ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.226 by root, Fri Apr 18 17:16:44 2008 UTC vs.
Revision 1.268 by root, Mon Oct 27 13:39:18 2008 UTC

126# define EV_USE_EVENTFD 1 126# define EV_USE_EVENTFD 1
127# else 127# else
128# define EV_USE_EVENTFD 0 128# define EV_USE_EVENTFD 0
129# endif 129# endif
130# endif 130# endif
131 131
132#endif 132#endif
133 133
134#include <math.h> 134#include <math.h>
135#include <stdlib.h> 135#include <stdlib.h>
136#include <fcntl.h> 136#include <fcntl.h>
154#ifndef _WIN32 154#ifndef _WIN32
155# include <sys/time.h> 155# include <sys/time.h>
156# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h> 157# include <unistd.h>
158#else 158#else
159# include <io.h>
159# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 161# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
163# endif 164# endif
164#endif 165#endif
165 166
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
167 168
168#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
169# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
170#endif 175#endif
171 176
172#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
174#endif 179#endif
175 180
176#ifndef EV_USE_NANOSLEEP 181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
177# define EV_USE_NANOSLEEP 0 185# define EV_USE_NANOSLEEP 0
186# endif
178#endif 187#endif
179 188
180#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
182#endif 191#endif
235# else 244# else
236# define EV_USE_EVENTFD 0 245# define EV_USE_EVENTFD 0
237# endif 246# endif
238#endif 247#endif
239 248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 268
242#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
259# include <sys/select.h> 286# include <sys/select.h>
260# endif 287# endif
261#endif 288#endif
262 289
263#if EV_USE_INOTIFY 290#if EV_USE_INOTIFY
291# include <sys/utsname.h>
264# include <sys/inotify.h> 292# include <sys/inotify.h>
293/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
294# ifndef IN_DONT_FOLLOW
295# undef EV_USE_INOTIFY
296# define EV_USE_INOTIFY 0
297# endif
265#endif 298#endif
266 299
267#if EV_SELECT_IS_WINSOCKET 300#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 301# include <winsock.h>
269#endif 302#endif
279} 312}
280# endif 313# endif
281#endif 314#endif
282 315
283/**/ 316/**/
317
318#if EV_VERIFY >= 3
319# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
320#else
321# define EV_FREQUENT_CHECK do { } while (0)
322#endif
284 323
285/* 324/*
286 * This is used to avoid floating point rounding problems. 325 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 326 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 327 * to ensure progress, time-wise, even when rounding
325 364
326typedef ev_watcher *W; 365typedef ev_watcher *W;
327typedef ev_watcher_list *WL; 366typedef ev_watcher_list *WL;
328typedef ev_watcher_time *WT; 367typedef ev_watcher_time *WT;
329 368
369#define ev_active(w) ((W)(w))->active
370#define ev_at(w) ((WT)(w))->at
371
330#if EV_USE_MONOTONIC 372#if EV_USE_MONOTONIC
331/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 373/* sig_atomic_t is used to avoid per-thread variables or locking but still */
332/* giving it a reasonably high chance of working on typical architetcures */ 374/* giving it a reasonably high chance of working on typical architetcures */
333static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 375static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
334#endif 376#endif
407typedef struct 449typedef struct
408{ 450{
409 WL head; 451 WL head;
410 unsigned char events; 452 unsigned char events;
411 unsigned char reify; 453 unsigned char reify;
454 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
455 unsigned char egen; /* generation counter to counter epoll bugs */
412#if EV_SELECT_IS_WINSOCKET 456#if EV_SELECT_IS_WINSOCKET
413 SOCKET handle; 457 SOCKET handle;
414#endif 458#endif
415} ANFD; 459} ANFD;
416 460
419 W w; 463 W w;
420 int events; 464 int events;
421} ANPENDING; 465} ANPENDING;
422 466
423#if EV_USE_INOTIFY 467#if EV_USE_INOTIFY
468/* hash table entry per inotify-id */
424typedef struct 469typedef struct
425{ 470{
426 WL head; 471 WL head;
427} ANFS; 472} ANFS;
473#endif
474
475/* Heap Entry */
476#if EV_HEAP_CACHE_AT
477 typedef struct {
478 ev_tstamp at;
479 WT w;
480 } ANHE;
481
482 #define ANHE_w(he) (he).w /* access watcher, read-write */
483 #define ANHE_at(he) (he).at /* access cached at, read-only */
484 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
485#else
486 typedef WT ANHE;
487
488 #define ANHE_w(he) (he)
489 #define ANHE_at(he) (he)->at
490 #define ANHE_at_cache(he)
428#endif 491#endif
429 492
430#if EV_MULTIPLICITY 493#if EV_MULTIPLICITY
431 494
432 struct ev_loop 495 struct ev_loop
510 struct timeval tv; 573 struct timeval tv;
511 574
512 tv.tv_sec = (time_t)delay; 575 tv.tv_sec = (time_t)delay;
513 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 576 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
514 577
578 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
579 /* somehting nto guaranteed by newer posix versions, but guaranteed */
580 /* by older ones */
515 select (0, 0, 0, 0, &tv); 581 select (0, 0, 0, 0, &tv);
516#endif 582#endif
517 } 583 }
518} 584}
519 585
520/*****************************************************************************/ 586/*****************************************************************************/
587
588#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
521 589
522int inline_size 590int inline_size
523array_nextsize (int elem, int cur, int cnt) 591array_nextsize (int elem, int cur, int cnt)
524{ 592{
525 int ncur = cur + 1; 593 int ncur = cur + 1;
526 594
527 do 595 do
528 ncur <<= 1; 596 ncur <<= 1;
529 while (cnt > ncur); 597 while (cnt > ncur);
530 598
531 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 599 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
532 if (elem * ncur > 4096) 600 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
533 { 601 {
534 ncur *= elem; 602 ncur *= elem;
535 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 603 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
536 ncur = ncur - sizeof (void *) * 4; 604 ncur = ncur - sizeof (void *) * 4;
537 ncur /= elem; 605 ncur /= elem;
538 } 606 }
539 607
540 return ncur; 608 return ncur;
544array_realloc (int elem, void *base, int *cur, int cnt) 612array_realloc (int elem, void *base, int *cur, int cnt)
545{ 613{
546 *cur = array_nextsize (elem, *cur, cnt); 614 *cur = array_nextsize (elem, *cur, cnt);
547 return ev_realloc (base, elem * *cur); 615 return ev_realloc (base, elem * *cur);
548} 616}
617
618#define array_init_zero(base,count) \
619 memset ((void *)(base), 0, sizeof (*(base)) * (count))
549 620
550#define array_needsize(type,base,cur,cnt,init) \ 621#define array_needsize(type,base,cur,cnt,init) \
551 if (expect_false ((cnt) > (cur))) \ 622 if (expect_false ((cnt) > (cur))) \
552 { \ 623 { \
553 int ocur_ = (cur); \ 624 int ocur_ = (cur); \
597 ev_feed_event (EV_A_ events [i], type); 668 ev_feed_event (EV_A_ events [i], type);
598} 669}
599 670
600/*****************************************************************************/ 671/*****************************************************************************/
601 672
602void inline_size
603anfds_init (ANFD *base, int count)
604{
605 while (count--)
606 {
607 base->head = 0;
608 base->events = EV_NONE;
609 base->reify = 0;
610
611 ++base;
612 }
613}
614
615void inline_speed 673void inline_speed
616fd_event (EV_P_ int fd, int revents) 674fd_event (EV_P_ int fd, int revents)
617{ 675{
618 ANFD *anfd = anfds + fd; 676 ANFD *anfd = anfds + fd;
619 ev_io *w; 677 ev_io *w;
651 events |= (unsigned char)w->events; 709 events |= (unsigned char)w->events;
652 710
653#if EV_SELECT_IS_WINSOCKET 711#if EV_SELECT_IS_WINSOCKET
654 if (events) 712 if (events)
655 { 713 {
656 unsigned long argp; 714 unsigned long arg;
657 #ifdef EV_FD_TO_WIN32_HANDLE 715 #ifdef EV_FD_TO_WIN32_HANDLE
658 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 716 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
659 #else 717 #else
660 anfd->handle = _get_osfhandle (fd); 718 anfd->handle = _get_osfhandle (fd);
661 #endif 719 #endif
662 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 720 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
663 } 721 }
664#endif 722#endif
665 723
666 { 724 {
667 unsigned char o_events = anfd->events; 725 unsigned char o_events = anfd->events;
720{ 778{
721 int fd; 779 int fd;
722 780
723 for (fd = 0; fd < anfdmax; ++fd) 781 for (fd = 0; fd < anfdmax; ++fd)
724 if (anfds [fd].events) 782 if (anfds [fd].events)
725 if (!fd_valid (fd) == -1 && errno == EBADF) 783 if (!fd_valid (fd) && errno == EBADF)
726 fd_kill (EV_A_ fd); 784 fd_kill (EV_A_ fd);
727} 785}
728 786
729/* called on ENOMEM in select/poll to kill some fds and retry */ 787/* called on ENOMEM in select/poll to kill some fds and retry */
730static void noinline 788static void noinline
748 806
749 for (fd = 0; fd < anfdmax; ++fd) 807 for (fd = 0; fd < anfdmax; ++fd)
750 if (anfds [fd].events) 808 if (anfds [fd].events)
751 { 809 {
752 anfds [fd].events = 0; 810 anfds [fd].events = 0;
811 anfds [fd].emask = 0;
753 fd_change (EV_A_ fd, EV_IOFDSET | 1); 812 fd_change (EV_A_ fd, EV_IOFDSET | 1);
754 } 813 }
755} 814}
756 815
757/*****************************************************************************/ 816/*****************************************************************************/
758 817
818/*
819 * the heap functions want a real array index. array index 0 uis guaranteed to not
820 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
821 * the branching factor of the d-tree.
822 */
823
824/*
825 * at the moment we allow libev the luxury of two heaps,
826 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
827 * which is more cache-efficient.
828 * the difference is about 5% with 50000+ watchers.
829 */
830#if EV_USE_4HEAP
831
832#define DHEAP 4
833#define HEAP0 (DHEAP - 1) /* index of first element in heap */
834#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
835#define UPHEAP_DONE(p,k) ((p) == (k))
836
837/* away from the root */
759void inline_speed 838void inline_speed
760upheap (WT *heap, int k) 839downheap (ANHE *heap, int N, int k)
761{ 840{
762 WT w = heap [k]; 841 ANHE he = heap [k];
842 ANHE *E = heap + N + HEAP0;
763 843
764 while (k) 844 for (;;)
765 { 845 {
766 int p = (k - 1) >> 1; 846 ev_tstamp minat;
847 ANHE *minpos;
848 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
767 849
768 if (heap [p]->at <= w->at) 850 /* find minimum child */
851 if (expect_true (pos + DHEAP - 1 < E))
852 {
853 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
854 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
855 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
856 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
857 }
858 else if (pos < E)
859 {
860 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
861 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
862 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
863 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
864 }
865 else
769 break; 866 break;
770 867
868 if (ANHE_at (he) <= minat)
869 break;
870
871 heap [k] = *minpos;
872 ev_active (ANHE_w (*minpos)) = k;
873
874 k = minpos - heap;
875 }
876
877 heap [k] = he;
878 ev_active (ANHE_w (he)) = k;
879}
880
881#else /* 4HEAP */
882
883#define HEAP0 1
884#define HPARENT(k) ((k) >> 1)
885#define UPHEAP_DONE(p,k) (!(p))
886
887/* away from the root */
888void inline_speed
889downheap (ANHE *heap, int N, int k)
890{
891 ANHE he = heap [k];
892
893 for (;;)
894 {
895 int c = k << 1;
896
897 if (c > N + HEAP0 - 1)
898 break;
899
900 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
901 ? 1 : 0;
902
903 if (ANHE_at (he) <= ANHE_at (heap [c]))
904 break;
905
906 heap [k] = heap [c];
907 ev_active (ANHE_w (heap [k])) = k;
908
909 k = c;
910 }
911
912 heap [k] = he;
913 ev_active (ANHE_w (he)) = k;
914}
915#endif
916
917/* towards the root */
918void inline_speed
919upheap (ANHE *heap, int k)
920{
921 ANHE he = heap [k];
922
923 for (;;)
924 {
925 int p = HPARENT (k);
926
927 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
928 break;
929
771 heap [k] = heap [p]; 930 heap [k] = heap [p];
772 ((W)heap [k])->active = k + 1; 931 ev_active (ANHE_w (heap [k])) = k;
773 k = p; 932 k = p;
774 } 933 }
775 934
776 heap [k] = w; 935 heap [k] = he;
777 ((W)heap [k])->active = k + 1; 936 ev_active (ANHE_w (he)) = k;
778}
779
780void inline_speed
781downheap (WT *heap, int N, int k)
782{
783 WT w = heap [k];
784
785 for (;;)
786 {
787 int c = (k << 1) + 1;
788
789 if (c >= N)
790 break;
791
792 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
793 ? 1 : 0;
794
795 if (w->at <= heap [c]->at)
796 break;
797
798 heap [k] = heap [c];
799 ((W)heap [k])->active = k + 1;
800
801 k = c;
802 }
803
804 heap [k] = w;
805 ((W)heap [k])->active = k + 1;
806} 937}
807 938
808void inline_size 939void inline_size
809adjustheap (WT *heap, int N, int k) 940adjustheap (ANHE *heap, int N, int k)
810{ 941{
942 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
811 upheap (heap, k); 943 upheap (heap, k);
944 else
812 downheap (heap, N, k); 945 downheap (heap, N, k);
946}
947
948/* rebuild the heap: this function is used only once and executed rarely */
949void inline_size
950reheap (ANHE *heap, int N)
951{
952 int i;
953
954 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
955 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
956 for (i = 0; i < N; ++i)
957 upheap (heap, i + HEAP0);
813} 958}
814 959
815/*****************************************************************************/ 960/*****************************************************************************/
816 961
817typedef struct 962typedef struct
823static ANSIG *signals; 968static ANSIG *signals;
824static int signalmax; 969static int signalmax;
825 970
826static EV_ATOMIC_T gotsig; 971static EV_ATOMIC_T gotsig;
827 972
828void inline_size
829signals_init (ANSIG *base, int count)
830{
831 while (count--)
832 {
833 base->head = 0;
834 base->gotsig = 0;
835
836 ++base;
837 }
838}
839
840/*****************************************************************************/ 973/*****************************************************************************/
841 974
842void inline_speed 975void inline_speed
843fd_intern (int fd) 976fd_intern (int fd)
844{ 977{
845#ifdef _WIN32 978#ifdef _WIN32
846 int arg = 1; 979 unsigned long arg = 1;
847 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 980 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
848#else 981#else
849 fcntl (fd, F_SETFD, FD_CLOEXEC); 982 fcntl (fd, F_SETFD, FD_CLOEXEC);
850 fcntl (fd, F_SETFL, O_NONBLOCK); 983 fcntl (fd, F_SETFL, O_NONBLOCK);
851#endif 984#endif
906pipecb (EV_P_ ev_io *iow, int revents) 1039pipecb (EV_P_ ev_io *iow, int revents)
907{ 1040{
908#if EV_USE_EVENTFD 1041#if EV_USE_EVENTFD
909 if (evfd >= 0) 1042 if (evfd >= 0)
910 { 1043 {
911 uint64_t counter = 1; 1044 uint64_t counter;
912 read (evfd, &counter, sizeof (uint64_t)); 1045 read (evfd, &counter, sizeof (uint64_t));
913 } 1046 }
914 else 1047 else
915#endif 1048#endif
916 { 1049 {
1335 1468
1336 postfork = 0; 1469 postfork = 0;
1337} 1470}
1338 1471
1339#if EV_MULTIPLICITY 1472#if EV_MULTIPLICITY
1473
1340struct ev_loop * 1474struct ev_loop *
1341ev_loop_new (unsigned int flags) 1475ev_loop_new (unsigned int flags)
1342{ 1476{
1343 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1477 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1344 1478
1363ev_loop_fork (EV_P) 1497ev_loop_fork (EV_P)
1364{ 1498{
1365 postfork = 1; /* must be in line with ev_default_fork */ 1499 postfork = 1; /* must be in line with ev_default_fork */
1366} 1500}
1367 1501
1502#if EV_VERIFY
1503static void noinline
1504verify_watcher (EV_P_ W w)
1505{
1506 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1507
1508 if (w->pending)
1509 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1510}
1511
1512static void noinline
1513verify_heap (EV_P_ ANHE *heap, int N)
1514{
1515 int i;
1516
1517 for (i = HEAP0; i < N + HEAP0; ++i)
1518 {
1519 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1520 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1521 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1522
1523 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1524 }
1525}
1526
1527static void noinline
1528array_verify (EV_P_ W *ws, int cnt)
1529{
1530 while (cnt--)
1531 {
1532 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1533 verify_watcher (EV_A_ ws [cnt]);
1534 }
1535}
1536#endif
1537
1538void
1539ev_loop_verify (EV_P)
1540{
1541#if EV_VERIFY
1542 int i;
1543 WL w;
1544
1545 assert (activecnt >= -1);
1546
1547 assert (fdchangemax >= fdchangecnt);
1548 for (i = 0; i < fdchangecnt; ++i)
1549 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1550
1551 assert (anfdmax >= 0);
1552 for (i = 0; i < anfdmax; ++i)
1553 for (w = anfds [i].head; w; w = w->next)
1554 {
1555 verify_watcher (EV_A_ (W)w);
1556 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1557 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1558 }
1559
1560 assert (timermax >= timercnt);
1561 verify_heap (EV_A_ timers, timercnt);
1562
1563#if EV_PERIODIC_ENABLE
1564 assert (periodicmax >= periodiccnt);
1565 verify_heap (EV_A_ periodics, periodiccnt);
1566#endif
1567
1568 for (i = NUMPRI; i--; )
1569 {
1570 assert (pendingmax [i] >= pendingcnt [i]);
1571#if EV_IDLE_ENABLE
1572 assert (idleall >= 0);
1573 assert (idlemax [i] >= idlecnt [i]);
1574 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1575#endif
1576 }
1577
1578#if EV_FORK_ENABLE
1579 assert (forkmax >= forkcnt);
1580 array_verify (EV_A_ (W *)forks, forkcnt);
1581#endif
1582
1583#if EV_ASYNC_ENABLE
1584 assert (asyncmax >= asynccnt);
1585 array_verify (EV_A_ (W *)asyncs, asynccnt);
1586#endif
1587
1588 assert (preparemax >= preparecnt);
1589 array_verify (EV_A_ (W *)prepares, preparecnt);
1590
1591 assert (checkmax >= checkcnt);
1592 array_verify (EV_A_ (W *)checks, checkcnt);
1593
1594# if 0
1595 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1596 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1368#endif 1597# endif
1598#endif
1599}
1600
1601#endif /* multiplicity */
1369 1602
1370#if EV_MULTIPLICITY 1603#if EV_MULTIPLICITY
1371struct ev_loop * 1604struct ev_loop *
1372ev_default_loop_init (unsigned int flags) 1605ev_default_loop_init (unsigned int flags)
1373#else 1606#else
1406{ 1639{
1407#if EV_MULTIPLICITY 1640#if EV_MULTIPLICITY
1408 struct ev_loop *loop = ev_default_loop_ptr; 1641 struct ev_loop *loop = ev_default_loop_ptr;
1409#endif 1642#endif
1410 1643
1644 ev_default_loop_ptr = 0;
1645
1411#ifndef _WIN32 1646#ifndef _WIN32
1412 ev_ref (EV_A); /* child watcher */ 1647 ev_ref (EV_A); /* child watcher */
1413 ev_signal_stop (EV_A_ &childev); 1648 ev_signal_stop (EV_A_ &childev);
1414#endif 1649#endif
1415 1650
1449 { 1684 {
1450 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1685 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1451 1686
1452 p->w->pending = 0; 1687 p->w->pending = 0;
1453 EV_CB_INVOKE (p->w, p->events); 1688 EV_CB_INVOKE (p->w, p->events);
1689 EV_FREQUENT_CHECK;
1454 } 1690 }
1455 } 1691 }
1456} 1692}
1457
1458void inline_size
1459timers_reify (EV_P)
1460{
1461 while (timercnt && ((WT)timers [0])->at <= mn_now)
1462 {
1463 ev_timer *w = (ev_timer *)timers [0];
1464
1465 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1466
1467 /* first reschedule or stop timer */
1468 if (w->repeat)
1469 {
1470 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1471
1472 ((WT)w)->at += w->repeat;
1473 if (((WT)w)->at < mn_now)
1474 ((WT)w)->at = mn_now;
1475
1476 downheap (timers, timercnt, 0);
1477 }
1478 else
1479 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1480
1481 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1482 }
1483}
1484
1485#if EV_PERIODIC_ENABLE
1486void inline_size
1487periodics_reify (EV_P)
1488{
1489 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1490 {
1491 ev_periodic *w = (ev_periodic *)periodics [0];
1492
1493 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1494
1495 /* first reschedule or stop timer */
1496 if (w->reschedule_cb)
1497 {
1498 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1499 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1500 downheap (periodics, periodiccnt, 0);
1501 }
1502 else if (w->interval)
1503 {
1504 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1505 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1506 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1507 downheap (periodics, periodiccnt, 0);
1508 }
1509 else
1510 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1511
1512 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1513 }
1514}
1515
1516static void noinline
1517periodics_reschedule (EV_P)
1518{
1519 int i;
1520
1521 /* adjust periodics after time jump */
1522 for (i = 0; i < periodiccnt; ++i)
1523 {
1524 ev_periodic *w = (ev_periodic *)periodics [i];
1525
1526 if (w->reschedule_cb)
1527 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1528 else if (w->interval)
1529 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1530 }
1531
1532 /* now rebuild the heap */
1533 for (i = periodiccnt >> 1; i--; )
1534 downheap (periodics, periodiccnt, i);
1535}
1536#endif
1537 1693
1538#if EV_IDLE_ENABLE 1694#if EV_IDLE_ENABLE
1539void inline_size 1695void inline_size
1540idle_reify (EV_P) 1696idle_reify (EV_P)
1541{ 1697{
1553 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1709 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1554 break; 1710 break;
1555 } 1711 }
1556 } 1712 }
1557 } 1713 }
1714}
1715#endif
1716
1717void inline_size
1718timers_reify (EV_P)
1719{
1720 EV_FREQUENT_CHECK;
1721
1722 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1723 {
1724 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1725
1726 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1727
1728 /* first reschedule or stop timer */
1729 if (w->repeat)
1730 {
1731 ev_at (w) += w->repeat;
1732 if (ev_at (w) < mn_now)
1733 ev_at (w) = mn_now;
1734
1735 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1736
1737 ANHE_at_cache (timers [HEAP0]);
1738 downheap (timers, timercnt, HEAP0);
1739 }
1740 else
1741 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1742
1743 EV_FREQUENT_CHECK;
1744 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1745 }
1746}
1747
1748#if EV_PERIODIC_ENABLE
1749void inline_size
1750periodics_reify (EV_P)
1751{
1752 EV_FREQUENT_CHECK;
1753
1754 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1755 {
1756 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1757
1758 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1759
1760 /* first reschedule or stop timer */
1761 if (w->reschedule_cb)
1762 {
1763 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1764
1765 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1766
1767 ANHE_at_cache (periodics [HEAP0]);
1768 downheap (periodics, periodiccnt, HEAP0);
1769 }
1770 else if (w->interval)
1771 {
1772 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1773 /* if next trigger time is not sufficiently in the future, put it there */
1774 /* this might happen because of floating point inexactness */
1775 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1776 {
1777 ev_at (w) += w->interval;
1778
1779 /* if interval is unreasonably low we might still have a time in the past */
1780 /* so correct this. this will make the periodic very inexact, but the user */
1781 /* has effectively asked to get triggered more often than possible */
1782 if (ev_at (w) < ev_rt_now)
1783 ev_at (w) = ev_rt_now;
1784 }
1785
1786 ANHE_at_cache (periodics [HEAP0]);
1787 downheap (periodics, periodiccnt, HEAP0);
1788 }
1789 else
1790 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1791
1792 EV_FREQUENT_CHECK;
1793 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1794 }
1795}
1796
1797static void noinline
1798periodics_reschedule (EV_P)
1799{
1800 int i;
1801
1802 /* adjust periodics after time jump */
1803 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1804 {
1805 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1806
1807 if (w->reschedule_cb)
1808 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1809 else if (w->interval)
1810 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1811
1812 ANHE_at_cache (periodics [i]);
1813 }
1814
1815 reheap (periodics, periodiccnt);
1558} 1816}
1559#endif 1817#endif
1560 1818
1561void inline_speed 1819void inline_speed
1562time_update (EV_P_ ev_tstamp max_block) 1820time_update (EV_P_ ev_tstamp max_block)
1591 */ 1849 */
1592 for (i = 4; --i; ) 1850 for (i = 4; --i; )
1593 { 1851 {
1594 rtmn_diff = ev_rt_now - mn_now; 1852 rtmn_diff = ev_rt_now - mn_now;
1595 1853
1596 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1854 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1597 return; /* all is well */ 1855 return; /* all is well */
1598 1856
1599 ev_rt_now = ev_time (); 1857 ev_rt_now = ev_time ();
1600 mn_now = get_clock (); 1858 mn_now = get_clock ();
1601 now_floor = mn_now; 1859 now_floor = mn_now;
1617#if EV_PERIODIC_ENABLE 1875#if EV_PERIODIC_ENABLE
1618 periodics_reschedule (EV_A); 1876 periodics_reschedule (EV_A);
1619#endif 1877#endif
1620 /* adjust timers. this is easy, as the offset is the same for all of them */ 1878 /* adjust timers. this is easy, as the offset is the same for all of them */
1621 for (i = 0; i < timercnt; ++i) 1879 for (i = 0; i < timercnt; ++i)
1880 {
1881 ANHE *he = timers + i + HEAP0;
1622 ((WT)timers [i])->at += ev_rt_now - mn_now; 1882 ANHE_w (*he)->at += ev_rt_now - mn_now;
1883 ANHE_at_cache (*he);
1884 }
1623 } 1885 }
1624 1886
1625 mn_now = ev_rt_now; 1887 mn_now = ev_rt_now;
1626 } 1888 }
1627} 1889}
1636ev_unref (EV_P) 1898ev_unref (EV_P)
1637{ 1899{
1638 --activecnt; 1900 --activecnt;
1639} 1901}
1640 1902
1903void
1904ev_now_update (EV_P)
1905{
1906 time_update (EV_A_ 1e100);
1907}
1908
1641static int loop_done; 1909static int loop_done;
1642 1910
1643void 1911void
1644ev_loop (EV_P_ int flags) 1912ev_loop (EV_P_ int flags)
1645{ 1913{
1647 1915
1648 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1916 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1649 1917
1650 do 1918 do
1651 { 1919 {
1920#if EV_VERIFY >= 2
1921 ev_loop_verify (EV_A);
1922#endif
1923
1652#ifndef _WIN32 1924#ifndef _WIN32
1653 if (expect_false (curpid)) /* penalise the forking check even more */ 1925 if (expect_false (curpid)) /* penalise the forking check even more */
1654 if (expect_false (getpid () != curpid)) 1926 if (expect_false (getpid () != curpid))
1655 { 1927 {
1656 curpid = getpid (); 1928 curpid = getpid ();
1697 1969
1698 waittime = MAX_BLOCKTIME; 1970 waittime = MAX_BLOCKTIME;
1699 1971
1700 if (timercnt) 1972 if (timercnt)
1701 { 1973 {
1702 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1974 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1703 if (waittime > to) waittime = to; 1975 if (waittime > to) waittime = to;
1704 } 1976 }
1705 1977
1706#if EV_PERIODIC_ENABLE 1978#if EV_PERIODIC_ENABLE
1707 if (periodiccnt) 1979 if (periodiccnt)
1708 { 1980 {
1709 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1981 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1710 if (waittime > to) waittime = to; 1982 if (waittime > to) waittime = to;
1711 } 1983 }
1712#endif 1984#endif
1713 1985
1714 if (expect_false (waittime < timeout_blocktime)) 1986 if (expect_false (waittime < timeout_blocktime))
1850 2122
1851 if (expect_false (ev_is_active (w))) 2123 if (expect_false (ev_is_active (w)))
1852 return; 2124 return;
1853 2125
1854 assert (("ev_io_start called with negative fd", fd >= 0)); 2126 assert (("ev_io_start called with negative fd", fd >= 0));
2127 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE))));
2128
2129 EV_FREQUENT_CHECK;
1855 2130
1856 ev_start (EV_A_ (W)w, 1); 2131 ev_start (EV_A_ (W)w, 1);
1857 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2132 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1858 wlist_add (&anfds[fd].head, (WL)w); 2133 wlist_add (&anfds[fd].head, (WL)w);
1859 2134
1860 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2135 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1861 w->events &= ~EV_IOFDSET; 2136 w->events &= ~EV_IOFDSET;
2137
2138 EV_FREQUENT_CHECK;
1862} 2139}
1863 2140
1864void noinline 2141void noinline
1865ev_io_stop (EV_P_ ev_io *w) 2142ev_io_stop (EV_P_ ev_io *w)
1866{ 2143{
1867 clear_pending (EV_A_ (W)w); 2144 clear_pending (EV_A_ (W)w);
1868 if (expect_false (!ev_is_active (w))) 2145 if (expect_false (!ev_is_active (w)))
1869 return; 2146 return;
1870 2147
1871 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2148 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2149
2150 EV_FREQUENT_CHECK;
1872 2151
1873 wlist_del (&anfds[w->fd].head, (WL)w); 2152 wlist_del (&anfds[w->fd].head, (WL)w);
1874 ev_stop (EV_A_ (W)w); 2153 ev_stop (EV_A_ (W)w);
1875 2154
1876 fd_change (EV_A_ w->fd, 1); 2155 fd_change (EV_A_ w->fd, 1);
2156
2157 EV_FREQUENT_CHECK;
1877} 2158}
1878 2159
1879void noinline 2160void noinline
1880ev_timer_start (EV_P_ ev_timer *w) 2161ev_timer_start (EV_P_ ev_timer *w)
1881{ 2162{
1882 if (expect_false (ev_is_active (w))) 2163 if (expect_false (ev_is_active (w)))
1883 return; 2164 return;
1884 2165
1885 ((WT)w)->at += mn_now; 2166 ev_at (w) += mn_now;
1886 2167
1887 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2168 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1888 2169
2170 EV_FREQUENT_CHECK;
2171
2172 ++timercnt;
1889 ev_start (EV_A_ (W)w, ++timercnt); 2173 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1890 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2174 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1891 timers [timercnt - 1] = (WT)w; 2175 ANHE_w (timers [ev_active (w)]) = (WT)w;
1892 upheap (timers, timercnt - 1); 2176 ANHE_at_cache (timers [ev_active (w)]);
2177 upheap (timers, ev_active (w));
1893 2178
2179 EV_FREQUENT_CHECK;
2180
1894 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2181 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1895} 2182}
1896 2183
1897void noinline 2184void noinline
1898ev_timer_stop (EV_P_ ev_timer *w) 2185ev_timer_stop (EV_P_ ev_timer *w)
1899{ 2186{
1900 clear_pending (EV_A_ (W)w); 2187 clear_pending (EV_A_ (W)w);
1901 if (expect_false (!ev_is_active (w))) 2188 if (expect_false (!ev_is_active (w)))
1902 return; 2189 return;
1903 2190
1904 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2191 EV_FREQUENT_CHECK;
1905 2192
1906 { 2193 {
1907 int active = ((W)w)->active; 2194 int active = ev_active (w);
1908 2195
2196 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2197
2198 --timercnt;
2199
1909 if (expect_true (--active < --timercnt)) 2200 if (expect_true (active < timercnt + HEAP0))
1910 { 2201 {
1911 timers [active] = timers [timercnt]; 2202 timers [active] = timers [timercnt + HEAP0];
1912 adjustheap (timers, timercnt, active); 2203 adjustheap (timers, timercnt, active);
1913 } 2204 }
1914 } 2205 }
1915 2206
1916 ((WT)w)->at -= mn_now; 2207 EV_FREQUENT_CHECK;
2208
2209 ev_at (w) -= mn_now;
1917 2210
1918 ev_stop (EV_A_ (W)w); 2211 ev_stop (EV_A_ (W)w);
1919} 2212}
1920 2213
1921void noinline 2214void noinline
1922ev_timer_again (EV_P_ ev_timer *w) 2215ev_timer_again (EV_P_ ev_timer *w)
1923{ 2216{
2217 EV_FREQUENT_CHECK;
2218
1924 if (ev_is_active (w)) 2219 if (ev_is_active (w))
1925 { 2220 {
1926 if (w->repeat) 2221 if (w->repeat)
1927 { 2222 {
1928 ((WT)w)->at = mn_now + w->repeat; 2223 ev_at (w) = mn_now + w->repeat;
2224 ANHE_at_cache (timers [ev_active (w)]);
1929 adjustheap (timers, timercnt, ((W)w)->active - 1); 2225 adjustheap (timers, timercnt, ev_active (w));
1930 } 2226 }
1931 else 2227 else
1932 ev_timer_stop (EV_A_ w); 2228 ev_timer_stop (EV_A_ w);
1933 } 2229 }
1934 else if (w->repeat) 2230 else if (w->repeat)
1935 { 2231 {
1936 w->at = w->repeat; 2232 ev_at (w) = w->repeat;
1937 ev_timer_start (EV_A_ w); 2233 ev_timer_start (EV_A_ w);
1938 } 2234 }
2235
2236 EV_FREQUENT_CHECK;
1939} 2237}
1940 2238
1941#if EV_PERIODIC_ENABLE 2239#if EV_PERIODIC_ENABLE
1942void noinline 2240void noinline
1943ev_periodic_start (EV_P_ ev_periodic *w) 2241ev_periodic_start (EV_P_ ev_periodic *w)
1944{ 2242{
1945 if (expect_false (ev_is_active (w))) 2243 if (expect_false (ev_is_active (w)))
1946 return; 2244 return;
1947 2245
1948 if (w->reschedule_cb) 2246 if (w->reschedule_cb)
1949 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2247 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1950 else if (w->interval) 2248 else if (w->interval)
1951 { 2249 {
1952 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2250 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1953 /* this formula differs from the one in periodic_reify because we do not always round up */ 2251 /* this formula differs from the one in periodic_reify because we do not always round up */
1954 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2252 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1955 } 2253 }
1956 else 2254 else
1957 ((WT)w)->at = w->offset; 2255 ev_at (w) = w->offset;
1958 2256
2257 EV_FREQUENT_CHECK;
2258
2259 ++periodiccnt;
1959 ev_start (EV_A_ (W)w, ++periodiccnt); 2260 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1960 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2261 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1961 periodics [periodiccnt - 1] = (WT)w; 2262 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1962 upheap (periodics, periodiccnt - 1); 2263 ANHE_at_cache (periodics [ev_active (w)]);
2264 upheap (periodics, ev_active (w));
1963 2265
2266 EV_FREQUENT_CHECK;
2267
1964 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2268 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1965} 2269}
1966 2270
1967void noinline 2271void noinline
1968ev_periodic_stop (EV_P_ ev_periodic *w) 2272ev_periodic_stop (EV_P_ ev_periodic *w)
1969{ 2273{
1970 clear_pending (EV_A_ (W)w); 2274 clear_pending (EV_A_ (W)w);
1971 if (expect_false (!ev_is_active (w))) 2275 if (expect_false (!ev_is_active (w)))
1972 return; 2276 return;
1973 2277
1974 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2278 EV_FREQUENT_CHECK;
1975 2279
1976 { 2280 {
1977 int active = ((W)w)->active; 2281 int active = ev_active (w);
1978 2282
2283 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2284
2285 --periodiccnt;
2286
1979 if (expect_true (--active < --periodiccnt)) 2287 if (expect_true (active < periodiccnt + HEAP0))
1980 { 2288 {
1981 periodics [active] = periodics [periodiccnt]; 2289 periodics [active] = periodics [periodiccnt + HEAP0];
1982 adjustheap (periodics, periodiccnt, active); 2290 adjustheap (periodics, periodiccnt, active);
1983 } 2291 }
1984 } 2292 }
1985 2293
2294 EV_FREQUENT_CHECK;
2295
1986 ev_stop (EV_A_ (W)w); 2296 ev_stop (EV_A_ (W)w);
1987} 2297}
1988 2298
1989void noinline 2299void noinline
1990ev_periodic_again (EV_P_ ev_periodic *w) 2300ev_periodic_again (EV_P_ ev_periodic *w)
2009 return; 2319 return;
2010 2320
2011 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2321 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2012 2322
2013 evpipe_init (EV_A); 2323 evpipe_init (EV_A);
2324
2325 EV_FREQUENT_CHECK;
2014 2326
2015 { 2327 {
2016#ifndef _WIN32 2328#ifndef _WIN32
2017 sigset_t full, prev; 2329 sigset_t full, prev;
2018 sigfillset (&full); 2330 sigfillset (&full);
2019 sigprocmask (SIG_SETMASK, &full, &prev); 2331 sigprocmask (SIG_SETMASK, &full, &prev);
2020#endif 2332#endif
2021 2333
2022 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2334 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2023 2335
2024#ifndef _WIN32 2336#ifndef _WIN32
2025 sigprocmask (SIG_SETMASK, &prev, 0); 2337 sigprocmask (SIG_SETMASK, &prev, 0);
2026#endif 2338#endif
2027 } 2339 }
2039 sigfillset (&sa.sa_mask); 2351 sigfillset (&sa.sa_mask);
2040 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2352 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2041 sigaction (w->signum, &sa, 0); 2353 sigaction (w->signum, &sa, 0);
2042#endif 2354#endif
2043 } 2355 }
2356
2357 EV_FREQUENT_CHECK;
2044} 2358}
2045 2359
2046void noinline 2360void noinline
2047ev_signal_stop (EV_P_ ev_signal *w) 2361ev_signal_stop (EV_P_ ev_signal *w)
2048{ 2362{
2049 clear_pending (EV_A_ (W)w); 2363 clear_pending (EV_A_ (W)w);
2050 if (expect_false (!ev_is_active (w))) 2364 if (expect_false (!ev_is_active (w)))
2051 return; 2365 return;
2052 2366
2367 EV_FREQUENT_CHECK;
2368
2053 wlist_del (&signals [w->signum - 1].head, (WL)w); 2369 wlist_del (&signals [w->signum - 1].head, (WL)w);
2054 ev_stop (EV_A_ (W)w); 2370 ev_stop (EV_A_ (W)w);
2055 2371
2056 if (!signals [w->signum - 1].head) 2372 if (!signals [w->signum - 1].head)
2057 signal (w->signum, SIG_DFL); 2373 signal (w->signum, SIG_DFL);
2374
2375 EV_FREQUENT_CHECK;
2058} 2376}
2059 2377
2060void 2378void
2061ev_child_start (EV_P_ ev_child *w) 2379ev_child_start (EV_P_ ev_child *w)
2062{ 2380{
2064 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2382 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2065#endif 2383#endif
2066 if (expect_false (ev_is_active (w))) 2384 if (expect_false (ev_is_active (w)))
2067 return; 2385 return;
2068 2386
2387 EV_FREQUENT_CHECK;
2388
2069 ev_start (EV_A_ (W)w, 1); 2389 ev_start (EV_A_ (W)w, 1);
2070 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2390 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2391
2392 EV_FREQUENT_CHECK;
2071} 2393}
2072 2394
2073void 2395void
2074ev_child_stop (EV_P_ ev_child *w) 2396ev_child_stop (EV_P_ ev_child *w)
2075{ 2397{
2076 clear_pending (EV_A_ (W)w); 2398 clear_pending (EV_A_ (W)w);
2077 if (expect_false (!ev_is_active (w))) 2399 if (expect_false (!ev_is_active (w)))
2078 return; 2400 return;
2079 2401
2402 EV_FREQUENT_CHECK;
2403
2080 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2404 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2081 ev_stop (EV_A_ (W)w); 2405 ev_stop (EV_A_ (W)w);
2406
2407 EV_FREQUENT_CHECK;
2082} 2408}
2083 2409
2084#if EV_STAT_ENABLE 2410#if EV_STAT_ENABLE
2085 2411
2086# ifdef _WIN32 2412# ifdef _WIN32
2104 if (w->wd < 0) 2430 if (w->wd < 0)
2105 { 2431 {
2106 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2432 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2107 2433
2108 /* monitor some parent directory for speedup hints */ 2434 /* monitor some parent directory for speedup hints */
2435 /* note that exceeding the hardcoded limit is not a correctness issue, */
2436 /* but an efficiency issue only */
2109 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2437 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2110 { 2438 {
2111 char path [4096]; 2439 char path [4096];
2112 strcpy (path, w->path); 2440 strcpy (path, w->path);
2113 2441
2153 2481
2154static void noinline 2482static void noinline
2155infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2483infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2156{ 2484{
2157 if (slot < 0) 2485 if (slot < 0)
2158 /* overflow, need to check for all hahs slots */ 2486 /* overflow, need to check for all hash slots */
2159 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2487 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2160 infy_wd (EV_A_ slot, wd, ev); 2488 infy_wd (EV_A_ slot, wd, ev);
2161 else 2489 else
2162 { 2490 {
2163 WL w_; 2491 WL w_;
2197infy_init (EV_P) 2525infy_init (EV_P)
2198{ 2526{
2199 if (fs_fd != -2) 2527 if (fs_fd != -2)
2200 return; 2528 return;
2201 2529
2530 /* kernels < 2.6.25 are borked
2531 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2532 */
2533 {
2534 struct utsname buf;
2535 int major, minor, micro;
2536
2537 fs_fd = -1;
2538
2539 if (uname (&buf))
2540 return;
2541
2542 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2543 return;
2544
2545 if (major < 2
2546 || (major == 2 && minor < 6)
2547 || (major == 2 && minor == 6 && micro < 25))
2548 return;
2549 }
2550
2202 fs_fd = inotify_init (); 2551 fs_fd = inotify_init ();
2203 2552
2204 if (fs_fd >= 0) 2553 if (fs_fd >= 0)
2205 { 2554 {
2206 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 2555 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2235 if (fs_fd >= 0) 2584 if (fs_fd >= 0)
2236 infy_add (EV_A_ w); /* re-add, no matter what */ 2585 infy_add (EV_A_ w); /* re-add, no matter what */
2237 else 2586 else
2238 ev_timer_start (EV_A_ &w->timer); 2587 ev_timer_start (EV_A_ &w->timer);
2239 } 2588 }
2240
2241 } 2589 }
2242} 2590}
2243 2591
2592#endif
2593
2594#ifdef _WIN32
2595# define EV_LSTAT(p,b) _stati64 (p, b)
2596#else
2597# define EV_LSTAT(p,b) lstat (p, b)
2244#endif 2598#endif
2245 2599
2246void 2600void
2247ev_stat_stat (EV_P_ ev_stat *w) 2601ev_stat_stat (EV_P_ ev_stat *w)
2248{ 2602{
2275 || w->prev.st_atime != w->attr.st_atime 2629 || w->prev.st_atime != w->attr.st_atime
2276 || w->prev.st_mtime != w->attr.st_mtime 2630 || w->prev.st_mtime != w->attr.st_mtime
2277 || w->prev.st_ctime != w->attr.st_ctime 2631 || w->prev.st_ctime != w->attr.st_ctime
2278 ) { 2632 ) {
2279 #if EV_USE_INOTIFY 2633 #if EV_USE_INOTIFY
2634 if (fs_fd >= 0)
2635 {
2280 infy_del (EV_A_ w); 2636 infy_del (EV_A_ w);
2281 infy_add (EV_A_ w); 2637 infy_add (EV_A_ w);
2282 ev_stat_stat (EV_A_ w); /* avoid race... */ 2638 ev_stat_stat (EV_A_ w); /* avoid race... */
2639 }
2283 #endif 2640 #endif
2284 2641
2285 ev_feed_event (EV_A_ w, EV_STAT); 2642 ev_feed_event (EV_A_ w, EV_STAT);
2286 } 2643 }
2287} 2644}
2312 else 2669 else
2313#endif 2670#endif
2314 ev_timer_start (EV_A_ &w->timer); 2671 ev_timer_start (EV_A_ &w->timer);
2315 2672
2316 ev_start (EV_A_ (W)w, 1); 2673 ev_start (EV_A_ (W)w, 1);
2674
2675 EV_FREQUENT_CHECK;
2317} 2676}
2318 2677
2319void 2678void
2320ev_stat_stop (EV_P_ ev_stat *w) 2679ev_stat_stop (EV_P_ ev_stat *w)
2321{ 2680{
2322 clear_pending (EV_A_ (W)w); 2681 clear_pending (EV_A_ (W)w);
2323 if (expect_false (!ev_is_active (w))) 2682 if (expect_false (!ev_is_active (w)))
2324 return; 2683 return;
2325 2684
2685 EV_FREQUENT_CHECK;
2686
2326#if EV_USE_INOTIFY 2687#if EV_USE_INOTIFY
2327 infy_del (EV_A_ w); 2688 infy_del (EV_A_ w);
2328#endif 2689#endif
2329 ev_timer_stop (EV_A_ &w->timer); 2690 ev_timer_stop (EV_A_ &w->timer);
2330 2691
2331 ev_stop (EV_A_ (W)w); 2692 ev_stop (EV_A_ (W)w);
2693
2694 EV_FREQUENT_CHECK;
2332} 2695}
2333#endif 2696#endif
2334 2697
2335#if EV_IDLE_ENABLE 2698#if EV_IDLE_ENABLE
2336void 2699void
2338{ 2701{
2339 if (expect_false (ev_is_active (w))) 2702 if (expect_false (ev_is_active (w)))
2340 return; 2703 return;
2341 2704
2342 pri_adjust (EV_A_ (W)w); 2705 pri_adjust (EV_A_ (W)w);
2706
2707 EV_FREQUENT_CHECK;
2343 2708
2344 { 2709 {
2345 int active = ++idlecnt [ABSPRI (w)]; 2710 int active = ++idlecnt [ABSPRI (w)];
2346 2711
2347 ++idleall; 2712 ++idleall;
2348 ev_start (EV_A_ (W)w, active); 2713 ev_start (EV_A_ (W)w, active);
2349 2714
2350 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2715 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2351 idles [ABSPRI (w)][active - 1] = w; 2716 idles [ABSPRI (w)][active - 1] = w;
2352 } 2717 }
2718
2719 EV_FREQUENT_CHECK;
2353} 2720}
2354 2721
2355void 2722void
2356ev_idle_stop (EV_P_ ev_idle *w) 2723ev_idle_stop (EV_P_ ev_idle *w)
2357{ 2724{
2358 clear_pending (EV_A_ (W)w); 2725 clear_pending (EV_A_ (W)w);
2359 if (expect_false (!ev_is_active (w))) 2726 if (expect_false (!ev_is_active (w)))
2360 return; 2727 return;
2361 2728
2729 EV_FREQUENT_CHECK;
2730
2362 { 2731 {
2363 int active = ((W)w)->active; 2732 int active = ev_active (w);
2364 2733
2365 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2734 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2366 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2735 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2367 2736
2368 ev_stop (EV_A_ (W)w); 2737 ev_stop (EV_A_ (W)w);
2369 --idleall; 2738 --idleall;
2370 } 2739 }
2740
2741 EV_FREQUENT_CHECK;
2371} 2742}
2372#endif 2743#endif
2373 2744
2374void 2745void
2375ev_prepare_start (EV_P_ ev_prepare *w) 2746ev_prepare_start (EV_P_ ev_prepare *w)
2376{ 2747{
2377 if (expect_false (ev_is_active (w))) 2748 if (expect_false (ev_is_active (w)))
2378 return; 2749 return;
2750
2751 EV_FREQUENT_CHECK;
2379 2752
2380 ev_start (EV_A_ (W)w, ++preparecnt); 2753 ev_start (EV_A_ (W)w, ++preparecnt);
2381 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2754 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2382 prepares [preparecnt - 1] = w; 2755 prepares [preparecnt - 1] = w;
2756
2757 EV_FREQUENT_CHECK;
2383} 2758}
2384 2759
2385void 2760void
2386ev_prepare_stop (EV_P_ ev_prepare *w) 2761ev_prepare_stop (EV_P_ ev_prepare *w)
2387{ 2762{
2388 clear_pending (EV_A_ (W)w); 2763 clear_pending (EV_A_ (W)w);
2389 if (expect_false (!ev_is_active (w))) 2764 if (expect_false (!ev_is_active (w)))
2390 return; 2765 return;
2391 2766
2767 EV_FREQUENT_CHECK;
2768
2392 { 2769 {
2393 int active = ((W)w)->active; 2770 int active = ev_active (w);
2771
2394 prepares [active - 1] = prepares [--preparecnt]; 2772 prepares [active - 1] = prepares [--preparecnt];
2395 ((W)prepares [active - 1])->active = active; 2773 ev_active (prepares [active - 1]) = active;
2396 } 2774 }
2397 2775
2398 ev_stop (EV_A_ (W)w); 2776 ev_stop (EV_A_ (W)w);
2777
2778 EV_FREQUENT_CHECK;
2399} 2779}
2400 2780
2401void 2781void
2402ev_check_start (EV_P_ ev_check *w) 2782ev_check_start (EV_P_ ev_check *w)
2403{ 2783{
2404 if (expect_false (ev_is_active (w))) 2784 if (expect_false (ev_is_active (w)))
2405 return; 2785 return;
2786
2787 EV_FREQUENT_CHECK;
2406 2788
2407 ev_start (EV_A_ (W)w, ++checkcnt); 2789 ev_start (EV_A_ (W)w, ++checkcnt);
2408 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2790 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2409 checks [checkcnt - 1] = w; 2791 checks [checkcnt - 1] = w;
2792
2793 EV_FREQUENT_CHECK;
2410} 2794}
2411 2795
2412void 2796void
2413ev_check_stop (EV_P_ ev_check *w) 2797ev_check_stop (EV_P_ ev_check *w)
2414{ 2798{
2415 clear_pending (EV_A_ (W)w); 2799 clear_pending (EV_A_ (W)w);
2416 if (expect_false (!ev_is_active (w))) 2800 if (expect_false (!ev_is_active (w)))
2417 return; 2801 return;
2418 2802
2803 EV_FREQUENT_CHECK;
2804
2419 { 2805 {
2420 int active = ((W)w)->active; 2806 int active = ev_active (w);
2807
2421 checks [active - 1] = checks [--checkcnt]; 2808 checks [active - 1] = checks [--checkcnt];
2422 ((W)checks [active - 1])->active = active; 2809 ev_active (checks [active - 1]) = active;
2423 } 2810 }
2424 2811
2425 ev_stop (EV_A_ (W)w); 2812 ev_stop (EV_A_ (W)w);
2813
2814 EV_FREQUENT_CHECK;
2426} 2815}
2427 2816
2428#if EV_EMBED_ENABLE 2817#if EV_EMBED_ENABLE
2429void noinline 2818void noinline
2430ev_embed_sweep (EV_P_ ev_embed *w) 2819ev_embed_sweep (EV_P_ ev_embed *w)
2457 ev_loop (EV_A_ EVLOOP_NONBLOCK); 2846 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2458 } 2847 }
2459 } 2848 }
2460} 2849}
2461 2850
2851static void
2852embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2853{
2854 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2855
2856 {
2857 struct ev_loop *loop = w->other;
2858
2859 ev_loop_fork (EV_A);
2860 }
2861}
2862
2462#if 0 2863#if 0
2463static void 2864static void
2464embed_idle_cb (EV_P_ ev_idle *idle, int revents) 2865embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2465{ 2866{
2466 ev_idle_stop (EV_A_ idle); 2867 ev_idle_stop (EV_A_ idle);
2477 struct ev_loop *loop = w->other; 2878 struct ev_loop *loop = w->other;
2478 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2879 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2479 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2880 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2480 } 2881 }
2481 2882
2883 EV_FREQUENT_CHECK;
2884
2482 ev_set_priority (&w->io, ev_priority (w)); 2885 ev_set_priority (&w->io, ev_priority (w));
2483 ev_io_start (EV_A_ &w->io); 2886 ev_io_start (EV_A_ &w->io);
2484 2887
2485 ev_prepare_init (&w->prepare, embed_prepare_cb); 2888 ev_prepare_init (&w->prepare, embed_prepare_cb);
2486 ev_set_priority (&w->prepare, EV_MINPRI); 2889 ev_set_priority (&w->prepare, EV_MINPRI);
2487 ev_prepare_start (EV_A_ &w->prepare); 2890 ev_prepare_start (EV_A_ &w->prepare);
2488 2891
2892 ev_fork_init (&w->fork, embed_fork_cb);
2893 ev_fork_start (EV_A_ &w->fork);
2894
2489 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2895 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2490 2896
2491 ev_start (EV_A_ (W)w, 1); 2897 ev_start (EV_A_ (W)w, 1);
2898
2899 EV_FREQUENT_CHECK;
2492} 2900}
2493 2901
2494void 2902void
2495ev_embed_stop (EV_P_ ev_embed *w) 2903ev_embed_stop (EV_P_ ev_embed *w)
2496{ 2904{
2497 clear_pending (EV_A_ (W)w); 2905 clear_pending (EV_A_ (W)w);
2498 if (expect_false (!ev_is_active (w))) 2906 if (expect_false (!ev_is_active (w)))
2499 return; 2907 return;
2500 2908
2909 EV_FREQUENT_CHECK;
2910
2501 ev_io_stop (EV_A_ &w->io); 2911 ev_io_stop (EV_A_ &w->io);
2502 ev_prepare_stop (EV_A_ &w->prepare); 2912 ev_prepare_stop (EV_A_ &w->prepare);
2913 ev_fork_stop (EV_A_ &w->fork);
2503 2914
2504 ev_stop (EV_A_ (W)w); 2915 EV_FREQUENT_CHECK;
2505} 2916}
2506#endif 2917#endif
2507 2918
2508#if EV_FORK_ENABLE 2919#if EV_FORK_ENABLE
2509void 2920void
2510ev_fork_start (EV_P_ ev_fork *w) 2921ev_fork_start (EV_P_ ev_fork *w)
2511{ 2922{
2512 if (expect_false (ev_is_active (w))) 2923 if (expect_false (ev_is_active (w)))
2513 return; 2924 return;
2925
2926 EV_FREQUENT_CHECK;
2514 2927
2515 ev_start (EV_A_ (W)w, ++forkcnt); 2928 ev_start (EV_A_ (W)w, ++forkcnt);
2516 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2929 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2517 forks [forkcnt - 1] = w; 2930 forks [forkcnt - 1] = w;
2931
2932 EV_FREQUENT_CHECK;
2518} 2933}
2519 2934
2520void 2935void
2521ev_fork_stop (EV_P_ ev_fork *w) 2936ev_fork_stop (EV_P_ ev_fork *w)
2522{ 2937{
2523 clear_pending (EV_A_ (W)w); 2938 clear_pending (EV_A_ (W)w);
2524 if (expect_false (!ev_is_active (w))) 2939 if (expect_false (!ev_is_active (w)))
2525 return; 2940 return;
2526 2941
2942 EV_FREQUENT_CHECK;
2943
2527 { 2944 {
2528 int active = ((W)w)->active; 2945 int active = ev_active (w);
2946
2529 forks [active - 1] = forks [--forkcnt]; 2947 forks [active - 1] = forks [--forkcnt];
2530 ((W)forks [active - 1])->active = active; 2948 ev_active (forks [active - 1]) = active;
2531 } 2949 }
2532 2950
2533 ev_stop (EV_A_ (W)w); 2951 ev_stop (EV_A_ (W)w);
2952
2953 EV_FREQUENT_CHECK;
2534} 2954}
2535#endif 2955#endif
2536 2956
2537#if EV_ASYNC_ENABLE 2957#if EV_ASYNC_ENABLE
2538void 2958void
2540{ 2960{
2541 if (expect_false (ev_is_active (w))) 2961 if (expect_false (ev_is_active (w)))
2542 return; 2962 return;
2543 2963
2544 evpipe_init (EV_A); 2964 evpipe_init (EV_A);
2965
2966 EV_FREQUENT_CHECK;
2545 2967
2546 ev_start (EV_A_ (W)w, ++asynccnt); 2968 ev_start (EV_A_ (W)w, ++asynccnt);
2547 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2969 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2548 asyncs [asynccnt - 1] = w; 2970 asyncs [asynccnt - 1] = w;
2971
2972 EV_FREQUENT_CHECK;
2549} 2973}
2550 2974
2551void 2975void
2552ev_async_stop (EV_P_ ev_async *w) 2976ev_async_stop (EV_P_ ev_async *w)
2553{ 2977{
2554 clear_pending (EV_A_ (W)w); 2978 clear_pending (EV_A_ (W)w);
2555 if (expect_false (!ev_is_active (w))) 2979 if (expect_false (!ev_is_active (w)))
2556 return; 2980 return;
2557 2981
2982 EV_FREQUENT_CHECK;
2983
2558 { 2984 {
2559 int active = ((W)w)->active; 2985 int active = ev_active (w);
2986
2560 asyncs [active - 1] = asyncs [--asynccnt]; 2987 asyncs [active - 1] = asyncs [--asynccnt];
2561 ((W)asyncs [active - 1])->active = active; 2988 ev_active (asyncs [active - 1]) = active;
2562 } 2989 }
2563 2990
2564 ev_stop (EV_A_ (W)w); 2991 ev_stop (EV_A_ (W)w);
2992
2993 EV_FREQUENT_CHECK;
2565} 2994}
2566 2995
2567void 2996void
2568ev_async_send (EV_P_ ev_async *w) 2997ev_async_send (EV_P_ ev_async *w)
2569{ 2998{
2586once_cb (EV_P_ struct ev_once *once, int revents) 3015once_cb (EV_P_ struct ev_once *once, int revents)
2587{ 3016{
2588 void (*cb)(int revents, void *arg) = once->cb; 3017 void (*cb)(int revents, void *arg) = once->cb;
2589 void *arg = once->arg; 3018 void *arg = once->arg;
2590 3019
2591 ev_io_stop (EV_A_ &once->io); 3020 ev_io_stop (EV_A_ &once->io);
2592 ev_timer_stop (EV_A_ &once->to); 3021 ev_timer_stop (EV_A_ &once->to);
2593 ev_free (once); 3022 ev_free (once);
2594 3023
2595 cb (revents, arg); 3024 cb (revents, arg);
2596} 3025}
2597 3026
2598static void 3027static void
2599once_cb_io (EV_P_ ev_io *w, int revents) 3028once_cb_io (EV_P_ ev_io *w, int revents)
2600{ 3029{
2601 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3030 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3031
3032 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2602} 3033}
2603 3034
2604static void 3035static void
2605once_cb_to (EV_P_ ev_timer *w, int revents) 3036once_cb_to (EV_P_ ev_timer *w, int revents)
2606{ 3037{
2607 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3038 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3039
3040 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2608} 3041}
2609 3042
2610void 3043void
2611ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3044ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2612{ 3045{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines