ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.268 by root, Mon Oct 27 13:39:18 2008 UTC vs.
Revision 1.300 by root, Tue Jul 14 20:31:21 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
164# endif 178# endif
165#endif 179#endif
166 180
167/* this block tries to deduce configuration from header-defined symbols and defaults */ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
168 182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
190
169#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1 193# define EV_USE_MONOTONIC 1
172# else 194# else
173# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
174# endif 196# endif
175#endif 197#endif
176 198
177#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
178# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
179#endif 201#endif
180 202
181#ifndef EV_USE_NANOSLEEP 203#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L 204# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1 205# define EV_USE_NANOSLEEP 1
262 284
263#ifndef EV_HEAP_CACHE_AT 285#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL 286# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif 287#endif
266 288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
268 304
269#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
270# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
271# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
287# endif 323# endif
288#endif 324#endif
289 325
290#if EV_USE_INOTIFY 326#if EV_USE_INOTIFY
291# include <sys/utsname.h> 327# include <sys/utsname.h>
328# include <sys/statfs.h>
292# include <sys/inotify.h> 329# include <sys/inotify.h>
293/* some very old inotify.h headers don't have IN_DONT_FOLLOW */ 330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
294# ifndef IN_DONT_FOLLOW 331# ifndef IN_DONT_FOLLOW
295# undef EV_USE_INOTIFY 332# undef EV_USE_INOTIFY
296# define EV_USE_INOTIFY 0 333# define EV_USE_INOTIFY 0
354# define inline_speed static noinline 391# define inline_speed static noinline
355#else 392#else
356# define inline_speed static inline 393# define inline_speed static inline
357#endif 394#endif
358 395
359#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397
398#if EV_MINPRI == EV_MAXPRI
399# define ABSPRI(w) (((W)w), 0)
400#else
360#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 401# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402#endif
361 403
362#define EMPTY /* required for microsofts broken pseudo-c compiler */ 404#define EMPTY /* required for microsofts broken pseudo-c compiler */
363#define EMPTY2(a,b) /* used to suppress some warnings */ 405#define EMPTY2(a,b) /* used to suppress some warnings */
364 406
365typedef ev_watcher *W; 407typedef ev_watcher *W;
367typedef ev_watcher_time *WT; 409typedef ev_watcher_time *WT;
368 410
369#define ev_active(w) ((W)(w))->active 411#define ev_active(w) ((W)(w))->active
370#define ev_at(w) ((WT)(w))->at 412#define ev_at(w) ((WT)(w))->at
371 413
372#if EV_USE_MONOTONIC 414#if EV_USE_REALTIME
373/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 415/* sig_atomic_t is used to avoid per-thread variables or locking but still */
374/* giving it a reasonably high chance of working on typical architetcures */ 416/* giving it a reasonably high chance of working on typical architetcures */
417static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
418#endif
419
420#if EV_USE_MONOTONIC
375static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 421static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
376#endif 422#endif
377 423
378#ifdef _WIN32 424#ifdef _WIN32
379# include "ev_win32.c" 425# include "ev_win32.c"
388{ 434{
389 syserr_cb = cb; 435 syserr_cb = cb;
390} 436}
391 437
392static void noinline 438static void noinline
393syserr (const char *msg) 439ev_syserr (const char *msg)
394{ 440{
395 if (!msg) 441 if (!msg)
396 msg = "(libev) system error"; 442 msg = "(libev) system error";
397 443
398 if (syserr_cb) 444 if (syserr_cb)
444#define ev_malloc(size) ev_realloc (0, (size)) 490#define ev_malloc(size) ev_realloc (0, (size))
445#define ev_free(ptr) ev_realloc ((ptr), 0) 491#define ev_free(ptr) ev_realloc ((ptr), 0)
446 492
447/*****************************************************************************/ 493/*****************************************************************************/
448 494
495/* set in reify when reification needed */
496#define EV_ANFD_REIFY 1
497
498/* file descriptor info structure */
449typedef struct 499typedef struct
450{ 500{
451 WL head; 501 WL head;
452 unsigned char events; 502 unsigned char events; /* the events watched for */
453 unsigned char reify; 503 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
454 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 504 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
505 unsigned char unused;
506#if EV_USE_EPOLL
455 unsigned char egen; /* generation counter to counter epoll bugs */ 507 unsigned int egen; /* generation counter to counter epoll bugs */
508#endif
456#if EV_SELECT_IS_WINSOCKET 509#if EV_SELECT_IS_WINSOCKET
457 SOCKET handle; 510 SOCKET handle;
458#endif 511#endif
459} ANFD; 512} ANFD;
460 513
514/* stores the pending event set for a given watcher */
461typedef struct 515typedef struct
462{ 516{
463 W w; 517 W w;
464 int events; 518 int events; /* the pending event set for the given watcher */
465} ANPENDING; 519} ANPENDING;
466 520
467#if EV_USE_INOTIFY 521#if EV_USE_INOTIFY
468/* hash table entry per inotify-id */ 522/* hash table entry per inotify-id */
469typedef struct 523typedef struct
472} ANFS; 526} ANFS;
473#endif 527#endif
474 528
475/* Heap Entry */ 529/* Heap Entry */
476#if EV_HEAP_CACHE_AT 530#if EV_HEAP_CACHE_AT
531 /* a heap element */
477 typedef struct { 532 typedef struct {
478 ev_tstamp at; 533 ev_tstamp at;
479 WT w; 534 WT w;
480 } ANHE; 535 } ANHE;
481 536
482 #define ANHE_w(he) (he).w /* access watcher, read-write */ 537 #define ANHE_w(he) (he).w /* access watcher, read-write */
483 #define ANHE_at(he) (he).at /* access cached at, read-only */ 538 #define ANHE_at(he) (he).at /* access cached at, read-only */
484 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 539 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
485#else 540#else
541 /* a heap element */
486 typedef WT ANHE; 542 typedef WT ANHE;
487 543
488 #define ANHE_w(he) (he) 544 #define ANHE_w(he) (he)
489 #define ANHE_at(he) (he)->at 545 #define ANHE_at(he) (he)->at
490 #define ANHE_at_cache(he) 546 #define ANHE_at_cache(he)
514 570
515 static int ev_default_loop_ptr; 571 static int ev_default_loop_ptr;
516 572
517#endif 573#endif
518 574
575#if EV_MINIMAL < 2
576# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
577# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
578# define EV_INVOKE_PENDING invoke_cb (EV_A)
579#else
580# define EV_RELEASE_CB (void)0
581# define EV_ACQUIRE_CB (void)0
582# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
583#endif
584
585#define EVUNLOOP_RECURSE 0x80
586
519/*****************************************************************************/ 587/*****************************************************************************/
520 588
589#ifndef EV_HAVE_EV_TIME
521ev_tstamp 590ev_tstamp
522ev_time (void) 591ev_time (void)
523{ 592{
524#if EV_USE_REALTIME 593#if EV_USE_REALTIME
594 if (expect_true (have_realtime))
595 {
525 struct timespec ts; 596 struct timespec ts;
526 clock_gettime (CLOCK_REALTIME, &ts); 597 clock_gettime (CLOCK_REALTIME, &ts);
527 return ts.tv_sec + ts.tv_nsec * 1e-9; 598 return ts.tv_sec + ts.tv_nsec * 1e-9;
528#else 599 }
600#endif
601
529 struct timeval tv; 602 struct timeval tv;
530 gettimeofday (&tv, 0); 603 gettimeofday (&tv, 0);
531 return tv.tv_sec + tv.tv_usec * 1e-6; 604 return tv.tv_sec + tv.tv_usec * 1e-6;
532#endif
533} 605}
606#endif
534 607
535ev_tstamp inline_size 608inline_size ev_tstamp
536get_clock (void) 609get_clock (void)
537{ 610{
538#if EV_USE_MONOTONIC 611#if EV_USE_MONOTONIC
539 if (expect_true (have_monotonic)) 612 if (expect_true (have_monotonic))
540 { 613 {
574 647
575 tv.tv_sec = (time_t)delay; 648 tv.tv_sec = (time_t)delay;
576 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 649 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
577 650
578 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 651 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
579 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 652 /* somehting not guaranteed by newer posix versions, but guaranteed */
580 /* by older ones */ 653 /* by older ones */
581 select (0, 0, 0, 0, &tv); 654 select (0, 0, 0, 0, &tv);
582#endif 655#endif
583 } 656 }
584} 657}
585 658
586/*****************************************************************************/ 659/*****************************************************************************/
587 660
588#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 661#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
589 662
590int inline_size 663/* find a suitable new size for the given array, */
664/* hopefully by rounding to a ncie-to-malloc size */
665inline_size int
591array_nextsize (int elem, int cur, int cnt) 666array_nextsize (int elem, int cur, int cnt)
592{ 667{
593 int ncur = cur + 1; 668 int ncur = cur + 1;
594 669
595 do 670 do
636 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 711 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
637 } 712 }
638#endif 713#endif
639 714
640#define array_free(stem, idx) \ 715#define array_free(stem, idx) \
641 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 716 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
642 717
643/*****************************************************************************/ 718/*****************************************************************************/
719
720/* dummy callback for pending events */
721static void noinline
722pendingcb (EV_P_ ev_prepare *w, int revents)
723{
724}
644 725
645void noinline 726void noinline
646ev_feed_event (EV_P_ void *w, int revents) 727ev_feed_event (EV_P_ void *w, int revents)
647{ 728{
648 W w_ = (W)w; 729 W w_ = (W)w;
657 pendings [pri][w_->pending - 1].w = w_; 738 pendings [pri][w_->pending - 1].w = w_;
658 pendings [pri][w_->pending - 1].events = revents; 739 pendings [pri][w_->pending - 1].events = revents;
659 } 740 }
660} 741}
661 742
662void inline_speed 743inline_speed void
744feed_reverse (EV_P_ W w)
745{
746 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
747 rfeeds [rfeedcnt++] = w;
748}
749
750inline_size void
751feed_reverse_done (EV_P_ int revents)
752{
753 do
754 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
755 while (rfeedcnt);
756}
757
758inline_speed void
663queue_events (EV_P_ W *events, int eventcnt, int type) 759queue_events (EV_P_ W *events, int eventcnt, int type)
664{ 760{
665 int i; 761 int i;
666 762
667 for (i = 0; i < eventcnt; ++i) 763 for (i = 0; i < eventcnt; ++i)
668 ev_feed_event (EV_A_ events [i], type); 764 ev_feed_event (EV_A_ events [i], type);
669} 765}
670 766
671/*****************************************************************************/ 767/*****************************************************************************/
672 768
673void inline_speed 769inline_speed void
674fd_event (EV_P_ int fd, int revents) 770fd_event_nc (EV_P_ int fd, int revents)
675{ 771{
676 ANFD *anfd = anfds + fd; 772 ANFD *anfd = anfds + fd;
677 ev_io *w; 773 ev_io *w;
678 774
679 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 775 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
683 if (ev) 779 if (ev)
684 ev_feed_event (EV_A_ (W)w, ev); 780 ev_feed_event (EV_A_ (W)w, ev);
685 } 781 }
686} 782}
687 783
784/* do not submit kernel events for fds that have reify set */
785/* because that means they changed while we were polling for new events */
786inline_speed void
787fd_event (EV_P_ int fd, int revents)
788{
789 ANFD *anfd = anfds + fd;
790
791 if (expect_true (!anfd->reify))
792 fd_event_nc (EV_A_ fd, revents);
793}
794
688void 795void
689ev_feed_fd_event (EV_P_ int fd, int revents) 796ev_feed_fd_event (EV_P_ int fd, int revents)
690{ 797{
691 if (fd >= 0 && fd < anfdmax) 798 if (fd >= 0 && fd < anfdmax)
692 fd_event (EV_A_ fd, revents); 799 fd_event_nc (EV_A_ fd, revents);
693} 800}
694 801
695void inline_size 802/* make sure the external fd watch events are in-sync */
803/* with the kernel/libev internal state */
804inline_size void
696fd_reify (EV_P) 805fd_reify (EV_P)
697{ 806{
698 int i; 807 int i;
699 808
700 for (i = 0; i < fdchangecnt; ++i) 809 for (i = 0; i < fdchangecnt; ++i)
715 #ifdef EV_FD_TO_WIN32_HANDLE 824 #ifdef EV_FD_TO_WIN32_HANDLE
716 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 825 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
717 #else 826 #else
718 anfd->handle = _get_osfhandle (fd); 827 anfd->handle = _get_osfhandle (fd);
719 #endif 828 #endif
720 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 829 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
721 } 830 }
722#endif 831#endif
723 832
724 { 833 {
725 unsigned char o_events = anfd->events; 834 unsigned char o_events = anfd->events;
726 unsigned char o_reify = anfd->reify; 835 unsigned char o_reify = anfd->reify;
727 836
728 anfd->reify = 0; 837 anfd->reify = 0;
729 anfd->events = events; 838 anfd->events = events;
730 839
731 if (o_events != events || o_reify & EV_IOFDSET) 840 if (o_events != events || o_reify & EV__IOFDSET)
732 backend_modify (EV_A_ fd, o_events, events); 841 backend_modify (EV_A_ fd, o_events, events);
733 } 842 }
734 } 843 }
735 844
736 fdchangecnt = 0; 845 fdchangecnt = 0;
737} 846}
738 847
739void inline_size 848/* something about the given fd changed */
849inline_size void
740fd_change (EV_P_ int fd, int flags) 850fd_change (EV_P_ int fd, int flags)
741{ 851{
742 unsigned char reify = anfds [fd].reify; 852 unsigned char reify = anfds [fd].reify;
743 anfds [fd].reify |= flags; 853 anfds [fd].reify |= flags;
744 854
748 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 858 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
749 fdchanges [fdchangecnt - 1] = fd; 859 fdchanges [fdchangecnt - 1] = fd;
750 } 860 }
751} 861}
752 862
753void inline_speed 863/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
864inline_speed void
754fd_kill (EV_P_ int fd) 865fd_kill (EV_P_ int fd)
755{ 866{
756 ev_io *w; 867 ev_io *w;
757 868
758 while ((w = (ev_io *)anfds [fd].head)) 869 while ((w = (ev_io *)anfds [fd].head))
760 ev_io_stop (EV_A_ w); 871 ev_io_stop (EV_A_ w);
761 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 872 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
762 } 873 }
763} 874}
764 875
765int inline_size 876/* check whether the given fd is atcually valid, for error recovery */
877inline_size int
766fd_valid (int fd) 878fd_valid (int fd)
767{ 879{
768#ifdef _WIN32 880#ifdef _WIN32
769 return _get_osfhandle (fd) != -1; 881 return _get_osfhandle (fd) != -1;
770#else 882#else
807 for (fd = 0; fd < anfdmax; ++fd) 919 for (fd = 0; fd < anfdmax; ++fd)
808 if (anfds [fd].events) 920 if (anfds [fd].events)
809 { 921 {
810 anfds [fd].events = 0; 922 anfds [fd].events = 0;
811 anfds [fd].emask = 0; 923 anfds [fd].emask = 0;
812 fd_change (EV_A_ fd, EV_IOFDSET | 1); 924 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
813 } 925 }
814} 926}
815 927
816/*****************************************************************************/ 928/*****************************************************************************/
817 929
833#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 945#define HEAP0 (DHEAP - 1) /* index of first element in heap */
834#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 946#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
835#define UPHEAP_DONE(p,k) ((p) == (k)) 947#define UPHEAP_DONE(p,k) ((p) == (k))
836 948
837/* away from the root */ 949/* away from the root */
838void inline_speed 950inline_speed void
839downheap (ANHE *heap, int N, int k) 951downheap (ANHE *heap, int N, int k)
840{ 952{
841 ANHE he = heap [k]; 953 ANHE he = heap [k];
842 ANHE *E = heap + N + HEAP0; 954 ANHE *E = heap + N + HEAP0;
843 955
883#define HEAP0 1 995#define HEAP0 1
884#define HPARENT(k) ((k) >> 1) 996#define HPARENT(k) ((k) >> 1)
885#define UPHEAP_DONE(p,k) (!(p)) 997#define UPHEAP_DONE(p,k) (!(p))
886 998
887/* away from the root */ 999/* away from the root */
888void inline_speed 1000inline_speed void
889downheap (ANHE *heap, int N, int k) 1001downheap (ANHE *heap, int N, int k)
890{ 1002{
891 ANHE he = heap [k]; 1003 ANHE he = heap [k];
892 1004
893 for (;;) 1005 for (;;)
913 ev_active (ANHE_w (he)) = k; 1025 ev_active (ANHE_w (he)) = k;
914} 1026}
915#endif 1027#endif
916 1028
917/* towards the root */ 1029/* towards the root */
918void inline_speed 1030inline_speed void
919upheap (ANHE *heap, int k) 1031upheap (ANHE *heap, int k)
920{ 1032{
921 ANHE he = heap [k]; 1033 ANHE he = heap [k];
922 1034
923 for (;;) 1035 for (;;)
934 1046
935 heap [k] = he; 1047 heap [k] = he;
936 ev_active (ANHE_w (he)) = k; 1048 ev_active (ANHE_w (he)) = k;
937} 1049}
938 1050
939void inline_size 1051/* move an element suitably so it is in a correct place */
1052inline_size void
940adjustheap (ANHE *heap, int N, int k) 1053adjustheap (ANHE *heap, int N, int k)
941{ 1054{
942 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1055 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
943 upheap (heap, k); 1056 upheap (heap, k);
944 else 1057 else
945 downheap (heap, N, k); 1058 downheap (heap, N, k);
946} 1059}
947 1060
948/* rebuild the heap: this function is used only once and executed rarely */ 1061/* rebuild the heap: this function is used only once and executed rarely */
949void inline_size 1062inline_size void
950reheap (ANHE *heap, int N) 1063reheap (ANHE *heap, int N)
951{ 1064{
952 int i; 1065 int i;
953 1066
954 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1067 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
957 upheap (heap, i + HEAP0); 1070 upheap (heap, i + HEAP0);
958} 1071}
959 1072
960/*****************************************************************************/ 1073/*****************************************************************************/
961 1074
1075/* associate signal watchers to a signal signal */
962typedef struct 1076typedef struct
963{ 1077{
964 WL head; 1078 WL head;
965 EV_ATOMIC_T gotsig; 1079 EV_ATOMIC_T gotsig;
966} ANSIG; 1080} ANSIG;
970 1084
971static EV_ATOMIC_T gotsig; 1085static EV_ATOMIC_T gotsig;
972 1086
973/*****************************************************************************/ 1087/*****************************************************************************/
974 1088
975void inline_speed 1089/* used to prepare libev internal fd's */
1090/* this is not fork-safe */
1091inline_speed void
976fd_intern (int fd) 1092fd_intern (int fd)
977{ 1093{
978#ifdef _WIN32 1094#ifdef _WIN32
979 unsigned long arg = 1; 1095 unsigned long arg = 1;
980 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1096 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
985} 1101}
986 1102
987static void noinline 1103static void noinline
988evpipe_init (EV_P) 1104evpipe_init (EV_P)
989{ 1105{
990 if (!ev_is_active (&pipeev)) 1106 if (!ev_is_active (&pipe_w))
991 { 1107 {
992#if EV_USE_EVENTFD 1108#if EV_USE_EVENTFD
993 if ((evfd = eventfd (0, 0)) >= 0) 1109 if ((evfd = eventfd (0, 0)) >= 0)
994 { 1110 {
995 evpipe [0] = -1; 1111 evpipe [0] = -1;
996 fd_intern (evfd); 1112 fd_intern (evfd);
997 ev_io_set (&pipeev, evfd, EV_READ); 1113 ev_io_set (&pipe_w, evfd, EV_READ);
998 } 1114 }
999 else 1115 else
1000#endif 1116#endif
1001 { 1117 {
1002 while (pipe (evpipe)) 1118 while (pipe (evpipe))
1003 syserr ("(libev) error creating signal/async pipe"); 1119 ev_syserr ("(libev) error creating signal/async pipe");
1004 1120
1005 fd_intern (evpipe [0]); 1121 fd_intern (evpipe [0]);
1006 fd_intern (evpipe [1]); 1122 fd_intern (evpipe [1]);
1007 ev_io_set (&pipeev, evpipe [0], EV_READ); 1123 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1008 } 1124 }
1009 1125
1010 ev_io_start (EV_A_ &pipeev); 1126 ev_io_start (EV_A_ &pipe_w);
1011 ev_unref (EV_A); /* watcher should not keep loop alive */ 1127 ev_unref (EV_A); /* watcher should not keep loop alive */
1012 } 1128 }
1013} 1129}
1014 1130
1015void inline_size 1131inline_size void
1016evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1132evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1017{ 1133{
1018 if (!*flag) 1134 if (!*flag)
1019 { 1135 {
1020 int old_errno = errno; /* save errno because write might clobber it */ 1136 int old_errno = errno; /* save errno because write might clobber it */
1033 1149
1034 errno = old_errno; 1150 errno = old_errno;
1035 } 1151 }
1036} 1152}
1037 1153
1154/* called whenever the libev signal pipe */
1155/* got some events (signal, async) */
1038static void 1156static void
1039pipecb (EV_P_ ev_io *iow, int revents) 1157pipecb (EV_P_ ev_io *iow, int revents)
1040{ 1158{
1041#if EV_USE_EVENTFD 1159#if EV_USE_EVENTFD
1042 if (evfd >= 0) 1160 if (evfd >= 0)
1098ev_feed_signal_event (EV_P_ int signum) 1216ev_feed_signal_event (EV_P_ int signum)
1099{ 1217{
1100 WL w; 1218 WL w;
1101 1219
1102#if EV_MULTIPLICITY 1220#if EV_MULTIPLICITY
1103 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1221 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1104#endif 1222#endif
1105 1223
1106 --signum; 1224 --signum;
1107 1225
1108 if (signum < 0 || signum >= signalmax) 1226 if (signum < 0 || signum >= signalmax)
1124 1242
1125#ifndef WIFCONTINUED 1243#ifndef WIFCONTINUED
1126# define WIFCONTINUED(status) 0 1244# define WIFCONTINUED(status) 0
1127#endif 1245#endif
1128 1246
1129void inline_speed 1247/* handle a single child status event */
1248inline_speed void
1130child_reap (EV_P_ int chain, int pid, int status) 1249child_reap (EV_P_ int chain, int pid, int status)
1131{ 1250{
1132 ev_child *w; 1251 ev_child *w;
1133 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1252 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1134 1253
1147 1266
1148#ifndef WCONTINUED 1267#ifndef WCONTINUED
1149# define WCONTINUED 0 1268# define WCONTINUED 0
1150#endif 1269#endif
1151 1270
1271/* called on sigchld etc., calls waitpid */
1152static void 1272static void
1153childcb (EV_P_ ev_signal *sw, int revents) 1273childcb (EV_P_ ev_signal *sw, int revents)
1154{ 1274{
1155 int pid, status; 1275 int pid, status;
1156 1276
1237 /* kqueue is borked on everything but netbsd apparently */ 1357 /* kqueue is borked on everything but netbsd apparently */
1238 /* it usually doesn't work correctly on anything but sockets and pipes */ 1358 /* it usually doesn't work correctly on anything but sockets and pipes */
1239 flags &= ~EVBACKEND_KQUEUE; 1359 flags &= ~EVBACKEND_KQUEUE;
1240#endif 1360#endif
1241#ifdef __APPLE__ 1361#ifdef __APPLE__
1242 // flags &= ~EVBACKEND_KQUEUE; for documentation 1362 /* only select works correctly on that "unix-certified" platform */
1243 flags &= ~EVBACKEND_POLL; 1363 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1364 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1244#endif 1365#endif
1245 1366
1246 return flags; 1367 return flags;
1247} 1368}
1248 1369
1262ev_backend (EV_P) 1383ev_backend (EV_P)
1263{ 1384{
1264 return backend; 1385 return backend;
1265} 1386}
1266 1387
1388#if EV_MINIMAL < 2
1267unsigned int 1389unsigned int
1268ev_loop_count (EV_P) 1390ev_loop_count (EV_P)
1269{ 1391{
1270 return loop_count; 1392 return loop_count;
1271} 1393}
1272 1394
1395unsigned int
1396ev_loop_depth (EV_P)
1397{
1398 return loop_depth;
1399}
1400
1273void 1401void
1274ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1402ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1275{ 1403{
1276 io_blocktime = interval; 1404 io_blocktime = interval;
1277} 1405}
1280ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1408ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1281{ 1409{
1282 timeout_blocktime = interval; 1410 timeout_blocktime = interval;
1283} 1411}
1284 1412
1413void
1414ev_set_userdata (EV_P_ void *data)
1415{
1416 userdata = data;
1417}
1418
1419void *
1420ev_userdata (EV_P)
1421{
1422 return userdata;
1423}
1424
1425void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1426{
1427 invoke_cb = invoke_pending_cb;
1428}
1429
1430void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1431{
1432 release_cb = release;
1433 acquire_cb = acquire;
1434}
1435#endif
1436
1437/* initialise a loop structure, must be zero-initialised */
1285static void noinline 1438static void noinline
1286loop_init (EV_P_ unsigned int flags) 1439loop_init (EV_P_ unsigned int flags)
1287{ 1440{
1288 if (!backend) 1441 if (!backend)
1289 { 1442 {
1443#if EV_USE_REALTIME
1444 if (!have_realtime)
1445 {
1446 struct timespec ts;
1447
1448 if (!clock_gettime (CLOCK_REALTIME, &ts))
1449 have_realtime = 1;
1450 }
1451#endif
1452
1290#if EV_USE_MONOTONIC 1453#if EV_USE_MONOTONIC
1454 if (!have_monotonic)
1291 { 1455 {
1292 struct timespec ts; 1456 struct timespec ts;
1457
1293 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1458 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1294 have_monotonic = 1; 1459 have_monotonic = 1;
1295 } 1460 }
1296#endif 1461#endif
1297 1462
1298 ev_rt_now = ev_time (); 1463 ev_rt_now = ev_time ();
1299 mn_now = get_clock (); 1464 mn_now = get_clock ();
1300 now_floor = mn_now; 1465 now_floor = mn_now;
1301 rtmn_diff = ev_rt_now - mn_now; 1466 rtmn_diff = ev_rt_now - mn_now;
1467#if EV_MINIMAL < 2
1468 invoke_cb = ev_invoke_pending;
1469#endif
1302 1470
1303 io_blocktime = 0.; 1471 io_blocktime = 0.;
1304 timeout_blocktime = 0.; 1472 timeout_blocktime = 0.;
1305 backend = 0; 1473 backend = 0;
1306 backend_fd = -1; 1474 backend_fd = -1;
1337#endif 1505#endif
1338#if EV_USE_SELECT 1506#if EV_USE_SELECT
1339 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1507 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1340#endif 1508#endif
1341 1509
1510 ev_prepare_init (&pending_w, pendingcb);
1511
1342 ev_init (&pipeev, pipecb); 1512 ev_init (&pipe_w, pipecb);
1343 ev_set_priority (&pipeev, EV_MAXPRI); 1513 ev_set_priority (&pipe_w, EV_MAXPRI);
1344 } 1514 }
1345} 1515}
1346 1516
1517/* free up a loop structure */
1347static void noinline 1518static void noinline
1348loop_destroy (EV_P) 1519loop_destroy (EV_P)
1349{ 1520{
1350 int i; 1521 int i;
1351 1522
1352 if (ev_is_active (&pipeev)) 1523 if (ev_is_active (&pipe_w))
1353 { 1524 {
1354 ev_ref (EV_A); /* signal watcher */ 1525 ev_ref (EV_A); /* signal watcher */
1355 ev_io_stop (EV_A_ &pipeev); 1526 ev_io_stop (EV_A_ &pipe_w);
1356 1527
1357#if EV_USE_EVENTFD 1528#if EV_USE_EVENTFD
1358 if (evfd >= 0) 1529 if (evfd >= 0)
1359 close (evfd); 1530 close (evfd);
1360#endif 1531#endif
1399 } 1570 }
1400 1571
1401 ev_free (anfds); anfdmax = 0; 1572 ev_free (anfds); anfdmax = 0;
1402 1573
1403 /* have to use the microsoft-never-gets-it-right macro */ 1574 /* have to use the microsoft-never-gets-it-right macro */
1575 array_free (rfeed, EMPTY);
1404 array_free (fdchange, EMPTY); 1576 array_free (fdchange, EMPTY);
1405 array_free (timer, EMPTY); 1577 array_free (timer, EMPTY);
1406#if EV_PERIODIC_ENABLE 1578#if EV_PERIODIC_ENABLE
1407 array_free (periodic, EMPTY); 1579 array_free (periodic, EMPTY);
1408#endif 1580#endif
1417 1589
1418 backend = 0; 1590 backend = 0;
1419} 1591}
1420 1592
1421#if EV_USE_INOTIFY 1593#if EV_USE_INOTIFY
1422void inline_size infy_fork (EV_P); 1594inline_size void infy_fork (EV_P);
1423#endif 1595#endif
1424 1596
1425void inline_size 1597inline_size void
1426loop_fork (EV_P) 1598loop_fork (EV_P)
1427{ 1599{
1428#if EV_USE_PORT 1600#if EV_USE_PORT
1429 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1601 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1430#endif 1602#endif
1436#endif 1608#endif
1437#if EV_USE_INOTIFY 1609#if EV_USE_INOTIFY
1438 infy_fork (EV_A); 1610 infy_fork (EV_A);
1439#endif 1611#endif
1440 1612
1441 if (ev_is_active (&pipeev)) 1613 if (ev_is_active (&pipe_w))
1442 { 1614 {
1443 /* this "locks" the handlers against writing to the pipe */ 1615 /* this "locks" the handlers against writing to the pipe */
1444 /* while we modify the fd vars */ 1616 /* while we modify the fd vars */
1445 gotsig = 1; 1617 gotsig = 1;
1446#if EV_ASYNC_ENABLE 1618#if EV_ASYNC_ENABLE
1447 gotasync = 1; 1619 gotasync = 1;
1448#endif 1620#endif
1449 1621
1450 ev_ref (EV_A); 1622 ev_ref (EV_A);
1451 ev_io_stop (EV_A_ &pipeev); 1623 ev_io_stop (EV_A_ &pipe_w);
1452 1624
1453#if EV_USE_EVENTFD 1625#if EV_USE_EVENTFD
1454 if (evfd >= 0) 1626 if (evfd >= 0)
1455 close (evfd); 1627 close (evfd);
1456#endif 1628#endif
1461 close (evpipe [1]); 1633 close (evpipe [1]);
1462 } 1634 }
1463 1635
1464 evpipe_init (EV_A); 1636 evpipe_init (EV_A);
1465 /* now iterate over everything, in case we missed something */ 1637 /* now iterate over everything, in case we missed something */
1466 pipecb (EV_A_ &pipeev, EV_READ); 1638 pipecb (EV_A_ &pipe_w, EV_READ);
1467 } 1639 }
1468 1640
1469 postfork = 0; 1641 postfork = 0;
1470} 1642}
1471 1643
1496void 1668void
1497ev_loop_fork (EV_P) 1669ev_loop_fork (EV_P)
1498{ 1670{
1499 postfork = 1; /* must be in line with ev_default_fork */ 1671 postfork = 1; /* must be in line with ev_default_fork */
1500} 1672}
1673#endif /* multiplicity */
1501 1674
1502#if EV_VERIFY 1675#if EV_VERIFY
1503static void noinline 1676static void noinline
1504verify_watcher (EV_P_ W w) 1677verify_watcher (EV_P_ W w)
1505{ 1678{
1506 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 1679 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1507 1680
1508 if (w->pending) 1681 if (w->pending)
1509 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 1682 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1510} 1683}
1511 1684
1512static void noinline 1685static void noinline
1513verify_heap (EV_P_ ANHE *heap, int N) 1686verify_heap (EV_P_ ANHE *heap, int N)
1514{ 1687{
1515 int i; 1688 int i;
1516 1689
1517 for (i = HEAP0; i < N + HEAP0; ++i) 1690 for (i = HEAP0; i < N + HEAP0; ++i)
1518 { 1691 {
1519 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 1692 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1520 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 1693 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1521 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 1694 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1522 1695
1523 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 1696 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1524 } 1697 }
1525} 1698}
1526 1699
1527static void noinline 1700static void noinline
1528array_verify (EV_P_ W *ws, int cnt) 1701array_verify (EV_P_ W *ws, int cnt)
1529{ 1702{
1530 while (cnt--) 1703 while (cnt--)
1531 { 1704 {
1532 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 1705 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1533 verify_watcher (EV_A_ ws [cnt]); 1706 verify_watcher (EV_A_ ws [cnt]);
1534 } 1707 }
1535} 1708}
1536#endif 1709#endif
1537 1710
1711#if EV_MINIMAL < 2
1538void 1712void
1539ev_loop_verify (EV_P) 1713ev_loop_verify (EV_P)
1540{ 1714{
1541#if EV_VERIFY 1715#if EV_VERIFY
1542 int i; 1716 int i;
1544 1718
1545 assert (activecnt >= -1); 1719 assert (activecnt >= -1);
1546 1720
1547 assert (fdchangemax >= fdchangecnt); 1721 assert (fdchangemax >= fdchangecnt);
1548 for (i = 0; i < fdchangecnt; ++i) 1722 for (i = 0; i < fdchangecnt; ++i)
1549 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 1723 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1550 1724
1551 assert (anfdmax >= 0); 1725 assert (anfdmax >= 0);
1552 for (i = 0; i < anfdmax; ++i) 1726 for (i = 0; i < anfdmax; ++i)
1553 for (w = anfds [i].head; w; w = w->next) 1727 for (w = anfds [i].head; w; w = w->next)
1554 { 1728 {
1555 verify_watcher (EV_A_ (W)w); 1729 verify_watcher (EV_A_ (W)w);
1556 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 1730 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1557 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 1731 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1558 } 1732 }
1559 1733
1560 assert (timermax >= timercnt); 1734 assert (timermax >= timercnt);
1561 verify_heap (EV_A_ timers, timercnt); 1735 verify_heap (EV_A_ timers, timercnt);
1562 1736
1595 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1769 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1596 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 1770 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1597# endif 1771# endif
1598#endif 1772#endif
1599} 1773}
1600 1774#endif
1601#endif /* multiplicity */
1602 1775
1603#if EV_MULTIPLICITY 1776#if EV_MULTIPLICITY
1604struct ev_loop * 1777struct ev_loop *
1605ev_default_loop_init (unsigned int flags) 1778ev_default_loop_init (unsigned int flags)
1606#else 1779#else
1656{ 1829{
1657#if EV_MULTIPLICITY 1830#if EV_MULTIPLICITY
1658 struct ev_loop *loop = ev_default_loop_ptr; 1831 struct ev_loop *loop = ev_default_loop_ptr;
1659#endif 1832#endif
1660 1833
1661 if (backend)
1662 postfork = 1; /* must be in line with ev_loop_fork */ 1834 postfork = 1; /* must be in line with ev_loop_fork */
1663} 1835}
1664 1836
1665/*****************************************************************************/ 1837/*****************************************************************************/
1666 1838
1667void 1839void
1668ev_invoke (EV_P_ void *w, int revents) 1840ev_invoke (EV_P_ void *w, int revents)
1669{ 1841{
1670 EV_CB_INVOKE ((W)w, revents); 1842 EV_CB_INVOKE ((W)w, revents);
1671} 1843}
1672 1844
1673void inline_speed 1845unsigned int
1674call_pending (EV_P) 1846ev_pending_count (EV_P)
1847{
1848 int pri;
1849 unsigned int count = 0;
1850
1851 for (pri = NUMPRI; pri--; )
1852 count += pendingcnt [pri];
1853
1854 return count;
1855}
1856
1857void noinline
1858ev_invoke_pending (EV_P)
1675{ 1859{
1676 int pri; 1860 int pri;
1677 1861
1678 for (pri = NUMPRI; pri--; ) 1862 for (pri = NUMPRI; pri--; )
1679 while (pendingcnt [pri]) 1863 while (pendingcnt [pri])
1680 { 1864 {
1681 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1865 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1682 1866
1683 if (expect_true (p->w))
1684 {
1685 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1867 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1868 /* ^ this is no longer true, as pending_w could be here */
1686 1869
1687 p->w->pending = 0; 1870 p->w->pending = 0;
1688 EV_CB_INVOKE (p->w, p->events); 1871 EV_CB_INVOKE (p->w, p->events);
1689 EV_FREQUENT_CHECK; 1872 EV_FREQUENT_CHECK;
1690 }
1691 } 1873 }
1692} 1874}
1693 1875
1694#if EV_IDLE_ENABLE 1876#if EV_IDLE_ENABLE
1695void inline_size 1877/* make idle watchers pending. this handles the "call-idle */
1878/* only when higher priorities are idle" logic */
1879inline_size void
1696idle_reify (EV_P) 1880idle_reify (EV_P)
1697{ 1881{
1698 if (expect_false (idleall)) 1882 if (expect_false (idleall))
1699 { 1883 {
1700 int pri; 1884 int pri;
1712 } 1896 }
1713 } 1897 }
1714} 1898}
1715#endif 1899#endif
1716 1900
1717void inline_size 1901/* make timers pending */
1902inline_size void
1718timers_reify (EV_P) 1903timers_reify (EV_P)
1719{ 1904{
1720 EV_FREQUENT_CHECK; 1905 EV_FREQUENT_CHECK;
1721 1906
1722 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 1907 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1723 { 1908 {
1724 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 1909 do
1725
1726 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1727
1728 /* first reschedule or stop timer */
1729 if (w->repeat)
1730 { 1910 {
1911 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1912
1913 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1914
1915 /* first reschedule or stop timer */
1916 if (w->repeat)
1917 {
1731 ev_at (w) += w->repeat; 1918 ev_at (w) += w->repeat;
1732 if (ev_at (w) < mn_now) 1919 if (ev_at (w) < mn_now)
1733 ev_at (w) = mn_now; 1920 ev_at (w) = mn_now;
1734 1921
1735 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1922 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1736 1923
1737 ANHE_at_cache (timers [HEAP0]); 1924 ANHE_at_cache (timers [HEAP0]);
1738 downheap (timers, timercnt, HEAP0); 1925 downheap (timers, timercnt, HEAP0);
1926 }
1927 else
1928 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1929
1930 EV_FREQUENT_CHECK;
1931 feed_reverse (EV_A_ (W)w);
1739 } 1932 }
1740 else 1933 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1741 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1742 1934
1743 EV_FREQUENT_CHECK;
1744 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1935 feed_reverse_done (EV_A_ EV_TIMEOUT);
1745 } 1936 }
1746} 1937}
1747 1938
1748#if EV_PERIODIC_ENABLE 1939#if EV_PERIODIC_ENABLE
1749void inline_size 1940/* make periodics pending */
1941inline_size void
1750periodics_reify (EV_P) 1942periodics_reify (EV_P)
1751{ 1943{
1752 EV_FREQUENT_CHECK; 1944 EV_FREQUENT_CHECK;
1753 1945
1754 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 1946 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1755 { 1947 {
1756 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 1948 int feed_count = 0;
1757 1949
1758 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1950 do
1759
1760 /* first reschedule or stop timer */
1761 if (w->reschedule_cb)
1762 { 1951 {
1952 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1953
1954 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1955
1956 /* first reschedule or stop timer */
1957 if (w->reschedule_cb)
1958 {
1763 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1959 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1764 1960
1765 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 1961 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1766 1962
1767 ANHE_at_cache (periodics [HEAP0]); 1963 ANHE_at_cache (periodics [HEAP0]);
1768 downheap (periodics, periodiccnt, HEAP0); 1964 downheap (periodics, periodiccnt, HEAP0);
1965 }
1966 else if (w->interval)
1967 {
1968 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1969 /* if next trigger time is not sufficiently in the future, put it there */
1970 /* this might happen because of floating point inexactness */
1971 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1972 {
1973 ev_at (w) += w->interval;
1974
1975 /* if interval is unreasonably low we might still have a time in the past */
1976 /* so correct this. this will make the periodic very inexact, but the user */
1977 /* has effectively asked to get triggered more often than possible */
1978 if (ev_at (w) < ev_rt_now)
1979 ev_at (w) = ev_rt_now;
1980 }
1981
1982 ANHE_at_cache (periodics [HEAP0]);
1983 downheap (periodics, periodiccnt, HEAP0);
1984 }
1985 else
1986 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1987
1988 EV_FREQUENT_CHECK;
1989 feed_reverse (EV_A_ (W)w);
1769 } 1990 }
1770 else if (w->interval) 1991 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1771 {
1772 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1773 /* if next trigger time is not sufficiently in the future, put it there */
1774 /* this might happen because of floating point inexactness */
1775 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1776 {
1777 ev_at (w) += w->interval;
1778 1992
1779 /* if interval is unreasonably low we might still have a time in the past */
1780 /* so correct this. this will make the periodic very inexact, but the user */
1781 /* has effectively asked to get triggered more often than possible */
1782 if (ev_at (w) < ev_rt_now)
1783 ev_at (w) = ev_rt_now;
1784 }
1785
1786 ANHE_at_cache (periodics [HEAP0]);
1787 downheap (periodics, periodiccnt, HEAP0);
1788 }
1789 else
1790 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1791
1792 EV_FREQUENT_CHECK;
1793 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1993 feed_reverse_done (EV_A_ EV_PERIODIC);
1794 } 1994 }
1795} 1995}
1796 1996
1997/* simply recalculate all periodics */
1998/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1797static void noinline 1999static void noinline
1798periodics_reschedule (EV_P) 2000periodics_reschedule (EV_P)
1799{ 2001{
1800 int i; 2002 int i;
1801 2003
1814 2016
1815 reheap (periodics, periodiccnt); 2017 reheap (periodics, periodiccnt);
1816} 2018}
1817#endif 2019#endif
1818 2020
1819void inline_speed 2021/* adjust all timers by a given offset */
2022static void noinline
2023timers_reschedule (EV_P_ ev_tstamp adjust)
2024{
2025 int i;
2026
2027 for (i = 0; i < timercnt; ++i)
2028 {
2029 ANHE *he = timers + i + HEAP0;
2030 ANHE_w (*he)->at += adjust;
2031 ANHE_at_cache (*he);
2032 }
2033}
2034
2035/* fetch new monotonic and realtime times from the kernel */
2036/* also detetc if there was a timejump, and act accordingly */
2037inline_speed void
1820time_update (EV_P_ ev_tstamp max_block) 2038time_update (EV_P_ ev_tstamp max_block)
1821{ 2039{
1822 int i;
1823
1824#if EV_USE_MONOTONIC 2040#if EV_USE_MONOTONIC
1825 if (expect_true (have_monotonic)) 2041 if (expect_true (have_monotonic))
1826 { 2042 {
2043 int i;
1827 ev_tstamp odiff = rtmn_diff; 2044 ev_tstamp odiff = rtmn_diff;
1828 2045
1829 mn_now = get_clock (); 2046 mn_now = get_clock ();
1830 2047
1831 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2048 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1857 ev_rt_now = ev_time (); 2074 ev_rt_now = ev_time ();
1858 mn_now = get_clock (); 2075 mn_now = get_clock ();
1859 now_floor = mn_now; 2076 now_floor = mn_now;
1860 } 2077 }
1861 2078
2079 /* no timer adjustment, as the monotonic clock doesn't jump */
2080 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1862# if EV_PERIODIC_ENABLE 2081# if EV_PERIODIC_ENABLE
1863 periodics_reschedule (EV_A); 2082 periodics_reschedule (EV_A);
1864# endif 2083# endif
1865 /* no timer adjustment, as the monotonic clock doesn't jump */
1866 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1867 } 2084 }
1868 else 2085 else
1869#endif 2086#endif
1870 { 2087 {
1871 ev_rt_now = ev_time (); 2088 ev_rt_now = ev_time ();
1872 2089
1873 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2090 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1874 { 2091 {
2092 /* adjust timers. this is easy, as the offset is the same for all of them */
2093 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1875#if EV_PERIODIC_ENABLE 2094#if EV_PERIODIC_ENABLE
1876 periodics_reschedule (EV_A); 2095 periodics_reschedule (EV_A);
1877#endif 2096#endif
1878 /* adjust timers. this is easy, as the offset is the same for all of them */
1879 for (i = 0; i < timercnt; ++i)
1880 {
1881 ANHE *he = timers + i + HEAP0;
1882 ANHE_w (*he)->at += ev_rt_now - mn_now;
1883 ANHE_at_cache (*he);
1884 }
1885 } 2097 }
1886 2098
1887 mn_now = ev_rt_now; 2099 mn_now = ev_rt_now;
1888 } 2100 }
1889} 2101}
1890 2102
1891void 2103void
1892ev_ref (EV_P)
1893{
1894 ++activecnt;
1895}
1896
1897void
1898ev_unref (EV_P)
1899{
1900 --activecnt;
1901}
1902
1903void
1904ev_now_update (EV_P)
1905{
1906 time_update (EV_A_ 1e100);
1907}
1908
1909static int loop_done;
1910
1911void
1912ev_loop (EV_P_ int flags) 2104ev_loop (EV_P_ int flags)
1913{ 2105{
2106#if EV_MINIMAL < 2
2107 ++loop_depth;
2108#endif
2109
2110 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2111
1914 loop_done = EVUNLOOP_CANCEL; 2112 loop_done = EVUNLOOP_CANCEL;
1915 2113
1916 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2114 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1917 2115
1918 do 2116 do
1919 { 2117 {
1920#if EV_VERIFY >= 2 2118#if EV_VERIFY >= 2
1921 ev_loop_verify (EV_A); 2119 ev_loop_verify (EV_A);
1934 /* we might have forked, so queue fork handlers */ 2132 /* we might have forked, so queue fork handlers */
1935 if (expect_false (postfork)) 2133 if (expect_false (postfork))
1936 if (forkcnt) 2134 if (forkcnt)
1937 { 2135 {
1938 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2136 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1939 call_pending (EV_A); 2137 EV_INVOKE_PENDING;
1940 } 2138 }
1941#endif 2139#endif
1942 2140
1943 /* queue prepare watchers (and execute them) */ 2141 /* queue prepare watchers (and execute them) */
1944 if (expect_false (preparecnt)) 2142 if (expect_false (preparecnt))
1945 { 2143 {
1946 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2144 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1947 call_pending (EV_A); 2145 EV_INVOKE_PENDING;
1948 } 2146 }
1949 2147
1950 if (expect_false (!activecnt)) 2148 if (expect_false (loop_done))
1951 break; 2149 break;
1952 2150
1953 /* we might have forked, so reify kernel state if necessary */ 2151 /* we might have forked, so reify kernel state if necessary */
1954 if (expect_false (postfork)) 2152 if (expect_false (postfork))
1955 loop_fork (EV_A); 2153 loop_fork (EV_A);
1962 ev_tstamp waittime = 0.; 2160 ev_tstamp waittime = 0.;
1963 ev_tstamp sleeptime = 0.; 2161 ev_tstamp sleeptime = 0.;
1964 2162
1965 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2163 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1966 { 2164 {
2165 /* remember old timestamp for io_blocktime calculation */
2166 ev_tstamp prev_mn_now = mn_now;
2167
1967 /* update time to cancel out callback processing overhead */ 2168 /* update time to cancel out callback processing overhead */
1968 time_update (EV_A_ 1e100); 2169 time_update (EV_A_ 1e100);
1969 2170
1970 waittime = MAX_BLOCKTIME; 2171 waittime = MAX_BLOCKTIME;
1971 2172
1981 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2182 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1982 if (waittime > to) waittime = to; 2183 if (waittime > to) waittime = to;
1983 } 2184 }
1984#endif 2185#endif
1985 2186
2187 /* don't let timeouts decrease the waittime below timeout_blocktime */
1986 if (expect_false (waittime < timeout_blocktime)) 2188 if (expect_false (waittime < timeout_blocktime))
1987 waittime = timeout_blocktime; 2189 waittime = timeout_blocktime;
1988 2190
1989 sleeptime = waittime - backend_fudge; 2191 /* extra check because io_blocktime is commonly 0 */
1990
1991 if (expect_true (sleeptime > io_blocktime)) 2192 if (expect_false (io_blocktime))
1992 sleeptime = io_blocktime;
1993
1994 if (sleeptime)
1995 { 2193 {
2194 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2195
2196 if (sleeptime > waittime - backend_fudge)
2197 sleeptime = waittime - backend_fudge;
2198
2199 if (expect_true (sleeptime > 0.))
2200 {
1996 ev_sleep (sleeptime); 2201 ev_sleep (sleeptime);
1997 waittime -= sleeptime; 2202 waittime -= sleeptime;
2203 }
1998 } 2204 }
1999 } 2205 }
2000 2206
2207#if EV_MINIMAL < 2
2001 ++loop_count; 2208 ++loop_count;
2209#endif
2210 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2002 backend_poll (EV_A_ waittime); 2211 backend_poll (EV_A_ waittime);
2212 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2003 2213
2004 /* update ev_rt_now, do magic */ 2214 /* update ev_rt_now, do magic */
2005 time_update (EV_A_ waittime + sleeptime); 2215 time_update (EV_A_ waittime + sleeptime);
2006 } 2216 }
2007 2217
2018 2228
2019 /* queue check watchers, to be executed first */ 2229 /* queue check watchers, to be executed first */
2020 if (expect_false (checkcnt)) 2230 if (expect_false (checkcnt))
2021 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2231 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2022 2232
2023 call_pending (EV_A); 2233 EV_INVOKE_PENDING;
2024 } 2234 }
2025 while (expect_true ( 2235 while (expect_true (
2026 activecnt 2236 activecnt
2027 && !loop_done 2237 && !loop_done
2028 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2238 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2029 )); 2239 ));
2030 2240
2031 if (loop_done == EVUNLOOP_ONE) 2241 if (loop_done == EVUNLOOP_ONE)
2032 loop_done = EVUNLOOP_CANCEL; 2242 loop_done = EVUNLOOP_CANCEL;
2243
2244#if EV_MINIMAL < 2
2245 --loop_depth;
2246#endif
2033} 2247}
2034 2248
2035void 2249void
2036ev_unloop (EV_P_ int how) 2250ev_unloop (EV_P_ int how)
2037{ 2251{
2038 loop_done = how; 2252 loop_done = how;
2039} 2253}
2040 2254
2255void
2256ev_ref (EV_P)
2257{
2258 ++activecnt;
2259}
2260
2261void
2262ev_unref (EV_P)
2263{
2264 --activecnt;
2265}
2266
2267void
2268ev_now_update (EV_P)
2269{
2270 time_update (EV_A_ 1e100);
2271}
2272
2273void
2274ev_suspend (EV_P)
2275{
2276 ev_now_update (EV_A);
2277}
2278
2279void
2280ev_resume (EV_P)
2281{
2282 ev_tstamp mn_prev = mn_now;
2283
2284 ev_now_update (EV_A);
2285 timers_reschedule (EV_A_ mn_now - mn_prev);
2286#if EV_PERIODIC_ENABLE
2287 /* TODO: really do this? */
2288 periodics_reschedule (EV_A);
2289#endif
2290}
2291
2041/*****************************************************************************/ 2292/*****************************************************************************/
2293/* singly-linked list management, used when the expected list length is short */
2042 2294
2043void inline_size 2295inline_size void
2044wlist_add (WL *head, WL elem) 2296wlist_add (WL *head, WL elem)
2045{ 2297{
2046 elem->next = *head; 2298 elem->next = *head;
2047 *head = elem; 2299 *head = elem;
2048} 2300}
2049 2301
2050void inline_size 2302inline_size void
2051wlist_del (WL *head, WL elem) 2303wlist_del (WL *head, WL elem)
2052{ 2304{
2053 while (*head) 2305 while (*head)
2054 { 2306 {
2055 if (*head == elem) 2307 if (*head == elem)
2060 2312
2061 head = &(*head)->next; 2313 head = &(*head)->next;
2062 } 2314 }
2063} 2315}
2064 2316
2065void inline_speed 2317/* internal, faster, version of ev_clear_pending */
2318inline_speed void
2066clear_pending (EV_P_ W w) 2319clear_pending (EV_P_ W w)
2067{ 2320{
2068 if (w->pending) 2321 if (w->pending)
2069 { 2322 {
2070 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2323 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2071 w->pending = 0; 2324 w->pending = 0;
2072 } 2325 }
2073} 2326}
2074 2327
2075int 2328int
2079 int pending = w_->pending; 2332 int pending = w_->pending;
2080 2333
2081 if (expect_true (pending)) 2334 if (expect_true (pending))
2082 { 2335 {
2083 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2336 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2337 p->w = (W)&pending_w;
2084 w_->pending = 0; 2338 w_->pending = 0;
2085 p->w = 0;
2086 return p->events; 2339 return p->events;
2087 } 2340 }
2088 else 2341 else
2089 return 0; 2342 return 0;
2090} 2343}
2091 2344
2092void inline_size 2345inline_size void
2093pri_adjust (EV_P_ W w) 2346pri_adjust (EV_P_ W w)
2094{ 2347{
2095 int pri = w->priority; 2348 int pri = ev_priority (w);
2096 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2349 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2097 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2350 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2098 w->priority = pri; 2351 ev_set_priority (w, pri);
2099} 2352}
2100 2353
2101void inline_speed 2354inline_speed void
2102ev_start (EV_P_ W w, int active) 2355ev_start (EV_P_ W w, int active)
2103{ 2356{
2104 pri_adjust (EV_A_ w); 2357 pri_adjust (EV_A_ w);
2105 w->active = active; 2358 w->active = active;
2106 ev_ref (EV_A); 2359 ev_ref (EV_A);
2107} 2360}
2108 2361
2109void inline_size 2362inline_size void
2110ev_stop (EV_P_ W w) 2363ev_stop (EV_P_ W w)
2111{ 2364{
2112 ev_unref (EV_A); 2365 ev_unref (EV_A);
2113 w->active = 0; 2366 w->active = 0;
2114} 2367}
2121 int fd = w->fd; 2374 int fd = w->fd;
2122 2375
2123 if (expect_false (ev_is_active (w))) 2376 if (expect_false (ev_is_active (w)))
2124 return; 2377 return;
2125 2378
2126 assert (("ev_io_start called with negative fd", fd >= 0)); 2379 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2127 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE)))); 2380 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2128 2381
2129 EV_FREQUENT_CHECK; 2382 EV_FREQUENT_CHECK;
2130 2383
2131 ev_start (EV_A_ (W)w, 1); 2384 ev_start (EV_A_ (W)w, 1);
2132 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 2385 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2133 wlist_add (&anfds[fd].head, (WL)w); 2386 wlist_add (&anfds[fd].head, (WL)w);
2134 2387
2135 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2388 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2136 w->events &= ~EV_IOFDSET; 2389 w->events &= ~EV__IOFDSET;
2137 2390
2138 EV_FREQUENT_CHECK; 2391 EV_FREQUENT_CHECK;
2139} 2392}
2140 2393
2141void noinline 2394void noinline
2143{ 2396{
2144 clear_pending (EV_A_ (W)w); 2397 clear_pending (EV_A_ (W)w);
2145 if (expect_false (!ev_is_active (w))) 2398 if (expect_false (!ev_is_active (w)))
2146 return; 2399 return;
2147 2400
2148 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2401 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2149 2402
2150 EV_FREQUENT_CHECK; 2403 EV_FREQUENT_CHECK;
2151 2404
2152 wlist_del (&anfds[w->fd].head, (WL)w); 2405 wlist_del (&anfds[w->fd].head, (WL)w);
2153 ev_stop (EV_A_ (W)w); 2406 ev_stop (EV_A_ (W)w);
2163 if (expect_false (ev_is_active (w))) 2416 if (expect_false (ev_is_active (w)))
2164 return; 2417 return;
2165 2418
2166 ev_at (w) += mn_now; 2419 ev_at (w) += mn_now;
2167 2420
2168 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2421 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2169 2422
2170 EV_FREQUENT_CHECK; 2423 EV_FREQUENT_CHECK;
2171 2424
2172 ++timercnt; 2425 ++timercnt;
2173 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 2426 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2176 ANHE_at_cache (timers [ev_active (w)]); 2429 ANHE_at_cache (timers [ev_active (w)]);
2177 upheap (timers, ev_active (w)); 2430 upheap (timers, ev_active (w));
2178 2431
2179 EV_FREQUENT_CHECK; 2432 EV_FREQUENT_CHECK;
2180 2433
2181 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2434 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2182} 2435}
2183 2436
2184void noinline 2437void noinline
2185ev_timer_stop (EV_P_ ev_timer *w) 2438ev_timer_stop (EV_P_ ev_timer *w)
2186{ 2439{
2191 EV_FREQUENT_CHECK; 2444 EV_FREQUENT_CHECK;
2192 2445
2193 { 2446 {
2194 int active = ev_active (w); 2447 int active = ev_active (w);
2195 2448
2196 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2449 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2197 2450
2198 --timercnt; 2451 --timercnt;
2199 2452
2200 if (expect_true (active < timercnt + HEAP0)) 2453 if (expect_true (active < timercnt + HEAP0))
2201 { 2454 {
2245 2498
2246 if (w->reschedule_cb) 2499 if (w->reschedule_cb)
2247 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2500 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2248 else if (w->interval) 2501 else if (w->interval)
2249 { 2502 {
2250 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2503 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2251 /* this formula differs from the one in periodic_reify because we do not always round up */ 2504 /* this formula differs from the one in periodic_reify because we do not always round up */
2252 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2505 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2253 } 2506 }
2254 else 2507 else
2255 ev_at (w) = w->offset; 2508 ev_at (w) = w->offset;
2263 ANHE_at_cache (periodics [ev_active (w)]); 2516 ANHE_at_cache (periodics [ev_active (w)]);
2264 upheap (periodics, ev_active (w)); 2517 upheap (periodics, ev_active (w));
2265 2518
2266 EV_FREQUENT_CHECK; 2519 EV_FREQUENT_CHECK;
2267 2520
2268 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2521 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2269} 2522}
2270 2523
2271void noinline 2524void noinline
2272ev_periodic_stop (EV_P_ ev_periodic *w) 2525ev_periodic_stop (EV_P_ ev_periodic *w)
2273{ 2526{
2278 EV_FREQUENT_CHECK; 2531 EV_FREQUENT_CHECK;
2279 2532
2280 { 2533 {
2281 int active = ev_active (w); 2534 int active = ev_active (w);
2282 2535
2283 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2536 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2284 2537
2285 --periodiccnt; 2538 --periodiccnt;
2286 2539
2287 if (expect_true (active < periodiccnt + HEAP0)) 2540 if (expect_true (active < periodiccnt + HEAP0))
2288 { 2541 {
2311 2564
2312void noinline 2565void noinline
2313ev_signal_start (EV_P_ ev_signal *w) 2566ev_signal_start (EV_P_ ev_signal *w)
2314{ 2567{
2315#if EV_MULTIPLICITY 2568#if EV_MULTIPLICITY
2316 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2569 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2317#endif 2570#endif
2318 if (expect_false (ev_is_active (w))) 2571 if (expect_false (ev_is_active (w)))
2319 return; 2572 return;
2320 2573
2321 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2574 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2322 2575
2323 evpipe_init (EV_A); 2576 evpipe_init (EV_A);
2324 2577
2325 EV_FREQUENT_CHECK; 2578 EV_FREQUENT_CHECK;
2326 2579
2344 if (!((WL)w)->next) 2597 if (!((WL)w)->next)
2345 { 2598 {
2346#if _WIN32 2599#if _WIN32
2347 signal (w->signum, ev_sighandler); 2600 signal (w->signum, ev_sighandler);
2348#else 2601#else
2349 struct sigaction sa; 2602 struct sigaction sa = { };
2350 sa.sa_handler = ev_sighandler; 2603 sa.sa_handler = ev_sighandler;
2351 sigfillset (&sa.sa_mask); 2604 sigfillset (&sa.sa_mask);
2352 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2605 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2353 sigaction (w->signum, &sa, 0); 2606 sigaction (w->signum, &sa, 0);
2354#endif 2607#endif
2377 2630
2378void 2631void
2379ev_child_start (EV_P_ ev_child *w) 2632ev_child_start (EV_P_ ev_child *w)
2380{ 2633{
2381#if EV_MULTIPLICITY 2634#if EV_MULTIPLICITY
2382 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2635 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2383#endif 2636#endif
2384 if (expect_false (ev_is_active (w))) 2637 if (expect_false (ev_is_active (w)))
2385 return; 2638 return;
2386 2639
2387 EV_FREQUENT_CHECK; 2640 EV_FREQUENT_CHECK;
2412# ifdef _WIN32 2665# ifdef _WIN32
2413# undef lstat 2666# undef lstat
2414# define lstat(a,b) _stati64 (a,b) 2667# define lstat(a,b) _stati64 (a,b)
2415# endif 2668# endif
2416 2669
2417#define DEF_STAT_INTERVAL 5.0074891 2670#define DEF_STAT_INTERVAL 5.0074891
2671#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2418#define MIN_STAT_INTERVAL 0.1074891 2672#define MIN_STAT_INTERVAL 0.1074891
2419 2673
2420static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2674static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2421 2675
2422#if EV_USE_INOTIFY 2676#if EV_USE_INOTIFY
2423# define EV_INOTIFY_BUFSIZE 8192 2677# define EV_INOTIFY_BUFSIZE 8192
2427{ 2681{
2428 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2682 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2429 2683
2430 if (w->wd < 0) 2684 if (w->wd < 0)
2431 { 2685 {
2686 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2432 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2687 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2433 2688
2434 /* monitor some parent directory for speedup hints */ 2689 /* monitor some parent directory for speedup hints */
2435 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2690 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2436 /* but an efficiency issue only */ 2691 /* but an efficiency issue only */
2437 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2692 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2438 { 2693 {
2439 char path [4096]; 2694 char path [4096];
2440 strcpy (path, w->path); 2695 strcpy (path, w->path);
2444 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2699 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2445 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2700 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2446 2701
2447 char *pend = strrchr (path, '/'); 2702 char *pend = strrchr (path, '/');
2448 2703
2449 if (!pend) 2704 if (!pend || pend == path)
2450 break; /* whoops, no '/', complain to your admin */ 2705 break;
2451 2706
2452 *pend = 0; 2707 *pend = 0;
2453 w->wd = inotify_add_watch (fs_fd, path, mask); 2708 w->wd = inotify_add_watch (fs_fd, path, mask);
2454 } 2709 }
2455 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2710 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2456 } 2711 }
2457 } 2712 }
2458 else
2459 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2460 2713
2461 if (w->wd >= 0) 2714 if (w->wd >= 0)
2715 {
2462 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2716 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2717
2718 /* now local changes will be tracked by inotify, but remote changes won't */
2719 /* unless the filesystem it known to be local, we therefore still poll */
2720 /* also do poll on <2.6.25, but with normal frequency */
2721 struct statfs sfs;
2722
2723 if (fs_2625 && !statfs (w->path, &sfs))
2724 if (sfs.f_type == 0x1373 /* devfs */
2725 || sfs.f_type == 0xEF53 /* ext2/3 */
2726 || sfs.f_type == 0x3153464a /* jfs */
2727 || sfs.f_type == 0x52654973 /* reiser3 */
2728 || sfs.f_type == 0x01021994 /* tempfs */
2729 || sfs.f_type == 0x58465342 /* xfs */)
2730 return;
2731
2732 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2733 ev_timer_again (EV_A_ &w->timer);
2734 }
2463} 2735}
2464 2736
2465static void noinline 2737static void noinline
2466infy_del (EV_P_ ev_stat *w) 2738infy_del (EV_P_ ev_stat *w)
2467{ 2739{
2497 2769
2498 if (w->wd == wd || wd == -1) 2770 if (w->wd == wd || wd == -1)
2499 { 2771 {
2500 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2772 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2501 { 2773 {
2774 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2502 w->wd = -1; 2775 w->wd = -1;
2503 infy_add (EV_A_ w); /* re-add, no matter what */ 2776 infy_add (EV_A_ w); /* re-add, no matter what */
2504 } 2777 }
2505 2778
2506 stat_timer_cb (EV_A_ &w->timer, 0); 2779 stat_timer_cb (EV_A_ &w->timer, 0);
2519 2792
2520 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2793 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2521 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2794 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2522} 2795}
2523 2796
2524void inline_size 2797inline_size void
2525infy_init (EV_P) 2798check_2625 (EV_P)
2526{ 2799{
2527 if (fs_fd != -2)
2528 return;
2529
2530 /* kernels < 2.6.25 are borked 2800 /* kernels < 2.6.25 are borked
2531 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 2801 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2532 */ 2802 */
2533 {
2534 struct utsname buf; 2803 struct utsname buf;
2535 int major, minor, micro; 2804 int major, minor, micro;
2536 2805
2537 fs_fd = -1;
2538
2539 if (uname (&buf)) 2806 if (uname (&buf))
2540 return; 2807 return;
2541 2808
2542 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3) 2809 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2543 return; 2810 return;
2544 2811
2545 if (major < 2 2812 if (major < 2
2546 || (major == 2 && minor < 6) 2813 || (major == 2 && minor < 6)
2547 || (major == 2 && minor == 6 && micro < 25)) 2814 || (major == 2 && minor == 6 && micro < 25))
2548 return; 2815 return;
2549 } 2816
2817 fs_2625 = 1;
2818}
2819
2820inline_size void
2821infy_init (EV_P)
2822{
2823 if (fs_fd != -2)
2824 return;
2825
2826 fs_fd = -1;
2827
2828 check_2625 (EV_A);
2550 2829
2551 fs_fd = inotify_init (); 2830 fs_fd = inotify_init ();
2552 2831
2553 if (fs_fd >= 0) 2832 if (fs_fd >= 0)
2554 { 2833 {
2556 ev_set_priority (&fs_w, EV_MAXPRI); 2835 ev_set_priority (&fs_w, EV_MAXPRI);
2557 ev_io_start (EV_A_ &fs_w); 2836 ev_io_start (EV_A_ &fs_w);
2558 } 2837 }
2559} 2838}
2560 2839
2561void inline_size 2840inline_size void
2562infy_fork (EV_P) 2841infy_fork (EV_P)
2563{ 2842{
2564 int slot; 2843 int slot;
2565 2844
2566 if (fs_fd < 0) 2845 if (fs_fd < 0)
2582 w->wd = -1; 2861 w->wd = -1;
2583 2862
2584 if (fs_fd >= 0) 2863 if (fs_fd >= 0)
2585 infy_add (EV_A_ w); /* re-add, no matter what */ 2864 infy_add (EV_A_ w); /* re-add, no matter what */
2586 else 2865 else
2587 ev_timer_start (EV_A_ &w->timer); 2866 ev_timer_again (EV_A_ &w->timer);
2588 } 2867 }
2589 } 2868 }
2590} 2869}
2591 2870
2592#endif 2871#endif
2647ev_stat_start (EV_P_ ev_stat *w) 2926ev_stat_start (EV_P_ ev_stat *w)
2648{ 2927{
2649 if (expect_false (ev_is_active (w))) 2928 if (expect_false (ev_is_active (w)))
2650 return; 2929 return;
2651 2930
2652 /* since we use memcmp, we need to clear any padding data etc. */
2653 memset (&w->prev, 0, sizeof (ev_statdata));
2654 memset (&w->attr, 0, sizeof (ev_statdata));
2655
2656 ev_stat_stat (EV_A_ w); 2931 ev_stat_stat (EV_A_ w);
2657 2932
2933 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2658 if (w->interval < MIN_STAT_INTERVAL) 2934 w->interval = MIN_STAT_INTERVAL;
2659 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2660 2935
2661 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2936 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2662 ev_set_priority (&w->timer, ev_priority (w)); 2937 ev_set_priority (&w->timer, ev_priority (w));
2663 2938
2664#if EV_USE_INOTIFY 2939#if EV_USE_INOTIFY
2665 infy_init (EV_A); 2940 infy_init (EV_A);
2666 2941
2667 if (fs_fd >= 0) 2942 if (fs_fd >= 0)
2668 infy_add (EV_A_ w); 2943 infy_add (EV_A_ w);
2669 else 2944 else
2670#endif 2945#endif
2671 ev_timer_start (EV_A_ &w->timer); 2946 ev_timer_again (EV_A_ &w->timer);
2672 2947
2673 ev_start (EV_A_ (W)w, 1); 2948 ev_start (EV_A_ (W)w, 1);
2674 2949
2675 EV_FREQUENT_CHECK; 2950 EV_FREQUENT_CHECK;
2676} 2951}
2851static void 3126static void
2852embed_fork_cb (EV_P_ ev_fork *fork_w, int revents) 3127embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2853{ 3128{
2854 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 3129 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2855 3130
3131 ev_embed_stop (EV_A_ w);
3132
2856 { 3133 {
2857 struct ev_loop *loop = w->other; 3134 struct ev_loop *loop = w->other;
2858 3135
2859 ev_loop_fork (EV_A); 3136 ev_loop_fork (EV_A);
3137 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2860 } 3138 }
3139
3140 ev_embed_start (EV_A_ w);
2861} 3141}
2862 3142
2863#if 0 3143#if 0
2864static void 3144static void
2865embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3145embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2874 if (expect_false (ev_is_active (w))) 3154 if (expect_false (ev_is_active (w)))
2875 return; 3155 return;
2876 3156
2877 { 3157 {
2878 struct ev_loop *loop = w->other; 3158 struct ev_loop *loop = w->other;
2879 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3159 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2880 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3160 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2881 } 3161 }
2882 3162
2883 EV_FREQUENT_CHECK; 3163 EV_FREQUENT_CHECK;
2884 3164
3067 ev_timer_set (&once->to, timeout, 0.); 3347 ev_timer_set (&once->to, timeout, 0.);
3068 ev_timer_start (EV_A_ &once->to); 3348 ev_timer_start (EV_A_ &once->to);
3069 } 3349 }
3070} 3350}
3071 3351
3352/*****************************************************************************/
3353
3354#if EV_WALK_ENABLE
3355void
3356ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3357{
3358 int i, j;
3359 ev_watcher_list *wl, *wn;
3360
3361 if (types & (EV_IO | EV_EMBED))
3362 for (i = 0; i < anfdmax; ++i)
3363 for (wl = anfds [i].head; wl; )
3364 {
3365 wn = wl->next;
3366
3367#if EV_EMBED_ENABLE
3368 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3369 {
3370 if (types & EV_EMBED)
3371 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3372 }
3373 else
3374#endif
3375#if EV_USE_INOTIFY
3376 if (ev_cb ((ev_io *)wl) == infy_cb)
3377 ;
3378 else
3379#endif
3380 if ((ev_io *)wl != &pipe_w)
3381 if (types & EV_IO)
3382 cb (EV_A_ EV_IO, wl);
3383
3384 wl = wn;
3385 }
3386
3387 if (types & (EV_TIMER | EV_STAT))
3388 for (i = timercnt + HEAP0; i-- > HEAP0; )
3389#if EV_STAT_ENABLE
3390 /*TODO: timer is not always active*/
3391 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3392 {
3393 if (types & EV_STAT)
3394 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3395 }
3396 else
3397#endif
3398 if (types & EV_TIMER)
3399 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3400
3401#if EV_PERIODIC_ENABLE
3402 if (types & EV_PERIODIC)
3403 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3404 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3405#endif
3406
3407#if EV_IDLE_ENABLE
3408 if (types & EV_IDLE)
3409 for (j = NUMPRI; i--; )
3410 for (i = idlecnt [j]; i--; )
3411 cb (EV_A_ EV_IDLE, idles [j][i]);
3412#endif
3413
3414#if EV_FORK_ENABLE
3415 if (types & EV_FORK)
3416 for (i = forkcnt; i--; )
3417 if (ev_cb (forks [i]) != embed_fork_cb)
3418 cb (EV_A_ EV_FORK, forks [i]);
3419#endif
3420
3421#if EV_ASYNC_ENABLE
3422 if (types & EV_ASYNC)
3423 for (i = asynccnt; i--; )
3424 cb (EV_A_ EV_ASYNC, asyncs [i]);
3425#endif
3426
3427 if (types & EV_PREPARE)
3428 for (i = preparecnt; i--; )
3429#if EV_EMBED_ENABLE
3430 if (ev_cb (prepares [i]) != embed_prepare_cb)
3431#endif
3432 cb (EV_A_ EV_PREPARE, prepares [i]);
3433
3434 if (types & EV_CHECK)
3435 for (i = checkcnt; i--; )
3436 cb (EV_A_ EV_CHECK, checks [i]);
3437
3438 if (types & EV_SIGNAL)
3439 for (i = 0; i < signalmax; ++i)
3440 for (wl = signals [i].head; wl; )
3441 {
3442 wn = wl->next;
3443 cb (EV_A_ EV_SIGNAL, wl);
3444 wl = wn;
3445 }
3446
3447 if (types & EV_CHILD)
3448 for (i = EV_PID_HASHSIZE; i--; )
3449 for (wl = childs [i]; wl; )
3450 {
3451 wn = wl->next;
3452 cb (EV_A_ EV_CHILD, wl);
3453 wl = wn;
3454 }
3455/* EV_STAT 0x00001000 /* stat data changed */
3456/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3457}
3458#endif
3459
3072#if EV_MULTIPLICITY 3460#if EV_MULTIPLICITY
3073 #include "ev_wrap.h" 3461 #include "ev_wrap.h"
3074#endif 3462#endif
3075 3463
3076#ifdef __cplusplus 3464#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines