ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.194 by root, Sat Dec 22 07:03:31 2007 UTC vs.
Revision 1.271 by root, Mon Nov 3 12:13:15 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
110# else 119# else
111# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
112# endif 121# endif
113# endif 122# endif
114 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
115#endif 132#endif
116 133
117#include <math.h> 134#include <math.h>
118#include <stdlib.h> 135#include <stdlib.h>
119#include <fcntl.h> 136#include <fcntl.h>
137#ifndef _WIN32 154#ifndef _WIN32
138# include <sys/time.h> 155# include <sys/time.h>
139# include <sys/wait.h> 156# include <sys/wait.h>
140# include <unistd.h> 157# include <unistd.h>
141#else 158#else
159# include <io.h>
142# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
143# include <windows.h> 161# include <windows.h>
144# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
146# endif 164# endif
147#endif 165#endif
148 166
149/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
150 168
151#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
152# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
153#endif 175#endif
154 176
155#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
156# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
157#endif 179#endif
158 180
159#ifndef EV_USE_NANOSLEEP 181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
160# define EV_USE_NANOSLEEP 0 185# define EV_USE_NANOSLEEP 0
186# endif
161#endif 187#endif
162 188
163#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
164# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
165#endif 191#endif
171# define EV_USE_POLL 1 197# define EV_USE_POLL 1
172# endif 198# endif
173#endif 199#endif
174 200
175#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
176# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
177#endif 207#endif
178 208
179#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
180# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
181#endif 211#endif
183#ifndef EV_USE_PORT 213#ifndef EV_USE_PORT
184# define EV_USE_PORT 0 214# define EV_USE_PORT 0
185#endif 215#endif
186 216
187#ifndef EV_USE_INOTIFY 217#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1
220# else
188# define EV_USE_INOTIFY 0 221# define EV_USE_INOTIFY 0
222# endif
189#endif 223#endif
190 224
191#ifndef EV_PID_HASHSIZE 225#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL 226# if EV_MINIMAL
193# define EV_PID_HASHSIZE 1 227# define EV_PID_HASHSIZE 1
202# else 236# else
203# define EV_INOTIFY_HASHSIZE 16 237# define EV_INOTIFY_HASHSIZE 16
204# endif 238# endif
205#endif 239#endif
206 240
207/**/ 241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
208 268
209#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
210# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
211# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
212#endif 272#endif
226# include <sys/select.h> 286# include <sys/select.h>
227# endif 287# endif
228#endif 288#endif
229 289
230#if EV_USE_INOTIFY 290#if EV_USE_INOTIFY
291# include <sys/utsname.h>
292# include <sys/statfs.h>
231# include <sys/inotify.h> 293# include <sys/inotify.h>
294/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
295# ifndef IN_DONT_FOLLOW
296# undef EV_USE_INOTIFY
297# define EV_USE_INOTIFY 0
298# endif
232#endif 299#endif
233 300
234#if EV_SELECT_IS_WINSOCKET 301#if EV_SELECT_IS_WINSOCKET
235# include <winsock.h> 302# include <winsock.h>
236#endif 303#endif
237 304
305#if EV_USE_EVENTFD
306/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
307# include <stdint.h>
308# ifdef __cplusplus
309extern "C" {
310# endif
311int eventfd (unsigned int initval, int flags);
312# ifdef __cplusplus
313}
314# endif
315#endif
316
238/**/ 317/**/
318
319#if EV_VERIFY >= 3
320# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
321#else
322# define EV_FREQUENT_CHECK do { } while (0)
323#endif
239 324
240/* 325/*
241 * This is used to avoid floating point rounding problems. 326 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics 327 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding 328 * to ensure progress, time-wise, even when rounding
255# define expect(expr,value) __builtin_expect ((expr),(value)) 340# define expect(expr,value) __builtin_expect ((expr),(value))
256# define noinline __attribute__ ((noinline)) 341# define noinline __attribute__ ((noinline))
257#else 342#else
258# define expect(expr,value) (expr) 343# define expect(expr,value) (expr)
259# define noinline 344# define noinline
260# if __STDC_VERSION__ < 199901L 345# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
261# define inline 346# define inline
262# endif 347# endif
263#endif 348#endif
264 349
265#define expect_false(expr) expect ((expr) != 0, 0) 350#define expect_false(expr) expect ((expr) != 0, 0)
280 365
281typedef ev_watcher *W; 366typedef ev_watcher *W;
282typedef ev_watcher_list *WL; 367typedef ev_watcher_list *WL;
283typedef ev_watcher_time *WT; 368typedef ev_watcher_time *WT;
284 369
370#define ev_active(w) ((W)(w))->active
371#define ev_at(w) ((WT)(w))->at
372
373#if EV_USE_MONOTONIC
285/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 374/* sig_atomic_t is used to avoid per-thread variables or locking but still */
286/* giving it a reasonably high chance of working on typical architetcures */ 375/* giving it a reasonably high chance of working on typical architetcures */
287static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 376static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
377#endif
288 378
289#ifdef _WIN32 379#ifdef _WIN32
290# include "ev_win32.c" 380# include "ev_win32.c"
291#endif 381#endif
292 382
299{ 389{
300 syserr_cb = cb; 390 syserr_cb = cb;
301} 391}
302 392
303static void noinline 393static void noinline
304syserr (const char *msg) 394ev_syserr (const char *msg)
305{ 395{
306 if (!msg) 396 if (!msg)
307 msg = "(libev) system error"; 397 msg = "(libev) system error";
308 398
309 if (syserr_cb) 399 if (syserr_cb)
313 perror (msg); 403 perror (msg);
314 abort (); 404 abort ();
315 } 405 }
316} 406}
317 407
408static void *
409ev_realloc_emul (void *ptr, long size)
410{
411 /* some systems, notably openbsd and darwin, fail to properly
412 * implement realloc (x, 0) (as required by both ansi c-98 and
413 * the single unix specification, so work around them here.
414 */
415
416 if (size)
417 return realloc (ptr, size);
418
419 free (ptr);
420 return 0;
421}
422
318static void *(*alloc)(void *ptr, long size); 423static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
319 424
320void 425void
321ev_set_allocator (void *(*cb)(void *ptr, long size)) 426ev_set_allocator (void *(*cb)(void *ptr, long size))
322{ 427{
323 alloc = cb; 428 alloc = cb;
324} 429}
325 430
326inline_speed void * 431inline_speed void *
327ev_realloc (void *ptr, long size) 432ev_realloc (void *ptr, long size)
328{ 433{
329 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 434 ptr = alloc (ptr, size);
330 435
331 if (!ptr && size) 436 if (!ptr && size)
332 { 437 {
333 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 438 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
334 abort (); 439 abort ();
345typedef struct 450typedef struct
346{ 451{
347 WL head; 452 WL head;
348 unsigned char events; 453 unsigned char events;
349 unsigned char reify; 454 unsigned char reify;
455 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
456 unsigned char unused;
457#if EV_USE_EPOLL
458 unsigned int egen; /* generation counter to counter epoll bugs */
459#endif
350#if EV_SELECT_IS_WINSOCKET 460#if EV_SELECT_IS_WINSOCKET
351 SOCKET handle; 461 SOCKET handle;
352#endif 462#endif
353} ANFD; 463} ANFD;
354 464
357 W w; 467 W w;
358 int events; 468 int events;
359} ANPENDING; 469} ANPENDING;
360 470
361#if EV_USE_INOTIFY 471#if EV_USE_INOTIFY
472/* hash table entry per inotify-id */
362typedef struct 473typedef struct
363{ 474{
364 WL head; 475 WL head;
365} ANFS; 476} ANFS;
477#endif
478
479/* Heap Entry */
480#if EV_HEAP_CACHE_AT
481 typedef struct {
482 ev_tstamp at;
483 WT w;
484 } ANHE;
485
486 #define ANHE_w(he) (he).w /* access watcher, read-write */
487 #define ANHE_at(he) (he).at /* access cached at, read-only */
488 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
489#else
490 typedef WT ANHE;
491
492 #define ANHE_w(he) (he)
493 #define ANHE_at(he) (he)->at
494 #define ANHE_at_cache(he)
366#endif 495#endif
367 496
368#if EV_MULTIPLICITY 497#if EV_MULTIPLICITY
369 498
370 struct ev_loop 499 struct ev_loop
441 ts.tv_sec = (time_t)delay; 570 ts.tv_sec = (time_t)delay;
442 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 571 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
443 572
444 nanosleep (&ts, 0); 573 nanosleep (&ts, 0);
445#elif defined(_WIN32) 574#elif defined(_WIN32)
446 Sleep (delay * 1e3); 575 Sleep ((unsigned long)(delay * 1e3));
447#else 576#else
448 struct timeval tv; 577 struct timeval tv;
449 578
450 tv.tv_sec = (time_t)delay; 579 tv.tv_sec = (time_t)delay;
451 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 580 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
452 581
582 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
583 /* somehting nto guaranteed by newer posix versions, but guaranteed */
584 /* by older ones */
453 select (0, 0, 0, 0, &tv); 585 select (0, 0, 0, 0, &tv);
454#endif 586#endif
455 } 587 }
456} 588}
457 589
458/*****************************************************************************/ 590/*****************************************************************************/
591
592#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
459 593
460int inline_size 594int inline_size
461array_nextsize (int elem, int cur, int cnt) 595array_nextsize (int elem, int cur, int cnt)
462{ 596{
463 int ncur = cur + 1; 597 int ncur = cur + 1;
464 598
465 do 599 do
466 ncur <<= 1; 600 ncur <<= 1;
467 while (cnt > ncur); 601 while (cnt > ncur);
468 602
469 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 603 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
470 if (elem * ncur > 4096) 604 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
471 { 605 {
472 ncur *= elem; 606 ncur *= elem;
473 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 607 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
474 ncur = ncur - sizeof (void *) * 4; 608 ncur = ncur - sizeof (void *) * 4;
475 ncur /= elem; 609 ncur /= elem;
476 } 610 }
477 611
478 return ncur; 612 return ncur;
482array_realloc (int elem, void *base, int *cur, int cnt) 616array_realloc (int elem, void *base, int *cur, int cnt)
483{ 617{
484 *cur = array_nextsize (elem, *cur, cnt); 618 *cur = array_nextsize (elem, *cur, cnt);
485 return ev_realloc (base, elem * *cur); 619 return ev_realloc (base, elem * *cur);
486} 620}
621
622#define array_init_zero(base,count) \
623 memset ((void *)(base), 0, sizeof (*(base)) * (count))
487 624
488#define array_needsize(type,base,cur,cnt,init) \ 625#define array_needsize(type,base,cur,cnt,init) \
489 if (expect_false ((cnt) > (cur))) \ 626 if (expect_false ((cnt) > (cur))) \
490 { \ 627 { \
491 int ocur_ = (cur); \ 628 int ocur_ = (cur); \
535 ev_feed_event (EV_A_ events [i], type); 672 ev_feed_event (EV_A_ events [i], type);
536} 673}
537 674
538/*****************************************************************************/ 675/*****************************************************************************/
539 676
540void inline_size
541anfds_init (ANFD *base, int count)
542{
543 while (count--)
544 {
545 base->head = 0;
546 base->events = EV_NONE;
547 base->reify = 0;
548
549 ++base;
550 }
551}
552
553void inline_speed 677void inline_speed
554fd_event (EV_P_ int fd, int revents) 678fd_event (EV_P_ int fd, int revents)
555{ 679{
556 ANFD *anfd = anfds + fd; 680 ANFD *anfd = anfds + fd;
557 ev_io *w; 681 ev_io *w;
589 events |= (unsigned char)w->events; 713 events |= (unsigned char)w->events;
590 714
591#if EV_SELECT_IS_WINSOCKET 715#if EV_SELECT_IS_WINSOCKET
592 if (events) 716 if (events)
593 { 717 {
594 unsigned long argp; 718 unsigned long arg;
719 #ifdef EV_FD_TO_WIN32_HANDLE
720 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
721 #else
595 anfd->handle = _get_osfhandle (fd); 722 anfd->handle = _get_osfhandle (fd);
723 #endif
596 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 724 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
597 } 725 }
598#endif 726#endif
599 727
600 { 728 {
601 unsigned char o_events = anfd->events; 729 unsigned char o_events = anfd->events;
654{ 782{
655 int fd; 783 int fd;
656 784
657 for (fd = 0; fd < anfdmax; ++fd) 785 for (fd = 0; fd < anfdmax; ++fd)
658 if (anfds [fd].events) 786 if (anfds [fd].events)
659 if (!fd_valid (fd) == -1 && errno == EBADF) 787 if (!fd_valid (fd) && errno == EBADF)
660 fd_kill (EV_A_ fd); 788 fd_kill (EV_A_ fd);
661} 789}
662 790
663/* called on ENOMEM in select/poll to kill some fds and retry */ 791/* called on ENOMEM in select/poll to kill some fds and retry */
664static void noinline 792static void noinline
682 810
683 for (fd = 0; fd < anfdmax; ++fd) 811 for (fd = 0; fd < anfdmax; ++fd)
684 if (anfds [fd].events) 812 if (anfds [fd].events)
685 { 813 {
686 anfds [fd].events = 0; 814 anfds [fd].events = 0;
815 anfds [fd].emask = 0;
687 fd_change (EV_A_ fd, EV_IOFDSET | 1); 816 fd_change (EV_A_ fd, EV_IOFDSET | 1);
688 } 817 }
689} 818}
690 819
691/*****************************************************************************/ 820/*****************************************************************************/
692 821
822/*
823 * the heap functions want a real array index. array index 0 uis guaranteed to not
824 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
825 * the branching factor of the d-tree.
826 */
827
828/*
829 * at the moment we allow libev the luxury of two heaps,
830 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
831 * which is more cache-efficient.
832 * the difference is about 5% with 50000+ watchers.
833 */
834#if EV_USE_4HEAP
835
836#define DHEAP 4
837#define HEAP0 (DHEAP - 1) /* index of first element in heap */
838#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
839#define UPHEAP_DONE(p,k) ((p) == (k))
840
841/* away from the root */
693void inline_speed 842void inline_speed
694upheap (WT *heap, int k) 843downheap (ANHE *heap, int N, int k)
695{ 844{
696 WT w = heap [k]; 845 ANHE he = heap [k];
846 ANHE *E = heap + N + HEAP0;
697 847
698 while (k) 848 for (;;)
699 { 849 {
700 int p = (k - 1) >> 1; 850 ev_tstamp minat;
851 ANHE *minpos;
852 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
701 853
702 if (heap [p]->at <= w->at) 854 /* find minimum child */
855 if (expect_true (pos + DHEAP - 1 < E))
856 {
857 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
858 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
859 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
860 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
861 }
862 else if (pos < E)
863 {
864 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
865 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
866 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
867 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
868 }
869 else
703 break; 870 break;
704 871
872 if (ANHE_at (he) <= minat)
873 break;
874
875 heap [k] = *minpos;
876 ev_active (ANHE_w (*minpos)) = k;
877
878 k = minpos - heap;
879 }
880
881 heap [k] = he;
882 ev_active (ANHE_w (he)) = k;
883}
884
885#else /* 4HEAP */
886
887#define HEAP0 1
888#define HPARENT(k) ((k) >> 1)
889#define UPHEAP_DONE(p,k) (!(p))
890
891/* away from the root */
892void inline_speed
893downheap (ANHE *heap, int N, int k)
894{
895 ANHE he = heap [k];
896
897 for (;;)
898 {
899 int c = k << 1;
900
901 if (c > N + HEAP0 - 1)
902 break;
903
904 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
905 ? 1 : 0;
906
907 if (ANHE_at (he) <= ANHE_at (heap [c]))
908 break;
909
910 heap [k] = heap [c];
911 ev_active (ANHE_w (heap [k])) = k;
912
913 k = c;
914 }
915
916 heap [k] = he;
917 ev_active (ANHE_w (he)) = k;
918}
919#endif
920
921/* towards the root */
922void inline_speed
923upheap (ANHE *heap, int k)
924{
925 ANHE he = heap [k];
926
927 for (;;)
928 {
929 int p = HPARENT (k);
930
931 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
932 break;
933
705 heap [k] = heap [p]; 934 heap [k] = heap [p];
706 ((W)heap [k])->active = k + 1; 935 ev_active (ANHE_w (heap [k])) = k;
707 k = p; 936 k = p;
708 } 937 }
709 938
710 heap [k] = w; 939 heap [k] = he;
711 ((W)heap [k])->active = k + 1; 940 ev_active (ANHE_w (he)) = k;
712}
713
714void inline_speed
715downheap (WT *heap, int N, int k)
716{
717 WT w = heap [k];
718
719 for (;;)
720 {
721 int c = (k << 1) + 1;
722
723 if (c >= N)
724 break;
725
726 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
727 ? 1 : 0;
728
729 if (w->at <= heap [c]->at)
730 break;
731
732 heap [k] = heap [c];
733 ((W)heap [k])->active = k + 1;
734
735 k = c;
736 }
737
738 heap [k] = w;
739 ((W)heap [k])->active = k + 1;
740} 941}
741 942
742void inline_size 943void inline_size
743adjustheap (WT *heap, int N, int k) 944adjustheap (ANHE *heap, int N, int k)
744{ 945{
946 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
745 upheap (heap, k); 947 upheap (heap, k);
948 else
746 downheap (heap, N, k); 949 downheap (heap, N, k);
950}
951
952/* rebuild the heap: this function is used only once and executed rarely */
953void inline_size
954reheap (ANHE *heap, int N)
955{
956 int i;
957
958 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
959 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
960 for (i = 0; i < N; ++i)
961 upheap (heap, i + HEAP0);
747} 962}
748 963
749/*****************************************************************************/ 964/*****************************************************************************/
750 965
751typedef struct 966typedef struct
752{ 967{
753 WL head; 968 WL head;
754 sig_atomic_t volatile gotsig; 969 EV_ATOMIC_T gotsig;
755} ANSIG; 970} ANSIG;
756 971
757static ANSIG *signals; 972static ANSIG *signals;
758static int signalmax; 973static int signalmax;
759 974
760static int sigpipe [2]; 975static EV_ATOMIC_T gotsig;
761static sig_atomic_t volatile gotsig;
762static ev_io sigev;
763 976
764void inline_size 977/*****************************************************************************/
765signals_init (ANSIG *base, int count)
766{
767 while (count--)
768 {
769 base->head = 0;
770 base->gotsig = 0;
771
772 ++base;
773 }
774}
775
776static void
777sighandler (int signum)
778{
779#if _WIN32
780 signal (signum, sighandler);
781#endif
782
783 signals [signum - 1].gotsig = 1;
784
785 if (!gotsig)
786 {
787 int old_errno = errno;
788 gotsig = 1;
789 write (sigpipe [1], &signum, 1);
790 errno = old_errno;
791 }
792}
793
794void noinline
795ev_feed_signal_event (EV_P_ int signum)
796{
797 WL w;
798
799#if EV_MULTIPLICITY
800 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
801#endif
802
803 --signum;
804
805 if (signum < 0 || signum >= signalmax)
806 return;
807
808 signals [signum].gotsig = 0;
809
810 for (w = signals [signum].head; w; w = w->next)
811 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
812}
813
814static void
815sigcb (EV_P_ ev_io *iow, int revents)
816{
817 int signum;
818
819 read (sigpipe [0], &revents, 1);
820 gotsig = 0;
821
822 for (signum = signalmax; signum--; )
823 if (signals [signum].gotsig)
824 ev_feed_signal_event (EV_A_ signum + 1);
825}
826 978
827void inline_speed 979void inline_speed
828fd_intern (int fd) 980fd_intern (int fd)
829{ 981{
830#ifdef _WIN32 982#ifdef _WIN32
831 int arg = 1; 983 unsigned long arg = 1;
832 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 984 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
833#else 985#else
834 fcntl (fd, F_SETFD, FD_CLOEXEC); 986 fcntl (fd, F_SETFD, FD_CLOEXEC);
835 fcntl (fd, F_SETFL, O_NONBLOCK); 987 fcntl (fd, F_SETFL, O_NONBLOCK);
836#endif 988#endif
837} 989}
838 990
839static void noinline 991static void noinline
840siginit (EV_P) 992evpipe_init (EV_P)
841{ 993{
994 if (!ev_is_active (&pipeev))
995 {
996#if EV_USE_EVENTFD
997 if ((evfd = eventfd (0, 0)) >= 0)
998 {
999 evpipe [0] = -1;
1000 fd_intern (evfd);
1001 ev_io_set (&pipeev, evfd, EV_READ);
1002 }
1003 else
1004#endif
1005 {
1006 while (pipe (evpipe))
1007 ev_syserr ("(libev) error creating signal/async pipe");
1008
842 fd_intern (sigpipe [0]); 1009 fd_intern (evpipe [0]);
843 fd_intern (sigpipe [1]); 1010 fd_intern (evpipe [1]);
1011 ev_io_set (&pipeev, evpipe [0], EV_READ);
1012 }
844 1013
845 ev_io_set (&sigev, sigpipe [0], EV_READ);
846 ev_io_start (EV_A_ &sigev); 1014 ev_io_start (EV_A_ &pipeev);
847 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1015 ev_unref (EV_A); /* watcher should not keep loop alive */
1016 }
1017}
1018
1019void inline_size
1020evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1021{
1022 if (!*flag)
1023 {
1024 int old_errno = errno; /* save errno because write might clobber it */
1025
1026 *flag = 1;
1027
1028#if EV_USE_EVENTFD
1029 if (evfd >= 0)
1030 {
1031 uint64_t counter = 1;
1032 write (evfd, &counter, sizeof (uint64_t));
1033 }
1034 else
1035#endif
1036 write (evpipe [1], &old_errno, 1);
1037
1038 errno = old_errno;
1039 }
1040}
1041
1042static void
1043pipecb (EV_P_ ev_io *iow, int revents)
1044{
1045#if EV_USE_EVENTFD
1046 if (evfd >= 0)
1047 {
1048 uint64_t counter;
1049 read (evfd, &counter, sizeof (uint64_t));
1050 }
1051 else
1052#endif
1053 {
1054 char dummy;
1055 read (evpipe [0], &dummy, 1);
1056 }
1057
1058 if (gotsig && ev_is_default_loop (EV_A))
1059 {
1060 int signum;
1061 gotsig = 0;
1062
1063 for (signum = signalmax; signum--; )
1064 if (signals [signum].gotsig)
1065 ev_feed_signal_event (EV_A_ signum + 1);
1066 }
1067
1068#if EV_ASYNC_ENABLE
1069 if (gotasync)
1070 {
1071 int i;
1072 gotasync = 0;
1073
1074 for (i = asynccnt; i--; )
1075 if (asyncs [i]->sent)
1076 {
1077 asyncs [i]->sent = 0;
1078 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1079 }
1080 }
1081#endif
848} 1082}
849 1083
850/*****************************************************************************/ 1084/*****************************************************************************/
851 1085
1086static void
1087ev_sighandler (int signum)
1088{
1089#if EV_MULTIPLICITY
1090 struct ev_loop *loop = &default_loop_struct;
1091#endif
1092
1093#if _WIN32
1094 signal (signum, ev_sighandler);
1095#endif
1096
1097 signals [signum - 1].gotsig = 1;
1098 evpipe_write (EV_A_ &gotsig);
1099}
1100
1101void noinline
1102ev_feed_signal_event (EV_P_ int signum)
1103{
1104 WL w;
1105
1106#if EV_MULTIPLICITY
1107 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1108#endif
1109
1110 --signum;
1111
1112 if (signum < 0 || signum >= signalmax)
1113 return;
1114
1115 signals [signum].gotsig = 0;
1116
1117 for (w = signals [signum].head; w; w = w->next)
1118 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1119}
1120
1121/*****************************************************************************/
1122
852static WL childs [EV_PID_HASHSIZE]; 1123static WL childs [EV_PID_HASHSIZE];
853 1124
854#ifndef _WIN32 1125#ifndef _WIN32
855 1126
856static ev_signal childev; 1127static ev_signal childev;
857 1128
1129#ifndef WIFCONTINUED
1130# define WIFCONTINUED(status) 0
1131#endif
1132
858void inline_speed 1133void inline_speed
859child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1134child_reap (EV_P_ int chain, int pid, int status)
860{ 1135{
861 ev_child *w; 1136 ev_child *w;
1137 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
862 1138
863 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1139 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1140 {
864 if (w->pid == pid || !w->pid) 1141 if ((w->pid == pid || !w->pid)
1142 && (!traced || (w->flags & 1)))
865 { 1143 {
866 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1144 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
867 w->rpid = pid; 1145 w->rpid = pid;
868 w->rstatus = status; 1146 w->rstatus = status;
869 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1147 ev_feed_event (EV_A_ (W)w, EV_CHILD);
870 } 1148 }
1149 }
871} 1150}
872 1151
873#ifndef WCONTINUED 1152#ifndef WCONTINUED
874# define WCONTINUED 0 1153# define WCONTINUED 0
875#endif 1154#endif
884 if (!WCONTINUED 1163 if (!WCONTINUED
885 || errno != EINVAL 1164 || errno != EINVAL
886 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1165 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
887 return; 1166 return;
888 1167
889 /* make sure we are called again until all childs have been reaped */ 1168 /* make sure we are called again until all children have been reaped */
890 /* we need to do it this way so that the callback gets called before we continue */ 1169 /* we need to do it this way so that the callback gets called before we continue */
891 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1170 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
892 1171
893 child_reap (EV_A_ sw, pid, pid, status); 1172 child_reap (EV_A_ pid, pid, status);
894 if (EV_PID_HASHSIZE > 1) 1173 if (EV_PID_HASHSIZE > 1)
895 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1174 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
896} 1175}
897 1176
898#endif 1177#endif
899 1178
900/*****************************************************************************/ 1179/*****************************************************************************/
972} 1251}
973 1252
974unsigned int 1253unsigned int
975ev_embeddable_backends (void) 1254ev_embeddable_backends (void)
976{ 1255{
1256 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1257
977 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1258 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
978 return EVBACKEND_KQUEUE 1259 /* please fix it and tell me how to detect the fix */
979 | EVBACKEND_PORT; 1260 flags &= ~EVBACKEND_EPOLL;
1261
1262 return flags;
980} 1263}
981 1264
982unsigned int 1265unsigned int
983ev_backend (EV_P) 1266ev_backend (EV_P)
984{ 1267{
1014 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1297 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1015 have_monotonic = 1; 1298 have_monotonic = 1;
1016 } 1299 }
1017#endif 1300#endif
1018 1301
1019 ev_rt_now = ev_time (); 1302 ev_rt_now = ev_time ();
1020 mn_now = get_clock (); 1303 mn_now = get_clock ();
1021 now_floor = mn_now; 1304 now_floor = mn_now;
1022 rtmn_diff = ev_rt_now - mn_now; 1305 rtmn_diff = ev_rt_now - mn_now;
1023 1306
1024 io_blocktime = 0.; 1307 io_blocktime = 0.;
1025 timeout_blocktime = 0.; 1308 timeout_blocktime = 0.;
1309 backend = 0;
1310 backend_fd = -1;
1311 gotasync = 0;
1312#if EV_USE_INOTIFY
1313 fs_fd = -2;
1314#endif
1026 1315
1027 /* pid check not overridable via env */ 1316 /* pid check not overridable via env */
1028#ifndef _WIN32 1317#ifndef _WIN32
1029 if (flags & EVFLAG_FORKCHECK) 1318 if (flags & EVFLAG_FORKCHECK)
1030 curpid = getpid (); 1319 curpid = getpid ();
1033 if (!(flags & EVFLAG_NOENV) 1322 if (!(flags & EVFLAG_NOENV)
1034 && !enable_secure () 1323 && !enable_secure ()
1035 && getenv ("LIBEV_FLAGS")) 1324 && getenv ("LIBEV_FLAGS"))
1036 flags = atoi (getenv ("LIBEV_FLAGS")); 1325 flags = atoi (getenv ("LIBEV_FLAGS"));
1037 1326
1038 if (!(flags & 0x0000ffffUL)) 1327 if (!(flags & 0x0000ffffU))
1039 flags |= ev_recommended_backends (); 1328 flags |= ev_recommended_backends ();
1040
1041 backend = 0;
1042 backend_fd = -1;
1043#if EV_USE_INOTIFY
1044 fs_fd = -2;
1045#endif
1046 1329
1047#if EV_USE_PORT 1330#if EV_USE_PORT
1048 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1331 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1049#endif 1332#endif
1050#if EV_USE_KQUEUE 1333#if EV_USE_KQUEUE
1058#endif 1341#endif
1059#if EV_USE_SELECT 1342#if EV_USE_SELECT
1060 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1343 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1061#endif 1344#endif
1062 1345
1063 ev_init (&sigev, sigcb); 1346 ev_init (&pipeev, pipecb);
1064 ev_set_priority (&sigev, EV_MAXPRI); 1347 ev_set_priority (&pipeev, EV_MAXPRI);
1065 } 1348 }
1066} 1349}
1067 1350
1068static void noinline 1351static void noinline
1069loop_destroy (EV_P) 1352loop_destroy (EV_P)
1070{ 1353{
1071 int i; 1354 int i;
1355
1356 if (ev_is_active (&pipeev))
1357 {
1358 ev_ref (EV_A); /* signal watcher */
1359 ev_io_stop (EV_A_ &pipeev);
1360
1361#if EV_USE_EVENTFD
1362 if (evfd >= 0)
1363 close (evfd);
1364#endif
1365
1366 if (evpipe [0] >= 0)
1367 {
1368 close (evpipe [0]);
1369 close (evpipe [1]);
1370 }
1371 }
1072 1372
1073#if EV_USE_INOTIFY 1373#if EV_USE_INOTIFY
1074 if (fs_fd >= 0) 1374 if (fs_fd >= 0)
1075 close (fs_fd); 1375 close (fs_fd);
1076#endif 1376#endif
1113#if EV_FORK_ENABLE 1413#if EV_FORK_ENABLE
1114 array_free (fork, EMPTY); 1414 array_free (fork, EMPTY);
1115#endif 1415#endif
1116 array_free (prepare, EMPTY); 1416 array_free (prepare, EMPTY);
1117 array_free (check, EMPTY); 1417 array_free (check, EMPTY);
1418#if EV_ASYNC_ENABLE
1419 array_free (async, EMPTY);
1420#endif
1118 1421
1119 backend = 0; 1422 backend = 0;
1120} 1423}
1121 1424
1425#if EV_USE_INOTIFY
1122void inline_size infy_fork (EV_P); 1426void inline_size infy_fork (EV_P);
1427#endif
1123 1428
1124void inline_size 1429void inline_size
1125loop_fork (EV_P) 1430loop_fork (EV_P)
1126{ 1431{
1127#if EV_USE_PORT 1432#if EV_USE_PORT
1135#endif 1440#endif
1136#if EV_USE_INOTIFY 1441#if EV_USE_INOTIFY
1137 infy_fork (EV_A); 1442 infy_fork (EV_A);
1138#endif 1443#endif
1139 1444
1140 if (ev_is_active (&sigev)) 1445 if (ev_is_active (&pipeev))
1141 { 1446 {
1142 /* default loop */ 1447 /* this "locks" the handlers against writing to the pipe */
1448 /* while we modify the fd vars */
1449 gotsig = 1;
1450#if EV_ASYNC_ENABLE
1451 gotasync = 1;
1452#endif
1143 1453
1144 ev_ref (EV_A); 1454 ev_ref (EV_A);
1145 ev_io_stop (EV_A_ &sigev); 1455 ev_io_stop (EV_A_ &pipeev);
1456
1457#if EV_USE_EVENTFD
1458 if (evfd >= 0)
1459 close (evfd);
1460#endif
1461
1462 if (evpipe [0] >= 0)
1463 {
1146 close (sigpipe [0]); 1464 close (evpipe [0]);
1147 close (sigpipe [1]); 1465 close (evpipe [1]);
1466 }
1148 1467
1149 while (pipe (sigpipe))
1150 syserr ("(libev) error creating pipe");
1151
1152 siginit (EV_A); 1468 evpipe_init (EV_A);
1469 /* now iterate over everything, in case we missed something */
1470 pipecb (EV_A_ &pipeev, EV_READ);
1153 } 1471 }
1154 1472
1155 postfork = 0; 1473 postfork = 0;
1156} 1474}
1157 1475
1158#if EV_MULTIPLICITY 1476#if EV_MULTIPLICITY
1477
1159struct ev_loop * 1478struct ev_loop *
1160ev_loop_new (unsigned int flags) 1479ev_loop_new (unsigned int flags)
1161{ 1480{
1162 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1481 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1163 1482
1179} 1498}
1180 1499
1181void 1500void
1182ev_loop_fork (EV_P) 1501ev_loop_fork (EV_P)
1183{ 1502{
1184 postfork = 1; 1503 postfork = 1; /* must be in line with ev_default_fork */
1185} 1504}
1186 1505
1506#if EV_VERIFY
1507static void noinline
1508verify_watcher (EV_P_ W w)
1509{
1510 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1511
1512 if (w->pending)
1513 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1514}
1515
1516static void noinline
1517verify_heap (EV_P_ ANHE *heap, int N)
1518{
1519 int i;
1520
1521 for (i = HEAP0; i < N + HEAP0; ++i)
1522 {
1523 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1524 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1525 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1526
1527 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1528 }
1529}
1530
1531static void noinline
1532array_verify (EV_P_ W *ws, int cnt)
1533{
1534 while (cnt--)
1535 {
1536 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1537 verify_watcher (EV_A_ ws [cnt]);
1538 }
1539}
1540#endif
1541
1542void
1543ev_loop_verify (EV_P)
1544{
1545#if EV_VERIFY
1546 int i;
1547 WL w;
1548
1549 assert (activecnt >= -1);
1550
1551 assert (fdchangemax >= fdchangecnt);
1552 for (i = 0; i < fdchangecnt; ++i)
1553 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1554
1555 assert (anfdmax >= 0);
1556 for (i = 0; i < anfdmax; ++i)
1557 for (w = anfds [i].head; w; w = w->next)
1558 {
1559 verify_watcher (EV_A_ (W)w);
1560 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1561 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1562 }
1563
1564 assert (timermax >= timercnt);
1565 verify_heap (EV_A_ timers, timercnt);
1566
1567#if EV_PERIODIC_ENABLE
1568 assert (periodicmax >= periodiccnt);
1569 verify_heap (EV_A_ periodics, periodiccnt);
1570#endif
1571
1572 for (i = NUMPRI; i--; )
1573 {
1574 assert (pendingmax [i] >= pendingcnt [i]);
1575#if EV_IDLE_ENABLE
1576 assert (idleall >= 0);
1577 assert (idlemax [i] >= idlecnt [i]);
1578 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1579#endif
1580 }
1581
1582#if EV_FORK_ENABLE
1583 assert (forkmax >= forkcnt);
1584 array_verify (EV_A_ (W *)forks, forkcnt);
1585#endif
1586
1587#if EV_ASYNC_ENABLE
1588 assert (asyncmax >= asynccnt);
1589 array_verify (EV_A_ (W *)asyncs, asynccnt);
1590#endif
1591
1592 assert (preparemax >= preparecnt);
1593 array_verify (EV_A_ (W *)prepares, preparecnt);
1594
1595 assert (checkmax >= checkcnt);
1596 array_verify (EV_A_ (W *)checks, checkcnt);
1597
1598# if 0
1599 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1600 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1187#endif 1601# endif
1602#endif
1603}
1604
1605#endif /* multiplicity */
1188 1606
1189#if EV_MULTIPLICITY 1607#if EV_MULTIPLICITY
1190struct ev_loop * 1608struct ev_loop *
1191ev_default_loop_init (unsigned int flags) 1609ev_default_loop_init (unsigned int flags)
1192#else 1610#else
1193int 1611int
1194ev_default_loop (unsigned int flags) 1612ev_default_loop (unsigned int flags)
1195#endif 1613#endif
1196{ 1614{
1197 if (sigpipe [0] == sigpipe [1])
1198 if (pipe (sigpipe))
1199 return 0;
1200
1201 if (!ev_default_loop_ptr) 1615 if (!ev_default_loop_ptr)
1202 { 1616 {
1203#if EV_MULTIPLICITY 1617#if EV_MULTIPLICITY
1204 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1618 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1205#else 1619#else
1208 1622
1209 loop_init (EV_A_ flags); 1623 loop_init (EV_A_ flags);
1210 1624
1211 if (ev_backend (EV_A)) 1625 if (ev_backend (EV_A))
1212 { 1626 {
1213 siginit (EV_A);
1214
1215#ifndef _WIN32 1627#ifndef _WIN32
1216 ev_signal_init (&childev, childcb, SIGCHLD); 1628 ev_signal_init (&childev, childcb, SIGCHLD);
1217 ev_set_priority (&childev, EV_MAXPRI); 1629 ev_set_priority (&childev, EV_MAXPRI);
1218 ev_signal_start (EV_A_ &childev); 1630 ev_signal_start (EV_A_ &childev);
1219 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1631 ev_unref (EV_A); /* child watcher should not keep loop alive */
1231{ 1643{
1232#if EV_MULTIPLICITY 1644#if EV_MULTIPLICITY
1233 struct ev_loop *loop = ev_default_loop_ptr; 1645 struct ev_loop *loop = ev_default_loop_ptr;
1234#endif 1646#endif
1235 1647
1648 ev_default_loop_ptr = 0;
1649
1236#ifndef _WIN32 1650#ifndef _WIN32
1237 ev_ref (EV_A); /* child watcher */ 1651 ev_ref (EV_A); /* child watcher */
1238 ev_signal_stop (EV_A_ &childev); 1652 ev_signal_stop (EV_A_ &childev);
1239#endif 1653#endif
1240 1654
1241 ev_ref (EV_A); /* signal watcher */
1242 ev_io_stop (EV_A_ &sigev);
1243
1244 close (sigpipe [0]); sigpipe [0] = 0;
1245 close (sigpipe [1]); sigpipe [1] = 0;
1246
1247 loop_destroy (EV_A); 1655 loop_destroy (EV_A);
1248} 1656}
1249 1657
1250void 1658void
1251ev_default_fork (void) 1659ev_default_fork (void)
1252{ 1660{
1253#if EV_MULTIPLICITY 1661#if EV_MULTIPLICITY
1254 struct ev_loop *loop = ev_default_loop_ptr; 1662 struct ev_loop *loop = ev_default_loop_ptr;
1255#endif 1663#endif
1256 1664
1257 if (backend) 1665 postfork = 1; /* must be in line with ev_loop_fork */
1258 postfork = 1;
1259} 1666}
1260 1667
1261/*****************************************************************************/ 1668/*****************************************************************************/
1262 1669
1263void 1670void
1280 { 1687 {
1281 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1688 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1282 1689
1283 p->w->pending = 0; 1690 p->w->pending = 0;
1284 EV_CB_INVOKE (p->w, p->events); 1691 EV_CB_INVOKE (p->w, p->events);
1692 EV_FREQUENT_CHECK;
1285 } 1693 }
1286 } 1694 }
1287} 1695}
1288
1289void inline_size
1290timers_reify (EV_P)
1291{
1292 while (timercnt && ((WT)timers [0])->at <= mn_now)
1293 {
1294 ev_timer *w = (ev_timer *)timers [0];
1295
1296 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1297
1298 /* first reschedule or stop timer */
1299 if (w->repeat)
1300 {
1301 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1302
1303 ((WT)w)->at += w->repeat;
1304 if (((WT)w)->at < mn_now)
1305 ((WT)w)->at = mn_now;
1306
1307 downheap (timers, timercnt, 0);
1308 }
1309 else
1310 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1311
1312 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1313 }
1314}
1315
1316#if EV_PERIODIC_ENABLE
1317void inline_size
1318periodics_reify (EV_P)
1319{
1320 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1321 {
1322 ev_periodic *w = (ev_periodic *)periodics [0];
1323
1324 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1325
1326 /* first reschedule or stop timer */
1327 if (w->reschedule_cb)
1328 {
1329 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1330 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1331 downheap (periodics, periodiccnt, 0);
1332 }
1333 else if (w->interval)
1334 {
1335 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1336 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1337 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1338 downheap (periodics, periodiccnt, 0);
1339 }
1340 else
1341 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1342
1343 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1344 }
1345}
1346
1347static void noinline
1348periodics_reschedule (EV_P)
1349{
1350 int i;
1351
1352 /* adjust periodics after time jump */
1353 for (i = 0; i < periodiccnt; ++i)
1354 {
1355 ev_periodic *w = (ev_periodic *)periodics [i];
1356
1357 if (w->reschedule_cb)
1358 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1359 else if (w->interval)
1360 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1361 }
1362
1363 /* now rebuild the heap */
1364 for (i = periodiccnt >> 1; i--; )
1365 downheap (periodics, periodiccnt, i);
1366}
1367#endif
1368 1696
1369#if EV_IDLE_ENABLE 1697#if EV_IDLE_ENABLE
1370void inline_size 1698void inline_size
1371idle_reify (EV_P) 1699idle_reify (EV_P)
1372{ 1700{
1384 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1712 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1385 break; 1713 break;
1386 } 1714 }
1387 } 1715 }
1388 } 1716 }
1717}
1718#endif
1719
1720void inline_size
1721timers_reify (EV_P)
1722{
1723 EV_FREQUENT_CHECK;
1724
1725 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1726 {
1727 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1728
1729 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1730
1731 /* first reschedule or stop timer */
1732 if (w->repeat)
1733 {
1734 ev_at (w) += w->repeat;
1735 if (ev_at (w) < mn_now)
1736 ev_at (w) = mn_now;
1737
1738 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1739
1740 ANHE_at_cache (timers [HEAP0]);
1741 downheap (timers, timercnt, HEAP0);
1742 }
1743 else
1744 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1745
1746 EV_FREQUENT_CHECK;
1747 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1748 }
1749}
1750
1751#if EV_PERIODIC_ENABLE
1752void inline_size
1753periodics_reify (EV_P)
1754{
1755 EV_FREQUENT_CHECK;
1756
1757 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1758 {
1759 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1760
1761 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1762
1763 /* first reschedule or stop timer */
1764 if (w->reschedule_cb)
1765 {
1766 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1767
1768 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1769
1770 ANHE_at_cache (periodics [HEAP0]);
1771 downheap (periodics, periodiccnt, HEAP0);
1772 }
1773 else if (w->interval)
1774 {
1775 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1776 /* if next trigger time is not sufficiently in the future, put it there */
1777 /* this might happen because of floating point inexactness */
1778 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1779 {
1780 ev_at (w) += w->interval;
1781
1782 /* if interval is unreasonably low we might still have a time in the past */
1783 /* so correct this. this will make the periodic very inexact, but the user */
1784 /* has effectively asked to get triggered more often than possible */
1785 if (ev_at (w) < ev_rt_now)
1786 ev_at (w) = ev_rt_now;
1787 }
1788
1789 ANHE_at_cache (periodics [HEAP0]);
1790 downheap (periodics, periodiccnt, HEAP0);
1791 }
1792 else
1793 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1794
1795 EV_FREQUENT_CHECK;
1796 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1797 }
1798}
1799
1800static void noinline
1801periodics_reschedule (EV_P)
1802{
1803 int i;
1804
1805 /* adjust periodics after time jump */
1806 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1807 {
1808 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1809
1810 if (w->reschedule_cb)
1811 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1812 else if (w->interval)
1813 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1814
1815 ANHE_at_cache (periodics [i]);
1816 }
1817
1818 reheap (periodics, periodiccnt);
1389} 1819}
1390#endif 1820#endif
1391 1821
1392void inline_speed 1822void inline_speed
1393time_update (EV_P_ ev_tstamp max_block) 1823time_update (EV_P_ ev_tstamp max_block)
1422 */ 1852 */
1423 for (i = 4; --i; ) 1853 for (i = 4; --i; )
1424 { 1854 {
1425 rtmn_diff = ev_rt_now - mn_now; 1855 rtmn_diff = ev_rt_now - mn_now;
1426 1856
1427 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1857 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1428 return; /* all is well */ 1858 return; /* all is well */
1429 1859
1430 ev_rt_now = ev_time (); 1860 ev_rt_now = ev_time ();
1431 mn_now = get_clock (); 1861 mn_now = get_clock ();
1432 now_floor = mn_now; 1862 now_floor = mn_now;
1448#if EV_PERIODIC_ENABLE 1878#if EV_PERIODIC_ENABLE
1449 periodics_reschedule (EV_A); 1879 periodics_reschedule (EV_A);
1450#endif 1880#endif
1451 /* adjust timers. this is easy, as the offset is the same for all of them */ 1881 /* adjust timers. this is easy, as the offset is the same for all of them */
1452 for (i = 0; i < timercnt; ++i) 1882 for (i = 0; i < timercnt; ++i)
1883 {
1884 ANHE *he = timers + i + HEAP0;
1453 ((WT)timers [i])->at += ev_rt_now - mn_now; 1885 ANHE_w (*he)->at += ev_rt_now - mn_now;
1886 ANHE_at_cache (*he);
1887 }
1454 } 1888 }
1455 1889
1456 mn_now = ev_rt_now; 1890 mn_now = ev_rt_now;
1457 } 1891 }
1458} 1892}
1467ev_unref (EV_P) 1901ev_unref (EV_P)
1468{ 1902{
1469 --activecnt; 1903 --activecnt;
1470} 1904}
1471 1905
1906void
1907ev_now_update (EV_P)
1908{
1909 time_update (EV_A_ 1e100);
1910}
1911
1472static int loop_done; 1912static int loop_done;
1473 1913
1474void 1914void
1475ev_loop (EV_P_ int flags) 1915ev_loop (EV_P_ int flags)
1476{ 1916{
1477 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1917 loop_done = EVUNLOOP_CANCEL;
1478 ? EVUNLOOP_ONE
1479 : EVUNLOOP_CANCEL;
1480 1918
1481 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1919 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1482 1920
1483 do 1921 do
1484 { 1922 {
1923#if EV_VERIFY >= 2
1924 ev_loop_verify (EV_A);
1925#endif
1926
1485#ifndef _WIN32 1927#ifndef _WIN32
1486 if (expect_false (curpid)) /* penalise the forking check even more */ 1928 if (expect_false (curpid)) /* penalise the forking check even more */
1487 if (expect_false (getpid () != curpid)) 1929 if (expect_false (getpid () != curpid))
1488 { 1930 {
1489 curpid = getpid (); 1931 curpid = getpid ();
1530 1972
1531 waittime = MAX_BLOCKTIME; 1973 waittime = MAX_BLOCKTIME;
1532 1974
1533 if (timercnt) 1975 if (timercnt)
1534 { 1976 {
1535 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1977 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1536 if (waittime > to) waittime = to; 1978 if (waittime > to) waittime = to;
1537 } 1979 }
1538 1980
1539#if EV_PERIODIC_ENABLE 1981#if EV_PERIODIC_ENABLE
1540 if (periodiccnt) 1982 if (periodiccnt)
1541 { 1983 {
1542 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1984 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1543 if (waittime > to) waittime = to; 1985 if (waittime > to) waittime = to;
1544 } 1986 }
1545#endif 1987#endif
1546 1988
1547 if (expect_false (waittime < timeout_blocktime)) 1989 if (expect_false (waittime < timeout_blocktime))
1580 /* queue check watchers, to be executed first */ 2022 /* queue check watchers, to be executed first */
1581 if (expect_false (checkcnt)) 2023 if (expect_false (checkcnt))
1582 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2024 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1583 2025
1584 call_pending (EV_A); 2026 call_pending (EV_A);
1585
1586 } 2027 }
1587 while (expect_true (activecnt && !loop_done)); 2028 while (expect_true (
2029 activecnt
2030 && !loop_done
2031 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2032 ));
1588 2033
1589 if (loop_done == EVUNLOOP_ONE) 2034 if (loop_done == EVUNLOOP_ONE)
1590 loop_done = EVUNLOOP_CANCEL; 2035 loop_done = EVUNLOOP_CANCEL;
1591} 2036}
1592 2037
1680 2125
1681 if (expect_false (ev_is_active (w))) 2126 if (expect_false (ev_is_active (w)))
1682 return; 2127 return;
1683 2128
1684 assert (("ev_io_start called with negative fd", fd >= 0)); 2129 assert (("ev_io_start called with negative fd", fd >= 0));
2130 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE))));
2131
2132 EV_FREQUENT_CHECK;
1685 2133
1686 ev_start (EV_A_ (W)w, 1); 2134 ev_start (EV_A_ (W)w, 1);
1687 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2135 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1688 wlist_add (&anfds[fd].head, (WL)w); 2136 wlist_add (&anfds[fd].head, (WL)w);
1689 2137
1690 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2138 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1691 w->events &= ~EV_IOFDSET; 2139 w->events &= ~EV_IOFDSET;
2140
2141 EV_FREQUENT_CHECK;
1692} 2142}
1693 2143
1694void noinline 2144void noinline
1695ev_io_stop (EV_P_ ev_io *w) 2145ev_io_stop (EV_P_ ev_io *w)
1696{ 2146{
1697 clear_pending (EV_A_ (W)w); 2147 clear_pending (EV_A_ (W)w);
1698 if (expect_false (!ev_is_active (w))) 2148 if (expect_false (!ev_is_active (w)))
1699 return; 2149 return;
1700 2150
1701 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2151 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2152
2153 EV_FREQUENT_CHECK;
1702 2154
1703 wlist_del (&anfds[w->fd].head, (WL)w); 2155 wlist_del (&anfds[w->fd].head, (WL)w);
1704 ev_stop (EV_A_ (W)w); 2156 ev_stop (EV_A_ (W)w);
1705 2157
1706 fd_change (EV_A_ w->fd, 1); 2158 fd_change (EV_A_ w->fd, 1);
2159
2160 EV_FREQUENT_CHECK;
1707} 2161}
1708 2162
1709void noinline 2163void noinline
1710ev_timer_start (EV_P_ ev_timer *w) 2164ev_timer_start (EV_P_ ev_timer *w)
1711{ 2165{
1712 if (expect_false (ev_is_active (w))) 2166 if (expect_false (ev_is_active (w)))
1713 return; 2167 return;
1714 2168
1715 ((WT)w)->at += mn_now; 2169 ev_at (w) += mn_now;
1716 2170
1717 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2171 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1718 2172
2173 EV_FREQUENT_CHECK;
2174
2175 ++timercnt;
1719 ev_start (EV_A_ (W)w, ++timercnt); 2176 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1720 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2177 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1721 timers [timercnt - 1] = (WT)w; 2178 ANHE_w (timers [ev_active (w)]) = (WT)w;
1722 upheap (timers, timercnt - 1); 2179 ANHE_at_cache (timers [ev_active (w)]);
2180 upheap (timers, ev_active (w));
1723 2181
2182 EV_FREQUENT_CHECK;
2183
1724 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2184 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1725} 2185}
1726 2186
1727void noinline 2187void noinline
1728ev_timer_stop (EV_P_ ev_timer *w) 2188ev_timer_stop (EV_P_ ev_timer *w)
1729{ 2189{
1730 clear_pending (EV_A_ (W)w); 2190 clear_pending (EV_A_ (W)w);
1731 if (expect_false (!ev_is_active (w))) 2191 if (expect_false (!ev_is_active (w)))
1732 return; 2192 return;
1733 2193
1734 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2194 EV_FREQUENT_CHECK;
1735 2195
1736 { 2196 {
1737 int active = ((W)w)->active; 2197 int active = ev_active (w);
1738 2198
2199 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2200
2201 --timercnt;
2202
1739 if (expect_true (--active < --timercnt)) 2203 if (expect_true (active < timercnt + HEAP0))
1740 { 2204 {
1741 timers [active] = timers [timercnt]; 2205 timers [active] = timers [timercnt + HEAP0];
1742 adjustheap (timers, timercnt, active); 2206 adjustheap (timers, timercnt, active);
1743 } 2207 }
1744 } 2208 }
1745 2209
1746 ((WT)w)->at -= mn_now; 2210 EV_FREQUENT_CHECK;
2211
2212 ev_at (w) -= mn_now;
1747 2213
1748 ev_stop (EV_A_ (W)w); 2214 ev_stop (EV_A_ (W)w);
1749} 2215}
1750 2216
1751void noinline 2217void noinline
1752ev_timer_again (EV_P_ ev_timer *w) 2218ev_timer_again (EV_P_ ev_timer *w)
1753{ 2219{
2220 EV_FREQUENT_CHECK;
2221
1754 if (ev_is_active (w)) 2222 if (ev_is_active (w))
1755 { 2223 {
1756 if (w->repeat) 2224 if (w->repeat)
1757 { 2225 {
1758 ((WT)w)->at = mn_now + w->repeat; 2226 ev_at (w) = mn_now + w->repeat;
2227 ANHE_at_cache (timers [ev_active (w)]);
1759 adjustheap (timers, timercnt, ((W)w)->active - 1); 2228 adjustheap (timers, timercnt, ev_active (w));
1760 } 2229 }
1761 else 2230 else
1762 ev_timer_stop (EV_A_ w); 2231 ev_timer_stop (EV_A_ w);
1763 } 2232 }
1764 else if (w->repeat) 2233 else if (w->repeat)
1765 { 2234 {
1766 w->at = w->repeat; 2235 ev_at (w) = w->repeat;
1767 ev_timer_start (EV_A_ w); 2236 ev_timer_start (EV_A_ w);
1768 } 2237 }
2238
2239 EV_FREQUENT_CHECK;
1769} 2240}
1770 2241
1771#if EV_PERIODIC_ENABLE 2242#if EV_PERIODIC_ENABLE
1772void noinline 2243void noinline
1773ev_periodic_start (EV_P_ ev_periodic *w) 2244ev_periodic_start (EV_P_ ev_periodic *w)
1774{ 2245{
1775 if (expect_false (ev_is_active (w))) 2246 if (expect_false (ev_is_active (w)))
1776 return; 2247 return;
1777 2248
1778 if (w->reschedule_cb) 2249 if (w->reschedule_cb)
1779 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2250 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1780 else if (w->interval) 2251 else if (w->interval)
1781 { 2252 {
1782 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2253 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1783 /* this formula differs from the one in periodic_reify because we do not always round up */ 2254 /* this formula differs from the one in periodic_reify because we do not always round up */
1784 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2255 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1785 } 2256 }
1786 else 2257 else
1787 ((WT)w)->at = w->offset; 2258 ev_at (w) = w->offset;
1788 2259
2260 EV_FREQUENT_CHECK;
2261
2262 ++periodiccnt;
1789 ev_start (EV_A_ (W)w, ++periodiccnt); 2263 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1790 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2264 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1791 periodics [periodiccnt - 1] = (WT)w; 2265 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1792 upheap (periodics, periodiccnt - 1); 2266 ANHE_at_cache (periodics [ev_active (w)]);
2267 upheap (periodics, ev_active (w));
1793 2268
2269 EV_FREQUENT_CHECK;
2270
1794 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2271 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1795} 2272}
1796 2273
1797void noinline 2274void noinline
1798ev_periodic_stop (EV_P_ ev_periodic *w) 2275ev_periodic_stop (EV_P_ ev_periodic *w)
1799{ 2276{
1800 clear_pending (EV_A_ (W)w); 2277 clear_pending (EV_A_ (W)w);
1801 if (expect_false (!ev_is_active (w))) 2278 if (expect_false (!ev_is_active (w)))
1802 return; 2279 return;
1803 2280
1804 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2281 EV_FREQUENT_CHECK;
1805 2282
1806 { 2283 {
1807 int active = ((W)w)->active; 2284 int active = ev_active (w);
1808 2285
2286 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2287
2288 --periodiccnt;
2289
1809 if (expect_true (--active < --periodiccnt)) 2290 if (expect_true (active < periodiccnt + HEAP0))
1810 { 2291 {
1811 periodics [active] = periodics [periodiccnt]; 2292 periodics [active] = periodics [periodiccnt + HEAP0];
1812 adjustheap (periodics, periodiccnt, active); 2293 adjustheap (periodics, periodiccnt, active);
1813 } 2294 }
1814 } 2295 }
1815 2296
2297 EV_FREQUENT_CHECK;
2298
1816 ev_stop (EV_A_ (W)w); 2299 ev_stop (EV_A_ (W)w);
1817} 2300}
1818 2301
1819void noinline 2302void noinline
1820ev_periodic_again (EV_P_ ev_periodic *w) 2303ev_periodic_again (EV_P_ ev_periodic *w)
1837#endif 2320#endif
1838 if (expect_false (ev_is_active (w))) 2321 if (expect_false (ev_is_active (w)))
1839 return; 2322 return;
1840 2323
1841 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2324 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2325
2326 evpipe_init (EV_A);
2327
2328 EV_FREQUENT_CHECK;
1842 2329
1843 { 2330 {
1844#ifndef _WIN32 2331#ifndef _WIN32
1845 sigset_t full, prev; 2332 sigset_t full, prev;
1846 sigfillset (&full); 2333 sigfillset (&full);
1847 sigprocmask (SIG_SETMASK, &full, &prev); 2334 sigprocmask (SIG_SETMASK, &full, &prev);
1848#endif 2335#endif
1849 2336
1850 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2337 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
1851 2338
1852#ifndef _WIN32 2339#ifndef _WIN32
1853 sigprocmask (SIG_SETMASK, &prev, 0); 2340 sigprocmask (SIG_SETMASK, &prev, 0);
1854#endif 2341#endif
1855 } 2342 }
1858 wlist_add (&signals [w->signum - 1].head, (WL)w); 2345 wlist_add (&signals [w->signum - 1].head, (WL)w);
1859 2346
1860 if (!((WL)w)->next) 2347 if (!((WL)w)->next)
1861 { 2348 {
1862#if _WIN32 2349#if _WIN32
1863 signal (w->signum, sighandler); 2350 signal (w->signum, ev_sighandler);
1864#else 2351#else
1865 struct sigaction sa; 2352 struct sigaction sa;
1866 sa.sa_handler = sighandler; 2353 sa.sa_handler = ev_sighandler;
1867 sigfillset (&sa.sa_mask); 2354 sigfillset (&sa.sa_mask);
1868 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2355 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1869 sigaction (w->signum, &sa, 0); 2356 sigaction (w->signum, &sa, 0);
1870#endif 2357#endif
1871 } 2358 }
2359
2360 EV_FREQUENT_CHECK;
1872} 2361}
1873 2362
1874void noinline 2363void noinline
1875ev_signal_stop (EV_P_ ev_signal *w) 2364ev_signal_stop (EV_P_ ev_signal *w)
1876{ 2365{
1877 clear_pending (EV_A_ (W)w); 2366 clear_pending (EV_A_ (W)w);
1878 if (expect_false (!ev_is_active (w))) 2367 if (expect_false (!ev_is_active (w)))
1879 return; 2368 return;
1880 2369
2370 EV_FREQUENT_CHECK;
2371
1881 wlist_del (&signals [w->signum - 1].head, (WL)w); 2372 wlist_del (&signals [w->signum - 1].head, (WL)w);
1882 ev_stop (EV_A_ (W)w); 2373 ev_stop (EV_A_ (W)w);
1883 2374
1884 if (!signals [w->signum - 1].head) 2375 if (!signals [w->signum - 1].head)
1885 signal (w->signum, SIG_DFL); 2376 signal (w->signum, SIG_DFL);
2377
2378 EV_FREQUENT_CHECK;
1886} 2379}
1887 2380
1888void 2381void
1889ev_child_start (EV_P_ ev_child *w) 2382ev_child_start (EV_P_ ev_child *w)
1890{ 2383{
1892 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2385 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1893#endif 2386#endif
1894 if (expect_false (ev_is_active (w))) 2387 if (expect_false (ev_is_active (w)))
1895 return; 2388 return;
1896 2389
2390 EV_FREQUENT_CHECK;
2391
1897 ev_start (EV_A_ (W)w, 1); 2392 ev_start (EV_A_ (W)w, 1);
1898 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2393 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2394
2395 EV_FREQUENT_CHECK;
1899} 2396}
1900 2397
1901void 2398void
1902ev_child_stop (EV_P_ ev_child *w) 2399ev_child_stop (EV_P_ ev_child *w)
1903{ 2400{
1904 clear_pending (EV_A_ (W)w); 2401 clear_pending (EV_A_ (W)w);
1905 if (expect_false (!ev_is_active (w))) 2402 if (expect_false (!ev_is_active (w)))
1906 return; 2403 return;
1907 2404
2405 EV_FREQUENT_CHECK;
2406
1908 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2407 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1909 ev_stop (EV_A_ (W)w); 2408 ev_stop (EV_A_ (W)w);
2409
2410 EV_FREQUENT_CHECK;
1910} 2411}
1911 2412
1912#if EV_STAT_ENABLE 2413#if EV_STAT_ENABLE
1913 2414
1914# ifdef _WIN32 2415# ifdef _WIN32
1932 if (w->wd < 0) 2433 if (w->wd < 0)
1933 { 2434 {
1934 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2435 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1935 2436
1936 /* monitor some parent directory for speedup hints */ 2437 /* monitor some parent directory for speedup hints */
2438 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2439 /* but an efficiency issue only */
1937 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2440 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1938 { 2441 {
1939 char path [4096]; 2442 char path [4096];
1940 strcpy (path, w->path); 2443 strcpy (path, w->path);
1941 2444
1954 } 2457 }
1955 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2458 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1956 } 2459 }
1957 } 2460 }
1958 else 2461 else
2462 todo, on nfs etc., we need to poll every 60s or so
1959 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */ 2463 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1960 2464
1961 if (w->wd >= 0) 2465 if (w->wd >= 0)
1962 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2466 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1963} 2467}
1981 2485
1982static void noinline 2486static void noinline
1983infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2487infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1984{ 2488{
1985 if (slot < 0) 2489 if (slot < 0)
1986 /* overflow, need to check for all hahs slots */ 2490 /* overflow, need to check for all hash slots */
1987 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2491 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1988 infy_wd (EV_A_ slot, wd, ev); 2492 infy_wd (EV_A_ slot, wd, ev);
1989 else 2493 else
1990 { 2494 {
1991 WL w_; 2495 WL w_;
2025infy_init (EV_P) 2529infy_init (EV_P)
2026{ 2530{
2027 if (fs_fd != -2) 2531 if (fs_fd != -2)
2028 return; 2532 return;
2029 2533
2534 /* kernels < 2.6.25 are borked
2535 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2536 */
2537 {
2538 struct utsname buf;
2539 int major, minor, micro;
2540
2541 fs_fd = -1;
2542
2543 if (uname (&buf))
2544 return;
2545
2546 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2547 return;
2548
2549 if (major < 2
2550 || (major == 2 && minor < 6)
2551 || (major == 2 && minor == 6 && micro < 25))
2552 return;
2553 }
2554
2030 fs_fd = inotify_init (); 2555 fs_fd = inotify_init ();
2031 2556
2032 if (fs_fd >= 0) 2557 if (fs_fd >= 0)
2033 { 2558 {
2034 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 2559 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2063 if (fs_fd >= 0) 2588 if (fs_fd >= 0)
2064 infy_add (EV_A_ w); /* re-add, no matter what */ 2589 infy_add (EV_A_ w); /* re-add, no matter what */
2065 else 2590 else
2066 ev_timer_start (EV_A_ &w->timer); 2591 ev_timer_start (EV_A_ &w->timer);
2067 } 2592 }
2068
2069 } 2593 }
2070} 2594}
2071 2595
2596#endif
2597
2598#ifdef _WIN32
2599# define EV_LSTAT(p,b) _stati64 (p, b)
2600#else
2601# define EV_LSTAT(p,b) lstat (p, b)
2072#endif 2602#endif
2073 2603
2074void 2604void
2075ev_stat_stat (EV_P_ ev_stat *w) 2605ev_stat_stat (EV_P_ ev_stat *w)
2076{ 2606{
2103 || w->prev.st_atime != w->attr.st_atime 2633 || w->prev.st_atime != w->attr.st_atime
2104 || w->prev.st_mtime != w->attr.st_mtime 2634 || w->prev.st_mtime != w->attr.st_mtime
2105 || w->prev.st_ctime != w->attr.st_ctime 2635 || w->prev.st_ctime != w->attr.st_ctime
2106 ) { 2636 ) {
2107 #if EV_USE_INOTIFY 2637 #if EV_USE_INOTIFY
2638 if (fs_fd >= 0)
2639 {
2108 infy_del (EV_A_ w); 2640 infy_del (EV_A_ w);
2109 infy_add (EV_A_ w); 2641 infy_add (EV_A_ w);
2110 ev_stat_stat (EV_A_ w); /* avoid race... */ 2642 ev_stat_stat (EV_A_ w); /* avoid race... */
2643 }
2111 #endif 2644 #endif
2112 2645
2113 ev_feed_event (EV_A_ w, EV_STAT); 2646 ev_feed_event (EV_A_ w, EV_STAT);
2114 } 2647 }
2115} 2648}
2140 else 2673 else
2141#endif 2674#endif
2142 ev_timer_start (EV_A_ &w->timer); 2675 ev_timer_start (EV_A_ &w->timer);
2143 2676
2144 ev_start (EV_A_ (W)w, 1); 2677 ev_start (EV_A_ (W)w, 1);
2678
2679 EV_FREQUENT_CHECK;
2145} 2680}
2146 2681
2147void 2682void
2148ev_stat_stop (EV_P_ ev_stat *w) 2683ev_stat_stop (EV_P_ ev_stat *w)
2149{ 2684{
2150 clear_pending (EV_A_ (W)w); 2685 clear_pending (EV_A_ (W)w);
2151 if (expect_false (!ev_is_active (w))) 2686 if (expect_false (!ev_is_active (w)))
2152 return; 2687 return;
2153 2688
2689 EV_FREQUENT_CHECK;
2690
2154#if EV_USE_INOTIFY 2691#if EV_USE_INOTIFY
2155 infy_del (EV_A_ w); 2692 infy_del (EV_A_ w);
2156#endif 2693#endif
2157 ev_timer_stop (EV_A_ &w->timer); 2694 ev_timer_stop (EV_A_ &w->timer);
2158 2695
2159 ev_stop (EV_A_ (W)w); 2696 ev_stop (EV_A_ (W)w);
2697
2698 EV_FREQUENT_CHECK;
2160} 2699}
2161#endif 2700#endif
2162 2701
2163#if EV_IDLE_ENABLE 2702#if EV_IDLE_ENABLE
2164void 2703void
2166{ 2705{
2167 if (expect_false (ev_is_active (w))) 2706 if (expect_false (ev_is_active (w)))
2168 return; 2707 return;
2169 2708
2170 pri_adjust (EV_A_ (W)w); 2709 pri_adjust (EV_A_ (W)w);
2710
2711 EV_FREQUENT_CHECK;
2171 2712
2172 { 2713 {
2173 int active = ++idlecnt [ABSPRI (w)]; 2714 int active = ++idlecnt [ABSPRI (w)];
2174 2715
2175 ++idleall; 2716 ++idleall;
2176 ev_start (EV_A_ (W)w, active); 2717 ev_start (EV_A_ (W)w, active);
2177 2718
2178 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2719 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2179 idles [ABSPRI (w)][active - 1] = w; 2720 idles [ABSPRI (w)][active - 1] = w;
2180 } 2721 }
2722
2723 EV_FREQUENT_CHECK;
2181} 2724}
2182 2725
2183void 2726void
2184ev_idle_stop (EV_P_ ev_idle *w) 2727ev_idle_stop (EV_P_ ev_idle *w)
2185{ 2728{
2186 clear_pending (EV_A_ (W)w); 2729 clear_pending (EV_A_ (W)w);
2187 if (expect_false (!ev_is_active (w))) 2730 if (expect_false (!ev_is_active (w)))
2188 return; 2731 return;
2189 2732
2733 EV_FREQUENT_CHECK;
2734
2190 { 2735 {
2191 int active = ((W)w)->active; 2736 int active = ev_active (w);
2192 2737
2193 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2738 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2194 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2739 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2195 2740
2196 ev_stop (EV_A_ (W)w); 2741 ev_stop (EV_A_ (W)w);
2197 --idleall; 2742 --idleall;
2198 } 2743 }
2744
2745 EV_FREQUENT_CHECK;
2199} 2746}
2200#endif 2747#endif
2201 2748
2202void 2749void
2203ev_prepare_start (EV_P_ ev_prepare *w) 2750ev_prepare_start (EV_P_ ev_prepare *w)
2204{ 2751{
2205 if (expect_false (ev_is_active (w))) 2752 if (expect_false (ev_is_active (w)))
2206 return; 2753 return;
2754
2755 EV_FREQUENT_CHECK;
2207 2756
2208 ev_start (EV_A_ (W)w, ++preparecnt); 2757 ev_start (EV_A_ (W)w, ++preparecnt);
2209 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2758 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2210 prepares [preparecnt - 1] = w; 2759 prepares [preparecnt - 1] = w;
2760
2761 EV_FREQUENT_CHECK;
2211} 2762}
2212 2763
2213void 2764void
2214ev_prepare_stop (EV_P_ ev_prepare *w) 2765ev_prepare_stop (EV_P_ ev_prepare *w)
2215{ 2766{
2216 clear_pending (EV_A_ (W)w); 2767 clear_pending (EV_A_ (W)w);
2217 if (expect_false (!ev_is_active (w))) 2768 if (expect_false (!ev_is_active (w)))
2218 return; 2769 return;
2219 2770
2771 EV_FREQUENT_CHECK;
2772
2220 { 2773 {
2221 int active = ((W)w)->active; 2774 int active = ev_active (w);
2775
2222 prepares [active - 1] = prepares [--preparecnt]; 2776 prepares [active - 1] = prepares [--preparecnt];
2223 ((W)prepares [active - 1])->active = active; 2777 ev_active (prepares [active - 1]) = active;
2224 } 2778 }
2225 2779
2226 ev_stop (EV_A_ (W)w); 2780 ev_stop (EV_A_ (W)w);
2781
2782 EV_FREQUENT_CHECK;
2227} 2783}
2228 2784
2229void 2785void
2230ev_check_start (EV_P_ ev_check *w) 2786ev_check_start (EV_P_ ev_check *w)
2231{ 2787{
2232 if (expect_false (ev_is_active (w))) 2788 if (expect_false (ev_is_active (w)))
2233 return; 2789 return;
2790
2791 EV_FREQUENT_CHECK;
2234 2792
2235 ev_start (EV_A_ (W)w, ++checkcnt); 2793 ev_start (EV_A_ (W)w, ++checkcnt);
2236 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2794 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2237 checks [checkcnt - 1] = w; 2795 checks [checkcnt - 1] = w;
2796
2797 EV_FREQUENT_CHECK;
2238} 2798}
2239 2799
2240void 2800void
2241ev_check_stop (EV_P_ ev_check *w) 2801ev_check_stop (EV_P_ ev_check *w)
2242{ 2802{
2243 clear_pending (EV_A_ (W)w); 2803 clear_pending (EV_A_ (W)w);
2244 if (expect_false (!ev_is_active (w))) 2804 if (expect_false (!ev_is_active (w)))
2245 return; 2805 return;
2246 2806
2807 EV_FREQUENT_CHECK;
2808
2247 { 2809 {
2248 int active = ((W)w)->active; 2810 int active = ev_active (w);
2811
2249 checks [active - 1] = checks [--checkcnt]; 2812 checks [active - 1] = checks [--checkcnt];
2250 ((W)checks [active - 1])->active = active; 2813 ev_active (checks [active - 1]) = active;
2251 } 2814 }
2252 2815
2253 ev_stop (EV_A_ (W)w); 2816 ev_stop (EV_A_ (W)w);
2817
2818 EV_FREQUENT_CHECK;
2254} 2819}
2255 2820
2256#if EV_EMBED_ENABLE 2821#if EV_EMBED_ENABLE
2257void noinline 2822void noinline
2258ev_embed_sweep (EV_P_ ev_embed *w) 2823ev_embed_sweep (EV_P_ ev_embed *w)
2266 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2831 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2267 2832
2268 if (ev_cb (w)) 2833 if (ev_cb (w))
2269 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2834 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2270 else 2835 else
2271 ev_embed_sweep (loop, w); 2836 ev_loop (w->other, EVLOOP_NONBLOCK);
2272} 2837}
2273 2838
2274static void 2839static void
2275embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 2840embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2276{ 2841{
2277 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 2842 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2278 2843
2279 fd_reify (w->other); 2844 {
2845 struct ev_loop *loop = w->other;
2846
2847 while (fdchangecnt)
2848 {
2849 fd_reify (EV_A);
2850 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2851 }
2852 }
2280} 2853}
2854
2855static void
2856embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2857{
2858 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2859
2860 {
2861 struct ev_loop *loop = w->other;
2862
2863 ev_loop_fork (EV_A);
2864 }
2865}
2866
2867#if 0
2868static void
2869embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2870{
2871 ev_idle_stop (EV_A_ idle);
2872}
2873#endif
2281 2874
2282void 2875void
2283ev_embed_start (EV_P_ ev_embed *w) 2876ev_embed_start (EV_P_ ev_embed *w)
2284{ 2877{
2285 if (expect_false (ev_is_active (w))) 2878 if (expect_false (ev_is_active (w)))
2289 struct ev_loop *loop = w->other; 2882 struct ev_loop *loop = w->other;
2290 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2883 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2291 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2884 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2292 } 2885 }
2293 2886
2887 EV_FREQUENT_CHECK;
2888
2294 ev_set_priority (&w->io, ev_priority (w)); 2889 ev_set_priority (&w->io, ev_priority (w));
2295 ev_io_start (EV_A_ &w->io); 2890 ev_io_start (EV_A_ &w->io);
2296 2891
2297 ev_prepare_init (&w->prepare, embed_prepare_cb); 2892 ev_prepare_init (&w->prepare, embed_prepare_cb);
2298 ev_set_priority (&w->prepare, EV_MINPRI); 2893 ev_set_priority (&w->prepare, EV_MINPRI);
2299 ev_prepare_start (EV_A_ &w->prepare); 2894 ev_prepare_start (EV_A_ &w->prepare);
2300 2895
2896 ev_fork_init (&w->fork, embed_fork_cb);
2897 ev_fork_start (EV_A_ &w->fork);
2898
2899 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2900
2301 ev_start (EV_A_ (W)w, 1); 2901 ev_start (EV_A_ (W)w, 1);
2902
2903 EV_FREQUENT_CHECK;
2302} 2904}
2303 2905
2304void 2906void
2305ev_embed_stop (EV_P_ ev_embed *w) 2907ev_embed_stop (EV_P_ ev_embed *w)
2306{ 2908{
2307 clear_pending (EV_A_ (W)w); 2909 clear_pending (EV_A_ (W)w);
2308 if (expect_false (!ev_is_active (w))) 2910 if (expect_false (!ev_is_active (w)))
2309 return; 2911 return;
2310 2912
2913 EV_FREQUENT_CHECK;
2914
2311 ev_io_stop (EV_A_ &w->io); 2915 ev_io_stop (EV_A_ &w->io);
2312 ev_prepare_stop (EV_A_ &w->prepare); 2916 ev_prepare_stop (EV_A_ &w->prepare);
2917 ev_fork_stop (EV_A_ &w->fork);
2313 2918
2314 ev_stop (EV_A_ (W)w); 2919 EV_FREQUENT_CHECK;
2315} 2920}
2316#endif 2921#endif
2317 2922
2318#if EV_FORK_ENABLE 2923#if EV_FORK_ENABLE
2319void 2924void
2320ev_fork_start (EV_P_ ev_fork *w) 2925ev_fork_start (EV_P_ ev_fork *w)
2321{ 2926{
2322 if (expect_false (ev_is_active (w))) 2927 if (expect_false (ev_is_active (w)))
2323 return; 2928 return;
2929
2930 EV_FREQUENT_CHECK;
2324 2931
2325 ev_start (EV_A_ (W)w, ++forkcnt); 2932 ev_start (EV_A_ (W)w, ++forkcnt);
2326 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2933 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2327 forks [forkcnt - 1] = w; 2934 forks [forkcnt - 1] = w;
2935
2936 EV_FREQUENT_CHECK;
2328} 2937}
2329 2938
2330void 2939void
2331ev_fork_stop (EV_P_ ev_fork *w) 2940ev_fork_stop (EV_P_ ev_fork *w)
2332{ 2941{
2333 clear_pending (EV_A_ (W)w); 2942 clear_pending (EV_A_ (W)w);
2334 if (expect_false (!ev_is_active (w))) 2943 if (expect_false (!ev_is_active (w)))
2335 return; 2944 return;
2336 2945
2946 EV_FREQUENT_CHECK;
2947
2337 { 2948 {
2338 int active = ((W)w)->active; 2949 int active = ev_active (w);
2950
2339 forks [active - 1] = forks [--forkcnt]; 2951 forks [active - 1] = forks [--forkcnt];
2340 ((W)forks [active - 1])->active = active; 2952 ev_active (forks [active - 1]) = active;
2341 } 2953 }
2342 2954
2343 ev_stop (EV_A_ (W)w); 2955 ev_stop (EV_A_ (W)w);
2956
2957 EV_FREQUENT_CHECK;
2958}
2959#endif
2960
2961#if EV_ASYNC_ENABLE
2962void
2963ev_async_start (EV_P_ ev_async *w)
2964{
2965 if (expect_false (ev_is_active (w)))
2966 return;
2967
2968 evpipe_init (EV_A);
2969
2970 EV_FREQUENT_CHECK;
2971
2972 ev_start (EV_A_ (W)w, ++asynccnt);
2973 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2974 asyncs [asynccnt - 1] = w;
2975
2976 EV_FREQUENT_CHECK;
2977}
2978
2979void
2980ev_async_stop (EV_P_ ev_async *w)
2981{
2982 clear_pending (EV_A_ (W)w);
2983 if (expect_false (!ev_is_active (w)))
2984 return;
2985
2986 EV_FREQUENT_CHECK;
2987
2988 {
2989 int active = ev_active (w);
2990
2991 asyncs [active - 1] = asyncs [--asynccnt];
2992 ev_active (asyncs [active - 1]) = active;
2993 }
2994
2995 ev_stop (EV_A_ (W)w);
2996
2997 EV_FREQUENT_CHECK;
2998}
2999
3000void
3001ev_async_send (EV_P_ ev_async *w)
3002{
3003 w->sent = 1;
3004 evpipe_write (EV_A_ &gotasync);
2344} 3005}
2345#endif 3006#endif
2346 3007
2347/*****************************************************************************/ 3008/*****************************************************************************/
2348 3009
2358once_cb (EV_P_ struct ev_once *once, int revents) 3019once_cb (EV_P_ struct ev_once *once, int revents)
2359{ 3020{
2360 void (*cb)(int revents, void *arg) = once->cb; 3021 void (*cb)(int revents, void *arg) = once->cb;
2361 void *arg = once->arg; 3022 void *arg = once->arg;
2362 3023
2363 ev_io_stop (EV_A_ &once->io); 3024 ev_io_stop (EV_A_ &once->io);
2364 ev_timer_stop (EV_A_ &once->to); 3025 ev_timer_stop (EV_A_ &once->to);
2365 ev_free (once); 3026 ev_free (once);
2366 3027
2367 cb (revents, arg); 3028 cb (revents, arg);
2368} 3029}
2369 3030
2370static void 3031static void
2371once_cb_io (EV_P_ ev_io *w, int revents) 3032once_cb_io (EV_P_ ev_io *w, int revents)
2372{ 3033{
2373 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3034 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3035
3036 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2374} 3037}
2375 3038
2376static void 3039static void
2377once_cb_to (EV_P_ ev_timer *w, int revents) 3040once_cb_to (EV_P_ ev_timer *w, int revents)
2378{ 3041{
2379 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3042 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3043
3044 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2380} 3045}
2381 3046
2382void 3047void
2383ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3048ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2384{ 3049{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines