ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.27 by root, Wed Oct 31 22:16:36 2007 UTC vs.
Revision 1.61 by root, Sun Nov 4 19:45:09 2007 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are 8 * modification, are permitted provided that the following conditions are
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 30 */
31#ifndef EV_STANDALONE
32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
55#endif
29 56
30#include <math.h> 57#include <math.h>
31#include <stdlib.h> 58#include <stdlib.h>
32#include <unistd.h> 59#include <unistd.h>
33#include <fcntl.h> 60#include <fcntl.h>
37#include <stdio.h> 64#include <stdio.h>
38 65
39#include <assert.h> 66#include <assert.h>
40#include <errno.h> 67#include <errno.h>
41#include <sys/types.h> 68#include <sys/types.h>
69#ifndef WIN32
42#include <sys/wait.h> 70# include <sys/wait.h>
71#endif
43#include <sys/time.h> 72#include <sys/time.h>
44#include <time.h> 73#include <time.h>
45 74
75/**/
76
46#ifndef HAVE_MONOTONIC 77#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1
79#endif
80
81#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1
83#endif
84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
89#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0
91#endif
92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_REALTIME
98# define EV_USE_REALTIME 1
99#endif
100
101/**/
102
47# ifdef CLOCK_MONOTONIC 103#ifndef CLOCK_MONOTONIC
104# undef EV_USE_MONOTONIC
48# define HAVE_MONOTONIC 1 105# define EV_USE_MONOTONIC 0
49# endif 106#endif
50#endif
51 107
52#ifndef HAVE_SELECT
53# define HAVE_SELECT 1
54#endif
55
56#ifndef HAVE_EPOLL
57# define HAVE_EPOLL 0
58#endif
59
60#ifndef HAVE_REALTIME 108#ifndef CLOCK_REALTIME
61# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 109# undef EV_USE_REALTIME
110# define EV_USE_REALTIME 0
62#endif 111#endif
112
113/**/
63 114
64#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 115#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
65#define MAX_BLOCKTIME 60. 116#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
66#define PID_HASHSIZE 16 /* size of pid hahs table, must be power of two */ 117#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
118/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
67 119
68#include "ev.h" 120#include "ev.h"
121
122#if __GNUC__ >= 3
123# define expect(expr,value) __builtin_expect ((expr),(value))
124# define inline inline
125#else
126# define expect(expr,value) (expr)
127# define inline static
128#endif
129
130#define expect_false(expr) expect ((expr) != 0, 0)
131#define expect_true(expr) expect ((expr) != 0, 1)
132
133#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
134#define ABSPRI(w) ((w)->priority - EV_MINPRI)
69 135
70typedef struct ev_watcher *W; 136typedef struct ev_watcher *W;
71typedef struct ev_watcher_list *WL; 137typedef struct ev_watcher_list *WL;
72typedef struct ev_watcher_time *WT; 138typedef struct ev_watcher_time *WT;
73 139
74static ev_tstamp now, diff; /* monotonic clock */ 140static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
75ev_tstamp ev_now;
76int ev_method;
77
78static int have_monotonic; /* runtime */
79
80static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
81static void (*method_modify)(int fd, int oev, int nev);
82static void (*method_poll)(ev_tstamp timeout);
83 141
84/*****************************************************************************/ 142/*****************************************************************************/
85 143
86ev_tstamp 144typedef struct
145{
146 struct ev_watcher_list *head;
147 unsigned char events;
148 unsigned char reify;
149} ANFD;
150
151typedef struct
152{
153 W w;
154 int events;
155} ANPENDING;
156
157#if EV_MULTIPLICITY
158
159struct ev_loop
160{
161# define VAR(name,decl) decl;
162# include "ev_vars.h"
163};
164# undef VAR
165# include "ev_wrap.h"
166
167#else
168
169# define VAR(name,decl) static decl;
170# include "ev_vars.h"
171# undef VAR
172
173#endif
174
175/*****************************************************************************/
176
177inline ev_tstamp
87ev_time (void) 178ev_time (void)
88{ 179{
89#if HAVE_REALTIME 180#if EV_USE_REALTIME
90 struct timespec ts; 181 struct timespec ts;
91 clock_gettime (CLOCK_REALTIME, &ts); 182 clock_gettime (CLOCK_REALTIME, &ts);
92 return ts.tv_sec + ts.tv_nsec * 1e-9; 183 return ts.tv_sec + ts.tv_nsec * 1e-9;
93#else 184#else
94 struct timeval tv; 185 struct timeval tv;
95 gettimeofday (&tv, 0); 186 gettimeofday (&tv, 0);
96 return tv.tv_sec + tv.tv_usec * 1e-6; 187 return tv.tv_sec + tv.tv_usec * 1e-6;
97#endif 188#endif
98} 189}
99 190
100static ev_tstamp 191inline ev_tstamp
101get_clock (void) 192get_clock (void)
102{ 193{
103#if HAVE_MONOTONIC 194#if EV_USE_MONOTONIC
104 if (have_monotonic) 195 if (expect_true (have_monotonic))
105 { 196 {
106 struct timespec ts; 197 struct timespec ts;
107 clock_gettime (CLOCK_MONOTONIC, &ts); 198 clock_gettime (CLOCK_MONOTONIC, &ts);
108 return ts.tv_sec + ts.tv_nsec * 1e-9; 199 return ts.tv_sec + ts.tv_nsec * 1e-9;
109 } 200 }
110#endif 201#endif
111 202
112 return ev_time (); 203 return ev_time ();
113} 204}
114 205
206ev_tstamp
207ev_now (EV_P)
208{
209 return rt_now;
210}
211
212#define array_roundsize(base,n) ((n) | 4 & ~3)
213
115#define array_needsize(base,cur,cnt,init) \ 214#define array_needsize(base,cur,cnt,init) \
116 if ((cnt) > cur) \ 215 if (expect_false ((cnt) > cur)) \
117 { \ 216 { \
118 int newcnt = cur; \ 217 int newcnt = cur; \
119 do \ 218 do \
120 { \ 219 { \
121 newcnt = (newcnt << 1) | 4 & ~3; \ 220 newcnt = array_roundsize (base, newcnt << 1); \
122 } \ 221 } \
123 while ((cnt) > newcnt); \ 222 while ((cnt) > newcnt); \
124 \ 223 \
125 base = realloc (base, sizeof (*base) * (newcnt)); \ 224 base = realloc (base, sizeof (*base) * (newcnt)); \
126 init (base + cur, newcnt - cur); \ 225 init (base + cur, newcnt - cur); \
127 cur = newcnt; \ 226 cur = newcnt; \
128 } 227 }
129 228
130/*****************************************************************************/ 229/*****************************************************************************/
131 230
132typedef struct
133{
134 struct ev_io *head;
135 int events;
136} ANFD;
137
138static ANFD *anfds;
139static int anfdmax;
140
141static void 231static void
142anfds_init (ANFD *base, int count) 232anfds_init (ANFD *base, int count)
143{ 233{
144 while (count--) 234 while (count--)
145 { 235 {
146 base->head = 0; 236 base->head = 0;
147 base->events = EV_NONE; 237 base->events = EV_NONE;
238 base->reify = 0;
239
148 ++base; 240 ++base;
149 } 241 }
150} 242}
151 243
152typedef struct
153{
154 W w;
155 int events;
156} ANPENDING;
157
158static ANPENDING *pendings;
159static int pendingmax, pendingcnt;
160
161static void 244static void
162event (W w, int events) 245event (EV_P_ W w, int events)
163{ 246{
164 if (w->active) 247 if (w->pending)
165 { 248 {
166 w->pending = ++pendingcnt;
167 array_needsize (pendings, pendingmax, pendingcnt, );
168 pendings [pendingcnt - 1].w = w;
169 pendings [pendingcnt - 1].events = events; 249 pendings [ABSPRI (w)][w->pending - 1].events |= events;
250 return;
170 } 251 }
171}
172 252
253 w->pending = ++pendingcnt [ABSPRI (w)];
254 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
255 pendings [ABSPRI (w)][w->pending - 1].w = w;
256 pendings [ABSPRI (w)][w->pending - 1].events = events;
257}
258
173static void 259static void
174queue_events (W *events, int eventcnt, int type) 260queue_events (EV_P_ W *events, int eventcnt, int type)
175{ 261{
176 int i; 262 int i;
177 263
178 for (i = 0; i < eventcnt; ++i) 264 for (i = 0; i < eventcnt; ++i)
179 event (events [i], type); 265 event (EV_A_ events [i], type);
180} 266}
181 267
182static void 268static void
183fd_event (int fd, int events) 269fd_event (EV_P_ int fd, int events)
184{ 270{
185 ANFD *anfd = anfds + fd; 271 ANFD *anfd = anfds + fd;
186 struct ev_io *w; 272 struct ev_io *w;
187 273
188 for (w = anfd->head; w; w = w->next) 274 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
189 { 275 {
190 int ev = w->events & events; 276 int ev = w->events & events;
191 277
192 if (ev) 278 if (ev)
193 event ((W)w, ev); 279 event (EV_A_ (W)w, ev);
194 } 280 }
195} 281}
196 282
197/*****************************************************************************/ 283/*****************************************************************************/
198 284
199static int *fdchanges;
200static int fdchangemax, fdchangecnt;
201
202static void 285static void
203fd_reify (void) 286fd_reify (EV_P)
204{ 287{
205 int i; 288 int i;
206 289
207 for (i = 0; i < fdchangecnt; ++i) 290 for (i = 0; i < fdchangecnt; ++i)
208 { 291 {
210 ANFD *anfd = anfds + fd; 293 ANFD *anfd = anfds + fd;
211 struct ev_io *w; 294 struct ev_io *w;
212 295
213 int events = 0; 296 int events = 0;
214 297
215 for (w = anfd->head; w; w = w->next) 298 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
216 events |= w->events; 299 events |= w->events;
217 300
218 anfd->events &= ~EV_REIFY; 301 anfd->reify = 0;
219 302
220 if (anfd->events != events) 303 if (anfd->events != events)
221 { 304 {
222 method_modify (fd, anfd->events, events); 305 method_modify (EV_A_ fd, anfd->events, events);
223 anfd->events = events; 306 anfd->events = events;
224 } 307 }
225 } 308 }
226 309
227 fdchangecnt = 0; 310 fdchangecnt = 0;
228} 311}
229 312
230static void 313static void
231fd_change (int fd) 314fd_change (EV_P_ int fd)
232{ 315{
233 if (anfds [fd].events & EV_REIFY) 316 if (anfds [fd].reify || fdchangecnt < 0)
234 return; 317 return;
235 318
236 anfds [fd].events |= EV_REIFY; 319 anfds [fd].reify = 1;
237 320
238 ++fdchangecnt; 321 ++fdchangecnt;
239 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 322 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
240 fdchanges [fdchangecnt - 1] = fd; 323 fdchanges [fdchangecnt - 1] = fd;
241} 324}
242 325
326static void
327fd_kill (EV_P_ int fd)
328{
329 struct ev_io *w;
330
331 while ((w = (struct ev_io *)anfds [fd].head))
332 {
333 ev_io_stop (EV_A_ w);
334 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
335 }
336}
337
243/* called on EBADF to verify fds */ 338/* called on EBADF to verify fds */
244static void 339static void
245fd_recheck (void) 340fd_ebadf (EV_P)
246{ 341{
247 int fd; 342 int fd;
248 343
249 for (fd = 0; fd < anfdmax; ++fd) 344 for (fd = 0; fd < anfdmax; ++fd)
250 if (anfds [fd].events) 345 if (anfds [fd].events)
251 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 346 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
252 while (anfds [fd].head) 347 fd_kill (EV_A_ fd);
348}
349
350/* called on ENOMEM in select/poll to kill some fds and retry */
351static void
352fd_enomem (EV_P)
353{
354 int fd = anfdmax;
355
356 while (fd--)
357 if (anfds [fd].events)
253 { 358 {
254 event ((W)anfds [fd].head, EV_ERROR); 359 close (fd);
255 evio_stop (anfds [fd].head); 360 fd_kill (EV_A_ fd);
361 return;
256 } 362 }
363}
364
365/* susually called after fork if method needs to re-arm all fds from scratch */
366static void
367fd_rearm_all (EV_P)
368{
369 int fd;
370
371 /* this should be highly optimised to not do anything but set a flag */
372 for (fd = 0; fd < anfdmax; ++fd)
373 if (anfds [fd].events)
374 {
375 anfds [fd].events = 0;
376 fd_change (EV_A_ fd);
377 }
257} 378}
258 379
259/*****************************************************************************/ 380/*****************************************************************************/
260 381
261static struct ev_timer **timers;
262static int timermax, timercnt;
263
264static struct ev_periodic **periodics;
265static int periodicmax, periodiccnt;
266
267static void 382static void
268upheap (WT *timers, int k) 383upheap (WT *heap, int k)
269{ 384{
270 WT w = timers [k]; 385 WT w = heap [k];
271 386
272 while (k && timers [k >> 1]->at > w->at) 387 while (k && heap [k >> 1]->at > w->at)
273 { 388 {
274 timers [k] = timers [k >> 1]; 389 heap [k] = heap [k >> 1];
275 timers [k]->active = k + 1; 390 heap [k]->active = k + 1;
276 k >>= 1; 391 k >>= 1;
277 } 392 }
278 393
279 timers [k] = w; 394 heap [k] = w;
280 timers [k]->active = k + 1; 395 heap [k]->active = k + 1;
281 396
282} 397}
283 398
284static void 399static void
285downheap (WT *timers, int N, int k) 400downheap (WT *heap, int N, int k)
286{ 401{
287 WT w = timers [k]; 402 WT w = heap [k];
288 403
289 while (k < (N >> 1)) 404 while (k < (N >> 1))
290 { 405 {
291 int j = k << 1; 406 int j = k << 1;
292 407
293 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 408 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
294 ++j; 409 ++j;
295 410
296 if (w->at <= timers [j]->at) 411 if (w->at <= heap [j]->at)
297 break; 412 break;
298 413
299 timers [k] = timers [j]; 414 heap [k] = heap [j];
300 timers [k]->active = k + 1; 415 heap [k]->active = k + 1;
301 k = j; 416 k = j;
302 } 417 }
303 418
304 timers [k] = w; 419 heap [k] = w;
305 timers [k]->active = k + 1; 420 heap [k]->active = k + 1;
306} 421}
307 422
308/*****************************************************************************/ 423/*****************************************************************************/
309 424
310typedef struct 425typedef struct
311{ 426{
312 struct ev_signal *head; 427 struct ev_watcher_list *head;
313 sig_atomic_t gotsig; 428 sig_atomic_t volatile gotsig;
314} ANSIG; 429} ANSIG;
315 430
316static ANSIG *signals; 431static ANSIG *signals;
317static int signalmax; 432static int signalmax;
318 433
319static int sigpipe [2]; 434static int sigpipe [2];
320static sig_atomic_t gotsig; 435static sig_atomic_t volatile gotsig;
321static struct ev_io sigev; 436static struct ev_io sigev;
322 437
323static void 438static void
324signals_init (ANSIG *base, int count) 439signals_init (ANSIG *base, int count)
325{ 440{
326 while (count--) 441 while (count--)
327 { 442 {
328 base->head = 0; 443 base->head = 0;
329 base->gotsig = 0; 444 base->gotsig = 0;
445
330 ++base; 446 ++base;
331 } 447 }
332} 448}
333 449
334static void 450static void
336{ 452{
337 signals [signum - 1].gotsig = 1; 453 signals [signum - 1].gotsig = 1;
338 454
339 if (!gotsig) 455 if (!gotsig)
340 { 456 {
457 int old_errno = errno;
341 gotsig = 1; 458 gotsig = 1;
342 write (sigpipe [1], &gotsig, 1); 459 write (sigpipe [1], &signum, 1);
460 errno = old_errno;
343 } 461 }
344} 462}
345 463
346static void 464static void
347sigcb (struct ev_io *iow, int revents) 465sigcb (EV_P_ struct ev_io *iow, int revents)
348{ 466{
349 struct ev_signal *w; 467 struct ev_watcher_list *w;
350 int sig; 468 int signum;
351 469
470 read (sigpipe [0], &revents, 1);
352 gotsig = 0; 471 gotsig = 0;
353 read (sigpipe [0], &revents, 1);
354 472
355 for (sig = signalmax; sig--; ) 473 for (signum = signalmax; signum--; )
356 if (signals [sig].gotsig) 474 if (signals [signum].gotsig)
357 { 475 {
358 signals [sig].gotsig = 0; 476 signals [signum].gotsig = 0;
359 477
360 for (w = signals [sig].head; w; w = w->next) 478 for (w = signals [signum].head; w; w = w->next)
361 event ((W)w, EV_SIGNAL); 479 event (EV_A_ (W)w, EV_SIGNAL);
362 } 480 }
363} 481}
364 482
365static void 483static void
366siginit (void) 484siginit (EV_P)
367{ 485{
486#ifndef WIN32
368 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 487 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
369 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 488 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
370 489
371 /* rather than sort out wether we really need nb, set it */ 490 /* rather than sort out wether we really need nb, set it */
372 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 491 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
373 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 492 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
493#endif
374 494
375 evio_set (&sigev, sigpipe [0], EV_READ); 495 ev_io_set (&sigev, sigpipe [0], EV_READ);
376 evio_start (&sigev); 496 ev_io_start (EV_A_ &sigev);
497 ev_unref (EV_A); /* child watcher should not keep loop alive */
377} 498}
378 499
379/*****************************************************************************/ 500/*****************************************************************************/
380 501
381static struct ev_idle **idles; 502#ifndef WIN32
382static int idlemax, idlecnt;
383
384static struct ev_prepare **prepares;
385static int preparemax, preparecnt;
386
387static struct ev_check **checks;
388static int checkmax, checkcnt;
389
390/*****************************************************************************/
391 503
392static struct ev_child *childs [PID_HASHSIZE]; 504static struct ev_child *childs [PID_HASHSIZE];
393static struct ev_signal childev; 505static struct ev_signal childev;
394 506
395#ifndef WCONTINUED 507#ifndef WCONTINUED
396# define WCONTINUED 0 508# define WCONTINUED 0
397#endif 509#endif
398 510
399static void 511static void
400childcb (struct ev_signal *sw, int revents) 512child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
401{ 513{
402 struct ev_child *w; 514 struct ev_child *w;
515
516 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
517 if (w->pid == pid || !w->pid)
518 {
519 w->priority = sw->priority; /* need to do it *now* */
520 w->rpid = pid;
521 w->rstatus = status;
522 event (EV_A_ (W)w, EV_CHILD);
523 }
524}
525
526static void
527childcb (EV_P_ struct ev_signal *sw, int revents)
528{
403 int pid, status; 529 int pid, status;
404 530
405 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 531 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
406 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 532 {
407 if (w->pid == pid || w->pid == -1) 533 /* make sure we are called again until all childs have been reaped */
408 { 534 event (EV_A_ (W)sw, EV_SIGNAL);
409 w->status = status; 535
410 event ((W)w, EV_CHILD); 536 child_reap (EV_A_ sw, pid, pid, status);
411 } 537 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
538 }
412} 539}
540
541#endif
413 542
414/*****************************************************************************/ 543/*****************************************************************************/
415 544
545#if EV_USE_KQUEUE
546# include "ev_kqueue.c"
547#endif
416#if HAVE_EPOLL 548#if EV_USE_EPOLL
417# include "ev_epoll.c" 549# include "ev_epoll.c"
418#endif 550#endif
551#if EV_USE_POLL
552# include "ev_poll.c"
553#endif
419#if HAVE_SELECT 554#if EV_USE_SELECT
420# include "ev_select.c" 555# include "ev_select.c"
421#endif 556#endif
422 557
423int 558int
424ev_version_major (void) 559ev_version_major (void)
430ev_version_minor (void) 565ev_version_minor (void)
431{ 566{
432 return EV_VERSION_MINOR; 567 return EV_VERSION_MINOR;
433} 568}
434 569
435int ev_init (int flags) 570/* return true if we are running with elevated privileges and should ignore env variables */
571static int
572enable_secure (void)
436{ 573{
574#ifdef WIN32
575 return 0;
576#else
577 return getuid () != geteuid ()
578 || getgid () != getegid ();
579#endif
580}
581
582int
583ev_method (EV_P)
584{
585 return method;
586}
587
588static void
589loop_init (EV_P_ int methods)
590{
437 if (!ev_method) 591 if (!method)
438 { 592 {
439#if HAVE_MONOTONIC 593#if EV_USE_MONOTONIC
440 { 594 {
441 struct timespec ts; 595 struct timespec ts;
442 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 596 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
443 have_monotonic = 1; 597 have_monotonic = 1;
444 } 598 }
445#endif 599#endif
446 600
447 ev_now = ev_time (); 601 rt_now = ev_time ();
448 now = get_clock (); 602 mn_now = get_clock ();
603 now_floor = mn_now;
449 diff = ev_now - now; 604 rtmn_diff = rt_now - mn_now;
450 605
606 if (methods == EVMETHOD_AUTO)
607 if (!enable_secure () && getenv ("LIBEV_METHODS"))
608 methods = atoi (getenv ("LIBEV_METHODS"));
609 else
610 methods = EVMETHOD_ANY;
611
612 method = 0;
613#if EV_USE_KQUEUE
614 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
615#endif
616#if EV_USE_EPOLL
617 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
618#endif
619#if EV_USE_POLL
620 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
621#endif
622#if EV_USE_SELECT
623 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
624#endif
625 }
626}
627
628void
629loop_destroy (EV_P)
630{
631#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
633#endif
634#if EV_USE_EPOLL
635 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
636#endif
637#if EV_USE_POLL
638 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
639#endif
640#if EV_USE_SELECT
641 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
642#endif
643
644 method = 0;
645 /*TODO*/
646}
647
648void
649loop_fork (EV_P)
650{
651 /*TODO*/
652#if EV_USE_EPOLL
653 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
654#endif
655#if EV_USE_KQUEUE
656 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
657#endif
658}
659
660#if EV_MULTIPLICITY
661struct ev_loop *
662ev_loop_new (int methods)
663{
664 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
665
666 loop_init (EV_A_ methods);
667
668 if (ev_method (EV_A))
669 return loop;
670
671 return 0;
672}
673
674void
675ev_loop_destroy (EV_P)
676{
677 loop_destroy (EV_A);
678 free (loop);
679}
680
681void
682ev_loop_fork (EV_P)
683{
684 loop_fork (EV_A);
685}
686
687#endif
688
689#if EV_MULTIPLICITY
690struct ev_loop default_loop_struct;
691static struct ev_loop *default_loop;
692
693struct ev_loop *
694#else
695static int default_loop;
696
697int
698#endif
699ev_default_loop (int methods)
700{
701 if (sigpipe [0] == sigpipe [1])
451 if (pipe (sigpipe)) 702 if (pipe (sigpipe))
452 return 0; 703 return 0;
453 704
454 ev_method = EVMETHOD_NONE; 705 if (!default_loop)
455#if HAVE_EPOLL 706 {
456 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 707#if EV_MULTIPLICITY
708 struct ev_loop *loop = default_loop = &default_loop_struct;
709#else
710 default_loop = 1;
457#endif 711#endif
458#if HAVE_SELECT
459 if (ev_method == EVMETHOD_NONE) select_init (flags);
460#endif
461 712
713 loop_init (EV_A_ methods);
714
462 if (ev_method) 715 if (ev_method (EV_A))
463 { 716 {
464 evw_init (&sigev, sigcb); 717 ev_watcher_init (&sigev, sigcb);
718 ev_set_priority (&sigev, EV_MAXPRI);
465 siginit (); 719 siginit (EV_A);
466 720
721#ifndef WIN32
467 evsignal_init (&childev, childcb, SIGCHLD); 722 ev_signal_init (&childev, childcb, SIGCHLD);
723 ev_set_priority (&childev, EV_MAXPRI);
468 evsignal_start (&childev); 724 ev_signal_start (EV_A_ &childev);
725 ev_unref (EV_A); /* child watcher should not keep loop alive */
726#endif
469 } 727 }
728 else
729 default_loop = 0;
470 } 730 }
471 731
472 return ev_method; 732 return default_loop;
473} 733}
474 734
475/*****************************************************************************/
476
477void 735void
478ev_prefork (void) 736ev_default_destroy (void)
479{ 737{
480 /* nop */ 738#if EV_MULTIPLICITY
481} 739 struct ev_loop *loop = default_loop;
482
483void
484ev_postfork_parent (void)
485{
486 /* nop */
487}
488
489void
490ev_postfork_child (void)
491{
492#if HAVE_EPOLL
493 if (ev_method == EVMETHOD_EPOLL)
494 epoll_postfork_child ();
495#endif 740#endif
496 741
742 ev_ref (EV_A); /* child watcher */
743 ev_signal_stop (EV_A_ &childev);
744
745 ev_ref (EV_A); /* signal watcher */
497 evio_stop (&sigev); 746 ev_io_stop (EV_A_ &sigev);
747
748 close (sigpipe [0]); sigpipe [0] = 0;
749 close (sigpipe [1]); sigpipe [1] = 0;
750
751 loop_destroy (EV_A);
752}
753
754void
755ev_default_fork (void)
756{
757#if EV_MULTIPLICITY
758 struct ev_loop *loop = default_loop;
759#endif
760
761 loop_fork (EV_A);
762
763 ev_io_stop (EV_A_ &sigev);
498 close (sigpipe [0]); 764 close (sigpipe [0]);
499 close (sigpipe [1]); 765 close (sigpipe [1]);
500 pipe (sigpipe); 766 pipe (sigpipe);
767
768 ev_ref (EV_A); /* signal watcher */
501 siginit (); 769 siginit (EV_A);
502} 770}
503 771
504/*****************************************************************************/ 772/*****************************************************************************/
505 773
506static void 774static void
507call_pending (void) 775call_pending (EV_P)
508{ 776{
777 int pri;
778
779 for (pri = NUMPRI; pri--; )
509 while (pendingcnt) 780 while (pendingcnt [pri])
510 { 781 {
511 ANPENDING *p = pendings + --pendingcnt; 782 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
512 783
513 if (p->w) 784 if (p->w)
514 { 785 {
515 p->w->pending = 0; 786 p->w->pending = 0;
516 p->w->cb (p->w, p->events); 787 p->w->cb (EV_A_ p->w, p->events);
517 } 788 }
518 } 789 }
519} 790}
520 791
521static void 792static void
522timers_reify (void) 793timers_reify (EV_P)
523{ 794{
524 while (timercnt && timers [0]->at <= now) 795 while (timercnt && timers [0]->at <= mn_now)
525 { 796 {
526 struct ev_timer *w = timers [0]; 797 struct ev_timer *w = timers [0];
527 798
528 event ((W)w, EV_TIMEOUT); 799 assert (("inactive timer on timer heap detected", ev_is_active (w)));
529 800
530 /* first reschedule or stop timer */ 801 /* first reschedule or stop timer */
531 if (w->repeat) 802 if (w->repeat)
532 { 803 {
804 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
533 w->at = now + w->repeat; 805 w->at = mn_now + w->repeat;
534 assert (("timer timeout in the past, negative repeat?", w->at > now));
535 downheap ((WT *)timers, timercnt, 0); 806 downheap ((WT *)timers, timercnt, 0);
536 } 807 }
537 else 808 else
538 evtimer_stop (w); /* nonrepeating: stop timer */ 809 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
539 }
540}
541 810
811 event (EV_A_ (W)w, EV_TIMEOUT);
812 }
813}
814
542static void 815static void
543periodics_reify (void) 816periodics_reify (EV_P)
544{ 817{
545 while (periodiccnt && periodics [0]->at <= ev_now) 818 while (periodiccnt && periodics [0]->at <= rt_now)
546 { 819 {
547 struct ev_periodic *w = periodics [0]; 820 struct ev_periodic *w = periodics [0];
821
822 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
548 823
549 /* first reschedule or stop timer */ 824 /* first reschedule or stop timer */
550 if (w->interval) 825 if (w->interval)
551 { 826 {
552 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 827 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
553 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 828 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
554 downheap ((WT *)periodics, periodiccnt, 0); 829 downheap ((WT *)periodics, periodiccnt, 0);
555 } 830 }
556 else 831 else
557 evperiodic_stop (w); /* nonrepeating: stop timer */ 832 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
558 833
559 event ((W)w, EV_TIMEOUT); 834 event (EV_A_ (W)w, EV_PERIODIC);
560 } 835 }
561} 836}
562 837
563static void 838static void
564periodics_reschedule (ev_tstamp diff) 839periodics_reschedule (EV_P)
565{ 840{
566 int i; 841 int i;
567 842
568 /* adjust periodics after time jump */ 843 /* adjust periodics after time jump */
569 for (i = 0; i < periodiccnt; ++i) 844 for (i = 0; i < periodiccnt; ++i)
570 { 845 {
571 struct ev_periodic *w = periodics [i]; 846 struct ev_periodic *w = periodics [i];
572 847
573 if (w->interval) 848 if (w->interval)
574 { 849 {
575 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 850 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
576 851
577 if (fabs (diff) >= 1e-4) 852 if (fabs (diff) >= 1e-4)
578 { 853 {
579 evperiodic_stop (w); 854 ev_periodic_stop (EV_A_ w);
580 evperiodic_start (w); 855 ev_periodic_start (EV_A_ w);
581 856
582 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 857 i = 0; /* restart loop, inefficient, but time jumps should be rare */
583 } 858 }
584 } 859 }
585 } 860 }
586} 861}
587 862
863inline int
864time_update_monotonic (EV_P)
865{
866 mn_now = get_clock ();
867
868 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
869 {
870 rt_now = rtmn_diff + mn_now;
871 return 0;
872 }
873 else
874 {
875 now_floor = mn_now;
876 rt_now = ev_time ();
877 return 1;
878 }
879}
880
588static void 881static void
589time_update (void) 882time_update (EV_P)
590{ 883{
591 int i; 884 int i;
592 885
593 ev_now = ev_time (); 886#if EV_USE_MONOTONIC
594
595 if (have_monotonic) 887 if (expect_true (have_monotonic))
596 { 888 {
597 ev_tstamp odiff = diff; 889 if (time_update_monotonic (EV_A))
598
599 for (i = 4; --i; ) /* loop a few times, before making important decisions */
600 { 890 {
601 now = get_clock (); 891 ev_tstamp odiff = rtmn_diff;
892
893 for (i = 4; --i; ) /* loop a few times, before making important decisions */
894 {
602 diff = ev_now - now; 895 rtmn_diff = rt_now - mn_now;
603 896
604 if (fabs (odiff - diff) < MIN_TIMEJUMP) 897 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
605 return; /* all is well */ 898 return; /* all is well */
606 899
607 ev_now = ev_time (); 900 rt_now = ev_time ();
901 mn_now = get_clock ();
902 now_floor = mn_now;
903 }
904
905 periodics_reschedule (EV_A);
906 /* no timer adjustment, as the monotonic clock doesn't jump */
907 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
608 } 908 }
609
610 periodics_reschedule (diff - odiff);
611 /* no timer adjustment, as the monotonic clock doesn't jump */
612 } 909 }
613 else 910 else
911#endif
614 { 912 {
615 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 913 rt_now = ev_time ();
914
915 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
616 { 916 {
617 periodics_reschedule (ev_now - now); 917 periodics_reschedule (EV_A);
618 918
619 /* adjust timers. this is easy, as the offset is the same for all */ 919 /* adjust timers. this is easy, as the offset is the same for all */
620 for (i = 0; i < timercnt; ++i) 920 for (i = 0; i < timercnt; ++i)
621 timers [i]->at += diff; 921 timers [i]->at += rt_now - mn_now;
622 } 922 }
623 923
624 now = ev_now; 924 mn_now = rt_now;
625 } 925 }
626} 926}
627 927
628int ev_loop_done; 928void
929ev_ref (EV_P)
930{
931 ++activecnt;
932}
629 933
934void
935ev_unref (EV_P)
936{
937 --activecnt;
938}
939
940static int loop_done;
941
942void
630void ev_loop (int flags) 943ev_loop (EV_P_ int flags)
631{ 944{
632 double block; 945 double block;
633 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 946 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
634 947
635 do 948 do
636 { 949 {
637 /* queue check watchers (and execute them) */ 950 /* queue check watchers (and execute them) */
638 if (preparecnt) 951 if (expect_false (preparecnt))
639 { 952 {
640 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 953 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
641 call_pending (); 954 call_pending (EV_A);
642 } 955 }
643 956
644 /* update fd-related kernel structures */ 957 /* update fd-related kernel structures */
645 fd_reify (); 958 fd_reify (EV_A);
646 959
647 /* calculate blocking time */ 960 /* calculate blocking time */
648 961
649 /* we only need this for !monotonic clockor timers, but as we basically 962 /* we only need this for !monotonic clockor timers, but as we basically
650 always have timers, we just calculate it always */ 963 always have timers, we just calculate it always */
964#if EV_USE_MONOTONIC
965 if (expect_true (have_monotonic))
966 time_update_monotonic (EV_A);
967 else
968#endif
969 {
651 ev_now = ev_time (); 970 rt_now = ev_time ();
971 mn_now = rt_now;
972 }
652 973
653 if (flags & EVLOOP_NONBLOCK || idlecnt) 974 if (flags & EVLOOP_NONBLOCK || idlecnt)
654 block = 0.; 975 block = 0.;
655 else 976 else
656 { 977 {
657 block = MAX_BLOCKTIME; 978 block = MAX_BLOCKTIME;
658 979
659 if (timercnt) 980 if (timercnt)
660 { 981 {
661 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 982 ev_tstamp to = timers [0]->at - mn_now + method_fudge;
662 if (block > to) block = to; 983 if (block > to) block = to;
663 } 984 }
664 985
665 if (periodiccnt) 986 if (periodiccnt)
666 { 987 {
667 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 988 ev_tstamp to = periodics [0]->at - rt_now + method_fudge;
668 if (block > to) block = to; 989 if (block > to) block = to;
669 } 990 }
670 991
671 if (block < 0.) block = 0.; 992 if (block < 0.) block = 0.;
672 } 993 }
673 994
674 method_poll (block); 995 method_poll (EV_A_ block);
675 996
676 /* update ev_now, do magic */ 997 /* update rt_now, do magic */
677 time_update (); 998 time_update (EV_A);
678 999
679 /* queue pending timers and reschedule them */ 1000 /* queue pending timers and reschedule them */
680 timers_reify (); /* relative timers called last */ 1001 timers_reify (EV_A); /* relative timers called last */
681 periodics_reify (); /* absolute timers called first */ 1002 periodics_reify (EV_A); /* absolute timers called first */
682 1003
683 /* queue idle watchers unless io or timers are pending */ 1004 /* queue idle watchers unless io or timers are pending */
684 if (!pendingcnt) 1005 if (!pendingcnt)
685 queue_events ((W *)idles, idlecnt, EV_IDLE); 1006 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
686 1007
687 /* queue check watchers, to be executed first */ 1008 /* queue check watchers, to be executed first */
688 if (checkcnt) 1009 if (checkcnt)
689 queue_events ((W *)checks, checkcnt, EV_CHECK); 1010 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
690 1011
691 call_pending (); 1012 call_pending (EV_A);
692 } 1013 }
693 while (!ev_loop_done); 1014 while (activecnt && !loop_done);
694 1015
695 if (ev_loop_done != 2) 1016 if (loop_done != 2)
696 ev_loop_done = 0; 1017 loop_done = 0;
1018}
1019
1020void
1021ev_unloop (EV_P_ int how)
1022{
1023 loop_done = how;
697} 1024}
698 1025
699/*****************************************************************************/ 1026/*****************************************************************************/
700 1027
701static void 1028inline void
702wlist_add (WL *head, WL elem) 1029wlist_add (WL *head, WL elem)
703{ 1030{
704 elem->next = *head; 1031 elem->next = *head;
705 *head = elem; 1032 *head = elem;
706} 1033}
707 1034
708static void 1035inline void
709wlist_del (WL *head, WL elem) 1036wlist_del (WL *head, WL elem)
710{ 1037{
711 while (*head) 1038 while (*head)
712 { 1039 {
713 if (*head == elem) 1040 if (*head == elem)
718 1045
719 head = &(*head)->next; 1046 head = &(*head)->next;
720 } 1047 }
721} 1048}
722 1049
723static void 1050inline void
724ev_clear (W w) 1051ev_clear_pending (EV_P_ W w)
725{ 1052{
726 if (w->pending) 1053 if (w->pending)
727 { 1054 {
728 pendings [w->pending - 1].w = 0; 1055 pendings [ABSPRI (w)][w->pending - 1].w = 0;
729 w->pending = 0; 1056 w->pending = 0;
730 } 1057 }
731} 1058}
732 1059
733static void 1060inline void
734ev_start (W w, int active) 1061ev_start (EV_P_ W w, int active)
735{ 1062{
1063 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1064 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1065
736 w->active = active; 1066 w->active = active;
1067 ev_ref (EV_A);
737} 1068}
738 1069
739static void 1070inline void
740ev_stop (W w) 1071ev_stop (EV_P_ W w)
741{ 1072{
1073 ev_unref (EV_A);
742 w->active = 0; 1074 w->active = 0;
743} 1075}
744 1076
745/*****************************************************************************/ 1077/*****************************************************************************/
746 1078
747void 1079void
748evio_start (struct ev_io *w) 1080ev_io_start (EV_P_ struct ev_io *w)
749{ 1081{
1082 int fd = w->fd;
1083
750 if (ev_is_active (w)) 1084 if (ev_is_active (w))
751 return; 1085 return;
752 1086
753 int fd = w->fd; 1087 assert (("ev_io_start called with negative fd", fd >= 0));
754 1088
755 ev_start ((W)w, 1); 1089 ev_start (EV_A_ (W)w, 1);
756 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1090 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
757 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1091 wlist_add ((WL *)&anfds[fd].head, (WL)w);
758 1092
759 fd_change (fd); 1093 fd_change (EV_A_ fd);
760} 1094}
761 1095
762void 1096void
763evio_stop (struct ev_io *w) 1097ev_io_stop (EV_P_ struct ev_io *w)
764{ 1098{
765 ev_clear ((W)w); 1099 ev_clear_pending (EV_A_ (W)w);
766 if (!ev_is_active (w)) 1100 if (!ev_is_active (w))
767 return; 1101 return;
768 1102
769 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1103 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
770 ev_stop ((W)w); 1104 ev_stop (EV_A_ (W)w);
771 1105
772 fd_change (w->fd); 1106 fd_change (EV_A_ w->fd);
773} 1107}
774 1108
775void 1109void
776evtimer_start (struct ev_timer *w) 1110ev_timer_start (EV_P_ struct ev_timer *w)
777{ 1111{
778 if (ev_is_active (w)) 1112 if (ev_is_active (w))
779 return; 1113 return;
780 1114
781 w->at += now; 1115 w->at += mn_now;
782 1116
783 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 1117 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
784 1118
785 ev_start ((W)w, ++timercnt); 1119 ev_start (EV_A_ (W)w, ++timercnt);
786 array_needsize (timers, timermax, timercnt, ); 1120 array_needsize (timers, timermax, timercnt, );
787 timers [timercnt - 1] = w; 1121 timers [timercnt - 1] = w;
788 upheap ((WT *)timers, timercnt - 1); 1122 upheap ((WT *)timers, timercnt - 1);
789} 1123}
790 1124
791void 1125void
792evtimer_stop (struct ev_timer *w) 1126ev_timer_stop (EV_P_ struct ev_timer *w)
793{ 1127{
794 ev_clear ((W)w); 1128 ev_clear_pending (EV_A_ (W)w);
795 if (!ev_is_active (w)) 1129 if (!ev_is_active (w))
796 return; 1130 return;
797 1131
798 if (w->active < timercnt--) 1132 if (w->active < timercnt--)
799 { 1133 {
801 downheap ((WT *)timers, timercnt, w->active - 1); 1135 downheap ((WT *)timers, timercnt, w->active - 1);
802 } 1136 }
803 1137
804 w->at = w->repeat; 1138 w->at = w->repeat;
805 1139
806 ev_stop ((W)w); 1140 ev_stop (EV_A_ (W)w);
807} 1141}
808 1142
809void 1143void
810evtimer_again (struct ev_timer *w) 1144ev_timer_again (EV_P_ struct ev_timer *w)
811{ 1145{
812 if (ev_is_active (w)) 1146 if (ev_is_active (w))
813 { 1147 {
814 if (w->repeat) 1148 if (w->repeat)
815 { 1149 {
816 w->at = now + w->repeat; 1150 w->at = mn_now + w->repeat;
817 downheap ((WT *)timers, timercnt, w->active - 1); 1151 downheap ((WT *)timers, timercnt, w->active - 1);
818 } 1152 }
819 else 1153 else
820 evtimer_stop (w); 1154 ev_timer_stop (EV_A_ w);
821 } 1155 }
822 else if (w->repeat) 1156 else if (w->repeat)
823 evtimer_start (w); 1157 ev_timer_start (EV_A_ w);
824} 1158}
825 1159
826void 1160void
827evperiodic_start (struct ev_periodic *w) 1161ev_periodic_start (EV_P_ struct ev_periodic *w)
828{ 1162{
829 if (ev_is_active (w)) 1163 if (ev_is_active (w))
830 return; 1164 return;
831 1165
832 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 1166 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
833 1167
834 /* this formula differs from the one in periodic_reify because we do not always round up */ 1168 /* this formula differs from the one in periodic_reify because we do not always round up */
835 if (w->interval) 1169 if (w->interval)
836 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1170 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
837 1171
838 ev_start ((W)w, ++periodiccnt); 1172 ev_start (EV_A_ (W)w, ++periodiccnt);
839 array_needsize (periodics, periodicmax, periodiccnt, ); 1173 array_needsize (periodics, periodicmax, periodiccnt, );
840 periodics [periodiccnt - 1] = w; 1174 periodics [periodiccnt - 1] = w;
841 upheap ((WT *)periodics, periodiccnt - 1); 1175 upheap ((WT *)periodics, periodiccnt - 1);
842} 1176}
843 1177
844void 1178void
845evperiodic_stop (struct ev_periodic *w) 1179ev_periodic_stop (EV_P_ struct ev_periodic *w)
846{ 1180{
847 ev_clear ((W)w); 1181 ev_clear_pending (EV_A_ (W)w);
848 if (!ev_is_active (w)) 1182 if (!ev_is_active (w))
849 return; 1183 return;
850 1184
851 if (w->active < periodiccnt--) 1185 if (w->active < periodiccnt--)
852 { 1186 {
853 periodics [w->active - 1] = periodics [periodiccnt]; 1187 periodics [w->active - 1] = periodics [periodiccnt];
854 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1188 downheap ((WT *)periodics, periodiccnt, w->active - 1);
855 } 1189 }
856 1190
857 ev_stop ((W)w); 1191 ev_stop (EV_A_ (W)w);
858} 1192}
859 1193
860void 1194void
861evsignal_start (struct ev_signal *w) 1195ev_idle_start (EV_P_ struct ev_idle *w)
862{ 1196{
863 if (ev_is_active (w)) 1197 if (ev_is_active (w))
864 return; 1198 return;
865 1199
1200 ev_start (EV_A_ (W)w, ++idlecnt);
1201 array_needsize (idles, idlemax, idlecnt, );
1202 idles [idlecnt - 1] = w;
1203}
1204
1205void
1206ev_idle_stop (EV_P_ struct ev_idle *w)
1207{
1208 ev_clear_pending (EV_A_ (W)w);
1209 if (ev_is_active (w))
1210 return;
1211
1212 idles [w->active - 1] = idles [--idlecnt];
1213 ev_stop (EV_A_ (W)w);
1214}
1215
1216void
1217ev_prepare_start (EV_P_ struct ev_prepare *w)
1218{
1219 if (ev_is_active (w))
1220 return;
1221
1222 ev_start (EV_A_ (W)w, ++preparecnt);
1223 array_needsize (prepares, preparemax, preparecnt, );
1224 prepares [preparecnt - 1] = w;
1225}
1226
1227void
1228ev_prepare_stop (EV_P_ struct ev_prepare *w)
1229{
1230 ev_clear_pending (EV_A_ (W)w);
1231 if (ev_is_active (w))
1232 return;
1233
1234 prepares [w->active - 1] = prepares [--preparecnt];
1235 ev_stop (EV_A_ (W)w);
1236}
1237
1238void
1239ev_check_start (EV_P_ struct ev_check *w)
1240{
1241 if (ev_is_active (w))
1242 return;
1243
1244 ev_start (EV_A_ (W)w, ++checkcnt);
1245 array_needsize (checks, checkmax, checkcnt, );
1246 checks [checkcnt - 1] = w;
1247}
1248
1249void
1250ev_check_stop (EV_P_ struct ev_check *w)
1251{
1252 ev_clear_pending (EV_A_ (W)w);
1253 if (ev_is_active (w))
1254 return;
1255
1256 checks [w->active - 1] = checks [--checkcnt];
1257 ev_stop (EV_A_ (W)w);
1258}
1259
1260#ifndef SA_RESTART
1261# define SA_RESTART 0
1262#endif
1263
1264void
1265ev_signal_start (EV_P_ struct ev_signal *w)
1266{
1267#if EV_MULTIPLICITY
1268 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1269#endif
1270 if (ev_is_active (w))
1271 return;
1272
1273 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1274
866 ev_start ((W)w, 1); 1275 ev_start (EV_A_ (W)w, 1);
867 array_needsize (signals, signalmax, w->signum, signals_init); 1276 array_needsize (signals, signalmax, w->signum, signals_init);
868 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1277 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
869 1278
870 if (!w->next) 1279 if (!w->next)
871 { 1280 {
872 struct sigaction sa; 1281 struct sigaction sa;
873 sa.sa_handler = sighandler; 1282 sa.sa_handler = sighandler;
874 sigfillset (&sa.sa_mask); 1283 sigfillset (&sa.sa_mask);
875 sa.sa_flags = 0; 1284 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
876 sigaction (w->signum, &sa, 0); 1285 sigaction (w->signum, &sa, 0);
877 } 1286 }
878} 1287}
879 1288
880void 1289void
881evsignal_stop (struct ev_signal *w) 1290ev_signal_stop (EV_P_ struct ev_signal *w)
882{ 1291{
883 ev_clear ((W)w); 1292 ev_clear_pending (EV_A_ (W)w);
884 if (!ev_is_active (w)) 1293 if (!ev_is_active (w))
885 return; 1294 return;
886 1295
887 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1296 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
888 ev_stop ((W)w); 1297 ev_stop (EV_A_ (W)w);
889 1298
890 if (!signals [w->signum - 1].head) 1299 if (!signals [w->signum - 1].head)
891 signal (w->signum, SIG_DFL); 1300 signal (w->signum, SIG_DFL);
892} 1301}
893 1302
894void evidle_start (struct ev_idle *w) 1303void
1304ev_child_start (EV_P_ struct ev_child *w)
895{ 1305{
1306#if EV_MULTIPLICITY
1307 assert (("child watchers are only supported in the default loop", loop == default_loop));
1308#endif
896 if (ev_is_active (w)) 1309 if (ev_is_active (w))
897 return; 1310 return;
898 1311
899 ev_start ((W)w, ++idlecnt); 1312 ev_start (EV_A_ (W)w, 1);
900 array_needsize (idles, idlemax, idlecnt, ); 1313 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
901 idles [idlecnt - 1] = w;
902} 1314}
903 1315
904void evidle_stop (struct ev_idle *w) 1316void
1317ev_child_stop (EV_P_ struct ev_child *w)
905{ 1318{
906 ev_clear ((W)w); 1319 ev_clear_pending (EV_A_ (W)w);
907 if (ev_is_active (w)) 1320 if (ev_is_active (w))
908 return; 1321 return;
909 1322
910 idles [w->active - 1] = idles [--idlecnt];
911 ev_stop ((W)w);
912}
913
914void evprepare_start (struct ev_prepare *w)
915{
916 if (ev_is_active (w))
917 return;
918
919 ev_start ((W)w, ++preparecnt);
920 array_needsize (prepares, preparemax, preparecnt, );
921 prepares [preparecnt - 1] = w;
922}
923
924void evprepare_stop (struct ev_prepare *w)
925{
926 ev_clear ((W)w);
927 if (ev_is_active (w))
928 return;
929
930 prepares [w->active - 1] = prepares [--preparecnt];
931 ev_stop ((W)w);
932}
933
934void evcheck_start (struct ev_check *w)
935{
936 if (ev_is_active (w))
937 return;
938
939 ev_start ((W)w, ++checkcnt);
940 array_needsize (checks, checkmax, checkcnt, );
941 checks [checkcnt - 1] = w;
942}
943
944void evcheck_stop (struct ev_check *w)
945{
946 ev_clear ((W)w);
947 if (ev_is_active (w))
948 return;
949
950 checks [w->active - 1] = checks [--checkcnt];
951 ev_stop ((W)w);
952}
953
954void evchild_start (struct ev_child *w)
955{
956 if (ev_is_active (w))
957 return;
958
959 ev_start ((W)w, 1);
960 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
961}
962
963void evchild_stop (struct ev_child *w)
964{
965 ev_clear ((W)w);
966 if (ev_is_active (w))
967 return;
968
969 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1323 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
970 ev_stop ((W)w); 1324 ev_stop (EV_A_ (W)w);
971} 1325}
972 1326
973/*****************************************************************************/ 1327/*****************************************************************************/
974 1328
975struct ev_once 1329struct ev_once
979 void (*cb)(int revents, void *arg); 1333 void (*cb)(int revents, void *arg);
980 void *arg; 1334 void *arg;
981}; 1335};
982 1336
983static void 1337static void
984once_cb (struct ev_once *once, int revents) 1338once_cb (EV_P_ struct ev_once *once, int revents)
985{ 1339{
986 void (*cb)(int revents, void *arg) = once->cb; 1340 void (*cb)(int revents, void *arg) = once->cb;
987 void *arg = once->arg; 1341 void *arg = once->arg;
988 1342
989 evio_stop (&once->io); 1343 ev_io_stop (EV_A_ &once->io);
990 evtimer_stop (&once->to); 1344 ev_timer_stop (EV_A_ &once->to);
991 free (once); 1345 free (once);
992 1346
993 cb (revents, arg); 1347 cb (revents, arg);
994} 1348}
995 1349
996static void 1350static void
997once_cb_io (struct ev_io *w, int revents) 1351once_cb_io (EV_P_ struct ev_io *w, int revents)
998{ 1352{
999 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1353 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1000} 1354}
1001 1355
1002static void 1356static void
1003once_cb_to (struct ev_timer *w, int revents) 1357once_cb_to (EV_P_ struct ev_timer *w, int revents)
1004{ 1358{
1005 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1359 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1006} 1360}
1007 1361
1008void 1362void
1009ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1363ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1010{ 1364{
1011 struct ev_once *once = malloc (sizeof (struct ev_once)); 1365 struct ev_once *once = malloc (sizeof (struct ev_once));
1012 1366
1013 if (!once) 1367 if (!once)
1014 cb (EV_ERROR, arg); 1368 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1015 else 1369 else
1016 { 1370 {
1017 once->cb = cb; 1371 once->cb = cb;
1018 once->arg = arg; 1372 once->arg = arg;
1019 1373
1020 evw_init (&once->io, once_cb_io); 1374 ev_watcher_init (&once->io, once_cb_io);
1021
1022 if (fd >= 0) 1375 if (fd >= 0)
1023 { 1376 {
1024 evio_set (&once->io, fd, events); 1377 ev_io_set (&once->io, fd, events);
1025 evio_start (&once->io); 1378 ev_io_start (EV_A_ &once->io);
1026 } 1379 }
1027 1380
1028 evw_init (&once->to, once_cb_to); 1381 ev_watcher_init (&once->to, once_cb_to);
1029
1030 if (timeout >= 0.) 1382 if (timeout >= 0.)
1031 { 1383 {
1032 evtimer_set (&once->to, timeout, 0.); 1384 ev_timer_set (&once->to, timeout, 0.);
1033 evtimer_start (&once->to); 1385 ev_timer_start (EV_A_ &once->to);
1034 } 1386 }
1035 } 1387 }
1036} 1388}
1037 1389
1038/*****************************************************************************/
1039
1040#if 0
1041
1042struct ev_io wio;
1043
1044static void
1045sin_cb (struct ev_io *w, int revents)
1046{
1047 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1048}
1049
1050static void
1051ocb (struct ev_timer *w, int revents)
1052{
1053 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1054 evtimer_stop (w);
1055 evtimer_start (w);
1056}
1057
1058static void
1059scb (struct ev_signal *w, int revents)
1060{
1061 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1062 evio_stop (&wio);
1063 evio_start (&wio);
1064}
1065
1066static void
1067gcb (struct ev_signal *w, int revents)
1068{
1069 fprintf (stderr, "generic %x\n", revents);
1070
1071}
1072
1073int main (void)
1074{
1075 ev_init (0);
1076
1077 evio_init (&wio, sin_cb, 0, EV_READ);
1078 evio_start (&wio);
1079
1080 struct ev_timer t[10000];
1081
1082#if 0
1083 int i;
1084 for (i = 0; i < 10000; ++i)
1085 {
1086 struct ev_timer *w = t + i;
1087 evw_init (w, ocb, i);
1088 evtimer_init_abs (w, ocb, drand48 (), 0.99775533);
1089 evtimer_start (w);
1090 if (drand48 () < 0.5)
1091 evtimer_stop (w);
1092 }
1093#endif
1094
1095 struct ev_timer t1;
1096 evtimer_init (&t1, ocb, 5, 10);
1097 evtimer_start (&t1);
1098
1099 struct ev_signal sig;
1100 evsignal_init (&sig, scb, SIGQUIT);
1101 evsignal_start (&sig);
1102
1103 struct ev_check cw;
1104 evcheck_init (&cw, gcb);
1105 evcheck_start (&cw);
1106
1107 struct ev_idle iw;
1108 evidle_init (&iw, gcb);
1109 evidle_start (&iw);
1110
1111 ev_loop (0);
1112
1113 return 0;
1114}
1115
1116#endif
1117
1118
1119
1120

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines