ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.271 by root, Mon Nov 3 12:13:15 2008 UTC vs.
Revision 1.330 by root, Tue Mar 9 08:46:17 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
96# define EV_USE_EPOLL 0 110# define EV_USE_EPOLL 0
97# endif 111# endif
98# endif 112# endif
99 113
100# ifndef EV_USE_KQUEUE 114# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
102# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
103# else 117# else
104# define EV_USE_KQUEUE 0 118# define EV_USE_KQUEUE 0
105# endif 119# endif
106# endif 120# endif
119# else 133# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
121# endif 135# endif
122# endif 136# endif
123 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
124# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD 147# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1 148# define EV_USE_EVENTFD 1
127# else 149# else
128# define EV_USE_EVENTFD 0 150# define EV_USE_EVENTFD 0
131 153
132#endif 154#endif
133 155
134#include <math.h> 156#include <math.h>
135#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
136#include <fcntl.h> 159#include <fcntl.h>
137#include <stddef.h> 160#include <stddef.h>
138 161
139#include <stdio.h> 162#include <stdio.h>
140 163
141#include <assert.h> 164#include <assert.h>
142#include <errno.h> 165#include <errno.h>
143#include <sys/types.h> 166#include <sys/types.h>
144#include <time.h> 167#include <time.h>
168#include <limits.h>
145 169
146#include <signal.h> 170#include <signal.h>
147 171
148#ifdef EV_H 172#ifdef EV_H
149# include EV_H 173# include EV_H
164# endif 188# endif
165#endif 189#endif
166 190
167/* this block tries to deduce configuration from header-defined symbols and defaults */ 191/* this block tries to deduce configuration from header-defined symbols and defaults */
168 192
193/* try to deduce the maximum number of signals on this platform */
194#if defined (EV_NSIG)
195/* use what's provided */
196#elif defined (NSIG)
197# define EV_NSIG (NSIG)
198#elif defined(_NSIG)
199# define EV_NSIG (_NSIG)
200#elif defined (SIGMAX)
201# define EV_NSIG (SIGMAX+1)
202#elif defined (SIG_MAX)
203# define EV_NSIG (SIG_MAX+1)
204#elif defined (_SIG_MAX)
205# define EV_NSIG (_SIG_MAX+1)
206#elif defined (MAXSIG)
207# define EV_NSIG (MAXSIG+1)
208#elif defined (MAX_SIG)
209# define EV_NSIG (MAX_SIG+1)
210#elif defined (SIGARRAYSIZE)
211# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
212#elif defined (_sys_nsig)
213# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
214#else
215# error "unable to find value for NSIG, please report"
216/* to make it compile regardless, just remove the above line */
217# define EV_NSIG 65
218#endif
219
220#ifndef EV_USE_CLOCK_SYSCALL
221# if __linux && __GLIBC__ >= 2
222# define EV_USE_CLOCK_SYSCALL 1
223# else
224# define EV_USE_CLOCK_SYSCALL 0
225# endif
226#endif
227
169#ifndef EV_USE_MONOTONIC 228#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 229# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1 230# define EV_USE_MONOTONIC 1
172# else 231# else
173# define EV_USE_MONOTONIC 0 232# define EV_USE_MONOTONIC 0
174# endif 233# endif
175#endif 234#endif
176 235
177#ifndef EV_USE_REALTIME 236#ifndef EV_USE_REALTIME
178# define EV_USE_REALTIME 0 237# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
179#endif 238#endif
180 239
181#ifndef EV_USE_NANOSLEEP 240#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L 241# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1 242# define EV_USE_NANOSLEEP 1
244# else 303# else
245# define EV_USE_EVENTFD 0 304# define EV_USE_EVENTFD 0
246# endif 305# endif
247#endif 306#endif
248 307
308#ifndef EV_USE_SIGNALFD
309# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
310# define EV_USE_SIGNALFD 1
311# else
312# define EV_USE_SIGNALFD 0
313# endif
314#endif
315
249#if 0 /* debugging */ 316#if 0 /* debugging */
250# define EV_VERIFY 3 317# define EV_VERIFY 3
251# define EV_USE_4HEAP 1 318# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1 319# define EV_HEAP_CACHE_AT 1
253#endif 320#endif
262 329
263#ifndef EV_HEAP_CACHE_AT 330#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL 331# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif 332#endif
266 333
334/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
335/* which makes programs even slower. might work on other unices, too. */
336#if EV_USE_CLOCK_SYSCALL
337# include <syscall.h>
338# ifdef SYS_clock_gettime
339# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
340# undef EV_USE_MONOTONIC
341# define EV_USE_MONOTONIC 1
342# else
343# undef EV_USE_CLOCK_SYSCALL
344# define EV_USE_CLOCK_SYSCALL 0
345# endif
346#endif
347
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 348/* this block fixes any misconfiguration where we know we run into trouble otherwise */
349
350#ifdef _AIX
351/* AIX has a completely broken poll.h header */
352# undef EV_USE_POLL
353# define EV_USE_POLL 0
354#endif
268 355
269#ifndef CLOCK_MONOTONIC 356#ifndef CLOCK_MONOTONIC
270# undef EV_USE_MONOTONIC 357# undef EV_USE_MONOTONIC
271# define EV_USE_MONOTONIC 0 358# define EV_USE_MONOTONIC 0
272#endif 359#endif
303#endif 390#endif
304 391
305#if EV_USE_EVENTFD 392#if EV_USE_EVENTFD
306/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 393/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
307# include <stdint.h> 394# include <stdint.h>
395# ifndef EFD_NONBLOCK
396# define EFD_NONBLOCK O_NONBLOCK
397# endif
398# ifndef EFD_CLOEXEC
399# ifdef O_CLOEXEC
400# define EFD_CLOEXEC O_CLOEXEC
401# else
402# define EFD_CLOEXEC 02000000
403# endif
404# endif
308# ifdef __cplusplus 405# ifdef __cplusplus
309extern "C" { 406extern "C" {
310# endif 407# endif
311int eventfd (unsigned int initval, int flags); 408int (eventfd) (unsigned int initval, int flags);
312# ifdef __cplusplus 409# ifdef __cplusplus
313} 410}
314# endif 411# endif
315#endif 412#endif
413
414#if EV_USE_SIGNALFD
415/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
416# include <stdint.h>
417# ifndef SFD_NONBLOCK
418# define SFD_NONBLOCK O_NONBLOCK
419# endif
420# ifndef SFD_CLOEXEC
421# ifdef O_CLOEXEC
422# define SFD_CLOEXEC O_CLOEXEC
423# else
424# define SFD_CLOEXEC 02000000
425# endif
426# endif
427# ifdef __cplusplus
428extern "C" {
429# endif
430int signalfd (int fd, const sigset_t *mask, int flags);
431
432struct signalfd_siginfo
433{
434 uint32_t ssi_signo;
435 char pad[128 - sizeof (uint32_t)];
436};
437# ifdef __cplusplus
438}
439# endif
440#endif
441
316 442
317/**/ 443/**/
318 444
319#if EV_VERIFY >= 3 445#if EV_VERIFY >= 3
320# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 446# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
332 */ 458 */
333#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 459#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
334 460
335#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 461#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
336#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 462#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
337/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
338 463
339#if __GNUC__ >= 4 464#if __GNUC__ >= 4
340# define expect(expr,value) __builtin_expect ((expr),(value)) 465# define expect(expr,value) __builtin_expect ((expr),(value))
341# define noinline __attribute__ ((noinline)) 466# define noinline __attribute__ ((noinline))
342#else 467#else
355# define inline_speed static noinline 480# define inline_speed static noinline
356#else 481#else
357# define inline_speed static inline 482# define inline_speed static inline
358#endif 483#endif
359 484
360#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 485#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
486
487#if EV_MINPRI == EV_MAXPRI
488# define ABSPRI(w) (((W)w), 0)
489#else
361#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 490# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
491#endif
362 492
363#define EMPTY /* required for microsofts broken pseudo-c compiler */ 493#define EMPTY /* required for microsofts broken pseudo-c compiler */
364#define EMPTY2(a,b) /* used to suppress some warnings */ 494#define EMPTY2(a,b) /* used to suppress some warnings */
365 495
366typedef ev_watcher *W; 496typedef ev_watcher *W;
368typedef ev_watcher_time *WT; 498typedef ev_watcher_time *WT;
369 499
370#define ev_active(w) ((W)(w))->active 500#define ev_active(w) ((W)(w))->active
371#define ev_at(w) ((WT)(w))->at 501#define ev_at(w) ((WT)(w))->at
372 502
373#if EV_USE_MONOTONIC 503#if EV_USE_REALTIME
374/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 504/* sig_atomic_t is used to avoid per-thread variables or locking but still */
375/* giving it a reasonably high chance of working on typical architetcures */ 505/* giving it a reasonably high chance of working on typical architetcures */
506static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
507#endif
508
509#if EV_USE_MONOTONIC
376static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 510static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
511#endif
512
513#ifndef EV_FD_TO_WIN32_HANDLE
514# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
515#endif
516#ifndef EV_WIN32_HANDLE_TO_FD
517# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
518#endif
519#ifndef EV_WIN32_CLOSE_FD
520# define EV_WIN32_CLOSE_FD(fd) close (fd)
377#endif 521#endif
378 522
379#ifdef _WIN32 523#ifdef _WIN32
380# include "ev_win32.c" 524# include "ev_win32.c"
381#endif 525#endif
398 542
399 if (syserr_cb) 543 if (syserr_cb)
400 syserr_cb (msg); 544 syserr_cb (msg);
401 else 545 else
402 { 546 {
547#if EV_AVOID_STDIO
548 write (STDERR_FILENO, msg, strlen (msg));
549 write (STDERR_FILENO, ": ", 2);
550 msg = strerror (errno);
551 write (STDERR_FILENO, msg, strlen (msg));
552 write (STDERR_FILENO, "\n", 1);
553#else
403 perror (msg); 554 perror (msg);
555#endif
404 abort (); 556 abort ();
405 } 557 }
406} 558}
407 559
408static void * 560static void *
433{ 585{
434 ptr = alloc (ptr, size); 586 ptr = alloc (ptr, size);
435 587
436 if (!ptr && size) 588 if (!ptr && size)
437 { 589 {
590#if EV_AVOID_STDIO
591 write (STDERR_FILENO, "libev: memory allocation failed, aborting.",
592 sizeof ("libev: memory allocation failed, aborting.") - 1);
593#else
438 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 594 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
595#endif
439 abort (); 596 abort ();
440 } 597 }
441 598
442 return ptr; 599 return ptr;
443} 600}
445#define ev_malloc(size) ev_realloc (0, (size)) 602#define ev_malloc(size) ev_realloc (0, (size))
446#define ev_free(ptr) ev_realloc ((ptr), 0) 603#define ev_free(ptr) ev_realloc ((ptr), 0)
447 604
448/*****************************************************************************/ 605/*****************************************************************************/
449 606
607/* set in reify when reification needed */
608#define EV_ANFD_REIFY 1
609
610/* file descriptor info structure */
450typedef struct 611typedef struct
451{ 612{
452 WL head; 613 WL head;
453 unsigned char events; 614 unsigned char events; /* the events watched for */
454 unsigned char reify; 615 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
455 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 616 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
456 unsigned char unused; 617 unsigned char unused;
457#if EV_USE_EPOLL 618#if EV_USE_EPOLL
458 unsigned int egen; /* generation counter to counter epoll bugs */ 619 unsigned int egen; /* generation counter to counter epoll bugs */
459#endif 620#endif
460#if EV_SELECT_IS_WINSOCKET 621#if EV_SELECT_IS_WINSOCKET
461 SOCKET handle; 622 SOCKET handle;
462#endif 623#endif
463} ANFD; 624} ANFD;
464 625
626/* stores the pending event set for a given watcher */
465typedef struct 627typedef struct
466{ 628{
467 W w; 629 W w;
468 int events; 630 int events; /* the pending event set for the given watcher */
469} ANPENDING; 631} ANPENDING;
470 632
471#if EV_USE_INOTIFY 633#if EV_USE_INOTIFY
472/* hash table entry per inotify-id */ 634/* hash table entry per inotify-id */
473typedef struct 635typedef struct
476} ANFS; 638} ANFS;
477#endif 639#endif
478 640
479/* Heap Entry */ 641/* Heap Entry */
480#if EV_HEAP_CACHE_AT 642#if EV_HEAP_CACHE_AT
643 /* a heap element */
481 typedef struct { 644 typedef struct {
482 ev_tstamp at; 645 ev_tstamp at;
483 WT w; 646 WT w;
484 } ANHE; 647 } ANHE;
485 648
486 #define ANHE_w(he) (he).w /* access watcher, read-write */ 649 #define ANHE_w(he) (he).w /* access watcher, read-write */
487 #define ANHE_at(he) (he).at /* access cached at, read-only */ 650 #define ANHE_at(he) (he).at /* access cached at, read-only */
488 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 651 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
489#else 652#else
653 /* a heap element */
490 typedef WT ANHE; 654 typedef WT ANHE;
491 655
492 #define ANHE_w(he) (he) 656 #define ANHE_w(he) (he)
493 #define ANHE_at(he) (he)->at 657 #define ANHE_at(he) (he)->at
494 #define ANHE_at_cache(he) 658 #define ANHE_at_cache(he)
518 682
519 static int ev_default_loop_ptr; 683 static int ev_default_loop_ptr;
520 684
521#endif 685#endif
522 686
687#if EV_MINIMAL < 2
688# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
689# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
690# define EV_INVOKE_PENDING invoke_cb (EV_A)
691#else
692# define EV_RELEASE_CB (void)0
693# define EV_ACQUIRE_CB (void)0
694# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
695#endif
696
697#define EVUNLOOP_RECURSE 0x80
698
523/*****************************************************************************/ 699/*****************************************************************************/
524 700
701#ifndef EV_HAVE_EV_TIME
525ev_tstamp 702ev_tstamp
526ev_time (void) 703ev_time (void)
527{ 704{
528#if EV_USE_REALTIME 705#if EV_USE_REALTIME
706 if (expect_true (have_realtime))
707 {
529 struct timespec ts; 708 struct timespec ts;
530 clock_gettime (CLOCK_REALTIME, &ts); 709 clock_gettime (CLOCK_REALTIME, &ts);
531 return ts.tv_sec + ts.tv_nsec * 1e-9; 710 return ts.tv_sec + ts.tv_nsec * 1e-9;
532#else 711 }
712#endif
713
533 struct timeval tv; 714 struct timeval tv;
534 gettimeofday (&tv, 0); 715 gettimeofday (&tv, 0);
535 return tv.tv_sec + tv.tv_usec * 1e-6; 716 return tv.tv_sec + tv.tv_usec * 1e-6;
536#endif
537} 717}
718#endif
538 719
539ev_tstamp inline_size 720inline_size ev_tstamp
540get_clock (void) 721get_clock (void)
541{ 722{
542#if EV_USE_MONOTONIC 723#if EV_USE_MONOTONIC
543 if (expect_true (have_monotonic)) 724 if (expect_true (have_monotonic))
544 { 725 {
578 759
579 tv.tv_sec = (time_t)delay; 760 tv.tv_sec = (time_t)delay;
580 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 761 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
581 762
582 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 763 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
583 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 764 /* something not guaranteed by newer posix versions, but guaranteed */
584 /* by older ones */ 765 /* by older ones */
585 select (0, 0, 0, 0, &tv); 766 select (0, 0, 0, 0, &tv);
586#endif 767#endif
587 } 768 }
588} 769}
589 770
590/*****************************************************************************/ 771/*****************************************************************************/
591 772
592#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 773#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
593 774
594int inline_size 775/* find a suitable new size for the given array, */
776/* hopefully by rounding to a ncie-to-malloc size */
777inline_size int
595array_nextsize (int elem, int cur, int cnt) 778array_nextsize (int elem, int cur, int cnt)
596{ 779{
597 int ncur = cur + 1; 780 int ncur = cur + 1;
598 781
599 do 782 do
640 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 823 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
641 } 824 }
642#endif 825#endif
643 826
644#define array_free(stem, idx) \ 827#define array_free(stem, idx) \
645 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 828 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
646 829
647/*****************************************************************************/ 830/*****************************************************************************/
831
832/* dummy callback for pending events */
833static void noinline
834pendingcb (EV_P_ ev_prepare *w, int revents)
835{
836}
648 837
649void noinline 838void noinline
650ev_feed_event (EV_P_ void *w, int revents) 839ev_feed_event (EV_P_ void *w, int revents)
651{ 840{
652 W w_ = (W)w; 841 W w_ = (W)w;
661 pendings [pri][w_->pending - 1].w = w_; 850 pendings [pri][w_->pending - 1].w = w_;
662 pendings [pri][w_->pending - 1].events = revents; 851 pendings [pri][w_->pending - 1].events = revents;
663 } 852 }
664} 853}
665 854
666void inline_speed 855inline_speed void
856feed_reverse (EV_P_ W w)
857{
858 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
859 rfeeds [rfeedcnt++] = w;
860}
861
862inline_size void
863feed_reverse_done (EV_P_ int revents)
864{
865 do
866 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
867 while (rfeedcnt);
868}
869
870inline_speed void
667queue_events (EV_P_ W *events, int eventcnt, int type) 871queue_events (EV_P_ W *events, int eventcnt, int type)
668{ 872{
669 int i; 873 int i;
670 874
671 for (i = 0; i < eventcnt; ++i) 875 for (i = 0; i < eventcnt; ++i)
672 ev_feed_event (EV_A_ events [i], type); 876 ev_feed_event (EV_A_ events [i], type);
673} 877}
674 878
675/*****************************************************************************/ 879/*****************************************************************************/
676 880
677void inline_speed 881inline_speed void
678fd_event (EV_P_ int fd, int revents) 882fd_event_nc (EV_P_ int fd, int revents)
679{ 883{
680 ANFD *anfd = anfds + fd; 884 ANFD *anfd = anfds + fd;
681 ev_io *w; 885 ev_io *w;
682 886
683 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 887 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
687 if (ev) 891 if (ev)
688 ev_feed_event (EV_A_ (W)w, ev); 892 ev_feed_event (EV_A_ (W)w, ev);
689 } 893 }
690} 894}
691 895
896/* do not submit kernel events for fds that have reify set */
897/* because that means they changed while we were polling for new events */
898inline_speed void
899fd_event (EV_P_ int fd, int revents)
900{
901 ANFD *anfd = anfds + fd;
902
903 if (expect_true (!anfd->reify))
904 fd_event_nc (EV_A_ fd, revents);
905}
906
692void 907void
693ev_feed_fd_event (EV_P_ int fd, int revents) 908ev_feed_fd_event (EV_P_ int fd, int revents)
694{ 909{
695 if (fd >= 0 && fd < anfdmax) 910 if (fd >= 0 && fd < anfdmax)
696 fd_event (EV_A_ fd, revents); 911 fd_event_nc (EV_A_ fd, revents);
697} 912}
698 913
699void inline_size 914/* make sure the external fd watch events are in-sync */
915/* with the kernel/libev internal state */
916inline_size void
700fd_reify (EV_P) 917fd_reify (EV_P)
701{ 918{
702 int i; 919 int i;
703 920
704 for (i = 0; i < fdchangecnt; ++i) 921 for (i = 0; i < fdchangecnt; ++i)
714 931
715#if EV_SELECT_IS_WINSOCKET 932#if EV_SELECT_IS_WINSOCKET
716 if (events) 933 if (events)
717 { 934 {
718 unsigned long arg; 935 unsigned long arg;
719 #ifdef EV_FD_TO_WIN32_HANDLE
720 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 936 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
721 #else
722 anfd->handle = _get_osfhandle (fd);
723 #endif
724 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 937 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
725 } 938 }
726#endif 939#endif
727 940
728 { 941 {
729 unsigned char o_events = anfd->events; 942 unsigned char o_events = anfd->events;
730 unsigned char o_reify = anfd->reify; 943 unsigned char o_reify = anfd->reify;
731 944
732 anfd->reify = 0; 945 anfd->reify = 0;
733 anfd->events = events; 946 anfd->events = events;
734 947
735 if (o_events != events || o_reify & EV_IOFDSET) 948 if (o_events != events || o_reify & EV__IOFDSET)
736 backend_modify (EV_A_ fd, o_events, events); 949 backend_modify (EV_A_ fd, o_events, events);
737 } 950 }
738 } 951 }
739 952
740 fdchangecnt = 0; 953 fdchangecnt = 0;
741} 954}
742 955
743void inline_size 956/* something about the given fd changed */
957inline_size void
744fd_change (EV_P_ int fd, int flags) 958fd_change (EV_P_ int fd, int flags)
745{ 959{
746 unsigned char reify = anfds [fd].reify; 960 unsigned char reify = anfds [fd].reify;
747 anfds [fd].reify |= flags; 961 anfds [fd].reify |= flags;
748 962
752 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 966 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
753 fdchanges [fdchangecnt - 1] = fd; 967 fdchanges [fdchangecnt - 1] = fd;
754 } 968 }
755} 969}
756 970
757void inline_speed 971/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
972inline_speed void
758fd_kill (EV_P_ int fd) 973fd_kill (EV_P_ int fd)
759{ 974{
760 ev_io *w; 975 ev_io *w;
761 976
762 while ((w = (ev_io *)anfds [fd].head)) 977 while ((w = (ev_io *)anfds [fd].head))
764 ev_io_stop (EV_A_ w); 979 ev_io_stop (EV_A_ w);
765 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 980 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
766 } 981 }
767} 982}
768 983
769int inline_size 984/* check whether the given fd is atcually valid, for error recovery */
985inline_size int
770fd_valid (int fd) 986fd_valid (int fd)
771{ 987{
772#ifdef _WIN32 988#ifdef _WIN32
773 return _get_osfhandle (fd) != -1; 989 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
774#else 990#else
775 return fcntl (fd, F_GETFD) != -1; 991 return fcntl (fd, F_GETFD) != -1;
776#endif 992#endif
777} 993}
778 994
796 1012
797 for (fd = anfdmax; fd--; ) 1013 for (fd = anfdmax; fd--; )
798 if (anfds [fd].events) 1014 if (anfds [fd].events)
799 { 1015 {
800 fd_kill (EV_A_ fd); 1016 fd_kill (EV_A_ fd);
801 return; 1017 break;
802 } 1018 }
803} 1019}
804 1020
805/* usually called after fork if backend needs to re-arm all fds from scratch */ 1021/* usually called after fork if backend needs to re-arm all fds from scratch */
806static void noinline 1022static void noinline
811 for (fd = 0; fd < anfdmax; ++fd) 1027 for (fd = 0; fd < anfdmax; ++fd)
812 if (anfds [fd].events) 1028 if (anfds [fd].events)
813 { 1029 {
814 anfds [fd].events = 0; 1030 anfds [fd].events = 0;
815 anfds [fd].emask = 0; 1031 anfds [fd].emask = 0;
816 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1032 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
817 } 1033 }
818} 1034}
819 1035
820/*****************************************************************************/ 1036/*****************************************************************************/
821 1037
837#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1053#define HEAP0 (DHEAP - 1) /* index of first element in heap */
838#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1054#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
839#define UPHEAP_DONE(p,k) ((p) == (k)) 1055#define UPHEAP_DONE(p,k) ((p) == (k))
840 1056
841/* away from the root */ 1057/* away from the root */
842void inline_speed 1058inline_speed void
843downheap (ANHE *heap, int N, int k) 1059downheap (ANHE *heap, int N, int k)
844{ 1060{
845 ANHE he = heap [k]; 1061 ANHE he = heap [k];
846 ANHE *E = heap + N + HEAP0; 1062 ANHE *E = heap + N + HEAP0;
847 1063
887#define HEAP0 1 1103#define HEAP0 1
888#define HPARENT(k) ((k) >> 1) 1104#define HPARENT(k) ((k) >> 1)
889#define UPHEAP_DONE(p,k) (!(p)) 1105#define UPHEAP_DONE(p,k) (!(p))
890 1106
891/* away from the root */ 1107/* away from the root */
892void inline_speed 1108inline_speed void
893downheap (ANHE *heap, int N, int k) 1109downheap (ANHE *heap, int N, int k)
894{ 1110{
895 ANHE he = heap [k]; 1111 ANHE he = heap [k];
896 1112
897 for (;;) 1113 for (;;)
898 { 1114 {
899 int c = k << 1; 1115 int c = k << 1;
900 1116
901 if (c > N + HEAP0 - 1) 1117 if (c >= N + HEAP0)
902 break; 1118 break;
903 1119
904 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1120 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
905 ? 1 : 0; 1121 ? 1 : 0;
906 1122
917 ev_active (ANHE_w (he)) = k; 1133 ev_active (ANHE_w (he)) = k;
918} 1134}
919#endif 1135#endif
920 1136
921/* towards the root */ 1137/* towards the root */
922void inline_speed 1138inline_speed void
923upheap (ANHE *heap, int k) 1139upheap (ANHE *heap, int k)
924{ 1140{
925 ANHE he = heap [k]; 1141 ANHE he = heap [k];
926 1142
927 for (;;) 1143 for (;;)
938 1154
939 heap [k] = he; 1155 heap [k] = he;
940 ev_active (ANHE_w (he)) = k; 1156 ev_active (ANHE_w (he)) = k;
941} 1157}
942 1158
943void inline_size 1159/* move an element suitably so it is in a correct place */
1160inline_size void
944adjustheap (ANHE *heap, int N, int k) 1161adjustheap (ANHE *heap, int N, int k)
945{ 1162{
946 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1163 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
947 upheap (heap, k); 1164 upheap (heap, k);
948 else 1165 else
949 downheap (heap, N, k); 1166 downheap (heap, N, k);
950} 1167}
951 1168
952/* rebuild the heap: this function is used only once and executed rarely */ 1169/* rebuild the heap: this function is used only once and executed rarely */
953void inline_size 1170inline_size void
954reheap (ANHE *heap, int N) 1171reheap (ANHE *heap, int N)
955{ 1172{
956 int i; 1173 int i;
957 1174
958 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1175 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
961 upheap (heap, i + HEAP0); 1178 upheap (heap, i + HEAP0);
962} 1179}
963 1180
964/*****************************************************************************/ 1181/*****************************************************************************/
965 1182
1183/* associate signal watchers to a signal signal */
966typedef struct 1184typedef struct
967{ 1185{
1186 EV_ATOMIC_T pending;
1187#if EV_MULTIPLICITY
1188 EV_P;
1189#endif
968 WL head; 1190 WL head;
969 EV_ATOMIC_T gotsig;
970} ANSIG; 1191} ANSIG;
971 1192
972static ANSIG *signals; 1193static ANSIG signals [EV_NSIG - 1];
973static int signalmax;
974
975static EV_ATOMIC_T gotsig;
976 1194
977/*****************************************************************************/ 1195/*****************************************************************************/
978 1196
979void inline_speed 1197/* used to prepare libev internal fd's */
1198/* this is not fork-safe */
1199inline_speed void
980fd_intern (int fd) 1200fd_intern (int fd)
981{ 1201{
982#ifdef _WIN32 1202#ifdef _WIN32
983 unsigned long arg = 1; 1203 unsigned long arg = 1;
984 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1204 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
985#else 1205#else
986 fcntl (fd, F_SETFD, FD_CLOEXEC); 1206 fcntl (fd, F_SETFD, FD_CLOEXEC);
987 fcntl (fd, F_SETFL, O_NONBLOCK); 1207 fcntl (fd, F_SETFL, O_NONBLOCK);
988#endif 1208#endif
989} 1209}
990 1210
991static void noinline 1211static void noinline
992evpipe_init (EV_P) 1212evpipe_init (EV_P)
993{ 1213{
994 if (!ev_is_active (&pipeev)) 1214 if (!ev_is_active (&pipe_w))
995 { 1215 {
996#if EV_USE_EVENTFD 1216#if EV_USE_EVENTFD
1217 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1218 if (evfd < 0 && errno == EINVAL)
997 if ((evfd = eventfd (0, 0)) >= 0) 1219 evfd = eventfd (0, 0);
1220
1221 if (evfd >= 0)
998 { 1222 {
999 evpipe [0] = -1; 1223 evpipe [0] = -1;
1000 fd_intern (evfd); 1224 fd_intern (evfd); /* doing it twice doesn't hurt */
1001 ev_io_set (&pipeev, evfd, EV_READ); 1225 ev_io_set (&pipe_w, evfd, EV_READ);
1002 } 1226 }
1003 else 1227 else
1004#endif 1228#endif
1005 { 1229 {
1006 while (pipe (evpipe)) 1230 while (pipe (evpipe))
1007 ev_syserr ("(libev) error creating signal/async pipe"); 1231 ev_syserr ("(libev) error creating signal/async pipe");
1008 1232
1009 fd_intern (evpipe [0]); 1233 fd_intern (evpipe [0]);
1010 fd_intern (evpipe [1]); 1234 fd_intern (evpipe [1]);
1011 ev_io_set (&pipeev, evpipe [0], EV_READ); 1235 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1012 } 1236 }
1013 1237
1014 ev_io_start (EV_A_ &pipeev); 1238 ev_io_start (EV_A_ &pipe_w);
1015 ev_unref (EV_A); /* watcher should not keep loop alive */ 1239 ev_unref (EV_A); /* watcher should not keep loop alive */
1016 } 1240 }
1017} 1241}
1018 1242
1019void inline_size 1243inline_size void
1020evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1244evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1021{ 1245{
1022 if (!*flag) 1246 if (!*flag)
1023 { 1247 {
1024 int old_errno = errno; /* save errno because write might clobber it */ 1248 int old_errno = errno; /* save errno because write might clobber it */
1037 1261
1038 errno = old_errno; 1262 errno = old_errno;
1039 } 1263 }
1040} 1264}
1041 1265
1266/* called whenever the libev signal pipe */
1267/* got some events (signal, async) */
1042static void 1268static void
1043pipecb (EV_P_ ev_io *iow, int revents) 1269pipecb (EV_P_ ev_io *iow, int revents)
1044{ 1270{
1271 int i;
1272
1045#if EV_USE_EVENTFD 1273#if EV_USE_EVENTFD
1046 if (evfd >= 0) 1274 if (evfd >= 0)
1047 { 1275 {
1048 uint64_t counter; 1276 uint64_t counter;
1049 read (evfd, &counter, sizeof (uint64_t)); 1277 read (evfd, &counter, sizeof (uint64_t));
1053 { 1281 {
1054 char dummy; 1282 char dummy;
1055 read (evpipe [0], &dummy, 1); 1283 read (evpipe [0], &dummy, 1);
1056 } 1284 }
1057 1285
1058 if (gotsig && ev_is_default_loop (EV_A)) 1286 if (sig_pending)
1059 { 1287 {
1060 int signum; 1288 sig_pending = 0;
1061 gotsig = 0;
1062 1289
1063 for (signum = signalmax; signum--; ) 1290 for (i = EV_NSIG - 1; i--; )
1064 if (signals [signum].gotsig) 1291 if (expect_false (signals [i].pending))
1065 ev_feed_signal_event (EV_A_ signum + 1); 1292 ev_feed_signal_event (EV_A_ i + 1);
1066 } 1293 }
1067 1294
1068#if EV_ASYNC_ENABLE 1295#if EV_ASYNC_ENABLE
1069 if (gotasync) 1296 if (async_pending)
1070 { 1297 {
1071 int i; 1298 async_pending = 0;
1072 gotasync = 0;
1073 1299
1074 for (i = asynccnt; i--; ) 1300 for (i = asynccnt; i--; )
1075 if (asyncs [i]->sent) 1301 if (asyncs [i]->sent)
1076 { 1302 {
1077 asyncs [i]->sent = 0; 1303 asyncs [i]->sent = 0;
1085 1311
1086static void 1312static void
1087ev_sighandler (int signum) 1313ev_sighandler (int signum)
1088{ 1314{
1089#if EV_MULTIPLICITY 1315#if EV_MULTIPLICITY
1090 struct ev_loop *loop = &default_loop_struct; 1316 EV_P = signals [signum - 1].loop;
1091#endif 1317#endif
1092 1318
1093#if _WIN32 1319#ifdef _WIN32
1094 signal (signum, ev_sighandler); 1320 signal (signum, ev_sighandler);
1095#endif 1321#endif
1096 1322
1097 signals [signum - 1].gotsig = 1; 1323 signals [signum - 1].pending = 1;
1098 evpipe_write (EV_A_ &gotsig); 1324 evpipe_write (EV_A_ &sig_pending);
1099} 1325}
1100 1326
1101void noinline 1327void noinline
1102ev_feed_signal_event (EV_P_ int signum) 1328ev_feed_signal_event (EV_P_ int signum)
1103{ 1329{
1104 WL w; 1330 WL w;
1105 1331
1332 if (expect_false (signum <= 0 || signum > EV_NSIG))
1333 return;
1334
1335 --signum;
1336
1106#if EV_MULTIPLICITY 1337#if EV_MULTIPLICITY
1107 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1338 /* it is permissible to try to feed a signal to the wrong loop */
1108#endif 1339 /* or, likely more useful, feeding a signal nobody is waiting for */
1109 1340
1110 --signum; 1341 if (expect_false (signals [signum].loop != EV_A))
1111
1112 if (signum < 0 || signum >= signalmax)
1113 return; 1342 return;
1343#endif
1114 1344
1115 signals [signum].gotsig = 0; 1345 signals [signum].pending = 0;
1116 1346
1117 for (w = signals [signum].head; w; w = w->next) 1347 for (w = signals [signum].head; w; w = w->next)
1118 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1348 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1119} 1349}
1120 1350
1351#if EV_USE_SIGNALFD
1352static void
1353sigfdcb (EV_P_ ev_io *iow, int revents)
1354{
1355 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1356
1357 for (;;)
1358 {
1359 ssize_t res = read (sigfd, si, sizeof (si));
1360
1361 /* not ISO-C, as res might be -1, but works with SuS */
1362 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1363 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1364
1365 if (res < (ssize_t)sizeof (si))
1366 break;
1367 }
1368}
1369#endif
1370
1121/*****************************************************************************/ 1371/*****************************************************************************/
1122 1372
1123static WL childs [EV_PID_HASHSIZE]; 1373static WL childs [EV_PID_HASHSIZE];
1124 1374
1125#ifndef _WIN32 1375#ifndef _WIN32
1128 1378
1129#ifndef WIFCONTINUED 1379#ifndef WIFCONTINUED
1130# define WIFCONTINUED(status) 0 1380# define WIFCONTINUED(status) 0
1131#endif 1381#endif
1132 1382
1133void inline_speed 1383/* handle a single child status event */
1384inline_speed void
1134child_reap (EV_P_ int chain, int pid, int status) 1385child_reap (EV_P_ int chain, int pid, int status)
1135{ 1386{
1136 ev_child *w; 1387 ev_child *w;
1137 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1388 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1138 1389
1151 1402
1152#ifndef WCONTINUED 1403#ifndef WCONTINUED
1153# define WCONTINUED 0 1404# define WCONTINUED 0
1154#endif 1405#endif
1155 1406
1407/* called on sigchld etc., calls waitpid */
1156static void 1408static void
1157childcb (EV_P_ ev_signal *sw, int revents) 1409childcb (EV_P_ ev_signal *sw, int revents)
1158{ 1410{
1159 int pid, status; 1411 int pid, status;
1160 1412
1241 /* kqueue is borked on everything but netbsd apparently */ 1493 /* kqueue is borked on everything but netbsd apparently */
1242 /* it usually doesn't work correctly on anything but sockets and pipes */ 1494 /* it usually doesn't work correctly on anything but sockets and pipes */
1243 flags &= ~EVBACKEND_KQUEUE; 1495 flags &= ~EVBACKEND_KQUEUE;
1244#endif 1496#endif
1245#ifdef __APPLE__ 1497#ifdef __APPLE__
1246 // flags &= ~EVBACKEND_KQUEUE; for documentation 1498 /* only select works correctly on that "unix-certified" platform */
1247 flags &= ~EVBACKEND_POLL; 1499 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1500 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1248#endif 1501#endif
1249 1502
1250 return flags; 1503 return flags;
1251} 1504}
1252 1505
1266ev_backend (EV_P) 1519ev_backend (EV_P)
1267{ 1520{
1268 return backend; 1521 return backend;
1269} 1522}
1270 1523
1524#if EV_MINIMAL < 2
1271unsigned int 1525unsigned int
1272ev_loop_count (EV_P) 1526ev_loop_count (EV_P)
1273{ 1527{
1274 return loop_count; 1528 return loop_count;
1275} 1529}
1276 1530
1531unsigned int
1532ev_loop_depth (EV_P)
1533{
1534 return loop_depth;
1535}
1536
1277void 1537void
1278ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1538ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1279{ 1539{
1280 io_blocktime = interval; 1540 io_blocktime = interval;
1281} 1541}
1284ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1544ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1285{ 1545{
1286 timeout_blocktime = interval; 1546 timeout_blocktime = interval;
1287} 1547}
1288 1548
1549void
1550ev_set_userdata (EV_P_ void *data)
1551{
1552 userdata = data;
1553}
1554
1555void *
1556ev_userdata (EV_P)
1557{
1558 return userdata;
1559}
1560
1561void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1562{
1563 invoke_cb = invoke_pending_cb;
1564}
1565
1566void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1567{
1568 release_cb = release;
1569 acquire_cb = acquire;
1570}
1571#endif
1572
1573/* initialise a loop structure, must be zero-initialised */
1289static void noinline 1574static void noinline
1290loop_init (EV_P_ unsigned int flags) 1575loop_init (EV_P_ unsigned int flags)
1291{ 1576{
1292 if (!backend) 1577 if (!backend)
1293 { 1578 {
1579#if EV_USE_REALTIME
1580 if (!have_realtime)
1581 {
1582 struct timespec ts;
1583
1584 if (!clock_gettime (CLOCK_REALTIME, &ts))
1585 have_realtime = 1;
1586 }
1587#endif
1588
1294#if EV_USE_MONOTONIC 1589#if EV_USE_MONOTONIC
1590 if (!have_monotonic)
1295 { 1591 {
1296 struct timespec ts; 1592 struct timespec ts;
1593
1297 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1594 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1298 have_monotonic = 1; 1595 have_monotonic = 1;
1299 } 1596 }
1300#endif 1597#endif
1598
1599 /* pid check not overridable via env */
1600#ifndef _WIN32
1601 if (flags & EVFLAG_FORKCHECK)
1602 curpid = getpid ();
1603#endif
1604
1605 if (!(flags & EVFLAG_NOENV)
1606 && !enable_secure ()
1607 && getenv ("LIBEV_FLAGS"))
1608 flags = atoi (getenv ("LIBEV_FLAGS"));
1301 1609
1302 ev_rt_now = ev_time (); 1610 ev_rt_now = ev_time ();
1303 mn_now = get_clock (); 1611 mn_now = get_clock ();
1304 now_floor = mn_now; 1612 now_floor = mn_now;
1305 rtmn_diff = ev_rt_now - mn_now; 1613 rtmn_diff = ev_rt_now - mn_now;
1614#if EV_MINIMAL < 2
1615 invoke_cb = ev_invoke_pending;
1616#endif
1306 1617
1307 io_blocktime = 0.; 1618 io_blocktime = 0.;
1308 timeout_blocktime = 0.; 1619 timeout_blocktime = 0.;
1309 backend = 0; 1620 backend = 0;
1310 backend_fd = -1; 1621 backend_fd = -1;
1311 gotasync = 0; 1622 sig_pending = 0;
1623#if EV_ASYNC_ENABLE
1624 async_pending = 0;
1625#endif
1312#if EV_USE_INOTIFY 1626#if EV_USE_INOTIFY
1313 fs_fd = -2; 1627 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1314#endif 1628#endif
1315 1629#if EV_USE_SIGNALFD
1316 /* pid check not overridable via env */ 1630 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1317#ifndef _WIN32
1318 if (flags & EVFLAG_FORKCHECK)
1319 curpid = getpid ();
1320#endif 1631#endif
1321
1322 if (!(flags & EVFLAG_NOENV)
1323 && !enable_secure ()
1324 && getenv ("LIBEV_FLAGS"))
1325 flags = atoi (getenv ("LIBEV_FLAGS"));
1326 1632
1327 if (!(flags & 0x0000ffffU)) 1633 if (!(flags & 0x0000ffffU))
1328 flags |= ev_recommended_backends (); 1634 flags |= ev_recommended_backends ();
1329 1635
1330#if EV_USE_PORT 1636#if EV_USE_PORT
1341#endif 1647#endif
1342#if EV_USE_SELECT 1648#if EV_USE_SELECT
1343 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1649 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1344#endif 1650#endif
1345 1651
1652 ev_prepare_init (&pending_w, pendingcb);
1653
1346 ev_init (&pipeev, pipecb); 1654 ev_init (&pipe_w, pipecb);
1347 ev_set_priority (&pipeev, EV_MAXPRI); 1655 ev_set_priority (&pipe_w, EV_MAXPRI);
1348 } 1656 }
1349} 1657}
1350 1658
1659/* free up a loop structure */
1351static void noinline 1660static void noinline
1352loop_destroy (EV_P) 1661loop_destroy (EV_P)
1353{ 1662{
1354 int i; 1663 int i;
1355 1664
1356 if (ev_is_active (&pipeev)) 1665 if (ev_is_active (&pipe_w))
1357 { 1666 {
1358 ev_ref (EV_A); /* signal watcher */ 1667 /*ev_ref (EV_A);*/
1359 ev_io_stop (EV_A_ &pipeev); 1668 /*ev_io_stop (EV_A_ &pipe_w);*/
1360 1669
1361#if EV_USE_EVENTFD 1670#if EV_USE_EVENTFD
1362 if (evfd >= 0) 1671 if (evfd >= 0)
1363 close (evfd); 1672 close (evfd);
1364#endif 1673#endif
1365 1674
1366 if (evpipe [0] >= 0) 1675 if (evpipe [0] >= 0)
1367 { 1676 {
1368 close (evpipe [0]); 1677 EV_WIN32_CLOSE_FD (evpipe [0]);
1369 close (evpipe [1]); 1678 EV_WIN32_CLOSE_FD (evpipe [1]);
1370 } 1679 }
1371 } 1680 }
1681
1682#if EV_USE_SIGNALFD
1683 if (ev_is_active (&sigfd_w))
1684 close (sigfd);
1685#endif
1372 1686
1373#if EV_USE_INOTIFY 1687#if EV_USE_INOTIFY
1374 if (fs_fd >= 0) 1688 if (fs_fd >= 0)
1375 close (fs_fd); 1689 close (fs_fd);
1376#endif 1690#endif
1400#if EV_IDLE_ENABLE 1714#if EV_IDLE_ENABLE
1401 array_free (idle, [i]); 1715 array_free (idle, [i]);
1402#endif 1716#endif
1403 } 1717 }
1404 1718
1405 ev_free (anfds); anfdmax = 0; 1719 ev_free (anfds); anfds = 0; anfdmax = 0;
1406 1720
1407 /* have to use the microsoft-never-gets-it-right macro */ 1721 /* have to use the microsoft-never-gets-it-right macro */
1722 array_free (rfeed, EMPTY);
1408 array_free (fdchange, EMPTY); 1723 array_free (fdchange, EMPTY);
1409 array_free (timer, EMPTY); 1724 array_free (timer, EMPTY);
1410#if EV_PERIODIC_ENABLE 1725#if EV_PERIODIC_ENABLE
1411 array_free (periodic, EMPTY); 1726 array_free (periodic, EMPTY);
1412#endif 1727#endif
1421 1736
1422 backend = 0; 1737 backend = 0;
1423} 1738}
1424 1739
1425#if EV_USE_INOTIFY 1740#if EV_USE_INOTIFY
1426void inline_size infy_fork (EV_P); 1741inline_size void infy_fork (EV_P);
1427#endif 1742#endif
1428 1743
1429void inline_size 1744inline_size void
1430loop_fork (EV_P) 1745loop_fork (EV_P)
1431{ 1746{
1432#if EV_USE_PORT 1747#if EV_USE_PORT
1433 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1748 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1434#endif 1749#endif
1440#endif 1755#endif
1441#if EV_USE_INOTIFY 1756#if EV_USE_INOTIFY
1442 infy_fork (EV_A); 1757 infy_fork (EV_A);
1443#endif 1758#endif
1444 1759
1445 if (ev_is_active (&pipeev)) 1760 if (ev_is_active (&pipe_w))
1446 { 1761 {
1447 /* this "locks" the handlers against writing to the pipe */ 1762 /* this "locks" the handlers against writing to the pipe */
1448 /* while we modify the fd vars */ 1763 /* while we modify the fd vars */
1449 gotsig = 1; 1764 sig_pending = 1;
1450#if EV_ASYNC_ENABLE 1765#if EV_ASYNC_ENABLE
1451 gotasync = 1; 1766 async_pending = 1;
1452#endif 1767#endif
1453 1768
1454 ev_ref (EV_A); 1769 ev_ref (EV_A);
1455 ev_io_stop (EV_A_ &pipeev); 1770 ev_io_stop (EV_A_ &pipe_w);
1456 1771
1457#if EV_USE_EVENTFD 1772#if EV_USE_EVENTFD
1458 if (evfd >= 0) 1773 if (evfd >= 0)
1459 close (evfd); 1774 close (evfd);
1460#endif 1775#endif
1461 1776
1462 if (evpipe [0] >= 0) 1777 if (evpipe [0] >= 0)
1463 { 1778 {
1464 close (evpipe [0]); 1779 EV_WIN32_CLOSE_FD (evpipe [0]);
1465 close (evpipe [1]); 1780 EV_WIN32_CLOSE_FD (evpipe [1]);
1466 } 1781 }
1467 1782
1468 evpipe_init (EV_A); 1783 evpipe_init (EV_A);
1469 /* now iterate over everything, in case we missed something */ 1784 /* now iterate over everything, in case we missed something */
1470 pipecb (EV_A_ &pipeev, EV_READ); 1785 pipecb (EV_A_ &pipe_w, EV_READ);
1471 } 1786 }
1472 1787
1473 postfork = 0; 1788 postfork = 0;
1474} 1789}
1475 1790
1476#if EV_MULTIPLICITY 1791#if EV_MULTIPLICITY
1477 1792
1478struct ev_loop * 1793struct ev_loop *
1479ev_loop_new (unsigned int flags) 1794ev_loop_new (unsigned int flags)
1480{ 1795{
1481 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1796 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1482 1797
1483 memset (loop, 0, sizeof (struct ev_loop)); 1798 memset (EV_A, 0, sizeof (struct ev_loop));
1484
1485 loop_init (EV_A_ flags); 1799 loop_init (EV_A_ flags);
1486 1800
1487 if (ev_backend (EV_A)) 1801 if (ev_backend (EV_A))
1488 return loop; 1802 return EV_A;
1489 1803
1490 return 0; 1804 return 0;
1491} 1805}
1492 1806
1493void 1807void
1500void 1814void
1501ev_loop_fork (EV_P) 1815ev_loop_fork (EV_P)
1502{ 1816{
1503 postfork = 1; /* must be in line with ev_default_fork */ 1817 postfork = 1; /* must be in line with ev_default_fork */
1504} 1818}
1819#endif /* multiplicity */
1505 1820
1506#if EV_VERIFY 1821#if EV_VERIFY
1507static void noinline 1822static void noinline
1508verify_watcher (EV_P_ W w) 1823verify_watcher (EV_P_ W w)
1509{ 1824{
1510 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 1825 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1511 1826
1512 if (w->pending) 1827 if (w->pending)
1513 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 1828 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1514} 1829}
1515 1830
1516static void noinline 1831static void noinline
1517verify_heap (EV_P_ ANHE *heap, int N) 1832verify_heap (EV_P_ ANHE *heap, int N)
1518{ 1833{
1519 int i; 1834 int i;
1520 1835
1521 for (i = HEAP0; i < N + HEAP0; ++i) 1836 for (i = HEAP0; i < N + HEAP0; ++i)
1522 { 1837 {
1523 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 1838 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1524 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 1839 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1525 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 1840 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1526 1841
1527 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 1842 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1528 } 1843 }
1529} 1844}
1530 1845
1531static void noinline 1846static void noinline
1532array_verify (EV_P_ W *ws, int cnt) 1847array_verify (EV_P_ W *ws, int cnt)
1533{ 1848{
1534 while (cnt--) 1849 while (cnt--)
1535 { 1850 {
1536 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 1851 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1537 verify_watcher (EV_A_ ws [cnt]); 1852 verify_watcher (EV_A_ ws [cnt]);
1538 } 1853 }
1539} 1854}
1540#endif 1855#endif
1541 1856
1857#if EV_MINIMAL < 2
1542void 1858void
1543ev_loop_verify (EV_P) 1859ev_loop_verify (EV_P)
1544{ 1860{
1545#if EV_VERIFY 1861#if EV_VERIFY
1546 int i; 1862 int i;
1548 1864
1549 assert (activecnt >= -1); 1865 assert (activecnt >= -1);
1550 1866
1551 assert (fdchangemax >= fdchangecnt); 1867 assert (fdchangemax >= fdchangecnt);
1552 for (i = 0; i < fdchangecnt; ++i) 1868 for (i = 0; i < fdchangecnt; ++i)
1553 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 1869 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1554 1870
1555 assert (anfdmax >= 0); 1871 assert (anfdmax >= 0);
1556 for (i = 0; i < anfdmax; ++i) 1872 for (i = 0; i < anfdmax; ++i)
1557 for (w = anfds [i].head; w; w = w->next) 1873 for (w = anfds [i].head; w; w = w->next)
1558 { 1874 {
1559 verify_watcher (EV_A_ (W)w); 1875 verify_watcher (EV_A_ (W)w);
1560 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 1876 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1561 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 1877 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1562 } 1878 }
1563 1879
1564 assert (timermax >= timercnt); 1880 assert (timermax >= timercnt);
1565 verify_heap (EV_A_ timers, timercnt); 1881 verify_heap (EV_A_ timers, timercnt);
1566 1882
1595 assert (checkmax >= checkcnt); 1911 assert (checkmax >= checkcnt);
1596 array_verify (EV_A_ (W *)checks, checkcnt); 1912 array_verify (EV_A_ (W *)checks, checkcnt);
1597 1913
1598# if 0 1914# if 0
1599 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1915 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1600 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 1916 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1601# endif
1602#endif 1917# endif
1918#endif
1603} 1919}
1604 1920#endif
1605#endif /* multiplicity */
1606 1921
1607#if EV_MULTIPLICITY 1922#if EV_MULTIPLICITY
1608struct ev_loop * 1923struct ev_loop *
1609ev_default_loop_init (unsigned int flags) 1924ev_default_loop_init (unsigned int flags)
1610#else 1925#else
1613#endif 1928#endif
1614{ 1929{
1615 if (!ev_default_loop_ptr) 1930 if (!ev_default_loop_ptr)
1616 { 1931 {
1617#if EV_MULTIPLICITY 1932#if EV_MULTIPLICITY
1618 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1933 EV_P = ev_default_loop_ptr = &default_loop_struct;
1619#else 1934#else
1620 ev_default_loop_ptr = 1; 1935 ev_default_loop_ptr = 1;
1621#endif 1936#endif
1622 1937
1623 loop_init (EV_A_ flags); 1938 loop_init (EV_A_ flags);
1640 1955
1641void 1956void
1642ev_default_destroy (void) 1957ev_default_destroy (void)
1643{ 1958{
1644#if EV_MULTIPLICITY 1959#if EV_MULTIPLICITY
1645 struct ev_loop *loop = ev_default_loop_ptr; 1960 EV_P = ev_default_loop_ptr;
1646#endif 1961#endif
1647 1962
1648 ev_default_loop_ptr = 0; 1963 ev_default_loop_ptr = 0;
1649 1964
1650#ifndef _WIN32 1965#ifndef _WIN32
1657 1972
1658void 1973void
1659ev_default_fork (void) 1974ev_default_fork (void)
1660{ 1975{
1661#if EV_MULTIPLICITY 1976#if EV_MULTIPLICITY
1662 struct ev_loop *loop = ev_default_loop_ptr; 1977 EV_P = ev_default_loop_ptr;
1663#endif 1978#endif
1664 1979
1665 postfork = 1; /* must be in line with ev_loop_fork */ 1980 postfork = 1; /* must be in line with ev_loop_fork */
1666} 1981}
1667 1982
1671ev_invoke (EV_P_ void *w, int revents) 1986ev_invoke (EV_P_ void *w, int revents)
1672{ 1987{
1673 EV_CB_INVOKE ((W)w, revents); 1988 EV_CB_INVOKE ((W)w, revents);
1674} 1989}
1675 1990
1676void inline_speed 1991unsigned int
1677call_pending (EV_P) 1992ev_pending_count (EV_P)
1993{
1994 int pri;
1995 unsigned int count = 0;
1996
1997 for (pri = NUMPRI; pri--; )
1998 count += pendingcnt [pri];
1999
2000 return count;
2001}
2002
2003void noinline
2004ev_invoke_pending (EV_P)
1678{ 2005{
1679 int pri; 2006 int pri;
1680 2007
1681 for (pri = NUMPRI; pri--; ) 2008 for (pri = NUMPRI; pri--; )
1682 while (pendingcnt [pri]) 2009 while (pendingcnt [pri])
1683 { 2010 {
1684 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2011 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1685 2012
1686 if (expect_true (p->w))
1687 {
1688 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2013 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2014 /* ^ this is no longer true, as pending_w could be here */
1689 2015
1690 p->w->pending = 0; 2016 p->w->pending = 0;
1691 EV_CB_INVOKE (p->w, p->events); 2017 EV_CB_INVOKE (p->w, p->events);
1692 EV_FREQUENT_CHECK; 2018 EV_FREQUENT_CHECK;
1693 }
1694 } 2019 }
1695} 2020}
1696 2021
1697#if EV_IDLE_ENABLE 2022#if EV_IDLE_ENABLE
1698void inline_size 2023/* make idle watchers pending. this handles the "call-idle */
2024/* only when higher priorities are idle" logic */
2025inline_size void
1699idle_reify (EV_P) 2026idle_reify (EV_P)
1700{ 2027{
1701 if (expect_false (idleall)) 2028 if (expect_false (idleall))
1702 { 2029 {
1703 int pri; 2030 int pri;
1715 } 2042 }
1716 } 2043 }
1717} 2044}
1718#endif 2045#endif
1719 2046
1720void inline_size 2047/* make timers pending */
2048inline_size void
1721timers_reify (EV_P) 2049timers_reify (EV_P)
1722{ 2050{
1723 EV_FREQUENT_CHECK; 2051 EV_FREQUENT_CHECK;
1724 2052
1725 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2053 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1726 { 2054 {
1727 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2055 do
1728
1729 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1730
1731 /* first reschedule or stop timer */
1732 if (w->repeat)
1733 { 2056 {
2057 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2058
2059 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2060
2061 /* first reschedule or stop timer */
2062 if (w->repeat)
2063 {
1734 ev_at (w) += w->repeat; 2064 ev_at (w) += w->repeat;
1735 if (ev_at (w) < mn_now) 2065 if (ev_at (w) < mn_now)
1736 ev_at (w) = mn_now; 2066 ev_at (w) = mn_now;
1737 2067
1738 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2068 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1739 2069
1740 ANHE_at_cache (timers [HEAP0]); 2070 ANHE_at_cache (timers [HEAP0]);
1741 downheap (timers, timercnt, HEAP0); 2071 downheap (timers, timercnt, HEAP0);
2072 }
2073 else
2074 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2075
2076 EV_FREQUENT_CHECK;
2077 feed_reverse (EV_A_ (W)w);
1742 } 2078 }
1743 else 2079 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1744 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1745 2080
1746 EV_FREQUENT_CHECK;
1747 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2081 feed_reverse_done (EV_A_ EV_TIMEOUT);
1748 } 2082 }
1749} 2083}
1750 2084
1751#if EV_PERIODIC_ENABLE 2085#if EV_PERIODIC_ENABLE
1752void inline_size 2086/* make periodics pending */
2087inline_size void
1753periodics_reify (EV_P) 2088periodics_reify (EV_P)
1754{ 2089{
1755 EV_FREQUENT_CHECK; 2090 EV_FREQUENT_CHECK;
1756 2091
1757 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2092 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1758 { 2093 {
1759 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2094 int feed_count = 0;
1760 2095
1761 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2096 do
1762
1763 /* first reschedule or stop timer */
1764 if (w->reschedule_cb)
1765 { 2097 {
2098 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2099
2100 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2101
2102 /* first reschedule or stop timer */
2103 if (w->reschedule_cb)
2104 {
1766 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2105 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1767 2106
1768 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2107 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1769 2108
1770 ANHE_at_cache (periodics [HEAP0]); 2109 ANHE_at_cache (periodics [HEAP0]);
1771 downheap (periodics, periodiccnt, HEAP0); 2110 downheap (periodics, periodiccnt, HEAP0);
2111 }
2112 else if (w->interval)
2113 {
2114 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2115 /* if next trigger time is not sufficiently in the future, put it there */
2116 /* this might happen because of floating point inexactness */
2117 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2118 {
2119 ev_at (w) += w->interval;
2120
2121 /* if interval is unreasonably low we might still have a time in the past */
2122 /* so correct this. this will make the periodic very inexact, but the user */
2123 /* has effectively asked to get triggered more often than possible */
2124 if (ev_at (w) < ev_rt_now)
2125 ev_at (w) = ev_rt_now;
2126 }
2127
2128 ANHE_at_cache (periodics [HEAP0]);
2129 downheap (periodics, periodiccnt, HEAP0);
2130 }
2131 else
2132 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2133
2134 EV_FREQUENT_CHECK;
2135 feed_reverse (EV_A_ (W)w);
1772 } 2136 }
1773 else if (w->interval) 2137 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1774 {
1775 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1776 /* if next trigger time is not sufficiently in the future, put it there */
1777 /* this might happen because of floating point inexactness */
1778 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1779 {
1780 ev_at (w) += w->interval;
1781 2138
1782 /* if interval is unreasonably low we might still have a time in the past */
1783 /* so correct this. this will make the periodic very inexact, but the user */
1784 /* has effectively asked to get triggered more often than possible */
1785 if (ev_at (w) < ev_rt_now)
1786 ev_at (w) = ev_rt_now;
1787 }
1788
1789 ANHE_at_cache (periodics [HEAP0]);
1790 downheap (periodics, periodiccnt, HEAP0);
1791 }
1792 else
1793 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1794
1795 EV_FREQUENT_CHECK;
1796 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2139 feed_reverse_done (EV_A_ EV_PERIODIC);
1797 } 2140 }
1798} 2141}
1799 2142
2143/* simply recalculate all periodics */
2144/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1800static void noinline 2145static void noinline
1801periodics_reschedule (EV_P) 2146periodics_reschedule (EV_P)
1802{ 2147{
1803 int i; 2148 int i;
1804 2149
1817 2162
1818 reheap (periodics, periodiccnt); 2163 reheap (periodics, periodiccnt);
1819} 2164}
1820#endif 2165#endif
1821 2166
1822void inline_speed 2167/* adjust all timers by a given offset */
2168static void noinline
2169timers_reschedule (EV_P_ ev_tstamp adjust)
2170{
2171 int i;
2172
2173 for (i = 0; i < timercnt; ++i)
2174 {
2175 ANHE *he = timers + i + HEAP0;
2176 ANHE_w (*he)->at += adjust;
2177 ANHE_at_cache (*he);
2178 }
2179}
2180
2181/* fetch new monotonic and realtime times from the kernel */
2182/* also detect if there was a timejump, and act accordingly */
2183inline_speed void
1823time_update (EV_P_ ev_tstamp max_block) 2184time_update (EV_P_ ev_tstamp max_block)
1824{ 2185{
1825 int i;
1826
1827#if EV_USE_MONOTONIC 2186#if EV_USE_MONOTONIC
1828 if (expect_true (have_monotonic)) 2187 if (expect_true (have_monotonic))
1829 { 2188 {
2189 int i;
1830 ev_tstamp odiff = rtmn_diff; 2190 ev_tstamp odiff = rtmn_diff;
1831 2191
1832 mn_now = get_clock (); 2192 mn_now = get_clock ();
1833 2193
1834 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2194 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1860 ev_rt_now = ev_time (); 2220 ev_rt_now = ev_time ();
1861 mn_now = get_clock (); 2221 mn_now = get_clock ();
1862 now_floor = mn_now; 2222 now_floor = mn_now;
1863 } 2223 }
1864 2224
2225 /* no timer adjustment, as the monotonic clock doesn't jump */
2226 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1865# if EV_PERIODIC_ENABLE 2227# if EV_PERIODIC_ENABLE
1866 periodics_reschedule (EV_A); 2228 periodics_reschedule (EV_A);
1867# endif 2229# endif
1868 /* no timer adjustment, as the monotonic clock doesn't jump */
1869 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1870 } 2230 }
1871 else 2231 else
1872#endif 2232#endif
1873 { 2233 {
1874 ev_rt_now = ev_time (); 2234 ev_rt_now = ev_time ();
1875 2235
1876 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2236 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1877 { 2237 {
2238 /* adjust timers. this is easy, as the offset is the same for all of them */
2239 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1878#if EV_PERIODIC_ENABLE 2240#if EV_PERIODIC_ENABLE
1879 periodics_reschedule (EV_A); 2241 periodics_reschedule (EV_A);
1880#endif 2242#endif
1881 /* adjust timers. this is easy, as the offset is the same for all of them */
1882 for (i = 0; i < timercnt; ++i)
1883 {
1884 ANHE *he = timers + i + HEAP0;
1885 ANHE_w (*he)->at += ev_rt_now - mn_now;
1886 ANHE_at_cache (*he);
1887 }
1888 } 2243 }
1889 2244
1890 mn_now = ev_rt_now; 2245 mn_now = ev_rt_now;
1891 } 2246 }
1892} 2247}
1893 2248
1894void 2249void
1895ev_ref (EV_P)
1896{
1897 ++activecnt;
1898}
1899
1900void
1901ev_unref (EV_P)
1902{
1903 --activecnt;
1904}
1905
1906void
1907ev_now_update (EV_P)
1908{
1909 time_update (EV_A_ 1e100);
1910}
1911
1912static int loop_done;
1913
1914void
1915ev_loop (EV_P_ int flags) 2250ev_loop (EV_P_ int flags)
1916{ 2251{
2252#if EV_MINIMAL < 2
2253 ++loop_depth;
2254#endif
2255
2256 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2257
1917 loop_done = EVUNLOOP_CANCEL; 2258 loop_done = EVUNLOOP_CANCEL;
1918 2259
1919 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2260 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1920 2261
1921 do 2262 do
1922 { 2263 {
1923#if EV_VERIFY >= 2 2264#if EV_VERIFY >= 2
1924 ev_loop_verify (EV_A); 2265 ev_loop_verify (EV_A);
1937 /* we might have forked, so queue fork handlers */ 2278 /* we might have forked, so queue fork handlers */
1938 if (expect_false (postfork)) 2279 if (expect_false (postfork))
1939 if (forkcnt) 2280 if (forkcnt)
1940 { 2281 {
1941 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2282 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1942 call_pending (EV_A); 2283 EV_INVOKE_PENDING;
1943 } 2284 }
1944#endif 2285#endif
1945 2286
1946 /* queue prepare watchers (and execute them) */ 2287 /* queue prepare watchers (and execute them) */
1947 if (expect_false (preparecnt)) 2288 if (expect_false (preparecnt))
1948 { 2289 {
1949 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2290 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1950 call_pending (EV_A); 2291 EV_INVOKE_PENDING;
1951 } 2292 }
1952 2293
1953 if (expect_false (!activecnt)) 2294 if (expect_false (loop_done))
1954 break; 2295 break;
1955 2296
1956 /* we might have forked, so reify kernel state if necessary */ 2297 /* we might have forked, so reify kernel state if necessary */
1957 if (expect_false (postfork)) 2298 if (expect_false (postfork))
1958 loop_fork (EV_A); 2299 loop_fork (EV_A);
1965 ev_tstamp waittime = 0.; 2306 ev_tstamp waittime = 0.;
1966 ev_tstamp sleeptime = 0.; 2307 ev_tstamp sleeptime = 0.;
1967 2308
1968 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2309 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1969 { 2310 {
2311 /* remember old timestamp for io_blocktime calculation */
2312 ev_tstamp prev_mn_now = mn_now;
2313
1970 /* update time to cancel out callback processing overhead */ 2314 /* update time to cancel out callback processing overhead */
1971 time_update (EV_A_ 1e100); 2315 time_update (EV_A_ 1e100);
1972 2316
1973 waittime = MAX_BLOCKTIME; 2317 waittime = MAX_BLOCKTIME;
1974 2318
1984 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2328 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1985 if (waittime > to) waittime = to; 2329 if (waittime > to) waittime = to;
1986 } 2330 }
1987#endif 2331#endif
1988 2332
2333 /* don't let timeouts decrease the waittime below timeout_blocktime */
1989 if (expect_false (waittime < timeout_blocktime)) 2334 if (expect_false (waittime < timeout_blocktime))
1990 waittime = timeout_blocktime; 2335 waittime = timeout_blocktime;
1991 2336
1992 sleeptime = waittime - backend_fudge; 2337 /* extra check because io_blocktime is commonly 0 */
1993
1994 if (expect_true (sleeptime > io_blocktime)) 2338 if (expect_false (io_blocktime))
1995 sleeptime = io_blocktime;
1996
1997 if (sleeptime)
1998 { 2339 {
2340 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2341
2342 if (sleeptime > waittime - backend_fudge)
2343 sleeptime = waittime - backend_fudge;
2344
2345 if (expect_true (sleeptime > 0.))
2346 {
1999 ev_sleep (sleeptime); 2347 ev_sleep (sleeptime);
2000 waittime -= sleeptime; 2348 waittime -= sleeptime;
2349 }
2001 } 2350 }
2002 } 2351 }
2003 2352
2353#if EV_MINIMAL < 2
2004 ++loop_count; 2354 ++loop_count;
2355#endif
2356 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2005 backend_poll (EV_A_ waittime); 2357 backend_poll (EV_A_ waittime);
2358 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2006 2359
2007 /* update ev_rt_now, do magic */ 2360 /* update ev_rt_now, do magic */
2008 time_update (EV_A_ waittime + sleeptime); 2361 time_update (EV_A_ waittime + sleeptime);
2009 } 2362 }
2010 2363
2021 2374
2022 /* queue check watchers, to be executed first */ 2375 /* queue check watchers, to be executed first */
2023 if (expect_false (checkcnt)) 2376 if (expect_false (checkcnt))
2024 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2377 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2025 2378
2026 call_pending (EV_A); 2379 EV_INVOKE_PENDING;
2027 } 2380 }
2028 while (expect_true ( 2381 while (expect_true (
2029 activecnt 2382 activecnt
2030 && !loop_done 2383 && !loop_done
2031 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2384 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2032 )); 2385 ));
2033 2386
2034 if (loop_done == EVUNLOOP_ONE) 2387 if (loop_done == EVUNLOOP_ONE)
2035 loop_done = EVUNLOOP_CANCEL; 2388 loop_done = EVUNLOOP_CANCEL;
2389
2390#if EV_MINIMAL < 2
2391 --loop_depth;
2392#endif
2036} 2393}
2037 2394
2038void 2395void
2039ev_unloop (EV_P_ int how) 2396ev_unloop (EV_P_ int how)
2040{ 2397{
2041 loop_done = how; 2398 loop_done = how;
2042} 2399}
2043 2400
2401void
2402ev_ref (EV_P)
2403{
2404 ++activecnt;
2405}
2406
2407void
2408ev_unref (EV_P)
2409{
2410 --activecnt;
2411}
2412
2413void
2414ev_now_update (EV_P)
2415{
2416 time_update (EV_A_ 1e100);
2417}
2418
2419void
2420ev_suspend (EV_P)
2421{
2422 ev_now_update (EV_A);
2423}
2424
2425void
2426ev_resume (EV_P)
2427{
2428 ev_tstamp mn_prev = mn_now;
2429
2430 ev_now_update (EV_A);
2431 timers_reschedule (EV_A_ mn_now - mn_prev);
2432#if EV_PERIODIC_ENABLE
2433 /* TODO: really do this? */
2434 periodics_reschedule (EV_A);
2435#endif
2436}
2437
2044/*****************************************************************************/ 2438/*****************************************************************************/
2439/* singly-linked list management, used when the expected list length is short */
2045 2440
2046void inline_size 2441inline_size void
2047wlist_add (WL *head, WL elem) 2442wlist_add (WL *head, WL elem)
2048{ 2443{
2049 elem->next = *head; 2444 elem->next = *head;
2050 *head = elem; 2445 *head = elem;
2051} 2446}
2052 2447
2053void inline_size 2448inline_size void
2054wlist_del (WL *head, WL elem) 2449wlist_del (WL *head, WL elem)
2055{ 2450{
2056 while (*head) 2451 while (*head)
2057 { 2452 {
2058 if (*head == elem) 2453 if (expect_true (*head == elem))
2059 { 2454 {
2060 *head = elem->next; 2455 *head = elem->next;
2061 return; 2456 break;
2062 } 2457 }
2063 2458
2064 head = &(*head)->next; 2459 head = &(*head)->next;
2065 } 2460 }
2066} 2461}
2067 2462
2068void inline_speed 2463/* internal, faster, version of ev_clear_pending */
2464inline_speed void
2069clear_pending (EV_P_ W w) 2465clear_pending (EV_P_ W w)
2070{ 2466{
2071 if (w->pending) 2467 if (w->pending)
2072 { 2468 {
2073 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2469 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2074 w->pending = 0; 2470 w->pending = 0;
2075 } 2471 }
2076} 2472}
2077 2473
2078int 2474int
2082 int pending = w_->pending; 2478 int pending = w_->pending;
2083 2479
2084 if (expect_true (pending)) 2480 if (expect_true (pending))
2085 { 2481 {
2086 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2482 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2483 p->w = (W)&pending_w;
2087 w_->pending = 0; 2484 w_->pending = 0;
2088 p->w = 0;
2089 return p->events; 2485 return p->events;
2090 } 2486 }
2091 else 2487 else
2092 return 0; 2488 return 0;
2093} 2489}
2094 2490
2095void inline_size 2491inline_size void
2096pri_adjust (EV_P_ W w) 2492pri_adjust (EV_P_ W w)
2097{ 2493{
2098 int pri = w->priority; 2494 int pri = ev_priority (w);
2099 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2495 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2100 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2496 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2101 w->priority = pri; 2497 ev_set_priority (w, pri);
2102} 2498}
2103 2499
2104void inline_speed 2500inline_speed void
2105ev_start (EV_P_ W w, int active) 2501ev_start (EV_P_ W w, int active)
2106{ 2502{
2107 pri_adjust (EV_A_ w); 2503 pri_adjust (EV_A_ w);
2108 w->active = active; 2504 w->active = active;
2109 ev_ref (EV_A); 2505 ev_ref (EV_A);
2110} 2506}
2111 2507
2112void inline_size 2508inline_size void
2113ev_stop (EV_P_ W w) 2509ev_stop (EV_P_ W w)
2114{ 2510{
2115 ev_unref (EV_A); 2511 ev_unref (EV_A);
2116 w->active = 0; 2512 w->active = 0;
2117} 2513}
2124 int fd = w->fd; 2520 int fd = w->fd;
2125 2521
2126 if (expect_false (ev_is_active (w))) 2522 if (expect_false (ev_is_active (w)))
2127 return; 2523 return;
2128 2524
2129 assert (("ev_io_start called with negative fd", fd >= 0)); 2525 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2130 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE)))); 2526 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2131 2527
2132 EV_FREQUENT_CHECK; 2528 EV_FREQUENT_CHECK;
2133 2529
2134 ev_start (EV_A_ (W)w, 1); 2530 ev_start (EV_A_ (W)w, 1);
2135 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 2531 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2136 wlist_add (&anfds[fd].head, (WL)w); 2532 wlist_add (&anfds[fd].head, (WL)w);
2137 2533
2138 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2534 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2139 w->events &= ~EV_IOFDSET; 2535 w->events &= ~EV__IOFDSET;
2140 2536
2141 EV_FREQUENT_CHECK; 2537 EV_FREQUENT_CHECK;
2142} 2538}
2143 2539
2144void noinline 2540void noinline
2146{ 2542{
2147 clear_pending (EV_A_ (W)w); 2543 clear_pending (EV_A_ (W)w);
2148 if (expect_false (!ev_is_active (w))) 2544 if (expect_false (!ev_is_active (w)))
2149 return; 2545 return;
2150 2546
2151 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2547 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2152 2548
2153 EV_FREQUENT_CHECK; 2549 EV_FREQUENT_CHECK;
2154 2550
2155 wlist_del (&anfds[w->fd].head, (WL)w); 2551 wlist_del (&anfds[w->fd].head, (WL)w);
2156 ev_stop (EV_A_ (W)w); 2552 ev_stop (EV_A_ (W)w);
2166 if (expect_false (ev_is_active (w))) 2562 if (expect_false (ev_is_active (w)))
2167 return; 2563 return;
2168 2564
2169 ev_at (w) += mn_now; 2565 ev_at (w) += mn_now;
2170 2566
2171 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2567 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2172 2568
2173 EV_FREQUENT_CHECK; 2569 EV_FREQUENT_CHECK;
2174 2570
2175 ++timercnt; 2571 ++timercnt;
2176 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 2572 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2179 ANHE_at_cache (timers [ev_active (w)]); 2575 ANHE_at_cache (timers [ev_active (w)]);
2180 upheap (timers, ev_active (w)); 2576 upheap (timers, ev_active (w));
2181 2577
2182 EV_FREQUENT_CHECK; 2578 EV_FREQUENT_CHECK;
2183 2579
2184 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2580 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2185} 2581}
2186 2582
2187void noinline 2583void noinline
2188ev_timer_stop (EV_P_ ev_timer *w) 2584ev_timer_stop (EV_P_ ev_timer *w)
2189{ 2585{
2194 EV_FREQUENT_CHECK; 2590 EV_FREQUENT_CHECK;
2195 2591
2196 { 2592 {
2197 int active = ev_active (w); 2593 int active = ev_active (w);
2198 2594
2199 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2595 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2200 2596
2201 --timercnt; 2597 --timercnt;
2202 2598
2203 if (expect_true (active < timercnt + HEAP0)) 2599 if (expect_true (active < timercnt + HEAP0))
2204 { 2600 {
2205 timers [active] = timers [timercnt + HEAP0]; 2601 timers [active] = timers [timercnt + HEAP0];
2206 adjustheap (timers, timercnt, active); 2602 adjustheap (timers, timercnt, active);
2207 } 2603 }
2208 } 2604 }
2209 2605
2210 EV_FREQUENT_CHECK;
2211
2212 ev_at (w) -= mn_now; 2606 ev_at (w) -= mn_now;
2213 2607
2214 ev_stop (EV_A_ (W)w); 2608 ev_stop (EV_A_ (W)w);
2609
2610 EV_FREQUENT_CHECK;
2215} 2611}
2216 2612
2217void noinline 2613void noinline
2218ev_timer_again (EV_P_ ev_timer *w) 2614ev_timer_again (EV_P_ ev_timer *w)
2219{ 2615{
2237 } 2633 }
2238 2634
2239 EV_FREQUENT_CHECK; 2635 EV_FREQUENT_CHECK;
2240} 2636}
2241 2637
2638ev_tstamp
2639ev_timer_remaining (EV_P_ ev_timer *w)
2640{
2641 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2642}
2643
2242#if EV_PERIODIC_ENABLE 2644#if EV_PERIODIC_ENABLE
2243void noinline 2645void noinline
2244ev_periodic_start (EV_P_ ev_periodic *w) 2646ev_periodic_start (EV_P_ ev_periodic *w)
2245{ 2647{
2246 if (expect_false (ev_is_active (w))) 2648 if (expect_false (ev_is_active (w)))
2248 2650
2249 if (w->reschedule_cb) 2651 if (w->reschedule_cb)
2250 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2652 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2251 else if (w->interval) 2653 else if (w->interval)
2252 { 2654 {
2253 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2655 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2254 /* this formula differs from the one in periodic_reify because we do not always round up */ 2656 /* this formula differs from the one in periodic_reify because we do not always round up */
2255 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2657 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2256 } 2658 }
2257 else 2659 else
2258 ev_at (w) = w->offset; 2660 ev_at (w) = w->offset;
2266 ANHE_at_cache (periodics [ev_active (w)]); 2668 ANHE_at_cache (periodics [ev_active (w)]);
2267 upheap (periodics, ev_active (w)); 2669 upheap (periodics, ev_active (w));
2268 2670
2269 EV_FREQUENT_CHECK; 2671 EV_FREQUENT_CHECK;
2270 2672
2271 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2673 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2272} 2674}
2273 2675
2274void noinline 2676void noinline
2275ev_periodic_stop (EV_P_ ev_periodic *w) 2677ev_periodic_stop (EV_P_ ev_periodic *w)
2276{ 2678{
2281 EV_FREQUENT_CHECK; 2683 EV_FREQUENT_CHECK;
2282 2684
2283 { 2685 {
2284 int active = ev_active (w); 2686 int active = ev_active (w);
2285 2687
2286 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2688 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2287 2689
2288 --periodiccnt; 2690 --periodiccnt;
2289 2691
2290 if (expect_true (active < periodiccnt + HEAP0)) 2692 if (expect_true (active < periodiccnt + HEAP0))
2291 { 2693 {
2292 periodics [active] = periodics [periodiccnt + HEAP0]; 2694 periodics [active] = periodics [periodiccnt + HEAP0];
2293 adjustheap (periodics, periodiccnt, active); 2695 adjustheap (periodics, periodiccnt, active);
2294 } 2696 }
2295 } 2697 }
2296 2698
2297 EV_FREQUENT_CHECK;
2298
2299 ev_stop (EV_A_ (W)w); 2699 ev_stop (EV_A_ (W)w);
2700
2701 EV_FREQUENT_CHECK;
2300} 2702}
2301 2703
2302void noinline 2704void noinline
2303ev_periodic_again (EV_P_ ev_periodic *w) 2705ev_periodic_again (EV_P_ ev_periodic *w)
2304{ 2706{
2313#endif 2715#endif
2314 2716
2315void noinline 2717void noinline
2316ev_signal_start (EV_P_ ev_signal *w) 2718ev_signal_start (EV_P_ ev_signal *w)
2317{ 2719{
2318#if EV_MULTIPLICITY
2319 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2320#endif
2321 if (expect_false (ev_is_active (w))) 2720 if (expect_false (ev_is_active (w)))
2322 return; 2721 return;
2323 2722
2324 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2723 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2325 2724
2326 evpipe_init (EV_A); 2725#if EV_MULTIPLICITY
2726 assert (("libev: a signal must not be attached to two different loops",
2727 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2327 2728
2328 EV_FREQUENT_CHECK; 2729 signals [w->signum - 1].loop = EV_A;
2730#endif
2329 2731
2732 EV_FREQUENT_CHECK;
2733
2734#if EV_USE_SIGNALFD
2735 if (sigfd == -2)
2330 { 2736 {
2331#ifndef _WIN32 2737 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2332 sigset_t full, prev; 2738 if (sigfd < 0 && errno == EINVAL)
2333 sigfillset (&full); 2739 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2334 sigprocmask (SIG_SETMASK, &full, &prev);
2335#endif
2336 2740
2337 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero); 2741 if (sigfd >= 0)
2742 {
2743 fd_intern (sigfd); /* doing it twice will not hurt */
2338 2744
2339#ifndef _WIN32 2745 sigemptyset (&sigfd_set);
2340 sigprocmask (SIG_SETMASK, &prev, 0); 2746
2341#endif 2747 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2748 ev_set_priority (&sigfd_w, EV_MAXPRI);
2749 ev_io_start (EV_A_ &sigfd_w);
2750 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2751 }
2342 } 2752 }
2753
2754 if (sigfd >= 0)
2755 {
2756 /* TODO: check .head */
2757 sigaddset (&sigfd_set, w->signum);
2758 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2759
2760 signalfd (sigfd, &sigfd_set, 0);
2761 }
2762#endif
2343 2763
2344 ev_start (EV_A_ (W)w, 1); 2764 ev_start (EV_A_ (W)w, 1);
2345 wlist_add (&signals [w->signum - 1].head, (WL)w); 2765 wlist_add (&signals [w->signum - 1].head, (WL)w);
2346 2766
2347 if (!((WL)w)->next) 2767 if (!((WL)w)->next)
2768# if EV_USE_SIGNALFD
2769 if (sigfd < 0) /*TODO*/
2770# endif
2348 { 2771 {
2349#if _WIN32 2772# ifdef _WIN32
2773 evpipe_init (EV_A);
2774
2350 signal (w->signum, ev_sighandler); 2775 signal (w->signum, ev_sighandler);
2351#else 2776# else
2352 struct sigaction sa; 2777 struct sigaction sa;
2778
2779 evpipe_init (EV_A);
2780
2353 sa.sa_handler = ev_sighandler; 2781 sa.sa_handler = ev_sighandler;
2354 sigfillset (&sa.sa_mask); 2782 sigfillset (&sa.sa_mask);
2355 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2783 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2356 sigaction (w->signum, &sa, 0); 2784 sigaction (w->signum, &sa, 0);
2785
2786 sigemptyset (&sa.sa_mask);
2787 sigaddset (&sa.sa_mask, w->signum);
2788 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2357#endif 2789#endif
2358 } 2790 }
2359 2791
2360 EV_FREQUENT_CHECK; 2792 EV_FREQUENT_CHECK;
2361} 2793}
2362 2794
2363void noinline 2795void noinline
2371 2803
2372 wlist_del (&signals [w->signum - 1].head, (WL)w); 2804 wlist_del (&signals [w->signum - 1].head, (WL)w);
2373 ev_stop (EV_A_ (W)w); 2805 ev_stop (EV_A_ (W)w);
2374 2806
2375 if (!signals [w->signum - 1].head) 2807 if (!signals [w->signum - 1].head)
2808 {
2809#if EV_MULTIPLICITY
2810 signals [w->signum - 1].loop = 0; /* unattach from signal */
2811#endif
2812#if EV_USE_SIGNALFD
2813 if (sigfd >= 0)
2814 {
2815 sigset_t ss;
2816
2817 sigemptyset (&ss);
2818 sigaddset (&ss, w->signum);
2819 sigdelset (&sigfd_set, w->signum);
2820
2821 signalfd (sigfd, &sigfd_set, 0);
2822 sigprocmask (SIG_UNBLOCK, &ss, 0);
2823 }
2824 else
2825#endif
2376 signal (w->signum, SIG_DFL); 2826 signal (w->signum, SIG_DFL);
2827 }
2377 2828
2378 EV_FREQUENT_CHECK; 2829 EV_FREQUENT_CHECK;
2379} 2830}
2380 2831
2381void 2832void
2382ev_child_start (EV_P_ ev_child *w) 2833ev_child_start (EV_P_ ev_child *w)
2383{ 2834{
2384#if EV_MULTIPLICITY 2835#if EV_MULTIPLICITY
2385 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2836 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2386#endif 2837#endif
2387 if (expect_false (ev_is_active (w))) 2838 if (expect_false (ev_is_active (w)))
2388 return; 2839 return;
2389 2840
2390 EV_FREQUENT_CHECK; 2841 EV_FREQUENT_CHECK;
2415# ifdef _WIN32 2866# ifdef _WIN32
2416# undef lstat 2867# undef lstat
2417# define lstat(a,b) _stati64 (a,b) 2868# define lstat(a,b) _stati64 (a,b)
2418# endif 2869# endif
2419 2870
2420#define DEF_STAT_INTERVAL 5.0074891 2871#define DEF_STAT_INTERVAL 5.0074891
2872#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2421#define MIN_STAT_INTERVAL 0.1074891 2873#define MIN_STAT_INTERVAL 0.1074891
2422 2874
2423static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2875static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2424 2876
2425#if EV_USE_INOTIFY 2877#if EV_USE_INOTIFY
2426# define EV_INOTIFY_BUFSIZE 8192 2878
2879/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2880# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2427 2881
2428static void noinline 2882static void noinline
2429infy_add (EV_P_ ev_stat *w) 2883infy_add (EV_P_ ev_stat *w)
2430{ 2884{
2431 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2885 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2432 2886
2433 if (w->wd < 0) 2887 if (w->wd >= 0)
2888 {
2889 struct statfs sfs;
2890
2891 /* now local changes will be tracked by inotify, but remote changes won't */
2892 /* unless the filesystem is known to be local, we therefore still poll */
2893 /* also do poll on <2.6.25, but with normal frequency */
2894
2895 if (!fs_2625)
2896 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2897 else if (!statfs (w->path, &sfs)
2898 && (sfs.f_type == 0x1373 /* devfs */
2899 || sfs.f_type == 0xEF53 /* ext2/3 */
2900 || sfs.f_type == 0x3153464a /* jfs */
2901 || sfs.f_type == 0x52654973 /* reiser3 */
2902 || sfs.f_type == 0x01021994 /* tempfs */
2903 || sfs.f_type == 0x58465342 /* xfs */))
2904 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2905 else
2906 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2434 { 2907 }
2435 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2908 else
2909 {
2910 /* can't use inotify, continue to stat */
2911 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2436 2912
2437 /* monitor some parent directory for speedup hints */ 2913 /* if path is not there, monitor some parent directory for speedup hints */
2438 /* note that exceeding the hardcoded path limit is not a correctness issue, */ 2914 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2439 /* but an efficiency issue only */ 2915 /* but an efficiency issue only */
2440 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2916 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2441 { 2917 {
2442 char path [4096]; 2918 char path [4096];
2447 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2923 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2448 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2924 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2449 2925
2450 char *pend = strrchr (path, '/'); 2926 char *pend = strrchr (path, '/');
2451 2927
2452 if (!pend) 2928 if (!pend || pend == path)
2453 break; /* whoops, no '/', complain to your admin */ 2929 break;
2454 2930
2455 *pend = 0; 2931 *pend = 0;
2456 w->wd = inotify_add_watch (fs_fd, path, mask); 2932 w->wd = inotify_add_watch (fs_fd, path, mask);
2457 } 2933 }
2458 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2934 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2459 } 2935 }
2460 } 2936 }
2461 else
2462 todo, on nfs etc., we need to poll every 60s or so
2463 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2464 2937
2465 if (w->wd >= 0) 2938 if (w->wd >= 0)
2466 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2939 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2940
2941 /* now re-arm timer, if required */
2942 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2943 ev_timer_again (EV_A_ &w->timer);
2944 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2467} 2945}
2468 2946
2469static void noinline 2947static void noinline
2470infy_del (EV_P_ ev_stat *w) 2948infy_del (EV_P_ ev_stat *w)
2471{ 2949{
2501 2979
2502 if (w->wd == wd || wd == -1) 2980 if (w->wd == wd || wd == -1)
2503 { 2981 {
2504 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2982 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2505 { 2983 {
2984 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2506 w->wd = -1; 2985 w->wd = -1;
2507 infy_add (EV_A_ w); /* re-add, no matter what */ 2986 infy_add (EV_A_ w); /* re-add, no matter what */
2508 } 2987 }
2509 2988
2510 stat_timer_cb (EV_A_ &w->timer, 0); 2989 stat_timer_cb (EV_A_ &w->timer, 0);
2515 2994
2516static void 2995static void
2517infy_cb (EV_P_ ev_io *w, int revents) 2996infy_cb (EV_P_ ev_io *w, int revents)
2518{ 2997{
2519 char buf [EV_INOTIFY_BUFSIZE]; 2998 char buf [EV_INOTIFY_BUFSIZE];
2520 struct inotify_event *ev = (struct inotify_event *)buf;
2521 int ofs; 2999 int ofs;
2522 int len = read (fs_fd, buf, sizeof (buf)); 3000 int len = read (fs_fd, buf, sizeof (buf));
2523 3001
2524 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3002 for (ofs = 0; ofs < len; )
3003 {
3004 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2525 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3005 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3006 ofs += sizeof (struct inotify_event) + ev->len;
3007 }
2526} 3008}
2527 3009
2528void inline_size 3010inline_size unsigned int
2529infy_init (EV_P) 3011ev_linux_version (void)
2530{ 3012{
2531 if (fs_fd != -2) 3013 struct utsname buf;
3014 unsigned int v;
3015 int i;
3016 char *p = buf.release;
3017
3018 if (uname (&buf))
2532 return; 3019 return 0;
2533 3020
3021 for (i = 3+1; --i; )
3022 {
3023 unsigned int c = 0;
3024
3025 for (;;)
3026 {
3027 if (*p >= '0' && *p <= '9')
3028 c = c * 10 + *p++ - '0';
3029 else
3030 {
3031 p += *p == '.';
3032 break;
3033 }
3034 }
3035
3036 v = (v << 8) | c;
3037 }
3038
3039 return v;
3040}
3041
3042inline_size void
3043ev_check_2625 (EV_P)
3044{
2534 /* kernels < 2.6.25 are borked 3045 /* kernels < 2.6.25 are borked
2535 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 3046 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2536 */ 3047 */
2537 { 3048 if (ev_linux_version () < 0x020619)
2538 struct utsname buf; 3049 return;
2539 int major, minor, micro;
2540 3050
3051 fs_2625 = 1;
3052}
3053
3054inline_size int
3055infy_newfd (void)
3056{
3057#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3058 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3059 if (fd >= 0)
3060 return fd;
3061#endif
3062 return inotify_init ();
3063}
3064
3065inline_size void
3066infy_init (EV_P)
3067{
3068 if (fs_fd != -2)
3069 return;
3070
2541 fs_fd = -1; 3071 fs_fd = -1;
2542 3072
2543 if (uname (&buf)) 3073 ev_check_2625 (EV_A);
2544 return;
2545 3074
2546 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2547 return;
2548
2549 if (major < 2
2550 || (major == 2 && minor < 6)
2551 || (major == 2 && minor == 6 && micro < 25))
2552 return;
2553 }
2554
2555 fs_fd = inotify_init (); 3075 fs_fd = infy_newfd ();
2556 3076
2557 if (fs_fd >= 0) 3077 if (fs_fd >= 0)
2558 { 3078 {
3079 fd_intern (fs_fd);
2559 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3080 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2560 ev_set_priority (&fs_w, EV_MAXPRI); 3081 ev_set_priority (&fs_w, EV_MAXPRI);
2561 ev_io_start (EV_A_ &fs_w); 3082 ev_io_start (EV_A_ &fs_w);
3083 ev_unref (EV_A);
2562 } 3084 }
2563} 3085}
2564 3086
2565void inline_size 3087inline_size void
2566infy_fork (EV_P) 3088infy_fork (EV_P)
2567{ 3089{
2568 int slot; 3090 int slot;
2569 3091
2570 if (fs_fd < 0) 3092 if (fs_fd < 0)
2571 return; 3093 return;
2572 3094
3095 ev_ref (EV_A);
3096 ev_io_stop (EV_A_ &fs_w);
2573 close (fs_fd); 3097 close (fs_fd);
2574 fs_fd = inotify_init (); 3098 fs_fd = infy_newfd ();
3099
3100 if (fs_fd >= 0)
3101 {
3102 fd_intern (fs_fd);
3103 ev_io_set (&fs_w, fs_fd, EV_READ);
3104 ev_io_start (EV_A_ &fs_w);
3105 ev_unref (EV_A);
3106 }
2575 3107
2576 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3108 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2577 { 3109 {
2578 WL w_ = fs_hash [slot].head; 3110 WL w_ = fs_hash [slot].head;
2579 fs_hash [slot].head = 0; 3111 fs_hash [slot].head = 0;
2586 w->wd = -1; 3118 w->wd = -1;
2587 3119
2588 if (fs_fd >= 0) 3120 if (fs_fd >= 0)
2589 infy_add (EV_A_ w); /* re-add, no matter what */ 3121 infy_add (EV_A_ w); /* re-add, no matter what */
2590 else 3122 else
3123 {
3124 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3125 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2591 ev_timer_start (EV_A_ &w->timer); 3126 ev_timer_again (EV_A_ &w->timer);
3127 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3128 }
2592 } 3129 }
2593 } 3130 }
2594} 3131}
2595 3132
2596#endif 3133#endif
2613static void noinline 3150static void noinline
2614stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3151stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2615{ 3152{
2616 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3153 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2617 3154
2618 /* we copy this here each the time so that */ 3155 ev_statdata prev = w->attr;
2619 /* prev has the old value when the callback gets invoked */
2620 w->prev = w->attr;
2621 ev_stat_stat (EV_A_ w); 3156 ev_stat_stat (EV_A_ w);
2622 3157
2623 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3158 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2624 if ( 3159 if (
2625 w->prev.st_dev != w->attr.st_dev 3160 prev.st_dev != w->attr.st_dev
2626 || w->prev.st_ino != w->attr.st_ino 3161 || prev.st_ino != w->attr.st_ino
2627 || w->prev.st_mode != w->attr.st_mode 3162 || prev.st_mode != w->attr.st_mode
2628 || w->prev.st_nlink != w->attr.st_nlink 3163 || prev.st_nlink != w->attr.st_nlink
2629 || w->prev.st_uid != w->attr.st_uid 3164 || prev.st_uid != w->attr.st_uid
2630 || w->prev.st_gid != w->attr.st_gid 3165 || prev.st_gid != w->attr.st_gid
2631 || w->prev.st_rdev != w->attr.st_rdev 3166 || prev.st_rdev != w->attr.st_rdev
2632 || w->prev.st_size != w->attr.st_size 3167 || prev.st_size != w->attr.st_size
2633 || w->prev.st_atime != w->attr.st_atime 3168 || prev.st_atime != w->attr.st_atime
2634 || w->prev.st_mtime != w->attr.st_mtime 3169 || prev.st_mtime != w->attr.st_mtime
2635 || w->prev.st_ctime != w->attr.st_ctime 3170 || prev.st_ctime != w->attr.st_ctime
2636 ) { 3171 ) {
3172 /* we only update w->prev on actual differences */
3173 /* in case we test more often than invoke the callback, */
3174 /* to ensure that prev is always different to attr */
3175 w->prev = prev;
3176
2637 #if EV_USE_INOTIFY 3177 #if EV_USE_INOTIFY
2638 if (fs_fd >= 0) 3178 if (fs_fd >= 0)
2639 { 3179 {
2640 infy_del (EV_A_ w); 3180 infy_del (EV_A_ w);
2641 infy_add (EV_A_ w); 3181 infy_add (EV_A_ w);
2651ev_stat_start (EV_P_ ev_stat *w) 3191ev_stat_start (EV_P_ ev_stat *w)
2652{ 3192{
2653 if (expect_false (ev_is_active (w))) 3193 if (expect_false (ev_is_active (w)))
2654 return; 3194 return;
2655 3195
2656 /* since we use memcmp, we need to clear any padding data etc. */
2657 memset (&w->prev, 0, sizeof (ev_statdata));
2658 memset (&w->attr, 0, sizeof (ev_statdata));
2659
2660 ev_stat_stat (EV_A_ w); 3196 ev_stat_stat (EV_A_ w);
2661 3197
3198 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2662 if (w->interval < MIN_STAT_INTERVAL) 3199 w->interval = MIN_STAT_INTERVAL;
2663 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2664 3200
2665 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3201 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2666 ev_set_priority (&w->timer, ev_priority (w)); 3202 ev_set_priority (&w->timer, ev_priority (w));
2667 3203
2668#if EV_USE_INOTIFY 3204#if EV_USE_INOTIFY
2669 infy_init (EV_A); 3205 infy_init (EV_A);
2670 3206
2671 if (fs_fd >= 0) 3207 if (fs_fd >= 0)
2672 infy_add (EV_A_ w); 3208 infy_add (EV_A_ w);
2673 else 3209 else
2674#endif 3210#endif
3211 {
2675 ev_timer_start (EV_A_ &w->timer); 3212 ev_timer_again (EV_A_ &w->timer);
3213 ev_unref (EV_A);
3214 }
2676 3215
2677 ev_start (EV_A_ (W)w, 1); 3216 ev_start (EV_A_ (W)w, 1);
2678 3217
2679 EV_FREQUENT_CHECK; 3218 EV_FREQUENT_CHECK;
2680} 3219}
2689 EV_FREQUENT_CHECK; 3228 EV_FREQUENT_CHECK;
2690 3229
2691#if EV_USE_INOTIFY 3230#if EV_USE_INOTIFY
2692 infy_del (EV_A_ w); 3231 infy_del (EV_A_ w);
2693#endif 3232#endif
3233
3234 if (ev_is_active (&w->timer))
3235 {
3236 ev_ref (EV_A);
2694 ev_timer_stop (EV_A_ &w->timer); 3237 ev_timer_stop (EV_A_ &w->timer);
3238 }
2695 3239
2696 ev_stop (EV_A_ (W)w); 3240 ev_stop (EV_A_ (W)w);
2697 3241
2698 EV_FREQUENT_CHECK; 3242 EV_FREQUENT_CHECK;
2699} 3243}
2840embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3384embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2841{ 3385{
2842 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3386 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2843 3387
2844 { 3388 {
2845 struct ev_loop *loop = w->other; 3389 EV_P = w->other;
2846 3390
2847 while (fdchangecnt) 3391 while (fdchangecnt)
2848 { 3392 {
2849 fd_reify (EV_A); 3393 fd_reify (EV_A);
2850 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3394 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2855static void 3399static void
2856embed_fork_cb (EV_P_ ev_fork *fork_w, int revents) 3400embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2857{ 3401{
2858 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 3402 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2859 3403
3404 ev_embed_stop (EV_A_ w);
3405
2860 { 3406 {
2861 struct ev_loop *loop = w->other; 3407 EV_P = w->other;
2862 3408
2863 ev_loop_fork (EV_A); 3409 ev_loop_fork (EV_A);
3410 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2864 } 3411 }
3412
3413 ev_embed_start (EV_A_ w);
2865} 3414}
2866 3415
2867#if 0 3416#if 0
2868static void 3417static void
2869embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3418embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2877{ 3426{
2878 if (expect_false (ev_is_active (w))) 3427 if (expect_false (ev_is_active (w)))
2879 return; 3428 return;
2880 3429
2881 { 3430 {
2882 struct ev_loop *loop = w->other; 3431 EV_P = w->other;
2883 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3432 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2884 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3433 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2885 } 3434 }
2886 3435
2887 EV_FREQUENT_CHECK; 3436 EV_FREQUENT_CHECK;
2888 3437
2914 3463
2915 ev_io_stop (EV_A_ &w->io); 3464 ev_io_stop (EV_A_ &w->io);
2916 ev_prepare_stop (EV_A_ &w->prepare); 3465 ev_prepare_stop (EV_A_ &w->prepare);
2917 ev_fork_stop (EV_A_ &w->fork); 3466 ev_fork_stop (EV_A_ &w->fork);
2918 3467
3468 ev_stop (EV_A_ (W)w);
3469
2919 EV_FREQUENT_CHECK; 3470 EV_FREQUENT_CHECK;
2920} 3471}
2921#endif 3472#endif
2922 3473
2923#if EV_FORK_ENABLE 3474#if EV_FORK_ENABLE
2999 3550
3000void 3551void
3001ev_async_send (EV_P_ ev_async *w) 3552ev_async_send (EV_P_ ev_async *w)
3002{ 3553{
3003 w->sent = 1; 3554 w->sent = 1;
3004 evpipe_write (EV_A_ &gotasync); 3555 evpipe_write (EV_A_ &async_pending);
3005} 3556}
3006#endif 3557#endif
3007 3558
3008/*****************************************************************************/ 3559/*****************************************************************************/
3009 3560
3071 ev_timer_set (&once->to, timeout, 0.); 3622 ev_timer_set (&once->to, timeout, 0.);
3072 ev_timer_start (EV_A_ &once->to); 3623 ev_timer_start (EV_A_ &once->to);
3073 } 3624 }
3074} 3625}
3075 3626
3627/*****************************************************************************/
3628
3629#if EV_WALK_ENABLE
3630void
3631ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3632{
3633 int i, j;
3634 ev_watcher_list *wl, *wn;
3635
3636 if (types & (EV_IO | EV_EMBED))
3637 for (i = 0; i < anfdmax; ++i)
3638 for (wl = anfds [i].head; wl; )
3639 {
3640 wn = wl->next;
3641
3642#if EV_EMBED_ENABLE
3643 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3644 {
3645 if (types & EV_EMBED)
3646 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3647 }
3648 else
3649#endif
3650#if EV_USE_INOTIFY
3651 if (ev_cb ((ev_io *)wl) == infy_cb)
3652 ;
3653 else
3654#endif
3655 if ((ev_io *)wl != &pipe_w)
3656 if (types & EV_IO)
3657 cb (EV_A_ EV_IO, wl);
3658
3659 wl = wn;
3660 }
3661
3662 if (types & (EV_TIMER | EV_STAT))
3663 for (i = timercnt + HEAP0; i-- > HEAP0; )
3664#if EV_STAT_ENABLE
3665 /*TODO: timer is not always active*/
3666 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3667 {
3668 if (types & EV_STAT)
3669 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3670 }
3671 else
3672#endif
3673 if (types & EV_TIMER)
3674 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3675
3676#if EV_PERIODIC_ENABLE
3677 if (types & EV_PERIODIC)
3678 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3679 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3680#endif
3681
3682#if EV_IDLE_ENABLE
3683 if (types & EV_IDLE)
3684 for (j = NUMPRI; i--; )
3685 for (i = idlecnt [j]; i--; )
3686 cb (EV_A_ EV_IDLE, idles [j][i]);
3687#endif
3688
3689#if EV_FORK_ENABLE
3690 if (types & EV_FORK)
3691 for (i = forkcnt; i--; )
3692 if (ev_cb (forks [i]) != embed_fork_cb)
3693 cb (EV_A_ EV_FORK, forks [i]);
3694#endif
3695
3696#if EV_ASYNC_ENABLE
3697 if (types & EV_ASYNC)
3698 for (i = asynccnt; i--; )
3699 cb (EV_A_ EV_ASYNC, asyncs [i]);
3700#endif
3701
3702 if (types & EV_PREPARE)
3703 for (i = preparecnt; i--; )
3704#if EV_EMBED_ENABLE
3705 if (ev_cb (prepares [i]) != embed_prepare_cb)
3706#endif
3707 cb (EV_A_ EV_PREPARE, prepares [i]);
3708
3709 if (types & EV_CHECK)
3710 for (i = checkcnt; i--; )
3711 cb (EV_A_ EV_CHECK, checks [i]);
3712
3713 if (types & EV_SIGNAL)
3714 for (i = 0; i < EV_NSIG - 1; ++i)
3715 for (wl = signals [i].head; wl; )
3716 {
3717 wn = wl->next;
3718 cb (EV_A_ EV_SIGNAL, wl);
3719 wl = wn;
3720 }
3721
3722 if (types & EV_CHILD)
3723 for (i = EV_PID_HASHSIZE; i--; )
3724 for (wl = childs [i]; wl; )
3725 {
3726 wn = wl->next;
3727 cb (EV_A_ EV_CHILD, wl);
3728 wl = wn;
3729 }
3730/* EV_STAT 0x00001000 /* stat data changed */
3731/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3732}
3733#endif
3734
3076#if EV_MULTIPLICITY 3735#if EV_MULTIPLICITY
3077 #include "ev_wrap.h" 3736 #include "ev_wrap.h"
3078#endif 3737#endif
3079 3738
3080#ifdef __cplusplus 3739#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines