ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.75 by root, Tue Nov 6 19:29:20 2007 UTC vs.
Revision 1.270 by root, Thu Oct 30 13:07:10 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
33 51
34# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
55# endif
56# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 57# define EV_USE_REALTIME 1
58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
37# endif 66# endif
38 67
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
40# define EV_USE_SELECT 1 70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
41# endif 74# endif
42 75
43# if HAVE_POLL && HAVE_POLL_H 76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
44# define EV_USE_POLL 1 78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
45# endif 82# endif
46 83
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
48# define EV_USE_EPOLL 1 86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
49# endif 90# endif
50 91
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
52# define EV_USE_KQUEUE 1 94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
53# endif 98# endif
99
100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
54 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
55#endif 132#endif
56 133
57#include <math.h> 134#include <math.h>
58#include <stdlib.h> 135#include <stdlib.h>
59#include <fcntl.h> 136#include <fcntl.h>
66#include <sys/types.h> 143#include <sys/types.h>
67#include <time.h> 144#include <time.h>
68 145
69#include <signal.h> 146#include <signal.h>
70 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
71#ifndef WIN32 154#ifndef _WIN32
72# include <unistd.h>
73# include <sys/time.h> 155# include <sys/time.h>
74# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
158#else
159# include <io.h>
160# define WIN32_LEAN_AND_MEAN
161# include <windows.h>
162# ifndef EV_SELECT_IS_WINSOCKET
163# define EV_SELECT_IS_WINSOCKET 1
75#endif 164# endif
76/**/ 165#endif
166
167/* this block tries to deduce configuration from header-defined symbols and defaults */
77 168
78#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
79# define EV_USE_MONOTONIC 1 171# define EV_USE_MONOTONIC 1
172# else
173# define EV_USE_MONOTONIC 0
174# endif
175#endif
176
177#ifndef EV_USE_REALTIME
178# define EV_USE_REALTIME 0
179#endif
180
181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
185# define EV_USE_NANOSLEEP 0
186# endif
80#endif 187#endif
81 188
82#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
84#endif 191#endif
85 192
86#ifndef EV_USE_POLL 193#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 194# ifdef _WIN32
195# define EV_USE_POLL 0
196# else
197# define EV_USE_POLL 1
198# endif
88#endif 199#endif
89 200
90#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
91# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
92#endif 207#endif
93 208
94#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
96#endif 211#endif
97 212
213#ifndef EV_USE_PORT
214# define EV_USE_PORT 0
215#endif
216
98#ifndef EV_USE_WIN32 217#ifndef EV_USE_INOTIFY
99# ifdef WIN32 218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1 219# define EV_USE_INOTIFY 1
103# else 220# else
104# define EV_USE_WIN32 0 221# define EV_USE_INOTIFY 0
105# endif 222# endif
106#endif 223#endif
107 224
108#ifndef EV_USE_REALTIME 225#ifndef EV_PID_HASHSIZE
109# define EV_USE_REALTIME 1 226# if EV_MINIMAL
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
110#endif 230# endif
231#endif
111 232
112/**/ 233#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif
240
241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
113 268
114#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
115# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
116# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
117#endif 272#endif
119#ifndef CLOCK_REALTIME 274#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME 275# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0 276# define EV_USE_REALTIME 0
122#endif 277#endif
123 278
279#if !EV_STAT_ENABLE
280# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0
282#endif
283
284#if !EV_USE_NANOSLEEP
285# ifndef _WIN32
286# include <sys/select.h>
287# endif
288#endif
289
290#if EV_USE_INOTIFY
291# include <sys/utsname.h>
292# include <sys/inotify.h>
293/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
294# ifndef IN_DONT_FOLLOW
295# undef EV_USE_INOTIFY
296# define EV_USE_INOTIFY 0
297# endif
298#endif
299
300#if EV_SELECT_IS_WINSOCKET
301# include <winsock.h>
302#endif
303
304#if EV_USE_EVENTFD
305/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
306# include <stdint.h>
307# ifdef __cplusplus
308extern "C" {
309# endif
310int eventfd (unsigned int initval, int flags);
311# ifdef __cplusplus
312}
313# endif
314#endif
315
124/**/ 316/**/
125 317
318#if EV_VERIFY >= 3
319# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
320#else
321# define EV_FREQUENT_CHECK do { } while (0)
322#endif
323
324/*
325 * This is used to avoid floating point rounding problems.
326 * It is added to ev_rt_now when scheduling periodics
327 * to ensure progress, time-wise, even when rounding
328 * errors are against us.
329 * This value is good at least till the year 4000.
330 * Better solutions welcome.
331 */
332#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
333
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 334#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 335#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 336/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
130 337
131#include "ev.h"
132
133#if __GNUC__ >= 3 338#if __GNUC__ >= 4
134# define expect(expr,value) __builtin_expect ((expr),(value)) 339# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline 340# define noinline __attribute__ ((noinline))
136#else 341#else
137# define expect(expr,value) (expr) 342# define expect(expr,value) (expr)
138# define inline static 343# define noinline
344# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
345# define inline
346# endif
139#endif 347#endif
140 348
141#define expect_false(expr) expect ((expr) != 0, 0) 349#define expect_false(expr) expect ((expr) != 0, 0)
142#define expect_true(expr) expect ((expr) != 0, 1) 350#define expect_true(expr) expect ((expr) != 0, 1)
351#define inline_size static inline
352
353#if EV_MINIMAL
354# define inline_speed static noinline
355#else
356# define inline_speed static inline
357#endif
143 358
144#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 359#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
145#define ABSPRI(w) ((w)->priority - EV_MINPRI) 360#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
146 361
362#define EMPTY /* required for microsofts broken pseudo-c compiler */
363#define EMPTY2(a,b) /* used to suppress some warnings */
364
147typedef struct ev_watcher *W; 365typedef ev_watcher *W;
148typedef struct ev_watcher_list *WL; 366typedef ev_watcher_list *WL;
149typedef struct ev_watcher_time *WT; 367typedef ev_watcher_time *WT;
150 368
369#define ev_active(w) ((W)(w))->active
370#define ev_at(w) ((WT)(w))->at
371
372#if EV_USE_MONOTONIC
373/* sig_atomic_t is used to avoid per-thread variables or locking but still */
374/* giving it a reasonably high chance of working on typical architetcures */
151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 375static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
376#endif
152 377
378#ifdef _WIN32
153#include "ev_win32.c" 379# include "ev_win32.c"
380#endif
154 381
155/*****************************************************************************/ 382/*****************************************************************************/
156 383
157static void (*syserr_cb)(const char *msg); 384static void (*syserr_cb)(const char *msg);
158 385
386void
159void ev_set_syserr_cb (void (*cb)(const char *msg)) 387ev_set_syserr_cb (void (*cb)(const char *msg))
160{ 388{
161 syserr_cb = cb; 389 syserr_cb = cb;
162} 390}
163 391
164static void 392static void noinline
165syserr (const char *msg) 393ev_syserr (const char *msg)
166{ 394{
167 if (!msg) 395 if (!msg)
168 msg = "(libev) system error"; 396 msg = "(libev) system error";
169 397
170 if (syserr_cb) 398 if (syserr_cb)
174 perror (msg); 402 perror (msg);
175 abort (); 403 abort ();
176 } 404 }
177} 405}
178 406
407static void *
408ev_realloc_emul (void *ptr, long size)
409{
410 /* some systems, notably openbsd and darwin, fail to properly
411 * implement realloc (x, 0) (as required by both ansi c-98 and
412 * the single unix specification, so work around them here.
413 */
414
415 if (size)
416 return realloc (ptr, size);
417
418 free (ptr);
419 return 0;
420}
421
179static void *(*alloc)(void *ptr, long size); 422static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
180 423
424void
181void ev_set_allocator (void *(*cb)(void *ptr, long size)) 425ev_set_allocator (void *(*cb)(void *ptr, long size))
182{ 426{
183 alloc = cb; 427 alloc = cb;
184} 428}
185 429
186static void * 430inline_speed void *
187ev_realloc (void *ptr, long size) 431ev_realloc (void *ptr, long size)
188{ 432{
189 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 433 ptr = alloc (ptr, size);
190 434
191 if (!ptr && size) 435 if (!ptr && size)
192 { 436 {
193 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 437 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
194 abort (); 438 abort ();
205typedef struct 449typedef struct
206{ 450{
207 WL head; 451 WL head;
208 unsigned char events; 452 unsigned char events;
209 unsigned char reify; 453 unsigned char reify;
454 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
455 unsigned char unused;
456#if EV_USE_EPOLL
457 unsigned int egen; /* generation counter to counter epoll bugs */
458#endif
459#if EV_SELECT_IS_WINSOCKET
460 SOCKET handle;
461#endif
210} ANFD; 462} ANFD;
211 463
212typedef struct 464typedef struct
213{ 465{
214 W w; 466 W w;
215 int events; 467 int events;
216} ANPENDING; 468} ANPENDING;
217 469
470#if EV_USE_INOTIFY
471/* hash table entry per inotify-id */
472typedef struct
473{
474 WL head;
475} ANFS;
476#endif
477
478/* Heap Entry */
479#if EV_HEAP_CACHE_AT
480 typedef struct {
481 ev_tstamp at;
482 WT w;
483 } ANHE;
484
485 #define ANHE_w(he) (he).w /* access watcher, read-write */
486 #define ANHE_at(he) (he).at /* access cached at, read-only */
487 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
488#else
489 typedef WT ANHE;
490
491 #define ANHE_w(he) (he)
492 #define ANHE_at(he) (he)->at
493 #define ANHE_at_cache(he)
494#endif
495
218#if EV_MULTIPLICITY 496#if EV_MULTIPLICITY
219 497
220struct ev_loop 498 struct ev_loop
221{ 499 {
500 ev_tstamp ev_rt_now;
501 #define ev_rt_now ((loop)->ev_rt_now)
222# define VAR(name,decl) decl; 502 #define VAR(name,decl) decl;
223# include "ev_vars.h" 503 #include "ev_vars.h"
224};
225# undef VAR 504 #undef VAR
505 };
226# include "ev_wrap.h" 506 #include "ev_wrap.h"
507
508 static struct ev_loop default_loop_struct;
509 struct ev_loop *ev_default_loop_ptr;
227 510
228#else 511#else
229 512
513 ev_tstamp ev_rt_now;
230# define VAR(name,decl) static decl; 514 #define VAR(name,decl) static decl;
231# include "ev_vars.h" 515 #include "ev_vars.h"
232# undef VAR 516 #undef VAR
517
518 static int ev_default_loop_ptr;
233 519
234#endif 520#endif
235 521
236/*****************************************************************************/ 522/*****************************************************************************/
237 523
238inline ev_tstamp 524ev_tstamp
239ev_time (void) 525ev_time (void)
240{ 526{
241#if EV_USE_REALTIME 527#if EV_USE_REALTIME
242 struct timespec ts; 528 struct timespec ts;
243 clock_gettime (CLOCK_REALTIME, &ts); 529 clock_gettime (CLOCK_REALTIME, &ts);
247 gettimeofday (&tv, 0); 533 gettimeofday (&tv, 0);
248 return tv.tv_sec + tv.tv_usec * 1e-6; 534 return tv.tv_sec + tv.tv_usec * 1e-6;
249#endif 535#endif
250} 536}
251 537
252inline ev_tstamp 538ev_tstamp inline_size
253get_clock (void) 539get_clock (void)
254{ 540{
255#if EV_USE_MONOTONIC 541#if EV_USE_MONOTONIC
256 if (expect_true (have_monotonic)) 542 if (expect_true (have_monotonic))
257 { 543 {
262#endif 548#endif
263 549
264 return ev_time (); 550 return ev_time ();
265} 551}
266 552
553#if EV_MULTIPLICITY
267ev_tstamp 554ev_tstamp
268ev_now (EV_P) 555ev_now (EV_P)
269{ 556{
270 return rt_now; 557 return ev_rt_now;
271} 558}
559#endif
272 560
273#define array_roundsize(type,n) ((n) | 4 & ~3) 561void
562ev_sleep (ev_tstamp delay)
563{
564 if (delay > 0.)
565 {
566#if EV_USE_NANOSLEEP
567 struct timespec ts;
568
569 ts.tv_sec = (time_t)delay;
570 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
571
572 nanosleep (&ts, 0);
573#elif defined(_WIN32)
574 Sleep ((unsigned long)(delay * 1e3));
575#else
576 struct timeval tv;
577
578 tv.tv_sec = (time_t)delay;
579 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
580
581 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
582 /* somehting nto guaranteed by newer posix versions, but guaranteed */
583 /* by older ones */
584 select (0, 0, 0, 0, &tv);
585#endif
586 }
587}
588
589/*****************************************************************************/
590
591#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
592
593int inline_size
594array_nextsize (int elem, int cur, int cnt)
595{
596 int ncur = cur + 1;
597
598 do
599 ncur <<= 1;
600 while (cnt > ncur);
601
602 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
603 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
604 {
605 ncur *= elem;
606 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
607 ncur = ncur - sizeof (void *) * 4;
608 ncur /= elem;
609 }
610
611 return ncur;
612}
613
614static noinline void *
615array_realloc (int elem, void *base, int *cur, int cnt)
616{
617 *cur = array_nextsize (elem, *cur, cnt);
618 return ev_realloc (base, elem * *cur);
619}
620
621#define array_init_zero(base,count) \
622 memset ((void *)(base), 0, sizeof (*(base)) * (count))
274 623
275#define array_needsize(type,base,cur,cnt,init) \ 624#define array_needsize(type,base,cur,cnt,init) \
276 if (expect_false ((cnt) > cur)) \ 625 if (expect_false ((cnt) > (cur))) \
277 { \ 626 { \
278 int newcnt = cur; \ 627 int ocur_ = (cur); \
279 do \ 628 (base) = (type *)array_realloc \
280 { \ 629 (sizeof (type), (base), &(cur), (cnt)); \
281 newcnt = array_roundsize (type, newcnt << 1); \ 630 init ((base) + (ocur_), (cur) - ocur_); \
282 } \
283 while ((cnt) > newcnt); \
284 \
285 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
286 init (base + cur, newcnt - cur); \
287 cur = newcnt; \
288 } 631 }
289 632
633#if 0
290#define array_slim(type,stem) \ 634#define array_slim(type,stem) \
291 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 635 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
292 { \ 636 { \
293 stem ## max = array_roundsize (stem ## cnt >> 1); \ 637 stem ## max = array_roundsize (stem ## cnt >> 1); \
294 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 638 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
295 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 639 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
296 } 640 }
297 641#endif
298/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
299/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
300#define array_free_microshit(stem) \
301 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
302 642
303#define array_free(stem, idx) \ 643#define array_free(stem, idx) \
304 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 644 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
305 645
306/*****************************************************************************/ 646/*****************************************************************************/
307 647
308static void 648void noinline
309anfds_init (ANFD *base, int count) 649ev_feed_event (EV_P_ void *w, int revents)
310{ 650{
311 while (count--) 651 W w_ = (W)w;
312 { 652 int pri = ABSPRI (w_);
313 base->head = 0;
314 base->events = EV_NONE;
315 base->reify = 0;
316 653
317 ++base; 654 if (expect_false (w_->pending))
655 pendings [pri][w_->pending - 1].events |= revents;
656 else
318 } 657 {
319} 658 w_->pending = ++pendingcnt [pri];
320 659 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
321static void 660 pendings [pri][w_->pending - 1].w = w_;
322event (EV_P_ W w, int events)
323{
324 if (w->pending)
325 {
326 pendings [ABSPRI (w)][w->pending - 1].events |= events; 661 pendings [pri][w_->pending - 1].events = revents;
327 return;
328 } 662 }
329
330 w->pending = ++pendingcnt [ABSPRI (w)];
331 array_needsize (ANPENDING, pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void));
332 pendings [ABSPRI (w)][w->pending - 1].w = w;
333 pendings [ABSPRI (w)][w->pending - 1].events = events;
334} 663}
335 664
336static void 665void inline_speed
337queue_events (EV_P_ W *events, int eventcnt, int type) 666queue_events (EV_P_ W *events, int eventcnt, int type)
338{ 667{
339 int i; 668 int i;
340 669
341 for (i = 0; i < eventcnt; ++i) 670 for (i = 0; i < eventcnt; ++i)
342 event (EV_A_ events [i], type); 671 ev_feed_event (EV_A_ events [i], type);
343} 672}
344 673
345static void 674/*****************************************************************************/
675
676void inline_speed
346fd_event (EV_P_ int fd, int events) 677fd_event (EV_P_ int fd, int revents)
347{ 678{
348 ANFD *anfd = anfds + fd; 679 ANFD *anfd = anfds + fd;
349 struct ev_io *w; 680 ev_io *w;
350 681
351 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 682 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
352 { 683 {
353 int ev = w->events & events; 684 int ev = w->events & revents;
354 685
355 if (ev) 686 if (ev)
356 event (EV_A_ (W)w, ev); 687 ev_feed_event (EV_A_ (W)w, ev);
357 } 688 }
358} 689}
359 690
360/*****************************************************************************/ 691void
692ev_feed_fd_event (EV_P_ int fd, int revents)
693{
694 if (fd >= 0 && fd < anfdmax)
695 fd_event (EV_A_ fd, revents);
696}
361 697
362static void 698void inline_size
363fd_reify (EV_P) 699fd_reify (EV_P)
364{ 700{
365 int i; 701 int i;
366 702
367 for (i = 0; i < fdchangecnt; ++i) 703 for (i = 0; i < fdchangecnt; ++i)
368 { 704 {
369 int fd = fdchanges [i]; 705 int fd = fdchanges [i];
370 ANFD *anfd = anfds + fd; 706 ANFD *anfd = anfds + fd;
371 struct ev_io *w; 707 ev_io *w;
372 708
373 int events = 0; 709 unsigned char events = 0;
374 710
375 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 711 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
376 events |= w->events; 712 events |= (unsigned char)w->events;
377 713
714#if EV_SELECT_IS_WINSOCKET
715 if (events)
716 {
717 unsigned long arg;
718 #ifdef EV_FD_TO_WIN32_HANDLE
719 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
720 #else
721 anfd->handle = _get_osfhandle (fd);
722 #endif
723 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
724 }
725#endif
726
727 {
728 unsigned char o_events = anfd->events;
729 unsigned char o_reify = anfd->reify;
730
378 anfd->reify = 0; 731 anfd->reify = 0;
379
380 method_modify (EV_A_ fd, anfd->events, events);
381 anfd->events = events; 732 anfd->events = events;
733
734 if (o_events != events || o_reify & EV_IOFDSET)
735 backend_modify (EV_A_ fd, o_events, events);
736 }
382 } 737 }
383 738
384 fdchangecnt = 0; 739 fdchangecnt = 0;
385} 740}
386 741
387static void 742void inline_size
388fd_change (EV_P_ int fd) 743fd_change (EV_P_ int fd, int flags)
389{ 744{
390 if (anfds [fd].reify) 745 unsigned char reify = anfds [fd].reify;
391 return;
392
393 anfds [fd].reify = 1; 746 anfds [fd].reify |= flags;
394 747
748 if (expect_true (!reify))
749 {
395 ++fdchangecnt; 750 ++fdchangecnt;
396 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 751 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
397 fdchanges [fdchangecnt - 1] = fd; 752 fdchanges [fdchangecnt - 1] = fd;
753 }
398} 754}
399 755
400static void 756void inline_speed
401fd_kill (EV_P_ int fd) 757fd_kill (EV_P_ int fd)
402{ 758{
403 struct ev_io *w; 759 ev_io *w;
404 760
405 while ((w = (struct ev_io *)anfds [fd].head)) 761 while ((w = (ev_io *)anfds [fd].head))
406 { 762 {
407 ev_io_stop (EV_A_ w); 763 ev_io_stop (EV_A_ w);
408 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 764 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
409 } 765 }
410} 766}
411 767
412static int 768int inline_size
413fd_valid (int fd) 769fd_valid (int fd)
414{ 770{
415#ifdef WIN32 771#ifdef _WIN32
416 return !!win32_get_osfhandle (fd); 772 return _get_osfhandle (fd) != -1;
417#else 773#else
418 return fcntl (fd, F_GETFD) != -1; 774 return fcntl (fd, F_GETFD) != -1;
419#endif 775#endif
420} 776}
421 777
422/* called on EBADF to verify fds */ 778/* called on EBADF to verify fds */
423static void 779static void noinline
424fd_ebadf (EV_P) 780fd_ebadf (EV_P)
425{ 781{
426 int fd; 782 int fd;
427 783
428 for (fd = 0; fd < anfdmax; ++fd) 784 for (fd = 0; fd < anfdmax; ++fd)
429 if (anfds [fd].events) 785 if (anfds [fd].events)
430 if (!fd_valid (fd) == -1 && errno == EBADF) 786 if (!fd_valid (fd) && errno == EBADF)
431 fd_kill (EV_A_ fd); 787 fd_kill (EV_A_ fd);
432} 788}
433 789
434/* called on ENOMEM in select/poll to kill some fds and retry */ 790/* called on ENOMEM in select/poll to kill some fds and retry */
435static void 791static void noinline
436fd_enomem (EV_P) 792fd_enomem (EV_P)
437{ 793{
438 int fd; 794 int fd;
439 795
440 for (fd = anfdmax; fd--; ) 796 for (fd = anfdmax; fd--; )
443 fd_kill (EV_A_ fd); 799 fd_kill (EV_A_ fd);
444 return; 800 return;
445 } 801 }
446} 802}
447 803
448/* usually called after fork if method needs to re-arm all fds from scratch */ 804/* usually called after fork if backend needs to re-arm all fds from scratch */
449static void 805static void noinline
450fd_rearm_all (EV_P) 806fd_rearm_all (EV_P)
451{ 807{
452 int fd; 808 int fd;
453 809
454 /* this should be highly optimised to not do anything but set a flag */
455 for (fd = 0; fd < anfdmax; ++fd) 810 for (fd = 0; fd < anfdmax; ++fd)
456 if (anfds [fd].events) 811 if (anfds [fd].events)
457 { 812 {
458 anfds [fd].events = 0; 813 anfds [fd].events = 0;
814 anfds [fd].emask = 0;
459 fd_change (EV_A_ fd); 815 fd_change (EV_A_ fd, EV_IOFDSET | 1);
460 } 816 }
461} 817}
462 818
463/*****************************************************************************/ 819/*****************************************************************************/
464 820
465static void 821/*
466upheap (WT *heap, int k) 822 * the heap functions want a real array index. array index 0 uis guaranteed to not
467{ 823 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
468 WT w = heap [k]; 824 * the branching factor of the d-tree.
825 */
469 826
470 while (k && heap [k >> 1]->at > w->at) 827/*
471 { 828 * at the moment we allow libev the luxury of two heaps,
472 heap [k] = heap [k >> 1]; 829 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
473 ((W)heap [k])->active = k + 1; 830 * which is more cache-efficient.
474 k >>= 1; 831 * the difference is about 5% with 50000+ watchers.
475 } 832 */
833#if EV_USE_4HEAP
476 834
477 heap [k] = w; 835#define DHEAP 4
478 ((W)heap [k])->active = k + 1; 836#define HEAP0 (DHEAP - 1) /* index of first element in heap */
837#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
838#define UPHEAP_DONE(p,k) ((p) == (k))
479 839
480} 840/* away from the root */
481 841void inline_speed
482static void
483downheap (WT *heap, int N, int k) 842downheap (ANHE *heap, int N, int k)
484{ 843{
485 WT w = heap [k]; 844 ANHE he = heap [k];
845 ANHE *E = heap + N + HEAP0;
486 846
487 while (k < (N >> 1)) 847 for (;;)
488 { 848 {
489 int j = k << 1; 849 ev_tstamp minat;
850 ANHE *minpos;
851 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
490 852
491 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 853 /* find minimum child */
854 if (expect_true (pos + DHEAP - 1 < E))
492 ++j; 855 {
493 856 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
494 if (w->at <= heap [j]->at) 857 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
858 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
859 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
860 }
861 else if (pos < E)
862 {
863 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
864 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
865 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
866 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
867 }
868 else
495 break; 869 break;
496 870
871 if (ANHE_at (he) <= minat)
872 break;
873
874 heap [k] = *minpos;
875 ev_active (ANHE_w (*minpos)) = k;
876
877 k = minpos - heap;
878 }
879
880 heap [k] = he;
881 ev_active (ANHE_w (he)) = k;
882}
883
884#else /* 4HEAP */
885
886#define HEAP0 1
887#define HPARENT(k) ((k) >> 1)
888#define UPHEAP_DONE(p,k) (!(p))
889
890/* away from the root */
891void inline_speed
892downheap (ANHE *heap, int N, int k)
893{
894 ANHE he = heap [k];
895
896 for (;;)
897 {
898 int c = k << 1;
899
900 if (c > N + HEAP0 - 1)
901 break;
902
903 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
904 ? 1 : 0;
905
906 if (ANHE_at (he) <= ANHE_at (heap [c]))
907 break;
908
497 heap [k] = heap [j]; 909 heap [k] = heap [c];
498 ((W)heap [k])->active = k + 1; 910 ev_active (ANHE_w (heap [k])) = k;
911
499 k = j; 912 k = c;
500 } 913 }
501 914
502 heap [k] = w; 915 heap [k] = he;
503 ((W)heap [k])->active = k + 1; 916 ev_active (ANHE_w (he)) = k;
917}
918#endif
919
920/* towards the root */
921void inline_speed
922upheap (ANHE *heap, int k)
923{
924 ANHE he = heap [k];
925
926 for (;;)
927 {
928 int p = HPARENT (k);
929
930 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
931 break;
932
933 heap [k] = heap [p];
934 ev_active (ANHE_w (heap [k])) = k;
935 k = p;
936 }
937
938 heap [k] = he;
939 ev_active (ANHE_w (he)) = k;
940}
941
942void inline_size
943adjustheap (ANHE *heap, int N, int k)
944{
945 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
946 upheap (heap, k);
947 else
948 downheap (heap, N, k);
949}
950
951/* rebuild the heap: this function is used only once and executed rarely */
952void inline_size
953reheap (ANHE *heap, int N)
954{
955 int i;
956
957 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
958 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
959 for (i = 0; i < N; ++i)
960 upheap (heap, i + HEAP0);
504} 961}
505 962
506/*****************************************************************************/ 963/*****************************************************************************/
507 964
508typedef struct 965typedef struct
509{ 966{
510 WL head; 967 WL head;
511 sig_atomic_t volatile gotsig; 968 EV_ATOMIC_T gotsig;
512} ANSIG; 969} ANSIG;
513 970
514static ANSIG *signals; 971static ANSIG *signals;
515static int signalmax; 972static int signalmax;
516 973
517static int sigpipe [2]; 974static EV_ATOMIC_T gotsig;
518static sig_atomic_t volatile gotsig; 975
519static struct ev_io sigev; 976/*****************************************************************************/
977
978void inline_speed
979fd_intern (int fd)
980{
981#ifdef _WIN32
982 unsigned long arg = 1;
983 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
984#else
985 fcntl (fd, F_SETFD, FD_CLOEXEC);
986 fcntl (fd, F_SETFL, O_NONBLOCK);
987#endif
988}
989
990static void noinline
991evpipe_init (EV_P)
992{
993 if (!ev_is_active (&pipeev))
994 {
995#if EV_USE_EVENTFD
996 if ((evfd = eventfd (0, 0)) >= 0)
997 {
998 evpipe [0] = -1;
999 fd_intern (evfd);
1000 ev_io_set (&pipeev, evfd, EV_READ);
1001 }
1002 else
1003#endif
1004 {
1005 while (pipe (evpipe))
1006 ev_syserr ("(libev) error creating signal/async pipe");
1007
1008 fd_intern (evpipe [0]);
1009 fd_intern (evpipe [1]);
1010 ev_io_set (&pipeev, evpipe [0], EV_READ);
1011 }
1012
1013 ev_io_start (EV_A_ &pipeev);
1014 ev_unref (EV_A); /* watcher should not keep loop alive */
1015 }
1016}
1017
1018void inline_size
1019evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1020{
1021 if (!*flag)
1022 {
1023 int old_errno = errno; /* save errno because write might clobber it */
1024
1025 *flag = 1;
1026
1027#if EV_USE_EVENTFD
1028 if (evfd >= 0)
1029 {
1030 uint64_t counter = 1;
1031 write (evfd, &counter, sizeof (uint64_t));
1032 }
1033 else
1034#endif
1035 write (evpipe [1], &old_errno, 1);
1036
1037 errno = old_errno;
1038 }
1039}
520 1040
521static void 1041static void
522signals_init (ANSIG *base, int count) 1042pipecb (EV_P_ ev_io *iow, int revents)
523{ 1043{
524 while (count--) 1044#if EV_USE_EVENTFD
1045 if (evfd >= 0)
1046 {
1047 uint64_t counter;
1048 read (evfd, &counter, sizeof (uint64_t));
525 { 1049 }
526 base->head = 0; 1050 else
1051#endif
1052 {
1053 char dummy;
1054 read (evpipe [0], &dummy, 1);
1055 }
1056
1057 if (gotsig && ev_is_default_loop (EV_A))
1058 {
1059 int signum;
527 base->gotsig = 0; 1060 gotsig = 0;
528 1061
529 ++base; 1062 for (signum = signalmax; signum--; )
1063 if (signals [signum].gotsig)
1064 ev_feed_signal_event (EV_A_ signum + 1);
1065 }
1066
1067#if EV_ASYNC_ENABLE
1068 if (gotasync)
530 } 1069 {
1070 int i;
1071 gotasync = 0;
1072
1073 for (i = asynccnt; i--; )
1074 if (asyncs [i]->sent)
1075 {
1076 asyncs [i]->sent = 0;
1077 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1078 }
1079 }
1080#endif
531} 1081}
1082
1083/*****************************************************************************/
532 1084
533static void 1085static void
534sighandler (int signum) 1086ev_sighandler (int signum)
535{ 1087{
1088#if EV_MULTIPLICITY
1089 struct ev_loop *loop = &default_loop_struct;
1090#endif
1091
536#if WIN32 1092#if _WIN32
537 signal (signum, sighandler); 1093 signal (signum, ev_sighandler);
538#endif 1094#endif
539 1095
540 signals [signum - 1].gotsig = 1; 1096 signals [signum - 1].gotsig = 1;
541 1097 evpipe_write (EV_A_ &gotsig);
542 if (!gotsig)
543 {
544 int old_errno = errno;
545 gotsig = 1;
546#ifdef WIN32
547 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
548#else
549 write (sigpipe [1], &signum, 1);
550#endif
551 errno = old_errno;
552 }
553} 1098}
554 1099
555static void 1100void noinline
556sigcb (EV_P_ struct ev_io *iow, int revents) 1101ev_feed_signal_event (EV_P_ int signum)
557{ 1102{
558 WL w; 1103 WL w;
1104
1105#if EV_MULTIPLICITY
1106 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1107#endif
1108
559 int signum; 1109 --signum;
560 1110
561#ifdef WIN32 1111 if (signum < 0 || signum >= signalmax)
562 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT); 1112 return;
563#else
564 read (sigpipe [0], &revents, 1);
565#endif
566 gotsig = 0;
567 1113
568 for (signum = signalmax; signum--; )
569 if (signals [signum].gotsig)
570 {
571 signals [signum].gotsig = 0; 1114 signals [signum].gotsig = 0;
572 1115
573 for (w = signals [signum].head; w; w = w->next) 1116 for (w = signals [signum].head; w; w = w->next)
574 event (EV_A_ (W)w, EV_SIGNAL); 1117 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
575 }
576}
577
578static void
579siginit (EV_P)
580{
581#ifndef WIN32
582 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
583 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
584
585 /* rather than sort out wether we really need nb, set it */
586 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
587 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
588#endif
589
590 ev_io_set (&sigev, sigpipe [0], EV_READ);
591 ev_io_start (EV_A_ &sigev);
592 ev_unref (EV_A); /* child watcher should not keep loop alive */
593} 1118}
594 1119
595/*****************************************************************************/ 1120/*****************************************************************************/
596 1121
597static struct ev_child *childs [PID_HASHSIZE]; 1122static WL childs [EV_PID_HASHSIZE];
598 1123
599#ifndef WIN32 1124#ifndef _WIN32
600 1125
601static struct ev_signal childev; 1126static ev_signal childev;
1127
1128#ifndef WIFCONTINUED
1129# define WIFCONTINUED(status) 0
1130#endif
1131
1132void inline_speed
1133child_reap (EV_P_ int chain, int pid, int status)
1134{
1135 ev_child *w;
1136 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1137
1138 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1139 {
1140 if ((w->pid == pid || !w->pid)
1141 && (!traced || (w->flags & 1)))
1142 {
1143 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1144 w->rpid = pid;
1145 w->rstatus = status;
1146 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1147 }
1148 }
1149}
602 1150
603#ifndef WCONTINUED 1151#ifndef WCONTINUED
604# define WCONTINUED 0 1152# define WCONTINUED 0
605#endif 1153#endif
606 1154
607static void 1155static void
608child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
609{
610 struct ev_child *w;
611
612 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
613 if (w->pid == pid || !w->pid)
614 {
615 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
616 w->rpid = pid;
617 w->rstatus = status;
618 event (EV_A_ (W)w, EV_CHILD);
619 }
620}
621
622static void
623childcb (EV_P_ struct ev_signal *sw, int revents) 1156childcb (EV_P_ ev_signal *sw, int revents)
624{ 1157{
625 int pid, status; 1158 int pid, status;
626 1159
1160 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
627 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1161 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
628 { 1162 if (!WCONTINUED
1163 || errno != EINVAL
1164 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1165 return;
1166
629 /* make sure we are called again until all childs have been reaped */ 1167 /* make sure we are called again until all children have been reaped */
1168 /* we need to do it this way so that the callback gets called before we continue */
630 event (EV_A_ (W)sw, EV_SIGNAL); 1169 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
631 1170
632 child_reap (EV_A_ sw, pid, pid, status); 1171 child_reap (EV_A_ pid, pid, status);
1172 if (EV_PID_HASHSIZE > 1)
633 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1173 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
634 }
635} 1174}
636 1175
637#endif 1176#endif
638 1177
639/*****************************************************************************/ 1178/*****************************************************************************/
640 1179
1180#if EV_USE_PORT
1181# include "ev_port.c"
1182#endif
641#if EV_USE_KQUEUE 1183#if EV_USE_KQUEUE
642# include "ev_kqueue.c" 1184# include "ev_kqueue.c"
643#endif 1185#endif
644#if EV_USE_EPOLL 1186#if EV_USE_EPOLL
645# include "ev_epoll.c" 1187# include "ev_epoll.c"
662{ 1204{
663 return EV_VERSION_MINOR; 1205 return EV_VERSION_MINOR;
664} 1206}
665 1207
666/* return true if we are running with elevated privileges and should ignore env variables */ 1208/* return true if we are running with elevated privileges and should ignore env variables */
667static int 1209int inline_size
668enable_secure (void) 1210enable_secure (void)
669{ 1211{
670#ifdef WIN32 1212#ifdef _WIN32
671 return 0; 1213 return 0;
672#else 1214#else
673 return getuid () != geteuid () 1215 return getuid () != geteuid ()
674 || getgid () != getegid (); 1216 || getgid () != getegid ();
675#endif 1217#endif
676} 1218}
677 1219
678int 1220unsigned int
679ev_method (EV_P) 1221ev_supported_backends (void)
680{ 1222{
681 return method; 1223 unsigned int flags = 0;
682}
683 1224
684static void 1225 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
685loop_init (EV_P_ int methods) 1226 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1227 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1228 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1229 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1230
1231 return flags;
1232}
1233
1234unsigned int
1235ev_recommended_backends (void)
686{ 1236{
687 if (!method) 1237 unsigned int flags = ev_supported_backends ();
1238
1239#ifndef __NetBSD__
1240 /* kqueue is borked on everything but netbsd apparently */
1241 /* it usually doesn't work correctly on anything but sockets and pipes */
1242 flags &= ~EVBACKEND_KQUEUE;
1243#endif
1244#ifdef __APPLE__
1245 // flags &= ~EVBACKEND_KQUEUE; for documentation
1246 flags &= ~EVBACKEND_POLL;
1247#endif
1248
1249 return flags;
1250}
1251
1252unsigned int
1253ev_embeddable_backends (void)
1254{
1255 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1256
1257 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1258 /* please fix it and tell me how to detect the fix */
1259 flags &= ~EVBACKEND_EPOLL;
1260
1261 return flags;
1262}
1263
1264unsigned int
1265ev_backend (EV_P)
1266{
1267 return backend;
1268}
1269
1270unsigned int
1271ev_loop_count (EV_P)
1272{
1273 return loop_count;
1274}
1275
1276void
1277ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1278{
1279 io_blocktime = interval;
1280}
1281
1282void
1283ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1284{
1285 timeout_blocktime = interval;
1286}
1287
1288static void noinline
1289loop_init (EV_P_ unsigned int flags)
1290{
1291 if (!backend)
688 { 1292 {
689#if EV_USE_MONOTONIC 1293#if EV_USE_MONOTONIC
690 { 1294 {
691 struct timespec ts; 1295 struct timespec ts;
692 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1296 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
693 have_monotonic = 1; 1297 have_monotonic = 1;
694 } 1298 }
695#endif 1299#endif
696 1300
697 rt_now = ev_time (); 1301 ev_rt_now = ev_time ();
698 mn_now = get_clock (); 1302 mn_now = get_clock ();
699 now_floor = mn_now; 1303 now_floor = mn_now;
700 rtmn_diff = rt_now - mn_now; 1304 rtmn_diff = ev_rt_now - mn_now;
701 1305
702 if (methods == EVMETHOD_AUTO) 1306 io_blocktime = 0.;
703 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1307 timeout_blocktime = 0.;
1308 backend = 0;
1309 backend_fd = -1;
1310 gotasync = 0;
1311#if EV_USE_INOTIFY
1312 fs_fd = -2;
1313#endif
1314
1315 /* pid check not overridable via env */
1316#ifndef _WIN32
1317 if (flags & EVFLAG_FORKCHECK)
1318 curpid = getpid ();
1319#endif
1320
1321 if (!(flags & EVFLAG_NOENV)
1322 && !enable_secure ()
1323 && getenv ("LIBEV_FLAGS"))
704 methods = atoi (getenv ("LIBEV_METHODS")); 1324 flags = atoi (getenv ("LIBEV_FLAGS"));
705 else
706 methods = EVMETHOD_ANY;
707 1325
708 method = 0; 1326 if (!(flags & 0x0000ffffU))
709#if EV_USE_WIN32 1327 flags |= ev_recommended_backends ();
710 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 1328
1329#if EV_USE_PORT
1330 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
711#endif 1331#endif
712#if EV_USE_KQUEUE 1332#if EV_USE_KQUEUE
713 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1333 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
714#endif 1334#endif
715#if EV_USE_EPOLL 1335#if EV_USE_EPOLL
716 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1336 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
717#endif 1337#endif
718#if EV_USE_POLL 1338#if EV_USE_POLL
719 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1339 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
720#endif 1340#endif
721#if EV_USE_SELECT 1341#if EV_USE_SELECT
722 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1342 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
723#endif 1343#endif
724 1344
725 ev_watcher_init (&sigev, sigcb); 1345 ev_init (&pipeev, pipecb);
726 ev_set_priority (&sigev, EV_MAXPRI); 1346 ev_set_priority (&pipeev, EV_MAXPRI);
727 } 1347 }
728} 1348}
729 1349
730void 1350static void noinline
731loop_destroy (EV_P) 1351loop_destroy (EV_P)
732{ 1352{
733 int i; 1353 int i;
734 1354
1355 if (ev_is_active (&pipeev))
1356 {
1357 ev_ref (EV_A); /* signal watcher */
1358 ev_io_stop (EV_A_ &pipeev);
1359
1360#if EV_USE_EVENTFD
1361 if (evfd >= 0)
1362 close (evfd);
1363#endif
1364
1365 if (evpipe [0] >= 0)
1366 {
1367 close (evpipe [0]);
1368 close (evpipe [1]);
1369 }
1370 }
1371
735#if EV_USE_WIN32 1372#if EV_USE_INOTIFY
736 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 1373 if (fs_fd >= 0)
1374 close (fs_fd);
1375#endif
1376
1377 if (backend_fd >= 0)
1378 close (backend_fd);
1379
1380#if EV_USE_PORT
1381 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
737#endif 1382#endif
738#if EV_USE_KQUEUE 1383#if EV_USE_KQUEUE
739 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1384 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
740#endif 1385#endif
741#if EV_USE_EPOLL 1386#if EV_USE_EPOLL
742 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1387 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
743#endif 1388#endif
744#if EV_USE_POLL 1389#if EV_USE_POLL
745 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1390 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
746#endif 1391#endif
747#if EV_USE_SELECT 1392#if EV_USE_SELECT
748 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1393 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
749#endif 1394#endif
750 1395
751 for (i = NUMPRI; i--; ) 1396 for (i = NUMPRI; i--; )
1397 {
752 array_free (pending, [i]); 1398 array_free (pending, [i]);
1399#if EV_IDLE_ENABLE
1400 array_free (idle, [i]);
1401#endif
1402 }
1403
1404 ev_free (anfds); anfdmax = 0;
753 1405
754 /* have to use the microsoft-never-gets-it-right macro */ 1406 /* have to use the microsoft-never-gets-it-right macro */
755 array_free_microshit (fdchange); 1407 array_free (fdchange, EMPTY);
756 array_free_microshit (timer); 1408 array_free (timer, EMPTY);
757 array_free_microshit (periodic); 1409#if EV_PERIODIC_ENABLE
758 array_free_microshit (idle); 1410 array_free (periodic, EMPTY);
759 array_free_microshit (prepare); 1411#endif
760 array_free_microshit (check); 1412#if EV_FORK_ENABLE
1413 array_free (fork, EMPTY);
1414#endif
1415 array_free (prepare, EMPTY);
1416 array_free (check, EMPTY);
1417#if EV_ASYNC_ENABLE
1418 array_free (async, EMPTY);
1419#endif
761 1420
762 method = 0; 1421 backend = 0;
763} 1422}
764 1423
765static void 1424#if EV_USE_INOTIFY
1425void inline_size infy_fork (EV_P);
1426#endif
1427
1428void inline_size
766loop_fork (EV_P) 1429loop_fork (EV_P)
767{ 1430{
1431#if EV_USE_PORT
1432 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1433#endif
1434#if EV_USE_KQUEUE
1435 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1436#endif
768#if EV_USE_EPOLL 1437#if EV_USE_EPOLL
769 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1438 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
770#endif 1439#endif
771#if EV_USE_KQUEUE 1440#if EV_USE_INOTIFY
772 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1441 infy_fork (EV_A);
773#endif 1442#endif
774 1443
775 if (ev_is_active (&sigev)) 1444 if (ev_is_active (&pipeev))
776 { 1445 {
777 /* default loop */ 1446 /* this "locks" the handlers against writing to the pipe */
1447 /* while we modify the fd vars */
1448 gotsig = 1;
1449#if EV_ASYNC_ENABLE
1450 gotasync = 1;
1451#endif
778 1452
779 ev_ref (EV_A); 1453 ev_ref (EV_A);
780 ev_io_stop (EV_A_ &sigev); 1454 ev_io_stop (EV_A_ &pipeev);
1455
1456#if EV_USE_EVENTFD
1457 if (evfd >= 0)
1458 close (evfd);
1459#endif
1460
1461 if (evpipe [0] >= 0)
1462 {
781 close (sigpipe [0]); 1463 close (evpipe [0]);
782 close (sigpipe [1]); 1464 close (evpipe [1]);
1465 }
783 1466
784 while (pipe (sigpipe))
785 syserr ("(libev) error creating pipe");
786
787 siginit (EV_A); 1467 evpipe_init (EV_A);
1468 /* now iterate over everything, in case we missed something */
1469 pipecb (EV_A_ &pipeev, EV_READ);
788 } 1470 }
789 1471
790 postfork = 0; 1472 postfork = 0;
791} 1473}
1474
1475#if EV_MULTIPLICITY
1476
1477struct ev_loop *
1478ev_loop_new (unsigned int flags)
1479{
1480 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1481
1482 memset (loop, 0, sizeof (struct ev_loop));
1483
1484 loop_init (EV_A_ flags);
1485
1486 if (ev_backend (EV_A))
1487 return loop;
1488
1489 return 0;
1490}
1491
1492void
1493ev_loop_destroy (EV_P)
1494{
1495 loop_destroy (EV_A);
1496 ev_free (loop);
1497}
1498
1499void
1500ev_loop_fork (EV_P)
1501{
1502 postfork = 1; /* must be in line with ev_default_fork */
1503}
1504
1505#if EV_VERIFY
1506static void noinline
1507verify_watcher (EV_P_ W w)
1508{
1509 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1510
1511 if (w->pending)
1512 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1513}
1514
1515static void noinline
1516verify_heap (EV_P_ ANHE *heap, int N)
1517{
1518 int i;
1519
1520 for (i = HEAP0; i < N + HEAP0; ++i)
1521 {
1522 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1523 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1524 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1525
1526 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1527 }
1528}
1529
1530static void noinline
1531array_verify (EV_P_ W *ws, int cnt)
1532{
1533 while (cnt--)
1534 {
1535 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1536 verify_watcher (EV_A_ ws [cnt]);
1537 }
1538}
1539#endif
1540
1541void
1542ev_loop_verify (EV_P)
1543{
1544#if EV_VERIFY
1545 int i;
1546 WL w;
1547
1548 assert (activecnt >= -1);
1549
1550 assert (fdchangemax >= fdchangecnt);
1551 for (i = 0; i < fdchangecnt; ++i)
1552 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1553
1554 assert (anfdmax >= 0);
1555 for (i = 0; i < anfdmax; ++i)
1556 for (w = anfds [i].head; w; w = w->next)
1557 {
1558 verify_watcher (EV_A_ (W)w);
1559 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1560 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1561 }
1562
1563 assert (timermax >= timercnt);
1564 verify_heap (EV_A_ timers, timercnt);
1565
1566#if EV_PERIODIC_ENABLE
1567 assert (periodicmax >= periodiccnt);
1568 verify_heap (EV_A_ periodics, periodiccnt);
1569#endif
1570
1571 for (i = NUMPRI; i--; )
1572 {
1573 assert (pendingmax [i] >= pendingcnt [i]);
1574#if EV_IDLE_ENABLE
1575 assert (idleall >= 0);
1576 assert (idlemax [i] >= idlecnt [i]);
1577 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1578#endif
1579 }
1580
1581#if EV_FORK_ENABLE
1582 assert (forkmax >= forkcnt);
1583 array_verify (EV_A_ (W *)forks, forkcnt);
1584#endif
1585
1586#if EV_ASYNC_ENABLE
1587 assert (asyncmax >= asynccnt);
1588 array_verify (EV_A_ (W *)asyncs, asynccnt);
1589#endif
1590
1591 assert (preparemax >= preparecnt);
1592 array_verify (EV_A_ (W *)prepares, preparecnt);
1593
1594 assert (checkmax >= checkcnt);
1595 array_verify (EV_A_ (W *)checks, checkcnt);
1596
1597# if 0
1598 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1599 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1600# endif
1601#endif
1602}
1603
1604#endif /* multiplicity */
792 1605
793#if EV_MULTIPLICITY 1606#if EV_MULTIPLICITY
794struct ev_loop * 1607struct ev_loop *
795ev_loop_new (int methods) 1608ev_default_loop_init (unsigned int flags)
796{ 1609#else
797 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1610int
798 1611ev_default_loop (unsigned int flags)
799 memset (loop, 0, sizeof (struct ev_loop));
800
801 loop_init (EV_A_ methods);
802
803 if (ev_method (EV_A))
804 return loop;
805
806 return 0;
807}
808
809void
810ev_loop_destroy (EV_P)
811{
812 loop_destroy (EV_A);
813 ev_free (loop);
814}
815
816void
817ev_loop_fork (EV_P)
818{
819 postfork = 1;
820}
821
822#endif 1612#endif
823 1613{
1614 if (!ev_default_loop_ptr)
1615 {
824#if EV_MULTIPLICITY 1616#if EV_MULTIPLICITY
825struct ev_loop default_loop_struct; 1617 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
826static struct ev_loop *default_loop;
827
828struct ev_loop *
829#else 1618#else
830static int default_loop;
831
832int
833#endif
834ev_default_loop (int methods)
835{
836 if (sigpipe [0] == sigpipe [1])
837 if (pipe (sigpipe))
838 return 0;
839
840 if (!default_loop)
841 {
842#if EV_MULTIPLICITY
843 struct ev_loop *loop = default_loop = &default_loop_struct;
844#else
845 default_loop = 1; 1619 ev_default_loop_ptr = 1;
846#endif 1620#endif
847 1621
848 loop_init (EV_A_ methods); 1622 loop_init (EV_A_ flags);
849 1623
850 if (ev_method (EV_A)) 1624 if (ev_backend (EV_A))
851 { 1625 {
852 siginit (EV_A);
853
854#ifndef WIN32 1626#ifndef _WIN32
855 ev_signal_init (&childev, childcb, SIGCHLD); 1627 ev_signal_init (&childev, childcb, SIGCHLD);
856 ev_set_priority (&childev, EV_MAXPRI); 1628 ev_set_priority (&childev, EV_MAXPRI);
857 ev_signal_start (EV_A_ &childev); 1629 ev_signal_start (EV_A_ &childev);
858 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1630 ev_unref (EV_A); /* child watcher should not keep loop alive */
859#endif 1631#endif
860 } 1632 }
861 else 1633 else
862 default_loop = 0; 1634 ev_default_loop_ptr = 0;
863 } 1635 }
864 1636
865 return default_loop; 1637 return ev_default_loop_ptr;
866} 1638}
867 1639
868void 1640void
869ev_default_destroy (void) 1641ev_default_destroy (void)
870{ 1642{
871#if EV_MULTIPLICITY 1643#if EV_MULTIPLICITY
872 struct ev_loop *loop = default_loop; 1644 struct ev_loop *loop = ev_default_loop_ptr;
873#endif 1645#endif
874 1646
1647 ev_default_loop_ptr = 0;
1648
875#ifndef WIN32 1649#ifndef _WIN32
876 ev_ref (EV_A); /* child watcher */ 1650 ev_ref (EV_A); /* child watcher */
877 ev_signal_stop (EV_A_ &childev); 1651 ev_signal_stop (EV_A_ &childev);
878#endif 1652#endif
879 1653
880 ev_ref (EV_A); /* signal watcher */
881 ev_io_stop (EV_A_ &sigev);
882
883 close (sigpipe [0]); sigpipe [0] = 0;
884 close (sigpipe [1]); sigpipe [1] = 0;
885
886 loop_destroy (EV_A); 1654 loop_destroy (EV_A);
887} 1655}
888 1656
889void 1657void
890ev_default_fork (void) 1658ev_default_fork (void)
891{ 1659{
892#if EV_MULTIPLICITY 1660#if EV_MULTIPLICITY
893 struct ev_loop *loop = default_loop; 1661 struct ev_loop *loop = ev_default_loop_ptr;
894#endif 1662#endif
895 1663
896 if (method) 1664 postfork = 1; /* must be in line with ev_loop_fork */
897 postfork = 1;
898} 1665}
899 1666
900/*****************************************************************************/ 1667/*****************************************************************************/
901 1668
902static void 1669void
1670ev_invoke (EV_P_ void *w, int revents)
1671{
1672 EV_CB_INVOKE ((W)w, revents);
1673}
1674
1675void inline_speed
903call_pending (EV_P) 1676call_pending (EV_P)
904{ 1677{
905 int pri; 1678 int pri;
906 1679
907 for (pri = NUMPRI; pri--; ) 1680 for (pri = NUMPRI; pri--; )
908 while (pendingcnt [pri]) 1681 while (pendingcnt [pri])
909 { 1682 {
910 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1683 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
911 1684
912 if (p->w) 1685 if (expect_true (p->w))
913 { 1686 {
1687 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1688
914 p->w->pending = 0; 1689 p->w->pending = 0;
915 p->w->cb (EV_A_ p->w, p->events); 1690 EV_CB_INVOKE (p->w, p->events);
1691 EV_FREQUENT_CHECK;
916 } 1692 }
917 } 1693 }
918} 1694}
919 1695
920static void 1696#if EV_IDLE_ENABLE
1697void inline_size
1698idle_reify (EV_P)
1699{
1700 if (expect_false (idleall))
1701 {
1702 int pri;
1703
1704 for (pri = NUMPRI; pri--; )
1705 {
1706 if (pendingcnt [pri])
1707 break;
1708
1709 if (idlecnt [pri])
1710 {
1711 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1712 break;
1713 }
1714 }
1715 }
1716}
1717#endif
1718
1719void inline_size
921timers_reify (EV_P) 1720timers_reify (EV_P)
922{ 1721{
1722 EV_FREQUENT_CHECK;
1723
923 while (timercnt && ((WT)timers [0])->at <= mn_now) 1724 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
924 { 1725 {
925 struct ev_timer *w = timers [0]; 1726 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
926 1727
927 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1728 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
928 1729
929 /* first reschedule or stop timer */ 1730 /* first reschedule or stop timer */
930 if (w->repeat) 1731 if (w->repeat)
931 { 1732 {
1733 ev_at (w) += w->repeat;
1734 if (ev_at (w) < mn_now)
1735 ev_at (w) = mn_now;
1736
932 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1737 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
933 ((WT)w)->at = mn_now + w->repeat; 1738
1739 ANHE_at_cache (timers [HEAP0]);
934 downheap ((WT *)timers, timercnt, 0); 1740 downheap (timers, timercnt, HEAP0);
935 } 1741 }
936 else 1742 else
937 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1743 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
938 1744
1745 EV_FREQUENT_CHECK;
939 event (EV_A_ (W)w, EV_TIMEOUT); 1746 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
940 } 1747 }
941} 1748}
942 1749
943static void 1750#if EV_PERIODIC_ENABLE
1751void inline_size
944periodics_reify (EV_P) 1752periodics_reify (EV_P)
945{ 1753{
1754 EV_FREQUENT_CHECK;
1755
946 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1756 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
947 { 1757 {
948 struct ev_periodic *w = periodics [0]; 1758 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
949 1759
950 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1760 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
951 1761
952 /* first reschedule or stop timer */ 1762 /* first reschedule or stop timer */
953 if (w->interval) 1763 if (w->reschedule_cb)
954 { 1764 {
955 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1765 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
956 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1766
1767 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1768
1769 ANHE_at_cache (periodics [HEAP0]);
957 downheap ((WT *)periodics, periodiccnt, 0); 1770 downheap (periodics, periodiccnt, HEAP0);
1771 }
1772 else if (w->interval)
1773 {
1774 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1775 /* if next trigger time is not sufficiently in the future, put it there */
1776 /* this might happen because of floating point inexactness */
1777 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1778 {
1779 ev_at (w) += w->interval;
1780
1781 /* if interval is unreasonably low we might still have a time in the past */
1782 /* so correct this. this will make the periodic very inexact, but the user */
1783 /* has effectively asked to get triggered more often than possible */
1784 if (ev_at (w) < ev_rt_now)
1785 ev_at (w) = ev_rt_now;
1786 }
1787
1788 ANHE_at_cache (periodics [HEAP0]);
1789 downheap (periodics, periodiccnt, HEAP0);
958 } 1790 }
959 else 1791 else
960 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1792 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
961 1793
1794 EV_FREQUENT_CHECK;
962 event (EV_A_ (W)w, EV_PERIODIC); 1795 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
963 } 1796 }
964} 1797}
965 1798
966static void 1799static void noinline
967periodics_reschedule (EV_P) 1800periodics_reschedule (EV_P)
968{ 1801{
969 int i; 1802 int i;
970 1803
971 /* adjust periodics after time jump */ 1804 /* adjust periodics after time jump */
972 for (i = 0; i < periodiccnt; ++i) 1805 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
973 { 1806 {
974 struct ev_periodic *w = periodics [i]; 1807 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
975 1808
1809 if (w->reschedule_cb)
1810 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
976 if (w->interval) 1811 else if (w->interval)
1812 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1813
1814 ANHE_at_cache (periodics [i]);
1815 }
1816
1817 reheap (periodics, periodiccnt);
1818}
1819#endif
1820
1821void inline_speed
1822time_update (EV_P_ ev_tstamp max_block)
1823{
1824 int i;
1825
1826#if EV_USE_MONOTONIC
1827 if (expect_true (have_monotonic))
1828 {
1829 ev_tstamp odiff = rtmn_diff;
1830
1831 mn_now = get_clock ();
1832
1833 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1834 /* interpolate in the meantime */
1835 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
977 { 1836 {
978 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1837 ev_rt_now = rtmn_diff + mn_now;
1838 return;
1839 }
979 1840
980 if (fabs (diff) >= 1e-4) 1841 now_floor = mn_now;
1842 ev_rt_now = ev_time ();
1843
1844 /* loop a few times, before making important decisions.
1845 * on the choice of "4": one iteration isn't enough,
1846 * in case we get preempted during the calls to
1847 * ev_time and get_clock. a second call is almost guaranteed
1848 * to succeed in that case, though. and looping a few more times
1849 * doesn't hurt either as we only do this on time-jumps or
1850 * in the unlikely event of having been preempted here.
1851 */
1852 for (i = 4; --i; )
1853 {
1854 rtmn_diff = ev_rt_now - mn_now;
1855
1856 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1857 return; /* all is well */
1858
1859 ev_rt_now = ev_time ();
1860 mn_now = get_clock ();
1861 now_floor = mn_now;
1862 }
1863
1864# if EV_PERIODIC_ENABLE
1865 periodics_reschedule (EV_A);
1866# endif
1867 /* no timer adjustment, as the monotonic clock doesn't jump */
1868 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1869 }
1870 else
1871#endif
1872 {
1873 ev_rt_now = ev_time ();
1874
1875 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1876 {
1877#if EV_PERIODIC_ENABLE
1878 periodics_reschedule (EV_A);
1879#endif
1880 /* adjust timers. this is easy, as the offset is the same for all of them */
1881 for (i = 0; i < timercnt; ++i)
981 { 1882 {
982 ev_periodic_stop (EV_A_ w); 1883 ANHE *he = timers + i + HEAP0;
983 ev_periodic_start (EV_A_ w); 1884 ANHE_w (*he)->at += ev_rt_now - mn_now;
984 1885 ANHE_at_cache (*he);
985 i = 0; /* restart loop, inefficient, but time jumps should be rare */
986 } 1886 }
987 } 1887 }
988 }
989}
990 1888
991inline int
992time_update_monotonic (EV_P)
993{
994 mn_now = get_clock ();
995
996 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
997 {
998 rt_now = rtmn_diff + mn_now;
999 return 0;
1000 }
1001 else
1002 {
1003 now_floor = mn_now;
1004 rt_now = ev_time ();
1005 return 1;
1006 }
1007}
1008
1009static void
1010time_update (EV_P)
1011{
1012 int i;
1013
1014#if EV_USE_MONOTONIC
1015 if (expect_true (have_monotonic))
1016 {
1017 if (time_update_monotonic (EV_A))
1018 {
1019 ev_tstamp odiff = rtmn_diff;
1020
1021 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1022 {
1023 rtmn_diff = rt_now - mn_now;
1024
1025 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1026 return; /* all is well */
1027
1028 rt_now = ev_time ();
1029 mn_now = get_clock ();
1030 now_floor = mn_now;
1031 }
1032
1033 periodics_reschedule (EV_A);
1034 /* no timer adjustment, as the monotonic clock doesn't jump */
1035 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1036 }
1037 }
1038 else
1039#endif
1040 {
1041 rt_now = ev_time ();
1042
1043 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1044 {
1045 periodics_reschedule (EV_A);
1046
1047 /* adjust timers. this is easy, as the offset is the same for all */
1048 for (i = 0; i < timercnt; ++i)
1049 ((WT)timers [i])->at += rt_now - mn_now;
1050 }
1051
1052 mn_now = rt_now; 1889 mn_now = ev_rt_now;
1053 } 1890 }
1054} 1891}
1055 1892
1056void 1893void
1057ev_ref (EV_P) 1894ev_ref (EV_P)
1063ev_unref (EV_P) 1900ev_unref (EV_P)
1064{ 1901{
1065 --activecnt; 1902 --activecnt;
1066} 1903}
1067 1904
1905void
1906ev_now_update (EV_P)
1907{
1908 time_update (EV_A_ 1e100);
1909}
1910
1068static int loop_done; 1911static int loop_done;
1069 1912
1070void 1913void
1071ev_loop (EV_P_ int flags) 1914ev_loop (EV_P_ int flags)
1072{ 1915{
1073 double block; 1916 loop_done = EVUNLOOP_CANCEL;
1074 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1917
1918 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1075 1919
1076 do 1920 do
1077 { 1921 {
1922#if EV_VERIFY >= 2
1923 ev_loop_verify (EV_A);
1924#endif
1925
1926#ifndef _WIN32
1927 if (expect_false (curpid)) /* penalise the forking check even more */
1928 if (expect_false (getpid () != curpid))
1929 {
1930 curpid = getpid ();
1931 postfork = 1;
1932 }
1933#endif
1934
1935#if EV_FORK_ENABLE
1936 /* we might have forked, so queue fork handlers */
1937 if (expect_false (postfork))
1938 if (forkcnt)
1939 {
1940 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1941 call_pending (EV_A);
1942 }
1943#endif
1944
1078 /* queue check watchers (and execute them) */ 1945 /* queue prepare watchers (and execute them) */
1079 if (expect_false (preparecnt)) 1946 if (expect_false (preparecnt))
1080 { 1947 {
1081 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1948 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1082 call_pending (EV_A); 1949 call_pending (EV_A);
1083 } 1950 }
1084 1951
1952 if (expect_false (!activecnt))
1953 break;
1954
1085 /* we might have forked, so reify kernel state if necessary */ 1955 /* we might have forked, so reify kernel state if necessary */
1086 if (expect_false (postfork)) 1956 if (expect_false (postfork))
1087 loop_fork (EV_A); 1957 loop_fork (EV_A);
1088 1958
1089 /* update fd-related kernel structures */ 1959 /* update fd-related kernel structures */
1090 fd_reify (EV_A); 1960 fd_reify (EV_A);
1091 1961
1092 /* calculate blocking time */ 1962 /* calculate blocking time */
1963 {
1964 ev_tstamp waittime = 0.;
1965 ev_tstamp sleeptime = 0.;
1093 1966
1094 /* we only need this for !monotonic clockor timers, but as we basically 1967 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1095 always have timers, we just calculate it always */
1096#if EV_USE_MONOTONIC
1097 if (expect_true (have_monotonic))
1098 time_update_monotonic (EV_A);
1099 else
1100#endif
1101 { 1968 {
1102 rt_now = ev_time (); 1969 /* update time to cancel out callback processing overhead */
1103 mn_now = rt_now; 1970 time_update (EV_A_ 1e100);
1104 }
1105 1971
1106 if (flags & EVLOOP_NONBLOCK || idlecnt)
1107 block = 0.;
1108 else
1109 {
1110 block = MAX_BLOCKTIME; 1972 waittime = MAX_BLOCKTIME;
1111 1973
1112 if (timercnt) 1974 if (timercnt)
1113 { 1975 {
1114 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1976 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1115 if (block > to) block = to; 1977 if (waittime > to) waittime = to;
1116 } 1978 }
1117 1979
1980#if EV_PERIODIC_ENABLE
1118 if (periodiccnt) 1981 if (periodiccnt)
1119 { 1982 {
1120 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1983 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1121 if (block > to) block = to; 1984 if (waittime > to) waittime = to;
1122 } 1985 }
1986#endif
1123 1987
1124 if (block < 0.) block = 0.; 1988 if (expect_false (waittime < timeout_blocktime))
1989 waittime = timeout_blocktime;
1990
1991 sleeptime = waittime - backend_fudge;
1992
1993 if (expect_true (sleeptime > io_blocktime))
1994 sleeptime = io_blocktime;
1995
1996 if (sleeptime)
1997 {
1998 ev_sleep (sleeptime);
1999 waittime -= sleeptime;
2000 }
1125 } 2001 }
1126 2002
1127 method_poll (EV_A_ block); 2003 ++loop_count;
2004 backend_poll (EV_A_ waittime);
1128 2005
1129 /* update rt_now, do magic */ 2006 /* update ev_rt_now, do magic */
1130 time_update (EV_A); 2007 time_update (EV_A_ waittime + sleeptime);
2008 }
1131 2009
1132 /* queue pending timers and reschedule them */ 2010 /* queue pending timers and reschedule them */
1133 timers_reify (EV_A); /* relative timers called last */ 2011 timers_reify (EV_A); /* relative timers called last */
2012#if EV_PERIODIC_ENABLE
1134 periodics_reify (EV_A); /* absolute timers called first */ 2013 periodics_reify (EV_A); /* absolute timers called first */
2014#endif
1135 2015
2016#if EV_IDLE_ENABLE
1136 /* queue idle watchers unless io or timers are pending */ 2017 /* queue idle watchers unless other events are pending */
1137 if (!pendingcnt) 2018 idle_reify (EV_A);
1138 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2019#endif
1139 2020
1140 /* queue check watchers, to be executed first */ 2021 /* queue check watchers, to be executed first */
1141 if (checkcnt) 2022 if (expect_false (checkcnt))
1142 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2023 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1143 2024
1144 call_pending (EV_A); 2025 call_pending (EV_A);
1145 } 2026 }
1146 while (activecnt && !loop_done); 2027 while (expect_true (
2028 activecnt
2029 && !loop_done
2030 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2031 ));
1147 2032
1148 if (loop_done != 2) 2033 if (loop_done == EVUNLOOP_ONE)
1149 loop_done = 0; 2034 loop_done = EVUNLOOP_CANCEL;
1150} 2035}
1151 2036
1152void 2037void
1153ev_unloop (EV_P_ int how) 2038ev_unloop (EV_P_ int how)
1154{ 2039{
1155 loop_done = how; 2040 loop_done = how;
1156} 2041}
1157 2042
1158/*****************************************************************************/ 2043/*****************************************************************************/
1159 2044
1160inline void 2045void inline_size
1161wlist_add (WL *head, WL elem) 2046wlist_add (WL *head, WL elem)
1162{ 2047{
1163 elem->next = *head; 2048 elem->next = *head;
1164 *head = elem; 2049 *head = elem;
1165} 2050}
1166 2051
1167inline void 2052void inline_size
1168wlist_del (WL *head, WL elem) 2053wlist_del (WL *head, WL elem)
1169{ 2054{
1170 while (*head) 2055 while (*head)
1171 { 2056 {
1172 if (*head == elem) 2057 if (*head == elem)
1177 2062
1178 head = &(*head)->next; 2063 head = &(*head)->next;
1179 } 2064 }
1180} 2065}
1181 2066
1182inline void 2067void inline_speed
1183ev_clear_pending (EV_P_ W w) 2068clear_pending (EV_P_ W w)
1184{ 2069{
1185 if (w->pending) 2070 if (w->pending)
1186 { 2071 {
1187 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2072 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1188 w->pending = 0; 2073 w->pending = 0;
1189 } 2074 }
1190} 2075}
1191 2076
1192inline void 2077int
2078ev_clear_pending (EV_P_ void *w)
2079{
2080 W w_ = (W)w;
2081 int pending = w_->pending;
2082
2083 if (expect_true (pending))
2084 {
2085 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2086 w_->pending = 0;
2087 p->w = 0;
2088 return p->events;
2089 }
2090 else
2091 return 0;
2092}
2093
2094void inline_size
2095pri_adjust (EV_P_ W w)
2096{
2097 int pri = w->priority;
2098 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2099 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2100 w->priority = pri;
2101}
2102
2103void inline_speed
1193ev_start (EV_P_ W w, int active) 2104ev_start (EV_P_ W w, int active)
1194{ 2105{
1195 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2106 pri_adjust (EV_A_ w);
1196 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1197
1198 w->active = active; 2107 w->active = active;
1199 ev_ref (EV_A); 2108 ev_ref (EV_A);
1200} 2109}
1201 2110
1202inline void 2111void inline_size
1203ev_stop (EV_P_ W w) 2112ev_stop (EV_P_ W w)
1204{ 2113{
1205 ev_unref (EV_A); 2114 ev_unref (EV_A);
1206 w->active = 0; 2115 w->active = 0;
1207} 2116}
1208 2117
1209/*****************************************************************************/ 2118/*****************************************************************************/
1210 2119
1211void 2120void noinline
1212ev_io_start (EV_P_ struct ev_io *w) 2121ev_io_start (EV_P_ ev_io *w)
1213{ 2122{
1214 int fd = w->fd; 2123 int fd = w->fd;
1215 2124
1216 if (ev_is_active (w)) 2125 if (expect_false (ev_is_active (w)))
1217 return; 2126 return;
1218 2127
1219 assert (("ev_io_start called with negative fd", fd >= 0)); 2128 assert (("ev_io_start called with negative fd", fd >= 0));
2129 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE))));
2130
2131 EV_FREQUENT_CHECK;
1220 2132
1221 ev_start (EV_A_ (W)w, 1); 2133 ev_start (EV_A_ (W)w, 1);
1222 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2134 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1223 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2135 wlist_add (&anfds[fd].head, (WL)w);
1224 2136
1225 fd_change (EV_A_ fd); 2137 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1226} 2138 w->events &= ~EV_IOFDSET;
1227 2139
1228void 2140 EV_FREQUENT_CHECK;
2141}
2142
2143void noinline
1229ev_io_stop (EV_P_ struct ev_io *w) 2144ev_io_stop (EV_P_ ev_io *w)
1230{ 2145{
1231 ev_clear_pending (EV_A_ (W)w); 2146 clear_pending (EV_A_ (W)w);
1232 if (!ev_is_active (w)) 2147 if (expect_false (!ev_is_active (w)))
1233 return; 2148 return;
1234 2149
2150 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2151
2152 EV_FREQUENT_CHECK;
2153
1235 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2154 wlist_del (&anfds[w->fd].head, (WL)w);
1236 ev_stop (EV_A_ (W)w); 2155 ev_stop (EV_A_ (W)w);
1237 2156
1238 fd_change (EV_A_ w->fd); 2157 fd_change (EV_A_ w->fd, 1);
1239}
1240 2158
1241void 2159 EV_FREQUENT_CHECK;
2160}
2161
2162void noinline
1242ev_timer_start (EV_P_ struct ev_timer *w) 2163ev_timer_start (EV_P_ ev_timer *w)
1243{ 2164{
1244 if (ev_is_active (w)) 2165 if (expect_false (ev_is_active (w)))
1245 return; 2166 return;
1246 2167
1247 ((WT)w)->at += mn_now; 2168 ev_at (w) += mn_now;
1248 2169
1249 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2170 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1250 2171
2172 EV_FREQUENT_CHECK;
2173
2174 ++timercnt;
1251 ev_start (EV_A_ (W)w, ++timercnt); 2175 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1252 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 2176 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1253 timers [timercnt - 1] = w; 2177 ANHE_w (timers [ev_active (w)]) = (WT)w;
1254 upheap ((WT *)timers, timercnt - 1); 2178 ANHE_at_cache (timers [ev_active (w)]);
2179 upheap (timers, ev_active (w));
1255 2180
2181 EV_FREQUENT_CHECK;
2182
1256 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2183 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1257} 2184}
1258 2185
1259void 2186void noinline
1260ev_timer_stop (EV_P_ struct ev_timer *w) 2187ev_timer_stop (EV_P_ ev_timer *w)
1261{ 2188{
1262 ev_clear_pending (EV_A_ (W)w); 2189 clear_pending (EV_A_ (W)w);
1263 if (!ev_is_active (w)) 2190 if (expect_false (!ev_is_active (w)))
1264 return; 2191 return;
1265 2192
2193 EV_FREQUENT_CHECK;
2194
2195 {
2196 int active = ev_active (w);
2197
1266 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2198 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1267 2199
1268 if (((W)w)->active < timercnt--) 2200 --timercnt;
2201
2202 if (expect_true (active < timercnt + HEAP0))
1269 { 2203 {
1270 timers [((W)w)->active - 1] = timers [timercnt]; 2204 timers [active] = timers [timercnt + HEAP0];
1271 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2205 adjustheap (timers, timercnt, active);
1272 } 2206 }
2207 }
1273 2208
1274 ((WT)w)->at = w->repeat; 2209 EV_FREQUENT_CHECK;
2210
2211 ev_at (w) -= mn_now;
1275 2212
1276 ev_stop (EV_A_ (W)w); 2213 ev_stop (EV_A_ (W)w);
1277} 2214}
1278 2215
1279void 2216void noinline
1280ev_timer_again (EV_P_ struct ev_timer *w) 2217ev_timer_again (EV_P_ ev_timer *w)
1281{ 2218{
2219 EV_FREQUENT_CHECK;
2220
1282 if (ev_is_active (w)) 2221 if (ev_is_active (w))
1283 { 2222 {
1284 if (w->repeat) 2223 if (w->repeat)
1285 { 2224 {
1286 ((WT)w)->at = mn_now + w->repeat; 2225 ev_at (w) = mn_now + w->repeat;
1287 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2226 ANHE_at_cache (timers [ev_active (w)]);
2227 adjustheap (timers, timercnt, ev_active (w));
1288 } 2228 }
1289 else 2229 else
1290 ev_timer_stop (EV_A_ w); 2230 ev_timer_stop (EV_A_ w);
1291 } 2231 }
1292 else if (w->repeat) 2232 else if (w->repeat)
2233 {
2234 ev_at (w) = w->repeat;
1293 ev_timer_start (EV_A_ w); 2235 ev_timer_start (EV_A_ w);
1294} 2236 }
1295 2237
1296void 2238 EV_FREQUENT_CHECK;
2239}
2240
2241#if EV_PERIODIC_ENABLE
2242void noinline
1297ev_periodic_start (EV_P_ struct ev_periodic *w) 2243ev_periodic_start (EV_P_ ev_periodic *w)
1298{ 2244{
1299 if (ev_is_active (w)) 2245 if (expect_false (ev_is_active (w)))
1300 return; 2246 return;
1301 2247
2248 if (w->reschedule_cb)
2249 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2250 else if (w->interval)
2251 {
1302 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2252 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1303
1304 /* this formula differs from the one in periodic_reify because we do not always round up */ 2253 /* this formula differs from the one in periodic_reify because we do not always round up */
1305 if (w->interval)
1306 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 2254 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2255 }
2256 else
2257 ev_at (w) = w->offset;
1307 2258
2259 EV_FREQUENT_CHECK;
2260
2261 ++periodiccnt;
1308 ev_start (EV_A_ (W)w, ++periodiccnt); 2262 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1309 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 2263 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1310 periodics [periodiccnt - 1] = w; 2264 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1311 upheap ((WT *)periodics, periodiccnt - 1); 2265 ANHE_at_cache (periodics [ev_active (w)]);
2266 upheap (periodics, ev_active (w));
1312 2267
2268 EV_FREQUENT_CHECK;
2269
1313 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2270 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1314} 2271}
1315 2272
1316void 2273void noinline
1317ev_periodic_stop (EV_P_ struct ev_periodic *w) 2274ev_periodic_stop (EV_P_ ev_periodic *w)
1318{ 2275{
1319 ev_clear_pending (EV_A_ (W)w); 2276 clear_pending (EV_A_ (W)w);
1320 if (!ev_is_active (w)) 2277 if (expect_false (!ev_is_active (w)))
1321 return; 2278 return;
1322 2279
2280 EV_FREQUENT_CHECK;
2281
2282 {
2283 int active = ev_active (w);
2284
1323 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2285 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1324 2286
1325 if (((W)w)->active < periodiccnt--) 2287 --periodiccnt;
2288
2289 if (expect_true (active < periodiccnt + HEAP0))
1326 { 2290 {
1327 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2291 periodics [active] = periodics [periodiccnt + HEAP0];
1328 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2292 adjustheap (periodics, periodiccnt, active);
1329 } 2293 }
2294 }
2295
2296 EV_FREQUENT_CHECK;
1330 2297
1331 ev_stop (EV_A_ (W)w); 2298 ev_stop (EV_A_ (W)w);
1332} 2299}
1333 2300
1334void 2301void noinline
1335ev_idle_start (EV_P_ struct ev_idle *w) 2302ev_periodic_again (EV_P_ ev_periodic *w)
1336{ 2303{
1337 if (ev_is_active (w)) 2304 /* TODO: use adjustheap and recalculation */
1338 return;
1339
1340 ev_start (EV_A_ (W)w, ++idlecnt);
1341 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1342 idles [idlecnt - 1] = w;
1343}
1344
1345void
1346ev_idle_stop (EV_P_ struct ev_idle *w)
1347{
1348 ev_clear_pending (EV_A_ (W)w);
1349 if (ev_is_active (w))
1350 return;
1351
1352 idles [((W)w)->active - 1] = idles [--idlecnt];
1353 ev_stop (EV_A_ (W)w); 2305 ev_periodic_stop (EV_A_ w);
2306 ev_periodic_start (EV_A_ w);
1354} 2307}
1355 2308#endif
1356void
1357ev_prepare_start (EV_P_ struct ev_prepare *w)
1358{
1359 if (ev_is_active (w))
1360 return;
1361
1362 ev_start (EV_A_ (W)w, ++preparecnt);
1363 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1364 prepares [preparecnt - 1] = w;
1365}
1366
1367void
1368ev_prepare_stop (EV_P_ struct ev_prepare *w)
1369{
1370 ev_clear_pending (EV_A_ (W)w);
1371 if (ev_is_active (w))
1372 return;
1373
1374 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1375 ev_stop (EV_A_ (W)w);
1376}
1377
1378void
1379ev_check_start (EV_P_ struct ev_check *w)
1380{
1381 if (ev_is_active (w))
1382 return;
1383
1384 ev_start (EV_A_ (W)w, ++checkcnt);
1385 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1386 checks [checkcnt - 1] = w;
1387}
1388
1389void
1390ev_check_stop (EV_P_ struct ev_check *w)
1391{
1392 ev_clear_pending (EV_A_ (W)w);
1393 if (ev_is_active (w))
1394 return;
1395
1396 checks [((W)w)->active - 1] = checks [--checkcnt];
1397 ev_stop (EV_A_ (W)w);
1398}
1399 2309
1400#ifndef SA_RESTART 2310#ifndef SA_RESTART
1401# define SA_RESTART 0 2311# define SA_RESTART 0
1402#endif 2312#endif
1403 2313
1404void 2314void noinline
1405ev_signal_start (EV_P_ struct ev_signal *w) 2315ev_signal_start (EV_P_ ev_signal *w)
1406{ 2316{
1407#if EV_MULTIPLICITY 2317#if EV_MULTIPLICITY
1408 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2318 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1409#endif 2319#endif
1410 if (ev_is_active (w)) 2320 if (expect_false (ev_is_active (w)))
1411 return; 2321 return;
1412 2322
1413 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2323 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1414 2324
2325 evpipe_init (EV_A);
2326
2327 EV_FREQUENT_CHECK;
2328
2329 {
2330#ifndef _WIN32
2331 sigset_t full, prev;
2332 sigfillset (&full);
2333 sigprocmask (SIG_SETMASK, &full, &prev);
2334#endif
2335
2336 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2337
2338#ifndef _WIN32
2339 sigprocmask (SIG_SETMASK, &prev, 0);
2340#endif
2341 }
2342
1415 ev_start (EV_A_ (W)w, 1); 2343 ev_start (EV_A_ (W)w, 1);
1416 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1417 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2344 wlist_add (&signals [w->signum - 1].head, (WL)w);
1418 2345
1419 if (!((WL)w)->next) 2346 if (!((WL)w)->next)
1420 { 2347 {
1421#if WIN32 2348#if _WIN32
1422 signal (w->signum, sighandler); 2349 signal (w->signum, ev_sighandler);
1423#else 2350#else
1424 struct sigaction sa; 2351 struct sigaction sa;
1425 sa.sa_handler = sighandler; 2352 sa.sa_handler = ev_sighandler;
1426 sigfillset (&sa.sa_mask); 2353 sigfillset (&sa.sa_mask);
1427 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2354 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1428 sigaction (w->signum, &sa, 0); 2355 sigaction (w->signum, &sa, 0);
1429#endif 2356#endif
1430 } 2357 }
1431}
1432 2358
1433void 2359 EV_FREQUENT_CHECK;
2360}
2361
2362void noinline
1434ev_signal_stop (EV_P_ struct ev_signal *w) 2363ev_signal_stop (EV_P_ ev_signal *w)
1435{ 2364{
1436 ev_clear_pending (EV_A_ (W)w); 2365 clear_pending (EV_A_ (W)w);
1437 if (!ev_is_active (w)) 2366 if (expect_false (!ev_is_active (w)))
1438 return; 2367 return;
1439 2368
2369 EV_FREQUENT_CHECK;
2370
1440 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2371 wlist_del (&signals [w->signum - 1].head, (WL)w);
1441 ev_stop (EV_A_ (W)w); 2372 ev_stop (EV_A_ (W)w);
1442 2373
1443 if (!signals [w->signum - 1].head) 2374 if (!signals [w->signum - 1].head)
1444 signal (w->signum, SIG_DFL); 2375 signal (w->signum, SIG_DFL);
1445}
1446 2376
2377 EV_FREQUENT_CHECK;
2378}
2379
1447void 2380void
1448ev_child_start (EV_P_ struct ev_child *w) 2381ev_child_start (EV_P_ ev_child *w)
1449{ 2382{
1450#if EV_MULTIPLICITY 2383#if EV_MULTIPLICITY
1451 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2384 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1452#endif 2385#endif
1453 if (ev_is_active (w)) 2386 if (expect_false (ev_is_active (w)))
1454 return; 2387 return;
1455 2388
2389 EV_FREQUENT_CHECK;
2390
1456 ev_start (EV_A_ (W)w, 1); 2391 ev_start (EV_A_ (W)w, 1);
1457 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2392 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1458}
1459 2393
2394 EV_FREQUENT_CHECK;
2395}
2396
1460void 2397void
1461ev_child_stop (EV_P_ struct ev_child *w) 2398ev_child_stop (EV_P_ ev_child *w)
1462{ 2399{
1463 ev_clear_pending (EV_A_ (W)w); 2400 clear_pending (EV_A_ (W)w);
1464 if (ev_is_active (w)) 2401 if (expect_false (!ev_is_active (w)))
1465 return; 2402 return;
1466 2403
2404 EV_FREQUENT_CHECK;
2405
1467 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2406 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1468 ev_stop (EV_A_ (W)w); 2407 ev_stop (EV_A_ (W)w);
2408
2409 EV_FREQUENT_CHECK;
1469} 2410}
2411
2412#if EV_STAT_ENABLE
2413
2414# ifdef _WIN32
2415# undef lstat
2416# define lstat(a,b) _stati64 (a,b)
2417# endif
2418
2419#define DEF_STAT_INTERVAL 5.0074891
2420#define MIN_STAT_INTERVAL 0.1074891
2421
2422static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2423
2424#if EV_USE_INOTIFY
2425# define EV_INOTIFY_BUFSIZE 8192
2426
2427static void noinline
2428infy_add (EV_P_ ev_stat *w)
2429{
2430 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2431
2432 if (w->wd < 0)
2433 {
2434 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2435
2436 /* monitor some parent directory for speedup hints */
2437 /* note that exceeding the hardcoded limit is not a correctness issue, */
2438 /* but an efficiency issue only */
2439 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2440 {
2441 char path [4096];
2442 strcpy (path, w->path);
2443
2444 do
2445 {
2446 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2447 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2448
2449 char *pend = strrchr (path, '/');
2450
2451 if (!pend)
2452 break; /* whoops, no '/', complain to your admin */
2453
2454 *pend = 0;
2455 w->wd = inotify_add_watch (fs_fd, path, mask);
2456 }
2457 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2458 }
2459 }
2460 else
2461 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2462
2463 if (w->wd >= 0)
2464 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2465}
2466
2467static void noinline
2468infy_del (EV_P_ ev_stat *w)
2469{
2470 int slot;
2471 int wd = w->wd;
2472
2473 if (wd < 0)
2474 return;
2475
2476 w->wd = -2;
2477 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2478 wlist_del (&fs_hash [slot].head, (WL)w);
2479
2480 /* remove this watcher, if others are watching it, they will rearm */
2481 inotify_rm_watch (fs_fd, wd);
2482}
2483
2484static void noinline
2485infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2486{
2487 if (slot < 0)
2488 /* overflow, need to check for all hash slots */
2489 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2490 infy_wd (EV_A_ slot, wd, ev);
2491 else
2492 {
2493 WL w_;
2494
2495 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2496 {
2497 ev_stat *w = (ev_stat *)w_;
2498 w_ = w_->next; /* lets us remove this watcher and all before it */
2499
2500 if (w->wd == wd || wd == -1)
2501 {
2502 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2503 {
2504 w->wd = -1;
2505 infy_add (EV_A_ w); /* re-add, no matter what */
2506 }
2507
2508 stat_timer_cb (EV_A_ &w->timer, 0);
2509 }
2510 }
2511 }
2512}
2513
2514static void
2515infy_cb (EV_P_ ev_io *w, int revents)
2516{
2517 char buf [EV_INOTIFY_BUFSIZE];
2518 struct inotify_event *ev = (struct inotify_event *)buf;
2519 int ofs;
2520 int len = read (fs_fd, buf, sizeof (buf));
2521
2522 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2523 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2524}
2525
2526void inline_size
2527infy_init (EV_P)
2528{
2529 if (fs_fd != -2)
2530 return;
2531
2532 /* kernels < 2.6.25 are borked
2533 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2534 */
2535 {
2536 struct utsname buf;
2537 int major, minor, micro;
2538
2539 fs_fd = -1;
2540
2541 if (uname (&buf))
2542 return;
2543
2544 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2545 return;
2546
2547 if (major < 2
2548 || (major == 2 && minor < 6)
2549 || (major == 2 && minor == 6 && micro < 25))
2550 return;
2551 }
2552
2553 fs_fd = inotify_init ();
2554
2555 if (fs_fd >= 0)
2556 {
2557 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2558 ev_set_priority (&fs_w, EV_MAXPRI);
2559 ev_io_start (EV_A_ &fs_w);
2560 }
2561}
2562
2563void inline_size
2564infy_fork (EV_P)
2565{
2566 int slot;
2567
2568 if (fs_fd < 0)
2569 return;
2570
2571 close (fs_fd);
2572 fs_fd = inotify_init ();
2573
2574 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2575 {
2576 WL w_ = fs_hash [slot].head;
2577 fs_hash [slot].head = 0;
2578
2579 while (w_)
2580 {
2581 ev_stat *w = (ev_stat *)w_;
2582 w_ = w_->next; /* lets us add this watcher */
2583
2584 w->wd = -1;
2585
2586 if (fs_fd >= 0)
2587 infy_add (EV_A_ w); /* re-add, no matter what */
2588 else
2589 ev_timer_start (EV_A_ &w->timer);
2590 }
2591 }
2592}
2593
2594#endif
2595
2596#ifdef _WIN32
2597# define EV_LSTAT(p,b) _stati64 (p, b)
2598#else
2599# define EV_LSTAT(p,b) lstat (p, b)
2600#endif
2601
2602void
2603ev_stat_stat (EV_P_ ev_stat *w)
2604{
2605 if (lstat (w->path, &w->attr) < 0)
2606 w->attr.st_nlink = 0;
2607 else if (!w->attr.st_nlink)
2608 w->attr.st_nlink = 1;
2609}
2610
2611static void noinline
2612stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2613{
2614 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2615
2616 /* we copy this here each the time so that */
2617 /* prev has the old value when the callback gets invoked */
2618 w->prev = w->attr;
2619 ev_stat_stat (EV_A_ w);
2620
2621 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2622 if (
2623 w->prev.st_dev != w->attr.st_dev
2624 || w->prev.st_ino != w->attr.st_ino
2625 || w->prev.st_mode != w->attr.st_mode
2626 || w->prev.st_nlink != w->attr.st_nlink
2627 || w->prev.st_uid != w->attr.st_uid
2628 || w->prev.st_gid != w->attr.st_gid
2629 || w->prev.st_rdev != w->attr.st_rdev
2630 || w->prev.st_size != w->attr.st_size
2631 || w->prev.st_atime != w->attr.st_atime
2632 || w->prev.st_mtime != w->attr.st_mtime
2633 || w->prev.st_ctime != w->attr.st_ctime
2634 ) {
2635 #if EV_USE_INOTIFY
2636 if (fs_fd >= 0)
2637 {
2638 infy_del (EV_A_ w);
2639 infy_add (EV_A_ w);
2640 ev_stat_stat (EV_A_ w); /* avoid race... */
2641 }
2642 #endif
2643
2644 ev_feed_event (EV_A_ w, EV_STAT);
2645 }
2646}
2647
2648void
2649ev_stat_start (EV_P_ ev_stat *w)
2650{
2651 if (expect_false (ev_is_active (w)))
2652 return;
2653
2654 /* since we use memcmp, we need to clear any padding data etc. */
2655 memset (&w->prev, 0, sizeof (ev_statdata));
2656 memset (&w->attr, 0, sizeof (ev_statdata));
2657
2658 ev_stat_stat (EV_A_ w);
2659
2660 if (w->interval < MIN_STAT_INTERVAL)
2661 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2662
2663 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2664 ev_set_priority (&w->timer, ev_priority (w));
2665
2666#if EV_USE_INOTIFY
2667 infy_init (EV_A);
2668
2669 if (fs_fd >= 0)
2670 infy_add (EV_A_ w);
2671 else
2672#endif
2673 ev_timer_start (EV_A_ &w->timer);
2674
2675 ev_start (EV_A_ (W)w, 1);
2676
2677 EV_FREQUENT_CHECK;
2678}
2679
2680void
2681ev_stat_stop (EV_P_ ev_stat *w)
2682{
2683 clear_pending (EV_A_ (W)w);
2684 if (expect_false (!ev_is_active (w)))
2685 return;
2686
2687 EV_FREQUENT_CHECK;
2688
2689#if EV_USE_INOTIFY
2690 infy_del (EV_A_ w);
2691#endif
2692 ev_timer_stop (EV_A_ &w->timer);
2693
2694 ev_stop (EV_A_ (W)w);
2695
2696 EV_FREQUENT_CHECK;
2697}
2698#endif
2699
2700#if EV_IDLE_ENABLE
2701void
2702ev_idle_start (EV_P_ ev_idle *w)
2703{
2704 if (expect_false (ev_is_active (w)))
2705 return;
2706
2707 pri_adjust (EV_A_ (W)w);
2708
2709 EV_FREQUENT_CHECK;
2710
2711 {
2712 int active = ++idlecnt [ABSPRI (w)];
2713
2714 ++idleall;
2715 ev_start (EV_A_ (W)w, active);
2716
2717 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2718 idles [ABSPRI (w)][active - 1] = w;
2719 }
2720
2721 EV_FREQUENT_CHECK;
2722}
2723
2724void
2725ev_idle_stop (EV_P_ ev_idle *w)
2726{
2727 clear_pending (EV_A_ (W)w);
2728 if (expect_false (!ev_is_active (w)))
2729 return;
2730
2731 EV_FREQUENT_CHECK;
2732
2733 {
2734 int active = ev_active (w);
2735
2736 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2737 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2738
2739 ev_stop (EV_A_ (W)w);
2740 --idleall;
2741 }
2742
2743 EV_FREQUENT_CHECK;
2744}
2745#endif
2746
2747void
2748ev_prepare_start (EV_P_ ev_prepare *w)
2749{
2750 if (expect_false (ev_is_active (w)))
2751 return;
2752
2753 EV_FREQUENT_CHECK;
2754
2755 ev_start (EV_A_ (W)w, ++preparecnt);
2756 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2757 prepares [preparecnt - 1] = w;
2758
2759 EV_FREQUENT_CHECK;
2760}
2761
2762void
2763ev_prepare_stop (EV_P_ ev_prepare *w)
2764{
2765 clear_pending (EV_A_ (W)w);
2766 if (expect_false (!ev_is_active (w)))
2767 return;
2768
2769 EV_FREQUENT_CHECK;
2770
2771 {
2772 int active = ev_active (w);
2773
2774 prepares [active - 1] = prepares [--preparecnt];
2775 ev_active (prepares [active - 1]) = active;
2776 }
2777
2778 ev_stop (EV_A_ (W)w);
2779
2780 EV_FREQUENT_CHECK;
2781}
2782
2783void
2784ev_check_start (EV_P_ ev_check *w)
2785{
2786 if (expect_false (ev_is_active (w)))
2787 return;
2788
2789 EV_FREQUENT_CHECK;
2790
2791 ev_start (EV_A_ (W)w, ++checkcnt);
2792 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2793 checks [checkcnt - 1] = w;
2794
2795 EV_FREQUENT_CHECK;
2796}
2797
2798void
2799ev_check_stop (EV_P_ ev_check *w)
2800{
2801 clear_pending (EV_A_ (W)w);
2802 if (expect_false (!ev_is_active (w)))
2803 return;
2804
2805 EV_FREQUENT_CHECK;
2806
2807 {
2808 int active = ev_active (w);
2809
2810 checks [active - 1] = checks [--checkcnt];
2811 ev_active (checks [active - 1]) = active;
2812 }
2813
2814 ev_stop (EV_A_ (W)w);
2815
2816 EV_FREQUENT_CHECK;
2817}
2818
2819#if EV_EMBED_ENABLE
2820void noinline
2821ev_embed_sweep (EV_P_ ev_embed *w)
2822{
2823 ev_loop (w->other, EVLOOP_NONBLOCK);
2824}
2825
2826static void
2827embed_io_cb (EV_P_ ev_io *io, int revents)
2828{
2829 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2830
2831 if (ev_cb (w))
2832 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2833 else
2834 ev_loop (w->other, EVLOOP_NONBLOCK);
2835}
2836
2837static void
2838embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2839{
2840 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2841
2842 {
2843 struct ev_loop *loop = w->other;
2844
2845 while (fdchangecnt)
2846 {
2847 fd_reify (EV_A);
2848 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2849 }
2850 }
2851}
2852
2853static void
2854embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2855{
2856 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2857
2858 {
2859 struct ev_loop *loop = w->other;
2860
2861 ev_loop_fork (EV_A);
2862 }
2863}
2864
2865#if 0
2866static void
2867embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2868{
2869 ev_idle_stop (EV_A_ idle);
2870}
2871#endif
2872
2873void
2874ev_embed_start (EV_P_ ev_embed *w)
2875{
2876 if (expect_false (ev_is_active (w)))
2877 return;
2878
2879 {
2880 struct ev_loop *loop = w->other;
2881 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2882 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2883 }
2884
2885 EV_FREQUENT_CHECK;
2886
2887 ev_set_priority (&w->io, ev_priority (w));
2888 ev_io_start (EV_A_ &w->io);
2889
2890 ev_prepare_init (&w->prepare, embed_prepare_cb);
2891 ev_set_priority (&w->prepare, EV_MINPRI);
2892 ev_prepare_start (EV_A_ &w->prepare);
2893
2894 ev_fork_init (&w->fork, embed_fork_cb);
2895 ev_fork_start (EV_A_ &w->fork);
2896
2897 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2898
2899 ev_start (EV_A_ (W)w, 1);
2900
2901 EV_FREQUENT_CHECK;
2902}
2903
2904void
2905ev_embed_stop (EV_P_ ev_embed *w)
2906{
2907 clear_pending (EV_A_ (W)w);
2908 if (expect_false (!ev_is_active (w)))
2909 return;
2910
2911 EV_FREQUENT_CHECK;
2912
2913 ev_io_stop (EV_A_ &w->io);
2914 ev_prepare_stop (EV_A_ &w->prepare);
2915 ev_fork_stop (EV_A_ &w->fork);
2916
2917 EV_FREQUENT_CHECK;
2918}
2919#endif
2920
2921#if EV_FORK_ENABLE
2922void
2923ev_fork_start (EV_P_ ev_fork *w)
2924{
2925 if (expect_false (ev_is_active (w)))
2926 return;
2927
2928 EV_FREQUENT_CHECK;
2929
2930 ev_start (EV_A_ (W)w, ++forkcnt);
2931 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2932 forks [forkcnt - 1] = w;
2933
2934 EV_FREQUENT_CHECK;
2935}
2936
2937void
2938ev_fork_stop (EV_P_ ev_fork *w)
2939{
2940 clear_pending (EV_A_ (W)w);
2941 if (expect_false (!ev_is_active (w)))
2942 return;
2943
2944 EV_FREQUENT_CHECK;
2945
2946 {
2947 int active = ev_active (w);
2948
2949 forks [active - 1] = forks [--forkcnt];
2950 ev_active (forks [active - 1]) = active;
2951 }
2952
2953 ev_stop (EV_A_ (W)w);
2954
2955 EV_FREQUENT_CHECK;
2956}
2957#endif
2958
2959#if EV_ASYNC_ENABLE
2960void
2961ev_async_start (EV_P_ ev_async *w)
2962{
2963 if (expect_false (ev_is_active (w)))
2964 return;
2965
2966 evpipe_init (EV_A);
2967
2968 EV_FREQUENT_CHECK;
2969
2970 ev_start (EV_A_ (W)w, ++asynccnt);
2971 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2972 asyncs [asynccnt - 1] = w;
2973
2974 EV_FREQUENT_CHECK;
2975}
2976
2977void
2978ev_async_stop (EV_P_ ev_async *w)
2979{
2980 clear_pending (EV_A_ (W)w);
2981 if (expect_false (!ev_is_active (w)))
2982 return;
2983
2984 EV_FREQUENT_CHECK;
2985
2986 {
2987 int active = ev_active (w);
2988
2989 asyncs [active - 1] = asyncs [--asynccnt];
2990 ev_active (asyncs [active - 1]) = active;
2991 }
2992
2993 ev_stop (EV_A_ (W)w);
2994
2995 EV_FREQUENT_CHECK;
2996}
2997
2998void
2999ev_async_send (EV_P_ ev_async *w)
3000{
3001 w->sent = 1;
3002 evpipe_write (EV_A_ &gotasync);
3003}
3004#endif
1470 3005
1471/*****************************************************************************/ 3006/*****************************************************************************/
1472 3007
1473struct ev_once 3008struct ev_once
1474{ 3009{
1475 struct ev_io io; 3010 ev_io io;
1476 struct ev_timer to; 3011 ev_timer to;
1477 void (*cb)(int revents, void *arg); 3012 void (*cb)(int revents, void *arg);
1478 void *arg; 3013 void *arg;
1479}; 3014};
1480 3015
1481static void 3016static void
1482once_cb (EV_P_ struct ev_once *once, int revents) 3017once_cb (EV_P_ struct ev_once *once, int revents)
1483{ 3018{
1484 void (*cb)(int revents, void *arg) = once->cb; 3019 void (*cb)(int revents, void *arg) = once->cb;
1485 void *arg = once->arg; 3020 void *arg = once->arg;
1486 3021
1487 ev_io_stop (EV_A_ &once->io); 3022 ev_io_stop (EV_A_ &once->io);
1488 ev_timer_stop (EV_A_ &once->to); 3023 ev_timer_stop (EV_A_ &once->to);
1489 ev_free (once); 3024 ev_free (once);
1490 3025
1491 cb (revents, arg); 3026 cb (revents, arg);
1492} 3027}
1493 3028
1494static void 3029static void
1495once_cb_io (EV_P_ struct ev_io *w, int revents) 3030once_cb_io (EV_P_ ev_io *w, int revents)
1496{ 3031{
1497 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3032 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3033
3034 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1498} 3035}
1499 3036
1500static void 3037static void
1501once_cb_to (EV_P_ struct ev_timer *w, int revents) 3038once_cb_to (EV_P_ ev_timer *w, int revents)
1502{ 3039{
1503 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3040 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3041
3042 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1504} 3043}
1505 3044
1506void 3045void
1507ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3046ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1508{ 3047{
1509 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3048 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1510 3049
1511 if (!once) 3050 if (expect_false (!once))
3051 {
1512 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3052 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1513 else 3053 return;
1514 { 3054 }
3055
1515 once->cb = cb; 3056 once->cb = cb;
1516 once->arg = arg; 3057 once->arg = arg;
1517 3058
1518 ev_watcher_init (&once->io, once_cb_io); 3059 ev_init (&once->io, once_cb_io);
1519 if (fd >= 0) 3060 if (fd >= 0)
1520 { 3061 {
1521 ev_io_set (&once->io, fd, events); 3062 ev_io_set (&once->io, fd, events);
1522 ev_io_start (EV_A_ &once->io); 3063 ev_io_start (EV_A_ &once->io);
1523 } 3064 }
1524 3065
1525 ev_watcher_init (&once->to, once_cb_to); 3066 ev_init (&once->to, once_cb_to);
1526 if (timeout >= 0.) 3067 if (timeout >= 0.)
1527 { 3068 {
1528 ev_timer_set (&once->to, timeout, 0.); 3069 ev_timer_set (&once->to, timeout, 0.);
1529 ev_timer_start (EV_A_ &once->to); 3070 ev_timer_start (EV_A_ &once->to);
1530 }
1531 } 3071 }
1532} 3072}
1533 3073
3074#if EV_MULTIPLICITY
3075 #include "ev_wrap.h"
3076#endif
3077
3078#ifdef __cplusplus
3079}
3080#endif
3081

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines