ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.157 by root, Wed Nov 28 20:58:32 2007 UTC vs.
Revision 1.268 by root, Mon Oct 27 13:39:18 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
129#ifndef _WIN32 154#ifndef _WIN32
130# include <sys/time.h> 155# include <sys/time.h>
131# include <sys/wait.h> 156# include <sys/wait.h>
132# include <unistd.h> 157# include <unistd.h>
133#else 158#else
159# include <io.h>
134# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 161# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
138# endif 164# endif
139#endif 165#endif
140 166
141/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
142 168
143#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
144# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
145#endif 175#endif
146 176
147#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
179#endif
180
181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
185# define EV_USE_NANOSLEEP 0
186# endif
149#endif 187#endif
150 188
151#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
153#endif 191#endif
159# define EV_USE_POLL 1 197# define EV_USE_POLL 1
160# endif 198# endif
161#endif 199#endif
162 200
163#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
164# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
165#endif 207#endif
166 208
167#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
169#endif 211#endif
171#ifndef EV_USE_PORT 213#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 214# define EV_USE_PORT 0
173#endif 215#endif
174 216
175#ifndef EV_USE_INOTIFY 217#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1
220# else
176# define EV_USE_INOTIFY 0 221# define EV_USE_INOTIFY 0
222# endif
177#endif 223#endif
178 224
179#ifndef EV_PID_HASHSIZE 225#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 226# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 227# define EV_PID_HASHSIZE 1
190# else 236# else
191# define EV_INOTIFY_HASHSIZE 16 237# define EV_INOTIFY_HASHSIZE 16
192# endif 238# endif
193#endif 239#endif
194 240
195/**/ 241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 268
197#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
200#endif 272#endif
202#ifndef CLOCK_REALTIME 274#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 275# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 276# define EV_USE_REALTIME 0
205#endif 277#endif
206 278
279#if !EV_STAT_ENABLE
280# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0
282#endif
283
284#if !EV_USE_NANOSLEEP
285# ifndef _WIN32
286# include <sys/select.h>
287# endif
288#endif
289
290#if EV_USE_INOTIFY
291# include <sys/utsname.h>
292# include <sys/inotify.h>
293/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
294# ifndef IN_DONT_FOLLOW
295# undef EV_USE_INOTIFY
296# define EV_USE_INOTIFY 0
297# endif
298#endif
299
207#if EV_SELECT_IS_WINSOCKET 300#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 301# include <winsock.h>
209#endif 302#endif
210 303
211#if !EV_STAT_ENABLE 304#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 305/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
306# include <stdint.h>
307# ifdef __cplusplus
308extern "C" {
213#endif 309# endif
214 310int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 311# ifdef __cplusplus
216# include <sys/inotify.h> 312}
313# endif
217#endif 314#endif
218 315
219/**/ 316/**/
317
318#if EV_VERIFY >= 3
319# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
320#else
321# define EV_FREQUENT_CHECK do { } while (0)
322#endif
323
324/*
325 * This is used to avoid floating point rounding problems.
326 * It is added to ev_rt_now when scheduling periodics
327 * to ensure progress, time-wise, even when rounding
328 * errors are against us.
329 * This value is good at least till the year 4000.
330 * Better solutions welcome.
331 */
332#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 333
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 334#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 335#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 336/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 337
225#if __GNUC__ >= 3 338#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 339# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 340# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 341#else
236# define expect(expr,value) (expr) 342# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 343# define noinline
344# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
345# define inline
346# endif
240#endif 347#endif
241 348
242#define expect_false(expr) expect ((expr) != 0, 0) 349#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 350#define expect_true(expr) expect ((expr) != 0, 1)
351#define inline_size static inline
352
353#if EV_MINIMAL
354# define inline_speed static noinline
355#else
356# define inline_speed static inline
357#endif
244 358
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 359#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 360#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 361
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 362#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 363#define EMPTY2(a,b) /* used to suppress some warnings */
250 364
251typedef ev_watcher *W; 365typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 366typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 367typedef ev_watcher_time *WT;
254 368
369#define ev_active(w) ((W)(w))->active
370#define ev_at(w) ((WT)(w))->at
371
372#if EV_USE_MONOTONIC
373/* sig_atomic_t is used to avoid per-thread variables or locking but still */
374/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 375static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
376#endif
256 377
257#ifdef _WIN32 378#ifdef _WIN32
258# include "ev_win32.c" 379# include "ev_win32.c"
259#endif 380#endif
260 381
281 perror (msg); 402 perror (msg);
282 abort (); 403 abort ();
283 } 404 }
284} 405}
285 406
407static void *
408ev_realloc_emul (void *ptr, long size)
409{
410 /* some systems, notably openbsd and darwin, fail to properly
411 * implement realloc (x, 0) (as required by both ansi c-98 and
412 * the single unix specification, so work around them here.
413 */
414
415 if (size)
416 return realloc (ptr, size);
417
418 free (ptr);
419 return 0;
420}
421
286static void *(*alloc)(void *ptr, long size); 422static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 423
288void 424void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 425ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 426{
291 alloc = cb; 427 alloc = cb;
292} 428}
293 429
294inline_speed void * 430inline_speed void *
295ev_realloc (void *ptr, long size) 431ev_realloc (void *ptr, long size)
296{ 432{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 433 ptr = alloc (ptr, size);
298 434
299 if (!ptr && size) 435 if (!ptr && size)
300 { 436 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 437 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 438 abort ();
313typedef struct 449typedef struct
314{ 450{
315 WL head; 451 WL head;
316 unsigned char events; 452 unsigned char events;
317 unsigned char reify; 453 unsigned char reify;
454 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
455 unsigned char egen; /* generation counter to counter epoll bugs */
318#if EV_SELECT_IS_WINSOCKET 456#if EV_SELECT_IS_WINSOCKET
319 SOCKET handle; 457 SOCKET handle;
320#endif 458#endif
321} ANFD; 459} ANFD;
322 460
325 W w; 463 W w;
326 int events; 464 int events;
327} ANPENDING; 465} ANPENDING;
328 466
329#if EV_USE_INOTIFY 467#if EV_USE_INOTIFY
468/* hash table entry per inotify-id */
330typedef struct 469typedef struct
331{ 470{
332 WL head; 471 WL head;
333} ANFS; 472} ANFS;
473#endif
474
475/* Heap Entry */
476#if EV_HEAP_CACHE_AT
477 typedef struct {
478 ev_tstamp at;
479 WT w;
480 } ANHE;
481
482 #define ANHE_w(he) (he).w /* access watcher, read-write */
483 #define ANHE_at(he) (he).at /* access cached at, read-only */
484 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
485#else
486 typedef WT ANHE;
487
488 #define ANHE_w(he) (he)
489 #define ANHE_at(he) (he)->at
490 #define ANHE_at_cache(he)
334#endif 491#endif
335 492
336#if EV_MULTIPLICITY 493#if EV_MULTIPLICITY
337 494
338 struct ev_loop 495 struct ev_loop
396{ 553{
397 return ev_rt_now; 554 return ev_rt_now;
398} 555}
399#endif 556#endif
400 557
401#define array_roundsize(type,n) (((n) | 4) & ~3) 558void
559ev_sleep (ev_tstamp delay)
560{
561 if (delay > 0.)
562 {
563#if EV_USE_NANOSLEEP
564 struct timespec ts;
565
566 ts.tv_sec = (time_t)delay;
567 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
568
569 nanosleep (&ts, 0);
570#elif defined(_WIN32)
571 Sleep ((unsigned long)(delay * 1e3));
572#else
573 struct timeval tv;
574
575 tv.tv_sec = (time_t)delay;
576 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
577
578 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
579 /* somehting nto guaranteed by newer posix versions, but guaranteed */
580 /* by older ones */
581 select (0, 0, 0, 0, &tv);
582#endif
583 }
584}
585
586/*****************************************************************************/
587
588#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
589
590int inline_size
591array_nextsize (int elem, int cur, int cnt)
592{
593 int ncur = cur + 1;
594
595 do
596 ncur <<= 1;
597 while (cnt > ncur);
598
599 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
600 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
601 {
602 ncur *= elem;
603 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
604 ncur = ncur - sizeof (void *) * 4;
605 ncur /= elem;
606 }
607
608 return ncur;
609}
610
611static noinline void *
612array_realloc (int elem, void *base, int *cur, int cnt)
613{
614 *cur = array_nextsize (elem, *cur, cnt);
615 return ev_realloc (base, elem * *cur);
616}
617
618#define array_init_zero(base,count) \
619 memset ((void *)(base), 0, sizeof (*(base)) * (count))
402 620
403#define array_needsize(type,base,cur,cnt,init) \ 621#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 622 if (expect_false ((cnt) > (cur))) \
405 { \ 623 { \
406 int newcnt = cur; \ 624 int ocur_ = (cur); \
407 do \ 625 (base) = (type *)array_realloc \
408 { \ 626 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 627 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 628 }
417 629
630#if 0
418#define array_slim(type,stem) \ 631#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 632 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 633 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 634 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 635 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 636 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 637 }
638#endif
425 639
426#define array_free(stem, idx) \ 640#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 641 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
428 642
429/*****************************************************************************/ 643/*****************************************************************************/
430 644
431void noinline 645void noinline
432ev_feed_event (EV_P_ void *w, int revents) 646ev_feed_event (EV_P_ void *w, int revents)
433{ 647{
434 W w_ = (W)w; 648 W w_ = (W)w;
649 int pri = ABSPRI (w_);
435 650
436 if (expect_false (w_->pending)) 651 if (expect_false (w_->pending))
652 pendings [pri][w_->pending - 1].events |= revents;
653 else
437 { 654 {
655 w_->pending = ++pendingcnt [pri];
656 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
657 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 658 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 659 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 660}
447 661
448void inline_size 662void inline_speed
449queue_events (EV_P_ W *events, int eventcnt, int type) 663queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 664{
451 int i; 665 int i;
452 666
453 for (i = 0; i < eventcnt; ++i) 667 for (i = 0; i < eventcnt; ++i)
454 ev_feed_event (EV_A_ events [i], type); 668 ev_feed_event (EV_A_ events [i], type);
455} 669}
456 670
457/*****************************************************************************/ 671/*****************************************************************************/
458 672
459void inline_size
460anfds_init (ANFD *base, int count)
461{
462 while (count--)
463 {
464 base->head = 0;
465 base->events = EV_NONE;
466 base->reify = 0;
467
468 ++base;
469 }
470}
471
472void inline_speed 673void inline_speed
473fd_event (EV_P_ int fd, int revents) 674fd_event (EV_P_ int fd, int revents)
474{ 675{
475 ANFD *anfd = anfds + fd; 676 ANFD *anfd = anfds + fd;
476 ev_io *w; 677 ev_io *w;
485} 686}
486 687
487void 688void
488ev_feed_fd_event (EV_P_ int fd, int revents) 689ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 690{
691 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 692 fd_event (EV_A_ fd, revents);
491} 693}
492 694
493void inline_size 695void inline_size
494fd_reify (EV_P) 696fd_reify (EV_P)
495{ 697{
499 { 701 {
500 int fd = fdchanges [i]; 702 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 703 ANFD *anfd = anfds + fd;
502 ev_io *w; 704 ev_io *w;
503 705
504 int events = 0; 706 unsigned char events = 0;
505 707
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 708 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 709 events |= (unsigned char)w->events;
508 710
509#if EV_SELECT_IS_WINSOCKET 711#if EV_SELECT_IS_WINSOCKET
510 if (events) 712 if (events)
511 { 713 {
512 unsigned long argp; 714 unsigned long arg;
715 #ifdef EV_FD_TO_WIN32_HANDLE
716 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
717 #else
513 anfd->handle = _get_osfhandle (fd); 718 anfd->handle = _get_osfhandle (fd);
719 #endif
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 720 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
515 } 721 }
516#endif 722#endif
517 723
724 {
725 unsigned char o_events = anfd->events;
726 unsigned char o_reify = anfd->reify;
727
518 anfd->reify = 0; 728 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 729 anfd->events = events;
730
731 if (o_events != events || o_reify & EV_IOFDSET)
732 backend_modify (EV_A_ fd, o_events, events);
733 }
522 } 734 }
523 735
524 fdchangecnt = 0; 736 fdchangecnt = 0;
525} 737}
526 738
527void inline_size 739void inline_size
528fd_change (EV_P_ int fd) 740fd_change (EV_P_ int fd, int flags)
529{ 741{
530 if (expect_false (anfds [fd].reify)) 742 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 743 anfds [fd].reify |= flags;
534 744
745 if (expect_true (!reify))
746 {
535 ++fdchangecnt; 747 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 748 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 749 fdchanges [fdchangecnt - 1] = fd;
750 }
538} 751}
539 752
540void inline_speed 753void inline_speed
541fd_kill (EV_P_ int fd) 754fd_kill (EV_P_ int fd)
542{ 755{
565{ 778{
566 int fd; 779 int fd;
567 780
568 for (fd = 0; fd < anfdmax; ++fd) 781 for (fd = 0; fd < anfdmax; ++fd)
569 if (anfds [fd].events) 782 if (anfds [fd].events)
570 if (!fd_valid (fd) == -1 && errno == EBADF) 783 if (!fd_valid (fd) && errno == EBADF)
571 fd_kill (EV_A_ fd); 784 fd_kill (EV_A_ fd);
572} 785}
573 786
574/* called on ENOMEM in select/poll to kill some fds and retry */ 787/* called on ENOMEM in select/poll to kill some fds and retry */
575static void noinline 788static void noinline
593 806
594 for (fd = 0; fd < anfdmax; ++fd) 807 for (fd = 0; fd < anfdmax; ++fd)
595 if (anfds [fd].events) 808 if (anfds [fd].events)
596 { 809 {
597 anfds [fd].events = 0; 810 anfds [fd].events = 0;
811 anfds [fd].emask = 0;
598 fd_change (EV_A_ fd); 812 fd_change (EV_A_ fd, EV_IOFDSET | 1);
599 } 813 }
600} 814}
601 815
602/*****************************************************************************/ 816/*****************************************************************************/
603 817
818/*
819 * the heap functions want a real array index. array index 0 uis guaranteed to not
820 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
821 * the branching factor of the d-tree.
822 */
823
824/*
825 * at the moment we allow libev the luxury of two heaps,
826 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
827 * which is more cache-efficient.
828 * the difference is about 5% with 50000+ watchers.
829 */
830#if EV_USE_4HEAP
831
832#define DHEAP 4
833#define HEAP0 (DHEAP - 1) /* index of first element in heap */
834#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
835#define UPHEAP_DONE(p,k) ((p) == (k))
836
837/* away from the root */
604void inline_speed 838void inline_speed
605upheap (WT *heap, int k) 839downheap (ANHE *heap, int N, int k)
606{ 840{
607 WT w = heap [k]; 841 ANHE he = heap [k];
842 ANHE *E = heap + N + HEAP0;
608 843
609 while (k && heap [k >> 1]->at > w->at) 844 for (;;)
610 {
611 heap [k] = heap [k >> 1];
612 ((W)heap [k])->active = k + 1;
613 k >>= 1;
614 } 845 {
846 ev_tstamp minat;
847 ANHE *minpos;
848 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
615 849
850 /* find minimum child */
851 if (expect_true (pos + DHEAP - 1 < E))
852 {
853 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
854 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
855 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
856 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
857 }
858 else if (pos < E)
859 {
860 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
861 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
862 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
863 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
864 }
865 else
866 break;
867
868 if (ANHE_at (he) <= minat)
869 break;
870
871 heap [k] = *minpos;
872 ev_active (ANHE_w (*minpos)) = k;
873
874 k = minpos - heap;
875 }
876
616 heap [k] = w; 877 heap [k] = he;
617 ((W)heap [k])->active = k + 1; 878 ev_active (ANHE_w (he)) = k;
618
619} 879}
620 880
881#else /* 4HEAP */
882
883#define HEAP0 1
884#define HPARENT(k) ((k) >> 1)
885#define UPHEAP_DONE(p,k) (!(p))
886
887/* away from the root */
621void inline_speed 888void inline_speed
622downheap (WT *heap, int N, int k) 889downheap (ANHE *heap, int N, int k)
623{ 890{
624 WT w = heap [k]; 891 ANHE he = heap [k];
625 892
626 while (k < (N >> 1)) 893 for (;;)
627 { 894 {
628 int j = k << 1; 895 int c = k << 1;
629 896
630 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 897 if (c > N + HEAP0 - 1)
631 ++j;
632
633 if (w->at <= heap [j]->at)
634 break; 898 break;
635 899
900 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
901 ? 1 : 0;
902
903 if (ANHE_at (he) <= ANHE_at (heap [c]))
904 break;
905
636 heap [k] = heap [j]; 906 heap [k] = heap [c];
637 ((W)heap [k])->active = k + 1; 907 ev_active (ANHE_w (heap [k])) = k;
908
638 k = j; 909 k = c;
639 } 910 }
640 911
641 heap [k] = w; 912 heap [k] = he;
642 ((W)heap [k])->active = k + 1; 913 ev_active (ANHE_w (he)) = k;
914}
915#endif
916
917/* towards the root */
918void inline_speed
919upheap (ANHE *heap, int k)
920{
921 ANHE he = heap [k];
922
923 for (;;)
924 {
925 int p = HPARENT (k);
926
927 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
928 break;
929
930 heap [k] = heap [p];
931 ev_active (ANHE_w (heap [k])) = k;
932 k = p;
933 }
934
935 heap [k] = he;
936 ev_active (ANHE_w (he)) = k;
643} 937}
644 938
645void inline_size 939void inline_size
646adjustheap (WT *heap, int N, int k) 940adjustheap (ANHE *heap, int N, int k)
647{ 941{
942 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
648 upheap (heap, k); 943 upheap (heap, k);
944 else
649 downheap (heap, N, k); 945 downheap (heap, N, k);
946}
947
948/* rebuild the heap: this function is used only once and executed rarely */
949void inline_size
950reheap (ANHE *heap, int N)
951{
952 int i;
953
954 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
955 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
956 for (i = 0; i < N; ++i)
957 upheap (heap, i + HEAP0);
650} 958}
651 959
652/*****************************************************************************/ 960/*****************************************************************************/
653 961
654typedef struct 962typedef struct
655{ 963{
656 WL head; 964 WL head;
657 sig_atomic_t volatile gotsig; 965 EV_ATOMIC_T gotsig;
658} ANSIG; 966} ANSIG;
659 967
660static ANSIG *signals; 968static ANSIG *signals;
661static int signalmax; 969static int signalmax;
662 970
663static int sigpipe [2]; 971static EV_ATOMIC_T gotsig;
664static sig_atomic_t volatile gotsig;
665static ev_io sigev;
666 972
973/*****************************************************************************/
974
667void inline_size 975void inline_speed
668signals_init (ANSIG *base, int count)
669{
670 while (count--)
671 {
672 base->head = 0;
673 base->gotsig = 0;
674
675 ++base;
676 }
677}
678
679static void
680sighandler (int signum)
681{
682#if _WIN32
683 signal (signum, sighandler);
684#endif
685
686 signals [signum - 1].gotsig = 1;
687
688 if (!gotsig)
689 {
690 int old_errno = errno;
691 gotsig = 1;
692 write (sigpipe [1], &signum, 1);
693 errno = old_errno;
694 }
695}
696
697void noinline
698ev_feed_signal_event (EV_P_ int signum)
699{
700 WL w;
701
702#if EV_MULTIPLICITY
703 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
704#endif
705
706 --signum;
707
708 if (signum < 0 || signum >= signalmax)
709 return;
710
711 signals [signum].gotsig = 0;
712
713 for (w = signals [signum].head; w; w = w->next)
714 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
715}
716
717static void
718sigcb (EV_P_ ev_io *iow, int revents)
719{
720 int signum;
721
722 read (sigpipe [0], &revents, 1);
723 gotsig = 0;
724
725 for (signum = signalmax; signum--; )
726 if (signals [signum].gotsig)
727 ev_feed_signal_event (EV_A_ signum + 1);
728}
729
730void inline_size
731fd_intern (int fd) 976fd_intern (int fd)
732{ 977{
733#ifdef _WIN32 978#ifdef _WIN32
734 int arg = 1; 979 unsigned long arg = 1;
735 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 980 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
736#else 981#else
737 fcntl (fd, F_SETFD, FD_CLOEXEC); 982 fcntl (fd, F_SETFD, FD_CLOEXEC);
738 fcntl (fd, F_SETFL, O_NONBLOCK); 983 fcntl (fd, F_SETFL, O_NONBLOCK);
739#endif 984#endif
740} 985}
741 986
742static void noinline 987static void noinline
743siginit (EV_P) 988evpipe_init (EV_P)
744{ 989{
990 if (!ev_is_active (&pipeev))
991 {
992#if EV_USE_EVENTFD
993 if ((evfd = eventfd (0, 0)) >= 0)
994 {
995 evpipe [0] = -1;
996 fd_intern (evfd);
997 ev_io_set (&pipeev, evfd, EV_READ);
998 }
999 else
1000#endif
1001 {
1002 while (pipe (evpipe))
1003 syserr ("(libev) error creating signal/async pipe");
1004
745 fd_intern (sigpipe [0]); 1005 fd_intern (evpipe [0]);
746 fd_intern (sigpipe [1]); 1006 fd_intern (evpipe [1]);
1007 ev_io_set (&pipeev, evpipe [0], EV_READ);
1008 }
747 1009
748 ev_io_set (&sigev, sigpipe [0], EV_READ);
749 ev_io_start (EV_A_ &sigev); 1010 ev_io_start (EV_A_ &pipeev);
750 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1011 ev_unref (EV_A); /* watcher should not keep loop alive */
1012 }
1013}
1014
1015void inline_size
1016evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1017{
1018 if (!*flag)
1019 {
1020 int old_errno = errno; /* save errno because write might clobber it */
1021
1022 *flag = 1;
1023
1024#if EV_USE_EVENTFD
1025 if (evfd >= 0)
1026 {
1027 uint64_t counter = 1;
1028 write (evfd, &counter, sizeof (uint64_t));
1029 }
1030 else
1031#endif
1032 write (evpipe [1], &old_errno, 1);
1033
1034 errno = old_errno;
1035 }
1036}
1037
1038static void
1039pipecb (EV_P_ ev_io *iow, int revents)
1040{
1041#if EV_USE_EVENTFD
1042 if (evfd >= 0)
1043 {
1044 uint64_t counter;
1045 read (evfd, &counter, sizeof (uint64_t));
1046 }
1047 else
1048#endif
1049 {
1050 char dummy;
1051 read (evpipe [0], &dummy, 1);
1052 }
1053
1054 if (gotsig && ev_is_default_loop (EV_A))
1055 {
1056 int signum;
1057 gotsig = 0;
1058
1059 for (signum = signalmax; signum--; )
1060 if (signals [signum].gotsig)
1061 ev_feed_signal_event (EV_A_ signum + 1);
1062 }
1063
1064#if EV_ASYNC_ENABLE
1065 if (gotasync)
1066 {
1067 int i;
1068 gotasync = 0;
1069
1070 for (i = asynccnt; i--; )
1071 if (asyncs [i]->sent)
1072 {
1073 asyncs [i]->sent = 0;
1074 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1075 }
1076 }
1077#endif
751} 1078}
752 1079
753/*****************************************************************************/ 1080/*****************************************************************************/
754 1081
1082static void
1083ev_sighandler (int signum)
1084{
1085#if EV_MULTIPLICITY
1086 struct ev_loop *loop = &default_loop_struct;
1087#endif
1088
1089#if _WIN32
1090 signal (signum, ev_sighandler);
1091#endif
1092
1093 signals [signum - 1].gotsig = 1;
1094 evpipe_write (EV_A_ &gotsig);
1095}
1096
1097void noinline
1098ev_feed_signal_event (EV_P_ int signum)
1099{
1100 WL w;
1101
1102#if EV_MULTIPLICITY
1103 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1104#endif
1105
1106 --signum;
1107
1108 if (signum < 0 || signum >= signalmax)
1109 return;
1110
1111 signals [signum].gotsig = 0;
1112
1113 for (w = signals [signum].head; w; w = w->next)
1114 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1115}
1116
1117/*****************************************************************************/
1118
755static ev_child *childs [EV_PID_HASHSIZE]; 1119static WL childs [EV_PID_HASHSIZE];
756 1120
757#ifndef _WIN32 1121#ifndef _WIN32
758 1122
759static ev_signal childev; 1123static ev_signal childev;
760 1124
1125#ifndef WIFCONTINUED
1126# define WIFCONTINUED(status) 0
1127#endif
1128
761void inline_speed 1129void inline_speed
762child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1130child_reap (EV_P_ int chain, int pid, int status)
763{ 1131{
764 ev_child *w; 1132 ev_child *w;
1133 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
765 1134
766 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1135 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1136 {
767 if (w->pid == pid || !w->pid) 1137 if ((w->pid == pid || !w->pid)
1138 && (!traced || (w->flags & 1)))
768 { 1139 {
769 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1140 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
770 w->rpid = pid; 1141 w->rpid = pid;
771 w->rstatus = status; 1142 w->rstatus = status;
772 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1143 ev_feed_event (EV_A_ (W)w, EV_CHILD);
773 } 1144 }
1145 }
774} 1146}
775 1147
776#ifndef WCONTINUED 1148#ifndef WCONTINUED
777# define WCONTINUED 0 1149# define WCONTINUED 0
778#endif 1150#endif
787 if (!WCONTINUED 1159 if (!WCONTINUED
788 || errno != EINVAL 1160 || errno != EINVAL
789 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1161 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
790 return; 1162 return;
791 1163
792 /* make sure we are called again until all childs have been reaped */ 1164 /* make sure we are called again until all children have been reaped */
793 /* we need to do it this way so that the callback gets called before we continue */ 1165 /* we need to do it this way so that the callback gets called before we continue */
794 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1166 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
795 1167
796 child_reap (EV_A_ sw, pid, pid, status); 1168 child_reap (EV_A_ pid, pid, status);
797 if (EV_PID_HASHSIZE > 1) 1169 if (EV_PID_HASHSIZE > 1)
798 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1170 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
799} 1171}
800 1172
801#endif 1173#endif
802 1174
803/*****************************************************************************/ 1175/*****************************************************************************/
875} 1247}
876 1248
877unsigned int 1249unsigned int
878ev_embeddable_backends (void) 1250ev_embeddable_backends (void)
879{ 1251{
880 return EVBACKEND_EPOLL 1252 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
881 | EVBACKEND_KQUEUE 1253
882 | EVBACKEND_PORT; 1254 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1255 /* please fix it and tell me how to detect the fix */
1256 flags &= ~EVBACKEND_EPOLL;
1257
1258 return flags;
883} 1259}
884 1260
885unsigned int 1261unsigned int
886ev_backend (EV_P) 1262ev_backend (EV_P)
887{ 1263{
888 return backend; 1264 return backend;
1265}
1266
1267unsigned int
1268ev_loop_count (EV_P)
1269{
1270 return loop_count;
1271}
1272
1273void
1274ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1275{
1276 io_blocktime = interval;
1277}
1278
1279void
1280ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1281{
1282 timeout_blocktime = interval;
889} 1283}
890 1284
891static void noinline 1285static void noinline
892loop_init (EV_P_ unsigned int flags) 1286loop_init (EV_P_ unsigned int flags)
893{ 1287{
899 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1293 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
900 have_monotonic = 1; 1294 have_monotonic = 1;
901 } 1295 }
902#endif 1296#endif
903 1297
904 ev_rt_now = ev_time (); 1298 ev_rt_now = ev_time ();
905 mn_now = get_clock (); 1299 mn_now = get_clock ();
906 now_floor = mn_now; 1300 now_floor = mn_now;
907 rtmn_diff = ev_rt_now - mn_now; 1301 rtmn_diff = ev_rt_now - mn_now;
1302
1303 io_blocktime = 0.;
1304 timeout_blocktime = 0.;
1305 backend = 0;
1306 backend_fd = -1;
1307 gotasync = 0;
1308#if EV_USE_INOTIFY
1309 fs_fd = -2;
1310#endif
1311
1312 /* pid check not overridable via env */
1313#ifndef _WIN32
1314 if (flags & EVFLAG_FORKCHECK)
1315 curpid = getpid ();
1316#endif
908 1317
909 if (!(flags & EVFLAG_NOENV) 1318 if (!(flags & EVFLAG_NOENV)
910 && !enable_secure () 1319 && !enable_secure ()
911 && getenv ("LIBEV_FLAGS")) 1320 && getenv ("LIBEV_FLAGS"))
912 flags = atoi (getenv ("LIBEV_FLAGS")); 1321 flags = atoi (getenv ("LIBEV_FLAGS"));
913 1322
914 if (!(flags & 0x0000ffffUL)) 1323 if (!(flags & 0x0000ffffU))
915 flags |= ev_recommended_backends (); 1324 flags |= ev_recommended_backends ();
916
917 backend = 0;
918 backend_fd = -1;
919#if EV_USE_INOTIFY
920 fs_fd = -2;
921#endif
922 1325
923#if EV_USE_PORT 1326#if EV_USE_PORT
924 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1327 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
925#endif 1328#endif
926#if EV_USE_KQUEUE 1329#if EV_USE_KQUEUE
934#endif 1337#endif
935#if EV_USE_SELECT 1338#if EV_USE_SELECT
936 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1339 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
937#endif 1340#endif
938 1341
939 ev_init (&sigev, sigcb); 1342 ev_init (&pipeev, pipecb);
940 ev_set_priority (&sigev, EV_MAXPRI); 1343 ev_set_priority (&pipeev, EV_MAXPRI);
941 } 1344 }
942} 1345}
943 1346
944static void noinline 1347static void noinline
945loop_destroy (EV_P) 1348loop_destroy (EV_P)
946{ 1349{
947 int i; 1350 int i;
1351
1352 if (ev_is_active (&pipeev))
1353 {
1354 ev_ref (EV_A); /* signal watcher */
1355 ev_io_stop (EV_A_ &pipeev);
1356
1357#if EV_USE_EVENTFD
1358 if (evfd >= 0)
1359 close (evfd);
1360#endif
1361
1362 if (evpipe [0] >= 0)
1363 {
1364 close (evpipe [0]);
1365 close (evpipe [1]);
1366 }
1367 }
948 1368
949#if EV_USE_INOTIFY 1369#if EV_USE_INOTIFY
950 if (fs_fd >= 0) 1370 if (fs_fd >= 0)
951 close (fs_fd); 1371 close (fs_fd);
952#endif 1372#endif
969#if EV_USE_SELECT 1389#if EV_USE_SELECT
970 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1390 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
971#endif 1391#endif
972 1392
973 for (i = NUMPRI; i--; ) 1393 for (i = NUMPRI; i--; )
1394 {
974 array_free (pending, [i]); 1395 array_free (pending, [i]);
1396#if EV_IDLE_ENABLE
1397 array_free (idle, [i]);
1398#endif
1399 }
1400
1401 ev_free (anfds); anfdmax = 0;
975 1402
976 /* have to use the microsoft-never-gets-it-right macro */ 1403 /* have to use the microsoft-never-gets-it-right macro */
977 array_free (fdchange, EMPTY0); 1404 array_free (fdchange, EMPTY);
978 array_free (timer, EMPTY0); 1405 array_free (timer, EMPTY);
979#if EV_PERIODIC_ENABLE 1406#if EV_PERIODIC_ENABLE
980 array_free (periodic, EMPTY0); 1407 array_free (periodic, EMPTY);
981#endif 1408#endif
1409#if EV_FORK_ENABLE
982 array_free (idle, EMPTY0); 1410 array_free (fork, EMPTY);
1411#endif
983 array_free (prepare, EMPTY0); 1412 array_free (prepare, EMPTY);
984 array_free (check, EMPTY0); 1413 array_free (check, EMPTY);
1414#if EV_ASYNC_ENABLE
1415 array_free (async, EMPTY);
1416#endif
985 1417
986 backend = 0; 1418 backend = 0;
987} 1419}
988 1420
1421#if EV_USE_INOTIFY
989void inline_size infy_fork (EV_P); 1422void inline_size infy_fork (EV_P);
1423#endif
990 1424
991void inline_size 1425void inline_size
992loop_fork (EV_P) 1426loop_fork (EV_P)
993{ 1427{
994#if EV_USE_PORT 1428#if EV_USE_PORT
1002#endif 1436#endif
1003#if EV_USE_INOTIFY 1437#if EV_USE_INOTIFY
1004 infy_fork (EV_A); 1438 infy_fork (EV_A);
1005#endif 1439#endif
1006 1440
1007 if (ev_is_active (&sigev)) 1441 if (ev_is_active (&pipeev))
1008 { 1442 {
1009 /* default loop */ 1443 /* this "locks" the handlers against writing to the pipe */
1444 /* while we modify the fd vars */
1445 gotsig = 1;
1446#if EV_ASYNC_ENABLE
1447 gotasync = 1;
1448#endif
1010 1449
1011 ev_ref (EV_A); 1450 ev_ref (EV_A);
1012 ev_io_stop (EV_A_ &sigev); 1451 ev_io_stop (EV_A_ &pipeev);
1452
1453#if EV_USE_EVENTFD
1454 if (evfd >= 0)
1455 close (evfd);
1456#endif
1457
1458 if (evpipe [0] >= 0)
1459 {
1013 close (sigpipe [0]); 1460 close (evpipe [0]);
1014 close (sigpipe [1]); 1461 close (evpipe [1]);
1462 }
1015 1463
1016 while (pipe (sigpipe))
1017 syserr ("(libev) error creating pipe");
1018
1019 siginit (EV_A); 1464 evpipe_init (EV_A);
1465 /* now iterate over everything, in case we missed something */
1466 pipecb (EV_A_ &pipeev, EV_READ);
1020 } 1467 }
1021 1468
1022 postfork = 0; 1469 postfork = 0;
1023} 1470}
1024 1471
1025#if EV_MULTIPLICITY 1472#if EV_MULTIPLICITY
1473
1026struct ev_loop * 1474struct ev_loop *
1027ev_loop_new (unsigned int flags) 1475ev_loop_new (unsigned int flags)
1028{ 1476{
1029 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1477 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1030 1478
1046} 1494}
1047 1495
1048void 1496void
1049ev_loop_fork (EV_P) 1497ev_loop_fork (EV_P)
1050{ 1498{
1051 postfork = 1; 1499 postfork = 1; /* must be in line with ev_default_fork */
1052} 1500}
1053 1501
1502#if EV_VERIFY
1503static void noinline
1504verify_watcher (EV_P_ W w)
1505{
1506 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1507
1508 if (w->pending)
1509 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1510}
1511
1512static void noinline
1513verify_heap (EV_P_ ANHE *heap, int N)
1514{
1515 int i;
1516
1517 for (i = HEAP0; i < N + HEAP0; ++i)
1518 {
1519 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1520 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1521 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1522
1523 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1524 }
1525}
1526
1527static void noinline
1528array_verify (EV_P_ W *ws, int cnt)
1529{
1530 while (cnt--)
1531 {
1532 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1533 verify_watcher (EV_A_ ws [cnt]);
1534 }
1535}
1536#endif
1537
1538void
1539ev_loop_verify (EV_P)
1540{
1541#if EV_VERIFY
1542 int i;
1543 WL w;
1544
1545 assert (activecnt >= -1);
1546
1547 assert (fdchangemax >= fdchangecnt);
1548 for (i = 0; i < fdchangecnt; ++i)
1549 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1550
1551 assert (anfdmax >= 0);
1552 for (i = 0; i < anfdmax; ++i)
1553 for (w = anfds [i].head; w; w = w->next)
1554 {
1555 verify_watcher (EV_A_ (W)w);
1556 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1557 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1558 }
1559
1560 assert (timermax >= timercnt);
1561 verify_heap (EV_A_ timers, timercnt);
1562
1563#if EV_PERIODIC_ENABLE
1564 assert (periodicmax >= periodiccnt);
1565 verify_heap (EV_A_ periodics, periodiccnt);
1566#endif
1567
1568 for (i = NUMPRI; i--; )
1569 {
1570 assert (pendingmax [i] >= pendingcnt [i]);
1571#if EV_IDLE_ENABLE
1572 assert (idleall >= 0);
1573 assert (idlemax [i] >= idlecnt [i]);
1574 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1575#endif
1576 }
1577
1578#if EV_FORK_ENABLE
1579 assert (forkmax >= forkcnt);
1580 array_verify (EV_A_ (W *)forks, forkcnt);
1581#endif
1582
1583#if EV_ASYNC_ENABLE
1584 assert (asyncmax >= asynccnt);
1585 array_verify (EV_A_ (W *)asyncs, asynccnt);
1586#endif
1587
1588 assert (preparemax >= preparecnt);
1589 array_verify (EV_A_ (W *)prepares, preparecnt);
1590
1591 assert (checkmax >= checkcnt);
1592 array_verify (EV_A_ (W *)checks, checkcnt);
1593
1594# if 0
1595 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1596 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1054#endif 1597# endif
1598#endif
1599}
1600
1601#endif /* multiplicity */
1055 1602
1056#if EV_MULTIPLICITY 1603#if EV_MULTIPLICITY
1057struct ev_loop * 1604struct ev_loop *
1058ev_default_loop_init (unsigned int flags) 1605ev_default_loop_init (unsigned int flags)
1059#else 1606#else
1060int 1607int
1061ev_default_loop (unsigned int flags) 1608ev_default_loop (unsigned int flags)
1062#endif 1609#endif
1063{ 1610{
1064 if (sigpipe [0] == sigpipe [1])
1065 if (pipe (sigpipe))
1066 return 0;
1067
1068 if (!ev_default_loop_ptr) 1611 if (!ev_default_loop_ptr)
1069 { 1612 {
1070#if EV_MULTIPLICITY 1613#if EV_MULTIPLICITY
1071 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1614 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1072#else 1615#else
1075 1618
1076 loop_init (EV_A_ flags); 1619 loop_init (EV_A_ flags);
1077 1620
1078 if (ev_backend (EV_A)) 1621 if (ev_backend (EV_A))
1079 { 1622 {
1080 siginit (EV_A);
1081
1082#ifndef _WIN32 1623#ifndef _WIN32
1083 ev_signal_init (&childev, childcb, SIGCHLD); 1624 ev_signal_init (&childev, childcb, SIGCHLD);
1084 ev_set_priority (&childev, EV_MAXPRI); 1625 ev_set_priority (&childev, EV_MAXPRI);
1085 ev_signal_start (EV_A_ &childev); 1626 ev_signal_start (EV_A_ &childev);
1086 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1627 ev_unref (EV_A); /* child watcher should not keep loop alive */
1098{ 1639{
1099#if EV_MULTIPLICITY 1640#if EV_MULTIPLICITY
1100 struct ev_loop *loop = ev_default_loop_ptr; 1641 struct ev_loop *loop = ev_default_loop_ptr;
1101#endif 1642#endif
1102 1643
1644 ev_default_loop_ptr = 0;
1645
1103#ifndef _WIN32 1646#ifndef _WIN32
1104 ev_ref (EV_A); /* child watcher */ 1647 ev_ref (EV_A); /* child watcher */
1105 ev_signal_stop (EV_A_ &childev); 1648 ev_signal_stop (EV_A_ &childev);
1106#endif 1649#endif
1107 1650
1108 ev_ref (EV_A); /* signal watcher */
1109 ev_io_stop (EV_A_ &sigev);
1110
1111 close (sigpipe [0]); sigpipe [0] = 0;
1112 close (sigpipe [1]); sigpipe [1] = 0;
1113
1114 loop_destroy (EV_A); 1651 loop_destroy (EV_A);
1115} 1652}
1116 1653
1117void 1654void
1118ev_default_fork (void) 1655ev_default_fork (void)
1120#if EV_MULTIPLICITY 1657#if EV_MULTIPLICITY
1121 struct ev_loop *loop = ev_default_loop_ptr; 1658 struct ev_loop *loop = ev_default_loop_ptr;
1122#endif 1659#endif
1123 1660
1124 if (backend) 1661 if (backend)
1125 postfork = 1; 1662 postfork = 1; /* must be in line with ev_loop_fork */
1126} 1663}
1127 1664
1128/*****************************************************************************/ 1665/*****************************************************************************/
1129 1666
1130int inline_size 1667void
1131any_pending (EV_P) 1668ev_invoke (EV_P_ void *w, int revents)
1132{ 1669{
1133 int pri; 1670 EV_CB_INVOKE ((W)w, revents);
1134
1135 for (pri = NUMPRI; pri--; )
1136 if (pendingcnt [pri])
1137 return 1;
1138
1139 return 0;
1140} 1671}
1141 1672
1142void inline_speed 1673void inline_speed
1143call_pending (EV_P) 1674call_pending (EV_P)
1144{ 1675{
1153 { 1684 {
1154 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1685 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1155 1686
1156 p->w->pending = 0; 1687 p->w->pending = 0;
1157 EV_CB_INVOKE (p->w, p->events); 1688 EV_CB_INVOKE (p->w, p->events);
1689 EV_FREQUENT_CHECK;
1158 } 1690 }
1159 } 1691 }
1160} 1692}
1161 1693
1694#if EV_IDLE_ENABLE
1695void inline_size
1696idle_reify (EV_P)
1697{
1698 if (expect_false (idleall))
1699 {
1700 int pri;
1701
1702 for (pri = NUMPRI; pri--; )
1703 {
1704 if (pendingcnt [pri])
1705 break;
1706
1707 if (idlecnt [pri])
1708 {
1709 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1710 break;
1711 }
1712 }
1713 }
1714}
1715#endif
1716
1162void inline_size 1717void inline_size
1163timers_reify (EV_P) 1718timers_reify (EV_P)
1164{ 1719{
1720 EV_FREQUENT_CHECK;
1721
1165 while (timercnt && ((WT)timers [0])->at <= mn_now) 1722 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1166 { 1723 {
1167 ev_timer *w = timers [0]; 1724 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1168 1725
1169 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1726 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1170 1727
1171 /* first reschedule or stop timer */ 1728 /* first reschedule or stop timer */
1172 if (w->repeat) 1729 if (w->repeat)
1173 { 1730 {
1731 ev_at (w) += w->repeat;
1732 if (ev_at (w) < mn_now)
1733 ev_at (w) = mn_now;
1734
1174 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1735 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1175 1736
1176 ((WT)w)->at += w->repeat; 1737 ANHE_at_cache (timers [HEAP0]);
1177 if (((WT)w)->at < mn_now)
1178 ((WT)w)->at = mn_now;
1179
1180 downheap ((WT *)timers, timercnt, 0); 1738 downheap (timers, timercnt, HEAP0);
1181 } 1739 }
1182 else 1740 else
1183 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1741 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1184 1742
1743 EV_FREQUENT_CHECK;
1185 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1744 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1186 } 1745 }
1187} 1746}
1188 1747
1189#if EV_PERIODIC_ENABLE 1748#if EV_PERIODIC_ENABLE
1190void inline_size 1749void inline_size
1191periodics_reify (EV_P) 1750periodics_reify (EV_P)
1192{ 1751{
1752 EV_FREQUENT_CHECK;
1753
1193 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1754 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1194 { 1755 {
1195 ev_periodic *w = periodics [0]; 1756 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1196 1757
1197 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1758 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1198 1759
1199 /* first reschedule or stop timer */ 1760 /* first reschedule or stop timer */
1200 if (w->reschedule_cb) 1761 if (w->reschedule_cb)
1201 { 1762 {
1202 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1763 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1764
1203 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1765 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1766
1767 ANHE_at_cache (periodics [HEAP0]);
1204 downheap ((WT *)periodics, periodiccnt, 0); 1768 downheap (periodics, periodiccnt, HEAP0);
1205 } 1769 }
1206 else if (w->interval) 1770 else if (w->interval)
1207 { 1771 {
1208 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1772 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1209 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1773 /* if next trigger time is not sufficiently in the future, put it there */
1774 /* this might happen because of floating point inexactness */
1775 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1776 {
1777 ev_at (w) += w->interval;
1778
1779 /* if interval is unreasonably low we might still have a time in the past */
1780 /* so correct this. this will make the periodic very inexact, but the user */
1781 /* has effectively asked to get triggered more often than possible */
1782 if (ev_at (w) < ev_rt_now)
1783 ev_at (w) = ev_rt_now;
1784 }
1785
1786 ANHE_at_cache (periodics [HEAP0]);
1210 downheap ((WT *)periodics, periodiccnt, 0); 1787 downheap (periodics, periodiccnt, HEAP0);
1211 } 1788 }
1212 else 1789 else
1213 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1790 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1214 1791
1792 EV_FREQUENT_CHECK;
1215 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1793 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1216 } 1794 }
1217} 1795}
1218 1796
1219static void noinline 1797static void noinline
1220periodics_reschedule (EV_P) 1798periodics_reschedule (EV_P)
1221{ 1799{
1222 int i; 1800 int i;
1223 1801
1224 /* adjust periodics after time jump */ 1802 /* adjust periodics after time jump */
1225 for (i = 0; i < periodiccnt; ++i) 1803 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1226 { 1804 {
1227 ev_periodic *w = periodics [i]; 1805 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1228 1806
1229 if (w->reschedule_cb) 1807 if (w->reschedule_cb)
1230 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1808 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1231 else if (w->interval) 1809 else if (w->interval)
1232 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1810 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1811
1812 ANHE_at_cache (periodics [i]);
1813 }
1814
1815 reheap (periodics, periodiccnt);
1816}
1817#endif
1818
1819void inline_speed
1820time_update (EV_P_ ev_tstamp max_block)
1821{
1822 int i;
1823
1824#if EV_USE_MONOTONIC
1825 if (expect_true (have_monotonic))
1233 } 1826 {
1827 ev_tstamp odiff = rtmn_diff;
1234 1828
1235 /* now rebuild the heap */
1236 for (i = periodiccnt >> 1; i--; )
1237 downheap ((WT *)periodics, periodiccnt, i);
1238}
1239#endif
1240
1241int inline_size
1242time_update_monotonic (EV_P)
1243{
1244 mn_now = get_clock (); 1829 mn_now = get_clock ();
1245 1830
1831 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1832 /* interpolate in the meantime */
1246 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1833 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1247 { 1834 {
1248 ev_rt_now = rtmn_diff + mn_now; 1835 ev_rt_now = rtmn_diff + mn_now;
1249 return 0; 1836 return;
1250 } 1837 }
1251 else 1838
1252 {
1253 now_floor = mn_now; 1839 now_floor = mn_now;
1254 ev_rt_now = ev_time (); 1840 ev_rt_now = ev_time ();
1255 return 1;
1256 }
1257}
1258 1841
1259void inline_size 1842 /* loop a few times, before making important decisions.
1260time_update (EV_P) 1843 * on the choice of "4": one iteration isn't enough,
1261{ 1844 * in case we get preempted during the calls to
1262 int i; 1845 * ev_time and get_clock. a second call is almost guaranteed
1263 1846 * to succeed in that case, though. and looping a few more times
1264#if EV_USE_MONOTONIC 1847 * doesn't hurt either as we only do this on time-jumps or
1265 if (expect_true (have_monotonic)) 1848 * in the unlikely event of having been preempted here.
1266 { 1849 */
1267 if (time_update_monotonic (EV_A)) 1850 for (i = 4; --i; )
1268 { 1851 {
1269 ev_tstamp odiff = rtmn_diff;
1270
1271 /* loop a few times, before making important decisions.
1272 * on the choice of "4": one iteration isn't enough,
1273 * in case we get preempted during the calls to
1274 * ev_time and get_clock. a second call is almost guaranteed
1275 * to succeed in that case, though. and looping a few more times
1276 * doesn't hurt either as we only do this on time-jumps or
1277 * in the unlikely event of having been preempted here.
1278 */
1279 for (i = 4; --i; )
1280 {
1281 rtmn_diff = ev_rt_now - mn_now; 1852 rtmn_diff = ev_rt_now - mn_now;
1282 1853
1283 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1854 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1284 return; /* all is well */ 1855 return; /* all is well */
1285 1856
1286 ev_rt_now = ev_time (); 1857 ev_rt_now = ev_time ();
1287 mn_now = get_clock (); 1858 mn_now = get_clock ();
1288 now_floor = mn_now; 1859 now_floor = mn_now;
1289 } 1860 }
1290 1861
1291# if EV_PERIODIC_ENABLE 1862# if EV_PERIODIC_ENABLE
1292 periodics_reschedule (EV_A); 1863 periodics_reschedule (EV_A);
1293# endif 1864# endif
1294 /* no timer adjustment, as the monotonic clock doesn't jump */ 1865 /* no timer adjustment, as the monotonic clock doesn't jump */
1295 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1866 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1296 }
1297 } 1867 }
1298 else 1868 else
1299#endif 1869#endif
1300 { 1870 {
1301 ev_rt_now = ev_time (); 1871 ev_rt_now = ev_time ();
1302 1872
1303 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1873 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1304 { 1874 {
1305#if EV_PERIODIC_ENABLE 1875#if EV_PERIODIC_ENABLE
1306 periodics_reschedule (EV_A); 1876 periodics_reschedule (EV_A);
1307#endif 1877#endif
1308
1309 /* adjust timers. this is easy, as the offset is the same for all of them */ 1878 /* adjust timers. this is easy, as the offset is the same for all of them */
1310 for (i = 0; i < timercnt; ++i) 1879 for (i = 0; i < timercnt; ++i)
1880 {
1881 ANHE *he = timers + i + HEAP0;
1311 ((WT)timers [i])->at += ev_rt_now - mn_now; 1882 ANHE_w (*he)->at += ev_rt_now - mn_now;
1883 ANHE_at_cache (*he);
1884 }
1312 } 1885 }
1313 1886
1314 mn_now = ev_rt_now; 1887 mn_now = ev_rt_now;
1315 } 1888 }
1316} 1889}
1325ev_unref (EV_P) 1898ev_unref (EV_P)
1326{ 1899{
1327 --activecnt; 1900 --activecnt;
1328} 1901}
1329 1902
1903void
1904ev_now_update (EV_P)
1905{
1906 time_update (EV_A_ 1e100);
1907}
1908
1330static int loop_done; 1909static int loop_done;
1331 1910
1332void 1911void
1333ev_loop (EV_P_ int flags) 1912ev_loop (EV_P_ int flags)
1334{ 1913{
1335 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1914 loop_done = EVUNLOOP_CANCEL;
1336 ? EVUNLOOP_ONE
1337 : EVUNLOOP_CANCEL;
1338 1915
1339 while (activecnt) 1916 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1917
1918 do
1340 { 1919 {
1920#if EV_VERIFY >= 2
1921 ev_loop_verify (EV_A);
1922#endif
1923
1924#ifndef _WIN32
1925 if (expect_false (curpid)) /* penalise the forking check even more */
1926 if (expect_false (getpid () != curpid))
1927 {
1928 curpid = getpid ();
1929 postfork = 1;
1930 }
1931#endif
1932
1341#if EV_FORK_ENABLE 1933#if EV_FORK_ENABLE
1342 /* we might have forked, so queue fork handlers */ 1934 /* we might have forked, so queue fork handlers */
1343 if (expect_false (postfork)) 1935 if (expect_false (postfork))
1344 if (forkcnt) 1936 if (forkcnt)
1345 { 1937 {
1346 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1938 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1347 call_pending (EV_A); 1939 call_pending (EV_A);
1348 } 1940 }
1349#endif 1941#endif
1350 1942
1351 /* queue check watchers (and execute them) */ 1943 /* queue prepare watchers (and execute them) */
1352 if (expect_false (preparecnt)) 1944 if (expect_false (preparecnt))
1353 { 1945 {
1354 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1946 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1355 call_pending (EV_A); 1947 call_pending (EV_A);
1356 } 1948 }
1357 1949
1950 if (expect_false (!activecnt))
1951 break;
1952
1358 /* we might have forked, so reify kernel state if necessary */ 1953 /* we might have forked, so reify kernel state if necessary */
1359 if (expect_false (postfork)) 1954 if (expect_false (postfork))
1360 loop_fork (EV_A); 1955 loop_fork (EV_A);
1361 1956
1362 /* update fd-related kernel structures */ 1957 /* update fd-related kernel structures */
1363 fd_reify (EV_A); 1958 fd_reify (EV_A);
1364 1959
1365 /* calculate blocking time */ 1960 /* calculate blocking time */
1366 { 1961 {
1367 ev_tstamp block; 1962 ev_tstamp waittime = 0.;
1963 ev_tstamp sleeptime = 0.;
1368 1964
1369 if (flags & EVLOOP_NONBLOCK || idlecnt) 1965 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1370 block = 0.; /* do not block at all */
1371 else
1372 { 1966 {
1373 /* update time to cancel out callback processing overhead */ 1967 /* update time to cancel out callback processing overhead */
1374#if EV_USE_MONOTONIC
1375 if (expect_true (have_monotonic))
1376 time_update_monotonic (EV_A); 1968 time_update (EV_A_ 1e100);
1377 else
1378#endif
1379 {
1380 ev_rt_now = ev_time ();
1381 mn_now = ev_rt_now;
1382 }
1383 1969
1384 block = MAX_BLOCKTIME; 1970 waittime = MAX_BLOCKTIME;
1385 1971
1386 if (timercnt) 1972 if (timercnt)
1387 { 1973 {
1388 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1974 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1389 if (block > to) block = to; 1975 if (waittime > to) waittime = to;
1390 } 1976 }
1391 1977
1392#if EV_PERIODIC_ENABLE 1978#if EV_PERIODIC_ENABLE
1393 if (periodiccnt) 1979 if (periodiccnt)
1394 { 1980 {
1395 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1981 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1396 if (block > to) block = to; 1982 if (waittime > to) waittime = to;
1397 } 1983 }
1398#endif 1984#endif
1399 1985
1400 if (expect_false (block < 0.)) block = 0.; 1986 if (expect_false (waittime < timeout_blocktime))
1987 waittime = timeout_blocktime;
1988
1989 sleeptime = waittime - backend_fudge;
1990
1991 if (expect_true (sleeptime > io_blocktime))
1992 sleeptime = io_blocktime;
1993
1994 if (sleeptime)
1995 {
1996 ev_sleep (sleeptime);
1997 waittime -= sleeptime;
1998 }
1401 } 1999 }
1402 2000
2001 ++loop_count;
1403 backend_poll (EV_A_ block); 2002 backend_poll (EV_A_ waittime);
2003
2004 /* update ev_rt_now, do magic */
2005 time_update (EV_A_ waittime + sleeptime);
1404 } 2006 }
1405
1406 /* update ev_rt_now, do magic */
1407 time_update (EV_A);
1408 2007
1409 /* queue pending timers and reschedule them */ 2008 /* queue pending timers and reschedule them */
1410 timers_reify (EV_A); /* relative timers called last */ 2009 timers_reify (EV_A); /* relative timers called last */
1411#if EV_PERIODIC_ENABLE 2010#if EV_PERIODIC_ENABLE
1412 periodics_reify (EV_A); /* absolute timers called first */ 2011 periodics_reify (EV_A); /* absolute timers called first */
1413#endif 2012#endif
1414 2013
2014#if EV_IDLE_ENABLE
1415 /* queue idle watchers unless other events are pending */ 2015 /* queue idle watchers unless other events are pending */
1416 if (idlecnt && !any_pending (EV_A)) 2016 idle_reify (EV_A);
1417 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2017#endif
1418 2018
1419 /* queue check watchers, to be executed first */ 2019 /* queue check watchers, to be executed first */
1420 if (expect_false (checkcnt)) 2020 if (expect_false (checkcnt))
1421 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2021 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1422 2022
1423 call_pending (EV_A); 2023 call_pending (EV_A);
1424
1425 if (expect_false (loop_done))
1426 break;
1427 } 2024 }
2025 while (expect_true (
2026 activecnt
2027 && !loop_done
2028 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2029 ));
1428 2030
1429 if (loop_done == EVUNLOOP_ONE) 2031 if (loop_done == EVUNLOOP_ONE)
1430 loop_done = EVUNLOOP_CANCEL; 2032 loop_done = EVUNLOOP_CANCEL;
1431} 2033}
1432 2034
1459 head = &(*head)->next; 2061 head = &(*head)->next;
1460 } 2062 }
1461} 2063}
1462 2064
1463void inline_speed 2065void inline_speed
1464ev_clear_pending (EV_P_ W w) 2066clear_pending (EV_P_ W w)
1465{ 2067{
1466 if (w->pending) 2068 if (w->pending)
1467 { 2069 {
1468 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2070 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1469 w->pending = 0; 2071 w->pending = 0;
1470 } 2072 }
1471} 2073}
1472 2074
2075int
2076ev_clear_pending (EV_P_ void *w)
2077{
2078 W w_ = (W)w;
2079 int pending = w_->pending;
2080
2081 if (expect_true (pending))
2082 {
2083 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2084 w_->pending = 0;
2085 p->w = 0;
2086 return p->events;
2087 }
2088 else
2089 return 0;
2090}
2091
2092void inline_size
2093pri_adjust (EV_P_ W w)
2094{
2095 int pri = w->priority;
2096 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2097 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2098 w->priority = pri;
2099}
2100
1473void inline_speed 2101void inline_speed
1474ev_start (EV_P_ W w, int active) 2102ev_start (EV_P_ W w, int active)
1475{ 2103{
1476 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2104 pri_adjust (EV_A_ w);
1477 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1478
1479 w->active = active; 2105 w->active = active;
1480 ev_ref (EV_A); 2106 ev_ref (EV_A);
1481} 2107}
1482 2108
1483void inline_size 2109void inline_size
1487 w->active = 0; 2113 w->active = 0;
1488} 2114}
1489 2115
1490/*****************************************************************************/ 2116/*****************************************************************************/
1491 2117
1492void 2118void noinline
1493ev_io_start (EV_P_ ev_io *w) 2119ev_io_start (EV_P_ ev_io *w)
1494{ 2120{
1495 int fd = w->fd; 2121 int fd = w->fd;
1496 2122
1497 if (expect_false (ev_is_active (w))) 2123 if (expect_false (ev_is_active (w)))
1498 return; 2124 return;
1499 2125
1500 assert (("ev_io_start called with negative fd", fd >= 0)); 2126 assert (("ev_io_start called with negative fd", fd >= 0));
2127 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE))));
2128
2129 EV_FREQUENT_CHECK;
1501 2130
1502 ev_start (EV_A_ (W)w, 1); 2131 ev_start (EV_A_ (W)w, 1);
1503 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2132 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1504 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2133 wlist_add (&anfds[fd].head, (WL)w);
1505 2134
1506 fd_change (EV_A_ fd); 2135 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1507} 2136 w->events &= ~EV_IOFDSET;
1508 2137
1509void 2138 EV_FREQUENT_CHECK;
2139}
2140
2141void noinline
1510ev_io_stop (EV_P_ ev_io *w) 2142ev_io_stop (EV_P_ ev_io *w)
1511{ 2143{
1512 ev_clear_pending (EV_A_ (W)w); 2144 clear_pending (EV_A_ (W)w);
1513 if (expect_false (!ev_is_active (w))) 2145 if (expect_false (!ev_is_active (w)))
1514 return; 2146 return;
1515 2147
1516 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2148 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1517 2149
2150 EV_FREQUENT_CHECK;
2151
1518 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2152 wlist_del (&anfds[w->fd].head, (WL)w);
1519 ev_stop (EV_A_ (W)w); 2153 ev_stop (EV_A_ (W)w);
1520 2154
1521 fd_change (EV_A_ w->fd); 2155 fd_change (EV_A_ w->fd, 1);
1522}
1523 2156
1524void 2157 EV_FREQUENT_CHECK;
2158}
2159
2160void noinline
1525ev_timer_start (EV_P_ ev_timer *w) 2161ev_timer_start (EV_P_ ev_timer *w)
1526{ 2162{
1527 if (expect_false (ev_is_active (w))) 2163 if (expect_false (ev_is_active (w)))
1528 return; 2164 return;
1529 2165
1530 ((WT)w)->at += mn_now; 2166 ev_at (w) += mn_now;
1531 2167
1532 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2168 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1533 2169
2170 EV_FREQUENT_CHECK;
2171
2172 ++timercnt;
1534 ev_start (EV_A_ (W)w, ++timercnt); 2173 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1535 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2174 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1536 timers [timercnt - 1] = w; 2175 ANHE_w (timers [ev_active (w)]) = (WT)w;
1537 upheap ((WT *)timers, timercnt - 1); 2176 ANHE_at_cache (timers [ev_active (w)]);
2177 upheap (timers, ev_active (w));
1538 2178
2179 EV_FREQUENT_CHECK;
2180
1539 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2181 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1540} 2182}
1541 2183
1542void 2184void noinline
1543ev_timer_stop (EV_P_ ev_timer *w) 2185ev_timer_stop (EV_P_ ev_timer *w)
1544{ 2186{
1545 ev_clear_pending (EV_A_ (W)w); 2187 clear_pending (EV_A_ (W)w);
1546 if (expect_false (!ev_is_active (w))) 2188 if (expect_false (!ev_is_active (w)))
1547 return; 2189 return;
1548 2190
1549 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2191 EV_FREQUENT_CHECK;
1550 2192
1551 { 2193 {
1552 int active = ((W)w)->active; 2194 int active = ev_active (w);
1553 2195
2196 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2197
2198 --timercnt;
2199
1554 if (expect_true (--active < --timercnt)) 2200 if (expect_true (active < timercnt + HEAP0))
1555 { 2201 {
1556 timers [active] = timers [timercnt]; 2202 timers [active] = timers [timercnt + HEAP0];
1557 adjustheap ((WT *)timers, timercnt, active); 2203 adjustheap (timers, timercnt, active);
1558 } 2204 }
1559 } 2205 }
1560 2206
1561 ((WT)w)->at -= mn_now; 2207 EV_FREQUENT_CHECK;
2208
2209 ev_at (w) -= mn_now;
1562 2210
1563 ev_stop (EV_A_ (W)w); 2211 ev_stop (EV_A_ (W)w);
1564} 2212}
1565 2213
1566void 2214void noinline
1567ev_timer_again (EV_P_ ev_timer *w) 2215ev_timer_again (EV_P_ ev_timer *w)
1568{ 2216{
2217 EV_FREQUENT_CHECK;
2218
1569 if (ev_is_active (w)) 2219 if (ev_is_active (w))
1570 { 2220 {
1571 if (w->repeat) 2221 if (w->repeat)
1572 { 2222 {
1573 ((WT)w)->at = mn_now + w->repeat; 2223 ev_at (w) = mn_now + w->repeat;
2224 ANHE_at_cache (timers [ev_active (w)]);
1574 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2225 adjustheap (timers, timercnt, ev_active (w));
1575 } 2226 }
1576 else 2227 else
1577 ev_timer_stop (EV_A_ w); 2228 ev_timer_stop (EV_A_ w);
1578 } 2229 }
1579 else if (w->repeat) 2230 else if (w->repeat)
1580 { 2231 {
1581 w->at = w->repeat; 2232 ev_at (w) = w->repeat;
1582 ev_timer_start (EV_A_ w); 2233 ev_timer_start (EV_A_ w);
1583 } 2234 }
2235
2236 EV_FREQUENT_CHECK;
1584} 2237}
1585 2238
1586#if EV_PERIODIC_ENABLE 2239#if EV_PERIODIC_ENABLE
1587void 2240void noinline
1588ev_periodic_start (EV_P_ ev_periodic *w) 2241ev_periodic_start (EV_P_ ev_periodic *w)
1589{ 2242{
1590 if (expect_false (ev_is_active (w))) 2243 if (expect_false (ev_is_active (w)))
1591 return; 2244 return;
1592 2245
1593 if (w->reschedule_cb) 2246 if (w->reschedule_cb)
1594 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2247 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1595 else if (w->interval) 2248 else if (w->interval)
1596 { 2249 {
1597 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2250 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1598 /* this formula differs from the one in periodic_reify because we do not always round up */ 2251 /* this formula differs from the one in periodic_reify because we do not always round up */
1599 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2252 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1600 } 2253 }
2254 else
2255 ev_at (w) = w->offset;
1601 2256
2257 EV_FREQUENT_CHECK;
2258
2259 ++periodiccnt;
1602 ev_start (EV_A_ (W)w, ++periodiccnt); 2260 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1603 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2261 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1604 periodics [periodiccnt - 1] = w; 2262 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1605 upheap ((WT *)periodics, periodiccnt - 1); 2263 ANHE_at_cache (periodics [ev_active (w)]);
2264 upheap (periodics, ev_active (w));
1606 2265
2266 EV_FREQUENT_CHECK;
2267
1607 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2268 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1608} 2269}
1609 2270
1610void 2271void noinline
1611ev_periodic_stop (EV_P_ ev_periodic *w) 2272ev_periodic_stop (EV_P_ ev_periodic *w)
1612{ 2273{
1613 ev_clear_pending (EV_A_ (W)w); 2274 clear_pending (EV_A_ (W)w);
1614 if (expect_false (!ev_is_active (w))) 2275 if (expect_false (!ev_is_active (w)))
1615 return; 2276 return;
1616 2277
1617 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2278 EV_FREQUENT_CHECK;
1618 2279
1619 { 2280 {
1620 int active = ((W)w)->active; 2281 int active = ev_active (w);
1621 2282
2283 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2284
2285 --periodiccnt;
2286
1622 if (expect_true (--active < --periodiccnt)) 2287 if (expect_true (active < periodiccnt + HEAP0))
1623 { 2288 {
1624 periodics [active] = periodics [periodiccnt]; 2289 periodics [active] = periodics [periodiccnt + HEAP0];
1625 adjustheap ((WT *)periodics, periodiccnt, active); 2290 adjustheap (periodics, periodiccnt, active);
1626 } 2291 }
1627 } 2292 }
1628 2293
2294 EV_FREQUENT_CHECK;
2295
1629 ev_stop (EV_A_ (W)w); 2296 ev_stop (EV_A_ (W)w);
1630} 2297}
1631 2298
1632void 2299void noinline
1633ev_periodic_again (EV_P_ ev_periodic *w) 2300ev_periodic_again (EV_P_ ev_periodic *w)
1634{ 2301{
1635 /* TODO: use adjustheap and recalculation */ 2302 /* TODO: use adjustheap and recalculation */
1636 ev_periodic_stop (EV_A_ w); 2303 ev_periodic_stop (EV_A_ w);
1637 ev_periodic_start (EV_A_ w); 2304 ev_periodic_start (EV_A_ w);
1640 2307
1641#ifndef SA_RESTART 2308#ifndef SA_RESTART
1642# define SA_RESTART 0 2309# define SA_RESTART 0
1643#endif 2310#endif
1644 2311
1645void 2312void noinline
1646ev_signal_start (EV_P_ ev_signal *w) 2313ev_signal_start (EV_P_ ev_signal *w)
1647{ 2314{
1648#if EV_MULTIPLICITY 2315#if EV_MULTIPLICITY
1649 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2316 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1650#endif 2317#endif
1651 if (expect_false (ev_is_active (w))) 2318 if (expect_false (ev_is_active (w)))
1652 return; 2319 return;
1653 2320
1654 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2321 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1655 2322
2323 evpipe_init (EV_A);
2324
2325 EV_FREQUENT_CHECK;
2326
2327 {
2328#ifndef _WIN32
2329 sigset_t full, prev;
2330 sigfillset (&full);
2331 sigprocmask (SIG_SETMASK, &full, &prev);
2332#endif
2333
2334 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2335
2336#ifndef _WIN32
2337 sigprocmask (SIG_SETMASK, &prev, 0);
2338#endif
2339 }
2340
1656 ev_start (EV_A_ (W)w, 1); 2341 ev_start (EV_A_ (W)w, 1);
1657 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1658 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2342 wlist_add (&signals [w->signum - 1].head, (WL)w);
1659 2343
1660 if (!((WL)w)->next) 2344 if (!((WL)w)->next)
1661 { 2345 {
1662#if _WIN32 2346#if _WIN32
1663 signal (w->signum, sighandler); 2347 signal (w->signum, ev_sighandler);
1664#else 2348#else
1665 struct sigaction sa; 2349 struct sigaction sa;
1666 sa.sa_handler = sighandler; 2350 sa.sa_handler = ev_sighandler;
1667 sigfillset (&sa.sa_mask); 2351 sigfillset (&sa.sa_mask);
1668 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2352 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1669 sigaction (w->signum, &sa, 0); 2353 sigaction (w->signum, &sa, 0);
1670#endif 2354#endif
1671 } 2355 }
1672}
1673 2356
1674void 2357 EV_FREQUENT_CHECK;
2358}
2359
2360void noinline
1675ev_signal_stop (EV_P_ ev_signal *w) 2361ev_signal_stop (EV_P_ ev_signal *w)
1676{ 2362{
1677 ev_clear_pending (EV_A_ (W)w); 2363 clear_pending (EV_A_ (W)w);
1678 if (expect_false (!ev_is_active (w))) 2364 if (expect_false (!ev_is_active (w)))
1679 return; 2365 return;
1680 2366
2367 EV_FREQUENT_CHECK;
2368
1681 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2369 wlist_del (&signals [w->signum - 1].head, (WL)w);
1682 ev_stop (EV_A_ (W)w); 2370 ev_stop (EV_A_ (W)w);
1683 2371
1684 if (!signals [w->signum - 1].head) 2372 if (!signals [w->signum - 1].head)
1685 signal (w->signum, SIG_DFL); 2373 signal (w->signum, SIG_DFL);
2374
2375 EV_FREQUENT_CHECK;
1686} 2376}
1687 2377
1688void 2378void
1689ev_child_start (EV_P_ ev_child *w) 2379ev_child_start (EV_P_ ev_child *w)
1690{ 2380{
1692 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2382 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1693#endif 2383#endif
1694 if (expect_false (ev_is_active (w))) 2384 if (expect_false (ev_is_active (w)))
1695 return; 2385 return;
1696 2386
2387 EV_FREQUENT_CHECK;
2388
1697 ev_start (EV_A_ (W)w, 1); 2389 ev_start (EV_A_ (W)w, 1);
1698 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2390 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2391
2392 EV_FREQUENT_CHECK;
1699} 2393}
1700 2394
1701void 2395void
1702ev_child_stop (EV_P_ ev_child *w) 2396ev_child_stop (EV_P_ ev_child *w)
1703{ 2397{
1704 ev_clear_pending (EV_A_ (W)w); 2398 clear_pending (EV_A_ (W)w);
1705 if (expect_false (!ev_is_active (w))) 2399 if (expect_false (!ev_is_active (w)))
1706 return; 2400 return;
1707 2401
2402 EV_FREQUENT_CHECK;
2403
1708 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2404 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1709 ev_stop (EV_A_ (W)w); 2405 ev_stop (EV_A_ (W)w);
2406
2407 EV_FREQUENT_CHECK;
1710} 2408}
1711 2409
1712#if EV_STAT_ENABLE 2410#if EV_STAT_ENABLE
1713 2411
1714# ifdef _WIN32 2412# ifdef _WIN32
1732 if (w->wd < 0) 2430 if (w->wd < 0)
1733 { 2431 {
1734 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2432 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1735 2433
1736 /* monitor some parent directory for speedup hints */ 2434 /* monitor some parent directory for speedup hints */
2435 /* note that exceeding the hardcoded limit is not a correctness issue, */
2436 /* but an efficiency issue only */
1737 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2437 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1738 { 2438 {
1739 char path [4096]; 2439 char path [4096];
1740 strcpy (path, w->path); 2440 strcpy (path, w->path);
1741 2441
1781 2481
1782static void noinline 2482static void noinline
1783infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2483infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1784{ 2484{
1785 if (slot < 0) 2485 if (slot < 0)
1786 /* overflow, need to check for all hahs slots */ 2486 /* overflow, need to check for all hash slots */
1787 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2487 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1788 infy_wd (EV_A_ slot, wd, ev); 2488 infy_wd (EV_A_ slot, wd, ev);
1789 else 2489 else
1790 { 2490 {
1791 WL w_; 2491 WL w_;
1825infy_init (EV_P) 2525infy_init (EV_P)
1826{ 2526{
1827 if (fs_fd != -2) 2527 if (fs_fd != -2)
1828 return; 2528 return;
1829 2529
2530 /* kernels < 2.6.25 are borked
2531 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2532 */
2533 {
2534 struct utsname buf;
2535 int major, minor, micro;
2536
2537 fs_fd = -1;
2538
2539 if (uname (&buf))
2540 return;
2541
2542 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2543 return;
2544
2545 if (major < 2
2546 || (major == 2 && minor < 6)
2547 || (major == 2 && minor == 6 && micro < 25))
2548 return;
2549 }
2550
1830 fs_fd = inotify_init (); 2551 fs_fd = inotify_init ();
1831 2552
1832 if (fs_fd >= 0) 2553 if (fs_fd >= 0)
1833 { 2554 {
1834 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 2555 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1863 if (fs_fd >= 0) 2584 if (fs_fd >= 0)
1864 infy_add (EV_A_ w); /* re-add, no matter what */ 2585 infy_add (EV_A_ w); /* re-add, no matter what */
1865 else 2586 else
1866 ev_timer_start (EV_A_ &w->timer); 2587 ev_timer_start (EV_A_ &w->timer);
1867 } 2588 }
1868
1869 } 2589 }
1870} 2590}
1871 2591
2592#endif
2593
2594#ifdef _WIN32
2595# define EV_LSTAT(p,b) _stati64 (p, b)
2596#else
2597# define EV_LSTAT(p,b) lstat (p, b)
1872#endif 2598#endif
1873 2599
1874void 2600void
1875ev_stat_stat (EV_P_ ev_stat *w) 2601ev_stat_stat (EV_P_ ev_stat *w)
1876{ 2602{
1903 || w->prev.st_atime != w->attr.st_atime 2629 || w->prev.st_atime != w->attr.st_atime
1904 || w->prev.st_mtime != w->attr.st_mtime 2630 || w->prev.st_mtime != w->attr.st_mtime
1905 || w->prev.st_ctime != w->attr.st_ctime 2631 || w->prev.st_ctime != w->attr.st_ctime
1906 ) { 2632 ) {
1907 #if EV_USE_INOTIFY 2633 #if EV_USE_INOTIFY
2634 if (fs_fd >= 0)
2635 {
1908 infy_del (EV_A_ w); 2636 infy_del (EV_A_ w);
1909 infy_add (EV_A_ w); 2637 infy_add (EV_A_ w);
1910 ev_stat_stat (EV_A_ w); /* avoid race... */ 2638 ev_stat_stat (EV_A_ w); /* avoid race... */
2639 }
1911 #endif 2640 #endif
1912 2641
1913 ev_feed_event (EV_A_ w, EV_STAT); 2642 ev_feed_event (EV_A_ w, EV_STAT);
1914 } 2643 }
1915} 2644}
1940 else 2669 else
1941#endif 2670#endif
1942 ev_timer_start (EV_A_ &w->timer); 2671 ev_timer_start (EV_A_ &w->timer);
1943 2672
1944 ev_start (EV_A_ (W)w, 1); 2673 ev_start (EV_A_ (W)w, 1);
2674
2675 EV_FREQUENT_CHECK;
1945} 2676}
1946 2677
1947void 2678void
1948ev_stat_stop (EV_P_ ev_stat *w) 2679ev_stat_stop (EV_P_ ev_stat *w)
1949{ 2680{
1950 ev_clear_pending (EV_A_ (W)w); 2681 clear_pending (EV_A_ (W)w);
1951 if (expect_false (!ev_is_active (w))) 2682 if (expect_false (!ev_is_active (w)))
1952 return; 2683 return;
1953 2684
2685 EV_FREQUENT_CHECK;
2686
1954#if EV_USE_INOTIFY 2687#if EV_USE_INOTIFY
1955 infy_del (EV_A_ w); 2688 infy_del (EV_A_ w);
1956#endif 2689#endif
1957 ev_timer_stop (EV_A_ &w->timer); 2690 ev_timer_stop (EV_A_ &w->timer);
1958 2691
1959 ev_stop (EV_A_ (W)w); 2692 ev_stop (EV_A_ (W)w);
1960}
1961#endif
1962 2693
2694 EV_FREQUENT_CHECK;
2695}
2696#endif
2697
2698#if EV_IDLE_ENABLE
1963void 2699void
1964ev_idle_start (EV_P_ ev_idle *w) 2700ev_idle_start (EV_P_ ev_idle *w)
1965{ 2701{
1966 if (expect_false (ev_is_active (w))) 2702 if (expect_false (ev_is_active (w)))
1967 return; 2703 return;
1968 2704
2705 pri_adjust (EV_A_ (W)w);
2706
2707 EV_FREQUENT_CHECK;
2708
2709 {
2710 int active = ++idlecnt [ABSPRI (w)];
2711
2712 ++idleall;
1969 ev_start (EV_A_ (W)w, ++idlecnt); 2713 ev_start (EV_A_ (W)w, active);
2714
1970 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2715 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1971 idles [idlecnt - 1] = w; 2716 idles [ABSPRI (w)][active - 1] = w;
2717 }
2718
2719 EV_FREQUENT_CHECK;
1972} 2720}
1973 2721
1974void 2722void
1975ev_idle_stop (EV_P_ ev_idle *w) 2723ev_idle_stop (EV_P_ ev_idle *w)
1976{ 2724{
1977 ev_clear_pending (EV_A_ (W)w); 2725 clear_pending (EV_A_ (W)w);
1978 if (expect_false (!ev_is_active (w))) 2726 if (expect_false (!ev_is_active (w)))
1979 return; 2727 return;
1980 2728
2729 EV_FREQUENT_CHECK;
2730
1981 { 2731 {
1982 int active = ((W)w)->active; 2732 int active = ev_active (w);
1983 idles [active - 1] = idles [--idlecnt]; 2733
1984 ((W)idles [active - 1])->active = active; 2734 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2735 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2736
2737 ev_stop (EV_A_ (W)w);
2738 --idleall;
1985 } 2739 }
1986 2740
1987 ev_stop (EV_A_ (W)w); 2741 EV_FREQUENT_CHECK;
1988} 2742}
2743#endif
1989 2744
1990void 2745void
1991ev_prepare_start (EV_P_ ev_prepare *w) 2746ev_prepare_start (EV_P_ ev_prepare *w)
1992{ 2747{
1993 if (expect_false (ev_is_active (w))) 2748 if (expect_false (ev_is_active (w)))
1994 return; 2749 return;
2750
2751 EV_FREQUENT_CHECK;
1995 2752
1996 ev_start (EV_A_ (W)w, ++preparecnt); 2753 ev_start (EV_A_ (W)w, ++preparecnt);
1997 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2754 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1998 prepares [preparecnt - 1] = w; 2755 prepares [preparecnt - 1] = w;
2756
2757 EV_FREQUENT_CHECK;
1999} 2758}
2000 2759
2001void 2760void
2002ev_prepare_stop (EV_P_ ev_prepare *w) 2761ev_prepare_stop (EV_P_ ev_prepare *w)
2003{ 2762{
2004 ev_clear_pending (EV_A_ (W)w); 2763 clear_pending (EV_A_ (W)w);
2005 if (expect_false (!ev_is_active (w))) 2764 if (expect_false (!ev_is_active (w)))
2006 return; 2765 return;
2007 2766
2767 EV_FREQUENT_CHECK;
2768
2008 { 2769 {
2009 int active = ((W)w)->active; 2770 int active = ev_active (w);
2771
2010 prepares [active - 1] = prepares [--preparecnt]; 2772 prepares [active - 1] = prepares [--preparecnt];
2011 ((W)prepares [active - 1])->active = active; 2773 ev_active (prepares [active - 1]) = active;
2012 } 2774 }
2013 2775
2014 ev_stop (EV_A_ (W)w); 2776 ev_stop (EV_A_ (W)w);
2777
2778 EV_FREQUENT_CHECK;
2015} 2779}
2016 2780
2017void 2781void
2018ev_check_start (EV_P_ ev_check *w) 2782ev_check_start (EV_P_ ev_check *w)
2019{ 2783{
2020 if (expect_false (ev_is_active (w))) 2784 if (expect_false (ev_is_active (w)))
2021 return; 2785 return;
2786
2787 EV_FREQUENT_CHECK;
2022 2788
2023 ev_start (EV_A_ (W)w, ++checkcnt); 2789 ev_start (EV_A_ (W)w, ++checkcnt);
2024 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2790 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2025 checks [checkcnt - 1] = w; 2791 checks [checkcnt - 1] = w;
2792
2793 EV_FREQUENT_CHECK;
2026} 2794}
2027 2795
2028void 2796void
2029ev_check_stop (EV_P_ ev_check *w) 2797ev_check_stop (EV_P_ ev_check *w)
2030{ 2798{
2031 ev_clear_pending (EV_A_ (W)w); 2799 clear_pending (EV_A_ (W)w);
2032 if (expect_false (!ev_is_active (w))) 2800 if (expect_false (!ev_is_active (w)))
2033 return; 2801 return;
2034 2802
2803 EV_FREQUENT_CHECK;
2804
2035 { 2805 {
2036 int active = ((W)w)->active; 2806 int active = ev_active (w);
2807
2037 checks [active - 1] = checks [--checkcnt]; 2808 checks [active - 1] = checks [--checkcnt];
2038 ((W)checks [active - 1])->active = active; 2809 ev_active (checks [active - 1]) = active;
2039 } 2810 }
2040 2811
2041 ev_stop (EV_A_ (W)w); 2812 ev_stop (EV_A_ (W)w);
2813
2814 EV_FREQUENT_CHECK;
2042} 2815}
2043 2816
2044#if EV_EMBED_ENABLE 2817#if EV_EMBED_ENABLE
2045void noinline 2818void noinline
2046ev_embed_sweep (EV_P_ ev_embed *w) 2819ev_embed_sweep (EV_P_ ev_embed *w)
2047{ 2820{
2048 ev_loop (w->loop, EVLOOP_NONBLOCK); 2821 ev_loop (w->other, EVLOOP_NONBLOCK);
2049} 2822}
2050 2823
2051static void 2824static void
2052embed_cb (EV_P_ ev_io *io, int revents) 2825embed_io_cb (EV_P_ ev_io *io, int revents)
2053{ 2826{
2054 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2827 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2055 2828
2056 if (ev_cb (w)) 2829 if (ev_cb (w))
2057 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2830 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2058 else 2831 else
2059 ev_embed_sweep (loop, w); 2832 ev_loop (w->other, EVLOOP_NONBLOCK);
2060} 2833}
2834
2835static void
2836embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2837{
2838 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2839
2840 {
2841 struct ev_loop *loop = w->other;
2842
2843 while (fdchangecnt)
2844 {
2845 fd_reify (EV_A);
2846 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2847 }
2848 }
2849}
2850
2851static void
2852embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2853{
2854 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2855
2856 {
2857 struct ev_loop *loop = w->other;
2858
2859 ev_loop_fork (EV_A);
2860 }
2861}
2862
2863#if 0
2864static void
2865embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2866{
2867 ev_idle_stop (EV_A_ idle);
2868}
2869#endif
2061 2870
2062void 2871void
2063ev_embed_start (EV_P_ ev_embed *w) 2872ev_embed_start (EV_P_ ev_embed *w)
2064{ 2873{
2065 if (expect_false (ev_is_active (w))) 2874 if (expect_false (ev_is_active (w)))
2066 return; 2875 return;
2067 2876
2068 { 2877 {
2069 struct ev_loop *loop = w->loop; 2878 struct ev_loop *loop = w->other;
2070 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2879 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2071 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2880 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2072 } 2881 }
2882
2883 EV_FREQUENT_CHECK;
2073 2884
2074 ev_set_priority (&w->io, ev_priority (w)); 2885 ev_set_priority (&w->io, ev_priority (w));
2075 ev_io_start (EV_A_ &w->io); 2886 ev_io_start (EV_A_ &w->io);
2076 2887
2888 ev_prepare_init (&w->prepare, embed_prepare_cb);
2889 ev_set_priority (&w->prepare, EV_MINPRI);
2890 ev_prepare_start (EV_A_ &w->prepare);
2891
2892 ev_fork_init (&w->fork, embed_fork_cb);
2893 ev_fork_start (EV_A_ &w->fork);
2894
2895 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2896
2077 ev_start (EV_A_ (W)w, 1); 2897 ev_start (EV_A_ (W)w, 1);
2898
2899 EV_FREQUENT_CHECK;
2078} 2900}
2079 2901
2080void 2902void
2081ev_embed_stop (EV_P_ ev_embed *w) 2903ev_embed_stop (EV_P_ ev_embed *w)
2082{ 2904{
2083 ev_clear_pending (EV_A_ (W)w); 2905 clear_pending (EV_A_ (W)w);
2084 if (expect_false (!ev_is_active (w))) 2906 if (expect_false (!ev_is_active (w)))
2085 return; 2907 return;
2086 2908
2909 EV_FREQUENT_CHECK;
2910
2087 ev_io_stop (EV_A_ &w->io); 2911 ev_io_stop (EV_A_ &w->io);
2912 ev_prepare_stop (EV_A_ &w->prepare);
2913 ev_fork_stop (EV_A_ &w->fork);
2088 2914
2089 ev_stop (EV_A_ (W)w); 2915 EV_FREQUENT_CHECK;
2090} 2916}
2091#endif 2917#endif
2092 2918
2093#if EV_FORK_ENABLE 2919#if EV_FORK_ENABLE
2094void 2920void
2095ev_fork_start (EV_P_ ev_fork *w) 2921ev_fork_start (EV_P_ ev_fork *w)
2096{ 2922{
2097 if (expect_false (ev_is_active (w))) 2923 if (expect_false (ev_is_active (w)))
2098 return; 2924 return;
2925
2926 EV_FREQUENT_CHECK;
2099 2927
2100 ev_start (EV_A_ (W)w, ++forkcnt); 2928 ev_start (EV_A_ (W)w, ++forkcnt);
2101 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2929 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2102 forks [forkcnt - 1] = w; 2930 forks [forkcnt - 1] = w;
2931
2932 EV_FREQUENT_CHECK;
2103} 2933}
2104 2934
2105void 2935void
2106ev_fork_stop (EV_P_ ev_fork *w) 2936ev_fork_stop (EV_P_ ev_fork *w)
2107{ 2937{
2108 ev_clear_pending (EV_A_ (W)w); 2938 clear_pending (EV_A_ (W)w);
2109 if (expect_false (!ev_is_active (w))) 2939 if (expect_false (!ev_is_active (w)))
2110 return; 2940 return;
2111 2941
2942 EV_FREQUENT_CHECK;
2943
2112 { 2944 {
2113 int active = ((W)w)->active; 2945 int active = ev_active (w);
2946
2114 forks [active - 1] = forks [--forkcnt]; 2947 forks [active - 1] = forks [--forkcnt];
2115 ((W)forks [active - 1])->active = active; 2948 ev_active (forks [active - 1]) = active;
2116 } 2949 }
2117 2950
2118 ev_stop (EV_A_ (W)w); 2951 ev_stop (EV_A_ (W)w);
2952
2953 EV_FREQUENT_CHECK;
2954}
2955#endif
2956
2957#if EV_ASYNC_ENABLE
2958void
2959ev_async_start (EV_P_ ev_async *w)
2960{
2961 if (expect_false (ev_is_active (w)))
2962 return;
2963
2964 evpipe_init (EV_A);
2965
2966 EV_FREQUENT_CHECK;
2967
2968 ev_start (EV_A_ (W)w, ++asynccnt);
2969 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2970 asyncs [asynccnt - 1] = w;
2971
2972 EV_FREQUENT_CHECK;
2973}
2974
2975void
2976ev_async_stop (EV_P_ ev_async *w)
2977{
2978 clear_pending (EV_A_ (W)w);
2979 if (expect_false (!ev_is_active (w)))
2980 return;
2981
2982 EV_FREQUENT_CHECK;
2983
2984 {
2985 int active = ev_active (w);
2986
2987 asyncs [active - 1] = asyncs [--asynccnt];
2988 ev_active (asyncs [active - 1]) = active;
2989 }
2990
2991 ev_stop (EV_A_ (W)w);
2992
2993 EV_FREQUENT_CHECK;
2994}
2995
2996void
2997ev_async_send (EV_P_ ev_async *w)
2998{
2999 w->sent = 1;
3000 evpipe_write (EV_A_ &gotasync);
2119} 3001}
2120#endif 3002#endif
2121 3003
2122/*****************************************************************************/ 3004/*****************************************************************************/
2123 3005
2133once_cb (EV_P_ struct ev_once *once, int revents) 3015once_cb (EV_P_ struct ev_once *once, int revents)
2134{ 3016{
2135 void (*cb)(int revents, void *arg) = once->cb; 3017 void (*cb)(int revents, void *arg) = once->cb;
2136 void *arg = once->arg; 3018 void *arg = once->arg;
2137 3019
2138 ev_io_stop (EV_A_ &once->io); 3020 ev_io_stop (EV_A_ &once->io);
2139 ev_timer_stop (EV_A_ &once->to); 3021 ev_timer_stop (EV_A_ &once->to);
2140 ev_free (once); 3022 ev_free (once);
2141 3023
2142 cb (revents, arg); 3024 cb (revents, arg);
2143} 3025}
2144 3026
2145static void 3027static void
2146once_cb_io (EV_P_ ev_io *w, int revents) 3028once_cb_io (EV_P_ ev_io *w, int revents)
2147{ 3029{
2148 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3030 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3031
3032 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2149} 3033}
2150 3034
2151static void 3035static void
2152once_cb_to (EV_P_ ev_timer *w, int revents) 3036once_cb_to (EV_P_ ev_timer *w, int revents)
2153{ 3037{
2154 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3038 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3039
3040 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2155} 3041}
2156 3042
2157void 3043void
2158ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3044ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2159{ 3045{
2181 ev_timer_set (&once->to, timeout, 0.); 3067 ev_timer_set (&once->to, timeout, 0.);
2182 ev_timer_start (EV_A_ &once->to); 3068 ev_timer_start (EV_A_ &once->to);
2183 } 3069 }
2184} 3070}
2185 3071
3072#if EV_MULTIPLICITY
3073 #include "ev_wrap.h"
3074#endif
3075
2186#ifdef __cplusplus 3076#ifdef __cplusplus
2187} 3077}
2188#endif 3078#endif
2189 3079

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines