ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.27 by root, Wed Oct 31 22:16:36 2007 UTC vs.
Revision 1.30 by root, Thu Nov 1 08:28:33 2007 UTC

24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 28 */
29#if EV_USE_CONFIG_H
30# include "config.h"
31#endif
29 32
30#include <math.h> 33#include <math.h>
31#include <stdlib.h> 34#include <stdlib.h>
32#include <unistd.h> 35#include <unistd.h>
33#include <fcntl.h> 36#include <fcntl.h>
41#include <sys/types.h> 44#include <sys/types.h>
42#include <sys/wait.h> 45#include <sys/wait.h>
43#include <sys/time.h> 46#include <sys/time.h>
44#include <time.h> 47#include <time.h>
45 48
46#ifndef HAVE_MONOTONIC 49#ifndef EV_USE_MONOTONIC
47# ifdef CLOCK_MONOTONIC 50# ifdef CLOCK_MONOTONIC
48# define HAVE_MONOTONIC 1 51# define EV_USE_MONOTONIC 1
49# endif 52# endif
50#endif 53#endif
51 54
52#ifndef HAVE_SELECT 55#ifndef EV_USE_SELECT
53# define HAVE_SELECT 1 56# define EV_USE_SELECT 1
54#endif 57#endif
55 58
56#ifndef HAVE_EPOLL 59#ifndef EV_USE_EPOLL
57# define HAVE_EPOLL 0 60# define EV_USE_EPOLL 0
58#endif 61#endif
59 62
60#ifndef HAVE_REALTIME 63#ifndef EV_USE_REALTIME
61# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 64# define EV_USE_REALTIME 1 /* posix requirement, but might be slower */
62#endif 65#endif
63 66
64#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 67#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
65#define MAX_BLOCKTIME 60. 68#define MAX_BLOCKTIME 59.731
66#define PID_HASHSIZE 16 /* size of pid hahs table, must be power of two */ 69#define PID_HASHSIZE 16 /* size of pid hahs table, must be power of two */
67 70
68#include "ev.h" 71#include "ev.h"
69 72
70typedef struct ev_watcher *W; 73typedef struct ev_watcher *W;
84/*****************************************************************************/ 87/*****************************************************************************/
85 88
86ev_tstamp 89ev_tstamp
87ev_time (void) 90ev_time (void)
88{ 91{
89#if HAVE_REALTIME 92#if EV_USE_REALTIME
90 struct timespec ts; 93 struct timespec ts;
91 clock_gettime (CLOCK_REALTIME, &ts); 94 clock_gettime (CLOCK_REALTIME, &ts);
92 return ts.tv_sec + ts.tv_nsec * 1e-9; 95 return ts.tv_sec + ts.tv_nsec * 1e-9;
93#else 96#else
94 struct timeval tv; 97 struct timeval tv;
98} 101}
99 102
100static ev_tstamp 103static ev_tstamp
101get_clock (void) 104get_clock (void)
102{ 105{
103#if HAVE_MONOTONIC 106#if EV_USE_MONOTONIC
104 if (have_monotonic) 107 if (have_monotonic)
105 { 108 {
106 struct timespec ts; 109 struct timespec ts;
107 clock_gettime (CLOCK_MONOTONIC, &ts); 110 clock_gettime (CLOCK_MONOTONIC, &ts);
108 return ts.tv_sec + ts.tv_nsec * 1e-9; 111 return ts.tv_sec + ts.tv_nsec * 1e-9;
109 } 112 }
110#endif 113#endif
111 114
112 return ev_time (); 115 return ev_time ();
113} 116}
117
118#define array_roundsize(base,n) ((n) | 4 & ~3)
114 119
115#define array_needsize(base,cur,cnt,init) \ 120#define array_needsize(base,cur,cnt,init) \
116 if ((cnt) > cur) \ 121 if ((cnt) > cur) \
117 { \ 122 { \
118 int newcnt = cur; \ 123 int newcnt = cur; \
119 do \ 124 do \
120 { \ 125 { \
121 newcnt = (newcnt << 1) | 4 & ~3; \ 126 newcnt = array_roundsize (base, newcnt << 1); \
122 } \ 127 } \
123 while ((cnt) > newcnt); \ 128 while ((cnt) > newcnt); \
124 \ 129 \
125 base = realloc (base, sizeof (*base) * (newcnt)); \ 130 base = realloc (base, sizeof (*base) * (newcnt)); \
126 init (base + cur, newcnt - cur); \ 131 init (base + cur, newcnt - cur); \
159static int pendingmax, pendingcnt; 164static int pendingmax, pendingcnt;
160 165
161static void 166static void
162event (W w, int events) 167event (W w, int events)
163{ 168{
164 if (w->active)
165 {
166 w->pending = ++pendingcnt; 169 w->pending = ++pendingcnt;
167 array_needsize (pendings, pendingmax, pendingcnt, ); 170 array_needsize (pendings, pendingmax, pendingcnt, );
168 pendings [pendingcnt - 1].w = w; 171 pendings [pendingcnt - 1].w = w;
169 pendings [pendingcnt - 1].events = events; 172 pendings [pendingcnt - 1].events = events;
170 }
171} 173}
172 174
173static void 175static void
174queue_events (W *events, int eventcnt, int type) 176queue_events (W *events, int eventcnt, int type)
175{ 177{
228} 230}
229 231
230static void 232static void
231fd_change (int fd) 233fd_change (int fd)
232{ 234{
233 if (anfds [fd].events & EV_REIFY) 235 if (anfds [fd].events & EV_REIFY || fdchangecnt < 0)
234 return; 236 return;
235 237
236 anfds [fd].events |= EV_REIFY; 238 anfds [fd].events |= EV_REIFY;
237 239
238 ++fdchangecnt; 240 ++fdchangecnt;
249 for (fd = 0; fd < anfdmax; ++fd) 251 for (fd = 0; fd < anfdmax; ++fd)
250 if (anfds [fd].events) 252 if (anfds [fd].events)
251 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 253 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
252 while (anfds [fd].head) 254 while (anfds [fd].head)
253 { 255 {
254 event ((W)anfds [fd].head, EV_ERROR); 256 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT);
255 evio_stop (anfds [fd].head); 257 ev_io_stop (anfds [fd].head);
256 } 258 }
257} 259}
258 260
259/*****************************************************************************/ 261/*****************************************************************************/
260 262
370 372
371 /* rather than sort out wether we really need nb, set it */ 373 /* rather than sort out wether we really need nb, set it */
372 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 374 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
373 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 375 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
374 376
375 evio_set (&sigev, sigpipe [0], EV_READ); 377 ev_io_set (&sigev, sigpipe [0], EV_READ);
376 evio_start (&sigev); 378 ev_io_start (&sigev);
377} 379}
378 380
379/*****************************************************************************/ 381/*****************************************************************************/
380 382
381static struct ev_idle **idles; 383static struct ev_idle **idles;
411 } 413 }
412} 414}
413 415
414/*****************************************************************************/ 416/*****************************************************************************/
415 417
416#if HAVE_EPOLL 418#if EV_USE_EPOLL
417# include "ev_epoll.c" 419# include "ev_epoll.c"
418#endif 420#endif
419#if HAVE_SELECT 421#if EV_USE_SELECT
420# include "ev_select.c" 422# include "ev_select.c"
421#endif 423#endif
422 424
423int 425int
424ev_version_major (void) 426ev_version_major (void)
434 436
435int ev_init (int flags) 437int ev_init (int flags)
436{ 438{
437 if (!ev_method) 439 if (!ev_method)
438 { 440 {
439#if HAVE_MONOTONIC 441#if EV_USE_MONOTONIC
440 { 442 {
441 struct timespec ts; 443 struct timespec ts;
442 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 444 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
443 have_monotonic = 1; 445 have_monotonic = 1;
444 } 446 }
450 452
451 if (pipe (sigpipe)) 453 if (pipe (sigpipe))
452 return 0; 454 return 0;
453 455
454 ev_method = EVMETHOD_NONE; 456 ev_method = EVMETHOD_NONE;
455#if HAVE_EPOLL 457#if EV_USE_EPOLL
456 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 458 if (ev_method == EVMETHOD_NONE) epoll_init (flags);
457#endif 459#endif
458#if HAVE_SELECT 460#if EV_USE_SELECT
459 if (ev_method == EVMETHOD_NONE) select_init (flags); 461 if (ev_method == EVMETHOD_NONE) select_init (flags);
460#endif 462#endif
461 463
462 if (ev_method) 464 if (ev_method)
463 { 465 {
464 evw_init (&sigev, sigcb); 466 ev_watcher_init (&sigev, sigcb);
465 siginit (); 467 siginit ();
466 468
467 evsignal_init (&childev, childcb, SIGCHLD); 469 ev_signal_init (&childev, childcb, SIGCHLD);
468 evsignal_start (&childev); 470 ev_signal_start (&childev);
469 } 471 }
470 } 472 }
471 473
472 return ev_method; 474 return ev_method;
473} 475}
487} 489}
488 490
489void 491void
490ev_postfork_child (void) 492ev_postfork_child (void)
491{ 493{
492#if HAVE_EPOLL 494#if EV_USE_EPOLL
493 if (ev_method == EVMETHOD_EPOLL) 495 if (ev_method == EVMETHOD_EPOLL)
494 epoll_postfork_child (); 496 epoll_postfork_child ();
495#endif 497#endif
496 498
497 evio_stop (&sigev); 499 ev_io_stop (&sigev);
498 close (sigpipe [0]); 500 close (sigpipe [0]);
499 close (sigpipe [1]); 501 close (sigpipe [1]);
500 pipe (sigpipe); 502 pipe (sigpipe);
501 siginit (); 503 siginit ();
502} 504}
523{ 525{
524 while (timercnt && timers [0]->at <= now) 526 while (timercnt && timers [0]->at <= now)
525 { 527 {
526 struct ev_timer *w = timers [0]; 528 struct ev_timer *w = timers [0];
527 529
528 event ((W)w, EV_TIMEOUT);
529
530 /* first reschedule or stop timer */ 530 /* first reschedule or stop timer */
531 if (w->repeat) 531 if (w->repeat)
532 { 532 {
533 w->at = now + w->repeat; 533 w->at = now + w->repeat;
534 assert (("timer timeout in the past, negative repeat?", w->at > now)); 534 assert (("timer timeout in the past, negative repeat?", w->at > now));
535 downheap ((WT *)timers, timercnt, 0); 535 downheap ((WT *)timers, timercnt, 0);
536 } 536 }
537 else 537 else
538 evtimer_stop (w); /* nonrepeating: stop timer */ 538 ev_timer_stop (w); /* nonrepeating: stop timer */
539
540 event ((W)w, EV_TIMEOUT);
539 } 541 }
540} 542}
541 543
542static void 544static void
543periodics_reify (void) 545periodics_reify (void)
552 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 554 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval;
553 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 555 assert (("periodic timeout in the past, negative interval?", w->at > ev_now));
554 downheap ((WT *)periodics, periodiccnt, 0); 556 downheap ((WT *)periodics, periodiccnt, 0);
555 } 557 }
556 else 558 else
557 evperiodic_stop (w); /* nonrepeating: stop timer */ 559 ev_periodic_stop (w); /* nonrepeating: stop timer */
558 560
559 event ((W)w, EV_TIMEOUT); 561 event ((W)w, EV_TIMEOUT);
560 } 562 }
561} 563}
562 564
574 { 576 {
575 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 577 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval;
576 578
577 if (fabs (diff) >= 1e-4) 579 if (fabs (diff) >= 1e-4)
578 { 580 {
579 evperiodic_stop (w); 581 ev_periodic_stop (w);
580 evperiodic_start (w); 582 ev_periodic_start (w);
581 583
582 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 584 i = 0; /* restart loop, inefficient, but time jumps should be rare */
583 } 585 }
584 } 586 }
585 } 587 }
743} 745}
744 746
745/*****************************************************************************/ 747/*****************************************************************************/
746 748
747void 749void
748evio_start (struct ev_io *w) 750ev_io_start (struct ev_io *w)
749{ 751{
750 if (ev_is_active (w)) 752 if (ev_is_active (w))
751 return; 753 return;
752 754
753 int fd = w->fd; 755 int fd = w->fd;
758 760
759 fd_change (fd); 761 fd_change (fd);
760} 762}
761 763
762void 764void
763evio_stop (struct ev_io *w) 765ev_io_stop (struct ev_io *w)
764{ 766{
765 ev_clear ((W)w); 767 ev_clear ((W)w);
766 if (!ev_is_active (w)) 768 if (!ev_is_active (w))
767 return; 769 return;
768 770
771 773
772 fd_change (w->fd); 774 fd_change (w->fd);
773} 775}
774 776
775void 777void
776evtimer_start (struct ev_timer *w) 778ev_timer_start (struct ev_timer *w)
777{ 779{
778 if (ev_is_active (w)) 780 if (ev_is_active (w))
779 return; 781 return;
780 782
781 w->at += now; 783 w->at += now;
787 timers [timercnt - 1] = w; 789 timers [timercnt - 1] = w;
788 upheap ((WT *)timers, timercnt - 1); 790 upheap ((WT *)timers, timercnt - 1);
789} 791}
790 792
791void 793void
792evtimer_stop (struct ev_timer *w) 794ev_timer_stop (struct ev_timer *w)
793{ 795{
794 ev_clear ((W)w); 796 ev_clear ((W)w);
795 if (!ev_is_active (w)) 797 if (!ev_is_active (w))
796 return; 798 return;
797 799
805 807
806 ev_stop ((W)w); 808 ev_stop ((W)w);
807} 809}
808 810
809void 811void
810evtimer_again (struct ev_timer *w) 812ev_timer_again (struct ev_timer *w)
811{ 813{
812 if (ev_is_active (w)) 814 if (ev_is_active (w))
813 { 815 {
814 if (w->repeat) 816 if (w->repeat)
815 { 817 {
816 w->at = now + w->repeat; 818 w->at = now + w->repeat;
817 downheap ((WT *)timers, timercnt, w->active - 1); 819 downheap ((WT *)timers, timercnt, w->active - 1);
818 } 820 }
819 else 821 else
820 evtimer_stop (w); 822 ev_timer_stop (w);
821 } 823 }
822 else if (w->repeat) 824 else if (w->repeat)
823 evtimer_start (w); 825 ev_timer_start (w);
824} 826}
825 827
826void 828void
827evperiodic_start (struct ev_periodic *w) 829ev_periodic_start (struct ev_periodic *w)
828{ 830{
829 if (ev_is_active (w)) 831 if (ev_is_active (w))
830 return; 832 return;
831 833
832 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 834 assert (("periodic interval value less than zero not allowed", w->interval >= 0.));
840 periodics [periodiccnt - 1] = w; 842 periodics [periodiccnt - 1] = w;
841 upheap ((WT *)periodics, periodiccnt - 1); 843 upheap ((WT *)periodics, periodiccnt - 1);
842} 844}
843 845
844void 846void
845evperiodic_stop (struct ev_periodic *w) 847ev_periodic_stop (struct ev_periodic *w)
846{ 848{
847 ev_clear ((W)w); 849 ev_clear ((W)w);
848 if (!ev_is_active (w)) 850 if (!ev_is_active (w))
849 return; 851 return;
850 852
856 858
857 ev_stop ((W)w); 859 ev_stop ((W)w);
858} 860}
859 861
860void 862void
861evsignal_start (struct ev_signal *w) 863ev_signal_start (struct ev_signal *w)
862{ 864{
863 if (ev_is_active (w)) 865 if (ev_is_active (w))
864 return; 866 return;
865 867
866 ev_start ((W)w, 1); 868 ev_start ((W)w, 1);
876 sigaction (w->signum, &sa, 0); 878 sigaction (w->signum, &sa, 0);
877 } 879 }
878} 880}
879 881
880void 882void
881evsignal_stop (struct ev_signal *w) 883ev_signal_stop (struct ev_signal *w)
882{ 884{
883 ev_clear ((W)w); 885 ev_clear ((W)w);
884 if (!ev_is_active (w)) 886 if (!ev_is_active (w))
885 return; 887 return;
886 888
889 891
890 if (!signals [w->signum - 1].head) 892 if (!signals [w->signum - 1].head)
891 signal (w->signum, SIG_DFL); 893 signal (w->signum, SIG_DFL);
892} 894}
893 895
896void
894void evidle_start (struct ev_idle *w) 897ev_idle_start (struct ev_idle *w)
895{ 898{
896 if (ev_is_active (w)) 899 if (ev_is_active (w))
897 return; 900 return;
898 901
899 ev_start ((W)w, ++idlecnt); 902 ev_start ((W)w, ++idlecnt);
900 array_needsize (idles, idlemax, idlecnt, ); 903 array_needsize (idles, idlemax, idlecnt, );
901 idles [idlecnt - 1] = w; 904 idles [idlecnt - 1] = w;
902} 905}
903 906
907void
904void evidle_stop (struct ev_idle *w) 908ev_idle_stop (struct ev_idle *w)
905{ 909{
906 ev_clear ((W)w); 910 ev_clear ((W)w);
907 if (ev_is_active (w)) 911 if (ev_is_active (w))
908 return; 912 return;
909 913
910 idles [w->active - 1] = idles [--idlecnt]; 914 idles [w->active - 1] = idles [--idlecnt];
911 ev_stop ((W)w); 915 ev_stop ((W)w);
912} 916}
913 917
918void
914void evprepare_start (struct ev_prepare *w) 919ev_prepare_start (struct ev_prepare *w)
915{ 920{
916 if (ev_is_active (w)) 921 if (ev_is_active (w))
917 return; 922 return;
918 923
919 ev_start ((W)w, ++preparecnt); 924 ev_start ((W)w, ++preparecnt);
920 array_needsize (prepares, preparemax, preparecnt, ); 925 array_needsize (prepares, preparemax, preparecnt, );
921 prepares [preparecnt - 1] = w; 926 prepares [preparecnt - 1] = w;
922} 927}
923 928
929void
924void evprepare_stop (struct ev_prepare *w) 930ev_prepare_stop (struct ev_prepare *w)
925{ 931{
926 ev_clear ((W)w); 932 ev_clear ((W)w);
927 if (ev_is_active (w)) 933 if (ev_is_active (w))
928 return; 934 return;
929 935
930 prepares [w->active - 1] = prepares [--preparecnt]; 936 prepares [w->active - 1] = prepares [--preparecnt];
931 ev_stop ((W)w); 937 ev_stop ((W)w);
932} 938}
933 939
940void
934void evcheck_start (struct ev_check *w) 941ev_check_start (struct ev_check *w)
935{ 942{
936 if (ev_is_active (w)) 943 if (ev_is_active (w))
937 return; 944 return;
938 945
939 ev_start ((W)w, ++checkcnt); 946 ev_start ((W)w, ++checkcnt);
940 array_needsize (checks, checkmax, checkcnt, ); 947 array_needsize (checks, checkmax, checkcnt, );
941 checks [checkcnt - 1] = w; 948 checks [checkcnt - 1] = w;
942} 949}
943 950
951void
944void evcheck_stop (struct ev_check *w) 952ev_check_stop (struct ev_check *w)
945{ 953{
946 ev_clear ((W)w); 954 ev_clear ((W)w);
947 if (ev_is_active (w)) 955 if (ev_is_active (w))
948 return; 956 return;
949 957
950 checks [w->active - 1] = checks [--checkcnt]; 958 checks [w->active - 1] = checks [--checkcnt];
951 ev_stop ((W)w); 959 ev_stop ((W)w);
952} 960}
953 961
962void
954void evchild_start (struct ev_child *w) 963ev_child_start (struct ev_child *w)
955{ 964{
956 if (ev_is_active (w)) 965 if (ev_is_active (w))
957 return; 966 return;
958 967
959 ev_start ((W)w, 1); 968 ev_start ((W)w, 1);
960 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 969 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
961} 970}
962 971
972void
963void evchild_stop (struct ev_child *w) 973ev_child_stop (struct ev_child *w)
964{ 974{
965 ev_clear ((W)w); 975 ev_clear ((W)w);
966 if (ev_is_active (w)) 976 if (ev_is_active (w))
967 return; 977 return;
968 978
984once_cb (struct ev_once *once, int revents) 994once_cb (struct ev_once *once, int revents)
985{ 995{
986 void (*cb)(int revents, void *arg) = once->cb; 996 void (*cb)(int revents, void *arg) = once->cb;
987 void *arg = once->arg; 997 void *arg = once->arg;
988 998
989 evio_stop (&once->io); 999 ev_io_stop (&once->io);
990 evtimer_stop (&once->to); 1000 ev_timer_stop (&once->to);
991 free (once); 1001 free (once);
992 1002
993 cb (revents, arg); 1003 cb (revents, arg);
994} 1004}
995 1005
1009ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1019ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1010{ 1020{
1011 struct ev_once *once = malloc (sizeof (struct ev_once)); 1021 struct ev_once *once = malloc (sizeof (struct ev_once));
1012 1022
1013 if (!once) 1023 if (!once)
1014 cb (EV_ERROR, arg); 1024 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1015 else 1025 else
1016 { 1026 {
1017 once->cb = cb; 1027 once->cb = cb;
1018 once->arg = arg; 1028 once->arg = arg;
1019 1029
1020 evw_init (&once->io, once_cb_io); 1030 ev_watcher_init (&once->io, once_cb_io);
1021
1022 if (fd >= 0) 1031 if (fd >= 0)
1023 { 1032 {
1024 evio_set (&once->io, fd, events); 1033 ev_io_set (&once->io, fd, events);
1025 evio_start (&once->io); 1034 ev_io_start (&once->io);
1026 } 1035 }
1027 1036
1028 evw_init (&once->to, once_cb_to); 1037 ev_watcher_init (&once->to, once_cb_to);
1029
1030 if (timeout >= 0.) 1038 if (timeout >= 0.)
1031 { 1039 {
1032 evtimer_set (&once->to, timeout, 0.); 1040 ev_timer_set (&once->to, timeout, 0.);
1033 evtimer_start (&once->to); 1041 ev_timer_start (&once->to);
1034 } 1042 }
1035 } 1043 }
1036} 1044}
1037 1045
1038/*****************************************************************************/ 1046/*****************************************************************************/
1049 1057
1050static void 1058static void
1051ocb (struct ev_timer *w, int revents) 1059ocb (struct ev_timer *w, int revents)
1052{ 1060{
1053 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data); 1061 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1054 evtimer_stop (w); 1062 ev_timer_stop (w);
1055 evtimer_start (w); 1063 ev_timer_start (w);
1056} 1064}
1057 1065
1058static void 1066static void
1059scb (struct ev_signal *w, int revents) 1067scb (struct ev_signal *w, int revents)
1060{ 1068{
1061 fprintf (stderr, "signal %x,%d\n", revents, w->signum); 1069 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1062 evio_stop (&wio); 1070 ev_io_stop (&wio);
1063 evio_start (&wio); 1071 ev_io_start (&wio);
1064} 1072}
1065 1073
1066static void 1074static void
1067gcb (struct ev_signal *w, int revents) 1075gcb (struct ev_signal *w, int revents)
1068{ 1076{
1072 1080
1073int main (void) 1081int main (void)
1074{ 1082{
1075 ev_init (0); 1083 ev_init (0);
1076 1084
1077 evio_init (&wio, sin_cb, 0, EV_READ); 1085 ev_io_init (&wio, sin_cb, 0, EV_READ);
1078 evio_start (&wio); 1086 ev_io_start (&wio);
1079 1087
1080 struct ev_timer t[10000]; 1088 struct ev_timer t[10000];
1081 1089
1082#if 0 1090#if 0
1083 int i; 1091 int i;
1084 for (i = 0; i < 10000; ++i) 1092 for (i = 0; i < 10000; ++i)
1085 { 1093 {
1086 struct ev_timer *w = t + i; 1094 struct ev_timer *w = t + i;
1087 evw_init (w, ocb, i); 1095 ev_watcher_init (w, ocb, i);
1088 evtimer_init_abs (w, ocb, drand48 (), 0.99775533); 1096 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1089 evtimer_start (w); 1097 ev_timer_start (w);
1090 if (drand48 () < 0.5) 1098 if (drand48 () < 0.5)
1091 evtimer_stop (w); 1099 ev_timer_stop (w);
1092 } 1100 }
1093#endif 1101#endif
1094 1102
1095 struct ev_timer t1; 1103 struct ev_timer t1;
1096 evtimer_init (&t1, ocb, 5, 10); 1104 ev_timer_init (&t1, ocb, 5, 10);
1097 evtimer_start (&t1); 1105 ev_timer_start (&t1);
1098 1106
1099 struct ev_signal sig; 1107 struct ev_signal sig;
1100 evsignal_init (&sig, scb, SIGQUIT); 1108 ev_signal_init (&sig, scb, SIGQUIT);
1101 evsignal_start (&sig); 1109 ev_signal_start (&sig);
1102 1110
1103 struct ev_check cw; 1111 struct ev_check cw;
1104 evcheck_init (&cw, gcb); 1112 ev_check_init (&cw, gcb);
1105 evcheck_start (&cw); 1113 ev_check_start (&cw);
1106 1114
1107 struct ev_idle iw; 1115 struct ev_idle iw;
1108 evidle_init (&iw, gcb); 1116 ev_idle_init (&iw, gcb);
1109 evidle_start (&iw); 1117 ev_idle_start (&iw);
1110 1118
1111 ev_loop (0); 1119 ev_loop (0);
1112 1120
1113 return 0; 1121 return 0;
1114} 1122}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines