ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.176 by root, Tue Dec 11 04:31:55 2007 UTC vs.
Revision 1.270 by root, Thu Oct 30 13:07:10 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
129#ifndef _WIN32 154#ifndef _WIN32
130# include <sys/time.h> 155# include <sys/time.h>
131# include <sys/wait.h> 156# include <sys/wait.h>
132# include <unistd.h> 157# include <unistd.h>
133#else 158#else
159# include <io.h>
134# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 161# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
138# endif 164# endif
139#endif 165#endif
140 166
141/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
142 168
143#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
144# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
145#endif 175#endif
146 176
147#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
179#endif
180
181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
185# define EV_USE_NANOSLEEP 0
186# endif
149#endif 187#endif
150 188
151#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
153#endif 191#endif
159# define EV_USE_POLL 1 197# define EV_USE_POLL 1
160# endif 198# endif
161#endif 199#endif
162 200
163#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
164# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
165#endif 207#endif
166 208
167#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
169#endif 211#endif
171#ifndef EV_USE_PORT 213#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 214# define EV_USE_PORT 0
173#endif 215#endif
174 216
175#ifndef EV_USE_INOTIFY 217#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1
220# else
176# define EV_USE_INOTIFY 0 221# define EV_USE_INOTIFY 0
222# endif
177#endif 223#endif
178 224
179#ifndef EV_PID_HASHSIZE 225#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 226# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 227# define EV_PID_HASHSIZE 1
190# else 236# else
191# define EV_INOTIFY_HASHSIZE 16 237# define EV_INOTIFY_HASHSIZE 16
192# endif 238# endif
193#endif 239#endif
194 240
195/**/ 241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 268
197#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
200#endif 272#endif
202#ifndef CLOCK_REALTIME 274#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 275# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 276# define EV_USE_REALTIME 0
205#endif 277#endif
206 278
279#if !EV_STAT_ENABLE
280# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0
282#endif
283
284#if !EV_USE_NANOSLEEP
285# ifndef _WIN32
286# include <sys/select.h>
287# endif
288#endif
289
290#if EV_USE_INOTIFY
291# include <sys/utsname.h>
292# include <sys/inotify.h>
293/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
294# ifndef IN_DONT_FOLLOW
295# undef EV_USE_INOTIFY
296# define EV_USE_INOTIFY 0
297# endif
298#endif
299
207#if EV_SELECT_IS_WINSOCKET 300#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 301# include <winsock.h>
209#endif 302#endif
210 303
211#if !EV_STAT_ENABLE 304#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 305/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
306# include <stdint.h>
307# ifdef __cplusplus
308extern "C" {
213#endif 309# endif
214 310int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 311# ifdef __cplusplus
216# include <sys/inotify.h> 312}
313# endif
217#endif 314#endif
218 315
219/**/ 316/**/
317
318#if EV_VERIFY >= 3
319# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
320#else
321# define EV_FREQUENT_CHECK do { } while (0)
322#endif
220 323
221/* 324/*
222 * This is used to avoid floating point rounding problems. 325 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics 326 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding 327 * to ensure progress, time-wise, even when rounding
225 * errors are against us. 328 * errors are against us.
226 * This value is good at least till the year 4000 329 * This value is good at least till the year 4000.
227 * and intervals up to 20 years.
228 * Better solutions welcome. 330 * Better solutions welcome.
229 */ 331 */
230#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 332#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
231 333
232#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 334#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
233#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 335#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
234/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 336/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
235 337
236#if __GNUC__ >= 3 338#if __GNUC__ >= 4
237# define expect(expr,value) __builtin_expect ((expr),(value)) 339# define expect(expr,value) __builtin_expect ((expr),(value))
238# define noinline __attribute__ ((noinline)) 340# define noinline __attribute__ ((noinline))
239#else 341#else
240# define expect(expr,value) (expr) 342# define expect(expr,value) (expr)
241# define noinline 343# define noinline
242# if __STDC_VERSION__ < 199901L 344# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
243# define inline 345# define inline
244# endif 346# endif
245#endif 347#endif
246 348
247#define expect_false(expr) expect ((expr) != 0, 0) 349#define expect_false(expr) expect ((expr) != 0, 0)
262 364
263typedef ev_watcher *W; 365typedef ev_watcher *W;
264typedef ev_watcher_list *WL; 366typedef ev_watcher_list *WL;
265typedef ev_watcher_time *WT; 367typedef ev_watcher_time *WT;
266 368
369#define ev_active(w) ((W)(w))->active
370#define ev_at(w) ((WT)(w))->at
371
372#if EV_USE_MONOTONIC
373/* sig_atomic_t is used to avoid per-thread variables or locking but still */
374/* giving it a reasonably high chance of working on typical architetcures */
267static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 375static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
376#endif
268 377
269#ifdef _WIN32 378#ifdef _WIN32
270# include "ev_win32.c" 379# include "ev_win32.c"
271#endif 380#endif
272 381
279{ 388{
280 syserr_cb = cb; 389 syserr_cb = cb;
281} 390}
282 391
283static void noinline 392static void noinline
284syserr (const char *msg) 393ev_syserr (const char *msg)
285{ 394{
286 if (!msg) 395 if (!msg)
287 msg = "(libev) system error"; 396 msg = "(libev) system error";
288 397
289 if (syserr_cb) 398 if (syserr_cb)
293 perror (msg); 402 perror (msg);
294 abort (); 403 abort ();
295 } 404 }
296} 405}
297 406
407static void *
408ev_realloc_emul (void *ptr, long size)
409{
410 /* some systems, notably openbsd and darwin, fail to properly
411 * implement realloc (x, 0) (as required by both ansi c-98 and
412 * the single unix specification, so work around them here.
413 */
414
415 if (size)
416 return realloc (ptr, size);
417
418 free (ptr);
419 return 0;
420}
421
298static void *(*alloc)(void *ptr, long size); 422static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
299 423
300void 424void
301ev_set_allocator (void *(*cb)(void *ptr, long size)) 425ev_set_allocator (void *(*cb)(void *ptr, long size))
302{ 426{
303 alloc = cb; 427 alloc = cb;
304} 428}
305 429
306inline_speed void * 430inline_speed void *
307ev_realloc (void *ptr, long size) 431ev_realloc (void *ptr, long size)
308{ 432{
309 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 433 ptr = alloc (ptr, size);
310 434
311 if (!ptr && size) 435 if (!ptr && size)
312 { 436 {
313 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 437 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
314 abort (); 438 abort ();
325typedef struct 449typedef struct
326{ 450{
327 WL head; 451 WL head;
328 unsigned char events; 452 unsigned char events;
329 unsigned char reify; 453 unsigned char reify;
454 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
455 unsigned char unused;
456#if EV_USE_EPOLL
457 unsigned int egen; /* generation counter to counter epoll bugs */
458#endif
330#if EV_SELECT_IS_WINSOCKET 459#if EV_SELECT_IS_WINSOCKET
331 SOCKET handle; 460 SOCKET handle;
332#endif 461#endif
333} ANFD; 462} ANFD;
334 463
337 W w; 466 W w;
338 int events; 467 int events;
339} ANPENDING; 468} ANPENDING;
340 469
341#if EV_USE_INOTIFY 470#if EV_USE_INOTIFY
471/* hash table entry per inotify-id */
342typedef struct 472typedef struct
343{ 473{
344 WL head; 474 WL head;
345} ANFS; 475} ANFS;
476#endif
477
478/* Heap Entry */
479#if EV_HEAP_CACHE_AT
480 typedef struct {
481 ev_tstamp at;
482 WT w;
483 } ANHE;
484
485 #define ANHE_w(he) (he).w /* access watcher, read-write */
486 #define ANHE_at(he) (he).at /* access cached at, read-only */
487 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
488#else
489 typedef WT ANHE;
490
491 #define ANHE_w(he) (he)
492 #define ANHE_at(he) (he)->at
493 #define ANHE_at_cache(he)
346#endif 494#endif
347 495
348#if EV_MULTIPLICITY 496#if EV_MULTIPLICITY
349 497
350 struct ev_loop 498 struct ev_loop
408{ 556{
409 return ev_rt_now; 557 return ev_rt_now;
410} 558}
411#endif 559#endif
412 560
561void
562ev_sleep (ev_tstamp delay)
563{
564 if (delay > 0.)
565 {
566#if EV_USE_NANOSLEEP
567 struct timespec ts;
568
569 ts.tv_sec = (time_t)delay;
570 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
571
572 nanosleep (&ts, 0);
573#elif defined(_WIN32)
574 Sleep ((unsigned long)(delay * 1e3));
575#else
576 struct timeval tv;
577
578 tv.tv_sec = (time_t)delay;
579 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
580
581 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
582 /* somehting nto guaranteed by newer posix versions, but guaranteed */
583 /* by older ones */
584 select (0, 0, 0, 0, &tv);
585#endif
586 }
587}
588
589/*****************************************************************************/
590
591#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
592
413int inline_size 593int inline_size
414array_nextsize (int elem, int cur, int cnt) 594array_nextsize (int elem, int cur, int cnt)
415{ 595{
416 int ncur = cur + 1; 596 int ncur = cur + 1;
417 597
418 do 598 do
419 ncur <<= 1; 599 ncur <<= 1;
420 while (cnt > ncur); 600 while (cnt > ncur);
421 601
422 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 602 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
423 if (elem * ncur > 4096) 603 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
424 { 604 {
425 ncur *= elem; 605 ncur *= elem;
426 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 606 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
427 ncur = ncur - sizeof (void *) * 4; 607 ncur = ncur - sizeof (void *) * 4;
428 ncur /= elem; 608 ncur /= elem;
429 } 609 }
430 610
431 return ncur; 611 return ncur;
435array_realloc (int elem, void *base, int *cur, int cnt) 615array_realloc (int elem, void *base, int *cur, int cnt)
436{ 616{
437 *cur = array_nextsize (elem, *cur, cnt); 617 *cur = array_nextsize (elem, *cur, cnt);
438 return ev_realloc (base, elem * *cur); 618 return ev_realloc (base, elem * *cur);
439} 619}
620
621#define array_init_zero(base,count) \
622 memset ((void *)(base), 0, sizeof (*(base)) * (count))
440 623
441#define array_needsize(type,base,cur,cnt,init) \ 624#define array_needsize(type,base,cur,cnt,init) \
442 if (expect_false ((cnt) > (cur))) \ 625 if (expect_false ((cnt) > (cur))) \
443 { \ 626 { \
444 int ocur_ = (cur); \ 627 int ocur_ = (cur); \
477 pendings [pri][w_->pending - 1].w = w_; 660 pendings [pri][w_->pending - 1].w = w_;
478 pendings [pri][w_->pending - 1].events = revents; 661 pendings [pri][w_->pending - 1].events = revents;
479 } 662 }
480} 663}
481 664
482void inline_size 665void inline_speed
483queue_events (EV_P_ W *events, int eventcnt, int type) 666queue_events (EV_P_ W *events, int eventcnt, int type)
484{ 667{
485 int i; 668 int i;
486 669
487 for (i = 0; i < eventcnt; ++i) 670 for (i = 0; i < eventcnt; ++i)
488 ev_feed_event (EV_A_ events [i], type); 671 ev_feed_event (EV_A_ events [i], type);
489} 672}
490 673
491/*****************************************************************************/ 674/*****************************************************************************/
492
493void inline_size
494anfds_init (ANFD *base, int count)
495{
496 while (count--)
497 {
498 base->head = 0;
499 base->events = EV_NONE;
500 base->reify = 0;
501
502 ++base;
503 }
504}
505 675
506void inline_speed 676void inline_speed
507fd_event (EV_P_ int fd, int revents) 677fd_event (EV_P_ int fd, int revents)
508{ 678{
509 ANFD *anfd = anfds + fd; 679 ANFD *anfd = anfds + fd;
534 { 704 {
535 int fd = fdchanges [i]; 705 int fd = fdchanges [i];
536 ANFD *anfd = anfds + fd; 706 ANFD *anfd = anfds + fd;
537 ev_io *w; 707 ev_io *w;
538 708
539 int events = 0; 709 unsigned char events = 0;
540 710
541 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 711 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
542 events |= w->events; 712 events |= (unsigned char)w->events;
543 713
544#if EV_SELECT_IS_WINSOCKET 714#if EV_SELECT_IS_WINSOCKET
545 if (events) 715 if (events)
546 { 716 {
547 unsigned long argp; 717 unsigned long arg;
718 #ifdef EV_FD_TO_WIN32_HANDLE
719 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
720 #else
548 anfd->handle = _get_osfhandle (fd); 721 anfd->handle = _get_osfhandle (fd);
722 #endif
549 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 723 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
550 } 724 }
551#endif 725#endif
552 726
727 {
728 unsigned char o_events = anfd->events;
729 unsigned char o_reify = anfd->reify;
730
553 anfd->reify = 0; 731 anfd->reify = 0;
554
555 backend_modify (EV_A_ fd, anfd->events, events);
556 anfd->events = events; 732 anfd->events = events;
733
734 if (o_events != events || o_reify & EV_IOFDSET)
735 backend_modify (EV_A_ fd, o_events, events);
736 }
557 } 737 }
558 738
559 fdchangecnt = 0; 739 fdchangecnt = 0;
560} 740}
561 741
562void inline_size 742void inline_size
563fd_change (EV_P_ int fd) 743fd_change (EV_P_ int fd, int flags)
564{ 744{
565 if (expect_false (anfds [fd].reify)) 745 unsigned char reify = anfds [fd].reify;
566 return;
567
568 anfds [fd].reify = 1; 746 anfds [fd].reify |= flags;
569 747
748 if (expect_true (!reify))
749 {
570 ++fdchangecnt; 750 ++fdchangecnt;
571 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 751 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
572 fdchanges [fdchangecnt - 1] = fd; 752 fdchanges [fdchangecnt - 1] = fd;
753 }
573} 754}
574 755
575void inline_speed 756void inline_speed
576fd_kill (EV_P_ int fd) 757fd_kill (EV_P_ int fd)
577{ 758{
600{ 781{
601 int fd; 782 int fd;
602 783
603 for (fd = 0; fd < anfdmax; ++fd) 784 for (fd = 0; fd < anfdmax; ++fd)
604 if (anfds [fd].events) 785 if (anfds [fd].events)
605 if (!fd_valid (fd) == -1 && errno == EBADF) 786 if (!fd_valid (fd) && errno == EBADF)
606 fd_kill (EV_A_ fd); 787 fd_kill (EV_A_ fd);
607} 788}
608 789
609/* called on ENOMEM in select/poll to kill some fds and retry */ 790/* called on ENOMEM in select/poll to kill some fds and retry */
610static void noinline 791static void noinline
628 809
629 for (fd = 0; fd < anfdmax; ++fd) 810 for (fd = 0; fd < anfdmax; ++fd)
630 if (anfds [fd].events) 811 if (anfds [fd].events)
631 { 812 {
632 anfds [fd].events = 0; 813 anfds [fd].events = 0;
814 anfds [fd].emask = 0;
633 fd_change (EV_A_ fd); 815 fd_change (EV_A_ fd, EV_IOFDSET | 1);
634 } 816 }
635} 817}
636 818
637/*****************************************************************************/ 819/*****************************************************************************/
638 820
821/*
822 * the heap functions want a real array index. array index 0 uis guaranteed to not
823 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
824 * the branching factor of the d-tree.
825 */
826
827/*
828 * at the moment we allow libev the luxury of two heaps,
829 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
830 * which is more cache-efficient.
831 * the difference is about 5% with 50000+ watchers.
832 */
833#if EV_USE_4HEAP
834
835#define DHEAP 4
836#define HEAP0 (DHEAP - 1) /* index of first element in heap */
837#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
838#define UPHEAP_DONE(p,k) ((p) == (k))
839
840/* away from the root */
639void inline_speed 841void inline_speed
640upheap (WT *heap, int k) 842downheap (ANHE *heap, int N, int k)
641{ 843{
642 WT w = heap [k]; 844 ANHE he = heap [k];
845 ANHE *E = heap + N + HEAP0;
643 846
644 while (k && heap [k >> 1]->at > w->at) 847 for (;;)
645 {
646 heap [k] = heap [k >> 1];
647 ((W)heap [k])->active = k + 1;
648 k >>= 1;
649 } 848 {
849 ev_tstamp minat;
850 ANHE *minpos;
851 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
650 852
853 /* find minimum child */
854 if (expect_true (pos + DHEAP - 1 < E))
855 {
856 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
857 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
858 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
859 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
860 }
861 else if (pos < E)
862 {
863 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
864 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
865 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
866 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
867 }
868 else
869 break;
870
871 if (ANHE_at (he) <= minat)
872 break;
873
874 heap [k] = *minpos;
875 ev_active (ANHE_w (*minpos)) = k;
876
877 k = minpos - heap;
878 }
879
651 heap [k] = w; 880 heap [k] = he;
652 ((W)heap [k])->active = k + 1; 881 ev_active (ANHE_w (he)) = k;
653
654} 882}
655 883
884#else /* 4HEAP */
885
886#define HEAP0 1
887#define HPARENT(k) ((k) >> 1)
888#define UPHEAP_DONE(p,k) (!(p))
889
890/* away from the root */
656void inline_speed 891void inline_speed
657downheap (WT *heap, int N, int k) 892downheap (ANHE *heap, int N, int k)
658{ 893{
659 WT w = heap [k]; 894 ANHE he = heap [k];
660 895
661 while (k < (N >> 1)) 896 for (;;)
662 { 897 {
663 int j = k << 1; 898 int c = k << 1;
664 899
665 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 900 if (c > N + HEAP0 - 1)
666 ++j;
667
668 if (w->at <= heap [j]->at)
669 break; 901 break;
670 902
903 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
904 ? 1 : 0;
905
906 if (ANHE_at (he) <= ANHE_at (heap [c]))
907 break;
908
671 heap [k] = heap [j]; 909 heap [k] = heap [c];
672 ((W)heap [k])->active = k + 1; 910 ev_active (ANHE_w (heap [k])) = k;
911
673 k = j; 912 k = c;
674 } 913 }
675 914
676 heap [k] = w; 915 heap [k] = he;
677 ((W)heap [k])->active = k + 1; 916 ev_active (ANHE_w (he)) = k;
917}
918#endif
919
920/* towards the root */
921void inline_speed
922upheap (ANHE *heap, int k)
923{
924 ANHE he = heap [k];
925
926 for (;;)
927 {
928 int p = HPARENT (k);
929
930 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
931 break;
932
933 heap [k] = heap [p];
934 ev_active (ANHE_w (heap [k])) = k;
935 k = p;
936 }
937
938 heap [k] = he;
939 ev_active (ANHE_w (he)) = k;
678} 940}
679 941
680void inline_size 942void inline_size
681adjustheap (WT *heap, int N, int k) 943adjustheap (ANHE *heap, int N, int k)
682{ 944{
945 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
683 upheap (heap, k); 946 upheap (heap, k);
947 else
684 downheap (heap, N, k); 948 downheap (heap, N, k);
949}
950
951/* rebuild the heap: this function is used only once and executed rarely */
952void inline_size
953reheap (ANHE *heap, int N)
954{
955 int i;
956
957 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
958 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
959 for (i = 0; i < N; ++i)
960 upheap (heap, i + HEAP0);
685} 961}
686 962
687/*****************************************************************************/ 963/*****************************************************************************/
688 964
689typedef struct 965typedef struct
690{ 966{
691 WL head; 967 WL head;
692 sig_atomic_t volatile gotsig; 968 EV_ATOMIC_T gotsig;
693} ANSIG; 969} ANSIG;
694 970
695static ANSIG *signals; 971static ANSIG *signals;
696static int signalmax; 972static int signalmax;
697 973
698static int sigpipe [2]; 974static EV_ATOMIC_T gotsig;
699static sig_atomic_t volatile gotsig;
700static ev_io sigev;
701 975
702void inline_size 976/*****************************************************************************/
703signals_init (ANSIG *base, int count)
704{
705 while (count--)
706 {
707 base->head = 0;
708 base->gotsig = 0;
709
710 ++base;
711 }
712}
713
714static void
715sighandler (int signum)
716{
717#if _WIN32
718 signal (signum, sighandler);
719#endif
720
721 signals [signum - 1].gotsig = 1;
722
723 if (!gotsig)
724 {
725 int old_errno = errno;
726 gotsig = 1;
727 write (sigpipe [1], &signum, 1);
728 errno = old_errno;
729 }
730}
731
732void noinline
733ev_feed_signal_event (EV_P_ int signum)
734{
735 WL w;
736
737#if EV_MULTIPLICITY
738 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
739#endif
740
741 --signum;
742
743 if (signum < 0 || signum >= signalmax)
744 return;
745
746 signals [signum].gotsig = 0;
747
748 for (w = signals [signum].head; w; w = w->next)
749 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
750}
751
752static void
753sigcb (EV_P_ ev_io *iow, int revents)
754{
755 int signum;
756
757 read (sigpipe [0], &revents, 1);
758 gotsig = 0;
759
760 for (signum = signalmax; signum--; )
761 if (signals [signum].gotsig)
762 ev_feed_signal_event (EV_A_ signum + 1);
763}
764 977
765void inline_speed 978void inline_speed
766fd_intern (int fd) 979fd_intern (int fd)
767{ 980{
768#ifdef _WIN32 981#ifdef _WIN32
769 int arg = 1; 982 unsigned long arg = 1;
770 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 983 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
771#else 984#else
772 fcntl (fd, F_SETFD, FD_CLOEXEC); 985 fcntl (fd, F_SETFD, FD_CLOEXEC);
773 fcntl (fd, F_SETFL, O_NONBLOCK); 986 fcntl (fd, F_SETFL, O_NONBLOCK);
774#endif 987#endif
775} 988}
776 989
777static void noinline 990static void noinline
778siginit (EV_P) 991evpipe_init (EV_P)
779{ 992{
993 if (!ev_is_active (&pipeev))
994 {
995#if EV_USE_EVENTFD
996 if ((evfd = eventfd (0, 0)) >= 0)
997 {
998 evpipe [0] = -1;
999 fd_intern (evfd);
1000 ev_io_set (&pipeev, evfd, EV_READ);
1001 }
1002 else
1003#endif
1004 {
1005 while (pipe (evpipe))
1006 ev_syserr ("(libev) error creating signal/async pipe");
1007
780 fd_intern (sigpipe [0]); 1008 fd_intern (evpipe [0]);
781 fd_intern (sigpipe [1]); 1009 fd_intern (evpipe [1]);
1010 ev_io_set (&pipeev, evpipe [0], EV_READ);
1011 }
782 1012
783 ev_io_set (&sigev, sigpipe [0], EV_READ);
784 ev_io_start (EV_A_ &sigev); 1013 ev_io_start (EV_A_ &pipeev);
785 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1014 ev_unref (EV_A); /* watcher should not keep loop alive */
1015 }
1016}
1017
1018void inline_size
1019evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1020{
1021 if (!*flag)
1022 {
1023 int old_errno = errno; /* save errno because write might clobber it */
1024
1025 *flag = 1;
1026
1027#if EV_USE_EVENTFD
1028 if (evfd >= 0)
1029 {
1030 uint64_t counter = 1;
1031 write (evfd, &counter, sizeof (uint64_t));
1032 }
1033 else
1034#endif
1035 write (evpipe [1], &old_errno, 1);
1036
1037 errno = old_errno;
1038 }
1039}
1040
1041static void
1042pipecb (EV_P_ ev_io *iow, int revents)
1043{
1044#if EV_USE_EVENTFD
1045 if (evfd >= 0)
1046 {
1047 uint64_t counter;
1048 read (evfd, &counter, sizeof (uint64_t));
1049 }
1050 else
1051#endif
1052 {
1053 char dummy;
1054 read (evpipe [0], &dummy, 1);
1055 }
1056
1057 if (gotsig && ev_is_default_loop (EV_A))
1058 {
1059 int signum;
1060 gotsig = 0;
1061
1062 for (signum = signalmax; signum--; )
1063 if (signals [signum].gotsig)
1064 ev_feed_signal_event (EV_A_ signum + 1);
1065 }
1066
1067#if EV_ASYNC_ENABLE
1068 if (gotasync)
1069 {
1070 int i;
1071 gotasync = 0;
1072
1073 for (i = asynccnt; i--; )
1074 if (asyncs [i]->sent)
1075 {
1076 asyncs [i]->sent = 0;
1077 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1078 }
1079 }
1080#endif
786} 1081}
787 1082
788/*****************************************************************************/ 1083/*****************************************************************************/
789 1084
1085static void
1086ev_sighandler (int signum)
1087{
1088#if EV_MULTIPLICITY
1089 struct ev_loop *loop = &default_loop_struct;
1090#endif
1091
1092#if _WIN32
1093 signal (signum, ev_sighandler);
1094#endif
1095
1096 signals [signum - 1].gotsig = 1;
1097 evpipe_write (EV_A_ &gotsig);
1098}
1099
1100void noinline
1101ev_feed_signal_event (EV_P_ int signum)
1102{
1103 WL w;
1104
1105#if EV_MULTIPLICITY
1106 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1107#endif
1108
1109 --signum;
1110
1111 if (signum < 0 || signum >= signalmax)
1112 return;
1113
1114 signals [signum].gotsig = 0;
1115
1116 for (w = signals [signum].head; w; w = w->next)
1117 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1118}
1119
1120/*****************************************************************************/
1121
790static ev_child *childs [EV_PID_HASHSIZE]; 1122static WL childs [EV_PID_HASHSIZE];
791 1123
792#ifndef _WIN32 1124#ifndef _WIN32
793 1125
794static ev_signal childev; 1126static ev_signal childev;
795 1127
1128#ifndef WIFCONTINUED
1129# define WIFCONTINUED(status) 0
1130#endif
1131
796void inline_speed 1132void inline_speed
797child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1133child_reap (EV_P_ int chain, int pid, int status)
798{ 1134{
799 ev_child *w; 1135 ev_child *w;
1136 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
800 1137
801 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1138 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1139 {
802 if (w->pid == pid || !w->pid) 1140 if ((w->pid == pid || !w->pid)
1141 && (!traced || (w->flags & 1)))
803 { 1142 {
804 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1143 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
805 w->rpid = pid; 1144 w->rpid = pid;
806 w->rstatus = status; 1145 w->rstatus = status;
807 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1146 ev_feed_event (EV_A_ (W)w, EV_CHILD);
808 } 1147 }
1148 }
809} 1149}
810 1150
811#ifndef WCONTINUED 1151#ifndef WCONTINUED
812# define WCONTINUED 0 1152# define WCONTINUED 0
813#endif 1153#endif
822 if (!WCONTINUED 1162 if (!WCONTINUED
823 || errno != EINVAL 1163 || errno != EINVAL
824 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1164 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
825 return; 1165 return;
826 1166
827 /* make sure we are called again until all childs have been reaped */ 1167 /* make sure we are called again until all children have been reaped */
828 /* we need to do it this way so that the callback gets called before we continue */ 1168 /* we need to do it this way so that the callback gets called before we continue */
829 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1169 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
830 1170
831 child_reap (EV_A_ sw, pid, pid, status); 1171 child_reap (EV_A_ pid, pid, status);
832 if (EV_PID_HASHSIZE > 1) 1172 if (EV_PID_HASHSIZE > 1)
833 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1173 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
834} 1174}
835 1175
836#endif 1176#endif
837 1177
838/*****************************************************************************/ 1178/*****************************************************************************/
910} 1250}
911 1251
912unsigned int 1252unsigned int
913ev_embeddable_backends (void) 1253ev_embeddable_backends (void)
914{ 1254{
915 return EVBACKEND_EPOLL 1255 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
916 | EVBACKEND_KQUEUE 1256
917 | EVBACKEND_PORT; 1257 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1258 /* please fix it and tell me how to detect the fix */
1259 flags &= ~EVBACKEND_EPOLL;
1260
1261 return flags;
918} 1262}
919 1263
920unsigned int 1264unsigned int
921ev_backend (EV_P) 1265ev_backend (EV_P)
922{ 1266{
925 1269
926unsigned int 1270unsigned int
927ev_loop_count (EV_P) 1271ev_loop_count (EV_P)
928{ 1272{
929 return loop_count; 1273 return loop_count;
1274}
1275
1276void
1277ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1278{
1279 io_blocktime = interval;
1280}
1281
1282void
1283ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1284{
1285 timeout_blocktime = interval;
930} 1286}
931 1287
932static void noinline 1288static void noinline
933loop_init (EV_P_ unsigned int flags) 1289loop_init (EV_P_ unsigned int flags)
934{ 1290{
940 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1296 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
941 have_monotonic = 1; 1297 have_monotonic = 1;
942 } 1298 }
943#endif 1299#endif
944 1300
945 ev_rt_now = ev_time (); 1301 ev_rt_now = ev_time ();
946 mn_now = get_clock (); 1302 mn_now = get_clock ();
947 now_floor = mn_now; 1303 now_floor = mn_now;
948 rtmn_diff = ev_rt_now - mn_now; 1304 rtmn_diff = ev_rt_now - mn_now;
1305
1306 io_blocktime = 0.;
1307 timeout_blocktime = 0.;
1308 backend = 0;
1309 backend_fd = -1;
1310 gotasync = 0;
1311#if EV_USE_INOTIFY
1312 fs_fd = -2;
1313#endif
949 1314
950 /* pid check not overridable via env */ 1315 /* pid check not overridable via env */
951#ifndef _WIN32 1316#ifndef _WIN32
952 if (flags & EVFLAG_FORKCHECK) 1317 if (flags & EVFLAG_FORKCHECK)
953 curpid = getpid (); 1318 curpid = getpid ();
956 if (!(flags & EVFLAG_NOENV) 1321 if (!(flags & EVFLAG_NOENV)
957 && !enable_secure () 1322 && !enable_secure ()
958 && getenv ("LIBEV_FLAGS")) 1323 && getenv ("LIBEV_FLAGS"))
959 flags = atoi (getenv ("LIBEV_FLAGS")); 1324 flags = atoi (getenv ("LIBEV_FLAGS"));
960 1325
961 if (!(flags & 0x0000ffffUL)) 1326 if (!(flags & 0x0000ffffU))
962 flags |= ev_recommended_backends (); 1327 flags |= ev_recommended_backends ();
963
964 backend = 0;
965 backend_fd = -1;
966#if EV_USE_INOTIFY
967 fs_fd = -2;
968#endif
969 1328
970#if EV_USE_PORT 1329#if EV_USE_PORT
971 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1330 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
972#endif 1331#endif
973#if EV_USE_KQUEUE 1332#if EV_USE_KQUEUE
981#endif 1340#endif
982#if EV_USE_SELECT 1341#if EV_USE_SELECT
983 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1342 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
984#endif 1343#endif
985 1344
986 ev_init (&sigev, sigcb); 1345 ev_init (&pipeev, pipecb);
987 ev_set_priority (&sigev, EV_MAXPRI); 1346 ev_set_priority (&pipeev, EV_MAXPRI);
988 } 1347 }
989} 1348}
990 1349
991static void noinline 1350static void noinline
992loop_destroy (EV_P) 1351loop_destroy (EV_P)
993{ 1352{
994 int i; 1353 int i;
1354
1355 if (ev_is_active (&pipeev))
1356 {
1357 ev_ref (EV_A); /* signal watcher */
1358 ev_io_stop (EV_A_ &pipeev);
1359
1360#if EV_USE_EVENTFD
1361 if (evfd >= 0)
1362 close (evfd);
1363#endif
1364
1365 if (evpipe [0] >= 0)
1366 {
1367 close (evpipe [0]);
1368 close (evpipe [1]);
1369 }
1370 }
995 1371
996#if EV_USE_INOTIFY 1372#if EV_USE_INOTIFY
997 if (fs_fd >= 0) 1373 if (fs_fd >= 0)
998 close (fs_fd); 1374 close (fs_fd);
999#endif 1375#endif
1022 array_free (pending, [i]); 1398 array_free (pending, [i]);
1023#if EV_IDLE_ENABLE 1399#if EV_IDLE_ENABLE
1024 array_free (idle, [i]); 1400 array_free (idle, [i]);
1025#endif 1401#endif
1026 } 1402 }
1403
1404 ev_free (anfds); anfdmax = 0;
1027 1405
1028 /* have to use the microsoft-never-gets-it-right macro */ 1406 /* have to use the microsoft-never-gets-it-right macro */
1029 array_free (fdchange, EMPTY); 1407 array_free (fdchange, EMPTY);
1030 array_free (timer, EMPTY); 1408 array_free (timer, EMPTY);
1031#if EV_PERIODIC_ENABLE 1409#if EV_PERIODIC_ENABLE
1032 array_free (periodic, EMPTY); 1410 array_free (periodic, EMPTY);
1033#endif 1411#endif
1412#if EV_FORK_ENABLE
1413 array_free (fork, EMPTY);
1414#endif
1034 array_free (prepare, EMPTY); 1415 array_free (prepare, EMPTY);
1035 array_free (check, EMPTY); 1416 array_free (check, EMPTY);
1417#if EV_ASYNC_ENABLE
1418 array_free (async, EMPTY);
1419#endif
1036 1420
1037 backend = 0; 1421 backend = 0;
1038} 1422}
1039 1423
1424#if EV_USE_INOTIFY
1040void inline_size infy_fork (EV_P); 1425void inline_size infy_fork (EV_P);
1426#endif
1041 1427
1042void inline_size 1428void inline_size
1043loop_fork (EV_P) 1429loop_fork (EV_P)
1044{ 1430{
1045#if EV_USE_PORT 1431#if EV_USE_PORT
1053#endif 1439#endif
1054#if EV_USE_INOTIFY 1440#if EV_USE_INOTIFY
1055 infy_fork (EV_A); 1441 infy_fork (EV_A);
1056#endif 1442#endif
1057 1443
1058 if (ev_is_active (&sigev)) 1444 if (ev_is_active (&pipeev))
1059 { 1445 {
1060 /* default loop */ 1446 /* this "locks" the handlers against writing to the pipe */
1447 /* while we modify the fd vars */
1448 gotsig = 1;
1449#if EV_ASYNC_ENABLE
1450 gotasync = 1;
1451#endif
1061 1452
1062 ev_ref (EV_A); 1453 ev_ref (EV_A);
1063 ev_io_stop (EV_A_ &sigev); 1454 ev_io_stop (EV_A_ &pipeev);
1455
1456#if EV_USE_EVENTFD
1457 if (evfd >= 0)
1458 close (evfd);
1459#endif
1460
1461 if (evpipe [0] >= 0)
1462 {
1064 close (sigpipe [0]); 1463 close (evpipe [0]);
1065 close (sigpipe [1]); 1464 close (evpipe [1]);
1465 }
1066 1466
1067 while (pipe (sigpipe))
1068 syserr ("(libev) error creating pipe");
1069
1070 siginit (EV_A); 1467 evpipe_init (EV_A);
1468 /* now iterate over everything, in case we missed something */
1469 pipecb (EV_A_ &pipeev, EV_READ);
1071 } 1470 }
1072 1471
1073 postfork = 0; 1472 postfork = 0;
1074} 1473}
1075 1474
1076#if EV_MULTIPLICITY 1475#if EV_MULTIPLICITY
1476
1077struct ev_loop * 1477struct ev_loop *
1078ev_loop_new (unsigned int flags) 1478ev_loop_new (unsigned int flags)
1079{ 1479{
1080 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1480 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1081 1481
1097} 1497}
1098 1498
1099void 1499void
1100ev_loop_fork (EV_P) 1500ev_loop_fork (EV_P)
1101{ 1501{
1102 postfork = 1; 1502 postfork = 1; /* must be in line with ev_default_fork */
1103} 1503}
1104 1504
1505#if EV_VERIFY
1506static void noinline
1507verify_watcher (EV_P_ W w)
1508{
1509 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1510
1511 if (w->pending)
1512 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1513}
1514
1515static void noinline
1516verify_heap (EV_P_ ANHE *heap, int N)
1517{
1518 int i;
1519
1520 for (i = HEAP0; i < N + HEAP0; ++i)
1521 {
1522 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1523 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1524 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1525
1526 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1527 }
1528}
1529
1530static void noinline
1531array_verify (EV_P_ W *ws, int cnt)
1532{
1533 while (cnt--)
1534 {
1535 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1536 verify_watcher (EV_A_ ws [cnt]);
1537 }
1538}
1539#endif
1540
1541void
1542ev_loop_verify (EV_P)
1543{
1544#if EV_VERIFY
1545 int i;
1546 WL w;
1547
1548 assert (activecnt >= -1);
1549
1550 assert (fdchangemax >= fdchangecnt);
1551 for (i = 0; i < fdchangecnt; ++i)
1552 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1553
1554 assert (anfdmax >= 0);
1555 for (i = 0; i < anfdmax; ++i)
1556 for (w = anfds [i].head; w; w = w->next)
1557 {
1558 verify_watcher (EV_A_ (W)w);
1559 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1560 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1561 }
1562
1563 assert (timermax >= timercnt);
1564 verify_heap (EV_A_ timers, timercnt);
1565
1566#if EV_PERIODIC_ENABLE
1567 assert (periodicmax >= periodiccnt);
1568 verify_heap (EV_A_ periodics, periodiccnt);
1569#endif
1570
1571 for (i = NUMPRI; i--; )
1572 {
1573 assert (pendingmax [i] >= pendingcnt [i]);
1574#if EV_IDLE_ENABLE
1575 assert (idleall >= 0);
1576 assert (idlemax [i] >= idlecnt [i]);
1577 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1578#endif
1579 }
1580
1581#if EV_FORK_ENABLE
1582 assert (forkmax >= forkcnt);
1583 array_verify (EV_A_ (W *)forks, forkcnt);
1584#endif
1585
1586#if EV_ASYNC_ENABLE
1587 assert (asyncmax >= asynccnt);
1588 array_verify (EV_A_ (W *)asyncs, asynccnt);
1589#endif
1590
1591 assert (preparemax >= preparecnt);
1592 array_verify (EV_A_ (W *)prepares, preparecnt);
1593
1594 assert (checkmax >= checkcnt);
1595 array_verify (EV_A_ (W *)checks, checkcnt);
1596
1597# if 0
1598 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1599 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1105#endif 1600# endif
1601#endif
1602}
1603
1604#endif /* multiplicity */
1106 1605
1107#if EV_MULTIPLICITY 1606#if EV_MULTIPLICITY
1108struct ev_loop * 1607struct ev_loop *
1109ev_default_loop_init (unsigned int flags) 1608ev_default_loop_init (unsigned int flags)
1110#else 1609#else
1111int 1610int
1112ev_default_loop (unsigned int flags) 1611ev_default_loop (unsigned int flags)
1113#endif 1612#endif
1114{ 1613{
1115 if (sigpipe [0] == sigpipe [1])
1116 if (pipe (sigpipe))
1117 return 0;
1118
1119 if (!ev_default_loop_ptr) 1614 if (!ev_default_loop_ptr)
1120 { 1615 {
1121#if EV_MULTIPLICITY 1616#if EV_MULTIPLICITY
1122 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1617 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1123#else 1618#else
1126 1621
1127 loop_init (EV_A_ flags); 1622 loop_init (EV_A_ flags);
1128 1623
1129 if (ev_backend (EV_A)) 1624 if (ev_backend (EV_A))
1130 { 1625 {
1131 siginit (EV_A);
1132
1133#ifndef _WIN32 1626#ifndef _WIN32
1134 ev_signal_init (&childev, childcb, SIGCHLD); 1627 ev_signal_init (&childev, childcb, SIGCHLD);
1135 ev_set_priority (&childev, EV_MAXPRI); 1628 ev_set_priority (&childev, EV_MAXPRI);
1136 ev_signal_start (EV_A_ &childev); 1629 ev_signal_start (EV_A_ &childev);
1137 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1630 ev_unref (EV_A); /* child watcher should not keep loop alive */
1149{ 1642{
1150#if EV_MULTIPLICITY 1643#if EV_MULTIPLICITY
1151 struct ev_loop *loop = ev_default_loop_ptr; 1644 struct ev_loop *loop = ev_default_loop_ptr;
1152#endif 1645#endif
1153 1646
1647 ev_default_loop_ptr = 0;
1648
1154#ifndef _WIN32 1649#ifndef _WIN32
1155 ev_ref (EV_A); /* child watcher */ 1650 ev_ref (EV_A); /* child watcher */
1156 ev_signal_stop (EV_A_ &childev); 1651 ev_signal_stop (EV_A_ &childev);
1157#endif 1652#endif
1158 1653
1159 ev_ref (EV_A); /* signal watcher */
1160 ev_io_stop (EV_A_ &sigev);
1161
1162 close (sigpipe [0]); sigpipe [0] = 0;
1163 close (sigpipe [1]); sigpipe [1] = 0;
1164
1165 loop_destroy (EV_A); 1654 loop_destroy (EV_A);
1166} 1655}
1167 1656
1168void 1657void
1169ev_default_fork (void) 1658ev_default_fork (void)
1170{ 1659{
1171#if EV_MULTIPLICITY 1660#if EV_MULTIPLICITY
1172 struct ev_loop *loop = ev_default_loop_ptr; 1661 struct ev_loop *loop = ev_default_loop_ptr;
1173#endif 1662#endif
1174 1663
1175 if (backend) 1664 postfork = 1; /* must be in line with ev_loop_fork */
1176 postfork = 1;
1177} 1665}
1178 1666
1179/*****************************************************************************/ 1667/*****************************************************************************/
1180 1668
1181void 1669void
1198 { 1686 {
1199 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1687 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1200 1688
1201 p->w->pending = 0; 1689 p->w->pending = 0;
1202 EV_CB_INVOKE (p->w, p->events); 1690 EV_CB_INVOKE (p->w, p->events);
1691 EV_FREQUENT_CHECK;
1203 } 1692 }
1204 } 1693 }
1205} 1694}
1206
1207void inline_size
1208timers_reify (EV_P)
1209{
1210 while (timercnt && ((WT)timers [0])->at <= mn_now)
1211 {
1212 ev_timer *w = timers [0];
1213
1214 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1215
1216 /* first reschedule or stop timer */
1217 if (w->repeat)
1218 {
1219 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1220
1221 ((WT)w)->at += w->repeat;
1222 if (((WT)w)->at < mn_now)
1223 ((WT)w)->at = mn_now;
1224
1225 downheap ((WT *)timers, timercnt, 0);
1226 }
1227 else
1228 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1229
1230 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1231 }
1232}
1233
1234#if EV_PERIODIC_ENABLE
1235void inline_size
1236periodics_reify (EV_P)
1237{
1238 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1239 {
1240 ev_periodic *w = periodics [0];
1241
1242 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1243
1244 /* first reschedule or stop timer */
1245 if (w->reschedule_cb)
1246 {
1247 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1248 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1249 downheap ((WT *)periodics, periodiccnt, 0);
1250 }
1251 else if (w->interval)
1252 {
1253 ((WT)w)->at = w->offset + floor ((ev_rt_now + TIME_EPSILON - w->offset) / w->interval + 1.) * w->interval;
1254 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1255 downheap ((WT *)periodics, periodiccnt, 0);
1256 }
1257 else
1258 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1259
1260 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1261 }
1262}
1263
1264static void noinline
1265periodics_reschedule (EV_P)
1266{
1267 int i;
1268
1269 /* adjust periodics after time jump */
1270 for (i = 0; i < periodiccnt; ++i)
1271 {
1272 ev_periodic *w = periodics [i];
1273
1274 if (w->reschedule_cb)
1275 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1276 else if (w->interval)
1277 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1278 }
1279
1280 /* now rebuild the heap */
1281 for (i = periodiccnt >> 1; i--; )
1282 downheap ((WT *)periodics, periodiccnt, i);
1283}
1284#endif
1285 1695
1286#if EV_IDLE_ENABLE 1696#if EV_IDLE_ENABLE
1287void inline_size 1697void inline_size
1288idle_reify (EV_P) 1698idle_reify (EV_P)
1289{ 1699{
1304 } 1714 }
1305 } 1715 }
1306} 1716}
1307#endif 1717#endif
1308 1718
1309int inline_size 1719void inline_size
1310time_update_monotonic (EV_P) 1720timers_reify (EV_P)
1311{ 1721{
1722 EV_FREQUENT_CHECK;
1723
1724 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1725 {
1726 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1727
1728 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1729
1730 /* first reschedule or stop timer */
1731 if (w->repeat)
1732 {
1733 ev_at (w) += w->repeat;
1734 if (ev_at (w) < mn_now)
1735 ev_at (w) = mn_now;
1736
1737 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1738
1739 ANHE_at_cache (timers [HEAP0]);
1740 downheap (timers, timercnt, HEAP0);
1741 }
1742 else
1743 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1744
1745 EV_FREQUENT_CHECK;
1746 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1747 }
1748}
1749
1750#if EV_PERIODIC_ENABLE
1751void inline_size
1752periodics_reify (EV_P)
1753{
1754 EV_FREQUENT_CHECK;
1755
1756 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1757 {
1758 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1759
1760 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1761
1762 /* first reschedule or stop timer */
1763 if (w->reschedule_cb)
1764 {
1765 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1766
1767 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1768
1769 ANHE_at_cache (periodics [HEAP0]);
1770 downheap (periodics, periodiccnt, HEAP0);
1771 }
1772 else if (w->interval)
1773 {
1774 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1775 /* if next trigger time is not sufficiently in the future, put it there */
1776 /* this might happen because of floating point inexactness */
1777 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1778 {
1779 ev_at (w) += w->interval;
1780
1781 /* if interval is unreasonably low we might still have a time in the past */
1782 /* so correct this. this will make the periodic very inexact, but the user */
1783 /* has effectively asked to get triggered more often than possible */
1784 if (ev_at (w) < ev_rt_now)
1785 ev_at (w) = ev_rt_now;
1786 }
1787
1788 ANHE_at_cache (periodics [HEAP0]);
1789 downheap (periodics, periodiccnt, HEAP0);
1790 }
1791 else
1792 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1793
1794 EV_FREQUENT_CHECK;
1795 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1796 }
1797}
1798
1799static void noinline
1800periodics_reschedule (EV_P)
1801{
1802 int i;
1803
1804 /* adjust periodics after time jump */
1805 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1806 {
1807 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1808
1809 if (w->reschedule_cb)
1810 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1811 else if (w->interval)
1812 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1813
1814 ANHE_at_cache (periodics [i]);
1815 }
1816
1817 reheap (periodics, periodiccnt);
1818}
1819#endif
1820
1821void inline_speed
1822time_update (EV_P_ ev_tstamp max_block)
1823{
1824 int i;
1825
1826#if EV_USE_MONOTONIC
1827 if (expect_true (have_monotonic))
1828 {
1829 ev_tstamp odiff = rtmn_diff;
1830
1312 mn_now = get_clock (); 1831 mn_now = get_clock ();
1313 1832
1833 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1834 /* interpolate in the meantime */
1314 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1835 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1315 { 1836 {
1316 ev_rt_now = rtmn_diff + mn_now; 1837 ev_rt_now = rtmn_diff + mn_now;
1317 return 0; 1838 return;
1318 } 1839 }
1319 else 1840
1320 {
1321 now_floor = mn_now; 1841 now_floor = mn_now;
1322 ev_rt_now = ev_time (); 1842 ev_rt_now = ev_time ();
1323 return 1;
1324 }
1325}
1326 1843
1327void inline_size 1844 /* loop a few times, before making important decisions.
1328time_update (EV_P) 1845 * on the choice of "4": one iteration isn't enough,
1329{ 1846 * in case we get preempted during the calls to
1330 int i; 1847 * ev_time and get_clock. a second call is almost guaranteed
1331 1848 * to succeed in that case, though. and looping a few more times
1332#if EV_USE_MONOTONIC 1849 * doesn't hurt either as we only do this on time-jumps or
1333 if (expect_true (have_monotonic)) 1850 * in the unlikely event of having been preempted here.
1334 { 1851 */
1335 if (time_update_monotonic (EV_A)) 1852 for (i = 4; --i; )
1336 { 1853 {
1337 ev_tstamp odiff = rtmn_diff;
1338
1339 /* loop a few times, before making important decisions.
1340 * on the choice of "4": one iteration isn't enough,
1341 * in case we get preempted during the calls to
1342 * ev_time and get_clock. a second call is almost guaranteed
1343 * to succeed in that case, though. and looping a few more times
1344 * doesn't hurt either as we only do this on time-jumps or
1345 * in the unlikely event of having been preempted here.
1346 */
1347 for (i = 4; --i; )
1348 {
1349 rtmn_diff = ev_rt_now - mn_now; 1854 rtmn_diff = ev_rt_now - mn_now;
1350 1855
1351 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1856 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1352 return; /* all is well */ 1857 return; /* all is well */
1353 1858
1354 ev_rt_now = ev_time (); 1859 ev_rt_now = ev_time ();
1355 mn_now = get_clock (); 1860 mn_now = get_clock ();
1356 now_floor = mn_now; 1861 now_floor = mn_now;
1357 } 1862 }
1358 1863
1359# if EV_PERIODIC_ENABLE 1864# if EV_PERIODIC_ENABLE
1360 periodics_reschedule (EV_A); 1865 periodics_reschedule (EV_A);
1361# endif 1866# endif
1362 /* no timer adjustment, as the monotonic clock doesn't jump */ 1867 /* no timer adjustment, as the monotonic clock doesn't jump */
1363 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1868 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1364 }
1365 } 1869 }
1366 else 1870 else
1367#endif 1871#endif
1368 { 1872 {
1369 ev_rt_now = ev_time (); 1873 ev_rt_now = ev_time ();
1370 1874
1371 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1875 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1372 { 1876 {
1373#if EV_PERIODIC_ENABLE 1877#if EV_PERIODIC_ENABLE
1374 periodics_reschedule (EV_A); 1878 periodics_reschedule (EV_A);
1375#endif 1879#endif
1376
1377 /* adjust timers. this is easy, as the offset is the same for all of them */ 1880 /* adjust timers. this is easy, as the offset is the same for all of them */
1378 for (i = 0; i < timercnt; ++i) 1881 for (i = 0; i < timercnt; ++i)
1882 {
1883 ANHE *he = timers + i + HEAP0;
1379 ((WT)timers [i])->at += ev_rt_now - mn_now; 1884 ANHE_w (*he)->at += ev_rt_now - mn_now;
1885 ANHE_at_cache (*he);
1886 }
1380 } 1887 }
1381 1888
1382 mn_now = ev_rt_now; 1889 mn_now = ev_rt_now;
1383 } 1890 }
1384} 1891}
1393ev_unref (EV_P) 1900ev_unref (EV_P)
1394{ 1901{
1395 --activecnt; 1902 --activecnt;
1396} 1903}
1397 1904
1905void
1906ev_now_update (EV_P)
1907{
1908 time_update (EV_A_ 1e100);
1909}
1910
1398static int loop_done; 1911static int loop_done;
1399 1912
1400void 1913void
1401ev_loop (EV_P_ int flags) 1914ev_loop (EV_P_ int flags)
1402{ 1915{
1403 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1916 loop_done = EVUNLOOP_CANCEL;
1404 ? EVUNLOOP_ONE
1405 : EVUNLOOP_CANCEL;
1406 1917
1407 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1918 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1408 1919
1409 do 1920 do
1410 { 1921 {
1922#if EV_VERIFY >= 2
1923 ev_loop_verify (EV_A);
1924#endif
1925
1411#ifndef _WIN32 1926#ifndef _WIN32
1412 if (expect_false (curpid)) /* penalise the forking check even more */ 1927 if (expect_false (curpid)) /* penalise the forking check even more */
1413 if (expect_false (getpid () != curpid)) 1928 if (expect_false (getpid () != curpid))
1414 { 1929 {
1415 curpid = getpid (); 1930 curpid = getpid ();
1444 /* update fd-related kernel structures */ 1959 /* update fd-related kernel structures */
1445 fd_reify (EV_A); 1960 fd_reify (EV_A);
1446 1961
1447 /* calculate blocking time */ 1962 /* calculate blocking time */
1448 { 1963 {
1449 ev_tstamp block; 1964 ev_tstamp waittime = 0.;
1965 ev_tstamp sleeptime = 0.;
1450 1966
1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1967 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1452 block = 0.; /* do not block at all */
1453 else
1454 { 1968 {
1455 /* update time to cancel out callback processing overhead */ 1969 /* update time to cancel out callback processing overhead */
1456#if EV_USE_MONOTONIC
1457 if (expect_true (have_monotonic))
1458 time_update_monotonic (EV_A); 1970 time_update (EV_A_ 1e100);
1459 else
1460#endif
1461 {
1462 ev_rt_now = ev_time ();
1463 mn_now = ev_rt_now;
1464 }
1465 1971
1466 block = MAX_BLOCKTIME; 1972 waittime = MAX_BLOCKTIME;
1467 1973
1468 if (timercnt) 1974 if (timercnt)
1469 { 1975 {
1470 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1976 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1471 if (block > to) block = to; 1977 if (waittime > to) waittime = to;
1472 } 1978 }
1473 1979
1474#if EV_PERIODIC_ENABLE 1980#if EV_PERIODIC_ENABLE
1475 if (periodiccnt) 1981 if (periodiccnt)
1476 { 1982 {
1477 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1983 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1478 if (block > to) block = to; 1984 if (waittime > to) waittime = to;
1479 } 1985 }
1480#endif 1986#endif
1481 1987
1482 if (expect_false (block < 0.)) block = 0.; 1988 if (expect_false (waittime < timeout_blocktime))
1989 waittime = timeout_blocktime;
1990
1991 sleeptime = waittime - backend_fudge;
1992
1993 if (expect_true (sleeptime > io_blocktime))
1994 sleeptime = io_blocktime;
1995
1996 if (sleeptime)
1997 {
1998 ev_sleep (sleeptime);
1999 waittime -= sleeptime;
2000 }
1483 } 2001 }
1484 2002
1485 ++loop_count; 2003 ++loop_count;
1486 backend_poll (EV_A_ block); 2004 backend_poll (EV_A_ waittime);
2005
2006 /* update ev_rt_now, do magic */
2007 time_update (EV_A_ waittime + sleeptime);
1487 } 2008 }
1488
1489 /* update ev_rt_now, do magic */
1490 time_update (EV_A);
1491 2009
1492 /* queue pending timers and reschedule them */ 2010 /* queue pending timers and reschedule them */
1493 timers_reify (EV_A); /* relative timers called last */ 2011 timers_reify (EV_A); /* relative timers called last */
1494#if EV_PERIODIC_ENABLE 2012#if EV_PERIODIC_ENABLE
1495 periodics_reify (EV_A); /* absolute timers called first */ 2013 periodics_reify (EV_A); /* absolute timers called first */
1503 /* queue check watchers, to be executed first */ 2021 /* queue check watchers, to be executed first */
1504 if (expect_false (checkcnt)) 2022 if (expect_false (checkcnt))
1505 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2023 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1506 2024
1507 call_pending (EV_A); 2025 call_pending (EV_A);
1508
1509 } 2026 }
1510 while (expect_true (activecnt && !loop_done)); 2027 while (expect_true (
2028 activecnt
2029 && !loop_done
2030 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2031 ));
1511 2032
1512 if (loop_done == EVUNLOOP_ONE) 2033 if (loop_done == EVUNLOOP_ONE)
1513 loop_done = EVUNLOOP_CANCEL; 2034 loop_done = EVUNLOOP_CANCEL;
1514} 2035}
1515 2036
1603 2124
1604 if (expect_false (ev_is_active (w))) 2125 if (expect_false (ev_is_active (w)))
1605 return; 2126 return;
1606 2127
1607 assert (("ev_io_start called with negative fd", fd >= 0)); 2128 assert (("ev_io_start called with negative fd", fd >= 0));
2129 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE))));
2130
2131 EV_FREQUENT_CHECK;
1608 2132
1609 ev_start (EV_A_ (W)w, 1); 2133 ev_start (EV_A_ (W)w, 1);
1610 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2134 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1611 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2135 wlist_add (&anfds[fd].head, (WL)w);
1612 2136
1613 fd_change (EV_A_ fd); 2137 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
2138 w->events &= ~EV_IOFDSET;
2139
2140 EV_FREQUENT_CHECK;
1614} 2141}
1615 2142
1616void noinline 2143void noinline
1617ev_io_stop (EV_P_ ev_io *w) 2144ev_io_stop (EV_P_ ev_io *w)
1618{ 2145{
1619 clear_pending (EV_A_ (W)w); 2146 clear_pending (EV_A_ (W)w);
1620 if (expect_false (!ev_is_active (w))) 2147 if (expect_false (!ev_is_active (w)))
1621 return; 2148 return;
1622 2149
1623 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2150 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1624 2151
2152 EV_FREQUENT_CHECK;
2153
1625 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2154 wlist_del (&anfds[w->fd].head, (WL)w);
1626 ev_stop (EV_A_ (W)w); 2155 ev_stop (EV_A_ (W)w);
1627 2156
1628 fd_change (EV_A_ w->fd); 2157 fd_change (EV_A_ w->fd, 1);
2158
2159 EV_FREQUENT_CHECK;
1629} 2160}
1630 2161
1631void noinline 2162void noinline
1632ev_timer_start (EV_P_ ev_timer *w) 2163ev_timer_start (EV_P_ ev_timer *w)
1633{ 2164{
1634 if (expect_false (ev_is_active (w))) 2165 if (expect_false (ev_is_active (w)))
1635 return; 2166 return;
1636 2167
1637 ((WT)w)->at += mn_now; 2168 ev_at (w) += mn_now;
1638 2169
1639 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2170 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1640 2171
2172 EV_FREQUENT_CHECK;
2173
2174 ++timercnt;
1641 ev_start (EV_A_ (W)w, ++timercnt); 2175 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1642 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2176 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1643 timers [timercnt - 1] = w; 2177 ANHE_w (timers [ev_active (w)]) = (WT)w;
1644 upheap ((WT *)timers, timercnt - 1); 2178 ANHE_at_cache (timers [ev_active (w)]);
2179 upheap (timers, ev_active (w));
1645 2180
2181 EV_FREQUENT_CHECK;
2182
1646 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2183 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1647} 2184}
1648 2185
1649void noinline 2186void noinline
1650ev_timer_stop (EV_P_ ev_timer *w) 2187ev_timer_stop (EV_P_ ev_timer *w)
1651{ 2188{
1652 clear_pending (EV_A_ (W)w); 2189 clear_pending (EV_A_ (W)w);
1653 if (expect_false (!ev_is_active (w))) 2190 if (expect_false (!ev_is_active (w)))
1654 return; 2191 return;
1655 2192
1656 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2193 EV_FREQUENT_CHECK;
1657 2194
1658 { 2195 {
1659 int active = ((W)w)->active; 2196 int active = ev_active (w);
1660 2197
2198 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2199
2200 --timercnt;
2201
1661 if (expect_true (--active < --timercnt)) 2202 if (expect_true (active < timercnt + HEAP0))
1662 { 2203 {
1663 timers [active] = timers [timercnt]; 2204 timers [active] = timers [timercnt + HEAP0];
1664 adjustheap ((WT *)timers, timercnt, active); 2205 adjustheap (timers, timercnt, active);
1665 } 2206 }
1666 } 2207 }
1667 2208
1668 ((WT)w)->at -= mn_now; 2209 EV_FREQUENT_CHECK;
2210
2211 ev_at (w) -= mn_now;
1669 2212
1670 ev_stop (EV_A_ (W)w); 2213 ev_stop (EV_A_ (W)w);
1671} 2214}
1672 2215
1673void noinline 2216void noinline
1674ev_timer_again (EV_P_ ev_timer *w) 2217ev_timer_again (EV_P_ ev_timer *w)
1675{ 2218{
2219 EV_FREQUENT_CHECK;
2220
1676 if (ev_is_active (w)) 2221 if (ev_is_active (w))
1677 { 2222 {
1678 if (w->repeat) 2223 if (w->repeat)
1679 { 2224 {
1680 ((WT)w)->at = mn_now + w->repeat; 2225 ev_at (w) = mn_now + w->repeat;
2226 ANHE_at_cache (timers [ev_active (w)]);
1681 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2227 adjustheap (timers, timercnt, ev_active (w));
1682 } 2228 }
1683 else 2229 else
1684 ev_timer_stop (EV_A_ w); 2230 ev_timer_stop (EV_A_ w);
1685 } 2231 }
1686 else if (w->repeat) 2232 else if (w->repeat)
1687 { 2233 {
1688 w->at = w->repeat; 2234 ev_at (w) = w->repeat;
1689 ev_timer_start (EV_A_ w); 2235 ev_timer_start (EV_A_ w);
1690 } 2236 }
2237
2238 EV_FREQUENT_CHECK;
1691} 2239}
1692 2240
1693#if EV_PERIODIC_ENABLE 2241#if EV_PERIODIC_ENABLE
1694void noinline 2242void noinline
1695ev_periodic_start (EV_P_ ev_periodic *w) 2243ev_periodic_start (EV_P_ ev_periodic *w)
1696{ 2244{
1697 if (expect_false (ev_is_active (w))) 2245 if (expect_false (ev_is_active (w)))
1698 return; 2246 return;
1699 2247
1700 if (w->reschedule_cb) 2248 if (w->reschedule_cb)
1701 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2249 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1702 else if (w->interval) 2250 else if (w->interval)
1703 { 2251 {
1704 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2252 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1705 /* this formula differs from the one in periodic_reify because we do not always round up */ 2253 /* this formula differs from the one in periodic_reify because we do not always round up */
1706 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2254 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1707 } 2255 }
1708 else 2256 else
1709 ((WT)w)->at = w->offset; 2257 ev_at (w) = w->offset;
1710 2258
2259 EV_FREQUENT_CHECK;
2260
2261 ++periodiccnt;
1711 ev_start (EV_A_ (W)w, ++periodiccnt); 2262 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1712 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2263 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1713 periodics [periodiccnt - 1] = w; 2264 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1714 upheap ((WT *)periodics, periodiccnt - 1); 2265 ANHE_at_cache (periodics [ev_active (w)]);
2266 upheap (periodics, ev_active (w));
1715 2267
2268 EV_FREQUENT_CHECK;
2269
1716 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2270 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1717} 2271}
1718 2272
1719void noinline 2273void noinline
1720ev_periodic_stop (EV_P_ ev_periodic *w) 2274ev_periodic_stop (EV_P_ ev_periodic *w)
1721{ 2275{
1722 clear_pending (EV_A_ (W)w); 2276 clear_pending (EV_A_ (W)w);
1723 if (expect_false (!ev_is_active (w))) 2277 if (expect_false (!ev_is_active (w)))
1724 return; 2278 return;
1725 2279
1726 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2280 EV_FREQUENT_CHECK;
1727 2281
1728 { 2282 {
1729 int active = ((W)w)->active; 2283 int active = ev_active (w);
1730 2284
2285 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2286
2287 --periodiccnt;
2288
1731 if (expect_true (--active < --periodiccnt)) 2289 if (expect_true (active < periodiccnt + HEAP0))
1732 { 2290 {
1733 periodics [active] = periodics [periodiccnt]; 2291 periodics [active] = periodics [periodiccnt + HEAP0];
1734 adjustheap ((WT *)periodics, periodiccnt, active); 2292 adjustheap (periodics, periodiccnt, active);
1735 } 2293 }
1736 } 2294 }
2295
2296 EV_FREQUENT_CHECK;
1737 2297
1738 ev_stop (EV_A_ (W)w); 2298 ev_stop (EV_A_ (W)w);
1739} 2299}
1740 2300
1741void noinline 2301void noinline
1760 if (expect_false (ev_is_active (w))) 2320 if (expect_false (ev_is_active (w)))
1761 return; 2321 return;
1762 2322
1763 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2323 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1764 2324
2325 evpipe_init (EV_A);
2326
2327 EV_FREQUENT_CHECK;
2328
2329 {
2330#ifndef _WIN32
2331 sigset_t full, prev;
2332 sigfillset (&full);
2333 sigprocmask (SIG_SETMASK, &full, &prev);
2334#endif
2335
2336 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2337
2338#ifndef _WIN32
2339 sigprocmask (SIG_SETMASK, &prev, 0);
2340#endif
2341 }
2342
1765 ev_start (EV_A_ (W)w, 1); 2343 ev_start (EV_A_ (W)w, 1);
1766 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1767 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2344 wlist_add (&signals [w->signum - 1].head, (WL)w);
1768 2345
1769 if (!((WL)w)->next) 2346 if (!((WL)w)->next)
1770 { 2347 {
1771#if _WIN32 2348#if _WIN32
1772 signal (w->signum, sighandler); 2349 signal (w->signum, ev_sighandler);
1773#else 2350#else
1774 struct sigaction sa; 2351 struct sigaction sa;
1775 sa.sa_handler = sighandler; 2352 sa.sa_handler = ev_sighandler;
1776 sigfillset (&sa.sa_mask); 2353 sigfillset (&sa.sa_mask);
1777 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2354 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1778 sigaction (w->signum, &sa, 0); 2355 sigaction (w->signum, &sa, 0);
1779#endif 2356#endif
1780 } 2357 }
2358
2359 EV_FREQUENT_CHECK;
1781} 2360}
1782 2361
1783void noinline 2362void noinline
1784ev_signal_stop (EV_P_ ev_signal *w) 2363ev_signal_stop (EV_P_ ev_signal *w)
1785{ 2364{
1786 clear_pending (EV_A_ (W)w); 2365 clear_pending (EV_A_ (W)w);
1787 if (expect_false (!ev_is_active (w))) 2366 if (expect_false (!ev_is_active (w)))
1788 return; 2367 return;
1789 2368
2369 EV_FREQUENT_CHECK;
2370
1790 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2371 wlist_del (&signals [w->signum - 1].head, (WL)w);
1791 ev_stop (EV_A_ (W)w); 2372 ev_stop (EV_A_ (W)w);
1792 2373
1793 if (!signals [w->signum - 1].head) 2374 if (!signals [w->signum - 1].head)
1794 signal (w->signum, SIG_DFL); 2375 signal (w->signum, SIG_DFL);
2376
2377 EV_FREQUENT_CHECK;
1795} 2378}
1796 2379
1797void 2380void
1798ev_child_start (EV_P_ ev_child *w) 2381ev_child_start (EV_P_ ev_child *w)
1799{ 2382{
1801 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2384 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1802#endif 2385#endif
1803 if (expect_false (ev_is_active (w))) 2386 if (expect_false (ev_is_active (w)))
1804 return; 2387 return;
1805 2388
2389 EV_FREQUENT_CHECK;
2390
1806 ev_start (EV_A_ (W)w, 1); 2391 ev_start (EV_A_ (W)w, 1);
1807 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2392 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2393
2394 EV_FREQUENT_CHECK;
1808} 2395}
1809 2396
1810void 2397void
1811ev_child_stop (EV_P_ ev_child *w) 2398ev_child_stop (EV_P_ ev_child *w)
1812{ 2399{
1813 clear_pending (EV_A_ (W)w); 2400 clear_pending (EV_A_ (W)w);
1814 if (expect_false (!ev_is_active (w))) 2401 if (expect_false (!ev_is_active (w)))
1815 return; 2402 return;
1816 2403
2404 EV_FREQUENT_CHECK;
2405
1817 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2406 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1818 ev_stop (EV_A_ (W)w); 2407 ev_stop (EV_A_ (W)w);
2408
2409 EV_FREQUENT_CHECK;
1819} 2410}
1820 2411
1821#if EV_STAT_ENABLE 2412#if EV_STAT_ENABLE
1822 2413
1823# ifdef _WIN32 2414# ifdef _WIN32
1841 if (w->wd < 0) 2432 if (w->wd < 0)
1842 { 2433 {
1843 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2434 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1844 2435
1845 /* monitor some parent directory for speedup hints */ 2436 /* monitor some parent directory for speedup hints */
2437 /* note that exceeding the hardcoded limit is not a correctness issue, */
2438 /* but an efficiency issue only */
1846 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2439 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1847 { 2440 {
1848 char path [4096]; 2441 char path [4096];
1849 strcpy (path, w->path); 2442 strcpy (path, w->path);
1850 2443
1890 2483
1891static void noinline 2484static void noinline
1892infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2485infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1893{ 2486{
1894 if (slot < 0) 2487 if (slot < 0)
1895 /* overflow, need to check for all hahs slots */ 2488 /* overflow, need to check for all hash slots */
1896 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2489 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1897 infy_wd (EV_A_ slot, wd, ev); 2490 infy_wd (EV_A_ slot, wd, ev);
1898 else 2491 else
1899 { 2492 {
1900 WL w_; 2493 WL w_;
1934infy_init (EV_P) 2527infy_init (EV_P)
1935{ 2528{
1936 if (fs_fd != -2) 2529 if (fs_fd != -2)
1937 return; 2530 return;
1938 2531
2532 /* kernels < 2.6.25 are borked
2533 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2534 */
2535 {
2536 struct utsname buf;
2537 int major, minor, micro;
2538
2539 fs_fd = -1;
2540
2541 if (uname (&buf))
2542 return;
2543
2544 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2545 return;
2546
2547 if (major < 2
2548 || (major == 2 && minor < 6)
2549 || (major == 2 && minor == 6 && micro < 25))
2550 return;
2551 }
2552
1939 fs_fd = inotify_init (); 2553 fs_fd = inotify_init ();
1940 2554
1941 if (fs_fd >= 0) 2555 if (fs_fd >= 0)
1942 { 2556 {
1943 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 2557 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1972 if (fs_fd >= 0) 2586 if (fs_fd >= 0)
1973 infy_add (EV_A_ w); /* re-add, no matter what */ 2587 infy_add (EV_A_ w); /* re-add, no matter what */
1974 else 2588 else
1975 ev_timer_start (EV_A_ &w->timer); 2589 ev_timer_start (EV_A_ &w->timer);
1976 } 2590 }
1977
1978 } 2591 }
1979} 2592}
1980 2593
2594#endif
2595
2596#ifdef _WIN32
2597# define EV_LSTAT(p,b) _stati64 (p, b)
2598#else
2599# define EV_LSTAT(p,b) lstat (p, b)
1981#endif 2600#endif
1982 2601
1983void 2602void
1984ev_stat_stat (EV_P_ ev_stat *w) 2603ev_stat_stat (EV_P_ ev_stat *w)
1985{ 2604{
2012 || w->prev.st_atime != w->attr.st_atime 2631 || w->prev.st_atime != w->attr.st_atime
2013 || w->prev.st_mtime != w->attr.st_mtime 2632 || w->prev.st_mtime != w->attr.st_mtime
2014 || w->prev.st_ctime != w->attr.st_ctime 2633 || w->prev.st_ctime != w->attr.st_ctime
2015 ) { 2634 ) {
2016 #if EV_USE_INOTIFY 2635 #if EV_USE_INOTIFY
2636 if (fs_fd >= 0)
2637 {
2017 infy_del (EV_A_ w); 2638 infy_del (EV_A_ w);
2018 infy_add (EV_A_ w); 2639 infy_add (EV_A_ w);
2019 ev_stat_stat (EV_A_ w); /* avoid race... */ 2640 ev_stat_stat (EV_A_ w); /* avoid race... */
2641 }
2020 #endif 2642 #endif
2021 2643
2022 ev_feed_event (EV_A_ w, EV_STAT); 2644 ev_feed_event (EV_A_ w, EV_STAT);
2023 } 2645 }
2024} 2646}
2049 else 2671 else
2050#endif 2672#endif
2051 ev_timer_start (EV_A_ &w->timer); 2673 ev_timer_start (EV_A_ &w->timer);
2052 2674
2053 ev_start (EV_A_ (W)w, 1); 2675 ev_start (EV_A_ (W)w, 1);
2676
2677 EV_FREQUENT_CHECK;
2054} 2678}
2055 2679
2056void 2680void
2057ev_stat_stop (EV_P_ ev_stat *w) 2681ev_stat_stop (EV_P_ ev_stat *w)
2058{ 2682{
2059 clear_pending (EV_A_ (W)w); 2683 clear_pending (EV_A_ (W)w);
2060 if (expect_false (!ev_is_active (w))) 2684 if (expect_false (!ev_is_active (w)))
2061 return; 2685 return;
2062 2686
2687 EV_FREQUENT_CHECK;
2688
2063#if EV_USE_INOTIFY 2689#if EV_USE_INOTIFY
2064 infy_del (EV_A_ w); 2690 infy_del (EV_A_ w);
2065#endif 2691#endif
2066 ev_timer_stop (EV_A_ &w->timer); 2692 ev_timer_stop (EV_A_ &w->timer);
2067 2693
2068 ev_stop (EV_A_ (W)w); 2694 ev_stop (EV_A_ (W)w);
2695
2696 EV_FREQUENT_CHECK;
2069} 2697}
2070#endif 2698#endif
2071 2699
2072#if EV_IDLE_ENABLE 2700#if EV_IDLE_ENABLE
2073void 2701void
2075{ 2703{
2076 if (expect_false (ev_is_active (w))) 2704 if (expect_false (ev_is_active (w)))
2077 return; 2705 return;
2078 2706
2079 pri_adjust (EV_A_ (W)w); 2707 pri_adjust (EV_A_ (W)w);
2708
2709 EV_FREQUENT_CHECK;
2080 2710
2081 { 2711 {
2082 int active = ++idlecnt [ABSPRI (w)]; 2712 int active = ++idlecnt [ABSPRI (w)];
2083 2713
2084 ++idleall; 2714 ++idleall;
2085 ev_start (EV_A_ (W)w, active); 2715 ev_start (EV_A_ (W)w, active);
2086 2716
2087 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2717 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2088 idles [ABSPRI (w)][active - 1] = w; 2718 idles [ABSPRI (w)][active - 1] = w;
2089 } 2719 }
2720
2721 EV_FREQUENT_CHECK;
2090} 2722}
2091 2723
2092void 2724void
2093ev_idle_stop (EV_P_ ev_idle *w) 2725ev_idle_stop (EV_P_ ev_idle *w)
2094{ 2726{
2095 clear_pending (EV_A_ (W)w); 2727 clear_pending (EV_A_ (W)w);
2096 if (expect_false (!ev_is_active (w))) 2728 if (expect_false (!ev_is_active (w)))
2097 return; 2729 return;
2098 2730
2731 EV_FREQUENT_CHECK;
2732
2099 { 2733 {
2100 int active = ((W)w)->active; 2734 int active = ev_active (w);
2101 2735
2102 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2736 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2103 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2737 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2104 2738
2105 ev_stop (EV_A_ (W)w); 2739 ev_stop (EV_A_ (W)w);
2106 --idleall; 2740 --idleall;
2107 } 2741 }
2742
2743 EV_FREQUENT_CHECK;
2108} 2744}
2109#endif 2745#endif
2110 2746
2111void 2747void
2112ev_prepare_start (EV_P_ ev_prepare *w) 2748ev_prepare_start (EV_P_ ev_prepare *w)
2113{ 2749{
2114 if (expect_false (ev_is_active (w))) 2750 if (expect_false (ev_is_active (w)))
2115 return; 2751 return;
2752
2753 EV_FREQUENT_CHECK;
2116 2754
2117 ev_start (EV_A_ (W)w, ++preparecnt); 2755 ev_start (EV_A_ (W)w, ++preparecnt);
2118 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2756 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2119 prepares [preparecnt - 1] = w; 2757 prepares [preparecnt - 1] = w;
2758
2759 EV_FREQUENT_CHECK;
2120} 2760}
2121 2761
2122void 2762void
2123ev_prepare_stop (EV_P_ ev_prepare *w) 2763ev_prepare_stop (EV_P_ ev_prepare *w)
2124{ 2764{
2125 clear_pending (EV_A_ (W)w); 2765 clear_pending (EV_A_ (W)w);
2126 if (expect_false (!ev_is_active (w))) 2766 if (expect_false (!ev_is_active (w)))
2127 return; 2767 return;
2128 2768
2769 EV_FREQUENT_CHECK;
2770
2129 { 2771 {
2130 int active = ((W)w)->active; 2772 int active = ev_active (w);
2773
2131 prepares [active - 1] = prepares [--preparecnt]; 2774 prepares [active - 1] = prepares [--preparecnt];
2132 ((W)prepares [active - 1])->active = active; 2775 ev_active (prepares [active - 1]) = active;
2133 } 2776 }
2134 2777
2135 ev_stop (EV_A_ (W)w); 2778 ev_stop (EV_A_ (W)w);
2779
2780 EV_FREQUENT_CHECK;
2136} 2781}
2137 2782
2138void 2783void
2139ev_check_start (EV_P_ ev_check *w) 2784ev_check_start (EV_P_ ev_check *w)
2140{ 2785{
2141 if (expect_false (ev_is_active (w))) 2786 if (expect_false (ev_is_active (w)))
2142 return; 2787 return;
2788
2789 EV_FREQUENT_CHECK;
2143 2790
2144 ev_start (EV_A_ (W)w, ++checkcnt); 2791 ev_start (EV_A_ (W)w, ++checkcnt);
2145 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2792 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2146 checks [checkcnt - 1] = w; 2793 checks [checkcnt - 1] = w;
2794
2795 EV_FREQUENT_CHECK;
2147} 2796}
2148 2797
2149void 2798void
2150ev_check_stop (EV_P_ ev_check *w) 2799ev_check_stop (EV_P_ ev_check *w)
2151{ 2800{
2152 clear_pending (EV_A_ (W)w); 2801 clear_pending (EV_A_ (W)w);
2153 if (expect_false (!ev_is_active (w))) 2802 if (expect_false (!ev_is_active (w)))
2154 return; 2803 return;
2155 2804
2805 EV_FREQUENT_CHECK;
2806
2156 { 2807 {
2157 int active = ((W)w)->active; 2808 int active = ev_active (w);
2809
2158 checks [active - 1] = checks [--checkcnt]; 2810 checks [active - 1] = checks [--checkcnt];
2159 ((W)checks [active - 1])->active = active; 2811 ev_active (checks [active - 1]) = active;
2160 } 2812 }
2161 2813
2162 ev_stop (EV_A_ (W)w); 2814 ev_stop (EV_A_ (W)w);
2815
2816 EV_FREQUENT_CHECK;
2163} 2817}
2164 2818
2165#if EV_EMBED_ENABLE 2819#if EV_EMBED_ENABLE
2166void noinline 2820void noinline
2167ev_embed_sweep (EV_P_ ev_embed *w) 2821ev_embed_sweep (EV_P_ ev_embed *w)
2168{ 2822{
2169 ev_loop (w->loop, EVLOOP_NONBLOCK); 2823 ev_loop (w->other, EVLOOP_NONBLOCK);
2170} 2824}
2171 2825
2172static void 2826static void
2173embed_cb (EV_P_ ev_io *io, int revents) 2827embed_io_cb (EV_P_ ev_io *io, int revents)
2174{ 2828{
2175 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2829 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2176 2830
2177 if (ev_cb (w)) 2831 if (ev_cb (w))
2178 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2832 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2179 else 2833 else
2180 ev_embed_sweep (loop, w); 2834 ev_loop (w->other, EVLOOP_NONBLOCK);
2181} 2835}
2836
2837static void
2838embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2839{
2840 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2841
2842 {
2843 struct ev_loop *loop = w->other;
2844
2845 while (fdchangecnt)
2846 {
2847 fd_reify (EV_A);
2848 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2849 }
2850 }
2851}
2852
2853static void
2854embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2855{
2856 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2857
2858 {
2859 struct ev_loop *loop = w->other;
2860
2861 ev_loop_fork (EV_A);
2862 }
2863}
2864
2865#if 0
2866static void
2867embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2868{
2869 ev_idle_stop (EV_A_ idle);
2870}
2871#endif
2182 2872
2183void 2873void
2184ev_embed_start (EV_P_ ev_embed *w) 2874ev_embed_start (EV_P_ ev_embed *w)
2185{ 2875{
2186 if (expect_false (ev_is_active (w))) 2876 if (expect_false (ev_is_active (w)))
2187 return; 2877 return;
2188 2878
2189 { 2879 {
2190 struct ev_loop *loop = w->loop; 2880 struct ev_loop *loop = w->other;
2191 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2881 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2192 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2882 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2193 } 2883 }
2884
2885 EV_FREQUENT_CHECK;
2194 2886
2195 ev_set_priority (&w->io, ev_priority (w)); 2887 ev_set_priority (&w->io, ev_priority (w));
2196 ev_io_start (EV_A_ &w->io); 2888 ev_io_start (EV_A_ &w->io);
2197 2889
2890 ev_prepare_init (&w->prepare, embed_prepare_cb);
2891 ev_set_priority (&w->prepare, EV_MINPRI);
2892 ev_prepare_start (EV_A_ &w->prepare);
2893
2894 ev_fork_init (&w->fork, embed_fork_cb);
2895 ev_fork_start (EV_A_ &w->fork);
2896
2897 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2898
2198 ev_start (EV_A_ (W)w, 1); 2899 ev_start (EV_A_ (W)w, 1);
2900
2901 EV_FREQUENT_CHECK;
2199} 2902}
2200 2903
2201void 2904void
2202ev_embed_stop (EV_P_ ev_embed *w) 2905ev_embed_stop (EV_P_ ev_embed *w)
2203{ 2906{
2204 clear_pending (EV_A_ (W)w); 2907 clear_pending (EV_A_ (W)w);
2205 if (expect_false (!ev_is_active (w))) 2908 if (expect_false (!ev_is_active (w)))
2206 return; 2909 return;
2207 2910
2911 EV_FREQUENT_CHECK;
2912
2208 ev_io_stop (EV_A_ &w->io); 2913 ev_io_stop (EV_A_ &w->io);
2914 ev_prepare_stop (EV_A_ &w->prepare);
2915 ev_fork_stop (EV_A_ &w->fork);
2209 2916
2210 ev_stop (EV_A_ (W)w); 2917 EV_FREQUENT_CHECK;
2211} 2918}
2212#endif 2919#endif
2213 2920
2214#if EV_FORK_ENABLE 2921#if EV_FORK_ENABLE
2215void 2922void
2216ev_fork_start (EV_P_ ev_fork *w) 2923ev_fork_start (EV_P_ ev_fork *w)
2217{ 2924{
2218 if (expect_false (ev_is_active (w))) 2925 if (expect_false (ev_is_active (w)))
2219 return; 2926 return;
2927
2928 EV_FREQUENT_CHECK;
2220 2929
2221 ev_start (EV_A_ (W)w, ++forkcnt); 2930 ev_start (EV_A_ (W)w, ++forkcnt);
2222 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2931 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2223 forks [forkcnt - 1] = w; 2932 forks [forkcnt - 1] = w;
2933
2934 EV_FREQUENT_CHECK;
2224} 2935}
2225 2936
2226void 2937void
2227ev_fork_stop (EV_P_ ev_fork *w) 2938ev_fork_stop (EV_P_ ev_fork *w)
2228{ 2939{
2229 clear_pending (EV_A_ (W)w); 2940 clear_pending (EV_A_ (W)w);
2230 if (expect_false (!ev_is_active (w))) 2941 if (expect_false (!ev_is_active (w)))
2231 return; 2942 return;
2232 2943
2944 EV_FREQUENT_CHECK;
2945
2233 { 2946 {
2234 int active = ((W)w)->active; 2947 int active = ev_active (w);
2948
2235 forks [active - 1] = forks [--forkcnt]; 2949 forks [active - 1] = forks [--forkcnt];
2236 ((W)forks [active - 1])->active = active; 2950 ev_active (forks [active - 1]) = active;
2237 } 2951 }
2238 2952
2239 ev_stop (EV_A_ (W)w); 2953 ev_stop (EV_A_ (W)w);
2954
2955 EV_FREQUENT_CHECK;
2956}
2957#endif
2958
2959#if EV_ASYNC_ENABLE
2960void
2961ev_async_start (EV_P_ ev_async *w)
2962{
2963 if (expect_false (ev_is_active (w)))
2964 return;
2965
2966 evpipe_init (EV_A);
2967
2968 EV_FREQUENT_CHECK;
2969
2970 ev_start (EV_A_ (W)w, ++asynccnt);
2971 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2972 asyncs [asynccnt - 1] = w;
2973
2974 EV_FREQUENT_CHECK;
2975}
2976
2977void
2978ev_async_stop (EV_P_ ev_async *w)
2979{
2980 clear_pending (EV_A_ (W)w);
2981 if (expect_false (!ev_is_active (w)))
2982 return;
2983
2984 EV_FREQUENT_CHECK;
2985
2986 {
2987 int active = ev_active (w);
2988
2989 asyncs [active - 1] = asyncs [--asynccnt];
2990 ev_active (asyncs [active - 1]) = active;
2991 }
2992
2993 ev_stop (EV_A_ (W)w);
2994
2995 EV_FREQUENT_CHECK;
2996}
2997
2998void
2999ev_async_send (EV_P_ ev_async *w)
3000{
3001 w->sent = 1;
3002 evpipe_write (EV_A_ &gotasync);
2240} 3003}
2241#endif 3004#endif
2242 3005
2243/*****************************************************************************/ 3006/*****************************************************************************/
2244 3007
2254once_cb (EV_P_ struct ev_once *once, int revents) 3017once_cb (EV_P_ struct ev_once *once, int revents)
2255{ 3018{
2256 void (*cb)(int revents, void *arg) = once->cb; 3019 void (*cb)(int revents, void *arg) = once->cb;
2257 void *arg = once->arg; 3020 void *arg = once->arg;
2258 3021
2259 ev_io_stop (EV_A_ &once->io); 3022 ev_io_stop (EV_A_ &once->io);
2260 ev_timer_stop (EV_A_ &once->to); 3023 ev_timer_stop (EV_A_ &once->to);
2261 ev_free (once); 3024 ev_free (once);
2262 3025
2263 cb (revents, arg); 3026 cb (revents, arg);
2264} 3027}
2265 3028
2266static void 3029static void
2267once_cb_io (EV_P_ ev_io *w, int revents) 3030once_cb_io (EV_P_ ev_io *w, int revents)
2268{ 3031{
2269 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3032 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3033
3034 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2270} 3035}
2271 3036
2272static void 3037static void
2273once_cb_to (EV_P_ ev_timer *w, int revents) 3038once_cb_to (EV_P_ ev_timer *w, int revents)
2274{ 3039{
2275 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3040 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3041
3042 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2276} 3043}
2277 3044
2278void 3045void
2279ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3046ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2280{ 3047{
2302 ev_timer_set (&once->to, timeout, 0.); 3069 ev_timer_set (&once->to, timeout, 0.);
2303 ev_timer_start (EV_A_ &once->to); 3070 ev_timer_start (EV_A_ &once->to);
2304 } 3071 }
2305} 3072}
2306 3073
3074#if EV_MULTIPLICITY
3075 #include "ev_wrap.h"
3076#endif
3077
2307#ifdef __cplusplus 3078#ifdef __cplusplus
2308} 3079}
2309#endif 3080#endif
2310 3081

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines