ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.268 by root, Mon Oct 27 13:39:18 2008 UTC vs.
Revision 1.411 by root, Tue Feb 21 04:34:02 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
130# endif 163# endif
131 164
132#endif 165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
152#endif 197#endif
153 198
154#ifndef _WIN32 199#ifndef _WIN32
155# include <sys/time.h> 200# include <sys/time.h>
156# include <sys/wait.h> 201# include <sys/wait.h>
160# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
161# include <windows.h> 206# include <windows.h>
162# ifndef EV_SELECT_IS_WINSOCKET 207# ifndef EV_SELECT_IS_WINSOCKET
163# define EV_SELECT_IS_WINSOCKET 1 208# define EV_SELECT_IS_WINSOCKET 1
164# endif 209# endif
210# undef EV_AVOID_STDIO
165#endif 211#endif
212
213/* OS X, in its infinite idiocy, actually HARDCODES
214 * a limit of 1024 into their select. Where people have brains,
215 * OS X engineers apparently have a vacuum. Or maybe they were
216 * ordered to have a vacuum, or they do anything for money.
217 * This might help. Or not.
218 */
219#define _DARWIN_UNLIMITED_SELECT 1
166 220
167/* this block tries to deduce configuration from header-defined symbols and defaults */ 221/* this block tries to deduce configuration from header-defined symbols and defaults */
222
223/* try to deduce the maximum number of signals on this platform */
224#if defined (EV_NSIG)
225/* use what's provided */
226#elif defined (NSIG)
227# define EV_NSIG (NSIG)
228#elif defined(_NSIG)
229# define EV_NSIG (_NSIG)
230#elif defined (SIGMAX)
231# define EV_NSIG (SIGMAX+1)
232#elif defined (SIG_MAX)
233# define EV_NSIG (SIG_MAX+1)
234#elif defined (_SIG_MAX)
235# define EV_NSIG (_SIG_MAX+1)
236#elif defined (MAXSIG)
237# define EV_NSIG (MAXSIG+1)
238#elif defined (MAX_SIG)
239# define EV_NSIG (MAX_SIG+1)
240#elif defined (SIGARRAYSIZE)
241# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
242#elif defined (_sys_nsig)
243# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
244#else
245# error "unable to find value for NSIG, please report"
246/* to make it compile regardless, just remove the above line, */
247/* but consider reporting it, too! :) */
248# define EV_NSIG 65
249#endif
250
251#ifndef EV_USE_FLOOR
252# define EV_USE_FLOOR 0
253#endif
254
255#ifndef EV_USE_CLOCK_SYSCALL
256# if __linux && __GLIBC__ >= 2
257# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
258# else
259# define EV_USE_CLOCK_SYSCALL 0
260# endif
261#endif
168 262
169#ifndef EV_USE_MONOTONIC 263#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 264# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1 265# define EV_USE_MONOTONIC EV_FEATURE_OS
172# else 266# else
173# define EV_USE_MONOTONIC 0 267# define EV_USE_MONOTONIC 0
174# endif 268# endif
175#endif 269#endif
176 270
177#ifndef EV_USE_REALTIME 271#ifndef EV_USE_REALTIME
178# define EV_USE_REALTIME 0 272# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
179#endif 273#endif
180 274
181#ifndef EV_USE_NANOSLEEP 275#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L 276# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1 277# define EV_USE_NANOSLEEP EV_FEATURE_OS
184# else 278# else
185# define EV_USE_NANOSLEEP 0 279# define EV_USE_NANOSLEEP 0
186# endif 280# endif
187#endif 281#endif
188 282
189#ifndef EV_USE_SELECT 283#ifndef EV_USE_SELECT
190# define EV_USE_SELECT 1 284# define EV_USE_SELECT EV_FEATURE_BACKENDS
191#endif 285#endif
192 286
193#ifndef EV_USE_POLL 287#ifndef EV_USE_POLL
194# ifdef _WIN32 288# ifdef _WIN32
195# define EV_USE_POLL 0 289# define EV_USE_POLL 0
196# else 290# else
197# define EV_USE_POLL 1 291# define EV_USE_POLL EV_FEATURE_BACKENDS
198# endif 292# endif
199#endif 293#endif
200 294
201#ifndef EV_USE_EPOLL 295#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 296# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1 297# define EV_USE_EPOLL EV_FEATURE_BACKENDS
204# else 298# else
205# define EV_USE_EPOLL 0 299# define EV_USE_EPOLL 0
206# endif 300# endif
207#endif 301#endif
208 302
214# define EV_USE_PORT 0 308# define EV_USE_PORT 0
215#endif 309#endif
216 310
217#ifndef EV_USE_INOTIFY 311#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1 313# define EV_USE_INOTIFY EV_FEATURE_OS
220# else 314# else
221# define EV_USE_INOTIFY 0 315# define EV_USE_INOTIFY 0
222# endif 316# endif
223#endif 317#endif
224 318
225#ifndef EV_PID_HASHSIZE 319#ifndef EV_PID_HASHSIZE
226# if EV_MINIMAL 320# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
230# endif
231#endif 321#endif
232 322
233#ifndef EV_INOTIFY_HASHSIZE 323#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL 324# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif 325#endif
240 326
241#ifndef EV_USE_EVENTFD 327#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 328# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1 329# define EV_USE_EVENTFD EV_FEATURE_OS
244# else 330# else
245# define EV_USE_EVENTFD 0 331# define EV_USE_EVENTFD 0
332# endif
333#endif
334
335#ifndef EV_USE_SIGNALFD
336# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
337# define EV_USE_SIGNALFD EV_FEATURE_OS
338# else
339# define EV_USE_SIGNALFD 0
246# endif 340# endif
247#endif 341#endif
248 342
249#if 0 /* debugging */ 343#if 0 /* debugging */
250# define EV_VERIFY 3 344# define EV_VERIFY 3
251# define EV_USE_4HEAP 1 345# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1 346# define EV_HEAP_CACHE_AT 1
253#endif 347#endif
254 348
255#ifndef EV_VERIFY 349#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL 350# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
257#endif 351#endif
258 352
259#ifndef EV_USE_4HEAP 353#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL 354# define EV_USE_4HEAP EV_FEATURE_DATA
261#endif 355#endif
262 356
263#ifndef EV_HEAP_CACHE_AT 357#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL 358# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
359#endif
360
361/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
362/* which makes programs even slower. might work on other unices, too. */
363#if EV_USE_CLOCK_SYSCALL
364# include <syscall.h>
365# ifdef SYS_clock_gettime
366# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
367# undef EV_USE_MONOTONIC
368# define EV_USE_MONOTONIC 1
369# else
370# undef EV_USE_CLOCK_SYSCALL
371# define EV_USE_CLOCK_SYSCALL 0
372# endif
265#endif 373#endif
266 374
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 375/* this block fixes any misconfiguration where we know we run into trouble otherwise */
376
377#ifdef _AIX
378/* AIX has a completely broken poll.h header */
379# undef EV_USE_POLL
380# define EV_USE_POLL 0
381#endif
268 382
269#ifndef CLOCK_MONOTONIC 383#ifndef CLOCK_MONOTONIC
270# undef EV_USE_MONOTONIC 384# undef EV_USE_MONOTONIC
271# define EV_USE_MONOTONIC 0 385# define EV_USE_MONOTONIC 0
272#endif 386#endif
280# undef EV_USE_INOTIFY 394# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0 395# define EV_USE_INOTIFY 0
282#endif 396#endif
283 397
284#if !EV_USE_NANOSLEEP 398#if !EV_USE_NANOSLEEP
285# ifndef _WIN32 399/* hp-ux has it in sys/time.h, which we unconditionally include above */
400# if !defined(_WIN32) && !defined(__hpux)
286# include <sys/select.h> 401# include <sys/select.h>
287# endif 402# endif
288#endif 403#endif
289 404
290#if EV_USE_INOTIFY 405#if EV_USE_INOTIFY
291# include <sys/utsname.h> 406# include <sys/statfs.h>
292# include <sys/inotify.h> 407# include <sys/inotify.h>
293/* some very old inotify.h headers don't have IN_DONT_FOLLOW */ 408/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
294# ifndef IN_DONT_FOLLOW 409# ifndef IN_DONT_FOLLOW
295# undef EV_USE_INOTIFY 410# undef EV_USE_INOTIFY
296# define EV_USE_INOTIFY 0 411# define EV_USE_INOTIFY 0
302#endif 417#endif
303 418
304#if EV_USE_EVENTFD 419#if EV_USE_EVENTFD
305/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 420/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
306# include <stdint.h> 421# include <stdint.h>
307# ifdef __cplusplus 422# ifndef EFD_NONBLOCK
308extern "C" { 423# define EFD_NONBLOCK O_NONBLOCK
309# endif 424# endif
310int eventfd (unsigned int initval, int flags); 425# ifndef EFD_CLOEXEC
311# ifdef __cplusplus 426# ifdef O_CLOEXEC
312} 427# define EFD_CLOEXEC O_CLOEXEC
428# else
429# define EFD_CLOEXEC 02000000
430# endif
313# endif 431# endif
432EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
433#endif
434
435#if EV_USE_SIGNALFD
436/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
437# include <stdint.h>
438# ifndef SFD_NONBLOCK
439# define SFD_NONBLOCK O_NONBLOCK
440# endif
441# ifndef SFD_CLOEXEC
442# ifdef O_CLOEXEC
443# define SFD_CLOEXEC O_CLOEXEC
444# else
445# define SFD_CLOEXEC 02000000
446# endif
447# endif
448EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
449
450struct signalfd_siginfo
451{
452 uint32_t ssi_signo;
453 char pad[128 - sizeof (uint32_t)];
454};
314#endif 455#endif
315 456
316/**/ 457/**/
317 458
318#if EV_VERIFY >= 3 459#if EV_VERIFY >= 3
319# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 460# define EV_FREQUENT_CHECK ev_verify (EV_A)
320#else 461#else
321# define EV_FREQUENT_CHECK do { } while (0) 462# define EV_FREQUENT_CHECK do { } while (0)
322#endif 463#endif
323 464
324/* 465/*
325 * This is used to avoid floating point rounding problems. 466 * This is used to work around floating point rounding problems.
326 * It is added to ev_rt_now when scheduling periodics
327 * to ensure progress, time-wise, even when rounding
328 * errors are against us.
329 * This value is good at least till the year 4000. 467 * This value is good at least till the year 4000.
330 * Better solutions welcome.
331 */ 468 */
332#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 469#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
470/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
333 471
334#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 472#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
335#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 473#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
336/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
337 474
475#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
476#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
477
478/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
479/* ECB.H BEGIN */
480/*
481 * libecb - http://software.schmorp.de/pkg/libecb
482 *
483 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
484 * Copyright (©) 2011 Emanuele Giaquinta
485 * All rights reserved.
486 *
487 * Redistribution and use in source and binary forms, with or without modifica-
488 * tion, are permitted provided that the following conditions are met:
489 *
490 * 1. Redistributions of source code must retain the above copyright notice,
491 * this list of conditions and the following disclaimer.
492 *
493 * 2. Redistributions in binary form must reproduce the above copyright
494 * notice, this list of conditions and the following disclaimer in the
495 * documentation and/or other materials provided with the distribution.
496 *
497 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
498 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
499 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
500 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
501 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
502 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
503 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
504 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
505 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
506 * OF THE POSSIBILITY OF SUCH DAMAGE.
507 */
508
509#ifndef ECB_H
510#define ECB_H
511
512#ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
338#if __GNUC__ >= 4 519 #if __GNUC__
339# define expect(expr,value) __builtin_expect ((expr),(value)) 520 typedef signed long long int64_t;
340# define noinline __attribute__ ((noinline)) 521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
341#else 526#else
342# define expect(expr,value) (expr) 527 #include <inttypes.h>
343# define noinline
344# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
345# define inline
346# endif 528#endif
529
530/* many compilers define _GNUC_ to some versions but then only implement
531 * what their idiot authors think are the "more important" extensions,
532 * causing enormous grief in return for some better fake benchmark numbers.
533 * or so.
534 * we try to detect these and simply assume they are not gcc - if they have
535 * an issue with that they should have done it right in the first place.
536 */
537#ifndef ECB_GCC_VERSION
538 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
539 #define ECB_GCC_VERSION(major,minor) 0
540 #else
541 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
347#endif 542 #endif
543#endif
348 544
545/*****************************************************************************/
546
547/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
548/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
549
550#if ECB_NO_THREADS
551# define ECB_NO_SMP 1
552#endif
553
554#if ECB_NO_THREADS || ECB_NO_SMP
555 #define ECB_MEMORY_FENCE do { } while (0)
556#endif
557
558#ifndef ECB_MEMORY_FENCE
559 #if ECB_GCC_VERSION(2,5) || defined(__INTEL_COMPILER) || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
560 #if __i386 || __i386__
561 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
562 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
563 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
564 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
565 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
566 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
567 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
568 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
569 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
570 #elif defined(__ARM_ARCH_6__ ) || defined(__ARM_ARCH_6J__ ) \
571 || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6ZK__)
572 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
573 #elif defined(__ARM_ARCH_7__ ) || defined(__ARM_ARCH_7A__ ) \
574 || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7R__ )
575 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
576 #elif __sparc || __sparc__
577 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
578 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
579 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
580 #elif defined(__s390__) || defined(__s390x__)
581 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
582 #endif
583 #endif
584#endif
585
586#ifndef ECB_MEMORY_FENCE
587 #if ECB_GCC_VERSION(4,4) || defined(__INTEL_COMPILER) || defined(__clang__)
588 #define ECB_MEMORY_FENCE __sync_synchronize ()
589 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
590 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
591 #elif _MSC_VER >= 1400 /* VC++ 2005 */
592 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
593 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
594 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
595 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
596 #elif defined(_WIN32)
597 #include <WinNT.h>
598 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
599 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
600 #include <mbarrier.h>
601 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
602 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
603 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
604 #endif
605#endif
606
607#ifndef ECB_MEMORY_FENCE
608 #if !ECB_AVOID_PTHREADS
609 /*
610 * if you get undefined symbol references to pthread_mutex_lock,
611 * or failure to find pthread.h, then you should implement
612 * the ECB_MEMORY_FENCE operations for your cpu/compiler
613 * OR provide pthread.h and link against the posix thread library
614 * of your system.
615 */
616 #include <pthread.h>
617 #define ECB_NEEDS_PTHREADS 1
618 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
619
620 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
621 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
622 #endif
623#endif
624
625#if !defined(ECB_MEMORY_FENCE_ACQUIRE) && defined(ECB_MEMORY_FENCE)
626 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
627#endif
628
629#if !defined(ECB_MEMORY_FENCE_RELEASE) && defined(ECB_MEMORY_FENCE)
630 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
631#endif
632
633/*****************************************************************************/
634
635#define ECB_C99 (__STDC_VERSION__ >= 199901L)
636
637#if __cplusplus
638 #define ecb_inline static inline
639#elif ECB_GCC_VERSION(2,5)
640 #define ecb_inline static __inline__
641#elif ECB_C99
642 #define ecb_inline static inline
643#else
644 #define ecb_inline static
645#endif
646
647#if ECB_GCC_VERSION(3,3)
648 #define ecb_restrict __restrict__
649#elif ECB_C99
650 #define ecb_restrict restrict
651#else
652 #define ecb_restrict
653#endif
654
655typedef int ecb_bool;
656
657#define ECB_CONCAT_(a, b) a ## b
658#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
659#define ECB_STRINGIFY_(a) # a
660#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
661
662#define ecb_function_ ecb_inline
663
664#if ECB_GCC_VERSION(3,1)
665 #define ecb_attribute(attrlist) __attribute__(attrlist)
666 #define ecb_is_constant(expr) __builtin_constant_p (expr)
667 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
668 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
669#else
670 #define ecb_attribute(attrlist)
671 #define ecb_is_constant(expr) 0
672 #define ecb_expect(expr,value) (expr)
673 #define ecb_prefetch(addr,rw,locality)
674#endif
675
676/* no emulation for ecb_decltype */
677#if ECB_GCC_VERSION(4,5)
678 #define ecb_decltype(x) __decltype(x)
679#elif ECB_GCC_VERSION(3,0)
680 #define ecb_decltype(x) __typeof(x)
681#endif
682
683#define ecb_noinline ecb_attribute ((__noinline__))
684#define ecb_noreturn ecb_attribute ((__noreturn__))
685#define ecb_unused ecb_attribute ((__unused__))
686#define ecb_const ecb_attribute ((__const__))
687#define ecb_pure ecb_attribute ((__pure__))
688
689#if ECB_GCC_VERSION(4,3)
690 #define ecb_artificial ecb_attribute ((__artificial__))
691 #define ecb_hot ecb_attribute ((__hot__))
692 #define ecb_cold ecb_attribute ((__cold__))
693#else
694 #define ecb_artificial
695 #define ecb_hot
696 #define ecb_cold
697#endif
698
699/* put around conditional expressions if you are very sure that the */
700/* expression is mostly true or mostly false. note that these return */
701/* booleans, not the expression. */
349#define expect_false(expr) expect ((expr) != 0, 0) 702#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
350#define expect_true(expr) expect ((expr) != 0, 1) 703#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
704/* for compatibility to the rest of the world */
705#define ecb_likely(expr) ecb_expect_true (expr)
706#define ecb_unlikely(expr) ecb_expect_false (expr)
707
708/* count trailing zero bits and count # of one bits */
709#if ECB_GCC_VERSION(3,4)
710 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
711 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
712 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
713 #define ecb_ctz32(x) __builtin_ctz (x)
714 #define ecb_ctz64(x) __builtin_ctzll (x)
715 #define ecb_popcount32(x) __builtin_popcount (x)
716 /* no popcountll */
717#else
718 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
719 ecb_function_ int
720 ecb_ctz32 (uint32_t x)
721 {
722 int r = 0;
723
724 x &= ~x + 1; /* this isolates the lowest bit */
725
726#if ECB_branchless_on_i386
727 r += !!(x & 0xaaaaaaaa) << 0;
728 r += !!(x & 0xcccccccc) << 1;
729 r += !!(x & 0xf0f0f0f0) << 2;
730 r += !!(x & 0xff00ff00) << 3;
731 r += !!(x & 0xffff0000) << 4;
732#else
733 if (x & 0xaaaaaaaa) r += 1;
734 if (x & 0xcccccccc) r += 2;
735 if (x & 0xf0f0f0f0) r += 4;
736 if (x & 0xff00ff00) r += 8;
737 if (x & 0xffff0000) r += 16;
738#endif
739
740 return r;
741 }
742
743 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
744 ecb_function_ int
745 ecb_ctz64 (uint64_t x)
746 {
747 int shift = x & 0xffffffffU ? 0 : 32;
748 return ecb_ctz32 (x >> shift) + shift;
749 }
750
751 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
752 ecb_function_ int
753 ecb_popcount32 (uint32_t x)
754 {
755 x -= (x >> 1) & 0x55555555;
756 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
757 x = ((x >> 4) + x) & 0x0f0f0f0f;
758 x *= 0x01010101;
759
760 return x >> 24;
761 }
762
763 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
764 ecb_function_ int ecb_ld32 (uint32_t x)
765 {
766 int r = 0;
767
768 if (x >> 16) { x >>= 16; r += 16; }
769 if (x >> 8) { x >>= 8; r += 8; }
770 if (x >> 4) { x >>= 4; r += 4; }
771 if (x >> 2) { x >>= 2; r += 2; }
772 if (x >> 1) { r += 1; }
773
774 return r;
775 }
776
777 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
778 ecb_function_ int ecb_ld64 (uint64_t x)
779 {
780 int r = 0;
781
782 if (x >> 32) { x >>= 32; r += 32; }
783
784 return r + ecb_ld32 (x);
785 }
786#endif
787
788ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
789ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
790{
791 return ( (x * 0x0802U & 0x22110U)
792 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
793}
794
795ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
796ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
797{
798 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
799 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
800 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
801 x = ( x >> 8 ) | ( x << 8);
802
803 return x;
804}
805
806ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
807ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
808{
809 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
810 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
811 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
812 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
813 x = ( x >> 16 ) | ( x << 16);
814
815 return x;
816}
817
818/* popcount64 is only available on 64 bit cpus as gcc builtin */
819/* so for this version we are lazy */
820ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
821ecb_function_ int
822ecb_popcount64 (uint64_t x)
823{
824 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
825}
826
827ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
828ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
829ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
830ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
831ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
832ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
833ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
834ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
835
836ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
837ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
838ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
839ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
840ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
841ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
842ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
843ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
844
845#if ECB_GCC_VERSION(4,3)
846 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
847 #define ecb_bswap32(x) __builtin_bswap32 (x)
848 #define ecb_bswap64(x) __builtin_bswap64 (x)
849#else
850 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
851 ecb_function_ uint16_t
852 ecb_bswap16 (uint16_t x)
853 {
854 return ecb_rotl16 (x, 8);
855 }
856
857 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
858 ecb_function_ uint32_t
859 ecb_bswap32 (uint32_t x)
860 {
861 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
862 }
863
864 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
865 ecb_function_ uint64_t
866 ecb_bswap64 (uint64_t x)
867 {
868 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
869 }
870#endif
871
872#if ECB_GCC_VERSION(4,5)
873 #define ecb_unreachable() __builtin_unreachable ()
874#else
875 /* this seems to work fine, but gcc always emits a warning for it :/ */
876 ecb_inline void ecb_unreachable (void) ecb_noreturn;
877 ecb_inline void ecb_unreachable (void) { }
878#endif
879
880/* try to tell the compiler that some condition is definitely true */
881#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
882
883ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
884ecb_inline unsigned char
885ecb_byteorder_helper (void)
886{
887 const uint32_t u = 0x11223344;
888 return *(unsigned char *)&u;
889}
890
891ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
892ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
893ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
894ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
895
896#if ECB_GCC_VERSION(3,0) || ECB_C99
897 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
898#else
899 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
900#endif
901
902#if __cplusplus
903 template<typename T>
904 static inline T ecb_div_rd (T val, T div)
905 {
906 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
907 }
908 template<typename T>
909 static inline T ecb_div_ru (T val, T div)
910 {
911 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
912 }
913#else
914 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
915 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
916#endif
917
918#if ecb_cplusplus_does_not_suck
919 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
920 template<typename T, int N>
921 static inline int ecb_array_length (const T (&arr)[N])
922 {
923 return N;
924 }
925#else
926 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
927#endif
928
929#endif
930
931/* ECB.H END */
932
933#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
934/* if your architecture doesn't need memory fences, e.g. because it is
935 * single-cpu/core, or if you use libev in a project that doesn't use libev
936 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
937 * libev, in which cases the memory fences become nops.
938 * alternatively, you can remove this #error and link against libpthread,
939 * which will then provide the memory fences.
940 */
941# error "memory fences not defined for your architecture, please report"
942#endif
943
944#ifndef ECB_MEMORY_FENCE
945# define ECB_MEMORY_FENCE do { } while (0)
946# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
947# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
948#endif
949
950#define expect_false(cond) ecb_expect_false (cond)
951#define expect_true(cond) ecb_expect_true (cond)
952#define noinline ecb_noinline
953
351#define inline_size static inline 954#define inline_size ecb_inline
352 955
353#if EV_MINIMAL 956#if EV_FEATURE_CODE
957# define inline_speed ecb_inline
958#else
354# define inline_speed static noinline 959# define inline_speed static noinline
960#endif
961
962#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
963
964#if EV_MINPRI == EV_MAXPRI
965# define ABSPRI(w) (((W)w), 0)
355#else 966#else
356# define inline_speed static inline
357#endif
358
359#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
360#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 967# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
968#endif
361 969
362#define EMPTY /* required for microsofts broken pseudo-c compiler */ 970#define EMPTY /* required for microsofts broken pseudo-c compiler */
363#define EMPTY2(a,b) /* used to suppress some warnings */ 971#define EMPTY2(a,b) /* used to suppress some warnings */
364 972
365typedef ev_watcher *W; 973typedef ev_watcher *W;
367typedef ev_watcher_time *WT; 975typedef ev_watcher_time *WT;
368 976
369#define ev_active(w) ((W)(w))->active 977#define ev_active(w) ((W)(w))->active
370#define ev_at(w) ((WT)(w))->at 978#define ev_at(w) ((WT)(w))->at
371 979
980#if EV_USE_REALTIME
981/* sig_atomic_t is used to avoid per-thread variables or locking but still */
982/* giving it a reasonably high chance of working on typical architectures */
983static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
984#endif
985
372#if EV_USE_MONOTONIC 986#if EV_USE_MONOTONIC
373/* sig_atomic_t is used to avoid per-thread variables or locking but still */
374/* giving it a reasonably high chance of working on typical architetcures */
375static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 987static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
988#endif
989
990#ifndef EV_FD_TO_WIN32_HANDLE
991# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
992#endif
993#ifndef EV_WIN32_HANDLE_TO_FD
994# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
995#endif
996#ifndef EV_WIN32_CLOSE_FD
997# define EV_WIN32_CLOSE_FD(fd) close (fd)
376#endif 998#endif
377 999
378#ifdef _WIN32 1000#ifdef _WIN32
379# include "ev_win32.c" 1001# include "ev_win32.c"
380#endif 1002#endif
381 1003
382/*****************************************************************************/ 1004/*****************************************************************************/
383 1005
1006/* define a suitable floor function (only used by periodics atm) */
1007
1008#if EV_USE_FLOOR
1009# include <math.h>
1010# define ev_floor(v) floor (v)
1011#else
1012
1013#include <float.h>
1014
1015/* a floor() replacement function, should be independent of ev_tstamp type */
1016static ev_tstamp noinline
1017ev_floor (ev_tstamp v)
1018{
1019 /* the choice of shift factor is not terribly important */
1020#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1021 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1022#else
1023 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1024#endif
1025
1026 /* argument too large for an unsigned long? */
1027 if (expect_false (v >= shift))
1028 {
1029 ev_tstamp f;
1030
1031 if (v == v - 1.)
1032 return v; /* very large number */
1033
1034 f = shift * ev_floor (v * (1. / shift));
1035 return f + ev_floor (v - f);
1036 }
1037
1038 /* special treatment for negative args? */
1039 if (expect_false (v < 0.))
1040 {
1041 ev_tstamp f = -ev_floor (-v);
1042
1043 return f - (f == v ? 0 : 1);
1044 }
1045
1046 /* fits into an unsigned long */
1047 return (unsigned long)v;
1048}
1049
1050#endif
1051
1052/*****************************************************************************/
1053
1054#ifdef __linux
1055# include <sys/utsname.h>
1056#endif
1057
1058static unsigned int noinline ecb_cold
1059ev_linux_version (void)
1060{
1061#ifdef __linux
1062 unsigned int v = 0;
1063 struct utsname buf;
1064 int i;
1065 char *p = buf.release;
1066
1067 if (uname (&buf))
1068 return 0;
1069
1070 for (i = 3+1; --i; )
1071 {
1072 unsigned int c = 0;
1073
1074 for (;;)
1075 {
1076 if (*p >= '0' && *p <= '9')
1077 c = c * 10 + *p++ - '0';
1078 else
1079 {
1080 p += *p == '.';
1081 break;
1082 }
1083 }
1084
1085 v = (v << 8) | c;
1086 }
1087
1088 return v;
1089#else
1090 return 0;
1091#endif
1092}
1093
1094/*****************************************************************************/
1095
1096#if EV_AVOID_STDIO
1097static void noinline ecb_cold
1098ev_printerr (const char *msg)
1099{
1100 write (STDERR_FILENO, msg, strlen (msg));
1101}
1102#endif
1103
384static void (*syserr_cb)(const char *msg); 1104static void (*syserr_cb)(const char *msg);
385 1105
386void 1106void ecb_cold
387ev_set_syserr_cb (void (*cb)(const char *msg)) 1107ev_set_syserr_cb (void (*cb)(const char *msg))
388{ 1108{
389 syserr_cb = cb; 1109 syserr_cb = cb;
390} 1110}
391 1111
392static void noinline 1112static void noinline ecb_cold
393syserr (const char *msg) 1113ev_syserr (const char *msg)
394{ 1114{
395 if (!msg) 1115 if (!msg)
396 msg = "(libev) system error"; 1116 msg = "(libev) system error";
397 1117
398 if (syserr_cb) 1118 if (syserr_cb)
399 syserr_cb (msg); 1119 syserr_cb (msg);
400 else 1120 else
401 { 1121 {
1122#if EV_AVOID_STDIO
1123 ev_printerr (msg);
1124 ev_printerr (": ");
1125 ev_printerr (strerror (errno));
1126 ev_printerr ("\n");
1127#else
402 perror (msg); 1128 perror (msg);
1129#endif
403 abort (); 1130 abort ();
404 } 1131 }
405} 1132}
406 1133
407static void * 1134static void *
408ev_realloc_emul (void *ptr, long size) 1135ev_realloc_emul (void *ptr, long size)
409{ 1136{
1137#if __GLIBC__
1138 return realloc (ptr, size);
1139#else
410 /* some systems, notably openbsd and darwin, fail to properly 1140 /* some systems, notably openbsd and darwin, fail to properly
411 * implement realloc (x, 0) (as required by both ansi c-98 and 1141 * implement realloc (x, 0) (as required by both ansi c-89 and
412 * the single unix specification, so work around them here. 1142 * the single unix specification, so work around them here.
413 */ 1143 */
414 1144
415 if (size) 1145 if (size)
416 return realloc (ptr, size); 1146 return realloc (ptr, size);
417 1147
418 free (ptr); 1148 free (ptr);
419 return 0; 1149 return 0;
1150#endif
420} 1151}
421 1152
422static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1153static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
423 1154
424void 1155void ecb_cold
425ev_set_allocator (void *(*cb)(void *ptr, long size)) 1156ev_set_allocator (void *(*cb)(void *ptr, long size))
426{ 1157{
427 alloc = cb; 1158 alloc = cb;
428} 1159}
429 1160
432{ 1163{
433 ptr = alloc (ptr, size); 1164 ptr = alloc (ptr, size);
434 1165
435 if (!ptr && size) 1166 if (!ptr && size)
436 { 1167 {
1168#if EV_AVOID_STDIO
1169 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1170#else
437 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1171 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1172#endif
438 abort (); 1173 abort ();
439 } 1174 }
440 1175
441 return ptr; 1176 return ptr;
442} 1177}
444#define ev_malloc(size) ev_realloc (0, (size)) 1179#define ev_malloc(size) ev_realloc (0, (size))
445#define ev_free(ptr) ev_realloc ((ptr), 0) 1180#define ev_free(ptr) ev_realloc ((ptr), 0)
446 1181
447/*****************************************************************************/ 1182/*****************************************************************************/
448 1183
1184/* set in reify when reification needed */
1185#define EV_ANFD_REIFY 1
1186
1187/* file descriptor info structure */
449typedef struct 1188typedef struct
450{ 1189{
451 WL head; 1190 WL head;
452 unsigned char events; 1191 unsigned char events; /* the events watched for */
453 unsigned char reify; 1192 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
454 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 1193 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1194 unsigned char unused;
1195#if EV_USE_EPOLL
455 unsigned char egen; /* generation counter to counter epoll bugs */ 1196 unsigned int egen; /* generation counter to counter epoll bugs */
1197#endif
456#if EV_SELECT_IS_WINSOCKET 1198#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
457 SOCKET handle; 1199 SOCKET handle;
458#endif 1200#endif
1201#if EV_USE_IOCP
1202 OVERLAPPED or, ow;
1203#endif
459} ANFD; 1204} ANFD;
460 1205
1206/* stores the pending event set for a given watcher */
461typedef struct 1207typedef struct
462{ 1208{
463 W w; 1209 W w;
464 int events; 1210 int events; /* the pending event set for the given watcher */
465} ANPENDING; 1211} ANPENDING;
466 1212
467#if EV_USE_INOTIFY 1213#if EV_USE_INOTIFY
468/* hash table entry per inotify-id */ 1214/* hash table entry per inotify-id */
469typedef struct 1215typedef struct
472} ANFS; 1218} ANFS;
473#endif 1219#endif
474 1220
475/* Heap Entry */ 1221/* Heap Entry */
476#if EV_HEAP_CACHE_AT 1222#if EV_HEAP_CACHE_AT
1223 /* a heap element */
477 typedef struct { 1224 typedef struct {
478 ev_tstamp at; 1225 ev_tstamp at;
479 WT w; 1226 WT w;
480 } ANHE; 1227 } ANHE;
481 1228
482 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1229 #define ANHE_w(he) (he).w /* access watcher, read-write */
483 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1230 #define ANHE_at(he) (he).at /* access cached at, read-only */
484 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 1231 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
485#else 1232#else
1233 /* a heap element */
486 typedef WT ANHE; 1234 typedef WT ANHE;
487 1235
488 #define ANHE_w(he) (he) 1236 #define ANHE_w(he) (he)
489 #define ANHE_at(he) (he)->at 1237 #define ANHE_at(he) (he)->at
490 #define ANHE_at_cache(he) 1238 #define ANHE_at_cache(he)
501 #undef VAR 1249 #undef VAR
502 }; 1250 };
503 #include "ev_wrap.h" 1251 #include "ev_wrap.h"
504 1252
505 static struct ev_loop default_loop_struct; 1253 static struct ev_loop default_loop_struct;
506 struct ev_loop *ev_default_loop_ptr; 1254 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
507 1255
508#else 1256#else
509 1257
510 ev_tstamp ev_rt_now; 1258 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
511 #define VAR(name,decl) static decl; 1259 #define VAR(name,decl) static decl;
512 #include "ev_vars.h" 1260 #include "ev_vars.h"
513 #undef VAR 1261 #undef VAR
514 1262
515 static int ev_default_loop_ptr; 1263 static int ev_default_loop_ptr;
516 1264
517#endif 1265#endif
518 1266
1267#if EV_FEATURE_API
1268# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1269# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1270# define EV_INVOKE_PENDING invoke_cb (EV_A)
1271#else
1272# define EV_RELEASE_CB (void)0
1273# define EV_ACQUIRE_CB (void)0
1274# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1275#endif
1276
1277#define EVBREAK_RECURSE 0x80
1278
519/*****************************************************************************/ 1279/*****************************************************************************/
520 1280
1281#ifndef EV_HAVE_EV_TIME
521ev_tstamp 1282ev_tstamp
522ev_time (void) 1283ev_time (void)
523{ 1284{
524#if EV_USE_REALTIME 1285#if EV_USE_REALTIME
1286 if (expect_true (have_realtime))
1287 {
525 struct timespec ts; 1288 struct timespec ts;
526 clock_gettime (CLOCK_REALTIME, &ts); 1289 clock_gettime (CLOCK_REALTIME, &ts);
527 return ts.tv_sec + ts.tv_nsec * 1e-9; 1290 return ts.tv_sec + ts.tv_nsec * 1e-9;
528#else 1291 }
1292#endif
1293
529 struct timeval tv; 1294 struct timeval tv;
530 gettimeofday (&tv, 0); 1295 gettimeofday (&tv, 0);
531 return tv.tv_sec + tv.tv_usec * 1e-6; 1296 return tv.tv_sec + tv.tv_usec * 1e-6;
532#endif
533} 1297}
1298#endif
534 1299
535ev_tstamp inline_size 1300inline_size ev_tstamp
536get_clock (void) 1301get_clock (void)
537{ 1302{
538#if EV_USE_MONOTONIC 1303#if EV_USE_MONOTONIC
539 if (expect_true (have_monotonic)) 1304 if (expect_true (have_monotonic))
540 { 1305 {
561 if (delay > 0.) 1326 if (delay > 0.)
562 { 1327 {
563#if EV_USE_NANOSLEEP 1328#if EV_USE_NANOSLEEP
564 struct timespec ts; 1329 struct timespec ts;
565 1330
566 ts.tv_sec = (time_t)delay; 1331 EV_TS_SET (ts, delay);
567 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
568
569 nanosleep (&ts, 0); 1332 nanosleep (&ts, 0);
570#elif defined(_WIN32) 1333#elif defined(_WIN32)
571 Sleep ((unsigned long)(delay * 1e3)); 1334 Sleep ((unsigned long)(delay * 1e3));
572#else 1335#else
573 struct timeval tv; 1336 struct timeval tv;
574 1337
575 tv.tv_sec = (time_t)delay;
576 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
577
578 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 1338 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
579 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 1339 /* something not guaranteed by newer posix versions, but guaranteed */
580 /* by older ones */ 1340 /* by older ones */
1341 EV_TV_SET (tv, delay);
581 select (0, 0, 0, 0, &tv); 1342 select (0, 0, 0, 0, &tv);
582#endif 1343#endif
583 } 1344 }
584} 1345}
585 1346
586/*****************************************************************************/ 1347/*****************************************************************************/
587 1348
588#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1349#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
589 1350
590int inline_size 1351/* find a suitable new size for the given array, */
1352/* hopefully by rounding to a nice-to-malloc size */
1353inline_size int
591array_nextsize (int elem, int cur, int cnt) 1354array_nextsize (int elem, int cur, int cnt)
592{ 1355{
593 int ncur = cur + 1; 1356 int ncur = cur + 1;
594 1357
595 do 1358 do
596 ncur <<= 1; 1359 ncur <<= 1;
597 while (cnt > ncur); 1360 while (cnt > ncur);
598 1361
599 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1362 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
600 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1363 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
601 { 1364 {
602 ncur *= elem; 1365 ncur *= elem;
603 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1366 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
604 ncur = ncur - sizeof (void *) * 4; 1367 ncur = ncur - sizeof (void *) * 4;
606 } 1369 }
607 1370
608 return ncur; 1371 return ncur;
609} 1372}
610 1373
611static noinline void * 1374static void * noinline ecb_cold
612array_realloc (int elem, void *base, int *cur, int cnt) 1375array_realloc (int elem, void *base, int *cur, int cnt)
613{ 1376{
614 *cur = array_nextsize (elem, *cur, cnt); 1377 *cur = array_nextsize (elem, *cur, cnt);
615 return ev_realloc (base, elem * *cur); 1378 return ev_realloc (base, elem * *cur);
616} 1379}
619 memset ((void *)(base), 0, sizeof (*(base)) * (count)) 1382 memset ((void *)(base), 0, sizeof (*(base)) * (count))
620 1383
621#define array_needsize(type,base,cur,cnt,init) \ 1384#define array_needsize(type,base,cur,cnt,init) \
622 if (expect_false ((cnt) > (cur))) \ 1385 if (expect_false ((cnt) > (cur))) \
623 { \ 1386 { \
624 int ocur_ = (cur); \ 1387 int ecb_unused ocur_ = (cur); \
625 (base) = (type *)array_realloc \ 1388 (base) = (type *)array_realloc \
626 (sizeof (type), (base), &(cur), (cnt)); \ 1389 (sizeof (type), (base), &(cur), (cnt)); \
627 init ((base) + (ocur_), (cur) - ocur_); \ 1390 init ((base) + (ocur_), (cur) - ocur_); \
628 } 1391 }
629 1392
636 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1399 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
637 } 1400 }
638#endif 1401#endif
639 1402
640#define array_free(stem, idx) \ 1403#define array_free(stem, idx) \
641 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1404 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
642 1405
643/*****************************************************************************/ 1406/*****************************************************************************/
1407
1408/* dummy callback for pending events */
1409static void noinline
1410pendingcb (EV_P_ ev_prepare *w, int revents)
1411{
1412}
644 1413
645void noinline 1414void noinline
646ev_feed_event (EV_P_ void *w, int revents) 1415ev_feed_event (EV_P_ void *w, int revents)
647{ 1416{
648 W w_ = (W)w; 1417 W w_ = (W)w;
657 pendings [pri][w_->pending - 1].w = w_; 1426 pendings [pri][w_->pending - 1].w = w_;
658 pendings [pri][w_->pending - 1].events = revents; 1427 pendings [pri][w_->pending - 1].events = revents;
659 } 1428 }
660} 1429}
661 1430
662void inline_speed 1431inline_speed void
1432feed_reverse (EV_P_ W w)
1433{
1434 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1435 rfeeds [rfeedcnt++] = w;
1436}
1437
1438inline_size void
1439feed_reverse_done (EV_P_ int revents)
1440{
1441 do
1442 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1443 while (rfeedcnt);
1444}
1445
1446inline_speed void
663queue_events (EV_P_ W *events, int eventcnt, int type) 1447queue_events (EV_P_ W *events, int eventcnt, int type)
664{ 1448{
665 int i; 1449 int i;
666 1450
667 for (i = 0; i < eventcnt; ++i) 1451 for (i = 0; i < eventcnt; ++i)
668 ev_feed_event (EV_A_ events [i], type); 1452 ev_feed_event (EV_A_ events [i], type);
669} 1453}
670 1454
671/*****************************************************************************/ 1455/*****************************************************************************/
672 1456
673void inline_speed 1457inline_speed void
674fd_event (EV_P_ int fd, int revents) 1458fd_event_nocheck (EV_P_ int fd, int revents)
675{ 1459{
676 ANFD *anfd = anfds + fd; 1460 ANFD *anfd = anfds + fd;
677 ev_io *w; 1461 ev_io *w;
678 1462
679 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1463 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
683 if (ev) 1467 if (ev)
684 ev_feed_event (EV_A_ (W)w, ev); 1468 ev_feed_event (EV_A_ (W)w, ev);
685 } 1469 }
686} 1470}
687 1471
1472/* do not submit kernel events for fds that have reify set */
1473/* because that means they changed while we were polling for new events */
1474inline_speed void
1475fd_event (EV_P_ int fd, int revents)
1476{
1477 ANFD *anfd = anfds + fd;
1478
1479 if (expect_true (!anfd->reify))
1480 fd_event_nocheck (EV_A_ fd, revents);
1481}
1482
688void 1483void
689ev_feed_fd_event (EV_P_ int fd, int revents) 1484ev_feed_fd_event (EV_P_ int fd, int revents)
690{ 1485{
691 if (fd >= 0 && fd < anfdmax) 1486 if (fd >= 0 && fd < anfdmax)
692 fd_event (EV_A_ fd, revents); 1487 fd_event_nocheck (EV_A_ fd, revents);
693} 1488}
694 1489
695void inline_size 1490/* make sure the external fd watch events are in-sync */
1491/* with the kernel/libev internal state */
1492inline_size void
696fd_reify (EV_P) 1493fd_reify (EV_P)
697{ 1494{
698 int i; 1495 int i;
1496
1497#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1498 for (i = 0; i < fdchangecnt; ++i)
1499 {
1500 int fd = fdchanges [i];
1501 ANFD *anfd = anfds + fd;
1502
1503 if (anfd->reify & EV__IOFDSET && anfd->head)
1504 {
1505 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1506
1507 if (handle != anfd->handle)
1508 {
1509 unsigned long arg;
1510
1511 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1512
1513 /* handle changed, but fd didn't - we need to do it in two steps */
1514 backend_modify (EV_A_ fd, anfd->events, 0);
1515 anfd->events = 0;
1516 anfd->handle = handle;
1517 }
1518 }
1519 }
1520#endif
699 1521
700 for (i = 0; i < fdchangecnt; ++i) 1522 for (i = 0; i < fdchangecnt; ++i)
701 { 1523 {
702 int fd = fdchanges [i]; 1524 int fd = fdchanges [i];
703 ANFD *anfd = anfds + fd; 1525 ANFD *anfd = anfds + fd;
704 ev_io *w; 1526 ev_io *w;
705 1527
706 unsigned char events = 0; 1528 unsigned char o_events = anfd->events;
1529 unsigned char o_reify = anfd->reify;
707 1530
708 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1531 anfd->reify = 0;
709 events |= (unsigned char)w->events;
710 1532
711#if EV_SELECT_IS_WINSOCKET 1533 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
712 if (events)
713 { 1534 {
714 unsigned long arg; 1535 anfd->events = 0;
715 #ifdef EV_FD_TO_WIN32_HANDLE 1536
716 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1537 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
717 #else 1538 anfd->events |= (unsigned char)w->events;
718 anfd->handle = _get_osfhandle (fd); 1539
719 #endif 1540 if (o_events != anfd->events)
720 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 1541 o_reify = EV__IOFDSET; /* actually |= */
721 } 1542 }
722#endif
723 1543
724 { 1544 if (o_reify & EV__IOFDSET)
725 unsigned char o_events = anfd->events;
726 unsigned char o_reify = anfd->reify;
727
728 anfd->reify = 0;
729 anfd->events = events;
730
731 if (o_events != events || o_reify & EV_IOFDSET)
732 backend_modify (EV_A_ fd, o_events, events); 1545 backend_modify (EV_A_ fd, o_events, anfd->events);
733 }
734 } 1546 }
735 1547
736 fdchangecnt = 0; 1548 fdchangecnt = 0;
737} 1549}
738 1550
739void inline_size 1551/* something about the given fd changed */
1552inline_size void
740fd_change (EV_P_ int fd, int flags) 1553fd_change (EV_P_ int fd, int flags)
741{ 1554{
742 unsigned char reify = anfds [fd].reify; 1555 unsigned char reify = anfds [fd].reify;
743 anfds [fd].reify |= flags; 1556 anfds [fd].reify |= flags;
744 1557
748 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1561 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
749 fdchanges [fdchangecnt - 1] = fd; 1562 fdchanges [fdchangecnt - 1] = fd;
750 } 1563 }
751} 1564}
752 1565
753void inline_speed 1566/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1567inline_speed void ecb_cold
754fd_kill (EV_P_ int fd) 1568fd_kill (EV_P_ int fd)
755{ 1569{
756 ev_io *w; 1570 ev_io *w;
757 1571
758 while ((w = (ev_io *)anfds [fd].head)) 1572 while ((w = (ev_io *)anfds [fd].head))
760 ev_io_stop (EV_A_ w); 1574 ev_io_stop (EV_A_ w);
761 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1575 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
762 } 1576 }
763} 1577}
764 1578
765int inline_size 1579/* check whether the given fd is actually valid, for error recovery */
1580inline_size int ecb_cold
766fd_valid (int fd) 1581fd_valid (int fd)
767{ 1582{
768#ifdef _WIN32 1583#ifdef _WIN32
769 return _get_osfhandle (fd) != -1; 1584 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
770#else 1585#else
771 return fcntl (fd, F_GETFD) != -1; 1586 return fcntl (fd, F_GETFD) != -1;
772#endif 1587#endif
773} 1588}
774 1589
775/* called on EBADF to verify fds */ 1590/* called on EBADF to verify fds */
776static void noinline 1591static void noinline ecb_cold
777fd_ebadf (EV_P) 1592fd_ebadf (EV_P)
778{ 1593{
779 int fd; 1594 int fd;
780 1595
781 for (fd = 0; fd < anfdmax; ++fd) 1596 for (fd = 0; fd < anfdmax; ++fd)
783 if (!fd_valid (fd) && errno == EBADF) 1598 if (!fd_valid (fd) && errno == EBADF)
784 fd_kill (EV_A_ fd); 1599 fd_kill (EV_A_ fd);
785} 1600}
786 1601
787/* called on ENOMEM in select/poll to kill some fds and retry */ 1602/* called on ENOMEM in select/poll to kill some fds and retry */
788static void noinline 1603static void noinline ecb_cold
789fd_enomem (EV_P) 1604fd_enomem (EV_P)
790{ 1605{
791 int fd; 1606 int fd;
792 1607
793 for (fd = anfdmax; fd--; ) 1608 for (fd = anfdmax; fd--; )
794 if (anfds [fd].events) 1609 if (anfds [fd].events)
795 { 1610 {
796 fd_kill (EV_A_ fd); 1611 fd_kill (EV_A_ fd);
797 return; 1612 break;
798 } 1613 }
799} 1614}
800 1615
801/* usually called after fork if backend needs to re-arm all fds from scratch */ 1616/* usually called after fork if backend needs to re-arm all fds from scratch */
802static void noinline 1617static void noinline
807 for (fd = 0; fd < anfdmax; ++fd) 1622 for (fd = 0; fd < anfdmax; ++fd)
808 if (anfds [fd].events) 1623 if (anfds [fd].events)
809 { 1624 {
810 anfds [fd].events = 0; 1625 anfds [fd].events = 0;
811 anfds [fd].emask = 0; 1626 anfds [fd].emask = 0;
812 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1627 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
813 } 1628 }
814} 1629}
815 1630
1631/* used to prepare libev internal fd's */
1632/* this is not fork-safe */
1633inline_speed void
1634fd_intern (int fd)
1635{
1636#ifdef _WIN32
1637 unsigned long arg = 1;
1638 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1639#else
1640 fcntl (fd, F_SETFD, FD_CLOEXEC);
1641 fcntl (fd, F_SETFL, O_NONBLOCK);
1642#endif
1643}
1644
816/*****************************************************************************/ 1645/*****************************************************************************/
817 1646
818/* 1647/*
819 * the heap functions want a real array index. array index 0 uis guaranteed to not 1648 * the heap functions want a real array index. array index 0 is guaranteed to not
820 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1649 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
821 * the branching factor of the d-tree. 1650 * the branching factor of the d-tree.
822 */ 1651 */
823 1652
824/* 1653/*
833#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1662#define HEAP0 (DHEAP - 1) /* index of first element in heap */
834#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1663#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
835#define UPHEAP_DONE(p,k) ((p) == (k)) 1664#define UPHEAP_DONE(p,k) ((p) == (k))
836 1665
837/* away from the root */ 1666/* away from the root */
838void inline_speed 1667inline_speed void
839downheap (ANHE *heap, int N, int k) 1668downheap (ANHE *heap, int N, int k)
840{ 1669{
841 ANHE he = heap [k]; 1670 ANHE he = heap [k];
842 ANHE *E = heap + N + HEAP0; 1671 ANHE *E = heap + N + HEAP0;
843 1672
883#define HEAP0 1 1712#define HEAP0 1
884#define HPARENT(k) ((k) >> 1) 1713#define HPARENT(k) ((k) >> 1)
885#define UPHEAP_DONE(p,k) (!(p)) 1714#define UPHEAP_DONE(p,k) (!(p))
886 1715
887/* away from the root */ 1716/* away from the root */
888void inline_speed 1717inline_speed void
889downheap (ANHE *heap, int N, int k) 1718downheap (ANHE *heap, int N, int k)
890{ 1719{
891 ANHE he = heap [k]; 1720 ANHE he = heap [k];
892 1721
893 for (;;) 1722 for (;;)
894 { 1723 {
895 int c = k << 1; 1724 int c = k << 1;
896 1725
897 if (c > N + HEAP0 - 1) 1726 if (c >= N + HEAP0)
898 break; 1727 break;
899 1728
900 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1729 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
901 ? 1 : 0; 1730 ? 1 : 0;
902 1731
913 ev_active (ANHE_w (he)) = k; 1742 ev_active (ANHE_w (he)) = k;
914} 1743}
915#endif 1744#endif
916 1745
917/* towards the root */ 1746/* towards the root */
918void inline_speed 1747inline_speed void
919upheap (ANHE *heap, int k) 1748upheap (ANHE *heap, int k)
920{ 1749{
921 ANHE he = heap [k]; 1750 ANHE he = heap [k];
922 1751
923 for (;;) 1752 for (;;)
934 1763
935 heap [k] = he; 1764 heap [k] = he;
936 ev_active (ANHE_w (he)) = k; 1765 ev_active (ANHE_w (he)) = k;
937} 1766}
938 1767
939void inline_size 1768/* move an element suitably so it is in a correct place */
1769inline_size void
940adjustheap (ANHE *heap, int N, int k) 1770adjustheap (ANHE *heap, int N, int k)
941{ 1771{
942 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1772 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
943 upheap (heap, k); 1773 upheap (heap, k);
944 else 1774 else
945 downheap (heap, N, k); 1775 downheap (heap, N, k);
946} 1776}
947 1777
948/* rebuild the heap: this function is used only once and executed rarely */ 1778/* rebuild the heap: this function is used only once and executed rarely */
949void inline_size 1779inline_size void
950reheap (ANHE *heap, int N) 1780reheap (ANHE *heap, int N)
951{ 1781{
952 int i; 1782 int i;
953 1783
954 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1784 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
957 upheap (heap, i + HEAP0); 1787 upheap (heap, i + HEAP0);
958} 1788}
959 1789
960/*****************************************************************************/ 1790/*****************************************************************************/
961 1791
1792/* associate signal watchers to a signal signal */
962typedef struct 1793typedef struct
963{ 1794{
1795 EV_ATOMIC_T pending;
1796#if EV_MULTIPLICITY
1797 EV_P;
1798#endif
964 WL head; 1799 WL head;
965 EV_ATOMIC_T gotsig;
966} ANSIG; 1800} ANSIG;
967 1801
968static ANSIG *signals; 1802static ANSIG signals [EV_NSIG - 1];
969static int signalmax;
970
971static EV_ATOMIC_T gotsig;
972 1803
973/*****************************************************************************/ 1804/*****************************************************************************/
974 1805
975void inline_speed 1806#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
976fd_intern (int fd)
977{
978#ifdef _WIN32
979 unsigned long arg = 1;
980 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
981#else
982 fcntl (fd, F_SETFD, FD_CLOEXEC);
983 fcntl (fd, F_SETFL, O_NONBLOCK);
984#endif
985}
986 1807
987static void noinline 1808static void noinline ecb_cold
988evpipe_init (EV_P) 1809evpipe_init (EV_P)
989{ 1810{
990 if (!ev_is_active (&pipeev)) 1811 if (!ev_is_active (&pipe_w))
991 { 1812 {
992#if EV_USE_EVENTFD 1813# if EV_USE_EVENTFD
1814 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1815 if (evfd < 0 && errno == EINVAL)
993 if ((evfd = eventfd (0, 0)) >= 0) 1816 evfd = eventfd (0, 0);
1817
1818 if (evfd >= 0)
994 { 1819 {
995 evpipe [0] = -1; 1820 evpipe [0] = -1;
996 fd_intern (evfd); 1821 fd_intern (evfd); /* doing it twice doesn't hurt */
997 ev_io_set (&pipeev, evfd, EV_READ); 1822 ev_io_set (&pipe_w, evfd, EV_READ);
998 } 1823 }
999 else 1824 else
1000#endif 1825# endif
1001 { 1826 {
1002 while (pipe (evpipe)) 1827 while (pipe (evpipe))
1003 syserr ("(libev) error creating signal/async pipe"); 1828 ev_syserr ("(libev) error creating signal/async pipe");
1004 1829
1005 fd_intern (evpipe [0]); 1830 fd_intern (evpipe [0]);
1006 fd_intern (evpipe [1]); 1831 fd_intern (evpipe [1]);
1007 ev_io_set (&pipeev, evpipe [0], EV_READ); 1832 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1008 } 1833 }
1009 1834
1010 ev_io_start (EV_A_ &pipeev); 1835 ev_io_start (EV_A_ &pipe_w);
1011 ev_unref (EV_A); /* watcher should not keep loop alive */ 1836 ev_unref (EV_A); /* watcher should not keep loop alive */
1012 } 1837 }
1013} 1838}
1014 1839
1015void inline_size 1840inline_speed void
1016evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1841evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1017{ 1842{
1018 if (!*flag) 1843 if (expect_true (*flag))
1844 return;
1845
1846 *flag = 1;
1847
1848 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1849
1850 pipe_write_skipped = 1;
1851
1852 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1853
1854 if (pipe_write_wanted)
1019 { 1855 {
1856 int old_errno;
1857
1858 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1859
1020 int old_errno = errno; /* save errno because write might clobber it */ 1860 old_errno = errno; /* save errno because write will clobber it */
1021
1022 *flag = 1;
1023 1861
1024#if EV_USE_EVENTFD 1862#if EV_USE_EVENTFD
1025 if (evfd >= 0) 1863 if (evfd >= 0)
1026 { 1864 {
1027 uint64_t counter = 1; 1865 uint64_t counter = 1;
1028 write (evfd, &counter, sizeof (uint64_t)); 1866 write (evfd, &counter, sizeof (uint64_t));
1029 } 1867 }
1030 else 1868 else
1031#endif 1869#endif
1870 {
1871 /* win32 people keep sending patches that change this write() to send() */
1872 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1873 /* so when you think this write should be a send instead, please find out */
1874 /* where your send() is from - it's definitely not the microsoft send, and */
1875 /* tell me. thank you. */
1876 /* it might be that your problem is that your environment needs EV_USE_WSASOCKET */
1877 /* check the ev documentation on how to use this flag */
1032 write (evpipe [1], &old_errno, 1); 1878 write (evpipe [1], &(evpipe [1]), 1);
1879 }
1033 1880
1034 errno = old_errno; 1881 errno = old_errno;
1035 } 1882 }
1036} 1883}
1037 1884
1885/* called whenever the libev signal pipe */
1886/* got some events (signal, async) */
1038static void 1887static void
1039pipecb (EV_P_ ev_io *iow, int revents) 1888pipecb (EV_P_ ev_io *iow, int revents)
1040{ 1889{
1890 int i;
1891
1892 if (revents & EV_READ)
1893 {
1041#if EV_USE_EVENTFD 1894#if EV_USE_EVENTFD
1042 if (evfd >= 0) 1895 if (evfd >= 0)
1043 { 1896 {
1044 uint64_t counter; 1897 uint64_t counter;
1045 read (evfd, &counter, sizeof (uint64_t)); 1898 read (evfd, &counter, sizeof (uint64_t));
1046 } 1899 }
1047 else 1900 else
1048#endif 1901#endif
1049 { 1902 {
1050 char dummy; 1903 char dummy;
1904 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1051 read (evpipe [0], &dummy, 1); 1905 read (evpipe [0], &dummy, 1);
1906 }
1907 }
1908
1909 pipe_write_skipped = 0;
1910
1911#if EV_SIGNAL_ENABLE
1912 if (sig_pending)
1052 } 1913 {
1914 sig_pending = 0;
1053 1915
1054 if (gotsig && ev_is_default_loop (EV_A)) 1916 for (i = EV_NSIG - 1; i--; )
1055 { 1917 if (expect_false (signals [i].pending))
1056 int signum;
1057 gotsig = 0;
1058
1059 for (signum = signalmax; signum--; )
1060 if (signals [signum].gotsig)
1061 ev_feed_signal_event (EV_A_ signum + 1); 1918 ev_feed_signal_event (EV_A_ i + 1);
1062 } 1919 }
1920#endif
1063 1921
1064#if EV_ASYNC_ENABLE 1922#if EV_ASYNC_ENABLE
1065 if (gotasync) 1923 if (async_pending)
1066 { 1924 {
1067 int i; 1925 async_pending = 0;
1068 gotasync = 0;
1069 1926
1070 for (i = asynccnt; i--; ) 1927 for (i = asynccnt; i--; )
1071 if (asyncs [i]->sent) 1928 if (asyncs [i]->sent)
1072 { 1929 {
1073 asyncs [i]->sent = 0; 1930 asyncs [i]->sent = 0;
1077#endif 1934#endif
1078} 1935}
1079 1936
1080/*****************************************************************************/ 1937/*****************************************************************************/
1081 1938
1939void
1940ev_feed_signal (int signum)
1941{
1942#if EV_MULTIPLICITY
1943 EV_P = signals [signum - 1].loop;
1944
1945 if (!EV_A)
1946 return;
1947#endif
1948
1949 if (!ev_active (&pipe_w))
1950 return;
1951
1952 signals [signum - 1].pending = 1;
1953 evpipe_write (EV_A_ &sig_pending);
1954}
1955
1082static void 1956static void
1083ev_sighandler (int signum) 1957ev_sighandler (int signum)
1084{ 1958{
1085#if EV_MULTIPLICITY
1086 struct ev_loop *loop = &default_loop_struct;
1087#endif
1088
1089#if _WIN32 1959#ifdef _WIN32
1090 signal (signum, ev_sighandler); 1960 signal (signum, ev_sighandler);
1091#endif 1961#endif
1092 1962
1093 signals [signum - 1].gotsig = 1; 1963 ev_feed_signal (signum);
1094 evpipe_write (EV_A_ &gotsig);
1095} 1964}
1096 1965
1097void noinline 1966void noinline
1098ev_feed_signal_event (EV_P_ int signum) 1967ev_feed_signal_event (EV_P_ int signum)
1099{ 1968{
1100 WL w; 1969 WL w;
1101 1970
1971 if (expect_false (signum <= 0 || signum > EV_NSIG))
1972 return;
1973
1974 --signum;
1975
1102#if EV_MULTIPLICITY 1976#if EV_MULTIPLICITY
1103 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1977 /* it is permissible to try to feed a signal to the wrong loop */
1104#endif 1978 /* or, likely more useful, feeding a signal nobody is waiting for */
1105 1979
1106 --signum; 1980 if (expect_false (signals [signum].loop != EV_A))
1107
1108 if (signum < 0 || signum >= signalmax)
1109 return; 1981 return;
1982#endif
1110 1983
1111 signals [signum].gotsig = 0; 1984 signals [signum].pending = 0;
1112 1985
1113 for (w = signals [signum].head; w; w = w->next) 1986 for (w = signals [signum].head; w; w = w->next)
1114 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1987 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1115} 1988}
1116 1989
1990#if EV_USE_SIGNALFD
1991static void
1992sigfdcb (EV_P_ ev_io *iow, int revents)
1993{
1994 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1995
1996 for (;;)
1997 {
1998 ssize_t res = read (sigfd, si, sizeof (si));
1999
2000 /* not ISO-C, as res might be -1, but works with SuS */
2001 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2002 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2003
2004 if (res < (ssize_t)sizeof (si))
2005 break;
2006 }
2007}
2008#endif
2009
2010#endif
2011
1117/*****************************************************************************/ 2012/*****************************************************************************/
1118 2013
2014#if EV_CHILD_ENABLE
1119static WL childs [EV_PID_HASHSIZE]; 2015static WL childs [EV_PID_HASHSIZE];
1120
1121#ifndef _WIN32
1122 2016
1123static ev_signal childev; 2017static ev_signal childev;
1124 2018
1125#ifndef WIFCONTINUED 2019#ifndef WIFCONTINUED
1126# define WIFCONTINUED(status) 0 2020# define WIFCONTINUED(status) 0
1127#endif 2021#endif
1128 2022
1129void inline_speed 2023/* handle a single child status event */
2024inline_speed void
1130child_reap (EV_P_ int chain, int pid, int status) 2025child_reap (EV_P_ int chain, int pid, int status)
1131{ 2026{
1132 ev_child *w; 2027 ev_child *w;
1133 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2028 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1134 2029
1135 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2030 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1136 { 2031 {
1137 if ((w->pid == pid || !w->pid) 2032 if ((w->pid == pid || !w->pid)
1138 && (!traced || (w->flags & 1))) 2033 && (!traced || (w->flags & 1)))
1139 { 2034 {
1140 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2035 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1147 2042
1148#ifndef WCONTINUED 2043#ifndef WCONTINUED
1149# define WCONTINUED 0 2044# define WCONTINUED 0
1150#endif 2045#endif
1151 2046
2047/* called on sigchld etc., calls waitpid */
1152static void 2048static void
1153childcb (EV_P_ ev_signal *sw, int revents) 2049childcb (EV_P_ ev_signal *sw, int revents)
1154{ 2050{
1155 int pid, status; 2051 int pid, status;
1156 2052
1164 /* make sure we are called again until all children have been reaped */ 2060 /* make sure we are called again until all children have been reaped */
1165 /* we need to do it this way so that the callback gets called before we continue */ 2061 /* we need to do it this way so that the callback gets called before we continue */
1166 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2062 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1167 2063
1168 child_reap (EV_A_ pid, pid, status); 2064 child_reap (EV_A_ pid, pid, status);
1169 if (EV_PID_HASHSIZE > 1) 2065 if ((EV_PID_HASHSIZE) > 1)
1170 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2066 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1171} 2067}
1172 2068
1173#endif 2069#endif
1174 2070
1175/*****************************************************************************/ 2071/*****************************************************************************/
1176 2072
2073#if EV_USE_IOCP
2074# include "ev_iocp.c"
2075#endif
1177#if EV_USE_PORT 2076#if EV_USE_PORT
1178# include "ev_port.c" 2077# include "ev_port.c"
1179#endif 2078#endif
1180#if EV_USE_KQUEUE 2079#if EV_USE_KQUEUE
1181# include "ev_kqueue.c" 2080# include "ev_kqueue.c"
1188#endif 2087#endif
1189#if EV_USE_SELECT 2088#if EV_USE_SELECT
1190# include "ev_select.c" 2089# include "ev_select.c"
1191#endif 2090#endif
1192 2091
1193int 2092int ecb_cold
1194ev_version_major (void) 2093ev_version_major (void)
1195{ 2094{
1196 return EV_VERSION_MAJOR; 2095 return EV_VERSION_MAJOR;
1197} 2096}
1198 2097
1199int 2098int ecb_cold
1200ev_version_minor (void) 2099ev_version_minor (void)
1201{ 2100{
1202 return EV_VERSION_MINOR; 2101 return EV_VERSION_MINOR;
1203} 2102}
1204 2103
1205/* return true if we are running with elevated privileges and should ignore env variables */ 2104/* return true if we are running with elevated privileges and should ignore env variables */
1206int inline_size 2105int inline_size ecb_cold
1207enable_secure (void) 2106enable_secure (void)
1208{ 2107{
1209#ifdef _WIN32 2108#ifdef _WIN32
1210 return 0; 2109 return 0;
1211#else 2110#else
1212 return getuid () != geteuid () 2111 return getuid () != geteuid ()
1213 || getgid () != getegid (); 2112 || getgid () != getegid ();
1214#endif 2113#endif
1215} 2114}
1216 2115
1217unsigned int 2116unsigned int ecb_cold
1218ev_supported_backends (void) 2117ev_supported_backends (void)
1219{ 2118{
1220 unsigned int flags = 0; 2119 unsigned int flags = 0;
1221 2120
1222 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2121 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1226 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2125 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1227 2126
1228 return flags; 2127 return flags;
1229} 2128}
1230 2129
1231unsigned int 2130unsigned int ecb_cold
1232ev_recommended_backends (void) 2131ev_recommended_backends (void)
1233{ 2132{
1234 unsigned int flags = ev_supported_backends (); 2133 unsigned int flags = ev_supported_backends ();
1235 2134
1236#ifndef __NetBSD__ 2135#ifndef __NetBSD__
1237 /* kqueue is borked on everything but netbsd apparently */ 2136 /* kqueue is borked on everything but netbsd apparently */
1238 /* it usually doesn't work correctly on anything but sockets and pipes */ 2137 /* it usually doesn't work correctly on anything but sockets and pipes */
1239 flags &= ~EVBACKEND_KQUEUE; 2138 flags &= ~EVBACKEND_KQUEUE;
1240#endif 2139#endif
1241#ifdef __APPLE__ 2140#ifdef __APPLE__
1242 // flags &= ~EVBACKEND_KQUEUE; for documentation 2141 /* only select works correctly on that "unix-certified" platform */
1243 flags &= ~EVBACKEND_POLL; 2142 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2143 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2144#endif
2145#ifdef __FreeBSD__
2146 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1244#endif 2147#endif
1245 2148
1246 return flags; 2149 return flags;
1247} 2150}
1248 2151
1249unsigned int 2152unsigned int ecb_cold
1250ev_embeddable_backends (void) 2153ev_embeddable_backends (void)
1251{ 2154{
1252 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2155 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1253 2156
1254 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 2157 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1255 /* please fix it and tell me how to detect the fix */ 2158 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1256 flags &= ~EVBACKEND_EPOLL; 2159 flags &= ~EVBACKEND_EPOLL;
1257 2160
1258 return flags; 2161 return flags;
1259} 2162}
1260 2163
1261unsigned int 2164unsigned int
1262ev_backend (EV_P) 2165ev_backend (EV_P)
1263{ 2166{
1264 return backend; 2167 return backend;
1265} 2168}
1266 2169
2170#if EV_FEATURE_API
1267unsigned int 2171unsigned int
1268ev_loop_count (EV_P) 2172ev_iteration (EV_P)
1269{ 2173{
1270 return loop_count; 2174 return loop_count;
2175}
2176
2177unsigned int
2178ev_depth (EV_P)
2179{
2180 return loop_depth;
1271} 2181}
1272 2182
1273void 2183void
1274ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2184ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1275{ 2185{
1280ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2190ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1281{ 2191{
1282 timeout_blocktime = interval; 2192 timeout_blocktime = interval;
1283} 2193}
1284 2194
2195void
2196ev_set_userdata (EV_P_ void *data)
2197{
2198 userdata = data;
2199}
2200
2201void *
2202ev_userdata (EV_P)
2203{
2204 return userdata;
2205}
2206
2207void
2208ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2209{
2210 invoke_cb = invoke_pending_cb;
2211}
2212
2213void
2214ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2215{
2216 release_cb = release;
2217 acquire_cb = acquire;
2218}
2219#endif
2220
2221/* initialise a loop structure, must be zero-initialised */
1285static void noinline 2222static void noinline ecb_cold
1286loop_init (EV_P_ unsigned int flags) 2223loop_init (EV_P_ unsigned int flags)
1287{ 2224{
1288 if (!backend) 2225 if (!backend)
1289 { 2226 {
2227 origflags = flags;
2228
2229#if EV_USE_REALTIME
2230 if (!have_realtime)
2231 {
2232 struct timespec ts;
2233
2234 if (!clock_gettime (CLOCK_REALTIME, &ts))
2235 have_realtime = 1;
2236 }
2237#endif
2238
1290#if EV_USE_MONOTONIC 2239#if EV_USE_MONOTONIC
2240 if (!have_monotonic)
1291 { 2241 {
1292 struct timespec ts; 2242 struct timespec ts;
2243
1293 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2244 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1294 have_monotonic = 1; 2245 have_monotonic = 1;
1295 } 2246 }
1296#endif
1297
1298 ev_rt_now = ev_time ();
1299 mn_now = get_clock ();
1300 now_floor = mn_now;
1301 rtmn_diff = ev_rt_now - mn_now;
1302
1303 io_blocktime = 0.;
1304 timeout_blocktime = 0.;
1305 backend = 0;
1306 backend_fd = -1;
1307 gotasync = 0;
1308#if EV_USE_INOTIFY
1309 fs_fd = -2;
1310#endif 2247#endif
1311 2248
1312 /* pid check not overridable via env */ 2249 /* pid check not overridable via env */
1313#ifndef _WIN32 2250#ifndef _WIN32
1314 if (flags & EVFLAG_FORKCHECK) 2251 if (flags & EVFLAG_FORKCHECK)
1318 if (!(flags & EVFLAG_NOENV) 2255 if (!(flags & EVFLAG_NOENV)
1319 && !enable_secure () 2256 && !enable_secure ()
1320 && getenv ("LIBEV_FLAGS")) 2257 && getenv ("LIBEV_FLAGS"))
1321 flags = atoi (getenv ("LIBEV_FLAGS")); 2258 flags = atoi (getenv ("LIBEV_FLAGS"));
1322 2259
1323 if (!(flags & 0x0000ffffU)) 2260 ev_rt_now = ev_time ();
2261 mn_now = get_clock ();
2262 now_floor = mn_now;
2263 rtmn_diff = ev_rt_now - mn_now;
2264#if EV_FEATURE_API
2265 invoke_cb = ev_invoke_pending;
2266#endif
2267
2268 io_blocktime = 0.;
2269 timeout_blocktime = 0.;
2270 backend = 0;
2271 backend_fd = -1;
2272 sig_pending = 0;
2273#if EV_ASYNC_ENABLE
2274 async_pending = 0;
2275#endif
2276 pipe_write_skipped = 0;
2277 pipe_write_wanted = 0;
2278#if EV_USE_INOTIFY
2279 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2280#endif
2281#if EV_USE_SIGNALFD
2282 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2283#endif
2284
2285 if (!(flags & EVBACKEND_MASK))
1324 flags |= ev_recommended_backends (); 2286 flags |= ev_recommended_backends ();
1325 2287
2288#if EV_USE_IOCP
2289 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2290#endif
1326#if EV_USE_PORT 2291#if EV_USE_PORT
1327 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2292 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1328#endif 2293#endif
1329#if EV_USE_KQUEUE 2294#if EV_USE_KQUEUE
1330 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2295 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1337#endif 2302#endif
1338#if EV_USE_SELECT 2303#if EV_USE_SELECT
1339 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2304 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1340#endif 2305#endif
1341 2306
2307 ev_prepare_init (&pending_w, pendingcb);
2308
2309#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1342 ev_init (&pipeev, pipecb); 2310 ev_init (&pipe_w, pipecb);
1343 ev_set_priority (&pipeev, EV_MAXPRI); 2311 ev_set_priority (&pipe_w, EV_MAXPRI);
2312#endif
1344 } 2313 }
1345} 2314}
1346 2315
1347static void noinline 2316/* free up a loop structure */
2317void ecb_cold
1348loop_destroy (EV_P) 2318ev_loop_destroy (EV_P)
1349{ 2319{
1350 int i; 2320 int i;
1351 2321
2322#if EV_MULTIPLICITY
2323 /* mimic free (0) */
2324 if (!EV_A)
2325 return;
2326#endif
2327
2328#if EV_CLEANUP_ENABLE
2329 /* queue cleanup watchers (and execute them) */
2330 if (expect_false (cleanupcnt))
2331 {
2332 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2333 EV_INVOKE_PENDING;
2334 }
2335#endif
2336
2337#if EV_CHILD_ENABLE
2338 if (ev_is_active (&childev))
2339 {
2340 ev_ref (EV_A); /* child watcher */
2341 ev_signal_stop (EV_A_ &childev);
2342 }
2343#endif
2344
1352 if (ev_is_active (&pipeev)) 2345 if (ev_is_active (&pipe_w))
1353 { 2346 {
1354 ev_ref (EV_A); /* signal watcher */ 2347 /*ev_ref (EV_A);*/
1355 ev_io_stop (EV_A_ &pipeev); 2348 /*ev_io_stop (EV_A_ &pipe_w);*/
1356 2349
1357#if EV_USE_EVENTFD 2350#if EV_USE_EVENTFD
1358 if (evfd >= 0) 2351 if (evfd >= 0)
1359 close (evfd); 2352 close (evfd);
1360#endif 2353#endif
1361 2354
1362 if (evpipe [0] >= 0) 2355 if (evpipe [0] >= 0)
1363 { 2356 {
1364 close (evpipe [0]); 2357 EV_WIN32_CLOSE_FD (evpipe [0]);
1365 close (evpipe [1]); 2358 EV_WIN32_CLOSE_FD (evpipe [1]);
1366 } 2359 }
1367 } 2360 }
2361
2362#if EV_USE_SIGNALFD
2363 if (ev_is_active (&sigfd_w))
2364 close (sigfd);
2365#endif
1368 2366
1369#if EV_USE_INOTIFY 2367#if EV_USE_INOTIFY
1370 if (fs_fd >= 0) 2368 if (fs_fd >= 0)
1371 close (fs_fd); 2369 close (fs_fd);
1372#endif 2370#endif
1373 2371
1374 if (backend_fd >= 0) 2372 if (backend_fd >= 0)
1375 close (backend_fd); 2373 close (backend_fd);
1376 2374
2375#if EV_USE_IOCP
2376 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2377#endif
1377#if EV_USE_PORT 2378#if EV_USE_PORT
1378 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2379 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1379#endif 2380#endif
1380#if EV_USE_KQUEUE 2381#if EV_USE_KQUEUE
1381 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2382 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1396#if EV_IDLE_ENABLE 2397#if EV_IDLE_ENABLE
1397 array_free (idle, [i]); 2398 array_free (idle, [i]);
1398#endif 2399#endif
1399 } 2400 }
1400 2401
1401 ev_free (anfds); anfdmax = 0; 2402 ev_free (anfds); anfds = 0; anfdmax = 0;
1402 2403
1403 /* have to use the microsoft-never-gets-it-right macro */ 2404 /* have to use the microsoft-never-gets-it-right macro */
2405 array_free (rfeed, EMPTY);
1404 array_free (fdchange, EMPTY); 2406 array_free (fdchange, EMPTY);
1405 array_free (timer, EMPTY); 2407 array_free (timer, EMPTY);
1406#if EV_PERIODIC_ENABLE 2408#if EV_PERIODIC_ENABLE
1407 array_free (periodic, EMPTY); 2409 array_free (periodic, EMPTY);
1408#endif 2410#endif
1409#if EV_FORK_ENABLE 2411#if EV_FORK_ENABLE
1410 array_free (fork, EMPTY); 2412 array_free (fork, EMPTY);
1411#endif 2413#endif
2414#if EV_CLEANUP_ENABLE
2415 array_free (cleanup, EMPTY);
2416#endif
1412 array_free (prepare, EMPTY); 2417 array_free (prepare, EMPTY);
1413 array_free (check, EMPTY); 2418 array_free (check, EMPTY);
1414#if EV_ASYNC_ENABLE 2419#if EV_ASYNC_ENABLE
1415 array_free (async, EMPTY); 2420 array_free (async, EMPTY);
1416#endif 2421#endif
1417 2422
1418 backend = 0; 2423 backend = 0;
2424
2425#if EV_MULTIPLICITY
2426 if (ev_is_default_loop (EV_A))
2427#endif
2428 ev_default_loop_ptr = 0;
2429#if EV_MULTIPLICITY
2430 else
2431 ev_free (EV_A);
2432#endif
1419} 2433}
1420 2434
1421#if EV_USE_INOTIFY 2435#if EV_USE_INOTIFY
1422void inline_size infy_fork (EV_P); 2436inline_size void infy_fork (EV_P);
1423#endif 2437#endif
1424 2438
1425void inline_size 2439inline_size void
1426loop_fork (EV_P) 2440loop_fork (EV_P)
1427{ 2441{
1428#if EV_USE_PORT 2442#if EV_USE_PORT
1429 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2443 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1430#endif 2444#endif
1436#endif 2450#endif
1437#if EV_USE_INOTIFY 2451#if EV_USE_INOTIFY
1438 infy_fork (EV_A); 2452 infy_fork (EV_A);
1439#endif 2453#endif
1440 2454
1441 if (ev_is_active (&pipeev)) 2455 if (ev_is_active (&pipe_w))
1442 { 2456 {
1443 /* this "locks" the handlers against writing to the pipe */ 2457 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1444 /* while we modify the fd vars */
1445 gotsig = 1;
1446#if EV_ASYNC_ENABLE
1447 gotasync = 1;
1448#endif
1449 2458
1450 ev_ref (EV_A); 2459 ev_ref (EV_A);
1451 ev_io_stop (EV_A_ &pipeev); 2460 ev_io_stop (EV_A_ &pipe_w);
1452 2461
1453#if EV_USE_EVENTFD 2462#if EV_USE_EVENTFD
1454 if (evfd >= 0) 2463 if (evfd >= 0)
1455 close (evfd); 2464 close (evfd);
1456#endif 2465#endif
1457 2466
1458 if (evpipe [0] >= 0) 2467 if (evpipe [0] >= 0)
1459 { 2468 {
1460 close (evpipe [0]); 2469 EV_WIN32_CLOSE_FD (evpipe [0]);
1461 close (evpipe [1]); 2470 EV_WIN32_CLOSE_FD (evpipe [1]);
1462 } 2471 }
1463 2472
2473#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1464 evpipe_init (EV_A); 2474 evpipe_init (EV_A);
1465 /* now iterate over everything, in case we missed something */ 2475 /* now iterate over everything, in case we missed something */
1466 pipecb (EV_A_ &pipeev, EV_READ); 2476 pipecb (EV_A_ &pipe_w, EV_READ);
2477#endif
1467 } 2478 }
1468 2479
1469 postfork = 0; 2480 postfork = 0;
1470} 2481}
1471 2482
1472#if EV_MULTIPLICITY 2483#if EV_MULTIPLICITY
1473 2484
1474struct ev_loop * 2485struct ev_loop * ecb_cold
1475ev_loop_new (unsigned int flags) 2486ev_loop_new (unsigned int flags)
1476{ 2487{
1477 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2488 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1478 2489
1479 memset (loop, 0, sizeof (struct ev_loop)); 2490 memset (EV_A, 0, sizeof (struct ev_loop));
1480
1481 loop_init (EV_A_ flags); 2491 loop_init (EV_A_ flags);
1482 2492
1483 if (ev_backend (EV_A)) 2493 if (ev_backend (EV_A))
1484 return loop; 2494 return EV_A;
1485 2495
2496 ev_free (EV_A);
1486 return 0; 2497 return 0;
1487} 2498}
1488 2499
1489void 2500#endif /* multiplicity */
1490ev_loop_destroy (EV_P)
1491{
1492 loop_destroy (EV_A);
1493 ev_free (loop);
1494}
1495
1496void
1497ev_loop_fork (EV_P)
1498{
1499 postfork = 1; /* must be in line with ev_default_fork */
1500}
1501 2501
1502#if EV_VERIFY 2502#if EV_VERIFY
1503static void noinline 2503static void noinline ecb_cold
1504verify_watcher (EV_P_ W w) 2504verify_watcher (EV_P_ W w)
1505{ 2505{
1506 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 2506 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1507 2507
1508 if (w->pending) 2508 if (w->pending)
1509 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 2509 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1510} 2510}
1511 2511
1512static void noinline 2512static void noinline ecb_cold
1513verify_heap (EV_P_ ANHE *heap, int N) 2513verify_heap (EV_P_ ANHE *heap, int N)
1514{ 2514{
1515 int i; 2515 int i;
1516 2516
1517 for (i = HEAP0; i < N + HEAP0; ++i) 2517 for (i = HEAP0; i < N + HEAP0; ++i)
1518 { 2518 {
1519 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 2519 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1520 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 2520 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1521 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 2521 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1522 2522
1523 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 2523 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1524 } 2524 }
1525} 2525}
1526 2526
1527static void noinline 2527static void noinline ecb_cold
1528array_verify (EV_P_ W *ws, int cnt) 2528array_verify (EV_P_ W *ws, int cnt)
1529{ 2529{
1530 while (cnt--) 2530 while (cnt--)
1531 { 2531 {
1532 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 2532 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1533 verify_watcher (EV_A_ ws [cnt]); 2533 verify_watcher (EV_A_ ws [cnt]);
1534 } 2534 }
1535} 2535}
1536#endif 2536#endif
1537 2537
1538void 2538#if EV_FEATURE_API
2539void ecb_cold
1539ev_loop_verify (EV_P) 2540ev_verify (EV_P)
1540{ 2541{
1541#if EV_VERIFY 2542#if EV_VERIFY
1542 int i; 2543 int i;
1543 WL w; 2544 WL w;
1544 2545
1545 assert (activecnt >= -1); 2546 assert (activecnt >= -1);
1546 2547
1547 assert (fdchangemax >= fdchangecnt); 2548 assert (fdchangemax >= fdchangecnt);
1548 for (i = 0; i < fdchangecnt; ++i) 2549 for (i = 0; i < fdchangecnt; ++i)
1549 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 2550 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1550 2551
1551 assert (anfdmax >= 0); 2552 assert (anfdmax >= 0);
1552 for (i = 0; i < anfdmax; ++i) 2553 for (i = 0; i < anfdmax; ++i)
1553 for (w = anfds [i].head; w; w = w->next) 2554 for (w = anfds [i].head; w; w = w->next)
1554 { 2555 {
1555 verify_watcher (EV_A_ (W)w); 2556 verify_watcher (EV_A_ (W)w);
1556 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 2557 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1557 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 2558 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1558 } 2559 }
1559 2560
1560 assert (timermax >= timercnt); 2561 assert (timermax >= timercnt);
1561 verify_heap (EV_A_ timers, timercnt); 2562 verify_heap (EV_A_ timers, timercnt);
1562 2563
1578#if EV_FORK_ENABLE 2579#if EV_FORK_ENABLE
1579 assert (forkmax >= forkcnt); 2580 assert (forkmax >= forkcnt);
1580 array_verify (EV_A_ (W *)forks, forkcnt); 2581 array_verify (EV_A_ (W *)forks, forkcnt);
1581#endif 2582#endif
1582 2583
2584#if EV_CLEANUP_ENABLE
2585 assert (cleanupmax >= cleanupcnt);
2586 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2587#endif
2588
1583#if EV_ASYNC_ENABLE 2589#if EV_ASYNC_ENABLE
1584 assert (asyncmax >= asynccnt); 2590 assert (asyncmax >= asynccnt);
1585 array_verify (EV_A_ (W *)asyncs, asynccnt); 2591 array_verify (EV_A_ (W *)asyncs, asynccnt);
1586#endif 2592#endif
1587 2593
2594#if EV_PREPARE_ENABLE
1588 assert (preparemax >= preparecnt); 2595 assert (preparemax >= preparecnt);
1589 array_verify (EV_A_ (W *)prepares, preparecnt); 2596 array_verify (EV_A_ (W *)prepares, preparecnt);
2597#endif
1590 2598
2599#if EV_CHECK_ENABLE
1591 assert (checkmax >= checkcnt); 2600 assert (checkmax >= checkcnt);
1592 array_verify (EV_A_ (W *)checks, checkcnt); 2601 array_verify (EV_A_ (W *)checks, checkcnt);
2602#endif
1593 2603
1594# if 0 2604# if 0
2605#if EV_CHILD_ENABLE
1595 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2606 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1596 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 2607 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2608#endif
1597# endif 2609# endif
1598#endif 2610#endif
1599} 2611}
1600 2612#endif
1601#endif /* multiplicity */
1602 2613
1603#if EV_MULTIPLICITY 2614#if EV_MULTIPLICITY
1604struct ev_loop * 2615struct ev_loop * ecb_cold
1605ev_default_loop_init (unsigned int flags)
1606#else 2616#else
1607int 2617int
2618#endif
1608ev_default_loop (unsigned int flags) 2619ev_default_loop (unsigned int flags)
1609#endif
1610{ 2620{
1611 if (!ev_default_loop_ptr) 2621 if (!ev_default_loop_ptr)
1612 { 2622 {
1613#if EV_MULTIPLICITY 2623#if EV_MULTIPLICITY
1614 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2624 EV_P = ev_default_loop_ptr = &default_loop_struct;
1615#else 2625#else
1616 ev_default_loop_ptr = 1; 2626 ev_default_loop_ptr = 1;
1617#endif 2627#endif
1618 2628
1619 loop_init (EV_A_ flags); 2629 loop_init (EV_A_ flags);
1620 2630
1621 if (ev_backend (EV_A)) 2631 if (ev_backend (EV_A))
1622 { 2632 {
1623#ifndef _WIN32 2633#if EV_CHILD_ENABLE
1624 ev_signal_init (&childev, childcb, SIGCHLD); 2634 ev_signal_init (&childev, childcb, SIGCHLD);
1625 ev_set_priority (&childev, EV_MAXPRI); 2635 ev_set_priority (&childev, EV_MAXPRI);
1626 ev_signal_start (EV_A_ &childev); 2636 ev_signal_start (EV_A_ &childev);
1627 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2637 ev_unref (EV_A); /* child watcher should not keep loop alive */
1628#endif 2638#endif
1633 2643
1634 return ev_default_loop_ptr; 2644 return ev_default_loop_ptr;
1635} 2645}
1636 2646
1637void 2647void
1638ev_default_destroy (void) 2648ev_loop_fork (EV_P)
1639{ 2649{
1640#if EV_MULTIPLICITY
1641 struct ev_loop *loop = ev_default_loop_ptr;
1642#endif
1643
1644 ev_default_loop_ptr = 0;
1645
1646#ifndef _WIN32
1647 ev_ref (EV_A); /* child watcher */
1648 ev_signal_stop (EV_A_ &childev);
1649#endif
1650
1651 loop_destroy (EV_A);
1652}
1653
1654void
1655ev_default_fork (void)
1656{
1657#if EV_MULTIPLICITY
1658 struct ev_loop *loop = ev_default_loop_ptr;
1659#endif
1660
1661 if (backend)
1662 postfork = 1; /* must be in line with ev_loop_fork */ 2650 postfork = 1; /* must be in line with ev_default_fork */
1663} 2651}
1664 2652
1665/*****************************************************************************/ 2653/*****************************************************************************/
1666 2654
1667void 2655void
1668ev_invoke (EV_P_ void *w, int revents) 2656ev_invoke (EV_P_ void *w, int revents)
1669{ 2657{
1670 EV_CB_INVOKE ((W)w, revents); 2658 EV_CB_INVOKE ((W)w, revents);
1671} 2659}
1672 2660
1673void inline_speed 2661unsigned int
1674call_pending (EV_P) 2662ev_pending_count (EV_P)
2663{
2664 int pri;
2665 unsigned int count = 0;
2666
2667 for (pri = NUMPRI; pri--; )
2668 count += pendingcnt [pri];
2669
2670 return count;
2671}
2672
2673void noinline
2674ev_invoke_pending (EV_P)
1675{ 2675{
1676 int pri; 2676 int pri;
1677 2677
1678 for (pri = NUMPRI; pri--; ) 2678 for (pri = NUMPRI; pri--; )
1679 while (pendingcnt [pri]) 2679 while (pendingcnt [pri])
1680 { 2680 {
1681 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2681 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1682 2682
1683 if (expect_true (p->w))
1684 {
1685 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1686
1687 p->w->pending = 0; 2683 p->w->pending = 0;
1688 EV_CB_INVOKE (p->w, p->events); 2684 EV_CB_INVOKE (p->w, p->events);
1689 EV_FREQUENT_CHECK; 2685 EV_FREQUENT_CHECK;
1690 }
1691 } 2686 }
1692} 2687}
1693 2688
1694#if EV_IDLE_ENABLE 2689#if EV_IDLE_ENABLE
1695void inline_size 2690/* make idle watchers pending. this handles the "call-idle */
2691/* only when higher priorities are idle" logic */
2692inline_size void
1696idle_reify (EV_P) 2693idle_reify (EV_P)
1697{ 2694{
1698 if (expect_false (idleall)) 2695 if (expect_false (idleall))
1699 { 2696 {
1700 int pri; 2697 int pri;
1712 } 2709 }
1713 } 2710 }
1714} 2711}
1715#endif 2712#endif
1716 2713
1717void inline_size 2714/* make timers pending */
2715inline_size void
1718timers_reify (EV_P) 2716timers_reify (EV_P)
1719{ 2717{
1720 EV_FREQUENT_CHECK; 2718 EV_FREQUENT_CHECK;
1721 2719
1722 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2720 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1723 { 2721 {
1724 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2722 do
1725
1726 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1727
1728 /* first reschedule or stop timer */
1729 if (w->repeat)
1730 { 2723 {
2724 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2725
2726 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2727
2728 /* first reschedule or stop timer */
2729 if (w->repeat)
2730 {
1731 ev_at (w) += w->repeat; 2731 ev_at (w) += w->repeat;
1732 if (ev_at (w) < mn_now) 2732 if (ev_at (w) < mn_now)
1733 ev_at (w) = mn_now; 2733 ev_at (w) = mn_now;
1734 2734
1735 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2735 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1736 2736
1737 ANHE_at_cache (timers [HEAP0]); 2737 ANHE_at_cache (timers [HEAP0]);
1738 downheap (timers, timercnt, HEAP0); 2738 downheap (timers, timercnt, HEAP0);
2739 }
2740 else
2741 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2742
2743 EV_FREQUENT_CHECK;
2744 feed_reverse (EV_A_ (W)w);
1739 } 2745 }
1740 else 2746 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1741 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1742 2747
1743 EV_FREQUENT_CHECK; 2748 feed_reverse_done (EV_A_ EV_TIMER);
1744 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1745 } 2749 }
1746} 2750}
1747 2751
1748#if EV_PERIODIC_ENABLE 2752#if EV_PERIODIC_ENABLE
1749void inline_size 2753
2754static void noinline
2755periodic_recalc (EV_P_ ev_periodic *w)
2756{
2757 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2758 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2759
2760 /* the above almost always errs on the low side */
2761 while (at <= ev_rt_now)
2762 {
2763 ev_tstamp nat = at + w->interval;
2764
2765 /* when resolution fails us, we use ev_rt_now */
2766 if (expect_false (nat == at))
2767 {
2768 at = ev_rt_now;
2769 break;
2770 }
2771
2772 at = nat;
2773 }
2774
2775 ev_at (w) = at;
2776}
2777
2778/* make periodics pending */
2779inline_size void
1750periodics_reify (EV_P) 2780periodics_reify (EV_P)
1751{ 2781{
1752 EV_FREQUENT_CHECK; 2782 EV_FREQUENT_CHECK;
1753 2783
1754 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2784 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1755 { 2785 {
1756 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2786 int feed_count = 0;
1757 2787
1758 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2788 do
1759
1760 /* first reschedule or stop timer */
1761 if (w->reschedule_cb)
1762 { 2789 {
2790 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2791
2792 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2793
2794 /* first reschedule or stop timer */
2795 if (w->reschedule_cb)
2796 {
1763 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2797 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1764 2798
1765 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2799 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1766 2800
1767 ANHE_at_cache (periodics [HEAP0]); 2801 ANHE_at_cache (periodics [HEAP0]);
1768 downheap (periodics, periodiccnt, HEAP0); 2802 downheap (periodics, periodiccnt, HEAP0);
2803 }
2804 else if (w->interval)
2805 {
2806 periodic_recalc (EV_A_ w);
2807 ANHE_at_cache (periodics [HEAP0]);
2808 downheap (periodics, periodiccnt, HEAP0);
2809 }
2810 else
2811 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2812
2813 EV_FREQUENT_CHECK;
2814 feed_reverse (EV_A_ (W)w);
1769 } 2815 }
1770 else if (w->interval) 2816 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1771 {
1772 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1773 /* if next trigger time is not sufficiently in the future, put it there */
1774 /* this might happen because of floating point inexactness */
1775 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1776 {
1777 ev_at (w) += w->interval;
1778 2817
1779 /* if interval is unreasonably low we might still have a time in the past */
1780 /* so correct this. this will make the periodic very inexact, but the user */
1781 /* has effectively asked to get triggered more often than possible */
1782 if (ev_at (w) < ev_rt_now)
1783 ev_at (w) = ev_rt_now;
1784 }
1785
1786 ANHE_at_cache (periodics [HEAP0]);
1787 downheap (periodics, periodiccnt, HEAP0);
1788 }
1789 else
1790 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1791
1792 EV_FREQUENT_CHECK;
1793 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2818 feed_reverse_done (EV_A_ EV_PERIODIC);
1794 } 2819 }
1795} 2820}
1796 2821
2822/* simply recalculate all periodics */
2823/* TODO: maybe ensure that at least one event happens when jumping forward? */
1797static void noinline 2824static void noinline ecb_cold
1798periodics_reschedule (EV_P) 2825periodics_reschedule (EV_P)
1799{ 2826{
1800 int i; 2827 int i;
1801 2828
1802 /* adjust periodics after time jump */ 2829 /* adjust periodics after time jump */
1805 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 2832 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1806 2833
1807 if (w->reschedule_cb) 2834 if (w->reschedule_cb)
1808 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2835 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1809 else if (w->interval) 2836 else if (w->interval)
1810 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2837 periodic_recalc (EV_A_ w);
1811 2838
1812 ANHE_at_cache (periodics [i]); 2839 ANHE_at_cache (periodics [i]);
1813 } 2840 }
1814 2841
1815 reheap (periodics, periodiccnt); 2842 reheap (periodics, periodiccnt);
1816} 2843}
1817#endif 2844#endif
1818 2845
1819void inline_speed 2846/* adjust all timers by a given offset */
2847static void noinline ecb_cold
2848timers_reschedule (EV_P_ ev_tstamp adjust)
2849{
2850 int i;
2851
2852 for (i = 0; i < timercnt; ++i)
2853 {
2854 ANHE *he = timers + i + HEAP0;
2855 ANHE_w (*he)->at += adjust;
2856 ANHE_at_cache (*he);
2857 }
2858}
2859
2860/* fetch new monotonic and realtime times from the kernel */
2861/* also detect if there was a timejump, and act accordingly */
2862inline_speed void
1820time_update (EV_P_ ev_tstamp max_block) 2863time_update (EV_P_ ev_tstamp max_block)
1821{ 2864{
1822 int i;
1823
1824#if EV_USE_MONOTONIC 2865#if EV_USE_MONOTONIC
1825 if (expect_true (have_monotonic)) 2866 if (expect_true (have_monotonic))
1826 { 2867 {
2868 int i;
1827 ev_tstamp odiff = rtmn_diff; 2869 ev_tstamp odiff = rtmn_diff;
1828 2870
1829 mn_now = get_clock (); 2871 mn_now = get_clock ();
1830 2872
1831 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2873 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1847 * doesn't hurt either as we only do this on time-jumps or 2889 * doesn't hurt either as we only do this on time-jumps or
1848 * in the unlikely event of having been preempted here. 2890 * in the unlikely event of having been preempted here.
1849 */ 2891 */
1850 for (i = 4; --i; ) 2892 for (i = 4; --i; )
1851 { 2893 {
2894 ev_tstamp diff;
1852 rtmn_diff = ev_rt_now - mn_now; 2895 rtmn_diff = ev_rt_now - mn_now;
1853 2896
2897 diff = odiff - rtmn_diff;
2898
1854 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 2899 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1855 return; /* all is well */ 2900 return; /* all is well */
1856 2901
1857 ev_rt_now = ev_time (); 2902 ev_rt_now = ev_time ();
1858 mn_now = get_clock (); 2903 mn_now = get_clock ();
1859 now_floor = mn_now; 2904 now_floor = mn_now;
1860 } 2905 }
1861 2906
2907 /* no timer adjustment, as the monotonic clock doesn't jump */
2908 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1862# if EV_PERIODIC_ENABLE 2909# if EV_PERIODIC_ENABLE
1863 periodics_reschedule (EV_A); 2910 periodics_reschedule (EV_A);
1864# endif 2911# endif
1865 /* no timer adjustment, as the monotonic clock doesn't jump */
1866 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1867 } 2912 }
1868 else 2913 else
1869#endif 2914#endif
1870 { 2915 {
1871 ev_rt_now = ev_time (); 2916 ev_rt_now = ev_time ();
1872 2917
1873 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2918 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1874 { 2919 {
2920 /* adjust timers. this is easy, as the offset is the same for all of them */
2921 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1875#if EV_PERIODIC_ENABLE 2922#if EV_PERIODIC_ENABLE
1876 periodics_reschedule (EV_A); 2923 periodics_reschedule (EV_A);
1877#endif 2924#endif
1878 /* adjust timers. this is easy, as the offset is the same for all of them */
1879 for (i = 0; i < timercnt; ++i)
1880 {
1881 ANHE *he = timers + i + HEAP0;
1882 ANHE_w (*he)->at += ev_rt_now - mn_now;
1883 ANHE_at_cache (*he);
1884 }
1885 } 2925 }
1886 2926
1887 mn_now = ev_rt_now; 2927 mn_now = ev_rt_now;
1888 } 2928 }
1889} 2929}
1890 2930
1891void 2931void
1892ev_ref (EV_P)
1893{
1894 ++activecnt;
1895}
1896
1897void
1898ev_unref (EV_P)
1899{
1900 --activecnt;
1901}
1902
1903void
1904ev_now_update (EV_P)
1905{
1906 time_update (EV_A_ 1e100);
1907}
1908
1909static int loop_done;
1910
1911void
1912ev_loop (EV_P_ int flags) 2932ev_run (EV_P_ int flags)
1913{ 2933{
2934#if EV_FEATURE_API
2935 ++loop_depth;
2936#endif
2937
2938 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2939
1914 loop_done = EVUNLOOP_CANCEL; 2940 loop_done = EVBREAK_CANCEL;
1915 2941
1916 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2942 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1917 2943
1918 do 2944 do
1919 { 2945 {
1920#if EV_VERIFY >= 2 2946#if EV_VERIFY >= 2
1921 ev_loop_verify (EV_A); 2947 ev_verify (EV_A);
1922#endif 2948#endif
1923 2949
1924#ifndef _WIN32 2950#ifndef _WIN32
1925 if (expect_false (curpid)) /* penalise the forking check even more */ 2951 if (expect_false (curpid)) /* penalise the forking check even more */
1926 if (expect_false (getpid () != curpid)) 2952 if (expect_false (getpid () != curpid))
1934 /* we might have forked, so queue fork handlers */ 2960 /* we might have forked, so queue fork handlers */
1935 if (expect_false (postfork)) 2961 if (expect_false (postfork))
1936 if (forkcnt) 2962 if (forkcnt)
1937 { 2963 {
1938 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2964 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1939 call_pending (EV_A); 2965 EV_INVOKE_PENDING;
1940 } 2966 }
1941#endif 2967#endif
1942 2968
2969#if EV_PREPARE_ENABLE
1943 /* queue prepare watchers (and execute them) */ 2970 /* queue prepare watchers (and execute them) */
1944 if (expect_false (preparecnt)) 2971 if (expect_false (preparecnt))
1945 { 2972 {
1946 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2973 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1947 call_pending (EV_A); 2974 EV_INVOKE_PENDING;
1948 } 2975 }
2976#endif
1949 2977
1950 if (expect_false (!activecnt)) 2978 if (expect_false (loop_done))
1951 break; 2979 break;
1952 2980
1953 /* we might have forked, so reify kernel state if necessary */ 2981 /* we might have forked, so reify kernel state if necessary */
1954 if (expect_false (postfork)) 2982 if (expect_false (postfork))
1955 loop_fork (EV_A); 2983 loop_fork (EV_A);
1960 /* calculate blocking time */ 2988 /* calculate blocking time */
1961 { 2989 {
1962 ev_tstamp waittime = 0.; 2990 ev_tstamp waittime = 0.;
1963 ev_tstamp sleeptime = 0.; 2991 ev_tstamp sleeptime = 0.;
1964 2992
2993 /* remember old timestamp for io_blocktime calculation */
2994 ev_tstamp prev_mn_now = mn_now;
2995
2996 /* update time to cancel out callback processing overhead */
2997 time_update (EV_A_ 1e100);
2998
2999 /* from now on, we want a pipe-wake-up */
3000 pipe_write_wanted = 1;
3001
3002 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3003
1965 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3004 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1966 { 3005 {
1967 /* update time to cancel out callback processing overhead */
1968 time_update (EV_A_ 1e100);
1969
1970 waittime = MAX_BLOCKTIME; 3006 waittime = MAX_BLOCKTIME;
1971 3007
1972 if (timercnt) 3008 if (timercnt)
1973 { 3009 {
1974 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3010 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1975 if (waittime > to) waittime = to; 3011 if (waittime > to) waittime = to;
1976 } 3012 }
1977 3013
1978#if EV_PERIODIC_ENABLE 3014#if EV_PERIODIC_ENABLE
1979 if (periodiccnt) 3015 if (periodiccnt)
1980 { 3016 {
1981 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3017 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1982 if (waittime > to) waittime = to; 3018 if (waittime > to) waittime = to;
1983 } 3019 }
1984#endif 3020#endif
1985 3021
3022 /* don't let timeouts decrease the waittime below timeout_blocktime */
1986 if (expect_false (waittime < timeout_blocktime)) 3023 if (expect_false (waittime < timeout_blocktime))
1987 waittime = timeout_blocktime; 3024 waittime = timeout_blocktime;
1988 3025
1989 sleeptime = waittime - backend_fudge; 3026 /* at this point, we NEED to wait, so we have to ensure */
3027 /* to pass a minimum nonzero value to the backend */
3028 if (expect_false (waittime < backend_mintime))
3029 waittime = backend_mintime;
1990 3030
3031 /* extra check because io_blocktime is commonly 0 */
1991 if (expect_true (sleeptime > io_blocktime)) 3032 if (expect_false (io_blocktime))
1992 sleeptime = io_blocktime;
1993
1994 if (sleeptime)
1995 { 3033 {
3034 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3035
3036 if (sleeptime > waittime - backend_mintime)
3037 sleeptime = waittime - backend_mintime;
3038
3039 if (expect_true (sleeptime > 0.))
3040 {
1996 ev_sleep (sleeptime); 3041 ev_sleep (sleeptime);
1997 waittime -= sleeptime; 3042 waittime -= sleeptime;
3043 }
1998 } 3044 }
1999 } 3045 }
2000 3046
3047#if EV_FEATURE_API
2001 ++loop_count; 3048 ++loop_count;
3049#endif
3050 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2002 backend_poll (EV_A_ waittime); 3051 backend_poll (EV_A_ waittime);
3052 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3053
3054 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3055
3056 if (pipe_write_skipped)
3057 {
3058 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3059 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3060 }
3061
2003 3062
2004 /* update ev_rt_now, do magic */ 3063 /* update ev_rt_now, do magic */
2005 time_update (EV_A_ waittime + sleeptime); 3064 time_update (EV_A_ waittime + sleeptime);
2006 } 3065 }
2007 3066
2014#if EV_IDLE_ENABLE 3073#if EV_IDLE_ENABLE
2015 /* queue idle watchers unless other events are pending */ 3074 /* queue idle watchers unless other events are pending */
2016 idle_reify (EV_A); 3075 idle_reify (EV_A);
2017#endif 3076#endif
2018 3077
3078#if EV_CHECK_ENABLE
2019 /* queue check watchers, to be executed first */ 3079 /* queue check watchers, to be executed first */
2020 if (expect_false (checkcnt)) 3080 if (expect_false (checkcnt))
2021 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3081 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3082#endif
2022 3083
2023 call_pending (EV_A); 3084 EV_INVOKE_PENDING;
2024 } 3085 }
2025 while (expect_true ( 3086 while (expect_true (
2026 activecnt 3087 activecnt
2027 && !loop_done 3088 && !loop_done
2028 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3089 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2029 )); 3090 ));
2030 3091
2031 if (loop_done == EVUNLOOP_ONE) 3092 if (loop_done == EVBREAK_ONE)
2032 loop_done = EVUNLOOP_CANCEL; 3093 loop_done = EVBREAK_CANCEL;
3094
3095#if EV_FEATURE_API
3096 --loop_depth;
3097#endif
2033} 3098}
2034 3099
2035void 3100void
2036ev_unloop (EV_P_ int how) 3101ev_break (EV_P_ int how)
2037{ 3102{
2038 loop_done = how; 3103 loop_done = how;
2039} 3104}
2040 3105
3106void
3107ev_ref (EV_P)
3108{
3109 ++activecnt;
3110}
3111
3112void
3113ev_unref (EV_P)
3114{
3115 --activecnt;
3116}
3117
3118void
3119ev_now_update (EV_P)
3120{
3121 time_update (EV_A_ 1e100);
3122}
3123
3124void
3125ev_suspend (EV_P)
3126{
3127 ev_now_update (EV_A);
3128}
3129
3130void
3131ev_resume (EV_P)
3132{
3133 ev_tstamp mn_prev = mn_now;
3134
3135 ev_now_update (EV_A);
3136 timers_reschedule (EV_A_ mn_now - mn_prev);
3137#if EV_PERIODIC_ENABLE
3138 /* TODO: really do this? */
3139 periodics_reschedule (EV_A);
3140#endif
3141}
3142
2041/*****************************************************************************/ 3143/*****************************************************************************/
3144/* singly-linked list management, used when the expected list length is short */
2042 3145
2043void inline_size 3146inline_size void
2044wlist_add (WL *head, WL elem) 3147wlist_add (WL *head, WL elem)
2045{ 3148{
2046 elem->next = *head; 3149 elem->next = *head;
2047 *head = elem; 3150 *head = elem;
2048} 3151}
2049 3152
2050void inline_size 3153inline_size void
2051wlist_del (WL *head, WL elem) 3154wlist_del (WL *head, WL elem)
2052{ 3155{
2053 while (*head) 3156 while (*head)
2054 { 3157 {
2055 if (*head == elem) 3158 if (expect_true (*head == elem))
2056 { 3159 {
2057 *head = elem->next; 3160 *head = elem->next;
2058 return; 3161 break;
2059 } 3162 }
2060 3163
2061 head = &(*head)->next; 3164 head = &(*head)->next;
2062 } 3165 }
2063} 3166}
2064 3167
2065void inline_speed 3168/* internal, faster, version of ev_clear_pending */
3169inline_speed void
2066clear_pending (EV_P_ W w) 3170clear_pending (EV_P_ W w)
2067{ 3171{
2068 if (w->pending) 3172 if (w->pending)
2069 { 3173 {
2070 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3174 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2071 w->pending = 0; 3175 w->pending = 0;
2072 } 3176 }
2073} 3177}
2074 3178
2075int 3179int
2079 int pending = w_->pending; 3183 int pending = w_->pending;
2080 3184
2081 if (expect_true (pending)) 3185 if (expect_true (pending))
2082 { 3186 {
2083 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3187 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3188 p->w = (W)&pending_w;
2084 w_->pending = 0; 3189 w_->pending = 0;
2085 p->w = 0;
2086 return p->events; 3190 return p->events;
2087 } 3191 }
2088 else 3192 else
2089 return 0; 3193 return 0;
2090} 3194}
2091 3195
2092void inline_size 3196inline_size void
2093pri_adjust (EV_P_ W w) 3197pri_adjust (EV_P_ W w)
2094{ 3198{
2095 int pri = w->priority; 3199 int pri = ev_priority (w);
2096 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3200 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2097 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3201 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2098 w->priority = pri; 3202 ev_set_priority (w, pri);
2099} 3203}
2100 3204
2101void inline_speed 3205inline_speed void
2102ev_start (EV_P_ W w, int active) 3206ev_start (EV_P_ W w, int active)
2103{ 3207{
2104 pri_adjust (EV_A_ w); 3208 pri_adjust (EV_A_ w);
2105 w->active = active; 3209 w->active = active;
2106 ev_ref (EV_A); 3210 ev_ref (EV_A);
2107} 3211}
2108 3212
2109void inline_size 3213inline_size void
2110ev_stop (EV_P_ W w) 3214ev_stop (EV_P_ W w)
2111{ 3215{
2112 ev_unref (EV_A); 3216 ev_unref (EV_A);
2113 w->active = 0; 3217 w->active = 0;
2114} 3218}
2121 int fd = w->fd; 3225 int fd = w->fd;
2122 3226
2123 if (expect_false (ev_is_active (w))) 3227 if (expect_false (ev_is_active (w)))
2124 return; 3228 return;
2125 3229
2126 assert (("ev_io_start called with negative fd", fd >= 0)); 3230 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2127 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE)))); 3231 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2128 3232
2129 EV_FREQUENT_CHECK; 3233 EV_FREQUENT_CHECK;
2130 3234
2131 ev_start (EV_A_ (W)w, 1); 3235 ev_start (EV_A_ (W)w, 1);
2132 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 3236 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2133 wlist_add (&anfds[fd].head, (WL)w); 3237 wlist_add (&anfds[fd].head, (WL)w);
2134 3238
2135 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3239 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2136 w->events &= ~EV_IOFDSET; 3240 w->events &= ~EV__IOFDSET;
2137 3241
2138 EV_FREQUENT_CHECK; 3242 EV_FREQUENT_CHECK;
2139} 3243}
2140 3244
2141void noinline 3245void noinline
2143{ 3247{
2144 clear_pending (EV_A_ (W)w); 3248 clear_pending (EV_A_ (W)w);
2145 if (expect_false (!ev_is_active (w))) 3249 if (expect_false (!ev_is_active (w)))
2146 return; 3250 return;
2147 3251
2148 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3252 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2149 3253
2150 EV_FREQUENT_CHECK; 3254 EV_FREQUENT_CHECK;
2151 3255
2152 wlist_del (&anfds[w->fd].head, (WL)w); 3256 wlist_del (&anfds[w->fd].head, (WL)w);
2153 ev_stop (EV_A_ (W)w); 3257 ev_stop (EV_A_ (W)w);
2154 3258
2155 fd_change (EV_A_ w->fd, 1); 3259 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2156 3260
2157 EV_FREQUENT_CHECK; 3261 EV_FREQUENT_CHECK;
2158} 3262}
2159 3263
2160void noinline 3264void noinline
2163 if (expect_false (ev_is_active (w))) 3267 if (expect_false (ev_is_active (w)))
2164 return; 3268 return;
2165 3269
2166 ev_at (w) += mn_now; 3270 ev_at (w) += mn_now;
2167 3271
2168 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3272 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2169 3273
2170 EV_FREQUENT_CHECK; 3274 EV_FREQUENT_CHECK;
2171 3275
2172 ++timercnt; 3276 ++timercnt;
2173 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 3277 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2176 ANHE_at_cache (timers [ev_active (w)]); 3280 ANHE_at_cache (timers [ev_active (w)]);
2177 upheap (timers, ev_active (w)); 3281 upheap (timers, ev_active (w));
2178 3282
2179 EV_FREQUENT_CHECK; 3283 EV_FREQUENT_CHECK;
2180 3284
2181 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3285 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2182} 3286}
2183 3287
2184void noinline 3288void noinline
2185ev_timer_stop (EV_P_ ev_timer *w) 3289ev_timer_stop (EV_P_ ev_timer *w)
2186{ 3290{
2191 EV_FREQUENT_CHECK; 3295 EV_FREQUENT_CHECK;
2192 3296
2193 { 3297 {
2194 int active = ev_active (w); 3298 int active = ev_active (w);
2195 3299
2196 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 3300 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2197 3301
2198 --timercnt; 3302 --timercnt;
2199 3303
2200 if (expect_true (active < timercnt + HEAP0)) 3304 if (expect_true (active < timercnt + HEAP0))
2201 { 3305 {
2202 timers [active] = timers [timercnt + HEAP0]; 3306 timers [active] = timers [timercnt + HEAP0];
2203 adjustheap (timers, timercnt, active); 3307 adjustheap (timers, timercnt, active);
2204 } 3308 }
2205 } 3309 }
2206 3310
2207 EV_FREQUENT_CHECK;
2208
2209 ev_at (w) -= mn_now; 3311 ev_at (w) -= mn_now;
2210 3312
2211 ev_stop (EV_A_ (W)w); 3313 ev_stop (EV_A_ (W)w);
3314
3315 EV_FREQUENT_CHECK;
2212} 3316}
2213 3317
2214void noinline 3318void noinline
2215ev_timer_again (EV_P_ ev_timer *w) 3319ev_timer_again (EV_P_ ev_timer *w)
2216{ 3320{
2217 EV_FREQUENT_CHECK; 3321 EV_FREQUENT_CHECK;
3322
3323 clear_pending (EV_A_ (W)w);
2218 3324
2219 if (ev_is_active (w)) 3325 if (ev_is_active (w))
2220 { 3326 {
2221 if (w->repeat) 3327 if (w->repeat)
2222 { 3328 {
2234 } 3340 }
2235 3341
2236 EV_FREQUENT_CHECK; 3342 EV_FREQUENT_CHECK;
2237} 3343}
2238 3344
3345ev_tstamp
3346ev_timer_remaining (EV_P_ ev_timer *w)
3347{
3348 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3349}
3350
2239#if EV_PERIODIC_ENABLE 3351#if EV_PERIODIC_ENABLE
2240void noinline 3352void noinline
2241ev_periodic_start (EV_P_ ev_periodic *w) 3353ev_periodic_start (EV_P_ ev_periodic *w)
2242{ 3354{
2243 if (expect_false (ev_is_active (w))) 3355 if (expect_false (ev_is_active (w)))
2245 3357
2246 if (w->reschedule_cb) 3358 if (w->reschedule_cb)
2247 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3359 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2248 else if (w->interval) 3360 else if (w->interval)
2249 { 3361 {
2250 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3362 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2251 /* this formula differs from the one in periodic_reify because we do not always round up */ 3363 periodic_recalc (EV_A_ w);
2252 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2253 } 3364 }
2254 else 3365 else
2255 ev_at (w) = w->offset; 3366 ev_at (w) = w->offset;
2256 3367
2257 EV_FREQUENT_CHECK; 3368 EV_FREQUENT_CHECK;
2263 ANHE_at_cache (periodics [ev_active (w)]); 3374 ANHE_at_cache (periodics [ev_active (w)]);
2264 upheap (periodics, ev_active (w)); 3375 upheap (periodics, ev_active (w));
2265 3376
2266 EV_FREQUENT_CHECK; 3377 EV_FREQUENT_CHECK;
2267 3378
2268 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 3379 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2269} 3380}
2270 3381
2271void noinline 3382void noinline
2272ev_periodic_stop (EV_P_ ev_periodic *w) 3383ev_periodic_stop (EV_P_ ev_periodic *w)
2273{ 3384{
2278 EV_FREQUENT_CHECK; 3389 EV_FREQUENT_CHECK;
2279 3390
2280 { 3391 {
2281 int active = ev_active (w); 3392 int active = ev_active (w);
2282 3393
2283 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 3394 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2284 3395
2285 --periodiccnt; 3396 --periodiccnt;
2286 3397
2287 if (expect_true (active < periodiccnt + HEAP0)) 3398 if (expect_true (active < periodiccnt + HEAP0))
2288 { 3399 {
2289 periodics [active] = periodics [periodiccnt + HEAP0]; 3400 periodics [active] = periodics [periodiccnt + HEAP0];
2290 adjustheap (periodics, periodiccnt, active); 3401 adjustheap (periodics, periodiccnt, active);
2291 } 3402 }
2292 } 3403 }
2293 3404
2294 EV_FREQUENT_CHECK;
2295
2296 ev_stop (EV_A_ (W)w); 3405 ev_stop (EV_A_ (W)w);
3406
3407 EV_FREQUENT_CHECK;
2297} 3408}
2298 3409
2299void noinline 3410void noinline
2300ev_periodic_again (EV_P_ ev_periodic *w) 3411ev_periodic_again (EV_P_ ev_periodic *w)
2301{ 3412{
2307 3418
2308#ifndef SA_RESTART 3419#ifndef SA_RESTART
2309# define SA_RESTART 0 3420# define SA_RESTART 0
2310#endif 3421#endif
2311 3422
3423#if EV_SIGNAL_ENABLE
3424
2312void noinline 3425void noinline
2313ev_signal_start (EV_P_ ev_signal *w) 3426ev_signal_start (EV_P_ ev_signal *w)
2314{ 3427{
2315#if EV_MULTIPLICITY
2316 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2317#endif
2318 if (expect_false (ev_is_active (w))) 3428 if (expect_false (ev_is_active (w)))
2319 return; 3429 return;
2320 3430
2321 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3431 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2322 3432
2323 evpipe_init (EV_A); 3433#if EV_MULTIPLICITY
3434 assert (("libev: a signal must not be attached to two different loops",
3435 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2324 3436
2325 EV_FREQUENT_CHECK; 3437 signals [w->signum - 1].loop = EV_A;
3438#endif
2326 3439
3440 EV_FREQUENT_CHECK;
3441
3442#if EV_USE_SIGNALFD
3443 if (sigfd == -2)
2327 { 3444 {
2328#ifndef _WIN32 3445 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2329 sigset_t full, prev; 3446 if (sigfd < 0 && errno == EINVAL)
2330 sigfillset (&full); 3447 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2331 sigprocmask (SIG_SETMASK, &full, &prev);
2332#endif
2333 3448
2334 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero); 3449 if (sigfd >= 0)
3450 {
3451 fd_intern (sigfd); /* doing it twice will not hurt */
2335 3452
2336#ifndef _WIN32 3453 sigemptyset (&sigfd_set);
2337 sigprocmask (SIG_SETMASK, &prev, 0); 3454
2338#endif 3455 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3456 ev_set_priority (&sigfd_w, EV_MAXPRI);
3457 ev_io_start (EV_A_ &sigfd_w);
3458 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3459 }
2339 } 3460 }
3461
3462 if (sigfd >= 0)
3463 {
3464 /* TODO: check .head */
3465 sigaddset (&sigfd_set, w->signum);
3466 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3467
3468 signalfd (sigfd, &sigfd_set, 0);
3469 }
3470#endif
2340 3471
2341 ev_start (EV_A_ (W)w, 1); 3472 ev_start (EV_A_ (W)w, 1);
2342 wlist_add (&signals [w->signum - 1].head, (WL)w); 3473 wlist_add (&signals [w->signum - 1].head, (WL)w);
2343 3474
2344 if (!((WL)w)->next) 3475 if (!((WL)w)->next)
3476# if EV_USE_SIGNALFD
3477 if (sigfd < 0) /*TODO*/
3478# endif
2345 { 3479 {
2346#if _WIN32 3480# ifdef _WIN32
3481 evpipe_init (EV_A);
3482
2347 signal (w->signum, ev_sighandler); 3483 signal (w->signum, ev_sighandler);
2348#else 3484# else
2349 struct sigaction sa; 3485 struct sigaction sa;
3486
3487 evpipe_init (EV_A);
3488
2350 sa.sa_handler = ev_sighandler; 3489 sa.sa_handler = ev_sighandler;
2351 sigfillset (&sa.sa_mask); 3490 sigfillset (&sa.sa_mask);
2352 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3491 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2353 sigaction (w->signum, &sa, 0); 3492 sigaction (w->signum, &sa, 0);
3493
3494 if (origflags & EVFLAG_NOSIGMASK)
3495 {
3496 sigemptyset (&sa.sa_mask);
3497 sigaddset (&sa.sa_mask, w->signum);
3498 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3499 }
2354#endif 3500#endif
2355 } 3501 }
2356 3502
2357 EV_FREQUENT_CHECK; 3503 EV_FREQUENT_CHECK;
2358} 3504}
2359 3505
2360void noinline 3506void noinline
2368 3514
2369 wlist_del (&signals [w->signum - 1].head, (WL)w); 3515 wlist_del (&signals [w->signum - 1].head, (WL)w);
2370 ev_stop (EV_A_ (W)w); 3516 ev_stop (EV_A_ (W)w);
2371 3517
2372 if (!signals [w->signum - 1].head) 3518 if (!signals [w->signum - 1].head)
3519 {
3520#if EV_MULTIPLICITY
3521 signals [w->signum - 1].loop = 0; /* unattach from signal */
3522#endif
3523#if EV_USE_SIGNALFD
3524 if (sigfd >= 0)
3525 {
3526 sigset_t ss;
3527
3528 sigemptyset (&ss);
3529 sigaddset (&ss, w->signum);
3530 sigdelset (&sigfd_set, w->signum);
3531
3532 signalfd (sigfd, &sigfd_set, 0);
3533 sigprocmask (SIG_UNBLOCK, &ss, 0);
3534 }
3535 else
3536#endif
2373 signal (w->signum, SIG_DFL); 3537 signal (w->signum, SIG_DFL);
3538 }
2374 3539
2375 EV_FREQUENT_CHECK; 3540 EV_FREQUENT_CHECK;
2376} 3541}
3542
3543#endif
3544
3545#if EV_CHILD_ENABLE
2377 3546
2378void 3547void
2379ev_child_start (EV_P_ ev_child *w) 3548ev_child_start (EV_P_ ev_child *w)
2380{ 3549{
2381#if EV_MULTIPLICITY 3550#if EV_MULTIPLICITY
2382 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3551 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2383#endif 3552#endif
2384 if (expect_false (ev_is_active (w))) 3553 if (expect_false (ev_is_active (w)))
2385 return; 3554 return;
2386 3555
2387 EV_FREQUENT_CHECK; 3556 EV_FREQUENT_CHECK;
2388 3557
2389 ev_start (EV_A_ (W)w, 1); 3558 ev_start (EV_A_ (W)w, 1);
2390 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3559 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2391 3560
2392 EV_FREQUENT_CHECK; 3561 EV_FREQUENT_CHECK;
2393} 3562}
2394 3563
2395void 3564void
2399 if (expect_false (!ev_is_active (w))) 3568 if (expect_false (!ev_is_active (w)))
2400 return; 3569 return;
2401 3570
2402 EV_FREQUENT_CHECK; 3571 EV_FREQUENT_CHECK;
2403 3572
2404 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3573 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2405 ev_stop (EV_A_ (W)w); 3574 ev_stop (EV_A_ (W)w);
2406 3575
2407 EV_FREQUENT_CHECK; 3576 EV_FREQUENT_CHECK;
2408} 3577}
3578
3579#endif
2409 3580
2410#if EV_STAT_ENABLE 3581#if EV_STAT_ENABLE
2411 3582
2412# ifdef _WIN32 3583# ifdef _WIN32
2413# undef lstat 3584# undef lstat
2414# define lstat(a,b) _stati64 (a,b) 3585# define lstat(a,b) _stati64 (a,b)
2415# endif 3586# endif
2416 3587
2417#define DEF_STAT_INTERVAL 5.0074891 3588#define DEF_STAT_INTERVAL 5.0074891
3589#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2418#define MIN_STAT_INTERVAL 0.1074891 3590#define MIN_STAT_INTERVAL 0.1074891
2419 3591
2420static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3592static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2421 3593
2422#if EV_USE_INOTIFY 3594#if EV_USE_INOTIFY
2423# define EV_INOTIFY_BUFSIZE 8192 3595
3596/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3597# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2424 3598
2425static void noinline 3599static void noinline
2426infy_add (EV_P_ ev_stat *w) 3600infy_add (EV_P_ ev_stat *w)
2427{ 3601{
2428 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3602 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2429 3603
2430 if (w->wd < 0) 3604 if (w->wd >= 0)
3605 {
3606 struct statfs sfs;
3607
3608 /* now local changes will be tracked by inotify, but remote changes won't */
3609 /* unless the filesystem is known to be local, we therefore still poll */
3610 /* also do poll on <2.6.25, but with normal frequency */
3611
3612 if (!fs_2625)
3613 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3614 else if (!statfs (w->path, &sfs)
3615 && (sfs.f_type == 0x1373 /* devfs */
3616 || sfs.f_type == 0xEF53 /* ext2/3 */
3617 || sfs.f_type == 0x3153464a /* jfs */
3618 || sfs.f_type == 0x52654973 /* reiser3 */
3619 || sfs.f_type == 0x01021994 /* tempfs */
3620 || sfs.f_type == 0x58465342 /* xfs */))
3621 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3622 else
3623 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2431 { 3624 }
2432 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3625 else
3626 {
3627 /* can't use inotify, continue to stat */
3628 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2433 3629
2434 /* monitor some parent directory for speedup hints */ 3630 /* if path is not there, monitor some parent directory for speedup hints */
2435 /* note that exceeding the hardcoded limit is not a correctness issue, */ 3631 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2436 /* but an efficiency issue only */ 3632 /* but an efficiency issue only */
2437 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3633 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2438 { 3634 {
2439 char path [4096]; 3635 char path [4096];
2440 strcpy (path, w->path); 3636 strcpy (path, w->path);
2444 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3640 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2445 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3641 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2446 3642
2447 char *pend = strrchr (path, '/'); 3643 char *pend = strrchr (path, '/');
2448 3644
2449 if (!pend) 3645 if (!pend || pend == path)
2450 break; /* whoops, no '/', complain to your admin */ 3646 break;
2451 3647
2452 *pend = 0; 3648 *pend = 0;
2453 w->wd = inotify_add_watch (fs_fd, path, mask); 3649 w->wd = inotify_add_watch (fs_fd, path, mask);
2454 } 3650 }
2455 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3651 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2456 } 3652 }
2457 } 3653 }
2458 else
2459 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2460 3654
2461 if (w->wd >= 0) 3655 if (w->wd >= 0)
2462 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3656 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3657
3658 /* now re-arm timer, if required */
3659 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3660 ev_timer_again (EV_A_ &w->timer);
3661 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2463} 3662}
2464 3663
2465static void noinline 3664static void noinline
2466infy_del (EV_P_ ev_stat *w) 3665infy_del (EV_P_ ev_stat *w)
2467{ 3666{
2470 3669
2471 if (wd < 0) 3670 if (wd < 0)
2472 return; 3671 return;
2473 3672
2474 w->wd = -2; 3673 w->wd = -2;
2475 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3674 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2476 wlist_del (&fs_hash [slot].head, (WL)w); 3675 wlist_del (&fs_hash [slot].head, (WL)w);
2477 3676
2478 /* remove this watcher, if others are watching it, they will rearm */ 3677 /* remove this watcher, if others are watching it, they will rearm */
2479 inotify_rm_watch (fs_fd, wd); 3678 inotify_rm_watch (fs_fd, wd);
2480} 3679}
2482static void noinline 3681static void noinline
2483infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3682infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2484{ 3683{
2485 if (slot < 0) 3684 if (slot < 0)
2486 /* overflow, need to check for all hash slots */ 3685 /* overflow, need to check for all hash slots */
2487 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3686 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2488 infy_wd (EV_A_ slot, wd, ev); 3687 infy_wd (EV_A_ slot, wd, ev);
2489 else 3688 else
2490 { 3689 {
2491 WL w_; 3690 WL w_;
2492 3691
2493 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3692 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2494 { 3693 {
2495 ev_stat *w = (ev_stat *)w_; 3694 ev_stat *w = (ev_stat *)w_;
2496 w_ = w_->next; /* lets us remove this watcher and all before it */ 3695 w_ = w_->next; /* lets us remove this watcher and all before it */
2497 3696
2498 if (w->wd == wd || wd == -1) 3697 if (w->wd == wd || wd == -1)
2499 { 3698 {
2500 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3699 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2501 { 3700 {
3701 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2502 w->wd = -1; 3702 w->wd = -1;
2503 infy_add (EV_A_ w); /* re-add, no matter what */ 3703 infy_add (EV_A_ w); /* re-add, no matter what */
2504 } 3704 }
2505 3705
2506 stat_timer_cb (EV_A_ &w->timer, 0); 3706 stat_timer_cb (EV_A_ &w->timer, 0);
2511 3711
2512static void 3712static void
2513infy_cb (EV_P_ ev_io *w, int revents) 3713infy_cb (EV_P_ ev_io *w, int revents)
2514{ 3714{
2515 char buf [EV_INOTIFY_BUFSIZE]; 3715 char buf [EV_INOTIFY_BUFSIZE];
2516 struct inotify_event *ev = (struct inotify_event *)buf;
2517 int ofs; 3716 int ofs;
2518 int len = read (fs_fd, buf, sizeof (buf)); 3717 int len = read (fs_fd, buf, sizeof (buf));
2519 3718
2520 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3719 for (ofs = 0; ofs < len; )
3720 {
3721 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2521 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3722 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3723 ofs += sizeof (struct inotify_event) + ev->len;
3724 }
2522} 3725}
2523 3726
2524void inline_size 3727inline_size void ecb_cold
2525infy_init (EV_P) 3728ev_check_2625 (EV_P)
2526{ 3729{
2527 if (fs_fd != -2)
2528 return;
2529
2530 /* kernels < 2.6.25 are borked 3730 /* kernels < 2.6.25 are borked
2531 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 3731 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2532 */ 3732 */
2533 { 3733 if (ev_linux_version () < 0x020619)
2534 struct utsname buf; 3734 return;
2535 int major, minor, micro;
2536 3735
3736 fs_2625 = 1;
3737}
3738
3739inline_size int
3740infy_newfd (void)
3741{
3742#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3743 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3744 if (fd >= 0)
3745 return fd;
3746#endif
3747 return inotify_init ();
3748}
3749
3750inline_size void
3751infy_init (EV_P)
3752{
3753 if (fs_fd != -2)
3754 return;
3755
2537 fs_fd = -1; 3756 fs_fd = -1;
2538 3757
2539 if (uname (&buf)) 3758 ev_check_2625 (EV_A);
2540 return;
2541 3759
2542 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2543 return;
2544
2545 if (major < 2
2546 || (major == 2 && minor < 6)
2547 || (major == 2 && minor == 6 && micro < 25))
2548 return;
2549 }
2550
2551 fs_fd = inotify_init (); 3760 fs_fd = infy_newfd ();
2552 3761
2553 if (fs_fd >= 0) 3762 if (fs_fd >= 0)
2554 { 3763 {
3764 fd_intern (fs_fd);
2555 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3765 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2556 ev_set_priority (&fs_w, EV_MAXPRI); 3766 ev_set_priority (&fs_w, EV_MAXPRI);
2557 ev_io_start (EV_A_ &fs_w); 3767 ev_io_start (EV_A_ &fs_w);
3768 ev_unref (EV_A);
2558 } 3769 }
2559} 3770}
2560 3771
2561void inline_size 3772inline_size void
2562infy_fork (EV_P) 3773infy_fork (EV_P)
2563{ 3774{
2564 int slot; 3775 int slot;
2565 3776
2566 if (fs_fd < 0) 3777 if (fs_fd < 0)
2567 return; 3778 return;
2568 3779
3780 ev_ref (EV_A);
3781 ev_io_stop (EV_A_ &fs_w);
2569 close (fs_fd); 3782 close (fs_fd);
2570 fs_fd = inotify_init (); 3783 fs_fd = infy_newfd ();
2571 3784
3785 if (fs_fd >= 0)
3786 {
3787 fd_intern (fs_fd);
3788 ev_io_set (&fs_w, fs_fd, EV_READ);
3789 ev_io_start (EV_A_ &fs_w);
3790 ev_unref (EV_A);
3791 }
3792
2572 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3793 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2573 { 3794 {
2574 WL w_ = fs_hash [slot].head; 3795 WL w_ = fs_hash [slot].head;
2575 fs_hash [slot].head = 0; 3796 fs_hash [slot].head = 0;
2576 3797
2577 while (w_) 3798 while (w_)
2582 w->wd = -1; 3803 w->wd = -1;
2583 3804
2584 if (fs_fd >= 0) 3805 if (fs_fd >= 0)
2585 infy_add (EV_A_ w); /* re-add, no matter what */ 3806 infy_add (EV_A_ w); /* re-add, no matter what */
2586 else 3807 else
3808 {
3809 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3810 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2587 ev_timer_start (EV_A_ &w->timer); 3811 ev_timer_again (EV_A_ &w->timer);
3812 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3813 }
2588 } 3814 }
2589 } 3815 }
2590} 3816}
2591 3817
2592#endif 3818#endif
2609static void noinline 3835static void noinline
2610stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3836stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2611{ 3837{
2612 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3838 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2613 3839
2614 /* we copy this here each the time so that */ 3840 ev_statdata prev = w->attr;
2615 /* prev has the old value when the callback gets invoked */
2616 w->prev = w->attr;
2617 ev_stat_stat (EV_A_ w); 3841 ev_stat_stat (EV_A_ w);
2618 3842
2619 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3843 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2620 if ( 3844 if (
2621 w->prev.st_dev != w->attr.st_dev 3845 prev.st_dev != w->attr.st_dev
2622 || w->prev.st_ino != w->attr.st_ino 3846 || prev.st_ino != w->attr.st_ino
2623 || w->prev.st_mode != w->attr.st_mode 3847 || prev.st_mode != w->attr.st_mode
2624 || w->prev.st_nlink != w->attr.st_nlink 3848 || prev.st_nlink != w->attr.st_nlink
2625 || w->prev.st_uid != w->attr.st_uid 3849 || prev.st_uid != w->attr.st_uid
2626 || w->prev.st_gid != w->attr.st_gid 3850 || prev.st_gid != w->attr.st_gid
2627 || w->prev.st_rdev != w->attr.st_rdev 3851 || prev.st_rdev != w->attr.st_rdev
2628 || w->prev.st_size != w->attr.st_size 3852 || prev.st_size != w->attr.st_size
2629 || w->prev.st_atime != w->attr.st_atime 3853 || prev.st_atime != w->attr.st_atime
2630 || w->prev.st_mtime != w->attr.st_mtime 3854 || prev.st_mtime != w->attr.st_mtime
2631 || w->prev.st_ctime != w->attr.st_ctime 3855 || prev.st_ctime != w->attr.st_ctime
2632 ) { 3856 ) {
3857 /* we only update w->prev on actual differences */
3858 /* in case we test more often than invoke the callback, */
3859 /* to ensure that prev is always different to attr */
3860 w->prev = prev;
3861
2633 #if EV_USE_INOTIFY 3862 #if EV_USE_INOTIFY
2634 if (fs_fd >= 0) 3863 if (fs_fd >= 0)
2635 { 3864 {
2636 infy_del (EV_A_ w); 3865 infy_del (EV_A_ w);
2637 infy_add (EV_A_ w); 3866 infy_add (EV_A_ w);
2647ev_stat_start (EV_P_ ev_stat *w) 3876ev_stat_start (EV_P_ ev_stat *w)
2648{ 3877{
2649 if (expect_false (ev_is_active (w))) 3878 if (expect_false (ev_is_active (w)))
2650 return; 3879 return;
2651 3880
2652 /* since we use memcmp, we need to clear any padding data etc. */
2653 memset (&w->prev, 0, sizeof (ev_statdata));
2654 memset (&w->attr, 0, sizeof (ev_statdata));
2655
2656 ev_stat_stat (EV_A_ w); 3881 ev_stat_stat (EV_A_ w);
2657 3882
3883 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2658 if (w->interval < MIN_STAT_INTERVAL) 3884 w->interval = MIN_STAT_INTERVAL;
2659 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2660 3885
2661 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3886 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2662 ev_set_priority (&w->timer, ev_priority (w)); 3887 ev_set_priority (&w->timer, ev_priority (w));
2663 3888
2664#if EV_USE_INOTIFY 3889#if EV_USE_INOTIFY
2665 infy_init (EV_A); 3890 infy_init (EV_A);
2666 3891
2667 if (fs_fd >= 0) 3892 if (fs_fd >= 0)
2668 infy_add (EV_A_ w); 3893 infy_add (EV_A_ w);
2669 else 3894 else
2670#endif 3895#endif
3896 {
2671 ev_timer_start (EV_A_ &w->timer); 3897 ev_timer_again (EV_A_ &w->timer);
3898 ev_unref (EV_A);
3899 }
2672 3900
2673 ev_start (EV_A_ (W)w, 1); 3901 ev_start (EV_A_ (W)w, 1);
2674 3902
2675 EV_FREQUENT_CHECK; 3903 EV_FREQUENT_CHECK;
2676} 3904}
2685 EV_FREQUENT_CHECK; 3913 EV_FREQUENT_CHECK;
2686 3914
2687#if EV_USE_INOTIFY 3915#if EV_USE_INOTIFY
2688 infy_del (EV_A_ w); 3916 infy_del (EV_A_ w);
2689#endif 3917#endif
3918
3919 if (ev_is_active (&w->timer))
3920 {
3921 ev_ref (EV_A);
2690 ev_timer_stop (EV_A_ &w->timer); 3922 ev_timer_stop (EV_A_ &w->timer);
3923 }
2691 3924
2692 ev_stop (EV_A_ (W)w); 3925 ev_stop (EV_A_ (W)w);
2693 3926
2694 EV_FREQUENT_CHECK; 3927 EV_FREQUENT_CHECK;
2695} 3928}
2740 3973
2741 EV_FREQUENT_CHECK; 3974 EV_FREQUENT_CHECK;
2742} 3975}
2743#endif 3976#endif
2744 3977
3978#if EV_PREPARE_ENABLE
2745void 3979void
2746ev_prepare_start (EV_P_ ev_prepare *w) 3980ev_prepare_start (EV_P_ ev_prepare *w)
2747{ 3981{
2748 if (expect_false (ev_is_active (w))) 3982 if (expect_false (ev_is_active (w)))
2749 return; 3983 return;
2775 4009
2776 ev_stop (EV_A_ (W)w); 4010 ev_stop (EV_A_ (W)w);
2777 4011
2778 EV_FREQUENT_CHECK; 4012 EV_FREQUENT_CHECK;
2779} 4013}
4014#endif
2780 4015
4016#if EV_CHECK_ENABLE
2781void 4017void
2782ev_check_start (EV_P_ ev_check *w) 4018ev_check_start (EV_P_ ev_check *w)
2783{ 4019{
2784 if (expect_false (ev_is_active (w))) 4020 if (expect_false (ev_is_active (w)))
2785 return; 4021 return;
2811 4047
2812 ev_stop (EV_A_ (W)w); 4048 ev_stop (EV_A_ (W)w);
2813 4049
2814 EV_FREQUENT_CHECK; 4050 EV_FREQUENT_CHECK;
2815} 4051}
4052#endif
2816 4053
2817#if EV_EMBED_ENABLE 4054#if EV_EMBED_ENABLE
2818void noinline 4055void noinline
2819ev_embed_sweep (EV_P_ ev_embed *w) 4056ev_embed_sweep (EV_P_ ev_embed *w)
2820{ 4057{
2821 ev_loop (w->other, EVLOOP_NONBLOCK); 4058 ev_run (w->other, EVRUN_NOWAIT);
2822} 4059}
2823 4060
2824static void 4061static void
2825embed_io_cb (EV_P_ ev_io *io, int revents) 4062embed_io_cb (EV_P_ ev_io *io, int revents)
2826{ 4063{
2827 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4064 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2828 4065
2829 if (ev_cb (w)) 4066 if (ev_cb (w))
2830 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4067 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2831 else 4068 else
2832 ev_loop (w->other, EVLOOP_NONBLOCK); 4069 ev_run (w->other, EVRUN_NOWAIT);
2833} 4070}
2834 4071
2835static void 4072static void
2836embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4073embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2837{ 4074{
2838 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4075 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2839 4076
2840 { 4077 {
2841 struct ev_loop *loop = w->other; 4078 EV_P = w->other;
2842 4079
2843 while (fdchangecnt) 4080 while (fdchangecnt)
2844 { 4081 {
2845 fd_reify (EV_A); 4082 fd_reify (EV_A);
2846 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4083 ev_run (EV_A_ EVRUN_NOWAIT);
2847 } 4084 }
2848 } 4085 }
2849} 4086}
2850 4087
2851static void 4088static void
2852embed_fork_cb (EV_P_ ev_fork *fork_w, int revents) 4089embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2853{ 4090{
2854 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 4091 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2855 4092
4093 ev_embed_stop (EV_A_ w);
4094
2856 { 4095 {
2857 struct ev_loop *loop = w->other; 4096 EV_P = w->other;
2858 4097
2859 ev_loop_fork (EV_A); 4098 ev_loop_fork (EV_A);
4099 ev_run (EV_A_ EVRUN_NOWAIT);
2860 } 4100 }
4101
4102 ev_embed_start (EV_A_ w);
2861} 4103}
2862 4104
2863#if 0 4105#if 0
2864static void 4106static void
2865embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4107embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2873{ 4115{
2874 if (expect_false (ev_is_active (w))) 4116 if (expect_false (ev_is_active (w)))
2875 return; 4117 return;
2876 4118
2877 { 4119 {
2878 struct ev_loop *loop = w->other; 4120 EV_P = w->other;
2879 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4121 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2880 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4122 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2881 } 4123 }
2882 4124
2883 EV_FREQUENT_CHECK; 4125 EV_FREQUENT_CHECK;
2884 4126
2910 4152
2911 ev_io_stop (EV_A_ &w->io); 4153 ev_io_stop (EV_A_ &w->io);
2912 ev_prepare_stop (EV_A_ &w->prepare); 4154 ev_prepare_stop (EV_A_ &w->prepare);
2913 ev_fork_stop (EV_A_ &w->fork); 4155 ev_fork_stop (EV_A_ &w->fork);
2914 4156
4157 ev_stop (EV_A_ (W)w);
4158
2915 EV_FREQUENT_CHECK; 4159 EV_FREQUENT_CHECK;
2916} 4160}
2917#endif 4161#endif
2918 4162
2919#if EV_FORK_ENABLE 4163#if EV_FORK_ENABLE
2952 4196
2953 EV_FREQUENT_CHECK; 4197 EV_FREQUENT_CHECK;
2954} 4198}
2955#endif 4199#endif
2956 4200
4201#if EV_CLEANUP_ENABLE
4202void
4203ev_cleanup_start (EV_P_ ev_cleanup *w)
4204{
4205 if (expect_false (ev_is_active (w)))
4206 return;
4207
4208 EV_FREQUENT_CHECK;
4209
4210 ev_start (EV_A_ (W)w, ++cleanupcnt);
4211 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4212 cleanups [cleanupcnt - 1] = w;
4213
4214 /* cleanup watchers should never keep a refcount on the loop */
4215 ev_unref (EV_A);
4216 EV_FREQUENT_CHECK;
4217}
4218
4219void
4220ev_cleanup_stop (EV_P_ ev_cleanup *w)
4221{
4222 clear_pending (EV_A_ (W)w);
4223 if (expect_false (!ev_is_active (w)))
4224 return;
4225
4226 EV_FREQUENT_CHECK;
4227 ev_ref (EV_A);
4228
4229 {
4230 int active = ev_active (w);
4231
4232 cleanups [active - 1] = cleanups [--cleanupcnt];
4233 ev_active (cleanups [active - 1]) = active;
4234 }
4235
4236 ev_stop (EV_A_ (W)w);
4237
4238 EV_FREQUENT_CHECK;
4239}
4240#endif
4241
2957#if EV_ASYNC_ENABLE 4242#if EV_ASYNC_ENABLE
2958void 4243void
2959ev_async_start (EV_P_ ev_async *w) 4244ev_async_start (EV_P_ ev_async *w)
2960{ 4245{
2961 if (expect_false (ev_is_active (w))) 4246 if (expect_false (ev_is_active (w)))
2962 return; 4247 return;
2963 4248
4249 w->sent = 0;
4250
2964 evpipe_init (EV_A); 4251 evpipe_init (EV_A);
2965 4252
2966 EV_FREQUENT_CHECK; 4253 EV_FREQUENT_CHECK;
2967 4254
2968 ev_start (EV_A_ (W)w, ++asynccnt); 4255 ev_start (EV_A_ (W)w, ++asynccnt);
2995 4282
2996void 4283void
2997ev_async_send (EV_P_ ev_async *w) 4284ev_async_send (EV_P_ ev_async *w)
2998{ 4285{
2999 w->sent = 1; 4286 w->sent = 1;
3000 evpipe_write (EV_A_ &gotasync); 4287 evpipe_write (EV_A_ &async_pending);
3001} 4288}
3002#endif 4289#endif
3003 4290
3004/*****************************************************************************/ 4291/*****************************************************************************/
3005 4292
3045{ 4332{
3046 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4333 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3047 4334
3048 if (expect_false (!once)) 4335 if (expect_false (!once))
3049 { 4336 {
3050 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4337 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3051 return; 4338 return;
3052 } 4339 }
3053 4340
3054 once->cb = cb; 4341 once->cb = cb;
3055 once->arg = arg; 4342 once->arg = arg;
3067 ev_timer_set (&once->to, timeout, 0.); 4354 ev_timer_set (&once->to, timeout, 0.);
3068 ev_timer_start (EV_A_ &once->to); 4355 ev_timer_start (EV_A_ &once->to);
3069 } 4356 }
3070} 4357}
3071 4358
4359/*****************************************************************************/
4360
4361#if EV_WALK_ENABLE
4362void ecb_cold
4363ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4364{
4365 int i, j;
4366 ev_watcher_list *wl, *wn;
4367
4368 if (types & (EV_IO | EV_EMBED))
4369 for (i = 0; i < anfdmax; ++i)
4370 for (wl = anfds [i].head; wl; )
4371 {
4372 wn = wl->next;
4373
4374#if EV_EMBED_ENABLE
4375 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4376 {
4377 if (types & EV_EMBED)
4378 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4379 }
4380 else
4381#endif
4382#if EV_USE_INOTIFY
4383 if (ev_cb ((ev_io *)wl) == infy_cb)
4384 ;
4385 else
4386#endif
4387 if ((ev_io *)wl != &pipe_w)
4388 if (types & EV_IO)
4389 cb (EV_A_ EV_IO, wl);
4390
4391 wl = wn;
4392 }
4393
4394 if (types & (EV_TIMER | EV_STAT))
4395 for (i = timercnt + HEAP0; i-- > HEAP0; )
4396#if EV_STAT_ENABLE
4397 /*TODO: timer is not always active*/
4398 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4399 {
4400 if (types & EV_STAT)
4401 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4402 }
4403 else
4404#endif
4405 if (types & EV_TIMER)
4406 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4407
4408#if EV_PERIODIC_ENABLE
4409 if (types & EV_PERIODIC)
4410 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4411 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4412#endif
4413
4414#if EV_IDLE_ENABLE
4415 if (types & EV_IDLE)
4416 for (j = NUMPRI; j--; )
4417 for (i = idlecnt [j]; i--; )
4418 cb (EV_A_ EV_IDLE, idles [j][i]);
4419#endif
4420
4421#if EV_FORK_ENABLE
4422 if (types & EV_FORK)
4423 for (i = forkcnt; i--; )
4424 if (ev_cb (forks [i]) != embed_fork_cb)
4425 cb (EV_A_ EV_FORK, forks [i]);
4426#endif
4427
4428#if EV_ASYNC_ENABLE
4429 if (types & EV_ASYNC)
4430 for (i = asynccnt; i--; )
4431 cb (EV_A_ EV_ASYNC, asyncs [i]);
4432#endif
4433
4434#if EV_PREPARE_ENABLE
4435 if (types & EV_PREPARE)
4436 for (i = preparecnt; i--; )
4437# if EV_EMBED_ENABLE
4438 if (ev_cb (prepares [i]) != embed_prepare_cb)
4439# endif
4440 cb (EV_A_ EV_PREPARE, prepares [i]);
4441#endif
4442
4443#if EV_CHECK_ENABLE
4444 if (types & EV_CHECK)
4445 for (i = checkcnt; i--; )
4446 cb (EV_A_ EV_CHECK, checks [i]);
4447#endif
4448
4449#if EV_SIGNAL_ENABLE
4450 if (types & EV_SIGNAL)
4451 for (i = 0; i < EV_NSIG - 1; ++i)
4452 for (wl = signals [i].head; wl; )
4453 {
4454 wn = wl->next;
4455 cb (EV_A_ EV_SIGNAL, wl);
4456 wl = wn;
4457 }
4458#endif
4459
4460#if EV_CHILD_ENABLE
4461 if (types & EV_CHILD)
4462 for (i = (EV_PID_HASHSIZE); i--; )
4463 for (wl = childs [i]; wl; )
4464 {
4465 wn = wl->next;
4466 cb (EV_A_ EV_CHILD, wl);
4467 wl = wn;
4468 }
4469#endif
4470/* EV_STAT 0x00001000 /* stat data changed */
4471/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4472}
4473#endif
4474
3072#if EV_MULTIPLICITY 4475#if EV_MULTIPLICITY
3073 #include "ev_wrap.h" 4476 #include "ev_wrap.h"
3074#endif 4477#endif
3075 4478
3076#ifdef __cplusplus
3077}
3078#endif
3079

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines