ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.27 by root, Wed Oct 31 22:16:36 2007 UTC vs.
Revision 1.241 by root, Fri May 9 13:57:00 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
6 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
7 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
8 * 27 *
9 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
10 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
11 * 30 * in which case the provisions of the GPL are applicable instead of
12 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
13 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
14 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
15 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
16 * 35 * and other provisions required by the GPL. If you do not delete the
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
18 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
19 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1
55# endif
56# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1
58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
74# endif
75
76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
90# endif
91
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
98# endif
99
100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
132#endif
29 133
30#include <math.h> 134#include <math.h>
31#include <stdlib.h> 135#include <stdlib.h>
32#include <unistd.h>
33#include <fcntl.h> 136#include <fcntl.h>
34#include <signal.h>
35#include <stddef.h> 137#include <stddef.h>
36 138
37#include <stdio.h> 139#include <stdio.h>
38 140
39#include <assert.h> 141#include <assert.h>
40#include <errno.h> 142#include <errno.h>
41#include <sys/types.h> 143#include <sys/types.h>
42#include <sys/wait.h>
43#include <sys/time.h>
44#include <time.h> 144#include <time.h>
45 145
46#ifndef HAVE_MONOTONIC 146#include <signal.h>
47# ifdef CLOCK_MONOTONIC 147
48# define HAVE_MONOTONIC 1 148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
154#ifndef _WIN32
155# include <sys/time.h>
156# include <sys/wait.h>
157# include <unistd.h>
158#else
159# define WIN32_LEAN_AND_MEAN
160# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1
49# endif 163# endif
50#endif 164#endif
51 165
166/* this block tries to deduce configuration from header-defined symbols and defaults */
167
168#ifndef EV_USE_MONOTONIC
169# define EV_USE_MONOTONIC 0
170#endif
171
172#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
178#endif
179
52#ifndef HAVE_SELECT 180#ifndef EV_USE_SELECT
53# define HAVE_SELECT 1 181# define EV_USE_SELECT 1
182#endif
183
184#ifndef EV_USE_POLL
185# ifdef _WIN32
186# define EV_USE_POLL 0
187# else
188# define EV_USE_POLL 1
54#endif 189# endif
190#endif
55 191
56#ifndef HAVE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
57# define HAVE_EPOLL 0 196# define EV_USE_EPOLL 0
58#endif 197# endif
198#endif
59 199
60#ifndef HAVE_REALTIME 200#ifndef EV_USE_KQUEUE
61# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 201# define EV_USE_KQUEUE 0
202#endif
203
204#ifndef EV_USE_PORT
205# define EV_USE_PORT 0
206#endif
207
208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
212# define EV_USE_INOTIFY 0
62#endif 213# endif
214#endif
215
216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241
242#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0
245#endif
246
247#ifndef CLOCK_REALTIME
248# undef EV_USE_REALTIME
249# define EV_USE_REALTIME 0
250#endif
251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
267#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h>
269#endif
270
271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
276# endif
277int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus
279}
280# endif
281#endif
282
283/**/
284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
63 294
64#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
65#define MAX_BLOCKTIME 60. 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
66#define PID_HASHSIZE 16 /* size of pid hahs table, must be power of two */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
67 298
68#include "ev.h" 299#if __GNUC__ >= 4
300# define expect(expr,value) __builtin_expect ((expr),(value))
301# define noinline __attribute__ ((noinline))
302#else
303# define expect(expr,value) (expr)
304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif
308#endif
69 309
310#define expect_false(expr) expect ((expr) != 0, 0)
311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
319
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
322
323#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */
325
70typedef struct ev_watcher *W; 326typedef ev_watcher *W;
71typedef struct ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
72typedef struct ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
73 329
74static ev_tstamp now, diff; /* monotonic clock */ 330#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at
332
333#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif
338
339#ifdef _WIN32
340# include "ev_win32.c"
341#endif
342
343/*****************************************************************************/
344
345static void (*syserr_cb)(const char *msg);
346
347void
348ev_set_syserr_cb (void (*cb)(const char *msg))
349{
350 syserr_cb = cb;
351}
352
353static void noinline
354syserr (const char *msg)
355{
356 if (!msg)
357 msg = "(libev) system error";
358
359 if (syserr_cb)
360 syserr_cb (msg);
361 else
362 {
363 perror (msg);
364 abort ();
365 }
366}
367
368static void *
369ev_realloc_emul (void *ptr, long size)
370{
371 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and
373 * the single unix specification, so work around them here.
374 */
375
376 if (size)
377 return realloc (ptr, size);
378
379 free (ptr);
380 return 0;
381}
382
383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
384
385void
386ev_set_allocator (void *(*cb)(void *ptr, long size))
387{
388 alloc = cb;
389}
390
391inline_speed void *
392ev_realloc (void *ptr, long size)
393{
394 ptr = alloc (ptr, size);
395
396 if (!ptr && size)
397 {
398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
399 abort ();
400 }
401
402 return ptr;
403}
404
405#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0)
407
408/*****************************************************************************/
409
410typedef struct
411{
412 WL head;
413 unsigned char events;
414 unsigned char reify;
415#if EV_SELECT_IS_WINSOCKET
416 SOCKET handle;
417#endif
418} ANFD;
419
420typedef struct
421{
422 W w;
423 int events;
424} ANPENDING;
425
426#if EV_USE_INOTIFY
427/* hash table entry per inotify-id */
428typedef struct
429{
430 WL head;
431} ANFS;
432#endif
433
434/* Heap Entry */
435#if EV_HEAP_CACHE_AT
436 typedef struct {
437 WT w;
438 ev_tstamp at;
439 } ANHE;
440
441 #define ANHE_w(he) (he) /* access watcher, read-write */
442 #define ANHE_at(he) (he)->at /* acces cahced at, read-only */
443 #define ANHE_at_set(he) (he)->at = (he)->w->at /* update at from watcher */
444#else
445 typedef WT ANHE;
446
447 #define ANHE_w(he) (he)
448 #define ANHE_at(he) (he)->at
449 #define ANHE_at_set(he)
450#endif
451
452#if EV_MULTIPLICITY
453
454 struct ev_loop
455 {
456 ev_tstamp ev_rt_now;
457 #define ev_rt_now ((loop)->ev_rt_now)
458 #define VAR(name,decl) decl;
459 #include "ev_vars.h"
460 #undef VAR
461 };
462 #include "ev_wrap.h"
463
464 static struct ev_loop default_loop_struct;
465 struct ev_loop *ev_default_loop_ptr;
466
467#else
468
75ev_tstamp ev_now; 469 ev_tstamp ev_rt_now;
76int ev_method; 470 #define VAR(name,decl) static decl;
471 #include "ev_vars.h"
472 #undef VAR
77 473
78static int have_monotonic; /* runtime */ 474 static int ev_default_loop_ptr;
79 475
80static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 476#endif
81static void (*method_modify)(int fd, int oev, int nev);
82static void (*method_poll)(ev_tstamp timeout);
83 477
84/*****************************************************************************/ 478/*****************************************************************************/
85 479
86ev_tstamp 480ev_tstamp
87ev_time (void) 481ev_time (void)
88{ 482{
89#if HAVE_REALTIME 483#if EV_USE_REALTIME
90 struct timespec ts; 484 struct timespec ts;
91 clock_gettime (CLOCK_REALTIME, &ts); 485 clock_gettime (CLOCK_REALTIME, &ts);
92 return ts.tv_sec + ts.tv_nsec * 1e-9; 486 return ts.tv_sec + ts.tv_nsec * 1e-9;
93#else 487#else
94 struct timeval tv; 488 struct timeval tv;
95 gettimeofday (&tv, 0); 489 gettimeofday (&tv, 0);
96 return tv.tv_sec + tv.tv_usec * 1e-6; 490 return tv.tv_sec + tv.tv_usec * 1e-6;
97#endif 491#endif
98} 492}
99 493
100static ev_tstamp 494ev_tstamp inline_size
101get_clock (void) 495get_clock (void)
102{ 496{
103#if HAVE_MONOTONIC 497#if EV_USE_MONOTONIC
104 if (have_monotonic) 498 if (expect_true (have_monotonic))
105 { 499 {
106 struct timespec ts; 500 struct timespec ts;
107 clock_gettime (CLOCK_MONOTONIC, &ts); 501 clock_gettime (CLOCK_MONOTONIC, &ts);
108 return ts.tv_sec + ts.tv_nsec * 1e-9; 502 return ts.tv_sec + ts.tv_nsec * 1e-9;
109 } 503 }
110#endif 504#endif
111 505
112 return ev_time (); 506 return ev_time ();
113} 507}
114 508
115#define array_needsize(base,cur,cnt,init) \ 509#if EV_MULTIPLICITY
116 if ((cnt) > cur) \ 510ev_tstamp
117 { \ 511ev_now (EV_P)
118 int newcnt = cur; \ 512{
119 do \ 513 return ev_rt_now;
120 { \ 514}
121 newcnt = (newcnt << 1) | 4 & ~3; \ 515#endif
122 } \ 516
123 while ((cnt) > newcnt); \ 517void
124 \ 518ev_sleep (ev_tstamp delay)
125 base = realloc (base, sizeof (*base) * (newcnt)); \ 519{
126 init (base + cur, newcnt - cur); \ 520 if (delay > 0.)
127 cur = newcnt; \
128 } 521 {
522#if EV_USE_NANOSLEEP
523 struct timespec ts;
524
525 ts.tv_sec = (time_t)delay;
526 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
527
528 nanosleep (&ts, 0);
529#elif defined(_WIN32)
530 Sleep ((unsigned long)(delay * 1e3));
531#else
532 struct timeval tv;
533
534 tv.tv_sec = (time_t)delay;
535 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
536
537 select (0, 0, 0, 0, &tv);
538#endif
539 }
540}
129 541
130/*****************************************************************************/ 542/*****************************************************************************/
131 543
132typedef struct 544#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
133{
134 struct ev_io *head;
135 int events;
136} ANFD;
137 545
138static ANFD *anfds; 546int inline_size
139static int anfdmax; 547array_nextsize (int elem, int cur, int cnt)
548{
549 int ncur = cur + 1;
140 550
141static void 551 do
552 ncur <<= 1;
553 while (cnt > ncur);
554
555 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
556 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
557 {
558 ncur *= elem;
559 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
560 ncur = ncur - sizeof (void *) * 4;
561 ncur /= elem;
562 }
563
564 return ncur;
565}
566
567static noinline void *
568array_realloc (int elem, void *base, int *cur, int cnt)
569{
570 *cur = array_nextsize (elem, *cur, cnt);
571 return ev_realloc (base, elem * *cur);
572}
573
574#define array_needsize(type,base,cur,cnt,init) \
575 if (expect_false ((cnt) > (cur))) \
576 { \
577 int ocur_ = (cur); \
578 (base) = (type *)array_realloc \
579 (sizeof (type), (base), &(cur), (cnt)); \
580 init ((base) + (ocur_), (cur) - ocur_); \
581 }
582
583#if 0
584#define array_slim(type,stem) \
585 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
586 { \
587 stem ## max = array_roundsize (stem ## cnt >> 1); \
588 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
589 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
590 }
591#endif
592
593#define array_free(stem, idx) \
594 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
595
596/*****************************************************************************/
597
598void noinline
599ev_feed_event (EV_P_ void *w, int revents)
600{
601 W w_ = (W)w;
602 int pri = ABSPRI (w_);
603
604 if (expect_false (w_->pending))
605 pendings [pri][w_->pending - 1].events |= revents;
606 else
607 {
608 w_->pending = ++pendingcnt [pri];
609 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
610 pendings [pri][w_->pending - 1].w = w_;
611 pendings [pri][w_->pending - 1].events = revents;
612 }
613}
614
615void inline_speed
616queue_events (EV_P_ W *events, int eventcnt, int type)
617{
618 int i;
619
620 for (i = 0; i < eventcnt; ++i)
621 ev_feed_event (EV_A_ events [i], type);
622}
623
624/*****************************************************************************/
625
626void inline_size
142anfds_init (ANFD *base, int count) 627anfds_init (ANFD *base, int count)
143{ 628{
144 while (count--) 629 while (count--)
145 { 630 {
146 base->head = 0; 631 base->head = 0;
147 base->events = EV_NONE; 632 base->events = EV_NONE;
633 base->reify = 0;
634
148 ++base; 635 ++base;
149 } 636 }
150} 637}
151 638
152typedef struct 639void inline_speed
153{
154 W w;
155 int events;
156} ANPENDING;
157
158static ANPENDING *pendings;
159static int pendingmax, pendingcnt;
160
161static void
162event (W w, int events)
163{
164 if (w->active)
165 {
166 w->pending = ++pendingcnt;
167 array_needsize (pendings, pendingmax, pendingcnt, );
168 pendings [pendingcnt - 1].w = w;
169 pendings [pendingcnt - 1].events = events;
170 }
171}
172
173static void
174queue_events (W *events, int eventcnt, int type)
175{
176 int i;
177
178 for (i = 0; i < eventcnt; ++i)
179 event (events [i], type);
180}
181
182static void
183fd_event (int fd, int events) 640fd_event (EV_P_ int fd, int revents)
184{ 641{
185 ANFD *anfd = anfds + fd; 642 ANFD *anfd = anfds + fd;
186 struct ev_io *w; 643 ev_io *w;
187 644
188 for (w = anfd->head; w; w = w->next) 645 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
189 { 646 {
190 int ev = w->events & events; 647 int ev = w->events & revents;
191 648
192 if (ev) 649 if (ev)
193 event ((W)w, ev); 650 ev_feed_event (EV_A_ (W)w, ev);
194 } 651 }
195} 652}
196 653
197/*****************************************************************************/ 654void
655ev_feed_fd_event (EV_P_ int fd, int revents)
656{
657 if (fd >= 0 && fd < anfdmax)
658 fd_event (EV_A_ fd, revents);
659}
198 660
199static int *fdchanges; 661void inline_size
200static int fdchangemax, fdchangecnt; 662fd_reify (EV_P)
201
202static void
203fd_reify (void)
204{ 663{
205 int i; 664 int i;
206 665
207 for (i = 0; i < fdchangecnt; ++i) 666 for (i = 0; i < fdchangecnt; ++i)
208 { 667 {
209 int fd = fdchanges [i]; 668 int fd = fdchanges [i];
210 ANFD *anfd = anfds + fd; 669 ANFD *anfd = anfds + fd;
211 struct ev_io *w; 670 ev_io *w;
212 671
213 int events = 0; 672 unsigned char events = 0;
214 673
215 for (w = anfd->head; w; w = w->next) 674 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
216 events |= w->events; 675 events |= (unsigned char)w->events;
217 676
218 anfd->events &= ~EV_REIFY; 677#if EV_SELECT_IS_WINSOCKET
219 678 if (events)
220 if (anfd->events != events)
221 { 679 {
222 method_modify (fd, anfd->events, events); 680 unsigned long argp;
223 anfd->events = events; 681 #ifdef EV_FD_TO_WIN32_HANDLE
682 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
683 #else
684 anfd->handle = _get_osfhandle (fd);
685 #endif
686 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
224 } 687 }
688#endif
689
690 {
691 unsigned char o_events = anfd->events;
692 unsigned char o_reify = anfd->reify;
693
694 anfd->reify = 0;
695 anfd->events = events;
696
697 if (o_events != events || o_reify & EV_IOFDSET)
698 backend_modify (EV_A_ fd, o_events, events);
699 }
225 } 700 }
226 701
227 fdchangecnt = 0; 702 fdchangecnt = 0;
228} 703}
229 704
230static void 705void inline_size
231fd_change (int fd) 706fd_change (EV_P_ int fd, int flags)
232{ 707{
233 if (anfds [fd].events & EV_REIFY) 708 unsigned char reify = anfds [fd].reify;
234 return; 709 anfds [fd].reify |= flags;
235 710
236 anfds [fd].events |= EV_REIFY; 711 if (expect_true (!reify))
237 712 {
238 ++fdchangecnt; 713 ++fdchangecnt;
239 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 714 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
240 fdchanges [fdchangecnt - 1] = fd; 715 fdchanges [fdchangecnt - 1] = fd;
716 }
717}
718
719void inline_speed
720fd_kill (EV_P_ int fd)
721{
722 ev_io *w;
723
724 while ((w = (ev_io *)anfds [fd].head))
725 {
726 ev_io_stop (EV_A_ w);
727 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
728 }
729}
730
731int inline_size
732fd_valid (int fd)
733{
734#ifdef _WIN32
735 return _get_osfhandle (fd) != -1;
736#else
737 return fcntl (fd, F_GETFD) != -1;
738#endif
241} 739}
242 740
243/* called on EBADF to verify fds */ 741/* called on EBADF to verify fds */
244static void 742static void noinline
245fd_recheck (void) 743fd_ebadf (EV_P)
246{ 744{
247 int fd; 745 int fd;
248 746
249 for (fd = 0; fd < anfdmax; ++fd) 747 for (fd = 0; fd < anfdmax; ++fd)
250 if (anfds [fd].events) 748 if (anfds [fd].events)
251 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 749 if (!fd_valid (fd) == -1 && errno == EBADF)
252 while (anfds [fd].head) 750 fd_kill (EV_A_ fd);
751}
752
753/* called on ENOMEM in select/poll to kill some fds and retry */
754static void noinline
755fd_enomem (EV_P)
756{
757 int fd;
758
759 for (fd = anfdmax; fd--; )
760 if (anfds [fd].events)
253 { 761 {
254 event ((W)anfds [fd].head, EV_ERROR); 762 fd_kill (EV_A_ fd);
255 evio_stop (anfds [fd].head); 763 return;
256 } 764 }
765}
766
767/* usually called after fork if backend needs to re-arm all fds from scratch */
768static void noinline
769fd_rearm_all (EV_P)
770{
771 int fd;
772
773 for (fd = 0; fd < anfdmax; ++fd)
774 if (anfds [fd].events)
775 {
776 anfds [fd].events = 0;
777 fd_change (EV_A_ fd, EV_IOFDSET | 1);
778 }
257} 779}
258 780
259/*****************************************************************************/ 781/*****************************************************************************/
260 782
261static struct ev_timer **timers; 783/*
262static int timermax, timercnt; 784 * the heap functions want a real array index. array index 0 uis guaranteed to not
785 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
786 * the branching factor of the d-tree.
787 */
263 788
264static struct ev_periodic **periodics; 789/*
265static int periodicmax, periodiccnt; 790 * at the moment we allow libev the luxury of two heaps,
791 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
792 * which is more cache-efficient.
793 * the difference is about 5% with 50000+ watchers.
794 */
795#define EV_USE_4HEAP !EV_MINIMAL
796#if EV_USE_4HEAP
266 797
267static void 798#define DHEAP 4
268upheap (WT *timers, int k) 799#define HEAP0 (DHEAP - 1) /* index of first element in heap */
269{
270 WT w = timers [k];
271 800
272 while (k && timers [k >> 1]->at > w->at) 801/* towards the root */
273 { 802void inline_speed
274 timers [k] = timers [k >> 1]; 803upheap (ANHE *heap, int k)
275 timers [k]->active = k + 1; 804{
276 k >>= 1; 805 ANHE he = heap [k];
806
807 for (;;)
277 } 808 {
809 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
278 810
279 timers [k] = w; 811 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
280 timers [k]->active = k + 1;
281
282}
283
284static void
285downheap (WT *timers, int N, int k)
286{
287 WT w = timers [k];
288
289 while (k < (N >> 1))
290 {
291 int j = k << 1;
292
293 if (j + 1 < N && timers [j]->at > timers [j + 1]->at)
294 ++j;
295
296 if (w->at <= timers [j]->at)
297 break; 812 break;
298 813
299 timers [k] = timers [j]; 814 heap [k] = heap [p];
300 timers [k]->active = k + 1; 815 ev_active (ANHE_w (heap [k])) = k;
301 k = j; 816 k = p;
817 }
818
819 ev_active (ANHE_w (he)) = k;
820 heap [k] = he;
821}
822
823/* away from the root */
824void inline_speed
825downheap (ANHE *heap, int N, int k)
826{
827 ANHE he = heap [k];
828 ANHE *E = heap + N + HEAP0;
829
830 for (;;)
302 } 831 {
832 ev_tstamp minat;
833 ANHE *minpos;
834 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
303 835
836 // find minimum child
837 if (expect_true (pos + DHEAP - 1 < E))
838 {
839 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
840 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
841 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
842 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
843 }
844 else if (pos < E)
845 {
846 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
847 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
848 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
849 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
850 }
851 else
852 break;
853
854 if (ANHE_at (he) <= minat)
855 break;
856
857 ev_active (ANHE_w (*minpos)) = k;
858 heap [k] = *minpos;
859
860 k = minpos - heap;
861 }
862
863 ev_active (ANHE_w (he)) = k;
864 heap [k] = he;
865}
866
867#else // 4HEAP
868
869#define HEAP0 1
870
871/* towards the root */
872void inline_speed
873upheap (ANHE *heap, int k)
874{
875 ANHE he = heap [k];
876
877 for (;;)
878 {
879 int p = k >> 1;
880
881 /* maybe we could use a dummy element at heap [0]? */
882 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
883 break;
884
885 heap [k] = heap [p];
886 ev_active (ANHE_w (heap [k])) = k;
887 k = p;
888 }
889
304 timers [k] = w; 890 heap [k] = w;
305 timers [k]->active = k + 1; 891 ev_active (ANHE_w (heap [k])) = k;
892}
893
894/* away from the root */
895void inline_speed
896downheap (ANHE *heap, int N, int k)
897{
898 ANHE he = heap [k];
899
900 for (;;)
901 {
902 int c = k << 1;
903
904 if (c > N)
905 break;
906
907 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
908 ? 1 : 0;
909
910 if (w->at <= ANHE_at (heap [c]))
911 break;
912
913 heap [k] = heap [c];
914 ev_active (ANHE_w (heap [k])) = k;
915
916 k = c;
917 }
918
919 heap [k] = he;
920 ev_active (ANHE_w (he)) = k;
921}
922#endif
923
924void inline_size
925adjustheap (ANHE *heap, int N, int k)
926{
927 upheap (heap, k);
928 downheap (heap, N, k);
306} 929}
307 930
308/*****************************************************************************/ 931/*****************************************************************************/
309 932
310typedef struct 933typedef struct
311{ 934{
312 struct ev_signal *head; 935 WL head;
313 sig_atomic_t gotsig; 936 EV_ATOMIC_T gotsig;
314} ANSIG; 937} ANSIG;
315 938
316static ANSIG *signals; 939static ANSIG *signals;
317static int signalmax; 940static int signalmax;
318 941
319static int sigpipe [2]; 942static EV_ATOMIC_T gotsig;
320static sig_atomic_t gotsig;
321static struct ev_io sigev;
322 943
323static void 944void inline_size
324signals_init (ANSIG *base, int count) 945signals_init (ANSIG *base, int count)
325{ 946{
326 while (count--) 947 while (count--)
327 { 948 {
328 base->head = 0; 949 base->head = 0;
329 base->gotsig = 0; 950 base->gotsig = 0;
951
330 ++base; 952 ++base;
331 } 953 }
332} 954}
333 955
956/*****************************************************************************/
957
958void inline_speed
959fd_intern (int fd)
960{
961#ifdef _WIN32
962 int arg = 1;
963 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
964#else
965 fcntl (fd, F_SETFD, FD_CLOEXEC);
966 fcntl (fd, F_SETFL, O_NONBLOCK);
967#endif
968}
969
970static void noinline
971evpipe_init (EV_P)
972{
973 if (!ev_is_active (&pipeev))
974 {
975#if EV_USE_EVENTFD
976 if ((evfd = eventfd (0, 0)) >= 0)
977 {
978 evpipe [0] = -1;
979 fd_intern (evfd);
980 ev_io_set (&pipeev, evfd, EV_READ);
981 }
982 else
983#endif
984 {
985 while (pipe (evpipe))
986 syserr ("(libev) error creating signal/async pipe");
987
988 fd_intern (evpipe [0]);
989 fd_intern (evpipe [1]);
990 ev_io_set (&pipeev, evpipe [0], EV_READ);
991 }
992
993 ev_io_start (EV_A_ &pipeev);
994 ev_unref (EV_A); /* watcher should not keep loop alive */
995 }
996}
997
998void inline_size
999evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1000{
1001 if (!*flag)
1002 {
1003 int old_errno = errno; /* save errno because write might clobber it */
1004
1005 *flag = 1;
1006
1007#if EV_USE_EVENTFD
1008 if (evfd >= 0)
1009 {
1010 uint64_t counter = 1;
1011 write (evfd, &counter, sizeof (uint64_t));
1012 }
1013 else
1014#endif
1015 write (evpipe [1], &old_errno, 1);
1016
1017 errno = old_errno;
1018 }
1019}
1020
334static void 1021static void
1022pipecb (EV_P_ ev_io *iow, int revents)
1023{
1024#if EV_USE_EVENTFD
1025 if (evfd >= 0)
1026 {
1027 uint64_t counter;
1028 read (evfd, &counter, sizeof (uint64_t));
1029 }
1030 else
1031#endif
1032 {
1033 char dummy;
1034 read (evpipe [0], &dummy, 1);
1035 }
1036
1037 if (gotsig && ev_is_default_loop (EV_A))
1038 {
1039 int signum;
1040 gotsig = 0;
1041
1042 for (signum = signalmax; signum--; )
1043 if (signals [signum].gotsig)
1044 ev_feed_signal_event (EV_A_ signum + 1);
1045 }
1046
1047#if EV_ASYNC_ENABLE
1048 if (gotasync)
1049 {
1050 int i;
1051 gotasync = 0;
1052
1053 for (i = asynccnt; i--; )
1054 if (asyncs [i]->sent)
1055 {
1056 asyncs [i]->sent = 0;
1057 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1058 }
1059 }
1060#endif
1061}
1062
1063/*****************************************************************************/
1064
1065static void
335sighandler (int signum) 1066ev_sighandler (int signum)
336{ 1067{
1068#if EV_MULTIPLICITY
1069 struct ev_loop *loop = &default_loop_struct;
1070#endif
1071
1072#if _WIN32
1073 signal (signum, ev_sighandler);
1074#endif
1075
337 signals [signum - 1].gotsig = 1; 1076 signals [signum - 1].gotsig = 1;
338 1077 evpipe_write (EV_A_ &gotsig);
339 if (!gotsig)
340 {
341 gotsig = 1;
342 write (sigpipe [1], &gotsig, 1);
343 }
344} 1078}
345 1079
346static void 1080void noinline
347sigcb (struct ev_io *iow, int revents) 1081ev_feed_signal_event (EV_P_ int signum)
348{ 1082{
349 struct ev_signal *w; 1083 WL w;
350 int sig;
351 1084
352 gotsig = 0; 1085#if EV_MULTIPLICITY
353 read (sigpipe [0], &revents, 1); 1086 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1087#endif
354 1088
355 for (sig = signalmax; sig--; ) 1089 --signum;
356 if (signals [sig].gotsig) 1090
357 { 1091 if (signum < 0 || signum >= signalmax)
1092 return;
1093
358 signals [sig].gotsig = 0; 1094 signals [signum].gotsig = 0;
359 1095
360 for (w = signals [sig].head; w; w = w->next) 1096 for (w = signals [signum].head; w; w = w->next)
361 event ((W)w, EV_SIGNAL); 1097 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
362 }
363}
364
365static void
366siginit (void)
367{
368 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
369 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
370
371 /* rather than sort out wether we really need nb, set it */
372 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
373 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
374
375 evio_set (&sigev, sigpipe [0], EV_READ);
376 evio_start (&sigev);
377} 1098}
378 1099
379/*****************************************************************************/ 1100/*****************************************************************************/
380 1101
381static struct ev_idle **idles; 1102static WL childs [EV_PID_HASHSIZE];
382static int idlemax, idlecnt;
383 1103
384static struct ev_prepare **prepares; 1104#ifndef _WIN32
385static int preparemax, preparecnt;
386 1105
387static struct ev_check **checks;
388static int checkmax, checkcnt;
389
390/*****************************************************************************/
391
392static struct ev_child *childs [PID_HASHSIZE];
393static struct ev_signal childev; 1106static ev_signal childev;
1107
1108#ifndef WIFCONTINUED
1109# define WIFCONTINUED(status) 0
1110#endif
1111
1112void inline_speed
1113child_reap (EV_P_ int chain, int pid, int status)
1114{
1115 ev_child *w;
1116 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1117
1118 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1119 {
1120 if ((w->pid == pid || !w->pid)
1121 && (!traced || (w->flags & 1)))
1122 {
1123 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1124 w->rpid = pid;
1125 w->rstatus = status;
1126 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1127 }
1128 }
1129}
394 1130
395#ifndef WCONTINUED 1131#ifndef WCONTINUED
396# define WCONTINUED 0 1132# define WCONTINUED 0
397#endif 1133#endif
398 1134
399static void 1135static void
400childcb (struct ev_signal *sw, int revents) 1136childcb (EV_P_ ev_signal *sw, int revents)
401{ 1137{
402 struct ev_child *w;
403 int pid, status; 1138 int pid, status;
404 1139
1140 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
405 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 1141 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
406 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 1142 if (!WCONTINUED
407 if (w->pid == pid || w->pid == -1) 1143 || errno != EINVAL
408 { 1144 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
409 w->status = status; 1145 return;
410 event ((W)w, EV_CHILD); 1146
411 } 1147 /* make sure we are called again until all children have been reaped */
1148 /* we need to do it this way so that the callback gets called before we continue */
1149 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1150
1151 child_reap (EV_A_ pid, pid, status);
1152 if (EV_PID_HASHSIZE > 1)
1153 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
412} 1154}
1155
1156#endif
413 1157
414/*****************************************************************************/ 1158/*****************************************************************************/
415 1159
1160#if EV_USE_PORT
1161# include "ev_port.c"
1162#endif
1163#if EV_USE_KQUEUE
1164# include "ev_kqueue.c"
1165#endif
416#if HAVE_EPOLL 1166#if EV_USE_EPOLL
417# include "ev_epoll.c" 1167# include "ev_epoll.c"
418#endif 1168#endif
1169#if EV_USE_POLL
1170# include "ev_poll.c"
1171#endif
419#if HAVE_SELECT 1172#if EV_USE_SELECT
420# include "ev_select.c" 1173# include "ev_select.c"
421#endif 1174#endif
422 1175
423int 1176int
424ev_version_major (void) 1177ev_version_major (void)
430ev_version_minor (void) 1183ev_version_minor (void)
431{ 1184{
432 return EV_VERSION_MINOR; 1185 return EV_VERSION_MINOR;
433} 1186}
434 1187
435int ev_init (int flags) 1188/* return true if we are running with elevated privileges and should ignore env variables */
1189int inline_size
1190enable_secure (void)
436{ 1191{
437 if (!ev_method) 1192#ifdef _WIN32
1193 return 0;
1194#else
1195 return getuid () != geteuid ()
1196 || getgid () != getegid ();
1197#endif
1198}
1199
1200unsigned int
1201ev_supported_backends (void)
1202{
1203 unsigned int flags = 0;
1204
1205 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1206 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1207 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1208 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1209 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1210
1211 return flags;
1212}
1213
1214unsigned int
1215ev_recommended_backends (void)
1216{
1217 unsigned int flags = ev_supported_backends ();
1218
1219#ifndef __NetBSD__
1220 /* kqueue is borked on everything but netbsd apparently */
1221 /* it usually doesn't work correctly on anything but sockets and pipes */
1222 flags &= ~EVBACKEND_KQUEUE;
1223#endif
1224#ifdef __APPLE__
1225 // flags &= ~EVBACKEND_KQUEUE; for documentation
1226 flags &= ~EVBACKEND_POLL;
1227#endif
1228
1229 return flags;
1230}
1231
1232unsigned int
1233ev_embeddable_backends (void)
1234{
1235 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1236
1237 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1238 /* please fix it and tell me how to detect the fix */
1239 flags &= ~EVBACKEND_EPOLL;
1240
1241 return flags;
1242}
1243
1244unsigned int
1245ev_backend (EV_P)
1246{
1247 return backend;
1248}
1249
1250unsigned int
1251ev_loop_count (EV_P)
1252{
1253 return loop_count;
1254}
1255
1256void
1257ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1258{
1259 io_blocktime = interval;
1260}
1261
1262void
1263ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1264{
1265 timeout_blocktime = interval;
1266}
1267
1268static void noinline
1269loop_init (EV_P_ unsigned int flags)
1270{
1271 if (!backend)
438 { 1272 {
439#if HAVE_MONOTONIC 1273#if EV_USE_MONOTONIC
440 { 1274 {
441 struct timespec ts; 1275 struct timespec ts;
442 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1276 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
443 have_monotonic = 1; 1277 have_monotonic = 1;
444 } 1278 }
445#endif 1279#endif
446 1280
447 ev_now = ev_time (); 1281 ev_rt_now = ev_time ();
448 now = get_clock (); 1282 mn_now = get_clock ();
1283 now_floor = mn_now;
449 diff = ev_now - now; 1284 rtmn_diff = ev_rt_now - mn_now;
450 1285
451 if (pipe (sigpipe)) 1286 io_blocktime = 0.;
452 return 0; 1287 timeout_blocktime = 0.;
1288 backend = 0;
1289 backend_fd = -1;
1290 gotasync = 0;
1291#if EV_USE_INOTIFY
1292 fs_fd = -2;
1293#endif
453 1294
454 ev_method = EVMETHOD_NONE; 1295 /* pid check not overridable via env */
1296#ifndef _WIN32
1297 if (flags & EVFLAG_FORKCHECK)
1298 curpid = getpid ();
1299#endif
1300
1301 if (!(flags & EVFLAG_NOENV)
1302 && !enable_secure ()
1303 && getenv ("LIBEV_FLAGS"))
1304 flags = atoi (getenv ("LIBEV_FLAGS"));
1305
1306 if (!(flags & 0x0000ffffU))
1307 flags |= ev_recommended_backends ();
1308
1309#if EV_USE_PORT
1310 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1311#endif
1312#if EV_USE_KQUEUE
1313 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1314#endif
455#if HAVE_EPOLL 1315#if EV_USE_EPOLL
456 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 1316 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
457#endif 1317#endif
1318#if EV_USE_POLL
1319 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1320#endif
458#if HAVE_SELECT 1321#if EV_USE_SELECT
459 if (ev_method == EVMETHOD_NONE) select_init (flags); 1322 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
460#endif 1323#endif
461 1324
462 if (ev_method) 1325 ev_init (&pipeev, pipecb);
1326 ev_set_priority (&pipeev, EV_MAXPRI);
1327 }
1328}
1329
1330static void noinline
1331loop_destroy (EV_P)
1332{
1333 int i;
1334
1335 if (ev_is_active (&pipeev))
1336 {
1337 ev_ref (EV_A); /* signal watcher */
1338 ev_io_stop (EV_A_ &pipeev);
1339
1340#if EV_USE_EVENTFD
1341 if (evfd >= 0)
1342 close (evfd);
1343#endif
1344
1345 if (evpipe [0] >= 0)
463 { 1346 {
464 evw_init (&sigev, sigcb); 1347 close (evpipe [0]);
465 siginit (); 1348 close (evpipe [1]);
466
467 evsignal_init (&childev, childcb, SIGCHLD);
468 evsignal_start (&childev);
469 } 1349 }
470 } 1350 }
471 1351
472 return ev_method; 1352#if EV_USE_INOTIFY
1353 if (fs_fd >= 0)
1354 close (fs_fd);
1355#endif
1356
1357 if (backend_fd >= 0)
1358 close (backend_fd);
1359
1360#if EV_USE_PORT
1361 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1362#endif
1363#if EV_USE_KQUEUE
1364 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1365#endif
1366#if EV_USE_EPOLL
1367 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1368#endif
1369#if EV_USE_POLL
1370 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1371#endif
1372#if EV_USE_SELECT
1373 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1374#endif
1375
1376 for (i = NUMPRI; i--; )
1377 {
1378 array_free (pending, [i]);
1379#if EV_IDLE_ENABLE
1380 array_free (idle, [i]);
1381#endif
1382 }
1383
1384 ev_free (anfds); anfdmax = 0;
1385
1386 /* have to use the microsoft-never-gets-it-right macro */
1387 array_free (fdchange, EMPTY);
1388 array_free (timer, EMPTY);
1389#if EV_PERIODIC_ENABLE
1390 array_free (periodic, EMPTY);
1391#endif
1392#if EV_FORK_ENABLE
1393 array_free (fork, EMPTY);
1394#endif
1395 array_free (prepare, EMPTY);
1396 array_free (check, EMPTY);
1397#if EV_ASYNC_ENABLE
1398 array_free (async, EMPTY);
1399#endif
1400
1401 backend = 0;
1402}
1403
1404#if EV_USE_INOTIFY
1405void inline_size infy_fork (EV_P);
1406#endif
1407
1408void inline_size
1409loop_fork (EV_P)
1410{
1411#if EV_USE_PORT
1412 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1413#endif
1414#if EV_USE_KQUEUE
1415 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1416#endif
1417#if EV_USE_EPOLL
1418 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1419#endif
1420#if EV_USE_INOTIFY
1421 infy_fork (EV_A);
1422#endif
1423
1424 if (ev_is_active (&pipeev))
1425 {
1426 /* this "locks" the handlers against writing to the pipe */
1427 /* while we modify the fd vars */
1428 gotsig = 1;
1429#if EV_ASYNC_ENABLE
1430 gotasync = 1;
1431#endif
1432
1433 ev_ref (EV_A);
1434 ev_io_stop (EV_A_ &pipeev);
1435
1436#if EV_USE_EVENTFD
1437 if (evfd >= 0)
1438 close (evfd);
1439#endif
1440
1441 if (evpipe [0] >= 0)
1442 {
1443 close (evpipe [0]);
1444 close (evpipe [1]);
1445 }
1446
1447 evpipe_init (EV_A);
1448 /* now iterate over everything, in case we missed something */
1449 pipecb (EV_A_ &pipeev, EV_READ);
1450 }
1451
1452 postfork = 0;
1453}
1454
1455#if EV_MULTIPLICITY
1456struct ev_loop *
1457ev_loop_new (unsigned int flags)
1458{
1459 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1460
1461 memset (loop, 0, sizeof (struct ev_loop));
1462
1463 loop_init (EV_A_ flags);
1464
1465 if (ev_backend (EV_A))
1466 return loop;
1467
1468 return 0;
1469}
1470
1471void
1472ev_loop_destroy (EV_P)
1473{
1474 loop_destroy (EV_A);
1475 ev_free (loop);
1476}
1477
1478void
1479ev_loop_fork (EV_P)
1480{
1481 postfork = 1; /* must be in line with ev_default_fork */
1482}
1483#endif
1484
1485#if EV_MULTIPLICITY
1486struct ev_loop *
1487ev_default_loop_init (unsigned int flags)
1488#else
1489int
1490ev_default_loop (unsigned int flags)
1491#endif
1492{
1493 if (!ev_default_loop_ptr)
1494 {
1495#if EV_MULTIPLICITY
1496 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1497#else
1498 ev_default_loop_ptr = 1;
1499#endif
1500
1501 loop_init (EV_A_ flags);
1502
1503 if (ev_backend (EV_A))
1504 {
1505#ifndef _WIN32
1506 ev_signal_init (&childev, childcb, SIGCHLD);
1507 ev_set_priority (&childev, EV_MAXPRI);
1508 ev_signal_start (EV_A_ &childev);
1509 ev_unref (EV_A); /* child watcher should not keep loop alive */
1510#endif
1511 }
1512 else
1513 ev_default_loop_ptr = 0;
1514 }
1515
1516 return ev_default_loop_ptr;
1517}
1518
1519void
1520ev_default_destroy (void)
1521{
1522#if EV_MULTIPLICITY
1523 struct ev_loop *loop = ev_default_loop_ptr;
1524#endif
1525
1526#ifndef _WIN32
1527 ev_ref (EV_A); /* child watcher */
1528 ev_signal_stop (EV_A_ &childev);
1529#endif
1530
1531 loop_destroy (EV_A);
1532}
1533
1534void
1535ev_default_fork (void)
1536{
1537#if EV_MULTIPLICITY
1538 struct ev_loop *loop = ev_default_loop_ptr;
1539#endif
1540
1541 if (backend)
1542 postfork = 1; /* must be in line with ev_loop_fork */
473} 1543}
474 1544
475/*****************************************************************************/ 1545/*****************************************************************************/
476 1546
477void 1547void
478ev_prefork (void) 1548ev_invoke (EV_P_ void *w, int revents)
479{ 1549{
480 /* nop */ 1550 EV_CB_INVOKE ((W)w, revents);
481} 1551}
482 1552
483void 1553void inline_speed
484ev_postfork_parent (void)
485{
486 /* nop */
487}
488
489void
490ev_postfork_child (void)
491{
492#if HAVE_EPOLL
493 if (ev_method == EVMETHOD_EPOLL)
494 epoll_postfork_child ();
495#endif
496
497 evio_stop (&sigev);
498 close (sigpipe [0]);
499 close (sigpipe [1]);
500 pipe (sigpipe);
501 siginit ();
502}
503
504/*****************************************************************************/
505
506static void
507call_pending (void) 1554call_pending (EV_P)
508{ 1555{
1556 int pri;
1557
1558 for (pri = NUMPRI; pri--; )
509 while (pendingcnt) 1559 while (pendingcnt [pri])
510 { 1560 {
511 ANPENDING *p = pendings + --pendingcnt; 1561 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
512 1562
513 if (p->w) 1563 if (expect_true (p->w))
1564 {
1565 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1566
1567 p->w->pending = 0;
1568 EV_CB_INVOKE (p->w, p->events);
1569 }
1570 }
1571}
1572
1573#if EV_IDLE_ENABLE
1574void inline_size
1575idle_reify (EV_P)
1576{
1577 if (expect_false (idleall))
1578 {
1579 int pri;
1580
1581 for (pri = NUMPRI; pri--; )
514 { 1582 {
515 p->w->pending = 0; 1583 if (pendingcnt [pri])
516 p->w->cb (p->w, p->events); 1584 break;
1585
1586 if (idlecnt [pri])
1587 {
1588 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1589 break;
1590 }
517 } 1591 }
518 } 1592 }
519} 1593}
1594#endif
520 1595
521static void 1596void inline_size
522timers_reify (void) 1597timers_reify (EV_P)
523{ 1598{
524 while (timercnt && timers [0]->at <= now) 1599 while (timercnt && ANHE_at (timers [HEAP0]) <= mn_now)
525 { 1600 {
526 struct ev_timer *w = timers [0]; 1601 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
527 1602
528 event ((W)w, EV_TIMEOUT); 1603 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
529 1604
530 /* first reschedule or stop timer */ 1605 /* first reschedule or stop timer */
531 if (w->repeat) 1606 if (w->repeat)
532 { 1607 {
533 w->at = now + w->repeat; 1608 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
534 assert (("timer timeout in the past, negative repeat?", w->at > now)); 1609
1610 ev_at (w) += w->repeat;
1611 if (ev_at (w) < mn_now)
1612 ev_at (w) = mn_now;
1613
535 downheap ((WT *)timers, timercnt, 0); 1614 downheap (timers, timercnt, HEAP0);
536 } 1615 }
537 else 1616 else
538 evtimer_stop (w); /* nonrepeating: stop timer */ 1617 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
539 }
540}
541 1618
542static void 1619 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1620 }
1621}
1622
1623#if EV_PERIODIC_ENABLE
1624void inline_size
543periodics_reify (void) 1625periodics_reify (EV_P)
544{ 1626{
545 while (periodiccnt && periodics [0]->at <= ev_now) 1627 while (periodiccnt && ANHE_at (periodics [HEAP0]) <= ev_rt_now)
546 { 1628 {
547 struct ev_periodic *w = periodics [0]; 1629 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1630
1631 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
548 1632
549 /* first reschedule or stop timer */ 1633 /* first reschedule or stop timer */
550 if (w->interval) 1634 if (w->reschedule_cb)
551 { 1635 {
552 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 1636 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
553 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 1637 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
554 downheap ((WT *)periodics, periodiccnt, 0); 1638 downheap (periodics, periodiccnt, 1);
1639 }
1640 else if (w->interval)
1641 {
1642 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1643 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1644 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1645 downheap (periodics, periodiccnt, HEAP0);
555 } 1646 }
556 else 1647 else
557 evperiodic_stop (w); /* nonrepeating: stop timer */ 1648 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
558 1649
559 event ((W)w, EV_TIMEOUT); 1650 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
560 } 1651 }
561} 1652}
562 1653
563static void 1654static void noinline
564periodics_reschedule (ev_tstamp diff) 1655periodics_reschedule (EV_P)
565{ 1656{
566 int i; 1657 int i;
567 1658
568 /* adjust periodics after time jump */ 1659 /* adjust periodics after time jump */
569 for (i = 0; i < periodiccnt; ++i) 1660 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
570 { 1661 {
571 struct ev_periodic *w = periodics [i]; 1662 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
572 1663
1664 if (w->reschedule_cb)
1665 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
573 if (w->interval) 1666 else if (w->interval)
1667 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1668 }
1669
1670 /* now rebuild the heap, this for the 2-heap, inefficient for the 4-heap, but correct */
1671 for (i = periodiccnt >> 1; --i; )
1672 downheap (periodics, periodiccnt, i + HEAP0);
1673}
1674#endif
1675
1676void inline_speed
1677time_update (EV_P_ ev_tstamp max_block)
1678{
1679 int i;
1680
1681#if EV_USE_MONOTONIC
1682 if (expect_true (have_monotonic))
1683 {
1684 ev_tstamp odiff = rtmn_diff;
1685
1686 mn_now = get_clock ();
1687
1688 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1689 /* interpolate in the meantime */
1690 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
574 { 1691 {
575 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 1692 ev_rt_now = rtmn_diff + mn_now;
1693 return;
1694 }
576 1695
577 if (fabs (diff) >= 1e-4) 1696 now_floor = mn_now;
1697 ev_rt_now = ev_time ();
1698
1699 /* loop a few times, before making important decisions.
1700 * on the choice of "4": one iteration isn't enough,
1701 * in case we get preempted during the calls to
1702 * ev_time and get_clock. a second call is almost guaranteed
1703 * to succeed in that case, though. and looping a few more times
1704 * doesn't hurt either as we only do this on time-jumps or
1705 * in the unlikely event of having been preempted here.
1706 */
1707 for (i = 4; --i; )
1708 {
1709 rtmn_diff = ev_rt_now - mn_now;
1710
1711 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1712 return; /* all is well */
1713
1714 ev_rt_now = ev_time ();
1715 mn_now = get_clock ();
1716 now_floor = mn_now;
1717 }
1718
1719# if EV_PERIODIC_ENABLE
1720 periodics_reschedule (EV_A);
1721# endif
1722 /* no timer adjustment, as the monotonic clock doesn't jump */
1723 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1724 }
1725 else
1726#endif
1727 {
1728 ev_rt_now = ev_time ();
1729
1730 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1731 {
1732#if EV_PERIODIC_ENABLE
1733 periodics_reschedule (EV_A);
1734#endif
1735 /* adjust timers. this is easy, as the offset is the same for all of them */
1736 for (i = 0; i < timercnt; ++i)
578 { 1737 {
579 evperiodic_stop (w); 1738 ANHE *he = timers + i + HEAP0;
580 evperiodic_start (w); 1739 ANHE_w (*he)->at += ev_rt_now - mn_now;
581 1740 ANHE_at_set (*he);
582 i = 0; /* restart loop, inefficient, but time jumps should be rare */
583 } 1741 }
584 } 1742 }
585 }
586}
587 1743
588static void 1744 mn_now = ev_rt_now;
589time_update (void)
590{
591 int i;
592
593 ev_now = ev_time ();
594
595 if (have_monotonic)
596 { 1745 }
597 ev_tstamp odiff = diff; 1746}
598 1747
599 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1748void
1749ev_ref (EV_P)
1750{
1751 ++activecnt;
1752}
1753
1754void
1755ev_unref (EV_P)
1756{
1757 --activecnt;
1758}
1759
1760static int loop_done;
1761
1762void
1763ev_loop (EV_P_ int flags)
1764{
1765 loop_done = EVUNLOOP_CANCEL;
1766
1767 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1768
1769 do
1770 {
1771#ifndef _WIN32
1772 if (expect_false (curpid)) /* penalise the forking check even more */
1773 if (expect_false (getpid () != curpid))
1774 {
1775 curpid = getpid ();
1776 postfork = 1;
1777 }
1778#endif
1779
1780#if EV_FORK_ENABLE
1781 /* we might have forked, so queue fork handlers */
1782 if (expect_false (postfork))
1783 if (forkcnt)
1784 {
1785 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1786 call_pending (EV_A);
1787 }
1788#endif
1789
1790 /* queue prepare watchers (and execute them) */
1791 if (expect_false (preparecnt))
600 { 1792 {
601 now = get_clock (); 1793 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
602 diff = ev_now - now; 1794 call_pending (EV_A);
603
604 if (fabs (odiff - diff) < MIN_TIMEJUMP)
605 return; /* all is well */
606
607 ev_now = ev_time ();
608 } 1795 }
609 1796
610 periodics_reschedule (diff - odiff); 1797 if (expect_false (!activecnt))
611 /* no timer adjustment, as the monotonic clock doesn't jump */ 1798 break;
612 }
613 else
614 {
615 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)
616 {
617 periodics_reschedule (ev_now - now);
618 1799
619 /* adjust timers. this is easy, as the offset is the same for all */ 1800 /* we might have forked, so reify kernel state if necessary */
620 for (i = 0; i < timercnt; ++i) 1801 if (expect_false (postfork))
621 timers [i]->at += diff; 1802 loop_fork (EV_A);
622 }
623
624 now = ev_now;
625 }
626}
627
628int ev_loop_done;
629
630void ev_loop (int flags)
631{
632 double block;
633 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
634
635 do
636 {
637 /* queue check watchers (and execute them) */
638 if (preparecnt)
639 {
640 queue_events ((W *)prepares, preparecnt, EV_PREPARE);
641 call_pending ();
642 }
643 1803
644 /* update fd-related kernel structures */ 1804 /* update fd-related kernel structures */
645 fd_reify (); 1805 fd_reify (EV_A);
646 1806
647 /* calculate blocking time */ 1807 /* calculate blocking time */
1808 {
1809 ev_tstamp waittime = 0.;
1810 ev_tstamp sleeptime = 0.;
648 1811
649 /* we only need this for !monotonic clockor timers, but as we basically 1812 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
650 always have timers, we just calculate it always */
651 ev_now = ev_time ();
652
653 if (flags & EVLOOP_NONBLOCK || idlecnt)
654 block = 0.;
655 else
656 { 1813 {
1814 /* update time to cancel out callback processing overhead */
1815 time_update (EV_A_ 1e100);
1816
657 block = MAX_BLOCKTIME; 1817 waittime = MAX_BLOCKTIME;
658 1818
659 if (timercnt) 1819 if (timercnt)
660 { 1820 {
661 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 1821 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
662 if (block > to) block = to; 1822 if (waittime > to) waittime = to;
663 } 1823 }
664 1824
1825#if EV_PERIODIC_ENABLE
665 if (periodiccnt) 1826 if (periodiccnt)
666 { 1827 {
667 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1828 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
668 if (block > to) block = to; 1829 if (waittime > to) waittime = to;
669 } 1830 }
1831#endif
670 1832
671 if (block < 0.) block = 0.; 1833 if (expect_false (waittime < timeout_blocktime))
1834 waittime = timeout_blocktime;
1835
1836 sleeptime = waittime - backend_fudge;
1837
1838 if (expect_true (sleeptime > io_blocktime))
1839 sleeptime = io_blocktime;
1840
1841 if (sleeptime)
1842 {
1843 ev_sleep (sleeptime);
1844 waittime -= sleeptime;
1845 }
672 } 1846 }
673 1847
674 method_poll (block); 1848 ++loop_count;
1849 backend_poll (EV_A_ waittime);
675 1850
676 /* update ev_now, do magic */ 1851 /* update ev_rt_now, do magic */
677 time_update (); 1852 time_update (EV_A_ waittime + sleeptime);
1853 }
678 1854
679 /* queue pending timers and reschedule them */ 1855 /* queue pending timers and reschedule them */
680 timers_reify (); /* relative timers called last */ 1856 timers_reify (EV_A); /* relative timers called last */
1857#if EV_PERIODIC_ENABLE
681 periodics_reify (); /* absolute timers called first */ 1858 periodics_reify (EV_A); /* absolute timers called first */
1859#endif
682 1860
1861#if EV_IDLE_ENABLE
683 /* queue idle watchers unless io or timers are pending */ 1862 /* queue idle watchers unless other events are pending */
684 if (!pendingcnt) 1863 idle_reify (EV_A);
685 queue_events ((W *)idles, idlecnt, EV_IDLE); 1864#endif
686 1865
687 /* queue check watchers, to be executed first */ 1866 /* queue check watchers, to be executed first */
688 if (checkcnt) 1867 if (expect_false (checkcnt))
689 queue_events ((W *)checks, checkcnt, EV_CHECK); 1868 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
690 1869
691 call_pending (); 1870 call_pending (EV_A);
692 } 1871 }
693 while (!ev_loop_done); 1872 while (expect_true (
1873 activecnt
1874 && !loop_done
1875 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1876 ));
694 1877
695 if (ev_loop_done != 2) 1878 if (loop_done == EVUNLOOP_ONE)
1879 loop_done = EVUNLOOP_CANCEL;
1880}
1881
1882void
1883ev_unloop (EV_P_ int how)
1884{
696 ev_loop_done = 0; 1885 loop_done = how;
697} 1886}
698 1887
699/*****************************************************************************/ 1888/*****************************************************************************/
700 1889
701static void 1890void inline_size
702wlist_add (WL *head, WL elem) 1891wlist_add (WL *head, WL elem)
703{ 1892{
704 elem->next = *head; 1893 elem->next = *head;
705 *head = elem; 1894 *head = elem;
706} 1895}
707 1896
708static void 1897void inline_size
709wlist_del (WL *head, WL elem) 1898wlist_del (WL *head, WL elem)
710{ 1899{
711 while (*head) 1900 while (*head)
712 { 1901 {
713 if (*head == elem) 1902 if (*head == elem)
718 1907
719 head = &(*head)->next; 1908 head = &(*head)->next;
720 } 1909 }
721} 1910}
722 1911
723static void 1912void inline_speed
724ev_clear (W w) 1913clear_pending (EV_P_ W w)
725{ 1914{
726 if (w->pending) 1915 if (w->pending)
727 { 1916 {
728 pendings [w->pending - 1].w = 0; 1917 pendings [ABSPRI (w)][w->pending - 1].w = 0;
729 w->pending = 0; 1918 w->pending = 0;
730 } 1919 }
731} 1920}
732 1921
733static void 1922int
1923ev_clear_pending (EV_P_ void *w)
1924{
1925 W w_ = (W)w;
1926 int pending = w_->pending;
1927
1928 if (expect_true (pending))
1929 {
1930 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1931 w_->pending = 0;
1932 p->w = 0;
1933 return p->events;
1934 }
1935 else
1936 return 0;
1937}
1938
1939void inline_size
1940pri_adjust (EV_P_ W w)
1941{
1942 int pri = w->priority;
1943 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1944 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1945 w->priority = pri;
1946}
1947
1948void inline_speed
734ev_start (W w, int active) 1949ev_start (EV_P_ W w, int active)
735{ 1950{
1951 pri_adjust (EV_A_ w);
736 w->active = active; 1952 w->active = active;
1953 ev_ref (EV_A);
737} 1954}
738 1955
739static void 1956void inline_size
740ev_stop (W w) 1957ev_stop (EV_P_ W w)
741{ 1958{
1959 ev_unref (EV_A);
742 w->active = 0; 1960 w->active = 0;
743} 1961}
744 1962
745/*****************************************************************************/ 1963/*****************************************************************************/
746 1964
747void 1965void noinline
748evio_start (struct ev_io *w) 1966ev_io_start (EV_P_ ev_io *w)
749{ 1967{
1968 int fd = w->fd;
1969
750 if (ev_is_active (w)) 1970 if (expect_false (ev_is_active (w)))
751 return; 1971 return;
752 1972
753 int fd = w->fd; 1973 assert (("ev_io_start called with negative fd", fd >= 0));
754 1974
755 ev_start ((W)w, 1); 1975 ev_start (EV_A_ (W)w, 1);
756 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1976 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
757 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1977 wlist_add (&anfds[fd].head, (WL)w);
758 1978
759 fd_change (fd); 1979 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1980 w->events &= ~EV_IOFDSET;
760} 1981}
761 1982
762void 1983void noinline
763evio_stop (struct ev_io *w) 1984ev_io_stop (EV_P_ ev_io *w)
764{ 1985{
765 ev_clear ((W)w); 1986 clear_pending (EV_A_ (W)w);
766 if (!ev_is_active (w)) 1987 if (expect_false (!ev_is_active (w)))
767 return; 1988 return;
768 1989
1990 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1991
769 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1992 wlist_del (&anfds[w->fd].head, (WL)w);
770 ev_stop ((W)w); 1993 ev_stop (EV_A_ (W)w);
771 1994
772 fd_change (w->fd); 1995 fd_change (EV_A_ w->fd, 1);
773} 1996}
774 1997
775void 1998void noinline
776evtimer_start (struct ev_timer *w) 1999ev_timer_start (EV_P_ ev_timer *w)
777{ 2000{
778 if (ev_is_active (w)) 2001 if (expect_false (ev_is_active (w)))
779 return; 2002 return;
780 2003
781 w->at += now; 2004 ev_at (w) += mn_now;
782 2005
783 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 2006 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
784 2007
785 ev_start ((W)w, ++timercnt); 2008 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
786 array_needsize (timers, timermax, timercnt, ); 2009 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
787 timers [timercnt - 1] = w; 2010 ANHE_w (timers [ev_active (w)]) = (WT)w;
788 upheap ((WT *)timers, timercnt - 1); 2011 ANHE_at_set (timers [ev_active (w)]);
789} 2012 upheap (timers, ev_active (w));
790 2013
791void 2014 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/
2015}
2016
2017void noinline
792evtimer_stop (struct ev_timer *w) 2018ev_timer_stop (EV_P_ ev_timer *w)
793{ 2019{
794 ev_clear ((W)w); 2020 clear_pending (EV_A_ (W)w);
795 if (!ev_is_active (w)) 2021 if (expect_false (!ev_is_active (w)))
796 return; 2022 return;
797 2023
798 if (w->active < timercnt--) 2024 {
2025 int active = ev_active (w);
2026
2027 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2028
2029 if (expect_true (active < timercnt + HEAP0 - 1))
799 { 2030 {
800 timers [w->active - 1] = timers [timercnt]; 2031 timers [active] = timers [timercnt + HEAP0 - 1];
801 downheap ((WT *)timers, timercnt, w->active - 1); 2032 adjustheap (timers, timercnt, active);
802 } 2033 }
803 2034
804 w->at = w->repeat; 2035 --timercnt;
2036 }
805 2037
2038 ev_at (w) -= mn_now;
2039
806 ev_stop ((W)w); 2040 ev_stop (EV_A_ (W)w);
807} 2041}
808 2042
809void 2043void noinline
810evtimer_again (struct ev_timer *w) 2044ev_timer_again (EV_P_ ev_timer *w)
811{ 2045{
812 if (ev_is_active (w)) 2046 if (ev_is_active (w))
813 { 2047 {
814 if (w->repeat) 2048 if (w->repeat)
815 { 2049 {
816 w->at = now + w->repeat; 2050 ev_at (w) = mn_now + w->repeat;
2051 ANHE_at_set (timers [ev_active (w)]);
817 downheap ((WT *)timers, timercnt, w->active - 1); 2052 adjustheap (timers, timercnt, ev_active (w));
818 } 2053 }
819 else 2054 else
820 evtimer_stop (w); 2055 ev_timer_stop (EV_A_ w);
821 } 2056 }
822 else if (w->repeat) 2057 else if (w->repeat)
2058 {
2059 ev_at (w) = w->repeat;
823 evtimer_start (w); 2060 ev_timer_start (EV_A_ w);
2061 }
824} 2062}
825 2063
826void 2064#if EV_PERIODIC_ENABLE
2065void noinline
827evperiodic_start (struct ev_periodic *w) 2066ev_periodic_start (EV_P_ ev_periodic *w)
828{ 2067{
829 if (ev_is_active (w)) 2068 if (expect_false (ev_is_active (w)))
830 return; 2069 return;
831 2070
832 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 2071 if (w->reschedule_cb)
833 2072 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2073 else if (w->interval)
2074 {
2075 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
834 /* this formula differs from the one in periodic_reify because we do not always round up */ 2076 /* this formula differs from the one in periodic_reify because we do not always round up */
835 if (w->interval)
836 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 2077 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2078 }
2079 else
2080 ev_at (w) = w->offset;
837 2081
838 ev_start ((W)w, ++periodiccnt); 2082 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
839 array_needsize (periodics, periodicmax, periodiccnt, ); 2083 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
840 periodics [periodiccnt - 1] = w; 2084 ANHE_w (periodics [ev_active (w)]) = (WT)w;
841 upheap ((WT *)periodics, periodiccnt - 1); 2085 upheap (periodics, ev_active (w));
842}
843 2086
844void 2087 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2088}
2089
2090void noinline
845evperiodic_stop (struct ev_periodic *w) 2091ev_periodic_stop (EV_P_ ev_periodic *w)
846{ 2092{
847 ev_clear ((W)w); 2093 clear_pending (EV_A_ (W)w);
848 if (!ev_is_active (w)) 2094 if (expect_false (!ev_is_active (w)))
849 return; 2095 return;
850 2096
851 if (w->active < periodiccnt--) 2097 {
2098 int active = ev_active (w);
2099
2100 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2101
2102 if (expect_true (active < periodiccnt + HEAP0 - 1))
852 { 2103 {
853 periodics [w->active - 1] = periodics [periodiccnt]; 2104 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
854 downheap ((WT *)periodics, periodiccnt, w->active - 1); 2105 adjustheap (periodics, periodiccnt, active);
855 } 2106 }
856 2107
2108 --periodiccnt;
2109 }
2110
857 ev_stop ((W)w); 2111 ev_stop (EV_A_ (W)w);
858} 2112}
859 2113
860void 2114void noinline
2115ev_periodic_again (EV_P_ ev_periodic *w)
2116{
2117 /* TODO: use adjustheap and recalculation */
2118 ev_periodic_stop (EV_A_ w);
2119 ev_periodic_start (EV_A_ w);
2120}
2121#endif
2122
2123#ifndef SA_RESTART
2124# define SA_RESTART 0
2125#endif
2126
2127void noinline
861evsignal_start (struct ev_signal *w) 2128ev_signal_start (EV_P_ ev_signal *w)
862{ 2129{
2130#if EV_MULTIPLICITY
2131 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2132#endif
863 if (ev_is_active (w)) 2133 if (expect_false (ev_is_active (w)))
864 return; 2134 return;
865 2135
866 ev_start ((W)w, 1); 2136 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2137
2138 evpipe_init (EV_A);
2139
2140 {
2141#ifndef _WIN32
2142 sigset_t full, prev;
2143 sigfillset (&full);
2144 sigprocmask (SIG_SETMASK, &full, &prev);
2145#endif
2146
867 array_needsize (signals, signalmax, w->signum, signals_init); 2147 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2148
2149#ifndef _WIN32
2150 sigprocmask (SIG_SETMASK, &prev, 0);
2151#endif
2152 }
2153
2154 ev_start (EV_A_ (W)w, 1);
868 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2155 wlist_add (&signals [w->signum - 1].head, (WL)w);
869 2156
870 if (!w->next) 2157 if (!((WL)w)->next)
871 { 2158 {
2159#if _WIN32
2160 signal (w->signum, ev_sighandler);
2161#else
872 struct sigaction sa; 2162 struct sigaction sa;
873 sa.sa_handler = sighandler; 2163 sa.sa_handler = ev_sighandler;
874 sigfillset (&sa.sa_mask); 2164 sigfillset (&sa.sa_mask);
875 sa.sa_flags = 0; 2165 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
876 sigaction (w->signum, &sa, 0); 2166 sigaction (w->signum, &sa, 0);
2167#endif
877 } 2168 }
878} 2169}
879 2170
880void 2171void noinline
881evsignal_stop (struct ev_signal *w) 2172ev_signal_stop (EV_P_ ev_signal *w)
882{ 2173{
883 ev_clear ((W)w); 2174 clear_pending (EV_A_ (W)w);
884 if (!ev_is_active (w)) 2175 if (expect_false (!ev_is_active (w)))
885 return; 2176 return;
886 2177
887 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2178 wlist_del (&signals [w->signum - 1].head, (WL)w);
888 ev_stop ((W)w); 2179 ev_stop (EV_A_ (W)w);
889 2180
890 if (!signals [w->signum - 1].head) 2181 if (!signals [w->signum - 1].head)
891 signal (w->signum, SIG_DFL); 2182 signal (w->signum, SIG_DFL);
892} 2183}
893 2184
894void evidle_start (struct ev_idle *w) 2185void
2186ev_child_start (EV_P_ ev_child *w)
895{ 2187{
2188#if EV_MULTIPLICITY
2189 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2190#endif
896 if (ev_is_active (w)) 2191 if (expect_false (ev_is_active (w)))
897 return; 2192 return;
898 2193
899 ev_start ((W)w, ++idlecnt); 2194 ev_start (EV_A_ (W)w, 1);
900 array_needsize (idles, idlemax, idlecnt, ); 2195 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
901 idles [idlecnt - 1] = w;
902} 2196}
903 2197
904void evidle_stop (struct ev_idle *w) 2198void
2199ev_child_stop (EV_P_ ev_child *w)
905{ 2200{
906 ev_clear ((W)w); 2201 clear_pending (EV_A_ (W)w);
907 if (ev_is_active (w)) 2202 if (expect_false (!ev_is_active (w)))
908 return; 2203 return;
909 2204
910 idles [w->active - 1] = idles [--idlecnt]; 2205 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
911 ev_stop ((W)w); 2206 ev_stop (EV_A_ (W)w);
912} 2207}
913 2208
914void evprepare_start (struct ev_prepare *w) 2209#if EV_STAT_ENABLE
2210
2211# ifdef _WIN32
2212# undef lstat
2213# define lstat(a,b) _stati64 (a,b)
2214# endif
2215
2216#define DEF_STAT_INTERVAL 5.0074891
2217#define MIN_STAT_INTERVAL 0.1074891
2218
2219static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2220
2221#if EV_USE_INOTIFY
2222# define EV_INOTIFY_BUFSIZE 8192
2223
2224static void noinline
2225infy_add (EV_P_ ev_stat *w)
915{ 2226{
916 if (ev_is_active (w)) 2227 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2228
2229 if (w->wd < 0)
2230 {
2231 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2232
2233 /* monitor some parent directory for speedup hints */
2234 /* note that exceeding the hardcoded limit is not a correctness issue, */
2235 /* but an efficiency issue only */
2236 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2237 {
2238 char path [4096];
2239 strcpy (path, w->path);
2240
2241 do
2242 {
2243 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2244 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2245
2246 char *pend = strrchr (path, '/');
2247
2248 if (!pend)
2249 break; /* whoops, no '/', complain to your admin */
2250
2251 *pend = 0;
2252 w->wd = inotify_add_watch (fs_fd, path, mask);
2253 }
2254 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2255 }
2256 }
2257 else
2258 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2259
2260 if (w->wd >= 0)
2261 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2262}
2263
2264static void noinline
2265infy_del (EV_P_ ev_stat *w)
2266{
2267 int slot;
2268 int wd = w->wd;
2269
2270 if (wd < 0)
917 return; 2271 return;
918 2272
2273 w->wd = -2;
2274 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2275 wlist_del (&fs_hash [slot].head, (WL)w);
2276
2277 /* remove this watcher, if others are watching it, they will rearm */
2278 inotify_rm_watch (fs_fd, wd);
2279}
2280
2281static void noinline
2282infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2283{
2284 if (slot < 0)
2285 /* overflow, need to check for all hahs slots */
2286 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2287 infy_wd (EV_A_ slot, wd, ev);
2288 else
2289 {
2290 WL w_;
2291
2292 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2293 {
2294 ev_stat *w = (ev_stat *)w_;
2295 w_ = w_->next; /* lets us remove this watcher and all before it */
2296
2297 if (w->wd == wd || wd == -1)
2298 {
2299 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2300 {
2301 w->wd = -1;
2302 infy_add (EV_A_ w); /* re-add, no matter what */
2303 }
2304
2305 stat_timer_cb (EV_A_ &w->timer, 0);
2306 }
2307 }
2308 }
2309}
2310
2311static void
2312infy_cb (EV_P_ ev_io *w, int revents)
2313{
2314 char buf [EV_INOTIFY_BUFSIZE];
2315 struct inotify_event *ev = (struct inotify_event *)buf;
2316 int ofs;
2317 int len = read (fs_fd, buf, sizeof (buf));
2318
2319 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2320 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2321}
2322
2323void inline_size
2324infy_init (EV_P)
2325{
2326 if (fs_fd != -2)
2327 return;
2328
2329 fs_fd = inotify_init ();
2330
2331 if (fs_fd >= 0)
2332 {
2333 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2334 ev_set_priority (&fs_w, EV_MAXPRI);
2335 ev_io_start (EV_A_ &fs_w);
2336 }
2337}
2338
2339void inline_size
2340infy_fork (EV_P)
2341{
2342 int slot;
2343
2344 if (fs_fd < 0)
2345 return;
2346
2347 close (fs_fd);
2348 fs_fd = inotify_init ();
2349
2350 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2351 {
2352 WL w_ = fs_hash [slot].head;
2353 fs_hash [slot].head = 0;
2354
2355 while (w_)
2356 {
2357 ev_stat *w = (ev_stat *)w_;
2358 w_ = w_->next; /* lets us add this watcher */
2359
2360 w->wd = -1;
2361
2362 if (fs_fd >= 0)
2363 infy_add (EV_A_ w); /* re-add, no matter what */
2364 else
2365 ev_timer_start (EV_A_ &w->timer);
2366 }
2367
2368 }
2369}
2370
2371#endif
2372
2373void
2374ev_stat_stat (EV_P_ ev_stat *w)
2375{
2376 if (lstat (w->path, &w->attr) < 0)
2377 w->attr.st_nlink = 0;
2378 else if (!w->attr.st_nlink)
2379 w->attr.st_nlink = 1;
2380}
2381
2382static void noinline
2383stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2384{
2385 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2386
2387 /* we copy this here each the time so that */
2388 /* prev has the old value when the callback gets invoked */
2389 w->prev = w->attr;
2390 ev_stat_stat (EV_A_ w);
2391
2392 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2393 if (
2394 w->prev.st_dev != w->attr.st_dev
2395 || w->prev.st_ino != w->attr.st_ino
2396 || w->prev.st_mode != w->attr.st_mode
2397 || w->prev.st_nlink != w->attr.st_nlink
2398 || w->prev.st_uid != w->attr.st_uid
2399 || w->prev.st_gid != w->attr.st_gid
2400 || w->prev.st_rdev != w->attr.st_rdev
2401 || w->prev.st_size != w->attr.st_size
2402 || w->prev.st_atime != w->attr.st_atime
2403 || w->prev.st_mtime != w->attr.st_mtime
2404 || w->prev.st_ctime != w->attr.st_ctime
2405 ) {
2406 #if EV_USE_INOTIFY
2407 infy_del (EV_A_ w);
2408 infy_add (EV_A_ w);
2409 ev_stat_stat (EV_A_ w); /* avoid race... */
2410 #endif
2411
2412 ev_feed_event (EV_A_ w, EV_STAT);
2413 }
2414}
2415
2416void
2417ev_stat_start (EV_P_ ev_stat *w)
2418{
2419 if (expect_false (ev_is_active (w)))
2420 return;
2421
2422 /* since we use memcmp, we need to clear any padding data etc. */
2423 memset (&w->prev, 0, sizeof (ev_statdata));
2424 memset (&w->attr, 0, sizeof (ev_statdata));
2425
2426 ev_stat_stat (EV_A_ w);
2427
2428 if (w->interval < MIN_STAT_INTERVAL)
2429 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2430
2431 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2432 ev_set_priority (&w->timer, ev_priority (w));
2433
2434#if EV_USE_INOTIFY
2435 infy_init (EV_A);
2436
2437 if (fs_fd >= 0)
2438 infy_add (EV_A_ w);
2439 else
2440#endif
2441 ev_timer_start (EV_A_ &w->timer);
2442
2443 ev_start (EV_A_ (W)w, 1);
2444}
2445
2446void
2447ev_stat_stop (EV_P_ ev_stat *w)
2448{
2449 clear_pending (EV_A_ (W)w);
2450 if (expect_false (!ev_is_active (w)))
2451 return;
2452
2453#if EV_USE_INOTIFY
2454 infy_del (EV_A_ w);
2455#endif
2456 ev_timer_stop (EV_A_ &w->timer);
2457
2458 ev_stop (EV_A_ (W)w);
2459}
2460#endif
2461
2462#if EV_IDLE_ENABLE
2463void
2464ev_idle_start (EV_P_ ev_idle *w)
2465{
2466 if (expect_false (ev_is_active (w)))
2467 return;
2468
2469 pri_adjust (EV_A_ (W)w);
2470
2471 {
2472 int active = ++idlecnt [ABSPRI (w)];
2473
2474 ++idleall;
2475 ev_start (EV_A_ (W)w, active);
2476
2477 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2478 idles [ABSPRI (w)][active - 1] = w;
2479 }
2480}
2481
2482void
2483ev_idle_stop (EV_P_ ev_idle *w)
2484{
2485 clear_pending (EV_A_ (W)w);
2486 if (expect_false (!ev_is_active (w)))
2487 return;
2488
2489 {
2490 int active = ev_active (w);
2491
2492 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2493 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2494
2495 ev_stop (EV_A_ (W)w);
2496 --idleall;
2497 }
2498}
2499#endif
2500
2501void
2502ev_prepare_start (EV_P_ ev_prepare *w)
2503{
2504 if (expect_false (ev_is_active (w)))
2505 return;
2506
919 ev_start ((W)w, ++preparecnt); 2507 ev_start (EV_A_ (W)w, ++preparecnt);
920 array_needsize (prepares, preparemax, preparecnt, ); 2508 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
921 prepares [preparecnt - 1] = w; 2509 prepares [preparecnt - 1] = w;
922} 2510}
923 2511
2512void
924void evprepare_stop (struct ev_prepare *w) 2513ev_prepare_stop (EV_P_ ev_prepare *w)
925{ 2514{
926 ev_clear ((W)w); 2515 clear_pending (EV_A_ (W)w);
927 if (ev_is_active (w)) 2516 if (expect_false (!ev_is_active (w)))
928 return; 2517 return;
929 2518
2519 {
2520 int active = ev_active (w);
2521
930 prepares [w->active - 1] = prepares [--preparecnt]; 2522 prepares [active - 1] = prepares [--preparecnt];
2523 ev_active (prepares [active - 1]) = active;
2524 }
2525
931 ev_stop ((W)w); 2526 ev_stop (EV_A_ (W)w);
932} 2527}
933 2528
2529void
934void evcheck_start (struct ev_check *w) 2530ev_check_start (EV_P_ ev_check *w)
935{ 2531{
936 if (ev_is_active (w)) 2532 if (expect_false (ev_is_active (w)))
937 return; 2533 return;
938 2534
939 ev_start ((W)w, ++checkcnt); 2535 ev_start (EV_A_ (W)w, ++checkcnt);
940 array_needsize (checks, checkmax, checkcnt, ); 2536 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
941 checks [checkcnt - 1] = w; 2537 checks [checkcnt - 1] = w;
942} 2538}
943 2539
2540void
944void evcheck_stop (struct ev_check *w) 2541ev_check_stop (EV_P_ ev_check *w)
945{ 2542{
946 ev_clear ((W)w); 2543 clear_pending (EV_A_ (W)w);
947 if (ev_is_active (w)) 2544 if (expect_false (!ev_is_active (w)))
948 return; 2545 return;
949 2546
2547 {
2548 int active = ev_active (w);
2549
950 checks [w->active - 1] = checks [--checkcnt]; 2550 checks [active - 1] = checks [--checkcnt];
2551 ev_active (checks [active - 1]) = active;
2552 }
2553
951 ev_stop ((W)w); 2554 ev_stop (EV_A_ (W)w);
952} 2555}
953 2556
954void evchild_start (struct ev_child *w) 2557#if EV_EMBED_ENABLE
2558void noinline
2559ev_embed_sweep (EV_P_ ev_embed *w)
955{ 2560{
2561 ev_loop (w->other, EVLOOP_NONBLOCK);
2562}
2563
2564static void
2565embed_io_cb (EV_P_ ev_io *io, int revents)
2566{
2567 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2568
956 if (ev_is_active (w)) 2569 if (ev_cb (w))
2570 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2571 else
2572 ev_loop (w->other, EVLOOP_NONBLOCK);
2573}
2574
2575static void
2576embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2577{
2578 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2579
2580 {
2581 struct ev_loop *loop = w->other;
2582
2583 while (fdchangecnt)
2584 {
2585 fd_reify (EV_A);
2586 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2587 }
2588 }
2589}
2590
2591#if 0
2592static void
2593embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2594{
2595 ev_idle_stop (EV_A_ idle);
2596}
2597#endif
2598
2599void
2600ev_embed_start (EV_P_ ev_embed *w)
2601{
2602 if (expect_false (ev_is_active (w)))
957 return; 2603 return;
958 2604
2605 {
2606 struct ev_loop *loop = w->other;
2607 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2608 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2609 }
2610
2611 ev_set_priority (&w->io, ev_priority (w));
2612 ev_io_start (EV_A_ &w->io);
2613
2614 ev_prepare_init (&w->prepare, embed_prepare_cb);
2615 ev_set_priority (&w->prepare, EV_MINPRI);
2616 ev_prepare_start (EV_A_ &w->prepare);
2617
2618 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2619
959 ev_start ((W)w, 1); 2620 ev_start (EV_A_ (W)w, 1);
960 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
961} 2621}
962 2622
963void evchild_stop (struct ev_child *w) 2623void
2624ev_embed_stop (EV_P_ ev_embed *w)
964{ 2625{
965 ev_clear ((W)w); 2626 clear_pending (EV_A_ (W)w);
966 if (ev_is_active (w)) 2627 if (expect_false (!ev_is_active (w)))
967 return; 2628 return;
968 2629
969 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2630 ev_io_stop (EV_A_ &w->io);
2631 ev_prepare_stop (EV_A_ &w->prepare);
2632
970 ev_stop ((W)w); 2633 ev_stop (EV_A_ (W)w);
971} 2634}
2635#endif
2636
2637#if EV_FORK_ENABLE
2638void
2639ev_fork_start (EV_P_ ev_fork *w)
2640{
2641 if (expect_false (ev_is_active (w)))
2642 return;
2643
2644 ev_start (EV_A_ (W)w, ++forkcnt);
2645 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2646 forks [forkcnt - 1] = w;
2647}
2648
2649void
2650ev_fork_stop (EV_P_ ev_fork *w)
2651{
2652 clear_pending (EV_A_ (W)w);
2653 if (expect_false (!ev_is_active (w)))
2654 return;
2655
2656 {
2657 int active = ev_active (w);
2658
2659 forks [active - 1] = forks [--forkcnt];
2660 ev_active (forks [active - 1]) = active;
2661 }
2662
2663 ev_stop (EV_A_ (W)w);
2664}
2665#endif
2666
2667#if EV_ASYNC_ENABLE
2668void
2669ev_async_start (EV_P_ ev_async *w)
2670{
2671 if (expect_false (ev_is_active (w)))
2672 return;
2673
2674 evpipe_init (EV_A);
2675
2676 ev_start (EV_A_ (W)w, ++asynccnt);
2677 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2678 asyncs [asynccnt - 1] = w;
2679}
2680
2681void
2682ev_async_stop (EV_P_ ev_async *w)
2683{
2684 clear_pending (EV_A_ (W)w);
2685 if (expect_false (!ev_is_active (w)))
2686 return;
2687
2688 {
2689 int active = ev_active (w);
2690
2691 asyncs [active - 1] = asyncs [--asynccnt];
2692 ev_active (asyncs [active - 1]) = active;
2693 }
2694
2695 ev_stop (EV_A_ (W)w);
2696}
2697
2698void
2699ev_async_send (EV_P_ ev_async *w)
2700{
2701 w->sent = 1;
2702 evpipe_write (EV_A_ &gotasync);
2703}
2704#endif
972 2705
973/*****************************************************************************/ 2706/*****************************************************************************/
974 2707
975struct ev_once 2708struct ev_once
976{ 2709{
977 struct ev_io io; 2710 ev_io io;
978 struct ev_timer to; 2711 ev_timer to;
979 void (*cb)(int revents, void *arg); 2712 void (*cb)(int revents, void *arg);
980 void *arg; 2713 void *arg;
981}; 2714};
982 2715
983static void 2716static void
984once_cb (struct ev_once *once, int revents) 2717once_cb (EV_P_ struct ev_once *once, int revents)
985{ 2718{
986 void (*cb)(int revents, void *arg) = once->cb; 2719 void (*cb)(int revents, void *arg) = once->cb;
987 void *arg = once->arg; 2720 void *arg = once->arg;
988 2721
989 evio_stop (&once->io); 2722 ev_io_stop (EV_A_ &once->io);
990 evtimer_stop (&once->to); 2723 ev_timer_stop (EV_A_ &once->to);
991 free (once); 2724 ev_free (once);
992 2725
993 cb (revents, arg); 2726 cb (revents, arg);
994} 2727}
995 2728
996static void 2729static void
997once_cb_io (struct ev_io *w, int revents) 2730once_cb_io (EV_P_ ev_io *w, int revents)
998{ 2731{
999 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2732 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1000} 2733}
1001 2734
1002static void 2735static void
1003once_cb_to (struct ev_timer *w, int revents) 2736once_cb_to (EV_P_ ev_timer *w, int revents)
1004{ 2737{
1005 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2738 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1006} 2739}
1007 2740
1008void 2741void
1009ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2742ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1010{ 2743{
1011 struct ev_once *once = malloc (sizeof (struct ev_once)); 2744 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1012 2745
1013 if (!once) 2746 if (expect_false (!once))
1014 cb (EV_ERROR, arg); 2747 {
1015 else 2748 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
2749 return;
1016 { 2750 }
2751
1017 once->cb = cb; 2752 once->cb = cb;
1018 once->arg = arg; 2753 once->arg = arg;
1019 2754
1020 evw_init (&once->io, once_cb_io); 2755 ev_init (&once->io, once_cb_io);
1021
1022 if (fd >= 0) 2756 if (fd >= 0)
1023 { 2757 {
1024 evio_set (&once->io, fd, events); 2758 ev_io_set (&once->io, fd, events);
1025 evio_start (&once->io); 2759 ev_io_start (EV_A_ &once->io);
1026 } 2760 }
1027 2761
1028 evw_init (&once->to, once_cb_to); 2762 ev_init (&once->to, once_cb_to);
1029
1030 if (timeout >= 0.) 2763 if (timeout >= 0.)
1031 { 2764 {
1032 evtimer_set (&once->to, timeout, 0.); 2765 ev_timer_set (&once->to, timeout, 0.);
1033 evtimer_start (&once->to); 2766 ev_timer_start (EV_A_ &once->to);
1034 }
1035 }
1036}
1037
1038/*****************************************************************************/
1039
1040#if 0
1041
1042struct ev_io wio;
1043
1044static void
1045sin_cb (struct ev_io *w, int revents)
1046{
1047 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1048}
1049
1050static void
1051ocb (struct ev_timer *w, int revents)
1052{
1053 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1054 evtimer_stop (w);
1055 evtimer_start (w);
1056}
1057
1058static void
1059scb (struct ev_signal *w, int revents)
1060{
1061 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1062 evio_stop (&wio);
1063 evio_start (&wio);
1064}
1065
1066static void
1067gcb (struct ev_signal *w, int revents)
1068{
1069 fprintf (stderr, "generic %x\n", revents);
1070
1071}
1072
1073int main (void)
1074{
1075 ev_init (0);
1076
1077 evio_init (&wio, sin_cb, 0, EV_READ);
1078 evio_start (&wio);
1079
1080 struct ev_timer t[10000];
1081
1082#if 0
1083 int i;
1084 for (i = 0; i < 10000; ++i)
1085 { 2767 }
1086 struct ev_timer *w = t + i;
1087 evw_init (w, ocb, i);
1088 evtimer_init_abs (w, ocb, drand48 (), 0.99775533);
1089 evtimer_start (w);
1090 if (drand48 () < 0.5)
1091 evtimer_stop (w);
1092 }
1093#endif
1094
1095 struct ev_timer t1;
1096 evtimer_init (&t1, ocb, 5, 10);
1097 evtimer_start (&t1);
1098
1099 struct ev_signal sig;
1100 evsignal_init (&sig, scb, SIGQUIT);
1101 evsignal_start (&sig);
1102
1103 struct ev_check cw;
1104 evcheck_init (&cw, gcb);
1105 evcheck_start (&cw);
1106
1107 struct ev_idle iw;
1108 evidle_init (&iw, gcb);
1109 evidle_start (&iw);
1110
1111 ev_loop (0);
1112
1113 return 0;
1114} 2768}
1115 2769
2770#if EV_MULTIPLICITY
2771 #include "ev_wrap.h"
1116#endif 2772#endif
1117 2773
2774#ifdef __cplusplus
2775}
2776#endif
1118 2777
1119
1120

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines