ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.227 by root, Fri May 2 07:20:01 2008 UTC vs.
Revision 1.271 by root, Mon Nov 3 12:13:15 2008 UTC

126# define EV_USE_EVENTFD 1 126# define EV_USE_EVENTFD 1
127# else 127# else
128# define EV_USE_EVENTFD 0 128# define EV_USE_EVENTFD 0
129# endif 129# endif
130# endif 130# endif
131 131
132#endif 132#endif
133 133
134#include <math.h> 134#include <math.h>
135#include <stdlib.h> 135#include <stdlib.h>
136#include <fcntl.h> 136#include <fcntl.h>
154#ifndef _WIN32 154#ifndef _WIN32
155# include <sys/time.h> 155# include <sys/time.h>
156# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h> 157# include <unistd.h>
158#else 158#else
159# include <io.h>
159# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 161# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
163# endif 164# endif
164#endif 165#endif
165 166
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
167 168
168#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
169# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
170#endif 175#endif
171 176
172#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
174#endif 179#endif
175 180
176#ifndef EV_USE_NANOSLEEP 181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
177# define EV_USE_NANOSLEEP 0 185# define EV_USE_NANOSLEEP 0
186# endif
178#endif 187#endif
179 188
180#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
182#endif 191#endif
235# else 244# else
236# define EV_USE_EVENTFD 0 245# define EV_USE_EVENTFD 0
237# endif 246# endif
238#endif 247#endif
239 248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 268
242#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
259# include <sys/select.h> 286# include <sys/select.h>
260# endif 287# endif
261#endif 288#endif
262 289
263#if EV_USE_INOTIFY 290#if EV_USE_INOTIFY
291# include <sys/utsname.h>
292# include <sys/statfs.h>
264# include <sys/inotify.h> 293# include <sys/inotify.h>
294/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
295# ifndef IN_DONT_FOLLOW
296# undef EV_USE_INOTIFY
297# define EV_USE_INOTIFY 0
298# endif
265#endif 299#endif
266 300
267#if EV_SELECT_IS_WINSOCKET 301#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 302# include <winsock.h>
269#endif 303#endif
279} 313}
280# endif 314# endif
281#endif 315#endif
282 316
283/**/ 317/**/
318
319#if EV_VERIFY >= 3
320# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
321#else
322# define EV_FREQUENT_CHECK do { } while (0)
323#endif
284 324
285/* 325/*
286 * This is used to avoid floating point rounding problems. 326 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 327 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 328 * to ensure progress, time-wise, even when rounding
325 365
326typedef ev_watcher *W; 366typedef ev_watcher *W;
327typedef ev_watcher_list *WL; 367typedef ev_watcher_list *WL;
328typedef ev_watcher_time *WT; 368typedef ev_watcher_time *WT;
329 369
370#define ev_active(w) ((W)(w))->active
371#define ev_at(w) ((WT)(w))->at
372
330#if EV_USE_MONOTONIC 373#if EV_USE_MONOTONIC
331/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 374/* sig_atomic_t is used to avoid per-thread variables or locking but still */
332/* giving it a reasonably high chance of working on typical architetcures */ 375/* giving it a reasonably high chance of working on typical architetcures */
333static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 376static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
334#endif 377#endif
346{ 389{
347 syserr_cb = cb; 390 syserr_cb = cb;
348} 391}
349 392
350static void noinline 393static void noinline
351syserr (const char *msg) 394ev_syserr (const char *msg)
352{ 395{
353 if (!msg) 396 if (!msg)
354 msg = "(libev) system error"; 397 msg = "(libev) system error";
355 398
356 if (syserr_cb) 399 if (syserr_cb)
407typedef struct 450typedef struct
408{ 451{
409 WL head; 452 WL head;
410 unsigned char events; 453 unsigned char events;
411 unsigned char reify; 454 unsigned char reify;
455 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
456 unsigned char unused;
457#if EV_USE_EPOLL
458 unsigned int egen; /* generation counter to counter epoll bugs */
459#endif
412#if EV_SELECT_IS_WINSOCKET 460#if EV_SELECT_IS_WINSOCKET
413 SOCKET handle; 461 SOCKET handle;
414#endif 462#endif
415} ANFD; 463} ANFD;
416 464
419 W w; 467 W w;
420 int events; 468 int events;
421} ANPENDING; 469} ANPENDING;
422 470
423#if EV_USE_INOTIFY 471#if EV_USE_INOTIFY
472/* hash table entry per inotify-id */
424typedef struct 473typedef struct
425{ 474{
426 WL head; 475 WL head;
427} ANFS; 476} ANFS;
477#endif
478
479/* Heap Entry */
480#if EV_HEAP_CACHE_AT
481 typedef struct {
482 ev_tstamp at;
483 WT w;
484 } ANHE;
485
486 #define ANHE_w(he) (he).w /* access watcher, read-write */
487 #define ANHE_at(he) (he).at /* access cached at, read-only */
488 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
489#else
490 typedef WT ANHE;
491
492 #define ANHE_w(he) (he)
493 #define ANHE_at(he) (he)->at
494 #define ANHE_at_cache(he)
428#endif 495#endif
429 496
430#if EV_MULTIPLICITY 497#if EV_MULTIPLICITY
431 498
432 struct ev_loop 499 struct ev_loop
510 struct timeval tv; 577 struct timeval tv;
511 578
512 tv.tv_sec = (time_t)delay; 579 tv.tv_sec = (time_t)delay;
513 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 580 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
514 581
582 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
583 /* somehting nto guaranteed by newer posix versions, but guaranteed */
584 /* by older ones */
515 select (0, 0, 0, 0, &tv); 585 select (0, 0, 0, 0, &tv);
516#endif 586#endif
517 } 587 }
518} 588}
519 589
520/*****************************************************************************/ 590/*****************************************************************************/
591
592#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
521 593
522int inline_size 594int inline_size
523array_nextsize (int elem, int cur, int cnt) 595array_nextsize (int elem, int cur, int cnt)
524{ 596{
525 int ncur = cur + 1; 597 int ncur = cur + 1;
526 598
527 do 599 do
528 ncur <<= 1; 600 ncur <<= 1;
529 while (cnt > ncur); 601 while (cnt > ncur);
530 602
531 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 603 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
532 if (elem * ncur > 4096) 604 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
533 { 605 {
534 ncur *= elem; 606 ncur *= elem;
535 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 607 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
536 ncur = ncur - sizeof (void *) * 4; 608 ncur = ncur - sizeof (void *) * 4;
537 ncur /= elem; 609 ncur /= elem;
538 } 610 }
539 611
540 return ncur; 612 return ncur;
544array_realloc (int elem, void *base, int *cur, int cnt) 616array_realloc (int elem, void *base, int *cur, int cnt)
545{ 617{
546 *cur = array_nextsize (elem, *cur, cnt); 618 *cur = array_nextsize (elem, *cur, cnt);
547 return ev_realloc (base, elem * *cur); 619 return ev_realloc (base, elem * *cur);
548} 620}
621
622#define array_init_zero(base,count) \
623 memset ((void *)(base), 0, sizeof (*(base)) * (count))
549 624
550#define array_needsize(type,base,cur,cnt,init) \ 625#define array_needsize(type,base,cur,cnt,init) \
551 if (expect_false ((cnt) > (cur))) \ 626 if (expect_false ((cnt) > (cur))) \
552 { \ 627 { \
553 int ocur_ = (cur); \ 628 int ocur_ = (cur); \
597 ev_feed_event (EV_A_ events [i], type); 672 ev_feed_event (EV_A_ events [i], type);
598} 673}
599 674
600/*****************************************************************************/ 675/*****************************************************************************/
601 676
602void inline_size
603anfds_init (ANFD *base, int count)
604{
605 while (count--)
606 {
607 base->head = 0;
608 base->events = EV_NONE;
609 base->reify = 0;
610
611 ++base;
612 }
613}
614
615void inline_speed 677void inline_speed
616fd_event (EV_P_ int fd, int revents) 678fd_event (EV_P_ int fd, int revents)
617{ 679{
618 ANFD *anfd = anfds + fd; 680 ANFD *anfd = anfds + fd;
619 ev_io *w; 681 ev_io *w;
651 events |= (unsigned char)w->events; 713 events |= (unsigned char)w->events;
652 714
653#if EV_SELECT_IS_WINSOCKET 715#if EV_SELECT_IS_WINSOCKET
654 if (events) 716 if (events)
655 { 717 {
656 unsigned long argp; 718 unsigned long arg;
657 #ifdef EV_FD_TO_WIN32_HANDLE 719 #ifdef EV_FD_TO_WIN32_HANDLE
658 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 720 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
659 #else 721 #else
660 anfd->handle = _get_osfhandle (fd); 722 anfd->handle = _get_osfhandle (fd);
661 #endif 723 #endif
662 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 724 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
663 } 725 }
664#endif 726#endif
665 727
666 { 728 {
667 unsigned char o_events = anfd->events; 729 unsigned char o_events = anfd->events;
720{ 782{
721 int fd; 783 int fd;
722 784
723 for (fd = 0; fd < anfdmax; ++fd) 785 for (fd = 0; fd < anfdmax; ++fd)
724 if (anfds [fd].events) 786 if (anfds [fd].events)
725 if (!fd_valid (fd) == -1 && errno == EBADF) 787 if (!fd_valid (fd) && errno == EBADF)
726 fd_kill (EV_A_ fd); 788 fd_kill (EV_A_ fd);
727} 789}
728 790
729/* called on ENOMEM in select/poll to kill some fds and retry */ 791/* called on ENOMEM in select/poll to kill some fds and retry */
730static void noinline 792static void noinline
748 810
749 for (fd = 0; fd < anfdmax; ++fd) 811 for (fd = 0; fd < anfdmax; ++fd)
750 if (anfds [fd].events) 812 if (anfds [fd].events)
751 { 813 {
752 anfds [fd].events = 0; 814 anfds [fd].events = 0;
815 anfds [fd].emask = 0;
753 fd_change (EV_A_ fd, EV_IOFDSET | 1); 816 fd_change (EV_A_ fd, EV_IOFDSET | 1);
754 } 817 }
755} 818}
756 819
757/*****************************************************************************/ 820/*****************************************************************************/
758 821
822/*
823 * the heap functions want a real array index. array index 0 uis guaranteed to not
824 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
825 * the branching factor of the d-tree.
826 */
827
828/*
829 * at the moment we allow libev the luxury of two heaps,
830 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
831 * which is more cache-efficient.
832 * the difference is about 5% with 50000+ watchers.
833 */
834#if EV_USE_4HEAP
835
836#define DHEAP 4
837#define HEAP0 (DHEAP - 1) /* index of first element in heap */
838#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
839#define UPHEAP_DONE(p,k) ((p) == (k))
840
841/* away from the root */
842void inline_speed
843downheap (ANHE *heap, int N, int k)
844{
845 ANHE he = heap [k];
846 ANHE *E = heap + N + HEAP0;
847
848 for (;;)
849 {
850 ev_tstamp minat;
851 ANHE *minpos;
852 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
853
854 /* find minimum child */
855 if (expect_true (pos + DHEAP - 1 < E))
856 {
857 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
858 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
859 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
860 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
861 }
862 else if (pos < E)
863 {
864 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
865 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
866 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
867 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
868 }
869 else
870 break;
871
872 if (ANHE_at (he) <= minat)
873 break;
874
875 heap [k] = *minpos;
876 ev_active (ANHE_w (*minpos)) = k;
877
878 k = minpos - heap;
879 }
880
881 heap [k] = he;
882 ev_active (ANHE_w (he)) = k;
883}
884
885#else /* 4HEAP */
886
887#define HEAP0 1
888#define HPARENT(k) ((k) >> 1)
889#define UPHEAP_DONE(p,k) (!(p))
890
891/* away from the root */
892void inline_speed
893downheap (ANHE *heap, int N, int k)
894{
895 ANHE he = heap [k];
896
897 for (;;)
898 {
899 int c = k << 1;
900
901 if (c > N + HEAP0 - 1)
902 break;
903
904 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
905 ? 1 : 0;
906
907 if (ANHE_at (he) <= ANHE_at (heap [c]))
908 break;
909
910 heap [k] = heap [c];
911 ev_active (ANHE_w (heap [k])) = k;
912
913 k = c;
914 }
915
916 heap [k] = he;
917 ev_active (ANHE_w (he)) = k;
918}
919#endif
920
759/* towards the root */ 921/* towards the root */
760void inline_speed 922void inline_speed
761upheap (WT *heap, int k) 923upheap (ANHE *heap, int k)
762{ 924{
763 WT w = heap [k]; 925 ANHE he = heap [k];
764 926
765 while (k) 927 for (;;)
766 { 928 {
767 int p = (k - 1) >> 1; 929 int p = HPARENT (k);
768 930
769 if (heap [p]->at <= w->at) 931 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
770 break; 932 break;
771 933
772 heap [k] = heap [p]; 934 heap [k] = heap [p];
773 ((W)heap [k])->active = k + 1; 935 ev_active (ANHE_w (heap [k])) = k;
774 k = p; 936 k = p;
775 } 937 }
776 938
777 heap [k] = w; 939 heap [k] = he;
778 ((W)heap [k])->active = k + 1; 940 ev_active (ANHE_w (he)) = k;
779}
780
781/* away from the root */
782void inline_speed
783downheap (WT *heap, int N, int k)
784{
785 WT w = heap [k];
786
787 for (;;)
788 {
789 int c = (k << 1) + 1;
790
791 if (c >= N)
792 break;
793
794 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
795 ? 1 : 0;
796
797 if (w->at <= heap [c]->at)
798 break;
799
800 heap [k] = heap [c];
801 ((W)heap [k])->active = k + 1;
802
803 k = c;
804 }
805
806 heap [k] = w;
807 ((W)heap [k])->active = k + 1;
808} 941}
809 942
810void inline_size 943void inline_size
811adjustheap (WT *heap, int N, int k) 944adjustheap (ANHE *heap, int N, int k)
812{ 945{
946 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
813 upheap (heap, k); 947 upheap (heap, k);
948 else
814 downheap (heap, N, k); 949 downheap (heap, N, k);
950}
951
952/* rebuild the heap: this function is used only once and executed rarely */
953void inline_size
954reheap (ANHE *heap, int N)
955{
956 int i;
957
958 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
959 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
960 for (i = 0; i < N; ++i)
961 upheap (heap, i + HEAP0);
815} 962}
816 963
817/*****************************************************************************/ 964/*****************************************************************************/
818 965
819typedef struct 966typedef struct
825static ANSIG *signals; 972static ANSIG *signals;
826static int signalmax; 973static int signalmax;
827 974
828static EV_ATOMIC_T gotsig; 975static EV_ATOMIC_T gotsig;
829 976
830void inline_size
831signals_init (ANSIG *base, int count)
832{
833 while (count--)
834 {
835 base->head = 0;
836 base->gotsig = 0;
837
838 ++base;
839 }
840}
841
842/*****************************************************************************/ 977/*****************************************************************************/
843 978
844void inline_speed 979void inline_speed
845fd_intern (int fd) 980fd_intern (int fd)
846{ 981{
847#ifdef _WIN32 982#ifdef _WIN32
848 int arg = 1; 983 unsigned long arg = 1;
849 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 984 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
850#else 985#else
851 fcntl (fd, F_SETFD, FD_CLOEXEC); 986 fcntl (fd, F_SETFD, FD_CLOEXEC);
852 fcntl (fd, F_SETFL, O_NONBLOCK); 987 fcntl (fd, F_SETFL, O_NONBLOCK);
853#endif 988#endif
867 } 1002 }
868 else 1003 else
869#endif 1004#endif
870 { 1005 {
871 while (pipe (evpipe)) 1006 while (pipe (evpipe))
872 syserr ("(libev) error creating signal/async pipe"); 1007 ev_syserr ("(libev) error creating signal/async pipe");
873 1008
874 fd_intern (evpipe [0]); 1009 fd_intern (evpipe [0]);
875 fd_intern (evpipe [1]); 1010 fd_intern (evpipe [1]);
876 ev_io_set (&pipeev, evpipe [0], EV_READ); 1011 ev_io_set (&pipeev, evpipe [0], EV_READ);
877 } 1012 }
908pipecb (EV_P_ ev_io *iow, int revents) 1043pipecb (EV_P_ ev_io *iow, int revents)
909{ 1044{
910#if EV_USE_EVENTFD 1045#if EV_USE_EVENTFD
911 if (evfd >= 0) 1046 if (evfd >= 0)
912 { 1047 {
913 uint64_t counter = 1; 1048 uint64_t counter;
914 read (evfd, &counter, sizeof (uint64_t)); 1049 read (evfd, &counter, sizeof (uint64_t));
915 } 1050 }
916 else 1051 else
917#endif 1052#endif
918 { 1053 {
1337 1472
1338 postfork = 0; 1473 postfork = 0;
1339} 1474}
1340 1475
1341#if EV_MULTIPLICITY 1476#if EV_MULTIPLICITY
1477
1342struct ev_loop * 1478struct ev_loop *
1343ev_loop_new (unsigned int flags) 1479ev_loop_new (unsigned int flags)
1344{ 1480{
1345 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1481 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1346 1482
1365ev_loop_fork (EV_P) 1501ev_loop_fork (EV_P)
1366{ 1502{
1367 postfork = 1; /* must be in line with ev_default_fork */ 1503 postfork = 1; /* must be in line with ev_default_fork */
1368} 1504}
1369 1505
1506#if EV_VERIFY
1507static void noinline
1508verify_watcher (EV_P_ W w)
1509{
1510 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1511
1512 if (w->pending)
1513 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1514}
1515
1516static void noinline
1517verify_heap (EV_P_ ANHE *heap, int N)
1518{
1519 int i;
1520
1521 for (i = HEAP0; i < N + HEAP0; ++i)
1522 {
1523 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1524 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1525 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1526
1527 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1528 }
1529}
1530
1531static void noinline
1532array_verify (EV_P_ W *ws, int cnt)
1533{
1534 while (cnt--)
1535 {
1536 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1537 verify_watcher (EV_A_ ws [cnt]);
1538 }
1539}
1540#endif
1541
1542void
1543ev_loop_verify (EV_P)
1544{
1545#if EV_VERIFY
1546 int i;
1547 WL w;
1548
1549 assert (activecnt >= -1);
1550
1551 assert (fdchangemax >= fdchangecnt);
1552 for (i = 0; i < fdchangecnt; ++i)
1553 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1554
1555 assert (anfdmax >= 0);
1556 for (i = 0; i < anfdmax; ++i)
1557 for (w = anfds [i].head; w; w = w->next)
1558 {
1559 verify_watcher (EV_A_ (W)w);
1560 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1561 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1562 }
1563
1564 assert (timermax >= timercnt);
1565 verify_heap (EV_A_ timers, timercnt);
1566
1567#if EV_PERIODIC_ENABLE
1568 assert (periodicmax >= periodiccnt);
1569 verify_heap (EV_A_ periodics, periodiccnt);
1570#endif
1571
1572 for (i = NUMPRI; i--; )
1573 {
1574 assert (pendingmax [i] >= pendingcnt [i]);
1575#if EV_IDLE_ENABLE
1576 assert (idleall >= 0);
1577 assert (idlemax [i] >= idlecnt [i]);
1578 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1579#endif
1580 }
1581
1582#if EV_FORK_ENABLE
1583 assert (forkmax >= forkcnt);
1584 array_verify (EV_A_ (W *)forks, forkcnt);
1585#endif
1586
1587#if EV_ASYNC_ENABLE
1588 assert (asyncmax >= asynccnt);
1589 array_verify (EV_A_ (W *)asyncs, asynccnt);
1590#endif
1591
1592 assert (preparemax >= preparecnt);
1593 array_verify (EV_A_ (W *)prepares, preparecnt);
1594
1595 assert (checkmax >= checkcnt);
1596 array_verify (EV_A_ (W *)checks, checkcnt);
1597
1598# if 0
1599 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1600 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1370#endif 1601# endif
1602#endif
1603}
1604
1605#endif /* multiplicity */
1371 1606
1372#if EV_MULTIPLICITY 1607#if EV_MULTIPLICITY
1373struct ev_loop * 1608struct ev_loop *
1374ev_default_loop_init (unsigned int flags) 1609ev_default_loop_init (unsigned int flags)
1375#else 1610#else
1408{ 1643{
1409#if EV_MULTIPLICITY 1644#if EV_MULTIPLICITY
1410 struct ev_loop *loop = ev_default_loop_ptr; 1645 struct ev_loop *loop = ev_default_loop_ptr;
1411#endif 1646#endif
1412 1647
1648 ev_default_loop_ptr = 0;
1649
1413#ifndef _WIN32 1650#ifndef _WIN32
1414 ev_ref (EV_A); /* child watcher */ 1651 ev_ref (EV_A); /* child watcher */
1415 ev_signal_stop (EV_A_ &childev); 1652 ev_signal_stop (EV_A_ &childev);
1416#endif 1653#endif
1417 1654
1423{ 1660{
1424#if EV_MULTIPLICITY 1661#if EV_MULTIPLICITY
1425 struct ev_loop *loop = ev_default_loop_ptr; 1662 struct ev_loop *loop = ev_default_loop_ptr;
1426#endif 1663#endif
1427 1664
1428 if (backend)
1429 postfork = 1; /* must be in line with ev_loop_fork */ 1665 postfork = 1; /* must be in line with ev_loop_fork */
1430} 1666}
1431 1667
1432/*****************************************************************************/ 1668/*****************************************************************************/
1433 1669
1434void 1670void
1451 { 1687 {
1452 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1688 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1453 1689
1454 p->w->pending = 0; 1690 p->w->pending = 0;
1455 EV_CB_INVOKE (p->w, p->events); 1691 EV_CB_INVOKE (p->w, p->events);
1692 EV_FREQUENT_CHECK;
1456 } 1693 }
1457 } 1694 }
1458} 1695}
1459
1460void inline_size
1461timers_reify (EV_P)
1462{
1463 while (timercnt && ((WT)timers [0])->at <= mn_now)
1464 {
1465 ev_timer *w = (ev_timer *)timers [0];
1466
1467 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1468
1469 /* first reschedule or stop timer */
1470 if (w->repeat)
1471 {
1472 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1473
1474 ((WT)w)->at += w->repeat;
1475 if (((WT)w)->at < mn_now)
1476 ((WT)w)->at = mn_now;
1477
1478 downheap (timers, timercnt, 0);
1479 }
1480 else
1481 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1482
1483 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1484 }
1485}
1486
1487#if EV_PERIODIC_ENABLE
1488void inline_size
1489periodics_reify (EV_P)
1490{
1491 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1492 {
1493 ev_periodic *w = (ev_periodic *)periodics [0];
1494
1495 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1496
1497 /* first reschedule or stop timer */
1498 if (w->reschedule_cb)
1499 {
1500 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1501 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1502 downheap (periodics, periodiccnt, 0);
1503 }
1504 else if (w->interval)
1505 {
1506 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1507 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1508 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1509 downheap (periodics, periodiccnt, 0);
1510 }
1511 else
1512 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1513
1514 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1515 }
1516}
1517
1518static void noinline
1519periodics_reschedule (EV_P)
1520{
1521 int i;
1522
1523 /* adjust periodics after time jump */
1524 for (i = 0; i < periodiccnt; ++i)
1525 {
1526 ev_periodic *w = (ev_periodic *)periodics [i];
1527
1528 if (w->reschedule_cb)
1529 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1530 else if (w->interval)
1531 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1532 }
1533
1534 /* now rebuild the heap */
1535 for (i = periodiccnt >> 1; i--; )
1536 downheap (periodics, periodiccnt, i);
1537}
1538#endif
1539 1696
1540#if EV_IDLE_ENABLE 1697#if EV_IDLE_ENABLE
1541void inline_size 1698void inline_size
1542idle_reify (EV_P) 1699idle_reify (EV_P)
1543{ 1700{
1555 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1712 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1556 break; 1713 break;
1557 } 1714 }
1558 } 1715 }
1559 } 1716 }
1717}
1718#endif
1719
1720void inline_size
1721timers_reify (EV_P)
1722{
1723 EV_FREQUENT_CHECK;
1724
1725 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1726 {
1727 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1728
1729 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1730
1731 /* first reschedule or stop timer */
1732 if (w->repeat)
1733 {
1734 ev_at (w) += w->repeat;
1735 if (ev_at (w) < mn_now)
1736 ev_at (w) = mn_now;
1737
1738 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1739
1740 ANHE_at_cache (timers [HEAP0]);
1741 downheap (timers, timercnt, HEAP0);
1742 }
1743 else
1744 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1745
1746 EV_FREQUENT_CHECK;
1747 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1748 }
1749}
1750
1751#if EV_PERIODIC_ENABLE
1752void inline_size
1753periodics_reify (EV_P)
1754{
1755 EV_FREQUENT_CHECK;
1756
1757 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1758 {
1759 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1760
1761 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1762
1763 /* first reschedule or stop timer */
1764 if (w->reschedule_cb)
1765 {
1766 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1767
1768 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1769
1770 ANHE_at_cache (periodics [HEAP0]);
1771 downheap (periodics, periodiccnt, HEAP0);
1772 }
1773 else if (w->interval)
1774 {
1775 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1776 /* if next trigger time is not sufficiently in the future, put it there */
1777 /* this might happen because of floating point inexactness */
1778 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1779 {
1780 ev_at (w) += w->interval;
1781
1782 /* if interval is unreasonably low we might still have a time in the past */
1783 /* so correct this. this will make the periodic very inexact, but the user */
1784 /* has effectively asked to get triggered more often than possible */
1785 if (ev_at (w) < ev_rt_now)
1786 ev_at (w) = ev_rt_now;
1787 }
1788
1789 ANHE_at_cache (periodics [HEAP0]);
1790 downheap (periodics, periodiccnt, HEAP0);
1791 }
1792 else
1793 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1794
1795 EV_FREQUENT_CHECK;
1796 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1797 }
1798}
1799
1800static void noinline
1801periodics_reschedule (EV_P)
1802{
1803 int i;
1804
1805 /* adjust periodics after time jump */
1806 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1807 {
1808 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1809
1810 if (w->reschedule_cb)
1811 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1812 else if (w->interval)
1813 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1814
1815 ANHE_at_cache (periodics [i]);
1816 }
1817
1818 reheap (periodics, periodiccnt);
1560} 1819}
1561#endif 1820#endif
1562 1821
1563void inline_speed 1822void inline_speed
1564time_update (EV_P_ ev_tstamp max_block) 1823time_update (EV_P_ ev_tstamp max_block)
1593 */ 1852 */
1594 for (i = 4; --i; ) 1853 for (i = 4; --i; )
1595 { 1854 {
1596 rtmn_diff = ev_rt_now - mn_now; 1855 rtmn_diff = ev_rt_now - mn_now;
1597 1856
1598 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1857 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1599 return; /* all is well */ 1858 return; /* all is well */
1600 1859
1601 ev_rt_now = ev_time (); 1860 ev_rt_now = ev_time ();
1602 mn_now = get_clock (); 1861 mn_now = get_clock ();
1603 now_floor = mn_now; 1862 now_floor = mn_now;
1619#if EV_PERIODIC_ENABLE 1878#if EV_PERIODIC_ENABLE
1620 periodics_reschedule (EV_A); 1879 periodics_reschedule (EV_A);
1621#endif 1880#endif
1622 /* adjust timers. this is easy, as the offset is the same for all of them */ 1881 /* adjust timers. this is easy, as the offset is the same for all of them */
1623 for (i = 0; i < timercnt; ++i) 1882 for (i = 0; i < timercnt; ++i)
1883 {
1884 ANHE *he = timers + i + HEAP0;
1624 ((WT)timers [i])->at += ev_rt_now - mn_now; 1885 ANHE_w (*he)->at += ev_rt_now - mn_now;
1886 ANHE_at_cache (*he);
1887 }
1625 } 1888 }
1626 1889
1627 mn_now = ev_rt_now; 1890 mn_now = ev_rt_now;
1628 } 1891 }
1629} 1892}
1638ev_unref (EV_P) 1901ev_unref (EV_P)
1639{ 1902{
1640 --activecnt; 1903 --activecnt;
1641} 1904}
1642 1905
1906void
1907ev_now_update (EV_P)
1908{
1909 time_update (EV_A_ 1e100);
1910}
1911
1643static int loop_done; 1912static int loop_done;
1644 1913
1645void 1914void
1646ev_loop (EV_P_ int flags) 1915ev_loop (EV_P_ int flags)
1647{ 1916{
1649 1918
1650 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1919 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1651 1920
1652 do 1921 do
1653 { 1922 {
1923#if EV_VERIFY >= 2
1924 ev_loop_verify (EV_A);
1925#endif
1926
1654#ifndef _WIN32 1927#ifndef _WIN32
1655 if (expect_false (curpid)) /* penalise the forking check even more */ 1928 if (expect_false (curpid)) /* penalise the forking check even more */
1656 if (expect_false (getpid () != curpid)) 1929 if (expect_false (getpid () != curpid))
1657 { 1930 {
1658 curpid = getpid (); 1931 curpid = getpid ();
1699 1972
1700 waittime = MAX_BLOCKTIME; 1973 waittime = MAX_BLOCKTIME;
1701 1974
1702 if (timercnt) 1975 if (timercnt)
1703 { 1976 {
1704 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1977 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1705 if (waittime > to) waittime = to; 1978 if (waittime > to) waittime = to;
1706 } 1979 }
1707 1980
1708#if EV_PERIODIC_ENABLE 1981#if EV_PERIODIC_ENABLE
1709 if (periodiccnt) 1982 if (periodiccnt)
1710 { 1983 {
1711 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1984 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1712 if (waittime > to) waittime = to; 1985 if (waittime > to) waittime = to;
1713 } 1986 }
1714#endif 1987#endif
1715 1988
1716 if (expect_false (waittime < timeout_blocktime)) 1989 if (expect_false (waittime < timeout_blocktime))
1852 2125
1853 if (expect_false (ev_is_active (w))) 2126 if (expect_false (ev_is_active (w)))
1854 return; 2127 return;
1855 2128
1856 assert (("ev_io_start called with negative fd", fd >= 0)); 2129 assert (("ev_io_start called with negative fd", fd >= 0));
2130 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE))));
2131
2132 EV_FREQUENT_CHECK;
1857 2133
1858 ev_start (EV_A_ (W)w, 1); 2134 ev_start (EV_A_ (W)w, 1);
1859 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2135 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1860 wlist_add (&anfds[fd].head, (WL)w); 2136 wlist_add (&anfds[fd].head, (WL)w);
1861 2137
1862 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2138 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1863 w->events &= ~EV_IOFDSET; 2139 w->events &= ~EV_IOFDSET;
2140
2141 EV_FREQUENT_CHECK;
1864} 2142}
1865 2143
1866void noinline 2144void noinline
1867ev_io_stop (EV_P_ ev_io *w) 2145ev_io_stop (EV_P_ ev_io *w)
1868{ 2146{
1869 clear_pending (EV_A_ (W)w); 2147 clear_pending (EV_A_ (W)w);
1870 if (expect_false (!ev_is_active (w))) 2148 if (expect_false (!ev_is_active (w)))
1871 return; 2149 return;
1872 2150
1873 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2151 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2152
2153 EV_FREQUENT_CHECK;
1874 2154
1875 wlist_del (&anfds[w->fd].head, (WL)w); 2155 wlist_del (&anfds[w->fd].head, (WL)w);
1876 ev_stop (EV_A_ (W)w); 2156 ev_stop (EV_A_ (W)w);
1877 2157
1878 fd_change (EV_A_ w->fd, 1); 2158 fd_change (EV_A_ w->fd, 1);
2159
2160 EV_FREQUENT_CHECK;
1879} 2161}
1880 2162
1881void noinline 2163void noinline
1882ev_timer_start (EV_P_ ev_timer *w) 2164ev_timer_start (EV_P_ ev_timer *w)
1883{ 2165{
1884 if (expect_false (ev_is_active (w))) 2166 if (expect_false (ev_is_active (w)))
1885 return; 2167 return;
1886 2168
1887 ((WT)w)->at += mn_now; 2169 ev_at (w) += mn_now;
1888 2170
1889 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2171 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1890 2172
2173 EV_FREQUENT_CHECK;
2174
2175 ++timercnt;
1891 ev_start (EV_A_ (W)w, ++timercnt); 2176 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1892 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2177 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1893 timers [timercnt - 1] = (WT)w; 2178 ANHE_w (timers [ev_active (w)]) = (WT)w;
1894 upheap (timers, timercnt - 1); 2179 ANHE_at_cache (timers [ev_active (w)]);
2180 upheap (timers, ev_active (w));
1895 2181
2182 EV_FREQUENT_CHECK;
2183
1896 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2184 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1897} 2185}
1898 2186
1899void noinline 2187void noinline
1900ev_timer_stop (EV_P_ ev_timer *w) 2188ev_timer_stop (EV_P_ ev_timer *w)
1901{ 2189{
1902 clear_pending (EV_A_ (W)w); 2190 clear_pending (EV_A_ (W)w);
1903 if (expect_false (!ev_is_active (w))) 2191 if (expect_false (!ev_is_active (w)))
1904 return; 2192 return;
1905 2193
1906 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2194 EV_FREQUENT_CHECK;
1907 2195
1908 { 2196 {
1909 int active = ((W)w)->active; 2197 int active = ev_active (w);
1910 2198
2199 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2200
2201 --timercnt;
2202
1911 if (expect_true (--active < --timercnt)) 2203 if (expect_true (active < timercnt + HEAP0))
1912 { 2204 {
1913 timers [active] = timers [timercnt]; 2205 timers [active] = timers [timercnt + HEAP0];
1914 adjustheap (timers, timercnt, active); 2206 adjustheap (timers, timercnt, active);
1915 } 2207 }
1916 } 2208 }
1917 2209
1918 ((WT)w)->at -= mn_now; 2210 EV_FREQUENT_CHECK;
2211
2212 ev_at (w) -= mn_now;
1919 2213
1920 ev_stop (EV_A_ (W)w); 2214 ev_stop (EV_A_ (W)w);
1921} 2215}
1922 2216
1923void noinline 2217void noinline
1924ev_timer_again (EV_P_ ev_timer *w) 2218ev_timer_again (EV_P_ ev_timer *w)
1925{ 2219{
2220 EV_FREQUENT_CHECK;
2221
1926 if (ev_is_active (w)) 2222 if (ev_is_active (w))
1927 { 2223 {
1928 if (w->repeat) 2224 if (w->repeat)
1929 { 2225 {
1930 ((WT)w)->at = mn_now + w->repeat; 2226 ev_at (w) = mn_now + w->repeat;
2227 ANHE_at_cache (timers [ev_active (w)]);
1931 adjustheap (timers, timercnt, ((W)w)->active - 1); 2228 adjustheap (timers, timercnt, ev_active (w));
1932 } 2229 }
1933 else 2230 else
1934 ev_timer_stop (EV_A_ w); 2231 ev_timer_stop (EV_A_ w);
1935 } 2232 }
1936 else if (w->repeat) 2233 else if (w->repeat)
1937 { 2234 {
1938 w->at = w->repeat; 2235 ev_at (w) = w->repeat;
1939 ev_timer_start (EV_A_ w); 2236 ev_timer_start (EV_A_ w);
1940 } 2237 }
2238
2239 EV_FREQUENT_CHECK;
1941} 2240}
1942 2241
1943#if EV_PERIODIC_ENABLE 2242#if EV_PERIODIC_ENABLE
1944void noinline 2243void noinline
1945ev_periodic_start (EV_P_ ev_periodic *w) 2244ev_periodic_start (EV_P_ ev_periodic *w)
1946{ 2245{
1947 if (expect_false (ev_is_active (w))) 2246 if (expect_false (ev_is_active (w)))
1948 return; 2247 return;
1949 2248
1950 if (w->reschedule_cb) 2249 if (w->reschedule_cb)
1951 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2250 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1952 else if (w->interval) 2251 else if (w->interval)
1953 { 2252 {
1954 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2253 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1955 /* this formula differs from the one in periodic_reify because we do not always round up */ 2254 /* this formula differs from the one in periodic_reify because we do not always round up */
1956 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2255 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1957 } 2256 }
1958 else 2257 else
1959 ((WT)w)->at = w->offset; 2258 ev_at (w) = w->offset;
1960 2259
2260 EV_FREQUENT_CHECK;
2261
2262 ++periodiccnt;
1961 ev_start (EV_A_ (W)w, ++periodiccnt); 2263 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1962 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2264 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1963 periodics [periodiccnt - 1] = (WT)w; 2265 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1964 upheap (periodics, periodiccnt - 1); 2266 ANHE_at_cache (periodics [ev_active (w)]);
2267 upheap (periodics, ev_active (w));
1965 2268
2269 EV_FREQUENT_CHECK;
2270
1966 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2271 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1967} 2272}
1968 2273
1969void noinline 2274void noinline
1970ev_periodic_stop (EV_P_ ev_periodic *w) 2275ev_periodic_stop (EV_P_ ev_periodic *w)
1971{ 2276{
1972 clear_pending (EV_A_ (W)w); 2277 clear_pending (EV_A_ (W)w);
1973 if (expect_false (!ev_is_active (w))) 2278 if (expect_false (!ev_is_active (w)))
1974 return; 2279 return;
1975 2280
1976 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2281 EV_FREQUENT_CHECK;
1977 2282
1978 { 2283 {
1979 int active = ((W)w)->active; 2284 int active = ev_active (w);
1980 2285
2286 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2287
2288 --periodiccnt;
2289
1981 if (expect_true (--active < --periodiccnt)) 2290 if (expect_true (active < periodiccnt + HEAP0))
1982 { 2291 {
1983 periodics [active] = periodics [periodiccnt]; 2292 periodics [active] = periodics [periodiccnt + HEAP0];
1984 adjustheap (periodics, periodiccnt, active); 2293 adjustheap (periodics, periodiccnt, active);
1985 } 2294 }
1986 } 2295 }
1987 2296
2297 EV_FREQUENT_CHECK;
2298
1988 ev_stop (EV_A_ (W)w); 2299 ev_stop (EV_A_ (W)w);
1989} 2300}
1990 2301
1991void noinline 2302void noinline
1992ev_periodic_again (EV_P_ ev_periodic *w) 2303ev_periodic_again (EV_P_ ev_periodic *w)
2011 return; 2322 return;
2012 2323
2013 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2324 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2014 2325
2015 evpipe_init (EV_A); 2326 evpipe_init (EV_A);
2327
2328 EV_FREQUENT_CHECK;
2016 2329
2017 { 2330 {
2018#ifndef _WIN32 2331#ifndef _WIN32
2019 sigset_t full, prev; 2332 sigset_t full, prev;
2020 sigfillset (&full); 2333 sigfillset (&full);
2021 sigprocmask (SIG_SETMASK, &full, &prev); 2334 sigprocmask (SIG_SETMASK, &full, &prev);
2022#endif 2335#endif
2023 2336
2024 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2337 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2025 2338
2026#ifndef _WIN32 2339#ifndef _WIN32
2027 sigprocmask (SIG_SETMASK, &prev, 0); 2340 sigprocmask (SIG_SETMASK, &prev, 0);
2028#endif 2341#endif
2029 } 2342 }
2041 sigfillset (&sa.sa_mask); 2354 sigfillset (&sa.sa_mask);
2042 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2355 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2043 sigaction (w->signum, &sa, 0); 2356 sigaction (w->signum, &sa, 0);
2044#endif 2357#endif
2045 } 2358 }
2359
2360 EV_FREQUENT_CHECK;
2046} 2361}
2047 2362
2048void noinline 2363void noinline
2049ev_signal_stop (EV_P_ ev_signal *w) 2364ev_signal_stop (EV_P_ ev_signal *w)
2050{ 2365{
2051 clear_pending (EV_A_ (W)w); 2366 clear_pending (EV_A_ (W)w);
2052 if (expect_false (!ev_is_active (w))) 2367 if (expect_false (!ev_is_active (w)))
2053 return; 2368 return;
2054 2369
2370 EV_FREQUENT_CHECK;
2371
2055 wlist_del (&signals [w->signum - 1].head, (WL)w); 2372 wlist_del (&signals [w->signum - 1].head, (WL)w);
2056 ev_stop (EV_A_ (W)w); 2373 ev_stop (EV_A_ (W)w);
2057 2374
2058 if (!signals [w->signum - 1].head) 2375 if (!signals [w->signum - 1].head)
2059 signal (w->signum, SIG_DFL); 2376 signal (w->signum, SIG_DFL);
2377
2378 EV_FREQUENT_CHECK;
2060} 2379}
2061 2380
2062void 2381void
2063ev_child_start (EV_P_ ev_child *w) 2382ev_child_start (EV_P_ ev_child *w)
2064{ 2383{
2066 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2385 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2067#endif 2386#endif
2068 if (expect_false (ev_is_active (w))) 2387 if (expect_false (ev_is_active (w)))
2069 return; 2388 return;
2070 2389
2390 EV_FREQUENT_CHECK;
2391
2071 ev_start (EV_A_ (W)w, 1); 2392 ev_start (EV_A_ (W)w, 1);
2072 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2393 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2394
2395 EV_FREQUENT_CHECK;
2073} 2396}
2074 2397
2075void 2398void
2076ev_child_stop (EV_P_ ev_child *w) 2399ev_child_stop (EV_P_ ev_child *w)
2077{ 2400{
2078 clear_pending (EV_A_ (W)w); 2401 clear_pending (EV_A_ (W)w);
2079 if (expect_false (!ev_is_active (w))) 2402 if (expect_false (!ev_is_active (w)))
2080 return; 2403 return;
2081 2404
2405 EV_FREQUENT_CHECK;
2406
2082 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2407 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2083 ev_stop (EV_A_ (W)w); 2408 ev_stop (EV_A_ (W)w);
2409
2410 EV_FREQUENT_CHECK;
2084} 2411}
2085 2412
2086#if EV_STAT_ENABLE 2413#if EV_STAT_ENABLE
2087 2414
2088# ifdef _WIN32 2415# ifdef _WIN32
2106 if (w->wd < 0) 2433 if (w->wd < 0)
2107 { 2434 {
2108 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2435 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2109 2436
2110 /* monitor some parent directory for speedup hints */ 2437 /* monitor some parent directory for speedup hints */
2438 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2439 /* but an efficiency issue only */
2111 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2440 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2112 { 2441 {
2113 char path [4096]; 2442 char path [4096];
2114 strcpy (path, w->path); 2443 strcpy (path, w->path);
2115 2444
2128 } 2457 }
2129 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2458 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2130 } 2459 }
2131 } 2460 }
2132 else 2461 else
2462 todo, on nfs etc., we need to poll every 60s or so
2133 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */ 2463 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2134 2464
2135 if (w->wd >= 0) 2465 if (w->wd >= 0)
2136 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2466 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2137} 2467}
2155 2485
2156static void noinline 2486static void noinline
2157infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2487infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2158{ 2488{
2159 if (slot < 0) 2489 if (slot < 0)
2160 /* overflow, need to check for all hahs slots */ 2490 /* overflow, need to check for all hash slots */
2161 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2491 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2162 infy_wd (EV_A_ slot, wd, ev); 2492 infy_wd (EV_A_ slot, wd, ev);
2163 else 2493 else
2164 { 2494 {
2165 WL w_; 2495 WL w_;
2199infy_init (EV_P) 2529infy_init (EV_P)
2200{ 2530{
2201 if (fs_fd != -2) 2531 if (fs_fd != -2)
2202 return; 2532 return;
2203 2533
2534 /* kernels < 2.6.25 are borked
2535 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2536 */
2537 {
2538 struct utsname buf;
2539 int major, minor, micro;
2540
2541 fs_fd = -1;
2542
2543 if (uname (&buf))
2544 return;
2545
2546 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2547 return;
2548
2549 if (major < 2
2550 || (major == 2 && minor < 6)
2551 || (major == 2 && minor == 6 && micro < 25))
2552 return;
2553 }
2554
2204 fs_fd = inotify_init (); 2555 fs_fd = inotify_init ();
2205 2556
2206 if (fs_fd >= 0) 2557 if (fs_fd >= 0)
2207 { 2558 {
2208 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 2559 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2237 if (fs_fd >= 0) 2588 if (fs_fd >= 0)
2238 infy_add (EV_A_ w); /* re-add, no matter what */ 2589 infy_add (EV_A_ w); /* re-add, no matter what */
2239 else 2590 else
2240 ev_timer_start (EV_A_ &w->timer); 2591 ev_timer_start (EV_A_ &w->timer);
2241 } 2592 }
2242
2243 } 2593 }
2244} 2594}
2245 2595
2596#endif
2597
2598#ifdef _WIN32
2599# define EV_LSTAT(p,b) _stati64 (p, b)
2600#else
2601# define EV_LSTAT(p,b) lstat (p, b)
2246#endif 2602#endif
2247 2603
2248void 2604void
2249ev_stat_stat (EV_P_ ev_stat *w) 2605ev_stat_stat (EV_P_ ev_stat *w)
2250{ 2606{
2277 || w->prev.st_atime != w->attr.st_atime 2633 || w->prev.st_atime != w->attr.st_atime
2278 || w->prev.st_mtime != w->attr.st_mtime 2634 || w->prev.st_mtime != w->attr.st_mtime
2279 || w->prev.st_ctime != w->attr.st_ctime 2635 || w->prev.st_ctime != w->attr.st_ctime
2280 ) { 2636 ) {
2281 #if EV_USE_INOTIFY 2637 #if EV_USE_INOTIFY
2638 if (fs_fd >= 0)
2639 {
2282 infy_del (EV_A_ w); 2640 infy_del (EV_A_ w);
2283 infy_add (EV_A_ w); 2641 infy_add (EV_A_ w);
2284 ev_stat_stat (EV_A_ w); /* avoid race... */ 2642 ev_stat_stat (EV_A_ w); /* avoid race... */
2643 }
2285 #endif 2644 #endif
2286 2645
2287 ev_feed_event (EV_A_ w, EV_STAT); 2646 ev_feed_event (EV_A_ w, EV_STAT);
2288 } 2647 }
2289} 2648}
2314 else 2673 else
2315#endif 2674#endif
2316 ev_timer_start (EV_A_ &w->timer); 2675 ev_timer_start (EV_A_ &w->timer);
2317 2676
2318 ev_start (EV_A_ (W)w, 1); 2677 ev_start (EV_A_ (W)w, 1);
2678
2679 EV_FREQUENT_CHECK;
2319} 2680}
2320 2681
2321void 2682void
2322ev_stat_stop (EV_P_ ev_stat *w) 2683ev_stat_stop (EV_P_ ev_stat *w)
2323{ 2684{
2324 clear_pending (EV_A_ (W)w); 2685 clear_pending (EV_A_ (W)w);
2325 if (expect_false (!ev_is_active (w))) 2686 if (expect_false (!ev_is_active (w)))
2326 return; 2687 return;
2327 2688
2689 EV_FREQUENT_CHECK;
2690
2328#if EV_USE_INOTIFY 2691#if EV_USE_INOTIFY
2329 infy_del (EV_A_ w); 2692 infy_del (EV_A_ w);
2330#endif 2693#endif
2331 ev_timer_stop (EV_A_ &w->timer); 2694 ev_timer_stop (EV_A_ &w->timer);
2332 2695
2333 ev_stop (EV_A_ (W)w); 2696 ev_stop (EV_A_ (W)w);
2697
2698 EV_FREQUENT_CHECK;
2334} 2699}
2335#endif 2700#endif
2336 2701
2337#if EV_IDLE_ENABLE 2702#if EV_IDLE_ENABLE
2338void 2703void
2340{ 2705{
2341 if (expect_false (ev_is_active (w))) 2706 if (expect_false (ev_is_active (w)))
2342 return; 2707 return;
2343 2708
2344 pri_adjust (EV_A_ (W)w); 2709 pri_adjust (EV_A_ (W)w);
2710
2711 EV_FREQUENT_CHECK;
2345 2712
2346 { 2713 {
2347 int active = ++idlecnt [ABSPRI (w)]; 2714 int active = ++idlecnt [ABSPRI (w)];
2348 2715
2349 ++idleall; 2716 ++idleall;
2350 ev_start (EV_A_ (W)w, active); 2717 ev_start (EV_A_ (W)w, active);
2351 2718
2352 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2719 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2353 idles [ABSPRI (w)][active - 1] = w; 2720 idles [ABSPRI (w)][active - 1] = w;
2354 } 2721 }
2722
2723 EV_FREQUENT_CHECK;
2355} 2724}
2356 2725
2357void 2726void
2358ev_idle_stop (EV_P_ ev_idle *w) 2727ev_idle_stop (EV_P_ ev_idle *w)
2359{ 2728{
2360 clear_pending (EV_A_ (W)w); 2729 clear_pending (EV_A_ (W)w);
2361 if (expect_false (!ev_is_active (w))) 2730 if (expect_false (!ev_is_active (w)))
2362 return; 2731 return;
2363 2732
2733 EV_FREQUENT_CHECK;
2734
2364 { 2735 {
2365 int active = ((W)w)->active; 2736 int active = ev_active (w);
2366 2737
2367 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2738 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2368 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2739 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2369 2740
2370 ev_stop (EV_A_ (W)w); 2741 ev_stop (EV_A_ (W)w);
2371 --idleall; 2742 --idleall;
2372 } 2743 }
2744
2745 EV_FREQUENT_CHECK;
2373} 2746}
2374#endif 2747#endif
2375 2748
2376void 2749void
2377ev_prepare_start (EV_P_ ev_prepare *w) 2750ev_prepare_start (EV_P_ ev_prepare *w)
2378{ 2751{
2379 if (expect_false (ev_is_active (w))) 2752 if (expect_false (ev_is_active (w)))
2380 return; 2753 return;
2754
2755 EV_FREQUENT_CHECK;
2381 2756
2382 ev_start (EV_A_ (W)w, ++preparecnt); 2757 ev_start (EV_A_ (W)w, ++preparecnt);
2383 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2758 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2384 prepares [preparecnt - 1] = w; 2759 prepares [preparecnt - 1] = w;
2760
2761 EV_FREQUENT_CHECK;
2385} 2762}
2386 2763
2387void 2764void
2388ev_prepare_stop (EV_P_ ev_prepare *w) 2765ev_prepare_stop (EV_P_ ev_prepare *w)
2389{ 2766{
2390 clear_pending (EV_A_ (W)w); 2767 clear_pending (EV_A_ (W)w);
2391 if (expect_false (!ev_is_active (w))) 2768 if (expect_false (!ev_is_active (w)))
2392 return; 2769 return;
2393 2770
2771 EV_FREQUENT_CHECK;
2772
2394 { 2773 {
2395 int active = ((W)w)->active; 2774 int active = ev_active (w);
2775
2396 prepares [active - 1] = prepares [--preparecnt]; 2776 prepares [active - 1] = prepares [--preparecnt];
2397 ((W)prepares [active - 1])->active = active; 2777 ev_active (prepares [active - 1]) = active;
2398 } 2778 }
2399 2779
2400 ev_stop (EV_A_ (W)w); 2780 ev_stop (EV_A_ (W)w);
2781
2782 EV_FREQUENT_CHECK;
2401} 2783}
2402 2784
2403void 2785void
2404ev_check_start (EV_P_ ev_check *w) 2786ev_check_start (EV_P_ ev_check *w)
2405{ 2787{
2406 if (expect_false (ev_is_active (w))) 2788 if (expect_false (ev_is_active (w)))
2407 return; 2789 return;
2790
2791 EV_FREQUENT_CHECK;
2408 2792
2409 ev_start (EV_A_ (W)w, ++checkcnt); 2793 ev_start (EV_A_ (W)w, ++checkcnt);
2410 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2794 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2411 checks [checkcnt - 1] = w; 2795 checks [checkcnt - 1] = w;
2796
2797 EV_FREQUENT_CHECK;
2412} 2798}
2413 2799
2414void 2800void
2415ev_check_stop (EV_P_ ev_check *w) 2801ev_check_stop (EV_P_ ev_check *w)
2416{ 2802{
2417 clear_pending (EV_A_ (W)w); 2803 clear_pending (EV_A_ (W)w);
2418 if (expect_false (!ev_is_active (w))) 2804 if (expect_false (!ev_is_active (w)))
2419 return; 2805 return;
2420 2806
2807 EV_FREQUENT_CHECK;
2808
2421 { 2809 {
2422 int active = ((W)w)->active; 2810 int active = ev_active (w);
2811
2423 checks [active - 1] = checks [--checkcnt]; 2812 checks [active - 1] = checks [--checkcnt];
2424 ((W)checks [active - 1])->active = active; 2813 ev_active (checks [active - 1]) = active;
2425 } 2814 }
2426 2815
2427 ev_stop (EV_A_ (W)w); 2816 ev_stop (EV_A_ (W)w);
2817
2818 EV_FREQUENT_CHECK;
2428} 2819}
2429 2820
2430#if EV_EMBED_ENABLE 2821#if EV_EMBED_ENABLE
2431void noinline 2822void noinline
2432ev_embed_sweep (EV_P_ ev_embed *w) 2823ev_embed_sweep (EV_P_ ev_embed *w)
2459 ev_loop (EV_A_ EVLOOP_NONBLOCK); 2850 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2460 } 2851 }
2461 } 2852 }
2462} 2853}
2463 2854
2855static void
2856embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2857{
2858 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2859
2860 {
2861 struct ev_loop *loop = w->other;
2862
2863 ev_loop_fork (EV_A);
2864 }
2865}
2866
2464#if 0 2867#if 0
2465static void 2868static void
2466embed_idle_cb (EV_P_ ev_idle *idle, int revents) 2869embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2467{ 2870{
2468 ev_idle_stop (EV_A_ idle); 2871 ev_idle_stop (EV_A_ idle);
2479 struct ev_loop *loop = w->other; 2882 struct ev_loop *loop = w->other;
2480 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2883 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2481 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2884 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2482 } 2885 }
2483 2886
2887 EV_FREQUENT_CHECK;
2888
2484 ev_set_priority (&w->io, ev_priority (w)); 2889 ev_set_priority (&w->io, ev_priority (w));
2485 ev_io_start (EV_A_ &w->io); 2890 ev_io_start (EV_A_ &w->io);
2486 2891
2487 ev_prepare_init (&w->prepare, embed_prepare_cb); 2892 ev_prepare_init (&w->prepare, embed_prepare_cb);
2488 ev_set_priority (&w->prepare, EV_MINPRI); 2893 ev_set_priority (&w->prepare, EV_MINPRI);
2489 ev_prepare_start (EV_A_ &w->prepare); 2894 ev_prepare_start (EV_A_ &w->prepare);
2490 2895
2896 ev_fork_init (&w->fork, embed_fork_cb);
2897 ev_fork_start (EV_A_ &w->fork);
2898
2491 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2899 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2492 2900
2493 ev_start (EV_A_ (W)w, 1); 2901 ev_start (EV_A_ (W)w, 1);
2902
2903 EV_FREQUENT_CHECK;
2494} 2904}
2495 2905
2496void 2906void
2497ev_embed_stop (EV_P_ ev_embed *w) 2907ev_embed_stop (EV_P_ ev_embed *w)
2498{ 2908{
2499 clear_pending (EV_A_ (W)w); 2909 clear_pending (EV_A_ (W)w);
2500 if (expect_false (!ev_is_active (w))) 2910 if (expect_false (!ev_is_active (w)))
2501 return; 2911 return;
2502 2912
2913 EV_FREQUENT_CHECK;
2914
2503 ev_io_stop (EV_A_ &w->io); 2915 ev_io_stop (EV_A_ &w->io);
2504 ev_prepare_stop (EV_A_ &w->prepare); 2916 ev_prepare_stop (EV_A_ &w->prepare);
2917 ev_fork_stop (EV_A_ &w->fork);
2505 2918
2506 ev_stop (EV_A_ (W)w); 2919 EV_FREQUENT_CHECK;
2507} 2920}
2508#endif 2921#endif
2509 2922
2510#if EV_FORK_ENABLE 2923#if EV_FORK_ENABLE
2511void 2924void
2512ev_fork_start (EV_P_ ev_fork *w) 2925ev_fork_start (EV_P_ ev_fork *w)
2513{ 2926{
2514 if (expect_false (ev_is_active (w))) 2927 if (expect_false (ev_is_active (w)))
2515 return; 2928 return;
2929
2930 EV_FREQUENT_CHECK;
2516 2931
2517 ev_start (EV_A_ (W)w, ++forkcnt); 2932 ev_start (EV_A_ (W)w, ++forkcnt);
2518 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2933 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2519 forks [forkcnt - 1] = w; 2934 forks [forkcnt - 1] = w;
2935
2936 EV_FREQUENT_CHECK;
2520} 2937}
2521 2938
2522void 2939void
2523ev_fork_stop (EV_P_ ev_fork *w) 2940ev_fork_stop (EV_P_ ev_fork *w)
2524{ 2941{
2525 clear_pending (EV_A_ (W)w); 2942 clear_pending (EV_A_ (W)w);
2526 if (expect_false (!ev_is_active (w))) 2943 if (expect_false (!ev_is_active (w)))
2527 return; 2944 return;
2528 2945
2946 EV_FREQUENT_CHECK;
2947
2529 { 2948 {
2530 int active = ((W)w)->active; 2949 int active = ev_active (w);
2950
2531 forks [active - 1] = forks [--forkcnt]; 2951 forks [active - 1] = forks [--forkcnt];
2532 ((W)forks [active - 1])->active = active; 2952 ev_active (forks [active - 1]) = active;
2533 } 2953 }
2534 2954
2535 ev_stop (EV_A_ (W)w); 2955 ev_stop (EV_A_ (W)w);
2956
2957 EV_FREQUENT_CHECK;
2536} 2958}
2537#endif 2959#endif
2538 2960
2539#if EV_ASYNC_ENABLE 2961#if EV_ASYNC_ENABLE
2540void 2962void
2542{ 2964{
2543 if (expect_false (ev_is_active (w))) 2965 if (expect_false (ev_is_active (w)))
2544 return; 2966 return;
2545 2967
2546 evpipe_init (EV_A); 2968 evpipe_init (EV_A);
2969
2970 EV_FREQUENT_CHECK;
2547 2971
2548 ev_start (EV_A_ (W)w, ++asynccnt); 2972 ev_start (EV_A_ (W)w, ++asynccnt);
2549 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2973 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2550 asyncs [asynccnt - 1] = w; 2974 asyncs [asynccnt - 1] = w;
2975
2976 EV_FREQUENT_CHECK;
2551} 2977}
2552 2978
2553void 2979void
2554ev_async_stop (EV_P_ ev_async *w) 2980ev_async_stop (EV_P_ ev_async *w)
2555{ 2981{
2556 clear_pending (EV_A_ (W)w); 2982 clear_pending (EV_A_ (W)w);
2557 if (expect_false (!ev_is_active (w))) 2983 if (expect_false (!ev_is_active (w)))
2558 return; 2984 return;
2559 2985
2986 EV_FREQUENT_CHECK;
2987
2560 { 2988 {
2561 int active = ((W)w)->active; 2989 int active = ev_active (w);
2990
2562 asyncs [active - 1] = asyncs [--asynccnt]; 2991 asyncs [active - 1] = asyncs [--asynccnt];
2563 ((W)asyncs [active - 1])->active = active; 2992 ev_active (asyncs [active - 1]) = active;
2564 } 2993 }
2565 2994
2566 ev_stop (EV_A_ (W)w); 2995 ev_stop (EV_A_ (W)w);
2996
2997 EV_FREQUENT_CHECK;
2567} 2998}
2568 2999
2569void 3000void
2570ev_async_send (EV_P_ ev_async *w) 3001ev_async_send (EV_P_ ev_async *w)
2571{ 3002{
2588once_cb (EV_P_ struct ev_once *once, int revents) 3019once_cb (EV_P_ struct ev_once *once, int revents)
2589{ 3020{
2590 void (*cb)(int revents, void *arg) = once->cb; 3021 void (*cb)(int revents, void *arg) = once->cb;
2591 void *arg = once->arg; 3022 void *arg = once->arg;
2592 3023
2593 ev_io_stop (EV_A_ &once->io); 3024 ev_io_stop (EV_A_ &once->io);
2594 ev_timer_stop (EV_A_ &once->to); 3025 ev_timer_stop (EV_A_ &once->to);
2595 ev_free (once); 3026 ev_free (once);
2596 3027
2597 cb (revents, arg); 3028 cb (revents, arg);
2598} 3029}
2599 3030
2600static void 3031static void
2601once_cb_io (EV_P_ ev_io *w, int revents) 3032once_cb_io (EV_P_ ev_io *w, int revents)
2602{ 3033{
2603 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3034 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3035
3036 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2604} 3037}
2605 3038
2606static void 3039static void
2607once_cb_to (EV_P_ ev_timer *w, int revents) 3040once_cb_to (EV_P_ ev_timer *w, int revents)
2608{ 3041{
2609 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3042 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3043
3044 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2610} 3045}
2611 3046
2612void 3047void
2613ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3048ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2614{ 3049{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines