4049 }
2519} 4050}
2520 4051
2521void inline_size 4052inline_size void ecb_cold
2522infy_init (EV_P) 4053ev_check_2625 (EV_P)
2523{ 4054{
2524 if (fs_fd != -2)
2525 return;
2526
2527 /* kernels < 2.6.25 are borked 4055 /* kernels < 2.6.25 are borked
2528 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 4056 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2529 */ 4057 */
2530 { 4058 if (ev_linux_version () < 0x020619)
2531 struct utsname buf; 4059 return;
2532 int major, minor, micro;
2533 4060
4061 fs_2625 = 1;
4062}
4063
4064inline_size int
4065infy_newfd (void)
4066{
4067#if defined IN_CLOEXEC && defined IN_NONBLOCK
4068 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4069 if (fd >= 0)
4070 return fd;
4071#endif
4072 return inotify_init ();
4073}
4074
4075inline_size void
4076infy_init (EV_P)
4077{
4078 if (fs_fd != -2)
4079 return;
4080
2534 fs_fd = -1; 4081 fs_fd = -1;
2535 4082
2536 if (uname (&buf)) 4083 ev_check_2625 (EV_A);
2537 return;
2538 4084
2539 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2540 return;
2541
2542 if (major < 2
2543 || (major == 2 && minor < 6)
2544 || (major == 2 && minor == 6 && micro < 25))
2545 return;
2546 }
2547
2548 fs_fd = inotify_init (); 4085 fs_fd = infy_newfd ();
2549 4086
2550 if (fs_fd >= 0) 4087 if (fs_fd >= 0)
2551 { 4088 {
4089 fd_intern (fs_fd);
2552 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4090 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2553 ev_set_priority (&fs_w, EV_MAXPRI); 4091 ev_set_priority (&fs_w, EV_MAXPRI);
2554 ev_io_start (EV_A_ &fs_w); 4092 ev_io_start (EV_A_ &fs_w);
4093 ev_unref (EV_A);
2555 } 4094 }
2556} 4095}
2557 4096
2558void inline_size 4097inline_size void
2559infy_fork (EV_P) 4098infy_fork (EV_P)
2560{ 4099{
2561 int slot; 4100 int slot;
2562 4101
2563 if (fs_fd < 0) 4102 if (fs_fd < 0)
2564 return; 4103 return;
2565 4104
4105 ev_ref (EV_A);
4106 ev_io_stop (EV_A_ &fs_w);
2566 close (fs_fd); 4107 close (fs_fd);
2567 fs_fd = inotify_init (); 4108 fs_fd = infy_newfd ();
2568 4109
4110 if (fs_fd >= 0)
4111 {
4112 fd_intern (fs_fd);
4113 ev_io_set (&fs_w, fs_fd, EV_READ);
4114 ev_io_start (EV_A_ &fs_w);
4115 ev_unref (EV_A);
4116 }
4117
2569 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4118 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2570 { 4119 {
2571 WL w_ = fs_hash [slot].head; 4120 WL w_ = fs_hash [slot].head;
2572 fs_hash [slot].head = 0; 4121 fs_hash [slot].head = 0;
2573 4122
2574 while (w_) 4123 while (w_)
2579 w->wd = -1; 4128 w->wd = -1;
2580 4129
2581 if (fs_fd >= 0) 4130 if (fs_fd >= 0)
2582 infy_add (EV_A_ w); /* re-add, no matter what */ 4131 infy_add (EV_A_ w); /* re-add, no matter what */
2583 else 4132 else
4133 {
4134 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4135 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2584 ev_timer_start (EV_A_ &w->timer); 4136 ev_timer_again (EV_A_ &w->timer);
4137 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4138 }
2585 } 4139 }
2586 } 4140 }
2587} 4141}
2588 4142
2589#endif 4143#endif
2593#else 4147#else
2594# define EV_LSTAT(p,b) lstat (p, b) 4148# define EV_LSTAT(p,b) lstat (p, b)
2595#endif 4149#endif
2596 4150
2597void 4151void
2598ev_stat_stat (EV_P_ ev_stat *w) 4152ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2599{ 4153{
2600 if (lstat (w->path, &w->attr) < 0) 4154 if (lstat (w->path, &w->attr) < 0)
2601 w->attr.st_nlink = 0; 4155 w->attr.st_nlink = 0;
2602 else if (!w->attr.st_nlink) 4156 else if (!w->attr.st_nlink)
2603 w->attr.st_nlink = 1; 4157 w->attr.st_nlink = 1;
2606static void noinline 4160static void noinline
2607stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4161stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2608{ 4162{
2609 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4163 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2610 4164
2611 /* we copy this here each the time so that */ 4165 ev_statdata prev = w->attr;
2612 /* prev has the old value when the callback gets invoked */
2613 w->prev = w->attr;
2614 ev_stat_stat (EV_A_ w); 4166 ev_stat_stat (EV_A_ w);
2615 4167
2616 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4168 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2617 if ( 4169 if (
2618 w->prev.st_dev != w->attr.st_dev 4170 prev.st_dev != w->attr.st_dev
2619 || w->prev.st_ino != w->attr.st_ino 4171 || prev.st_ino != w->attr.st_ino
2620 || w->prev.st_mode != w->attr.st_mode 4172 || prev.st_mode != w->attr.st_mode
2621 || w->prev.st_nlink != w->attr.st_nlink 4173 || prev.st_nlink != w->attr.st_nlink
2622 || w->prev.st_uid != w->attr.st_uid 4174 || prev.st_uid != w->attr.st_uid
2623 || w->prev.st_gid != w->attr.st_gid 4175 || prev.st_gid != w->attr.st_gid
2624 || w->prev.st_rdev != w->attr.st_rdev 4176 || prev.st_rdev != w->attr.st_rdev
2625 || w->prev.st_size != w->attr.st_size 4177 || prev.st_size != w->attr.st_size
2626 || w->prev.st_atime != w->attr.st_atime 4178 || prev.st_atime != w->attr.st_atime
2627 || w->prev.st_mtime != w->attr.st_mtime 4179 || prev.st_mtime != w->attr.st_mtime
2628 || w->prev.st_ctime != w->attr.st_ctime 4180 || prev.st_ctime != w->attr.st_ctime
2629 ) { 4181 ) {
4182 /* we only update w->prev on actual differences */
4183 /* in case we test more often than invoke the callback, */
4184 /* to ensure that prev is always different to attr */
4185 w->prev = prev;
4186
2630 #if EV_USE_INOTIFY 4187 #if EV_USE_INOTIFY
2631 if (fs_fd >= 0) 4188 if (fs_fd >= 0)
2632 { 4189 {
2633 infy_del (EV_A_ w); 4190 infy_del (EV_A_ w);
2634 infy_add (EV_A_ w); 4191 infy_add (EV_A_ w);
2639 ev_feed_event (EV_A_ w, EV_STAT); 4196 ev_feed_event (EV_A_ w, EV_STAT);
2640 } 4197 }
2641} 4198}
2642 4199
2643void 4200void
2644ev_stat_start (EV_P_ ev_stat *w) 4201ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2645{ 4202{
2646 if (expect_false (ev_is_active (w))) 4203 if (expect_false (ev_is_active (w)))
2647 return; 4204 return;
2648 4205
2649 /* since we use memcmp, we need to clear any padding data etc. */
2650 memset (&w->prev, 0, sizeof (ev_statdata));
2651 memset (&w->attr, 0, sizeof (ev_statdata));
2652
2653 ev_stat_stat (EV_A_ w); 4206 ev_stat_stat (EV_A_ w);
2654 4207
4208 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2655 if (w->interval < MIN_STAT_INTERVAL) 4209 w->interval = MIN_STAT_INTERVAL;
2656 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2657 4210
2658 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4211 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2659 ev_set_priority (&w->timer, ev_priority (w)); 4212 ev_set_priority (&w->timer, ev_priority (w));
2660 4213
2661#if EV_USE_INOTIFY 4214#if EV_USE_INOTIFY
2662 infy_init (EV_A); 4215 infy_init (EV_A);
2663 4216
2664 if (fs_fd >= 0) 4217 if (fs_fd >= 0)
2665 infy_add (EV_A_ w); 4218 infy_add (EV_A_ w);
2666 else 4219 else
2667#endif 4220#endif
4221 {
2668 ev_timer_start (EV_A_ &w->timer); 4222 ev_timer_again (EV_A_ &w->timer);
4223 ev_unref (EV_A);
4224 }
2669 4225
2670 ev_start (EV_A_ (W)w, 1); 4226 ev_start (EV_A_ (W)w, 1);
2671 4227
2672 EV_FREQUENT_CHECK; 4228 EV_FREQUENT_CHECK;
2673} 4229}
2674 4230
2675void 4231void
2676ev_stat_stop (EV_P_ ev_stat *w) 4232ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2677{ 4233{
2678 clear_pending (EV_A_ (W)w); 4234 clear_pending (EV_A_ (W)w);
2679 if (expect_false (!ev_is_active (w))) 4235 if (expect_false (!ev_is_active (w)))
2680 return; 4236 return;
2681 4237
2682 EV_FREQUENT_CHECK; 4238 EV_FREQUENT_CHECK;
2683 4239
2684#if EV_USE_INOTIFY 4240#if EV_USE_INOTIFY
2685 infy_del (EV_A_ w); 4241 infy_del (EV_A_ w);
2686#endif 4242#endif
4243
4244 if (ev_is_active (&w->timer))
4245 {
4246 ev_ref (EV_A);
2687 ev_timer_stop (EV_A_ &w->timer); 4247 ev_timer_stop (EV_A_ &w->timer);
4248 }
2688 4249
2689 ev_stop (EV_A_ (W)w); 4250 ev_stop (EV_A_ (W)w);
2690 4251
2691 EV_FREQUENT_CHECK; 4252 EV_FREQUENT_CHECK;
2692} 4253}
2693#endif 4254#endif
2694 4255
2695#if EV_IDLE_ENABLE 4256#if EV_IDLE_ENABLE
2696void 4257void
2697ev_idle_start (EV_P_ ev_idle *w) 4258ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2698{ 4259{
2699 if (expect_false (ev_is_active (w))) 4260 if (expect_false (ev_is_active (w)))
2700 return; 4261 return;
2701 4262
2702 pri_adjust (EV_A_ (W)w); 4263 pri_adjust (EV_A_ (W)w);
2715 4276
2716 EV_FREQUENT_CHECK; 4277 EV_FREQUENT_CHECK;
2717} 4278}
2718 4279
2719void 4280void
2720ev_idle_stop (EV_P_ ev_idle *w) 4281ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2721{ 4282{
2722 clear_pending (EV_A_ (W)w); 4283 clear_pending (EV_A_ (W)w);
2723 if (expect_false (!ev_is_active (w))) 4284 if (expect_false (!ev_is_active (w)))
2724 return; 4285 return;
2725 4286
2737 4298
2738 EV_FREQUENT_CHECK; 4299 EV_FREQUENT_CHECK;
2739} 4300}
2740#endif 4301#endif
2741 4302
4303#if EV_PREPARE_ENABLE
2742void 4304void
2743ev_prepare_start (EV_P_ ev_prepare *w) 4305ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2744{ 4306{
2745 if (expect_false (ev_is_active (w))) 4307 if (expect_false (ev_is_active (w)))
2746 return; 4308 return;
2747 4309
2748 EV_FREQUENT_CHECK; 4310 EV_FREQUENT_CHECK;
2753 4315
2754 EV_FREQUENT_CHECK; 4316 EV_FREQUENT_CHECK;
2755} 4317}
2756 4318
2757void 4319void
2758ev_prepare_stop (EV_P_ ev_prepare *w) 4320ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2759{ 4321{
2760 clear_pending (EV_A_ (W)w); 4322 clear_pending (EV_A_ (W)w);
2761 if (expect_false (!ev_is_active (w))) 4323 if (expect_false (!ev_is_active (w)))
2762 return; 4324 return;
2763 4325
2772 4334
2773 ev_stop (EV_A_ (W)w); 4335 ev_stop (EV_A_ (W)w);
2774 4336
2775 EV_FREQUENT_CHECK; 4337 EV_FREQUENT_CHECK;
2776} 4338}
4339#endif
2777 4340
4341#if EV_CHECK_ENABLE
2778void 4342void
2779ev_check_start (EV_P_ ev_check *w) 4343ev_check_start (EV_P_ ev_check *w) EV_THROW
2780{ 4344{
2781 if (expect_false (ev_is_active (w))) 4345 if (expect_false (ev_is_active (w)))
2782 return; 4346 return;
2783 4347
2784 EV_FREQUENT_CHECK; 4348 EV_FREQUENT_CHECK;
2789 4353
2790 EV_FREQUENT_CHECK; 4354 EV_FREQUENT_CHECK;
2791} 4355}
2792 4356
2793void 4357void
2794ev_check_stop (EV_P_ ev_check *w) 4358ev_check_stop (EV_P_ ev_check *w) EV_THROW
2795{ 4359{
2796 clear_pending (EV_A_ (W)w); 4360 clear_pending (EV_A_ (W)w);
2797 if (expect_false (!ev_is_active (w))) 4361 if (expect_false (!ev_is_active (w)))
2798 return; 4362 return;
2799 4363
2808 4372
2809 ev_stop (EV_A_ (W)w); 4373 ev_stop (EV_A_ (W)w);
2810 4374
2811 EV_FREQUENT_CHECK; 4375 EV_FREQUENT_CHECK;
2812} 4376}
4377#endif
2813 4378
2814#if EV_EMBED_ENABLE 4379#if EV_EMBED_ENABLE
2815void noinline 4380void noinline
2816ev_embed_sweep (EV_P_ ev_embed *w) 4381ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2817{ 4382{
2818 ev_loop (w->other, EVLOOP_NONBLOCK); 4383 ev_run (w->other, EVRUN_NOWAIT);
2819} 4384}
2820 4385
2821static void 4386static void
2822embed_io_cb (EV_P_ ev_io *io, int revents) 4387embed_io_cb (EV_P_ ev_io *io, int revents)
2823{ 4388{
2824 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4389 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2825 4390
2826 if (ev_cb (w)) 4391 if (ev_cb (w))
2827 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4392 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2828 else 4393 else
2829 ev_loop (w->other, EVLOOP_NONBLOCK); 4394 ev_run (w->other, EVRUN_NOWAIT);
2830} 4395}
2831 4396
2832static void 4397static void
2833embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4398embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2834{ 4399{
2835 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4400 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2836 4401
2837 { 4402 {
2838 struct ev_loop *loop = w->other; 4403 EV_P = w->other;
2839 4404
2840 while (fdchangecnt) 4405 while (fdchangecnt)
2841 { 4406 {
2842 fd_reify (EV_A); 4407 fd_reify (EV_A);
2843 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4408 ev_run (EV_A_ EVRUN_NOWAIT);
2844 } 4409 }
2845 } 4410 }
2846} 4411}
2847 4412
2848static void 4413static void
2849embed_fork_cb (EV_P_ ev_fork *fork_w, int revents) 4414embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2850{ 4415{
2851 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 4416 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2852 4417
4418 ev_embed_stop (EV_A_ w);
4419
2853 { 4420 {
2854 struct ev_loop *loop = w->other; 4421 EV_P = w->other;
2855 4422
2856 ev_loop_fork (EV_A); 4423 ev_loop_fork (EV_A);
4424 ev_run (EV_A_ EVRUN_NOWAIT);
2857 } 4425 }
4426
4427 ev_embed_start (EV_A_ w);
2858} 4428}
2859 4429
2860#if 0 4430#if 0
2861static void 4431static void
2862embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4432embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2864 ev_idle_stop (EV_A_ idle); 4434 ev_idle_stop (EV_A_ idle);
2865} 4435}
2866#endif 4436#endif
2867 4437
2868void 4438void
2869ev_embed_start (EV_P_ ev_embed *w) 4439ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2870{ 4440{
2871 if (expect_false (ev_is_active (w))) 4441 if (expect_false (ev_is_active (w)))
2872 return; 4442 return;
2873 4443
2874 { 4444 {
2875 struct ev_loop *loop = w->other; 4445 EV_P = w->other;
2876 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4446 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2877 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4447 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2878 } 4448 }
2879 4449
2880 EV_FREQUENT_CHECK; 4450 EV_FREQUENT_CHECK;
2881 4451
2895 4465
2896 EV_FREQUENT_CHECK; 4466 EV_FREQUENT_CHECK;
2897} 4467}
2898 4468
2899void 4469void
2900ev_embed_stop (EV_P_ ev_embed *w) 4470ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2901{ 4471{
2902 clear_pending (EV_A_ (W)w); 4472 clear_pending (EV_A_ (W)w);
2903 if (expect_false (!ev_is_active (w))) 4473 if (expect_false (!ev_is_active (w)))
2904 return; 4474 return;
2905 4475
2907 4477
2908 ev_io_stop (EV_A_ &w->io); 4478 ev_io_stop (EV_A_ &w->io);
2909 ev_prepare_stop (EV_A_ &w->prepare); 4479 ev_prepare_stop (EV_A_ &w->prepare);
2910 ev_fork_stop (EV_A_ &w->fork); 4480 ev_fork_stop (EV_A_ &w->fork);
2911 4481
4482 ev_stop (EV_A_ (W)w);
4483
2912 EV_FREQUENT_CHECK; 4484 EV_FREQUENT_CHECK;
2913} 4485}
2914#endif 4486#endif
2915 4487
2916#if EV_FORK_ENABLE 4488#if EV_FORK_ENABLE
2917void 4489void
2918ev_fork_start (EV_P_ ev_fork *w) 4490ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2919{ 4491{
2920 if (expect_false (ev_is_active (w))) 4492 if (expect_false (ev_is_active (w)))
2921 return; 4493 return;
2922 4494
2923 EV_FREQUENT_CHECK; 4495 EV_FREQUENT_CHECK;
2928 4500
2929 EV_FREQUENT_CHECK; 4501 EV_FREQUENT_CHECK;
2930} 4502}
2931 4503
2932void 4504void
2933ev_fork_stop (EV_P_ ev_fork *w) 4505ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2934{ 4506{
2935 clear_pending (EV_A_ (W)w); 4507 clear_pending (EV_A_ (W)w);
2936 if (expect_false (!ev_is_active (w))) 4508 if (expect_false (!ev_is_active (w)))
2937 return; 4509 return;
2938 4510
2949 4521
2950 EV_FREQUENT_CHECK; 4522 EV_FREQUENT_CHECK;
2951} 4523}
2952#endif 4524#endif
2953 4525
4526#if EV_CLEANUP_ENABLE
4527void
4528ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4529{
4530 if (expect_false (ev_is_active (w)))
4531 return;
4532
4533 EV_FREQUENT_CHECK;
4534
4535 ev_start (EV_A_ (W)w, ++cleanupcnt);
4536 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4537 cleanups [cleanupcnt - 1] = w;
4538
4539 /* cleanup watchers should never keep a refcount on the loop */
4540 ev_unref (EV_A);
4541 EV_FREQUENT_CHECK;
4542}
4543
4544void
4545ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4546{
4547 clear_pending (EV_A_ (W)w);
4548 if (expect_false (!ev_is_active (w)))
4549 return;
4550
4551 EV_FREQUENT_CHECK;
4552 ev_ref (EV_A);
4553
4554 {
4555 int active = ev_active (w);
4556
4557 cleanups [active - 1] = cleanups [--cleanupcnt];
4558 ev_active (cleanups [active - 1]) = active;
4559 }
4560
4561 ev_stop (EV_A_ (W)w);
4562
4563 EV_FREQUENT_CHECK;
4564}
4565#endif
4566
2954#if EV_ASYNC_ENABLE 4567#if EV_ASYNC_ENABLE
2955void 4568void
2956ev_async_start (EV_P_ ev_async *w) 4569ev_async_start (EV_P_ ev_async *w) EV_THROW
2957{ 4570{
2958 if (expect_false (ev_is_active (w))) 4571 if (expect_false (ev_is_active (w)))
2959 return; 4572 return;
4573
4574 w->sent = 0;
2960 4575
2961 evpipe_init (EV_A); 4576 evpipe_init (EV_A);
2962 4577
2963 EV_FREQUENT_CHECK; 4578 EV_FREQUENT_CHECK;
2964 4579
2968 4583
2969 EV_FREQUENT_CHECK; 4584 EV_FREQUENT_CHECK;
2970} 4585}
2971 4586
2972void 4587void
2973ev_async_stop (EV_P_ ev_async *w) 4588ev_async_stop (EV_P_ ev_async *w) EV_THROW
2974{ 4589{
2975 clear_pending (EV_A_ (W)w); 4590 clear_pending (EV_A_ (W)w);
2976 if (expect_false (!ev_is_active (w))) 4591 if (expect_false (!ev_is_active (w)))
2977 return; 4592 return;
2978 4593
2989 4604
2990 EV_FREQUENT_CHECK; 4605 EV_FREQUENT_CHECK;
2991} 4606}
2992 4607
2993void 4608void
2994ev_async_send (EV_P_ ev_async *w) 4609ev_async_send (EV_P_ ev_async *w) EV_THROW
2995{ 4610{
2996 w->sent = 1; 4611 w->sent = 1;
2997 evpipe_write (EV_A_ &gotasync); 4612 evpipe_write (EV_A_ &async_pending);
2998} 4613}
2999#endif 4614#endif
3000 4615
3001/*****************************************************************************/ 4616/*****************************************************************************/
3002 4617
3036 4651
3037 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io)); 4652 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3038} 4653}
3039 4654
3040void 4655void
3041ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4656ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
3042{ 4657{
3043 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4658 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3044 4659
3045 if (expect_false (!once)) 4660 if (expect_false (!once))
3046 { 4661 {
3047 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4662 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3048 return; 4663 return;
3049 } 4664 }
3050 4665
3051 once->cb = cb; 4666 once->cb = cb;
3052 once->arg = arg; 4667 once->arg = arg;
3064 ev_timer_set (&once->to, timeout, 0.); 4679 ev_timer_set (&once->to, timeout, 0.);
3065 ev_timer_start (EV_A_ &once->to); 4680 ev_timer_start (EV_A_ &once->to);
3066 } 4681 }
3067} 4682}
3068 4683
4684/*****************************************************************************/
4685
4686#if EV_WALK_ENABLE
4687void ecb_cold
4688ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4689{
4690 int i, j;
4691 ev_watcher_list *wl, *wn;
4692
4693 if (types & (EV_IO | EV_EMBED))
4694 for (i = 0; i < anfdmax; ++i)
4695 for (wl = anfds [i].head; wl; )
4696 {
4697 wn = wl->next;
4698
4699#if EV_EMBED_ENABLE
4700 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4701 {
4702 if (types & EV_EMBED)
4703 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4704 }
4705 else
4706#endif
4707#if EV_USE_INOTIFY
4708 if (ev_cb ((ev_io *)wl) == infy_cb)
4709 ;
4710 else
4711#endif
4712 if ((ev_io *)wl != &pipe_w)
4713 if (types & EV_IO)
4714 cb (EV_A_ EV_IO, wl);
4715
4716 wl = wn;
4717 }
4718
4719 if (types & (EV_TIMER | EV_STAT))
4720 for (i = timercnt + HEAP0; i-- > HEAP0; )
4721#if EV_STAT_ENABLE
4722 /*TODO: timer is not always active*/
4723 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4724 {
4725 if (types & EV_STAT)
4726 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4727 }
4728 else
4729#endif
4730 if (types & EV_TIMER)
4731 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4732
4733#if EV_PERIODIC_ENABLE
4734 if (types & EV_PERIODIC)
4735 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4736 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4737#endif
4738
4739#if EV_IDLE_ENABLE
4740 if (types & EV_IDLE)
4741 for (j = NUMPRI; j--; )
4742 for (i = idlecnt [j]; i--; )
4743 cb (EV_A_ EV_IDLE, idles [j][i]);
4744#endif
4745
4746#if EV_FORK_ENABLE
4747 if (types & EV_FORK)
4748 for (i = forkcnt; i--; )
4749 if (ev_cb (forks [i]) != embed_fork_cb)
4750 cb (EV_A_ EV_FORK, forks [i]);
4751#endif
4752
4753#if EV_ASYNC_ENABLE
4754 if (types & EV_ASYNC)
4755 for (i = asynccnt; i--; )
4756 cb (EV_A_ EV_ASYNC, asyncs [i]);
4757#endif
4758
4759#if EV_PREPARE_ENABLE
4760 if (types & EV_PREPARE)
4761 for (i = preparecnt; i--; )
4762# if EV_EMBED_ENABLE
4763 if (ev_cb (prepares [i]) != embed_prepare_cb)
4764# endif
4765 cb (EV_A_ EV_PREPARE, prepares [i]);
4766#endif
4767
4768#if EV_CHECK_ENABLE
4769 if (types & EV_CHECK)
4770 for (i = checkcnt; i--; )
4771 cb (EV_A_ EV_CHECK, checks [i]);
4772#endif
4773
4774#if EV_SIGNAL_ENABLE
4775 if (types & EV_SIGNAL)
4776 for (i = 0; i < EV_NSIG - 1; ++i)
4777 for (wl = signals [i].head; wl; )
4778 {
4779 wn = wl->next;
4780 cb (EV_A_ EV_SIGNAL, wl);
4781 wl = wn;
4782 }
4783#endif
4784
4785#if EV_CHILD_ENABLE
4786 if (types & EV_CHILD)
4787 for (i = (EV_PID_HASHSIZE); i--; )
4788 for (wl = childs [i]; wl; )
4789 {
4790 wn = wl->next;
4791 cb (EV_A_ EV_CHILD, wl);
4792 wl = wn;
4793 }
4794#endif
4795/* EV_STAT 0x00001000 /* stat data changed */
4796/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4797}
4798#endif
4799
3069#if EV_MULTIPLICITY 4800#if EV_MULTIPLICITY
3070 #include "ev_wrap.h" 4801 #include "ev_wrap.h"
3071#endif 4802#endif
3072 4803
3073#ifdef __cplusplus
3074}
3075#endif
3076

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines