ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.108 by root, Mon Nov 12 05:40:55 2007 UTC vs.
Revision 1.268 by root, Mon Oct 27 13:39:18 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
38 51
39# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 53# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
42# endif 55# endif
43# ifndef EV_USE_REALTIME 56# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 57# define EV_USE_REALTIME 1
45# endif 58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
46# endif 66# endif
47 67
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
50# endif 74# endif
51 75
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
53# define EV_USE_POLL 1 78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
54# endif 82# endif
55 83
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
57# define EV_USE_EPOLL 1 86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
58# endif 90# endif
59 91
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
62# endif 98# endif
99
100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
63 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
64#endif 132#endif
65 133
66#include <math.h> 134#include <math.h>
67#include <stdlib.h> 135#include <stdlib.h>
68#include <fcntl.h> 136#include <fcntl.h>
75#include <sys/types.h> 143#include <sys/types.h>
76#include <time.h> 144#include <time.h>
77 145
78#include <signal.h> 146#include <signal.h>
79 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
80#ifndef _WIN32 154#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h> 155# include <sys/time.h>
83# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
84#else 158#else
159# include <io.h>
85# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
86# include <windows.h> 161# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
89# endif 164# endif
90#endif 165#endif
91 166
92/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
93 168
94#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
95# define EV_USE_MONOTONIC 1 171# define EV_USE_MONOTONIC 1
172# else
173# define EV_USE_MONOTONIC 0
174# endif
175#endif
176
177#ifndef EV_USE_REALTIME
178# define EV_USE_REALTIME 0
179#endif
180
181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
185# define EV_USE_NANOSLEEP 0
186# endif
96#endif 187#endif
97 188
98#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
99# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
100# define EV_SELECT_USE_FD_SET 1
101#endif 191#endif
102 192
103#ifndef EV_USE_POLL 193#ifndef EV_USE_POLL
104# ifdef _WIN32 194# ifdef _WIN32
105# define EV_USE_POLL 0 195# define EV_USE_POLL 0
107# define EV_USE_POLL 1 197# define EV_USE_POLL 1
108# endif 198# endif
109#endif 199#endif
110 200
111#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
112# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
113#endif 207#endif
114 208
115#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
116# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
117#endif 211#endif
118 212
119#ifndef EV_USE_REALTIME 213#ifndef EV_USE_PORT
214# define EV_USE_PORT 0
215#endif
216
217#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
120# define EV_USE_REALTIME 1 219# define EV_USE_INOTIFY 1
220# else
221# define EV_USE_INOTIFY 0
121#endif 222# endif
223#endif
122 224
123/**/ 225#ifndef EV_PID_HASHSIZE
124 226# if EV_MINIMAL
125/* darwin simply cannot be helped */ 227# define EV_PID_HASHSIZE 1
126#ifdef __APPLE__ 228# else
127# undef EV_USE_POLL 229# define EV_PID_HASHSIZE 16
128# undef EV_USE_KQUEUE
129#endif 230# endif
231#endif
232
233#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif
240
241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
130 268
131#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
132# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
133# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
134#endif 272#endif
136#ifndef CLOCK_REALTIME 274#ifndef CLOCK_REALTIME
137# undef EV_USE_REALTIME 275# undef EV_USE_REALTIME
138# define EV_USE_REALTIME 0 276# define EV_USE_REALTIME 0
139#endif 277#endif
140 278
279#if !EV_STAT_ENABLE
280# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0
282#endif
283
284#if !EV_USE_NANOSLEEP
285# ifndef _WIN32
286# include <sys/select.h>
287# endif
288#endif
289
290#if EV_USE_INOTIFY
291# include <sys/utsname.h>
292# include <sys/inotify.h>
293/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
294# ifndef IN_DONT_FOLLOW
295# undef EV_USE_INOTIFY
296# define EV_USE_INOTIFY 0
297# endif
298#endif
299
141#if EV_SELECT_IS_WINSOCKET 300#if EV_SELECT_IS_WINSOCKET
142# include <winsock.h> 301# include <winsock.h>
143#endif 302#endif
144 303
304#if EV_USE_EVENTFD
305/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
306# include <stdint.h>
307# ifdef __cplusplus
308extern "C" {
309# endif
310int eventfd (unsigned int initval, int flags);
311# ifdef __cplusplus
312}
313# endif
314#endif
315
145/**/ 316/**/
146 317
318#if EV_VERIFY >= 3
319# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
320#else
321# define EV_FREQUENT_CHECK do { } while (0)
322#endif
323
324/*
325 * This is used to avoid floating point rounding problems.
326 * It is added to ev_rt_now when scheduling periodics
327 * to ensure progress, time-wise, even when rounding
328 * errors are against us.
329 * This value is good at least till the year 4000.
330 * Better solutions welcome.
331 */
332#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
333
147#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 334#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
148#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 335#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
149#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
150/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 336/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
151 337
152#ifdef EV_H
153# include EV_H
154#else
155# include "ev.h"
156#endif
157
158#if __GNUC__ >= 3 338#if __GNUC__ >= 4
159# define expect(expr,value) __builtin_expect ((expr),(value)) 339# define expect(expr,value) __builtin_expect ((expr),(value))
160# define inline inline 340# define noinline __attribute__ ((noinline))
161#else 341#else
162# define expect(expr,value) (expr) 342# define expect(expr,value) (expr)
163# define inline static 343# define noinline
344# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
345# define inline
346# endif
164#endif 347#endif
165 348
166#define expect_false(expr) expect ((expr) != 0, 0) 349#define expect_false(expr) expect ((expr) != 0, 0)
167#define expect_true(expr) expect ((expr) != 0, 1) 350#define expect_true(expr) expect ((expr) != 0, 1)
351#define inline_size static inline
352
353#if EV_MINIMAL
354# define inline_speed static noinline
355#else
356# define inline_speed static inline
357#endif
168 358
169#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 359#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
170#define ABSPRI(w) ((w)->priority - EV_MINPRI) 360#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
171 361
172#define EMPTY /* required for microsofts broken pseudo-c compiler */ 362#define EMPTY /* required for microsofts broken pseudo-c compiler */
363#define EMPTY2(a,b) /* used to suppress some warnings */
173 364
174typedef struct ev_watcher *W; 365typedef ev_watcher *W;
175typedef struct ev_watcher_list *WL; 366typedef ev_watcher_list *WL;
176typedef struct ev_watcher_time *WT; 367typedef ev_watcher_time *WT;
177 368
369#define ev_active(w) ((W)(w))->active
370#define ev_at(w) ((WT)(w))->at
371
372#if EV_USE_MONOTONIC
373/* sig_atomic_t is used to avoid per-thread variables or locking but still */
374/* giving it a reasonably high chance of working on typical architetcures */
178static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 375static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
376#endif
179 377
180#ifdef _WIN32 378#ifdef _WIN32
181# include "ev_win32.c" 379# include "ev_win32.c"
182#endif 380#endif
183 381
184/*****************************************************************************/ 382/*****************************************************************************/
185 383
186static void (*syserr_cb)(const char *msg); 384static void (*syserr_cb)(const char *msg);
187 385
386void
188void ev_set_syserr_cb (void (*cb)(const char *msg)) 387ev_set_syserr_cb (void (*cb)(const char *msg))
189{ 388{
190 syserr_cb = cb; 389 syserr_cb = cb;
191} 390}
192 391
193static void 392static void noinline
194syserr (const char *msg) 393syserr (const char *msg)
195{ 394{
196 if (!msg) 395 if (!msg)
197 msg = "(libev) system error"; 396 msg = "(libev) system error";
198 397
203 perror (msg); 402 perror (msg);
204 abort (); 403 abort ();
205 } 404 }
206} 405}
207 406
407static void *
408ev_realloc_emul (void *ptr, long size)
409{
410 /* some systems, notably openbsd and darwin, fail to properly
411 * implement realloc (x, 0) (as required by both ansi c-98 and
412 * the single unix specification, so work around them here.
413 */
414
415 if (size)
416 return realloc (ptr, size);
417
418 free (ptr);
419 return 0;
420}
421
208static void *(*alloc)(void *ptr, long size); 422static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
209 423
424void
210void ev_set_allocator (void *(*cb)(void *ptr, long size)) 425ev_set_allocator (void *(*cb)(void *ptr, long size))
211{ 426{
212 alloc = cb; 427 alloc = cb;
213} 428}
214 429
215static void * 430inline_speed void *
216ev_realloc (void *ptr, long size) 431ev_realloc (void *ptr, long size)
217{ 432{
218 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 433 ptr = alloc (ptr, size);
219 434
220 if (!ptr && size) 435 if (!ptr && size)
221 { 436 {
222 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 437 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
223 abort (); 438 abort ();
234typedef struct 449typedef struct
235{ 450{
236 WL head; 451 WL head;
237 unsigned char events; 452 unsigned char events;
238 unsigned char reify; 453 unsigned char reify;
454 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
455 unsigned char egen; /* generation counter to counter epoll bugs */
239#if EV_SELECT_IS_WINSOCKET 456#if EV_SELECT_IS_WINSOCKET
240 SOCKET handle; 457 SOCKET handle;
241#endif 458#endif
242} ANFD; 459} ANFD;
243 460
244typedef struct 461typedef struct
245{ 462{
246 W w; 463 W w;
247 int events; 464 int events;
248} ANPENDING; 465} ANPENDING;
466
467#if EV_USE_INOTIFY
468/* hash table entry per inotify-id */
469typedef struct
470{
471 WL head;
472} ANFS;
473#endif
474
475/* Heap Entry */
476#if EV_HEAP_CACHE_AT
477 typedef struct {
478 ev_tstamp at;
479 WT w;
480 } ANHE;
481
482 #define ANHE_w(he) (he).w /* access watcher, read-write */
483 #define ANHE_at(he) (he).at /* access cached at, read-only */
484 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
485#else
486 typedef WT ANHE;
487
488 #define ANHE_w(he) (he)
489 #define ANHE_at(he) (he)->at
490 #define ANHE_at_cache(he)
491#endif
249 492
250#if EV_MULTIPLICITY 493#if EV_MULTIPLICITY
251 494
252 struct ev_loop 495 struct ev_loop
253 { 496 {
257 #include "ev_vars.h" 500 #include "ev_vars.h"
258 #undef VAR 501 #undef VAR
259 }; 502 };
260 #include "ev_wrap.h" 503 #include "ev_wrap.h"
261 504
262 struct ev_loop default_loop_struct; 505 static struct ev_loop default_loop_struct;
263 static struct ev_loop *default_loop; 506 struct ev_loop *ev_default_loop_ptr;
264 507
265#else 508#else
266 509
267 ev_tstamp ev_rt_now; 510 ev_tstamp ev_rt_now;
268 #define VAR(name,decl) static decl; 511 #define VAR(name,decl) static decl;
269 #include "ev_vars.h" 512 #include "ev_vars.h"
270 #undef VAR 513 #undef VAR
271 514
272 static int default_loop; 515 static int ev_default_loop_ptr;
273 516
274#endif 517#endif
275 518
276/*****************************************************************************/ 519/*****************************************************************************/
277 520
287 gettimeofday (&tv, 0); 530 gettimeofday (&tv, 0);
288 return tv.tv_sec + tv.tv_usec * 1e-6; 531 return tv.tv_sec + tv.tv_usec * 1e-6;
289#endif 532#endif
290} 533}
291 534
292inline ev_tstamp 535ev_tstamp inline_size
293get_clock (void) 536get_clock (void)
294{ 537{
295#if EV_USE_MONOTONIC 538#if EV_USE_MONOTONIC
296 if (expect_true (have_monotonic)) 539 if (expect_true (have_monotonic))
297 { 540 {
310{ 553{
311 return ev_rt_now; 554 return ev_rt_now;
312} 555}
313#endif 556#endif
314 557
315#define array_roundsize(type,n) (((n) | 4) & ~3) 558void
559ev_sleep (ev_tstamp delay)
560{
561 if (delay > 0.)
562 {
563#if EV_USE_NANOSLEEP
564 struct timespec ts;
565
566 ts.tv_sec = (time_t)delay;
567 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
568
569 nanosleep (&ts, 0);
570#elif defined(_WIN32)
571 Sleep ((unsigned long)(delay * 1e3));
572#else
573 struct timeval tv;
574
575 tv.tv_sec = (time_t)delay;
576 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
577
578 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
579 /* somehting nto guaranteed by newer posix versions, but guaranteed */
580 /* by older ones */
581 select (0, 0, 0, 0, &tv);
582#endif
583 }
584}
585
586/*****************************************************************************/
587
588#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
589
590int inline_size
591array_nextsize (int elem, int cur, int cnt)
592{
593 int ncur = cur + 1;
594
595 do
596 ncur <<= 1;
597 while (cnt > ncur);
598
599 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
600 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
601 {
602 ncur *= elem;
603 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
604 ncur = ncur - sizeof (void *) * 4;
605 ncur /= elem;
606 }
607
608 return ncur;
609}
610
611static noinline void *
612array_realloc (int elem, void *base, int *cur, int cnt)
613{
614 *cur = array_nextsize (elem, *cur, cnt);
615 return ev_realloc (base, elem * *cur);
616}
617
618#define array_init_zero(base,count) \
619 memset ((void *)(base), 0, sizeof (*(base)) * (count))
316 620
317#define array_needsize(type,base,cur,cnt,init) \ 621#define array_needsize(type,base,cur,cnt,init) \
318 if (expect_false ((cnt) > cur)) \ 622 if (expect_false ((cnt) > (cur))) \
319 { \ 623 { \
320 int newcnt = cur; \ 624 int ocur_ = (cur); \
321 do \ 625 (base) = (type *)array_realloc \
322 { \ 626 (sizeof (type), (base), &(cur), (cnt)); \
323 newcnt = array_roundsize (type, newcnt << 1); \ 627 init ((base) + (ocur_), (cur) - ocur_); \
324 } \
325 while ((cnt) > newcnt); \
326 \
327 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
328 init (base + cur, newcnt - cur); \
329 cur = newcnt; \
330 } 628 }
331 629
630#if 0
332#define array_slim(type,stem) \ 631#define array_slim(type,stem) \
333 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 632 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
334 { \ 633 { \
335 stem ## max = array_roundsize (stem ## cnt >> 1); \ 634 stem ## max = array_roundsize (stem ## cnt >> 1); \
336 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 635 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
337 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 636 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
338 } 637 }
638#endif
339 639
340#define array_free(stem, idx) \ 640#define array_free(stem, idx) \
341 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 641 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
342 642
343/*****************************************************************************/ 643/*****************************************************************************/
344 644
345static void 645void noinline
346anfds_init (ANFD *base, int count)
347{
348 while (count--)
349 {
350 base->head = 0;
351 base->events = EV_NONE;
352 base->reify = 0;
353
354 ++base;
355 }
356}
357
358void
359ev_feed_event (EV_P_ void *w, int revents) 646ev_feed_event (EV_P_ void *w, int revents)
360{ 647{
361 W w_ = (W)w; 648 W w_ = (W)w;
649 int pri = ABSPRI (w_);
362 650
363 if (w_->pending) 651 if (expect_false (w_->pending))
652 pendings [pri][w_->pending - 1].events |= revents;
653 else
364 { 654 {
655 w_->pending = ++pendingcnt [pri];
656 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
657 pendings [pri][w_->pending - 1].w = w_;
365 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 658 pendings [pri][w_->pending - 1].events = revents;
366 return;
367 } 659 }
368
369 w_->pending = ++pendingcnt [ABSPRI (w_)];
370 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
371 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
372 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
373} 660}
374 661
375static void 662void inline_speed
376queue_events (EV_P_ W *events, int eventcnt, int type) 663queue_events (EV_P_ W *events, int eventcnt, int type)
377{ 664{
378 int i; 665 int i;
379 666
380 for (i = 0; i < eventcnt; ++i) 667 for (i = 0; i < eventcnt; ++i)
381 ev_feed_event (EV_A_ events [i], type); 668 ev_feed_event (EV_A_ events [i], type);
382} 669}
383 670
384inline void 671/*****************************************************************************/
672
673void inline_speed
385fd_event (EV_P_ int fd, int revents) 674fd_event (EV_P_ int fd, int revents)
386{ 675{
387 ANFD *anfd = anfds + fd; 676 ANFD *anfd = anfds + fd;
388 struct ev_io *w; 677 ev_io *w;
389 678
390 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 679 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
391 { 680 {
392 int ev = w->events & revents; 681 int ev = w->events & revents;
393 682
394 if (ev) 683 if (ev)
395 ev_feed_event (EV_A_ (W)w, ev); 684 ev_feed_event (EV_A_ (W)w, ev);
397} 686}
398 687
399void 688void
400ev_feed_fd_event (EV_P_ int fd, int revents) 689ev_feed_fd_event (EV_P_ int fd, int revents)
401{ 690{
691 if (fd >= 0 && fd < anfdmax)
402 fd_event (EV_A_ fd, revents); 692 fd_event (EV_A_ fd, revents);
403} 693}
404 694
405/*****************************************************************************/ 695void inline_size
406
407static void
408fd_reify (EV_P) 696fd_reify (EV_P)
409{ 697{
410 int i; 698 int i;
411 699
412 for (i = 0; i < fdchangecnt; ++i) 700 for (i = 0; i < fdchangecnt; ++i)
413 { 701 {
414 int fd = fdchanges [i]; 702 int fd = fdchanges [i];
415 ANFD *anfd = anfds + fd; 703 ANFD *anfd = anfds + fd;
416 struct ev_io *w; 704 ev_io *w;
417 705
418 int events = 0; 706 unsigned char events = 0;
419 707
420 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 708 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
421 events |= w->events; 709 events |= (unsigned char)w->events;
422 710
423#if EV_SELECT_IS_WINSOCKET 711#if EV_SELECT_IS_WINSOCKET
424 if (events) 712 if (events)
425 { 713 {
426 unsigned long argp; 714 unsigned long arg;
715 #ifdef EV_FD_TO_WIN32_HANDLE
716 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
717 #else
427 anfd->handle = _get_osfhandle (fd); 718 anfd->handle = _get_osfhandle (fd);
719 #endif
428 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 720 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
429 } 721 }
430#endif 722#endif
431 723
724 {
725 unsigned char o_events = anfd->events;
726 unsigned char o_reify = anfd->reify;
727
432 anfd->reify = 0; 728 anfd->reify = 0;
433
434 method_modify (EV_A_ fd, anfd->events, events);
435 anfd->events = events; 729 anfd->events = events;
730
731 if (o_events != events || o_reify & EV_IOFDSET)
732 backend_modify (EV_A_ fd, o_events, events);
733 }
436 } 734 }
437 735
438 fdchangecnt = 0; 736 fdchangecnt = 0;
439} 737}
440 738
441static void 739void inline_size
442fd_change (EV_P_ int fd) 740fd_change (EV_P_ int fd, int flags)
443{ 741{
444 if (anfds [fd].reify) 742 unsigned char reify = anfds [fd].reify;
445 return;
446
447 anfds [fd].reify = 1; 743 anfds [fd].reify |= flags;
448 744
745 if (expect_true (!reify))
746 {
449 ++fdchangecnt; 747 ++fdchangecnt;
450 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 748 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
451 fdchanges [fdchangecnt - 1] = fd; 749 fdchanges [fdchangecnt - 1] = fd;
750 }
452} 751}
453 752
454static void 753void inline_speed
455fd_kill (EV_P_ int fd) 754fd_kill (EV_P_ int fd)
456{ 755{
457 struct ev_io *w; 756 ev_io *w;
458 757
459 while ((w = (struct ev_io *)anfds [fd].head)) 758 while ((w = (ev_io *)anfds [fd].head))
460 { 759 {
461 ev_io_stop (EV_A_ w); 760 ev_io_stop (EV_A_ w);
462 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 761 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
463 } 762 }
464} 763}
465 764
466static int 765int inline_size
467fd_valid (int fd) 766fd_valid (int fd)
468{ 767{
469#ifdef _WIN32 768#ifdef _WIN32
470 return _get_osfhandle (fd) != -1; 769 return _get_osfhandle (fd) != -1;
471#else 770#else
472 return fcntl (fd, F_GETFD) != -1; 771 return fcntl (fd, F_GETFD) != -1;
473#endif 772#endif
474} 773}
475 774
476/* called on EBADF to verify fds */ 775/* called on EBADF to verify fds */
477static void 776static void noinline
478fd_ebadf (EV_P) 777fd_ebadf (EV_P)
479{ 778{
480 int fd; 779 int fd;
481 780
482 for (fd = 0; fd < anfdmax; ++fd) 781 for (fd = 0; fd < anfdmax; ++fd)
483 if (anfds [fd].events) 782 if (anfds [fd].events)
484 if (!fd_valid (fd) == -1 && errno == EBADF) 783 if (!fd_valid (fd) && errno == EBADF)
485 fd_kill (EV_A_ fd); 784 fd_kill (EV_A_ fd);
486} 785}
487 786
488/* called on ENOMEM in select/poll to kill some fds and retry */ 787/* called on ENOMEM in select/poll to kill some fds and retry */
489static void 788static void noinline
490fd_enomem (EV_P) 789fd_enomem (EV_P)
491{ 790{
492 int fd; 791 int fd;
493 792
494 for (fd = anfdmax; fd--; ) 793 for (fd = anfdmax; fd--; )
497 fd_kill (EV_A_ fd); 796 fd_kill (EV_A_ fd);
498 return; 797 return;
499 } 798 }
500} 799}
501 800
502/* usually called after fork if method needs to re-arm all fds from scratch */ 801/* usually called after fork if backend needs to re-arm all fds from scratch */
503static void 802static void noinline
504fd_rearm_all (EV_P) 803fd_rearm_all (EV_P)
505{ 804{
506 int fd; 805 int fd;
507 806
508 /* this should be highly optimised to not do anything but set a flag */
509 for (fd = 0; fd < anfdmax; ++fd) 807 for (fd = 0; fd < anfdmax; ++fd)
510 if (anfds [fd].events) 808 if (anfds [fd].events)
511 { 809 {
512 anfds [fd].events = 0; 810 anfds [fd].events = 0;
811 anfds [fd].emask = 0;
513 fd_change (EV_A_ fd); 812 fd_change (EV_A_ fd, EV_IOFDSET | 1);
514 } 813 }
515} 814}
516 815
517/*****************************************************************************/ 816/*****************************************************************************/
518 817
519static void 818/*
520upheap (WT *heap, int k) 819 * the heap functions want a real array index. array index 0 uis guaranteed to not
521{ 820 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
522 WT w = heap [k]; 821 * the branching factor of the d-tree.
822 */
523 823
524 while (k && heap [k >> 1]->at > w->at) 824/*
525 { 825 * at the moment we allow libev the luxury of two heaps,
526 heap [k] = heap [k >> 1]; 826 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
527 ((W)heap [k])->active = k + 1; 827 * which is more cache-efficient.
528 k >>= 1; 828 * the difference is about 5% with 50000+ watchers.
529 } 829 */
830#if EV_USE_4HEAP
530 831
531 heap [k] = w; 832#define DHEAP 4
532 ((W)heap [k])->active = k + 1; 833#define HEAP0 (DHEAP - 1) /* index of first element in heap */
834#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
835#define UPHEAP_DONE(p,k) ((p) == (k))
533 836
534} 837/* away from the root */
535 838void inline_speed
536static void
537downheap (WT *heap, int N, int k) 839downheap (ANHE *heap, int N, int k)
538{ 840{
539 WT w = heap [k]; 841 ANHE he = heap [k];
842 ANHE *E = heap + N + HEAP0;
540 843
541 while (k < (N >> 1)) 844 for (;;)
542 { 845 {
543 int j = k << 1; 846 ev_tstamp minat;
847 ANHE *minpos;
848 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
544 849
545 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 850 /* find minimum child */
851 if (expect_true (pos + DHEAP - 1 < E))
546 ++j; 852 {
547 853 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
548 if (w->at <= heap [j]->at) 854 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
855 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
856 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
857 }
858 else if (pos < E)
859 {
860 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
861 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
862 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
863 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
864 }
865 else
549 break; 866 break;
550 867
868 if (ANHE_at (he) <= minat)
869 break;
870
871 heap [k] = *minpos;
872 ev_active (ANHE_w (*minpos)) = k;
873
874 k = minpos - heap;
875 }
876
877 heap [k] = he;
878 ev_active (ANHE_w (he)) = k;
879}
880
881#else /* 4HEAP */
882
883#define HEAP0 1
884#define HPARENT(k) ((k) >> 1)
885#define UPHEAP_DONE(p,k) (!(p))
886
887/* away from the root */
888void inline_speed
889downheap (ANHE *heap, int N, int k)
890{
891 ANHE he = heap [k];
892
893 for (;;)
894 {
895 int c = k << 1;
896
897 if (c > N + HEAP0 - 1)
898 break;
899
900 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
901 ? 1 : 0;
902
903 if (ANHE_at (he) <= ANHE_at (heap [c]))
904 break;
905
551 heap [k] = heap [j]; 906 heap [k] = heap [c];
552 ((W)heap [k])->active = k + 1; 907 ev_active (ANHE_w (heap [k])) = k;
908
553 k = j; 909 k = c;
554 } 910 }
555 911
556 heap [k] = w; 912 heap [k] = he;
557 ((W)heap [k])->active = k + 1; 913 ev_active (ANHE_w (he)) = k;
558} 914}
915#endif
559 916
560inline void 917/* towards the root */
918void inline_speed
919upheap (ANHE *heap, int k)
920{
921 ANHE he = heap [k];
922
923 for (;;)
924 {
925 int p = HPARENT (k);
926
927 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
928 break;
929
930 heap [k] = heap [p];
931 ev_active (ANHE_w (heap [k])) = k;
932 k = p;
933 }
934
935 heap [k] = he;
936 ev_active (ANHE_w (he)) = k;
937}
938
939void inline_size
561adjustheap (WT *heap, int N, int k) 940adjustheap (ANHE *heap, int N, int k)
562{ 941{
942 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
563 upheap (heap, k); 943 upheap (heap, k);
944 else
564 downheap (heap, N, k); 945 downheap (heap, N, k);
946}
947
948/* rebuild the heap: this function is used only once and executed rarely */
949void inline_size
950reheap (ANHE *heap, int N)
951{
952 int i;
953
954 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
955 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
956 for (i = 0; i < N; ++i)
957 upheap (heap, i + HEAP0);
565} 958}
566 959
567/*****************************************************************************/ 960/*****************************************************************************/
568 961
569typedef struct 962typedef struct
570{ 963{
571 WL head; 964 WL head;
572 sig_atomic_t volatile gotsig; 965 EV_ATOMIC_T gotsig;
573} ANSIG; 966} ANSIG;
574 967
575static ANSIG *signals; 968static ANSIG *signals;
576static int signalmax; 969static int signalmax;
577 970
578static int sigpipe [2]; 971static EV_ATOMIC_T gotsig;
579static sig_atomic_t volatile gotsig;
580static struct ev_io sigev;
581 972
582static void 973/*****************************************************************************/
583signals_init (ANSIG *base, int count)
584{
585 while (count--)
586 {
587 base->head = 0;
588 base->gotsig = 0;
589 974
590 ++base; 975void inline_speed
591 }
592}
593
594static void
595sighandler (int signum)
596{
597#if _WIN32
598 signal (signum, sighandler);
599#endif
600
601 signals [signum - 1].gotsig = 1;
602
603 if (!gotsig)
604 {
605 int old_errno = errno;
606 gotsig = 1;
607 write (sigpipe [1], &signum, 1);
608 errno = old_errno;
609 }
610}
611
612void
613ev_feed_signal_event (EV_P_ int signum)
614{
615 WL w;
616
617#if EV_MULTIPLICITY
618 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
619#endif
620
621 --signum;
622
623 if (signum < 0 || signum >= signalmax)
624 return;
625
626 signals [signum].gotsig = 0;
627
628 for (w = signals [signum].head; w; w = w->next)
629 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
630}
631
632static void
633sigcb (EV_P_ struct ev_io *iow, int revents)
634{
635 int signum;
636
637 read (sigpipe [0], &revents, 1);
638 gotsig = 0;
639
640 for (signum = signalmax; signum--; )
641 if (signals [signum].gotsig)
642 ev_feed_signal_event (EV_A_ signum + 1);
643}
644
645inline void
646fd_intern (int fd) 976fd_intern (int fd)
647{ 977{
648#ifdef _WIN32 978#ifdef _WIN32
649 int arg = 1; 979 unsigned long arg = 1;
650 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 980 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
651#else 981#else
652 fcntl (fd, F_SETFD, FD_CLOEXEC); 982 fcntl (fd, F_SETFD, FD_CLOEXEC);
653 fcntl (fd, F_SETFL, O_NONBLOCK); 983 fcntl (fd, F_SETFL, O_NONBLOCK);
654#endif 984#endif
655} 985}
656 986
987static void noinline
988evpipe_init (EV_P)
989{
990 if (!ev_is_active (&pipeev))
991 {
992#if EV_USE_EVENTFD
993 if ((evfd = eventfd (0, 0)) >= 0)
994 {
995 evpipe [0] = -1;
996 fd_intern (evfd);
997 ev_io_set (&pipeev, evfd, EV_READ);
998 }
999 else
1000#endif
1001 {
1002 while (pipe (evpipe))
1003 syserr ("(libev) error creating signal/async pipe");
1004
1005 fd_intern (evpipe [0]);
1006 fd_intern (evpipe [1]);
1007 ev_io_set (&pipeev, evpipe [0], EV_READ);
1008 }
1009
1010 ev_io_start (EV_A_ &pipeev);
1011 ev_unref (EV_A); /* watcher should not keep loop alive */
1012 }
1013}
1014
1015void inline_size
1016evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1017{
1018 if (!*flag)
1019 {
1020 int old_errno = errno; /* save errno because write might clobber it */
1021
1022 *flag = 1;
1023
1024#if EV_USE_EVENTFD
1025 if (evfd >= 0)
1026 {
1027 uint64_t counter = 1;
1028 write (evfd, &counter, sizeof (uint64_t));
1029 }
1030 else
1031#endif
1032 write (evpipe [1], &old_errno, 1);
1033
1034 errno = old_errno;
1035 }
1036}
1037
657static void 1038static void
658siginit (EV_P) 1039pipecb (EV_P_ ev_io *iow, int revents)
659{ 1040{
660 fd_intern (sigpipe [0]); 1041#if EV_USE_EVENTFD
661 fd_intern (sigpipe [1]); 1042 if (evfd >= 0)
1043 {
1044 uint64_t counter;
1045 read (evfd, &counter, sizeof (uint64_t));
1046 }
1047 else
1048#endif
1049 {
1050 char dummy;
1051 read (evpipe [0], &dummy, 1);
1052 }
662 1053
663 ev_io_set (&sigev, sigpipe [0], EV_READ); 1054 if (gotsig && ev_is_default_loop (EV_A))
664 ev_io_start (EV_A_ &sigev); 1055 {
665 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1056 int signum;
1057 gotsig = 0;
1058
1059 for (signum = signalmax; signum--; )
1060 if (signals [signum].gotsig)
1061 ev_feed_signal_event (EV_A_ signum + 1);
1062 }
1063
1064#if EV_ASYNC_ENABLE
1065 if (gotasync)
1066 {
1067 int i;
1068 gotasync = 0;
1069
1070 for (i = asynccnt; i--; )
1071 if (asyncs [i]->sent)
1072 {
1073 asyncs [i]->sent = 0;
1074 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1075 }
1076 }
1077#endif
666} 1078}
667 1079
668/*****************************************************************************/ 1080/*****************************************************************************/
669 1081
670static struct ev_child *childs [PID_HASHSIZE]; 1082static void
1083ev_sighandler (int signum)
1084{
1085#if EV_MULTIPLICITY
1086 struct ev_loop *loop = &default_loop_struct;
1087#endif
1088
1089#if _WIN32
1090 signal (signum, ev_sighandler);
1091#endif
1092
1093 signals [signum - 1].gotsig = 1;
1094 evpipe_write (EV_A_ &gotsig);
1095}
1096
1097void noinline
1098ev_feed_signal_event (EV_P_ int signum)
1099{
1100 WL w;
1101
1102#if EV_MULTIPLICITY
1103 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1104#endif
1105
1106 --signum;
1107
1108 if (signum < 0 || signum >= signalmax)
1109 return;
1110
1111 signals [signum].gotsig = 0;
1112
1113 for (w = signals [signum].head; w; w = w->next)
1114 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1115}
1116
1117/*****************************************************************************/
1118
1119static WL childs [EV_PID_HASHSIZE];
671 1120
672#ifndef _WIN32 1121#ifndef _WIN32
673 1122
674static struct ev_signal childev; 1123static ev_signal childev;
1124
1125#ifndef WIFCONTINUED
1126# define WIFCONTINUED(status) 0
1127#endif
1128
1129void inline_speed
1130child_reap (EV_P_ int chain, int pid, int status)
1131{
1132 ev_child *w;
1133 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1134
1135 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1136 {
1137 if ((w->pid == pid || !w->pid)
1138 && (!traced || (w->flags & 1)))
1139 {
1140 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1141 w->rpid = pid;
1142 w->rstatus = status;
1143 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1144 }
1145 }
1146}
675 1147
676#ifndef WCONTINUED 1148#ifndef WCONTINUED
677# define WCONTINUED 0 1149# define WCONTINUED 0
678#endif 1150#endif
679 1151
680static void 1152static void
681child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
682{
683 struct ev_child *w;
684
685 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
686 if (w->pid == pid || !w->pid)
687 {
688 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
689 w->rpid = pid;
690 w->rstatus = status;
691 ev_feed_event (EV_A_ (W)w, EV_CHILD);
692 }
693}
694
695static void
696childcb (EV_P_ struct ev_signal *sw, int revents) 1153childcb (EV_P_ ev_signal *sw, int revents)
697{ 1154{
698 int pid, status; 1155 int pid, status;
699 1156
1157 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
700 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1158 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
701 { 1159 if (!WCONTINUED
1160 || errno != EINVAL
1161 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1162 return;
1163
702 /* make sure we are called again until all childs have been reaped */ 1164 /* make sure we are called again until all children have been reaped */
1165 /* we need to do it this way so that the callback gets called before we continue */
703 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1166 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
704 1167
705 child_reap (EV_A_ sw, pid, pid, status); 1168 child_reap (EV_A_ pid, pid, status);
1169 if (EV_PID_HASHSIZE > 1)
706 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1170 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
707 }
708} 1171}
709 1172
710#endif 1173#endif
711 1174
712/*****************************************************************************/ 1175/*****************************************************************************/
713 1176
1177#if EV_USE_PORT
1178# include "ev_port.c"
1179#endif
714#if EV_USE_KQUEUE 1180#if EV_USE_KQUEUE
715# include "ev_kqueue.c" 1181# include "ev_kqueue.c"
716#endif 1182#endif
717#if EV_USE_EPOLL 1183#if EV_USE_EPOLL
718# include "ev_epoll.c" 1184# include "ev_epoll.c"
735{ 1201{
736 return EV_VERSION_MINOR; 1202 return EV_VERSION_MINOR;
737} 1203}
738 1204
739/* return true if we are running with elevated privileges and should ignore env variables */ 1205/* return true if we are running with elevated privileges and should ignore env variables */
740static int 1206int inline_size
741enable_secure (void) 1207enable_secure (void)
742{ 1208{
743#ifdef _WIN32 1209#ifdef _WIN32
744 return 0; 1210 return 0;
745#else 1211#else
746 return getuid () != geteuid () 1212 return getuid () != geteuid ()
747 || getgid () != getegid (); 1213 || getgid () != getegid ();
748#endif 1214#endif
749} 1215}
750 1216
751int 1217unsigned int
752ev_method (EV_P) 1218ev_supported_backends (void)
753{ 1219{
754 return method; 1220 unsigned int flags = 0;
755}
756 1221
757static void 1222 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1223 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1224 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1225 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1226 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1227
1228 return flags;
1229}
1230
1231unsigned int
1232ev_recommended_backends (void)
1233{
1234 unsigned int flags = ev_supported_backends ();
1235
1236#ifndef __NetBSD__
1237 /* kqueue is borked on everything but netbsd apparently */
1238 /* it usually doesn't work correctly on anything but sockets and pipes */
1239 flags &= ~EVBACKEND_KQUEUE;
1240#endif
1241#ifdef __APPLE__
1242 // flags &= ~EVBACKEND_KQUEUE; for documentation
1243 flags &= ~EVBACKEND_POLL;
1244#endif
1245
1246 return flags;
1247}
1248
1249unsigned int
1250ev_embeddable_backends (void)
1251{
1252 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1253
1254 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1255 /* please fix it and tell me how to detect the fix */
1256 flags &= ~EVBACKEND_EPOLL;
1257
1258 return flags;
1259}
1260
1261unsigned int
1262ev_backend (EV_P)
1263{
1264 return backend;
1265}
1266
1267unsigned int
1268ev_loop_count (EV_P)
1269{
1270 return loop_count;
1271}
1272
1273void
1274ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1275{
1276 io_blocktime = interval;
1277}
1278
1279void
1280ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1281{
1282 timeout_blocktime = interval;
1283}
1284
1285static void noinline
758loop_init (EV_P_ unsigned int flags) 1286loop_init (EV_P_ unsigned int flags)
759{ 1287{
760 if (!method) 1288 if (!backend)
761 { 1289 {
762#if EV_USE_MONOTONIC 1290#if EV_USE_MONOTONIC
763 { 1291 {
764 struct timespec ts; 1292 struct timespec ts;
765 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1293 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
766 have_monotonic = 1; 1294 have_monotonic = 1;
767 } 1295 }
768#endif 1296#endif
769 1297
770 ev_rt_now = ev_time (); 1298 ev_rt_now = ev_time ();
771 mn_now = get_clock (); 1299 mn_now = get_clock ();
772 now_floor = mn_now; 1300 now_floor = mn_now;
773 rtmn_diff = ev_rt_now - mn_now; 1301 rtmn_diff = ev_rt_now - mn_now;
774 1302
775 if (!(flags & EVMETHOD_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1303 io_blocktime = 0.;
1304 timeout_blocktime = 0.;
1305 backend = 0;
1306 backend_fd = -1;
1307 gotasync = 0;
1308#if EV_USE_INOTIFY
1309 fs_fd = -2;
1310#endif
1311
1312 /* pid check not overridable via env */
1313#ifndef _WIN32
1314 if (flags & EVFLAG_FORKCHECK)
1315 curpid = getpid ();
1316#endif
1317
1318 if (!(flags & EVFLAG_NOENV)
1319 && !enable_secure ()
1320 && getenv ("LIBEV_FLAGS"))
776 flags = atoi (getenv ("LIBEV_FLAGS")); 1321 flags = atoi (getenv ("LIBEV_FLAGS"));
777 1322
778 if (!(flags & 0x0000ffff)) 1323 if (!(flags & 0x0000ffffU))
779 flags |= 0x0000ffff; 1324 flags |= ev_recommended_backends ();
780 1325
781 method = 0; 1326#if EV_USE_PORT
1327 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1328#endif
782#if EV_USE_KQUEUE 1329#if EV_USE_KQUEUE
783 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 1330 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
784#endif 1331#endif
785#if EV_USE_EPOLL 1332#if EV_USE_EPOLL
786 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 1333 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
787#endif 1334#endif
788#if EV_USE_POLL 1335#if EV_USE_POLL
789 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 1336 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
790#endif 1337#endif
791#if EV_USE_SELECT 1338#if EV_USE_SELECT
792 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 1339 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
793#endif 1340#endif
794 1341
795 ev_init (&sigev, sigcb); 1342 ev_init (&pipeev, pipecb);
796 ev_set_priority (&sigev, EV_MAXPRI); 1343 ev_set_priority (&pipeev, EV_MAXPRI);
797 } 1344 }
798} 1345}
799 1346
800void 1347static void noinline
801loop_destroy (EV_P) 1348loop_destroy (EV_P)
802{ 1349{
803 int i; 1350 int i;
804 1351
1352 if (ev_is_active (&pipeev))
1353 {
1354 ev_ref (EV_A); /* signal watcher */
1355 ev_io_stop (EV_A_ &pipeev);
1356
1357#if EV_USE_EVENTFD
1358 if (evfd >= 0)
1359 close (evfd);
1360#endif
1361
1362 if (evpipe [0] >= 0)
1363 {
1364 close (evpipe [0]);
1365 close (evpipe [1]);
1366 }
1367 }
1368
1369#if EV_USE_INOTIFY
1370 if (fs_fd >= 0)
1371 close (fs_fd);
1372#endif
1373
1374 if (backend_fd >= 0)
1375 close (backend_fd);
1376
1377#if EV_USE_PORT
1378 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1379#endif
805#if EV_USE_KQUEUE 1380#if EV_USE_KQUEUE
806 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1381 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
807#endif 1382#endif
808#if EV_USE_EPOLL 1383#if EV_USE_EPOLL
809 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1384 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
810#endif 1385#endif
811#if EV_USE_POLL 1386#if EV_USE_POLL
812 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1387 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
813#endif 1388#endif
814#if EV_USE_SELECT 1389#if EV_USE_SELECT
815 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1390 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
816#endif 1391#endif
817 1392
818 for (i = NUMPRI; i--; ) 1393 for (i = NUMPRI; i--; )
1394 {
819 array_free (pending, [i]); 1395 array_free (pending, [i]);
1396#if EV_IDLE_ENABLE
1397 array_free (idle, [i]);
1398#endif
1399 }
1400
1401 ev_free (anfds); anfdmax = 0;
820 1402
821 /* have to use the microsoft-never-gets-it-right macro */ 1403 /* have to use the microsoft-never-gets-it-right macro */
822 array_free (fdchange, EMPTY); 1404 array_free (fdchange, EMPTY);
823 array_free (timer, EMPTY); 1405 array_free (timer, EMPTY);
824#if EV_PERIODICS 1406#if EV_PERIODIC_ENABLE
825 array_free (periodic, EMPTY); 1407 array_free (periodic, EMPTY);
826#endif 1408#endif
1409#if EV_FORK_ENABLE
827 array_free (idle, EMPTY); 1410 array_free (fork, EMPTY);
1411#endif
828 array_free (prepare, EMPTY); 1412 array_free (prepare, EMPTY);
829 array_free (check, EMPTY); 1413 array_free (check, EMPTY);
1414#if EV_ASYNC_ENABLE
1415 array_free (async, EMPTY);
1416#endif
830 1417
831 method = 0; 1418 backend = 0;
832} 1419}
833 1420
834static void 1421#if EV_USE_INOTIFY
1422void inline_size infy_fork (EV_P);
1423#endif
1424
1425void inline_size
835loop_fork (EV_P) 1426loop_fork (EV_P)
836{ 1427{
1428#if EV_USE_PORT
1429 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1430#endif
1431#if EV_USE_KQUEUE
1432 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1433#endif
837#if EV_USE_EPOLL 1434#if EV_USE_EPOLL
838 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1435 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
839#endif 1436#endif
840#if EV_USE_KQUEUE 1437#if EV_USE_INOTIFY
841 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1438 infy_fork (EV_A);
842#endif 1439#endif
843 1440
844 if (ev_is_active (&sigev)) 1441 if (ev_is_active (&pipeev))
845 { 1442 {
846 /* default loop */ 1443 /* this "locks" the handlers against writing to the pipe */
1444 /* while we modify the fd vars */
1445 gotsig = 1;
1446#if EV_ASYNC_ENABLE
1447 gotasync = 1;
1448#endif
847 1449
848 ev_ref (EV_A); 1450 ev_ref (EV_A);
849 ev_io_stop (EV_A_ &sigev); 1451 ev_io_stop (EV_A_ &pipeev);
1452
1453#if EV_USE_EVENTFD
1454 if (evfd >= 0)
1455 close (evfd);
1456#endif
1457
1458 if (evpipe [0] >= 0)
1459 {
850 close (sigpipe [0]); 1460 close (evpipe [0]);
851 close (sigpipe [1]); 1461 close (evpipe [1]);
1462 }
852 1463
853 while (pipe (sigpipe))
854 syserr ("(libev) error creating pipe");
855
856 siginit (EV_A); 1464 evpipe_init (EV_A);
1465 /* now iterate over everything, in case we missed something */
1466 pipecb (EV_A_ &pipeev, EV_READ);
857 } 1467 }
858 1468
859 postfork = 0; 1469 postfork = 0;
860} 1470}
1471
1472#if EV_MULTIPLICITY
1473
1474struct ev_loop *
1475ev_loop_new (unsigned int flags)
1476{
1477 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1478
1479 memset (loop, 0, sizeof (struct ev_loop));
1480
1481 loop_init (EV_A_ flags);
1482
1483 if (ev_backend (EV_A))
1484 return loop;
1485
1486 return 0;
1487}
1488
1489void
1490ev_loop_destroy (EV_P)
1491{
1492 loop_destroy (EV_A);
1493 ev_free (loop);
1494}
1495
1496void
1497ev_loop_fork (EV_P)
1498{
1499 postfork = 1; /* must be in line with ev_default_fork */
1500}
1501
1502#if EV_VERIFY
1503static void noinline
1504verify_watcher (EV_P_ W w)
1505{
1506 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1507
1508 if (w->pending)
1509 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1510}
1511
1512static void noinline
1513verify_heap (EV_P_ ANHE *heap, int N)
1514{
1515 int i;
1516
1517 for (i = HEAP0; i < N + HEAP0; ++i)
1518 {
1519 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1520 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1521 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1522
1523 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1524 }
1525}
1526
1527static void noinline
1528array_verify (EV_P_ W *ws, int cnt)
1529{
1530 while (cnt--)
1531 {
1532 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1533 verify_watcher (EV_A_ ws [cnt]);
1534 }
1535}
1536#endif
1537
1538void
1539ev_loop_verify (EV_P)
1540{
1541#if EV_VERIFY
1542 int i;
1543 WL w;
1544
1545 assert (activecnt >= -1);
1546
1547 assert (fdchangemax >= fdchangecnt);
1548 for (i = 0; i < fdchangecnt; ++i)
1549 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1550
1551 assert (anfdmax >= 0);
1552 for (i = 0; i < anfdmax; ++i)
1553 for (w = anfds [i].head; w; w = w->next)
1554 {
1555 verify_watcher (EV_A_ (W)w);
1556 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1557 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1558 }
1559
1560 assert (timermax >= timercnt);
1561 verify_heap (EV_A_ timers, timercnt);
1562
1563#if EV_PERIODIC_ENABLE
1564 assert (periodicmax >= periodiccnt);
1565 verify_heap (EV_A_ periodics, periodiccnt);
1566#endif
1567
1568 for (i = NUMPRI; i--; )
1569 {
1570 assert (pendingmax [i] >= pendingcnt [i]);
1571#if EV_IDLE_ENABLE
1572 assert (idleall >= 0);
1573 assert (idlemax [i] >= idlecnt [i]);
1574 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1575#endif
1576 }
1577
1578#if EV_FORK_ENABLE
1579 assert (forkmax >= forkcnt);
1580 array_verify (EV_A_ (W *)forks, forkcnt);
1581#endif
1582
1583#if EV_ASYNC_ENABLE
1584 assert (asyncmax >= asynccnt);
1585 array_verify (EV_A_ (W *)asyncs, asynccnt);
1586#endif
1587
1588 assert (preparemax >= preparecnt);
1589 array_verify (EV_A_ (W *)prepares, preparecnt);
1590
1591 assert (checkmax >= checkcnt);
1592 array_verify (EV_A_ (W *)checks, checkcnt);
1593
1594# if 0
1595 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1596 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1597# endif
1598#endif
1599}
1600
1601#endif /* multiplicity */
861 1602
862#if EV_MULTIPLICITY 1603#if EV_MULTIPLICITY
863struct ev_loop * 1604struct ev_loop *
864ev_loop_new (unsigned int flags) 1605ev_default_loop_init (unsigned int flags)
865{
866 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
867
868 memset (loop, 0, sizeof (struct ev_loop));
869
870 loop_init (EV_A_ flags);
871
872 if (ev_method (EV_A))
873 return loop;
874
875 return 0;
876}
877
878void
879ev_loop_destroy (EV_P)
880{
881 loop_destroy (EV_A);
882 ev_free (loop);
883}
884
885void
886ev_loop_fork (EV_P)
887{
888 postfork = 1;
889}
890
891#endif
892
893#if EV_MULTIPLICITY
894struct ev_loop *
895#else 1606#else
896int 1607int
897#endif
898ev_default_loop (unsigned int methods) 1608ev_default_loop (unsigned int flags)
1609#endif
899{ 1610{
900 if (sigpipe [0] == sigpipe [1])
901 if (pipe (sigpipe))
902 return 0;
903
904 if (!default_loop) 1611 if (!ev_default_loop_ptr)
905 { 1612 {
906#if EV_MULTIPLICITY 1613#if EV_MULTIPLICITY
907 struct ev_loop *loop = default_loop = &default_loop_struct; 1614 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
908#else 1615#else
909 default_loop = 1; 1616 ev_default_loop_ptr = 1;
910#endif 1617#endif
911 1618
912 loop_init (EV_A_ methods); 1619 loop_init (EV_A_ flags);
913 1620
914 if (ev_method (EV_A)) 1621 if (ev_backend (EV_A))
915 { 1622 {
916 siginit (EV_A);
917
918#ifndef _WIN32 1623#ifndef _WIN32
919 ev_signal_init (&childev, childcb, SIGCHLD); 1624 ev_signal_init (&childev, childcb, SIGCHLD);
920 ev_set_priority (&childev, EV_MAXPRI); 1625 ev_set_priority (&childev, EV_MAXPRI);
921 ev_signal_start (EV_A_ &childev); 1626 ev_signal_start (EV_A_ &childev);
922 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1627 ev_unref (EV_A); /* child watcher should not keep loop alive */
923#endif 1628#endif
924 } 1629 }
925 else 1630 else
926 default_loop = 0; 1631 ev_default_loop_ptr = 0;
927 } 1632 }
928 1633
929 return default_loop; 1634 return ev_default_loop_ptr;
930} 1635}
931 1636
932void 1637void
933ev_default_destroy (void) 1638ev_default_destroy (void)
934{ 1639{
935#if EV_MULTIPLICITY 1640#if EV_MULTIPLICITY
936 struct ev_loop *loop = default_loop; 1641 struct ev_loop *loop = ev_default_loop_ptr;
937#endif 1642#endif
1643
1644 ev_default_loop_ptr = 0;
938 1645
939#ifndef _WIN32 1646#ifndef _WIN32
940 ev_ref (EV_A); /* child watcher */ 1647 ev_ref (EV_A); /* child watcher */
941 ev_signal_stop (EV_A_ &childev); 1648 ev_signal_stop (EV_A_ &childev);
942#endif 1649#endif
943 1650
944 ev_ref (EV_A); /* signal watcher */
945 ev_io_stop (EV_A_ &sigev);
946
947 close (sigpipe [0]); sigpipe [0] = 0;
948 close (sigpipe [1]); sigpipe [1] = 0;
949
950 loop_destroy (EV_A); 1651 loop_destroy (EV_A);
951} 1652}
952 1653
953void 1654void
954ev_default_fork (void) 1655ev_default_fork (void)
955{ 1656{
956#if EV_MULTIPLICITY 1657#if EV_MULTIPLICITY
957 struct ev_loop *loop = default_loop; 1658 struct ev_loop *loop = ev_default_loop_ptr;
958#endif 1659#endif
959 1660
960 if (method) 1661 if (backend)
961 postfork = 1; 1662 postfork = 1; /* must be in line with ev_loop_fork */
962} 1663}
963 1664
964/*****************************************************************************/ 1665/*****************************************************************************/
965 1666
966static int 1667void
967any_pending (EV_P) 1668ev_invoke (EV_P_ void *w, int revents)
968{ 1669{
969 int pri; 1670 EV_CB_INVOKE ((W)w, revents);
970
971 for (pri = NUMPRI; pri--; )
972 if (pendingcnt [pri])
973 return 1;
974
975 return 0;
976} 1671}
977 1672
978static void 1673void inline_speed
979call_pending (EV_P) 1674call_pending (EV_P)
980{ 1675{
981 int pri; 1676 int pri;
982 1677
983 for (pri = NUMPRI; pri--; ) 1678 for (pri = NUMPRI; pri--; )
984 while (pendingcnt [pri]) 1679 while (pendingcnt [pri])
985 { 1680 {
986 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1681 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
987 1682
988 if (p->w) 1683 if (expect_true (p->w))
989 { 1684 {
1685 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1686
990 p->w->pending = 0; 1687 p->w->pending = 0;
991 EV_CB_INVOKE (p->w, p->events); 1688 EV_CB_INVOKE (p->w, p->events);
1689 EV_FREQUENT_CHECK;
992 } 1690 }
993 } 1691 }
994} 1692}
995 1693
996static void 1694#if EV_IDLE_ENABLE
1695void inline_size
1696idle_reify (EV_P)
1697{
1698 if (expect_false (idleall))
1699 {
1700 int pri;
1701
1702 for (pri = NUMPRI; pri--; )
1703 {
1704 if (pendingcnt [pri])
1705 break;
1706
1707 if (idlecnt [pri])
1708 {
1709 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1710 break;
1711 }
1712 }
1713 }
1714}
1715#endif
1716
1717void inline_size
997timers_reify (EV_P) 1718timers_reify (EV_P)
998{ 1719{
1720 EV_FREQUENT_CHECK;
1721
999 while (timercnt && ((WT)timers [0])->at <= mn_now) 1722 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1000 { 1723 {
1001 struct ev_timer *w = timers [0]; 1724 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1002 1725
1003 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1726 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1004 1727
1005 /* first reschedule or stop timer */ 1728 /* first reschedule or stop timer */
1006 if (w->repeat) 1729 if (w->repeat)
1007 { 1730 {
1731 ev_at (w) += w->repeat;
1732 if (ev_at (w) < mn_now)
1733 ev_at (w) = mn_now;
1734
1008 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1735 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1009 1736
1010 ((WT)w)->at += w->repeat; 1737 ANHE_at_cache (timers [HEAP0]);
1011 if (((WT)w)->at < mn_now)
1012 ((WT)w)->at = mn_now;
1013
1014 downheap ((WT *)timers, timercnt, 0); 1738 downheap (timers, timercnt, HEAP0);
1015 } 1739 }
1016 else 1740 else
1017 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1741 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1018 1742
1743 EV_FREQUENT_CHECK;
1019 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1744 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1020 } 1745 }
1021} 1746}
1022 1747
1023#if EV_PERIODICS 1748#if EV_PERIODIC_ENABLE
1024static void 1749void inline_size
1025periodics_reify (EV_P) 1750periodics_reify (EV_P)
1026{ 1751{
1752 EV_FREQUENT_CHECK;
1753
1027 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1754 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1028 { 1755 {
1029 struct ev_periodic *w = periodics [0]; 1756 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1030 1757
1031 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1758 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1032 1759
1033 /* first reschedule or stop timer */ 1760 /* first reschedule or stop timer */
1034 if (w->reschedule_cb) 1761 if (w->reschedule_cb)
1035 { 1762 {
1036 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1763 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1764
1037 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1765 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1766
1767 ANHE_at_cache (periodics [HEAP0]);
1038 downheap ((WT *)periodics, periodiccnt, 0); 1768 downheap (periodics, periodiccnt, HEAP0);
1039 } 1769 }
1040 else if (w->interval) 1770 else if (w->interval)
1041 { 1771 {
1042 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1772 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1043 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1773 /* if next trigger time is not sufficiently in the future, put it there */
1774 /* this might happen because of floating point inexactness */
1775 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1776 {
1777 ev_at (w) += w->interval;
1778
1779 /* if interval is unreasonably low we might still have a time in the past */
1780 /* so correct this. this will make the periodic very inexact, but the user */
1781 /* has effectively asked to get triggered more often than possible */
1782 if (ev_at (w) < ev_rt_now)
1783 ev_at (w) = ev_rt_now;
1784 }
1785
1786 ANHE_at_cache (periodics [HEAP0]);
1044 downheap ((WT *)periodics, periodiccnt, 0); 1787 downheap (periodics, periodiccnt, HEAP0);
1045 } 1788 }
1046 else 1789 else
1047 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1790 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1048 1791
1792 EV_FREQUENT_CHECK;
1049 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1793 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1050 } 1794 }
1051} 1795}
1052 1796
1053static void 1797static void noinline
1054periodics_reschedule (EV_P) 1798periodics_reschedule (EV_P)
1055{ 1799{
1056 int i; 1800 int i;
1057 1801
1058 /* adjust periodics after time jump */ 1802 /* adjust periodics after time jump */
1059 for (i = 0; i < periodiccnt; ++i) 1803 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1060 { 1804 {
1061 struct ev_periodic *w = periodics [i]; 1805 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1062 1806
1063 if (w->reschedule_cb) 1807 if (w->reschedule_cb)
1064 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1808 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1065 else if (w->interval) 1809 else if (w->interval)
1066 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1810 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1811
1812 ANHE_at_cache (periodics [i]);
1813 }
1814
1815 reheap (periodics, periodiccnt);
1816}
1817#endif
1818
1819void inline_speed
1820time_update (EV_P_ ev_tstamp max_block)
1821{
1822 int i;
1823
1824#if EV_USE_MONOTONIC
1825 if (expect_true (have_monotonic))
1067 } 1826 {
1827 ev_tstamp odiff = rtmn_diff;
1068 1828
1069 /* now rebuild the heap */
1070 for (i = periodiccnt >> 1; i--; )
1071 downheap ((WT *)periodics, periodiccnt, i);
1072}
1073#endif
1074
1075inline int
1076time_update_monotonic (EV_P)
1077{
1078 mn_now = get_clock (); 1829 mn_now = get_clock ();
1079 1830
1831 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1832 /* interpolate in the meantime */
1080 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1833 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1081 { 1834 {
1082 ev_rt_now = rtmn_diff + mn_now; 1835 ev_rt_now = rtmn_diff + mn_now;
1083 return 0; 1836 return;
1084 } 1837 }
1085 else 1838
1086 {
1087 now_floor = mn_now; 1839 now_floor = mn_now;
1088 ev_rt_now = ev_time (); 1840 ev_rt_now = ev_time ();
1089 return 1;
1090 }
1091}
1092 1841
1093static void 1842 /* loop a few times, before making important decisions.
1094time_update (EV_P) 1843 * on the choice of "4": one iteration isn't enough,
1095{ 1844 * in case we get preempted during the calls to
1096 int i; 1845 * ev_time and get_clock. a second call is almost guaranteed
1097 1846 * to succeed in that case, though. and looping a few more times
1098#if EV_USE_MONOTONIC 1847 * doesn't hurt either as we only do this on time-jumps or
1099 if (expect_true (have_monotonic)) 1848 * in the unlikely event of having been preempted here.
1100 { 1849 */
1101 if (time_update_monotonic (EV_A)) 1850 for (i = 4; --i; )
1102 { 1851 {
1103 ev_tstamp odiff = rtmn_diff; 1852 rtmn_diff = ev_rt_now - mn_now;
1104 1853
1105 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1854 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1855 return; /* all is well */
1856
1857 ev_rt_now = ev_time ();
1858 mn_now = get_clock ();
1859 now_floor = mn_now;
1860 }
1861
1862# if EV_PERIODIC_ENABLE
1863 periodics_reschedule (EV_A);
1864# endif
1865 /* no timer adjustment, as the monotonic clock doesn't jump */
1866 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1867 }
1868 else
1869#endif
1870 {
1871 ev_rt_now = ev_time ();
1872
1873 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1874 {
1875#if EV_PERIODIC_ENABLE
1876 periodics_reschedule (EV_A);
1877#endif
1878 /* adjust timers. this is easy, as the offset is the same for all of them */
1879 for (i = 0; i < timercnt; ++i)
1106 { 1880 {
1107 rtmn_diff = ev_rt_now - mn_now; 1881 ANHE *he = timers + i + HEAP0;
1108 1882 ANHE_w (*he)->at += ev_rt_now - mn_now;
1109 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1883 ANHE_at_cache (*he);
1110 return; /* all is well */
1111
1112 ev_rt_now = ev_time ();
1113 mn_now = get_clock ();
1114 now_floor = mn_now;
1115 } 1884 }
1116
1117# if EV_PERIODICS
1118 periodics_reschedule (EV_A);
1119# endif
1120 /* no timer adjustment, as the monotonic clock doesn't jump */
1121 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1122 } 1885 }
1123 }
1124 else
1125#endif
1126 {
1127 ev_rt_now = ev_time ();
1128
1129 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1130 {
1131#if EV_PERIODICS
1132 periodics_reschedule (EV_A);
1133#endif
1134
1135 /* adjust timers. this is easy, as the offset is the same for all */
1136 for (i = 0; i < timercnt; ++i)
1137 ((WT)timers [i])->at += ev_rt_now - mn_now;
1138 }
1139 1886
1140 mn_now = ev_rt_now; 1887 mn_now = ev_rt_now;
1141 } 1888 }
1142} 1889}
1143 1890
1151ev_unref (EV_P) 1898ev_unref (EV_P)
1152{ 1899{
1153 --activecnt; 1900 --activecnt;
1154} 1901}
1155 1902
1903void
1904ev_now_update (EV_P)
1905{
1906 time_update (EV_A_ 1e100);
1907}
1908
1156static int loop_done; 1909static int loop_done;
1157 1910
1158void 1911void
1159ev_loop (EV_P_ int flags) 1912ev_loop (EV_P_ int flags)
1160{ 1913{
1161 double block; 1914 loop_done = EVUNLOOP_CANCEL;
1162 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1915
1916 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1163 1917
1164 do 1918 do
1165 { 1919 {
1920#if EV_VERIFY >= 2
1921 ev_loop_verify (EV_A);
1922#endif
1923
1924#ifndef _WIN32
1925 if (expect_false (curpid)) /* penalise the forking check even more */
1926 if (expect_false (getpid () != curpid))
1927 {
1928 curpid = getpid ();
1929 postfork = 1;
1930 }
1931#endif
1932
1933#if EV_FORK_ENABLE
1934 /* we might have forked, so queue fork handlers */
1935 if (expect_false (postfork))
1936 if (forkcnt)
1937 {
1938 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1939 call_pending (EV_A);
1940 }
1941#endif
1942
1166 /* queue check watchers (and execute them) */ 1943 /* queue prepare watchers (and execute them) */
1167 if (expect_false (preparecnt)) 1944 if (expect_false (preparecnt))
1168 { 1945 {
1169 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1946 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1170 call_pending (EV_A); 1947 call_pending (EV_A);
1171 } 1948 }
1172 1949
1950 if (expect_false (!activecnt))
1951 break;
1952
1173 /* we might have forked, so reify kernel state if necessary */ 1953 /* we might have forked, so reify kernel state if necessary */
1174 if (expect_false (postfork)) 1954 if (expect_false (postfork))
1175 loop_fork (EV_A); 1955 loop_fork (EV_A);
1176 1956
1177 /* update fd-related kernel structures */ 1957 /* update fd-related kernel structures */
1178 fd_reify (EV_A); 1958 fd_reify (EV_A);
1179 1959
1180 /* calculate blocking time */ 1960 /* calculate blocking time */
1961 {
1962 ev_tstamp waittime = 0.;
1963 ev_tstamp sleeptime = 0.;
1181 1964
1182 /* we only need this for !monotonic clock or timers, but as we basically 1965 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1183 always have timers, we just calculate it always */
1184#if EV_USE_MONOTONIC
1185 if (expect_true (have_monotonic))
1186 time_update_monotonic (EV_A);
1187 else
1188#endif
1189 { 1966 {
1190 ev_rt_now = ev_time (); 1967 /* update time to cancel out callback processing overhead */
1191 mn_now = ev_rt_now; 1968 time_update (EV_A_ 1e100);
1192 }
1193 1969
1194 if (flags & EVLOOP_NONBLOCK || idlecnt)
1195 block = 0.;
1196 else
1197 {
1198 block = MAX_BLOCKTIME; 1970 waittime = MAX_BLOCKTIME;
1199 1971
1200 if (timercnt) 1972 if (timercnt)
1201 { 1973 {
1202 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1974 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1203 if (block > to) block = to; 1975 if (waittime > to) waittime = to;
1204 } 1976 }
1205 1977
1206#if EV_PERIODICS 1978#if EV_PERIODIC_ENABLE
1207 if (periodiccnt) 1979 if (periodiccnt)
1208 { 1980 {
1209 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1981 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1210 if (block > to) block = to; 1982 if (waittime > to) waittime = to;
1211 } 1983 }
1212#endif 1984#endif
1213 1985
1214 if (block < 0.) block = 0.; 1986 if (expect_false (waittime < timeout_blocktime))
1987 waittime = timeout_blocktime;
1988
1989 sleeptime = waittime - backend_fudge;
1990
1991 if (expect_true (sleeptime > io_blocktime))
1992 sleeptime = io_blocktime;
1993
1994 if (sleeptime)
1995 {
1996 ev_sleep (sleeptime);
1997 waittime -= sleeptime;
1998 }
1215 } 1999 }
1216 2000
1217 method_poll (EV_A_ block); 2001 ++loop_count;
2002 backend_poll (EV_A_ waittime);
1218 2003
1219 /* update ev_rt_now, do magic */ 2004 /* update ev_rt_now, do magic */
1220 time_update (EV_A); 2005 time_update (EV_A_ waittime + sleeptime);
2006 }
1221 2007
1222 /* queue pending timers and reschedule them */ 2008 /* queue pending timers and reschedule them */
1223 timers_reify (EV_A); /* relative timers called last */ 2009 timers_reify (EV_A); /* relative timers called last */
1224#if EV_PERIODICS 2010#if EV_PERIODIC_ENABLE
1225 periodics_reify (EV_A); /* absolute timers called first */ 2011 periodics_reify (EV_A); /* absolute timers called first */
1226#endif 2012#endif
1227 2013
2014#if EV_IDLE_ENABLE
1228 /* queue idle watchers unless io or timers are pending */ 2015 /* queue idle watchers unless other events are pending */
1229 if (idlecnt && !any_pending (EV_A)) 2016 idle_reify (EV_A);
1230 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2017#endif
1231 2018
1232 /* queue check watchers, to be executed first */ 2019 /* queue check watchers, to be executed first */
1233 if (checkcnt) 2020 if (expect_false (checkcnt))
1234 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2021 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1235 2022
1236 call_pending (EV_A); 2023 call_pending (EV_A);
1237 } 2024 }
1238 while (activecnt && !loop_done); 2025 while (expect_true (
2026 activecnt
2027 && !loop_done
2028 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2029 ));
1239 2030
1240 if (loop_done != 2) 2031 if (loop_done == EVUNLOOP_ONE)
1241 loop_done = 0; 2032 loop_done = EVUNLOOP_CANCEL;
1242} 2033}
1243 2034
1244void 2035void
1245ev_unloop (EV_P_ int how) 2036ev_unloop (EV_P_ int how)
1246{ 2037{
1247 loop_done = how; 2038 loop_done = how;
1248} 2039}
1249 2040
1250/*****************************************************************************/ 2041/*****************************************************************************/
1251 2042
1252inline void 2043void inline_size
1253wlist_add (WL *head, WL elem) 2044wlist_add (WL *head, WL elem)
1254{ 2045{
1255 elem->next = *head; 2046 elem->next = *head;
1256 *head = elem; 2047 *head = elem;
1257} 2048}
1258 2049
1259inline void 2050void inline_size
1260wlist_del (WL *head, WL elem) 2051wlist_del (WL *head, WL elem)
1261{ 2052{
1262 while (*head) 2053 while (*head)
1263 { 2054 {
1264 if (*head == elem) 2055 if (*head == elem)
1269 2060
1270 head = &(*head)->next; 2061 head = &(*head)->next;
1271 } 2062 }
1272} 2063}
1273 2064
1274inline void 2065void inline_speed
1275ev_clear_pending (EV_P_ W w) 2066clear_pending (EV_P_ W w)
1276{ 2067{
1277 if (w->pending) 2068 if (w->pending)
1278 { 2069 {
1279 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2070 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1280 w->pending = 0; 2071 w->pending = 0;
1281 } 2072 }
1282} 2073}
1283 2074
1284inline void 2075int
2076ev_clear_pending (EV_P_ void *w)
2077{
2078 W w_ = (W)w;
2079 int pending = w_->pending;
2080
2081 if (expect_true (pending))
2082 {
2083 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2084 w_->pending = 0;
2085 p->w = 0;
2086 return p->events;
2087 }
2088 else
2089 return 0;
2090}
2091
2092void inline_size
2093pri_adjust (EV_P_ W w)
2094{
2095 int pri = w->priority;
2096 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2097 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2098 w->priority = pri;
2099}
2100
2101void inline_speed
1285ev_start (EV_P_ W w, int active) 2102ev_start (EV_P_ W w, int active)
1286{ 2103{
1287 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2104 pri_adjust (EV_A_ w);
1288 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1289
1290 w->active = active; 2105 w->active = active;
1291 ev_ref (EV_A); 2106 ev_ref (EV_A);
1292} 2107}
1293 2108
1294inline void 2109void inline_size
1295ev_stop (EV_P_ W w) 2110ev_stop (EV_P_ W w)
1296{ 2111{
1297 ev_unref (EV_A); 2112 ev_unref (EV_A);
1298 w->active = 0; 2113 w->active = 0;
1299} 2114}
1300 2115
1301/*****************************************************************************/ 2116/*****************************************************************************/
1302 2117
1303void 2118void noinline
1304ev_io_start (EV_P_ struct ev_io *w) 2119ev_io_start (EV_P_ ev_io *w)
1305{ 2120{
1306 int fd = w->fd; 2121 int fd = w->fd;
1307 2122
1308 if (ev_is_active (w)) 2123 if (expect_false (ev_is_active (w)))
1309 return; 2124 return;
1310 2125
1311 assert (("ev_io_start called with negative fd", fd >= 0)); 2126 assert (("ev_io_start called with negative fd", fd >= 0));
2127 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE))));
2128
2129 EV_FREQUENT_CHECK;
1312 2130
1313 ev_start (EV_A_ (W)w, 1); 2131 ev_start (EV_A_ (W)w, 1);
1314 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2132 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1315 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2133 wlist_add (&anfds[fd].head, (WL)w);
1316 2134
1317 fd_change (EV_A_ fd); 2135 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1318} 2136 w->events &= ~EV_IOFDSET;
1319 2137
1320void 2138 EV_FREQUENT_CHECK;
2139}
2140
2141void noinline
1321ev_io_stop (EV_P_ struct ev_io *w) 2142ev_io_stop (EV_P_ ev_io *w)
1322{ 2143{
1323 ev_clear_pending (EV_A_ (W)w); 2144 clear_pending (EV_A_ (W)w);
1324 if (!ev_is_active (w)) 2145 if (expect_false (!ev_is_active (w)))
1325 return; 2146 return;
1326 2147
1327 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2148 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1328 2149
2150 EV_FREQUENT_CHECK;
2151
1329 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2152 wlist_del (&anfds[w->fd].head, (WL)w);
1330 ev_stop (EV_A_ (W)w); 2153 ev_stop (EV_A_ (W)w);
1331 2154
1332 fd_change (EV_A_ w->fd); 2155 fd_change (EV_A_ w->fd, 1);
1333}
1334 2156
1335void 2157 EV_FREQUENT_CHECK;
2158}
2159
2160void noinline
1336ev_timer_start (EV_P_ struct ev_timer *w) 2161ev_timer_start (EV_P_ ev_timer *w)
1337{ 2162{
1338 if (ev_is_active (w)) 2163 if (expect_false (ev_is_active (w)))
1339 return; 2164 return;
1340 2165
1341 ((WT)w)->at += mn_now; 2166 ev_at (w) += mn_now;
1342 2167
1343 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2168 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1344 2169
2170 EV_FREQUENT_CHECK;
2171
2172 ++timercnt;
1345 ev_start (EV_A_ (W)w, ++timercnt); 2173 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1346 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 2174 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1347 timers [timercnt - 1] = w; 2175 ANHE_w (timers [ev_active (w)]) = (WT)w;
1348 upheap ((WT *)timers, timercnt - 1); 2176 ANHE_at_cache (timers [ev_active (w)]);
2177 upheap (timers, ev_active (w));
1349 2178
2179 EV_FREQUENT_CHECK;
2180
1350 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2181 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1351} 2182}
1352 2183
1353void 2184void noinline
1354ev_timer_stop (EV_P_ struct ev_timer *w) 2185ev_timer_stop (EV_P_ ev_timer *w)
1355{ 2186{
1356 ev_clear_pending (EV_A_ (W)w); 2187 clear_pending (EV_A_ (W)w);
1357 if (!ev_is_active (w)) 2188 if (expect_false (!ev_is_active (w)))
1358 return; 2189 return;
1359 2190
2191 EV_FREQUENT_CHECK;
2192
2193 {
2194 int active = ev_active (w);
2195
1360 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2196 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1361 2197
1362 if (((W)w)->active < timercnt--) 2198 --timercnt;
2199
2200 if (expect_true (active < timercnt + HEAP0))
1363 { 2201 {
1364 timers [((W)w)->active - 1] = timers [timercnt]; 2202 timers [active] = timers [timercnt + HEAP0];
1365 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2203 adjustheap (timers, timercnt, active);
1366 } 2204 }
2205 }
1367 2206
1368 ((WT)w)->at -= mn_now; 2207 EV_FREQUENT_CHECK;
2208
2209 ev_at (w) -= mn_now;
1369 2210
1370 ev_stop (EV_A_ (W)w); 2211 ev_stop (EV_A_ (W)w);
1371} 2212}
1372 2213
1373void 2214void noinline
1374ev_timer_again (EV_P_ struct ev_timer *w) 2215ev_timer_again (EV_P_ ev_timer *w)
1375{ 2216{
2217 EV_FREQUENT_CHECK;
2218
1376 if (ev_is_active (w)) 2219 if (ev_is_active (w))
1377 { 2220 {
1378 if (w->repeat) 2221 if (w->repeat)
1379 { 2222 {
1380 ((WT)w)->at = mn_now + w->repeat; 2223 ev_at (w) = mn_now + w->repeat;
2224 ANHE_at_cache (timers [ev_active (w)]);
1381 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2225 adjustheap (timers, timercnt, ev_active (w));
1382 } 2226 }
1383 else 2227 else
1384 ev_timer_stop (EV_A_ w); 2228 ev_timer_stop (EV_A_ w);
1385 } 2229 }
1386 else if (w->repeat) 2230 else if (w->repeat)
2231 {
2232 ev_at (w) = w->repeat;
1387 ev_timer_start (EV_A_ w); 2233 ev_timer_start (EV_A_ w);
1388} 2234 }
1389 2235
2236 EV_FREQUENT_CHECK;
2237}
2238
1390#if EV_PERIODICS 2239#if EV_PERIODIC_ENABLE
1391void 2240void noinline
1392ev_periodic_start (EV_P_ struct ev_periodic *w) 2241ev_periodic_start (EV_P_ ev_periodic *w)
1393{ 2242{
1394 if (ev_is_active (w)) 2243 if (expect_false (ev_is_active (w)))
1395 return; 2244 return;
1396 2245
1397 if (w->reschedule_cb) 2246 if (w->reschedule_cb)
1398 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2247 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1399 else if (w->interval) 2248 else if (w->interval)
1400 { 2249 {
1401 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2250 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1402 /* this formula differs from the one in periodic_reify because we do not always round up */ 2251 /* this formula differs from the one in periodic_reify because we do not always round up */
1403 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2252 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1404 } 2253 }
2254 else
2255 ev_at (w) = w->offset;
1405 2256
2257 EV_FREQUENT_CHECK;
2258
2259 ++periodiccnt;
1406 ev_start (EV_A_ (W)w, ++periodiccnt); 2260 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1407 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 2261 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1408 periodics [periodiccnt - 1] = w; 2262 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1409 upheap ((WT *)periodics, periodiccnt - 1); 2263 ANHE_at_cache (periodics [ev_active (w)]);
2264 upheap (periodics, ev_active (w));
1410 2265
2266 EV_FREQUENT_CHECK;
2267
1411 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2268 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1412} 2269}
1413 2270
1414void 2271void noinline
1415ev_periodic_stop (EV_P_ struct ev_periodic *w) 2272ev_periodic_stop (EV_P_ ev_periodic *w)
1416{ 2273{
1417 ev_clear_pending (EV_A_ (W)w); 2274 clear_pending (EV_A_ (W)w);
1418 if (!ev_is_active (w)) 2275 if (expect_false (!ev_is_active (w)))
1419 return; 2276 return;
1420 2277
2278 EV_FREQUENT_CHECK;
2279
2280 {
2281 int active = ev_active (w);
2282
1421 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2283 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1422 2284
1423 if (((W)w)->active < periodiccnt--) 2285 --periodiccnt;
2286
2287 if (expect_true (active < periodiccnt + HEAP0))
1424 { 2288 {
1425 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2289 periodics [active] = periodics [periodiccnt + HEAP0];
1426 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2290 adjustheap (periodics, periodiccnt, active);
1427 } 2291 }
2292 }
2293
2294 EV_FREQUENT_CHECK;
1428 2295
1429 ev_stop (EV_A_ (W)w); 2296 ev_stop (EV_A_ (W)w);
1430} 2297}
1431 2298
1432void 2299void noinline
1433ev_periodic_again (EV_P_ struct ev_periodic *w) 2300ev_periodic_again (EV_P_ ev_periodic *w)
1434{ 2301{
1435 /* TODO: use adjustheap and recalculation */ 2302 /* TODO: use adjustheap and recalculation */
1436 ev_periodic_stop (EV_A_ w); 2303 ev_periodic_stop (EV_A_ w);
1437 ev_periodic_start (EV_A_ w); 2304 ev_periodic_start (EV_A_ w);
1438} 2305}
1439#endif 2306#endif
1440 2307
1441void
1442ev_idle_start (EV_P_ struct ev_idle *w)
1443{
1444 if (ev_is_active (w))
1445 return;
1446
1447 ev_start (EV_A_ (W)w, ++idlecnt);
1448 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1449 idles [idlecnt - 1] = w;
1450}
1451
1452void
1453ev_idle_stop (EV_P_ struct ev_idle *w)
1454{
1455 ev_clear_pending (EV_A_ (W)w);
1456 if (!ev_is_active (w))
1457 return;
1458
1459 idles [((W)w)->active - 1] = idles [--idlecnt];
1460 ev_stop (EV_A_ (W)w);
1461}
1462
1463void
1464ev_prepare_start (EV_P_ struct ev_prepare *w)
1465{
1466 if (ev_is_active (w))
1467 return;
1468
1469 ev_start (EV_A_ (W)w, ++preparecnt);
1470 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1471 prepares [preparecnt - 1] = w;
1472}
1473
1474void
1475ev_prepare_stop (EV_P_ struct ev_prepare *w)
1476{
1477 ev_clear_pending (EV_A_ (W)w);
1478 if (!ev_is_active (w))
1479 return;
1480
1481 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1482 ev_stop (EV_A_ (W)w);
1483}
1484
1485void
1486ev_check_start (EV_P_ struct ev_check *w)
1487{
1488 if (ev_is_active (w))
1489 return;
1490
1491 ev_start (EV_A_ (W)w, ++checkcnt);
1492 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1493 checks [checkcnt - 1] = w;
1494}
1495
1496void
1497ev_check_stop (EV_P_ struct ev_check *w)
1498{
1499 ev_clear_pending (EV_A_ (W)w);
1500 if (!ev_is_active (w))
1501 return;
1502
1503 checks [((W)w)->active - 1] = checks [--checkcnt];
1504 ev_stop (EV_A_ (W)w);
1505}
1506
1507#ifndef SA_RESTART 2308#ifndef SA_RESTART
1508# define SA_RESTART 0 2309# define SA_RESTART 0
1509#endif 2310#endif
1510 2311
1511void 2312void noinline
1512ev_signal_start (EV_P_ struct ev_signal *w) 2313ev_signal_start (EV_P_ ev_signal *w)
1513{ 2314{
1514#if EV_MULTIPLICITY 2315#if EV_MULTIPLICITY
1515 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2316 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1516#endif 2317#endif
1517 if (ev_is_active (w)) 2318 if (expect_false (ev_is_active (w)))
1518 return; 2319 return;
1519 2320
1520 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2321 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1521 2322
2323 evpipe_init (EV_A);
2324
2325 EV_FREQUENT_CHECK;
2326
2327 {
2328#ifndef _WIN32
2329 sigset_t full, prev;
2330 sigfillset (&full);
2331 sigprocmask (SIG_SETMASK, &full, &prev);
2332#endif
2333
2334 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2335
2336#ifndef _WIN32
2337 sigprocmask (SIG_SETMASK, &prev, 0);
2338#endif
2339 }
2340
1522 ev_start (EV_A_ (W)w, 1); 2341 ev_start (EV_A_ (W)w, 1);
1523 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1524 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2342 wlist_add (&signals [w->signum - 1].head, (WL)w);
1525 2343
1526 if (!((WL)w)->next) 2344 if (!((WL)w)->next)
1527 { 2345 {
1528#if _WIN32 2346#if _WIN32
1529 signal (w->signum, sighandler); 2347 signal (w->signum, ev_sighandler);
1530#else 2348#else
1531 struct sigaction sa; 2349 struct sigaction sa;
1532 sa.sa_handler = sighandler; 2350 sa.sa_handler = ev_sighandler;
1533 sigfillset (&sa.sa_mask); 2351 sigfillset (&sa.sa_mask);
1534 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2352 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1535 sigaction (w->signum, &sa, 0); 2353 sigaction (w->signum, &sa, 0);
1536#endif 2354#endif
1537 } 2355 }
1538}
1539 2356
1540void 2357 EV_FREQUENT_CHECK;
2358}
2359
2360void noinline
1541ev_signal_stop (EV_P_ struct ev_signal *w) 2361ev_signal_stop (EV_P_ ev_signal *w)
1542{ 2362{
1543 ev_clear_pending (EV_A_ (W)w); 2363 clear_pending (EV_A_ (W)w);
1544 if (!ev_is_active (w)) 2364 if (expect_false (!ev_is_active (w)))
1545 return; 2365 return;
1546 2366
2367 EV_FREQUENT_CHECK;
2368
1547 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2369 wlist_del (&signals [w->signum - 1].head, (WL)w);
1548 ev_stop (EV_A_ (W)w); 2370 ev_stop (EV_A_ (W)w);
1549 2371
1550 if (!signals [w->signum - 1].head) 2372 if (!signals [w->signum - 1].head)
1551 signal (w->signum, SIG_DFL); 2373 signal (w->signum, SIG_DFL);
1552}
1553 2374
2375 EV_FREQUENT_CHECK;
2376}
2377
1554void 2378void
1555ev_child_start (EV_P_ struct ev_child *w) 2379ev_child_start (EV_P_ ev_child *w)
1556{ 2380{
1557#if EV_MULTIPLICITY 2381#if EV_MULTIPLICITY
1558 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2382 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1559#endif 2383#endif
1560 if (ev_is_active (w)) 2384 if (expect_false (ev_is_active (w)))
1561 return; 2385 return;
1562 2386
2387 EV_FREQUENT_CHECK;
2388
1563 ev_start (EV_A_ (W)w, 1); 2389 ev_start (EV_A_ (W)w, 1);
1564 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2390 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1565}
1566 2391
2392 EV_FREQUENT_CHECK;
2393}
2394
1567void 2395void
1568ev_child_stop (EV_P_ struct ev_child *w) 2396ev_child_stop (EV_P_ ev_child *w)
1569{ 2397{
1570 ev_clear_pending (EV_A_ (W)w); 2398 clear_pending (EV_A_ (W)w);
1571 if (!ev_is_active (w)) 2399 if (expect_false (!ev_is_active (w)))
1572 return; 2400 return;
1573 2401
2402 EV_FREQUENT_CHECK;
2403
1574 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2404 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1575 ev_stop (EV_A_ (W)w); 2405 ev_stop (EV_A_ (W)w);
2406
2407 EV_FREQUENT_CHECK;
1576} 2408}
2409
2410#if EV_STAT_ENABLE
2411
2412# ifdef _WIN32
2413# undef lstat
2414# define lstat(a,b) _stati64 (a,b)
2415# endif
2416
2417#define DEF_STAT_INTERVAL 5.0074891
2418#define MIN_STAT_INTERVAL 0.1074891
2419
2420static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2421
2422#if EV_USE_INOTIFY
2423# define EV_INOTIFY_BUFSIZE 8192
2424
2425static void noinline
2426infy_add (EV_P_ ev_stat *w)
2427{
2428 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2429
2430 if (w->wd < 0)
2431 {
2432 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2433
2434 /* monitor some parent directory for speedup hints */
2435 /* note that exceeding the hardcoded limit is not a correctness issue, */
2436 /* but an efficiency issue only */
2437 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2438 {
2439 char path [4096];
2440 strcpy (path, w->path);
2441
2442 do
2443 {
2444 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2445 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2446
2447 char *pend = strrchr (path, '/');
2448
2449 if (!pend)
2450 break; /* whoops, no '/', complain to your admin */
2451
2452 *pend = 0;
2453 w->wd = inotify_add_watch (fs_fd, path, mask);
2454 }
2455 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2456 }
2457 }
2458 else
2459 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2460
2461 if (w->wd >= 0)
2462 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2463}
2464
2465static void noinline
2466infy_del (EV_P_ ev_stat *w)
2467{
2468 int slot;
2469 int wd = w->wd;
2470
2471 if (wd < 0)
2472 return;
2473
2474 w->wd = -2;
2475 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2476 wlist_del (&fs_hash [slot].head, (WL)w);
2477
2478 /* remove this watcher, if others are watching it, they will rearm */
2479 inotify_rm_watch (fs_fd, wd);
2480}
2481
2482static void noinline
2483infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2484{
2485 if (slot < 0)
2486 /* overflow, need to check for all hash slots */
2487 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2488 infy_wd (EV_A_ slot, wd, ev);
2489 else
2490 {
2491 WL w_;
2492
2493 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2494 {
2495 ev_stat *w = (ev_stat *)w_;
2496 w_ = w_->next; /* lets us remove this watcher and all before it */
2497
2498 if (w->wd == wd || wd == -1)
2499 {
2500 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2501 {
2502 w->wd = -1;
2503 infy_add (EV_A_ w); /* re-add, no matter what */
2504 }
2505
2506 stat_timer_cb (EV_A_ &w->timer, 0);
2507 }
2508 }
2509 }
2510}
2511
2512static void
2513infy_cb (EV_P_ ev_io *w, int revents)
2514{
2515 char buf [EV_INOTIFY_BUFSIZE];
2516 struct inotify_event *ev = (struct inotify_event *)buf;
2517 int ofs;
2518 int len = read (fs_fd, buf, sizeof (buf));
2519
2520 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2521 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2522}
2523
2524void inline_size
2525infy_init (EV_P)
2526{
2527 if (fs_fd != -2)
2528 return;
2529
2530 /* kernels < 2.6.25 are borked
2531 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2532 */
2533 {
2534 struct utsname buf;
2535 int major, minor, micro;
2536
2537 fs_fd = -1;
2538
2539 if (uname (&buf))
2540 return;
2541
2542 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2543 return;
2544
2545 if (major < 2
2546 || (major == 2 && minor < 6)
2547 || (major == 2 && minor == 6 && micro < 25))
2548 return;
2549 }
2550
2551 fs_fd = inotify_init ();
2552
2553 if (fs_fd >= 0)
2554 {
2555 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2556 ev_set_priority (&fs_w, EV_MAXPRI);
2557 ev_io_start (EV_A_ &fs_w);
2558 }
2559}
2560
2561void inline_size
2562infy_fork (EV_P)
2563{
2564 int slot;
2565
2566 if (fs_fd < 0)
2567 return;
2568
2569 close (fs_fd);
2570 fs_fd = inotify_init ();
2571
2572 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2573 {
2574 WL w_ = fs_hash [slot].head;
2575 fs_hash [slot].head = 0;
2576
2577 while (w_)
2578 {
2579 ev_stat *w = (ev_stat *)w_;
2580 w_ = w_->next; /* lets us add this watcher */
2581
2582 w->wd = -1;
2583
2584 if (fs_fd >= 0)
2585 infy_add (EV_A_ w); /* re-add, no matter what */
2586 else
2587 ev_timer_start (EV_A_ &w->timer);
2588 }
2589 }
2590}
2591
2592#endif
2593
2594#ifdef _WIN32
2595# define EV_LSTAT(p,b) _stati64 (p, b)
2596#else
2597# define EV_LSTAT(p,b) lstat (p, b)
2598#endif
2599
2600void
2601ev_stat_stat (EV_P_ ev_stat *w)
2602{
2603 if (lstat (w->path, &w->attr) < 0)
2604 w->attr.st_nlink = 0;
2605 else if (!w->attr.st_nlink)
2606 w->attr.st_nlink = 1;
2607}
2608
2609static void noinline
2610stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2611{
2612 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2613
2614 /* we copy this here each the time so that */
2615 /* prev has the old value when the callback gets invoked */
2616 w->prev = w->attr;
2617 ev_stat_stat (EV_A_ w);
2618
2619 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2620 if (
2621 w->prev.st_dev != w->attr.st_dev
2622 || w->prev.st_ino != w->attr.st_ino
2623 || w->prev.st_mode != w->attr.st_mode
2624 || w->prev.st_nlink != w->attr.st_nlink
2625 || w->prev.st_uid != w->attr.st_uid
2626 || w->prev.st_gid != w->attr.st_gid
2627 || w->prev.st_rdev != w->attr.st_rdev
2628 || w->prev.st_size != w->attr.st_size
2629 || w->prev.st_atime != w->attr.st_atime
2630 || w->prev.st_mtime != w->attr.st_mtime
2631 || w->prev.st_ctime != w->attr.st_ctime
2632 ) {
2633 #if EV_USE_INOTIFY
2634 if (fs_fd >= 0)
2635 {
2636 infy_del (EV_A_ w);
2637 infy_add (EV_A_ w);
2638 ev_stat_stat (EV_A_ w); /* avoid race... */
2639 }
2640 #endif
2641
2642 ev_feed_event (EV_A_ w, EV_STAT);
2643 }
2644}
2645
2646void
2647ev_stat_start (EV_P_ ev_stat *w)
2648{
2649 if (expect_false (ev_is_active (w)))
2650 return;
2651
2652 /* since we use memcmp, we need to clear any padding data etc. */
2653 memset (&w->prev, 0, sizeof (ev_statdata));
2654 memset (&w->attr, 0, sizeof (ev_statdata));
2655
2656 ev_stat_stat (EV_A_ w);
2657
2658 if (w->interval < MIN_STAT_INTERVAL)
2659 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2660
2661 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2662 ev_set_priority (&w->timer, ev_priority (w));
2663
2664#if EV_USE_INOTIFY
2665 infy_init (EV_A);
2666
2667 if (fs_fd >= 0)
2668 infy_add (EV_A_ w);
2669 else
2670#endif
2671 ev_timer_start (EV_A_ &w->timer);
2672
2673 ev_start (EV_A_ (W)w, 1);
2674
2675 EV_FREQUENT_CHECK;
2676}
2677
2678void
2679ev_stat_stop (EV_P_ ev_stat *w)
2680{
2681 clear_pending (EV_A_ (W)w);
2682 if (expect_false (!ev_is_active (w)))
2683 return;
2684
2685 EV_FREQUENT_CHECK;
2686
2687#if EV_USE_INOTIFY
2688 infy_del (EV_A_ w);
2689#endif
2690 ev_timer_stop (EV_A_ &w->timer);
2691
2692 ev_stop (EV_A_ (W)w);
2693
2694 EV_FREQUENT_CHECK;
2695}
2696#endif
2697
2698#if EV_IDLE_ENABLE
2699void
2700ev_idle_start (EV_P_ ev_idle *w)
2701{
2702 if (expect_false (ev_is_active (w)))
2703 return;
2704
2705 pri_adjust (EV_A_ (W)w);
2706
2707 EV_FREQUENT_CHECK;
2708
2709 {
2710 int active = ++idlecnt [ABSPRI (w)];
2711
2712 ++idleall;
2713 ev_start (EV_A_ (W)w, active);
2714
2715 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2716 idles [ABSPRI (w)][active - 1] = w;
2717 }
2718
2719 EV_FREQUENT_CHECK;
2720}
2721
2722void
2723ev_idle_stop (EV_P_ ev_idle *w)
2724{
2725 clear_pending (EV_A_ (W)w);
2726 if (expect_false (!ev_is_active (w)))
2727 return;
2728
2729 EV_FREQUENT_CHECK;
2730
2731 {
2732 int active = ev_active (w);
2733
2734 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2735 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2736
2737 ev_stop (EV_A_ (W)w);
2738 --idleall;
2739 }
2740
2741 EV_FREQUENT_CHECK;
2742}
2743#endif
2744
2745void
2746ev_prepare_start (EV_P_ ev_prepare *w)
2747{
2748 if (expect_false (ev_is_active (w)))
2749 return;
2750
2751 EV_FREQUENT_CHECK;
2752
2753 ev_start (EV_A_ (W)w, ++preparecnt);
2754 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2755 prepares [preparecnt - 1] = w;
2756
2757 EV_FREQUENT_CHECK;
2758}
2759
2760void
2761ev_prepare_stop (EV_P_ ev_prepare *w)
2762{
2763 clear_pending (EV_A_ (W)w);
2764 if (expect_false (!ev_is_active (w)))
2765 return;
2766
2767 EV_FREQUENT_CHECK;
2768
2769 {
2770 int active = ev_active (w);
2771
2772 prepares [active - 1] = prepares [--preparecnt];
2773 ev_active (prepares [active - 1]) = active;
2774 }
2775
2776 ev_stop (EV_A_ (W)w);
2777
2778 EV_FREQUENT_CHECK;
2779}
2780
2781void
2782ev_check_start (EV_P_ ev_check *w)
2783{
2784 if (expect_false (ev_is_active (w)))
2785 return;
2786
2787 EV_FREQUENT_CHECK;
2788
2789 ev_start (EV_A_ (W)w, ++checkcnt);
2790 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2791 checks [checkcnt - 1] = w;
2792
2793 EV_FREQUENT_CHECK;
2794}
2795
2796void
2797ev_check_stop (EV_P_ ev_check *w)
2798{
2799 clear_pending (EV_A_ (W)w);
2800 if (expect_false (!ev_is_active (w)))
2801 return;
2802
2803 EV_FREQUENT_CHECK;
2804
2805 {
2806 int active = ev_active (w);
2807
2808 checks [active - 1] = checks [--checkcnt];
2809 ev_active (checks [active - 1]) = active;
2810 }
2811
2812 ev_stop (EV_A_ (W)w);
2813
2814 EV_FREQUENT_CHECK;
2815}
2816
2817#if EV_EMBED_ENABLE
2818void noinline
2819ev_embed_sweep (EV_P_ ev_embed *w)
2820{
2821 ev_loop (w->other, EVLOOP_NONBLOCK);
2822}
2823
2824static void
2825embed_io_cb (EV_P_ ev_io *io, int revents)
2826{
2827 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2828
2829 if (ev_cb (w))
2830 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2831 else
2832 ev_loop (w->other, EVLOOP_NONBLOCK);
2833}
2834
2835static void
2836embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2837{
2838 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2839
2840 {
2841 struct ev_loop *loop = w->other;
2842
2843 while (fdchangecnt)
2844 {
2845 fd_reify (EV_A);
2846 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2847 }
2848 }
2849}
2850
2851static void
2852embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2853{
2854 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2855
2856 {
2857 struct ev_loop *loop = w->other;
2858
2859 ev_loop_fork (EV_A);
2860 }
2861}
2862
2863#if 0
2864static void
2865embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2866{
2867 ev_idle_stop (EV_A_ idle);
2868}
2869#endif
2870
2871void
2872ev_embed_start (EV_P_ ev_embed *w)
2873{
2874 if (expect_false (ev_is_active (w)))
2875 return;
2876
2877 {
2878 struct ev_loop *loop = w->other;
2879 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2880 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2881 }
2882
2883 EV_FREQUENT_CHECK;
2884
2885 ev_set_priority (&w->io, ev_priority (w));
2886 ev_io_start (EV_A_ &w->io);
2887
2888 ev_prepare_init (&w->prepare, embed_prepare_cb);
2889 ev_set_priority (&w->prepare, EV_MINPRI);
2890 ev_prepare_start (EV_A_ &w->prepare);
2891
2892 ev_fork_init (&w->fork, embed_fork_cb);
2893 ev_fork_start (EV_A_ &w->fork);
2894
2895 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2896
2897 ev_start (EV_A_ (W)w, 1);
2898
2899 EV_FREQUENT_CHECK;
2900}
2901
2902void
2903ev_embed_stop (EV_P_ ev_embed *w)
2904{
2905 clear_pending (EV_A_ (W)w);
2906 if (expect_false (!ev_is_active (w)))
2907 return;
2908
2909 EV_FREQUENT_CHECK;
2910
2911 ev_io_stop (EV_A_ &w->io);
2912 ev_prepare_stop (EV_A_ &w->prepare);
2913 ev_fork_stop (EV_A_ &w->fork);
2914
2915 EV_FREQUENT_CHECK;
2916}
2917#endif
2918
2919#if EV_FORK_ENABLE
2920void
2921ev_fork_start (EV_P_ ev_fork *w)
2922{
2923 if (expect_false (ev_is_active (w)))
2924 return;
2925
2926 EV_FREQUENT_CHECK;
2927
2928 ev_start (EV_A_ (W)w, ++forkcnt);
2929 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2930 forks [forkcnt - 1] = w;
2931
2932 EV_FREQUENT_CHECK;
2933}
2934
2935void
2936ev_fork_stop (EV_P_ ev_fork *w)
2937{
2938 clear_pending (EV_A_ (W)w);
2939 if (expect_false (!ev_is_active (w)))
2940 return;
2941
2942 EV_FREQUENT_CHECK;
2943
2944 {
2945 int active = ev_active (w);
2946
2947 forks [active - 1] = forks [--forkcnt];
2948 ev_active (forks [active - 1]) = active;
2949 }
2950
2951 ev_stop (EV_A_ (W)w);
2952
2953 EV_FREQUENT_CHECK;
2954}
2955#endif
2956
2957#if EV_ASYNC_ENABLE
2958void
2959ev_async_start (EV_P_ ev_async *w)
2960{
2961 if (expect_false (ev_is_active (w)))
2962 return;
2963
2964 evpipe_init (EV_A);
2965
2966 EV_FREQUENT_CHECK;
2967
2968 ev_start (EV_A_ (W)w, ++asynccnt);
2969 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2970 asyncs [asynccnt - 1] = w;
2971
2972 EV_FREQUENT_CHECK;
2973}
2974
2975void
2976ev_async_stop (EV_P_ ev_async *w)
2977{
2978 clear_pending (EV_A_ (W)w);
2979 if (expect_false (!ev_is_active (w)))
2980 return;
2981
2982 EV_FREQUENT_CHECK;
2983
2984 {
2985 int active = ev_active (w);
2986
2987 asyncs [active - 1] = asyncs [--asynccnt];
2988 ev_active (asyncs [active - 1]) = active;
2989 }
2990
2991 ev_stop (EV_A_ (W)w);
2992
2993 EV_FREQUENT_CHECK;
2994}
2995
2996void
2997ev_async_send (EV_P_ ev_async *w)
2998{
2999 w->sent = 1;
3000 evpipe_write (EV_A_ &gotasync);
3001}
3002#endif
1577 3003
1578/*****************************************************************************/ 3004/*****************************************************************************/
1579 3005
1580struct ev_once 3006struct ev_once
1581{ 3007{
1582 struct ev_io io; 3008 ev_io io;
1583 struct ev_timer to; 3009 ev_timer to;
1584 void (*cb)(int revents, void *arg); 3010 void (*cb)(int revents, void *arg);
1585 void *arg; 3011 void *arg;
1586}; 3012};
1587 3013
1588static void 3014static void
1589once_cb (EV_P_ struct ev_once *once, int revents) 3015once_cb (EV_P_ struct ev_once *once, int revents)
1590{ 3016{
1591 void (*cb)(int revents, void *arg) = once->cb; 3017 void (*cb)(int revents, void *arg) = once->cb;
1592 void *arg = once->arg; 3018 void *arg = once->arg;
1593 3019
1594 ev_io_stop (EV_A_ &once->io); 3020 ev_io_stop (EV_A_ &once->io);
1595 ev_timer_stop (EV_A_ &once->to); 3021 ev_timer_stop (EV_A_ &once->to);
1596 ev_free (once); 3022 ev_free (once);
1597 3023
1598 cb (revents, arg); 3024 cb (revents, arg);
1599} 3025}
1600 3026
1601static void 3027static void
1602once_cb_io (EV_P_ struct ev_io *w, int revents) 3028once_cb_io (EV_P_ ev_io *w, int revents)
1603{ 3029{
1604 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3030 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3031
3032 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1605} 3033}
1606 3034
1607static void 3035static void
1608once_cb_to (EV_P_ struct ev_timer *w, int revents) 3036once_cb_to (EV_P_ ev_timer *w, int revents)
1609{ 3037{
1610 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3038 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3039
3040 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1611} 3041}
1612 3042
1613void 3043void
1614ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3044ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1615{ 3045{
1616 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3046 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1617 3047
1618 if (!once) 3048 if (expect_false (!once))
3049 {
1619 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3050 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1620 else 3051 return;
1621 { 3052 }
3053
1622 once->cb = cb; 3054 once->cb = cb;
1623 once->arg = arg; 3055 once->arg = arg;
1624 3056
1625 ev_init (&once->io, once_cb_io); 3057 ev_init (&once->io, once_cb_io);
1626 if (fd >= 0) 3058 if (fd >= 0)
1627 { 3059 {
1628 ev_io_set (&once->io, fd, events); 3060 ev_io_set (&once->io, fd, events);
1629 ev_io_start (EV_A_ &once->io); 3061 ev_io_start (EV_A_ &once->io);
1630 } 3062 }
1631 3063
1632 ev_init (&once->to, once_cb_to); 3064 ev_init (&once->to, once_cb_to);
1633 if (timeout >= 0.) 3065 if (timeout >= 0.)
1634 { 3066 {
1635 ev_timer_set (&once->to, timeout, 0.); 3067 ev_timer_set (&once->to, timeout, 0.);
1636 ev_timer_start (EV_A_ &once->to); 3068 ev_timer_start (EV_A_ &once->to);
1637 }
1638 } 3069 }
1639} 3070}
3071
3072#if EV_MULTIPLICITY
3073 #include "ev_wrap.h"
3074#endif
1640 3075
1641#ifdef __cplusplus 3076#ifdef __cplusplus
1642} 3077}
1643#endif 3078#endif
1644 3079

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines