ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.271 by root, Mon Nov 3 12:13:15 2008 UTC vs.
Revision 1.372 by root, Wed Feb 16 08:02:50 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
61
52# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
55# endif 65# endif
56# ifndef EV_USE_REALTIME 66# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
58# endif 68# endif
59# else 69# else
60# ifndef EV_USE_MONOTONIC 70# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 71# define EV_USE_MONOTONIC 0
62# endif 72# endif
63# ifndef EV_USE_REALTIME 73# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 74# define EV_USE_REALTIME 0
65# endif 75# endif
66# endif 76# endif
67 77
78# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 79# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 80# define EV_USE_NANOSLEEP EV_FEATURE_OS
81# endif
71# else 82# else
83# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 84# define EV_USE_NANOSLEEP 0
85# endif
86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
88# ifndef EV_USE_SELECT
89# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 90# endif
91# else
92# undef EV_USE_SELECT
93# define EV_USE_SELECT 0
74# endif 94# endif
75 95
96# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 97# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 98# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 99# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 100# else
101# undef EV_USE_POLL
88# define EV_USE_POLL 0 102# define EV_USE_POLL 0
89# endif
90# endif 103# endif
91 104
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 106# ifndef EV_USE_EPOLL
95# else 107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
98# endif 112# endif
99 113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 115# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
106# endif 121# endif
107 122
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 124# ifndef EV_USE_PORT
111# else 125# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
114# endif 130# endif
115 131
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 133# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
122# endif 139# endif
123 140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 142# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 143# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
148# endif
149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
130# endif 157# endif
131 158
132#endif 159#endif
133 160
134#include <math.h> 161#include <math.h>
135#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
136#include <fcntl.h> 164#include <fcntl.h>
137#include <stddef.h> 165#include <stddef.h>
138 166
139#include <stdio.h> 167#include <stdio.h>
140 168
141#include <assert.h> 169#include <assert.h>
142#include <errno.h> 170#include <errno.h>
143#include <sys/types.h> 171#include <sys/types.h>
144#include <time.h> 172#include <time.h>
173#include <limits.h>
145 174
146#include <signal.h> 175#include <signal.h>
147 176
148#ifdef EV_H 177#ifdef EV_H
149# include EV_H 178# include EV_H
150#else 179#else
151# include "ev.h" 180# include "ev.h"
152#endif 181#endif
182
183EV_CPP(extern "C" {)
153 184
154#ifndef _WIN32 185#ifndef _WIN32
155# include <sys/time.h> 186# include <sys/time.h>
156# include <sys/wait.h> 187# include <sys/wait.h>
157# include <unistd.h> 188# include <unistd.h>
160# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
161# include <windows.h> 192# include <windows.h>
162# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
163# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
164# endif 195# endif
196# undef EV_AVOID_STDIO
165#endif 197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
166 206
167/* this block tries to deduce configuration from header-defined symbols and defaults */ 207/* this block tries to deduce configuration from header-defined symbols and defaults */
208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
242# endif
243#endif
168 244
169#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1 247# define EV_USE_MONOTONIC EV_FEATURE_OS
172# else 248# else
173# define EV_USE_MONOTONIC 0 249# define EV_USE_MONOTONIC 0
174# endif 250# endif
175#endif 251#endif
176 252
177#ifndef EV_USE_REALTIME 253#ifndef EV_USE_REALTIME
178# define EV_USE_REALTIME 0 254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
179#endif 255#endif
180 256
181#ifndef EV_USE_NANOSLEEP 257#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L 258# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1 259# define EV_USE_NANOSLEEP EV_FEATURE_OS
184# else 260# else
185# define EV_USE_NANOSLEEP 0 261# define EV_USE_NANOSLEEP 0
186# endif 262# endif
187#endif 263#endif
188 264
189#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
190# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
191#endif 267#endif
192 268
193#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
194# ifdef _WIN32 270# ifdef _WIN32
195# define EV_USE_POLL 0 271# define EV_USE_POLL 0
196# else 272# else
197# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
198# endif 274# endif
199#endif 275#endif
200 276
201#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1 279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
204# else 280# else
205# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
206# endif 282# endif
207#endif 283#endif
208 284
214# define EV_USE_PORT 0 290# define EV_USE_PORT 0
215#endif 291#endif
216 292
217#ifndef EV_USE_INOTIFY 293#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1 295# define EV_USE_INOTIFY EV_FEATURE_OS
220# else 296# else
221# define EV_USE_INOTIFY 0 297# define EV_USE_INOTIFY 0
222# endif 298# endif
223#endif 299#endif
224 300
225#ifndef EV_PID_HASHSIZE 301#ifndef EV_PID_HASHSIZE
226# if EV_MINIMAL 302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
230# endif
231#endif 303#endif
232 304
233#ifndef EV_INOTIFY_HASHSIZE 305#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL 306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif 307#endif
240 308
241#ifndef EV_USE_EVENTFD 309#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1 311# define EV_USE_EVENTFD EV_FEATURE_OS
244# else 312# else
245# define EV_USE_EVENTFD 0 313# define EV_USE_EVENTFD 0
314# endif
315#endif
316
317#ifndef EV_USE_SIGNALFD
318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
319# define EV_USE_SIGNALFD EV_FEATURE_OS
320# else
321# define EV_USE_SIGNALFD 0
246# endif 322# endif
247#endif 323#endif
248 324
249#if 0 /* debugging */ 325#if 0 /* debugging */
250# define EV_VERIFY 3 326# define EV_VERIFY 3
251# define EV_USE_4HEAP 1 327# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1 328# define EV_HEAP_CACHE_AT 1
253#endif 329#endif
254 330
255#ifndef EV_VERIFY 331#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL 332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
257#endif 333#endif
258 334
259#ifndef EV_USE_4HEAP 335#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL 336# define EV_USE_4HEAP EV_FEATURE_DATA
261#endif 337#endif
262 338
263#ifndef EV_HEAP_CACHE_AT 339#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL 340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
265#endif 355#endif
266 356
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
268 364
269#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
270# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
271# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
272#endif 368#endif
280# undef EV_USE_INOTIFY 376# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0 377# define EV_USE_INOTIFY 0
282#endif 378#endif
283 379
284#if !EV_USE_NANOSLEEP 380#if !EV_USE_NANOSLEEP
285# ifndef _WIN32 381/* hp-ux has it in sys/time.h, which we unconditionally include above */
382# if !defined(_WIN32) && !defined(__hpux)
286# include <sys/select.h> 383# include <sys/select.h>
287# endif 384# endif
288#endif 385#endif
289 386
290#if EV_USE_INOTIFY 387#if EV_USE_INOTIFY
291# include <sys/utsname.h>
292# include <sys/statfs.h> 388# include <sys/statfs.h>
293# include <sys/inotify.h> 389# include <sys/inotify.h>
294/* some very old inotify.h headers don't have IN_DONT_FOLLOW */ 390/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
295# ifndef IN_DONT_FOLLOW 391# ifndef IN_DONT_FOLLOW
296# undef EV_USE_INOTIFY 392# undef EV_USE_INOTIFY
303#endif 399#endif
304 400
305#if EV_USE_EVENTFD 401#if EV_USE_EVENTFD
306/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 402/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
307# include <stdint.h> 403# include <stdint.h>
308# ifdef __cplusplus 404# ifndef EFD_NONBLOCK
309extern "C" { 405# define EFD_NONBLOCK O_NONBLOCK
310# endif 406# endif
311int eventfd (unsigned int initval, int flags); 407# ifndef EFD_CLOEXEC
312# ifdef __cplusplus 408# ifdef O_CLOEXEC
313} 409# define EFD_CLOEXEC O_CLOEXEC
410# else
411# define EFD_CLOEXEC 02000000
412# endif
314# endif 413# endif
414EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
415#endif
416
417#if EV_USE_SIGNALFD
418/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
419# include <stdint.h>
420# ifndef SFD_NONBLOCK
421# define SFD_NONBLOCK O_NONBLOCK
422# endif
423# ifndef SFD_CLOEXEC
424# ifdef O_CLOEXEC
425# define SFD_CLOEXEC O_CLOEXEC
426# else
427# define SFD_CLOEXEC 02000000
428# endif
429# endif
430EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
431
432struct signalfd_siginfo
433{
434 uint32_t ssi_signo;
435 char pad[128 - sizeof (uint32_t)];
436};
315#endif 437#endif
316 438
317/**/ 439/**/
318 440
319#if EV_VERIFY >= 3 441#if EV_VERIFY >= 3
320# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 442# define EV_FREQUENT_CHECK ev_verify (EV_A)
321#else 443#else
322# define EV_FREQUENT_CHECK do { } while (0) 444# define EV_FREQUENT_CHECK do { } while (0)
323#endif 445#endif
324 446
325/* 447/*
332 */ 454 */
333#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 455#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
334 456
335#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 457#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
336#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 458#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
337/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 459
460#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
461#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
338 462
339#if __GNUC__ >= 4 463#if __GNUC__ >= 4
340# define expect(expr,value) __builtin_expect ((expr),(value)) 464# define expect(expr,value) __builtin_expect ((expr),(value))
341# define noinline __attribute__ ((noinline)) 465# define noinline __attribute__ ((noinline))
342#else 466#else
349 473
350#define expect_false(expr) expect ((expr) != 0, 0) 474#define expect_false(expr) expect ((expr) != 0, 0)
351#define expect_true(expr) expect ((expr) != 0, 1) 475#define expect_true(expr) expect ((expr) != 0, 1)
352#define inline_size static inline 476#define inline_size static inline
353 477
354#if EV_MINIMAL 478#if EV_FEATURE_CODE
479# define inline_speed static inline
480#else
355# define inline_speed static noinline 481# define inline_speed static noinline
482#endif
483
484#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
485
486#if EV_MINPRI == EV_MAXPRI
487# define ABSPRI(w) (((W)w), 0)
356#else 488#else
357# define inline_speed static inline
358#endif
359
360#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
361#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 489# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
490#endif
362 491
363#define EMPTY /* required for microsofts broken pseudo-c compiler */ 492#define EMPTY /* required for microsofts broken pseudo-c compiler */
364#define EMPTY2(a,b) /* used to suppress some warnings */ 493#define EMPTY2(a,b) /* used to suppress some warnings */
365 494
366typedef ev_watcher *W; 495typedef ev_watcher *W;
368typedef ev_watcher_time *WT; 497typedef ev_watcher_time *WT;
369 498
370#define ev_active(w) ((W)(w))->active 499#define ev_active(w) ((W)(w))->active
371#define ev_at(w) ((WT)(w))->at 500#define ev_at(w) ((WT)(w))->at
372 501
502#if EV_USE_REALTIME
503/* sig_atomic_t is used to avoid per-thread variables or locking but still */
504/* giving it a reasonably high chance of working on typical architectures */
505static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
506#endif
507
373#if EV_USE_MONOTONIC 508#if EV_USE_MONOTONIC
374/* sig_atomic_t is used to avoid per-thread variables or locking but still */
375/* giving it a reasonably high chance of working on typical architetcures */
376static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 509static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
510#endif
511
512#ifndef EV_FD_TO_WIN32_HANDLE
513# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
514#endif
515#ifndef EV_WIN32_HANDLE_TO_FD
516# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
517#endif
518#ifndef EV_WIN32_CLOSE_FD
519# define EV_WIN32_CLOSE_FD(fd) close (fd)
377#endif 520#endif
378 521
379#ifdef _WIN32 522#ifdef _WIN32
380# include "ev_win32.c" 523# include "ev_win32.c"
381#endif 524#endif
382 525
383/*****************************************************************************/ 526/*****************************************************************************/
527
528#ifdef __linux
529# include <sys/utsname.h>
530#endif
531
532static unsigned int noinline
533ev_linux_version (void)
534{
535#ifdef __linux
536 unsigned int v = 0;
537 struct utsname buf;
538 int i;
539 char *p = buf.release;
540
541 if (uname (&buf))
542 return 0;
543
544 for (i = 3+1; --i; )
545 {
546 unsigned int c = 0;
547
548 for (;;)
549 {
550 if (*p >= '0' && *p <= '9')
551 c = c * 10 + *p++ - '0';
552 else
553 {
554 p += *p == '.';
555 break;
556 }
557 }
558
559 v = (v << 8) | c;
560 }
561
562 return v;
563#else
564 return 0;
565#endif
566}
567
568/*****************************************************************************/
569
570#if EV_AVOID_STDIO
571static void noinline
572ev_printerr (const char *msg)
573{
574 write (STDERR_FILENO, msg, strlen (msg));
575}
576#endif
384 577
385static void (*syserr_cb)(const char *msg); 578static void (*syserr_cb)(const char *msg);
386 579
387void 580void
388ev_set_syserr_cb (void (*cb)(const char *msg)) 581ev_set_syserr_cb (void (*cb)(const char *msg))
398 591
399 if (syserr_cb) 592 if (syserr_cb)
400 syserr_cb (msg); 593 syserr_cb (msg);
401 else 594 else
402 { 595 {
596#if EV_AVOID_STDIO
597 ev_printerr (msg);
598 ev_printerr (": ");
599 ev_printerr (strerror (errno));
600 ev_printerr ("\n");
601#else
403 perror (msg); 602 perror (msg);
603#endif
404 abort (); 604 abort ();
405 } 605 }
406} 606}
407 607
408static void * 608static void *
409ev_realloc_emul (void *ptr, long size) 609ev_realloc_emul (void *ptr, long size)
410{ 610{
611#if __GLIBC__
612 return realloc (ptr, size);
613#else
411 /* some systems, notably openbsd and darwin, fail to properly 614 /* some systems, notably openbsd and darwin, fail to properly
412 * implement realloc (x, 0) (as required by both ansi c-98 and 615 * implement realloc (x, 0) (as required by both ansi c-89 and
413 * the single unix specification, so work around them here. 616 * the single unix specification, so work around them here.
414 */ 617 */
415 618
416 if (size) 619 if (size)
417 return realloc (ptr, size); 620 return realloc (ptr, size);
418 621
419 free (ptr); 622 free (ptr);
420 return 0; 623 return 0;
624#endif
421} 625}
422 626
423static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 627static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
424 628
425void 629void
433{ 637{
434 ptr = alloc (ptr, size); 638 ptr = alloc (ptr, size);
435 639
436 if (!ptr && size) 640 if (!ptr && size)
437 { 641 {
642#if EV_AVOID_STDIO
643 ev_printerr ("(libev) memory allocation failed, aborting.\n");
644#else
438 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 645 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
646#endif
439 abort (); 647 abort ();
440 } 648 }
441 649
442 return ptr; 650 return ptr;
443} 651}
445#define ev_malloc(size) ev_realloc (0, (size)) 653#define ev_malloc(size) ev_realloc (0, (size))
446#define ev_free(ptr) ev_realloc ((ptr), 0) 654#define ev_free(ptr) ev_realloc ((ptr), 0)
447 655
448/*****************************************************************************/ 656/*****************************************************************************/
449 657
658/* set in reify when reification needed */
659#define EV_ANFD_REIFY 1
660
661/* file descriptor info structure */
450typedef struct 662typedef struct
451{ 663{
452 WL head; 664 WL head;
453 unsigned char events; 665 unsigned char events; /* the events watched for */
454 unsigned char reify; 666 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
455 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 667 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
456 unsigned char unused; 668 unsigned char unused;
457#if EV_USE_EPOLL 669#if EV_USE_EPOLL
458 unsigned int egen; /* generation counter to counter epoll bugs */ 670 unsigned int egen; /* generation counter to counter epoll bugs */
459#endif 671#endif
460#if EV_SELECT_IS_WINSOCKET 672#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
461 SOCKET handle; 673 SOCKET handle;
462#endif 674#endif
675#if EV_USE_IOCP
676 OVERLAPPED or, ow;
677#endif
463} ANFD; 678} ANFD;
464 679
680/* stores the pending event set for a given watcher */
465typedef struct 681typedef struct
466{ 682{
467 W w; 683 W w;
468 int events; 684 int events; /* the pending event set for the given watcher */
469} ANPENDING; 685} ANPENDING;
470 686
471#if EV_USE_INOTIFY 687#if EV_USE_INOTIFY
472/* hash table entry per inotify-id */ 688/* hash table entry per inotify-id */
473typedef struct 689typedef struct
476} ANFS; 692} ANFS;
477#endif 693#endif
478 694
479/* Heap Entry */ 695/* Heap Entry */
480#if EV_HEAP_CACHE_AT 696#if EV_HEAP_CACHE_AT
697 /* a heap element */
481 typedef struct { 698 typedef struct {
482 ev_tstamp at; 699 ev_tstamp at;
483 WT w; 700 WT w;
484 } ANHE; 701 } ANHE;
485 702
486 #define ANHE_w(he) (he).w /* access watcher, read-write */ 703 #define ANHE_w(he) (he).w /* access watcher, read-write */
487 #define ANHE_at(he) (he).at /* access cached at, read-only */ 704 #define ANHE_at(he) (he).at /* access cached at, read-only */
488 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 705 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
489#else 706#else
707 /* a heap element */
490 typedef WT ANHE; 708 typedef WT ANHE;
491 709
492 #define ANHE_w(he) (he) 710 #define ANHE_w(he) (he)
493 #define ANHE_at(he) (he)->at 711 #define ANHE_at(he) (he)->at
494 #define ANHE_at_cache(he) 712 #define ANHE_at_cache(he)
518 736
519 static int ev_default_loop_ptr; 737 static int ev_default_loop_ptr;
520 738
521#endif 739#endif
522 740
741#if EV_FEATURE_API
742# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
743# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
744# define EV_INVOKE_PENDING invoke_cb (EV_A)
745#else
746# define EV_RELEASE_CB (void)0
747# define EV_ACQUIRE_CB (void)0
748# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
749#endif
750
751#define EVBREAK_RECURSE 0x80
752
523/*****************************************************************************/ 753/*****************************************************************************/
524 754
755#ifndef EV_HAVE_EV_TIME
525ev_tstamp 756ev_tstamp
526ev_time (void) 757ev_time (void)
527{ 758{
528#if EV_USE_REALTIME 759#if EV_USE_REALTIME
760 if (expect_true (have_realtime))
761 {
529 struct timespec ts; 762 struct timespec ts;
530 clock_gettime (CLOCK_REALTIME, &ts); 763 clock_gettime (CLOCK_REALTIME, &ts);
531 return ts.tv_sec + ts.tv_nsec * 1e-9; 764 return ts.tv_sec + ts.tv_nsec * 1e-9;
532#else 765 }
766#endif
767
533 struct timeval tv; 768 struct timeval tv;
534 gettimeofday (&tv, 0); 769 gettimeofday (&tv, 0);
535 return tv.tv_sec + tv.tv_usec * 1e-6; 770 return tv.tv_sec + tv.tv_usec * 1e-6;
536#endif
537} 771}
772#endif
538 773
539ev_tstamp inline_size 774inline_size ev_tstamp
540get_clock (void) 775get_clock (void)
541{ 776{
542#if EV_USE_MONOTONIC 777#if EV_USE_MONOTONIC
543 if (expect_true (have_monotonic)) 778 if (expect_true (have_monotonic))
544 { 779 {
565 if (delay > 0.) 800 if (delay > 0.)
566 { 801 {
567#if EV_USE_NANOSLEEP 802#if EV_USE_NANOSLEEP
568 struct timespec ts; 803 struct timespec ts;
569 804
570 ts.tv_sec = (time_t)delay; 805 EV_TS_SET (ts, delay);
571 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
572
573 nanosleep (&ts, 0); 806 nanosleep (&ts, 0);
574#elif defined(_WIN32) 807#elif defined(_WIN32)
575 Sleep ((unsigned long)(delay * 1e3)); 808 Sleep ((unsigned long)(delay * 1e3));
576#else 809#else
577 struct timeval tv; 810 struct timeval tv;
578 811
579 tv.tv_sec = (time_t)delay;
580 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
581
582 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 812 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
583 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 813 /* something not guaranteed by newer posix versions, but guaranteed */
584 /* by older ones */ 814 /* by older ones */
815 EV_TV_SET (tv, delay);
585 select (0, 0, 0, 0, &tv); 816 select (0, 0, 0, 0, &tv);
586#endif 817#endif
587 } 818 }
588} 819}
589 820
821inline_speed int
822ev_timeout_to_ms (ev_tstamp timeout)
823{
824 int ms = timeout * 1000. + .999999;
825
826 return expect_true (ms) ? ms : timeout < 1e-6 ? 0 : 1;
827}
828
590/*****************************************************************************/ 829/*****************************************************************************/
591 830
592#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 831#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
593 832
594int inline_size 833/* find a suitable new size for the given array, */
834/* hopefully by rounding to a nice-to-malloc size */
835inline_size int
595array_nextsize (int elem, int cur, int cnt) 836array_nextsize (int elem, int cur, int cnt)
596{ 837{
597 int ncur = cur + 1; 838 int ncur = cur + 1;
598 839
599 do 840 do
640 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 881 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
641 } 882 }
642#endif 883#endif
643 884
644#define array_free(stem, idx) \ 885#define array_free(stem, idx) \
645 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 886 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
646 887
647/*****************************************************************************/ 888/*****************************************************************************/
889
890/* dummy callback for pending events */
891static void noinline
892pendingcb (EV_P_ ev_prepare *w, int revents)
893{
894}
648 895
649void noinline 896void noinline
650ev_feed_event (EV_P_ void *w, int revents) 897ev_feed_event (EV_P_ void *w, int revents)
651{ 898{
652 W w_ = (W)w; 899 W w_ = (W)w;
661 pendings [pri][w_->pending - 1].w = w_; 908 pendings [pri][w_->pending - 1].w = w_;
662 pendings [pri][w_->pending - 1].events = revents; 909 pendings [pri][w_->pending - 1].events = revents;
663 } 910 }
664} 911}
665 912
666void inline_speed 913inline_speed void
914feed_reverse (EV_P_ W w)
915{
916 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
917 rfeeds [rfeedcnt++] = w;
918}
919
920inline_size void
921feed_reverse_done (EV_P_ int revents)
922{
923 do
924 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
925 while (rfeedcnt);
926}
927
928inline_speed void
667queue_events (EV_P_ W *events, int eventcnt, int type) 929queue_events (EV_P_ W *events, int eventcnt, int type)
668{ 930{
669 int i; 931 int i;
670 932
671 for (i = 0; i < eventcnt; ++i) 933 for (i = 0; i < eventcnt; ++i)
672 ev_feed_event (EV_A_ events [i], type); 934 ev_feed_event (EV_A_ events [i], type);
673} 935}
674 936
675/*****************************************************************************/ 937/*****************************************************************************/
676 938
677void inline_speed 939inline_speed void
678fd_event (EV_P_ int fd, int revents) 940fd_event_nocheck (EV_P_ int fd, int revents)
679{ 941{
680 ANFD *anfd = anfds + fd; 942 ANFD *anfd = anfds + fd;
681 ev_io *w; 943 ev_io *w;
682 944
683 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 945 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
687 if (ev) 949 if (ev)
688 ev_feed_event (EV_A_ (W)w, ev); 950 ev_feed_event (EV_A_ (W)w, ev);
689 } 951 }
690} 952}
691 953
954/* do not submit kernel events for fds that have reify set */
955/* because that means they changed while we were polling for new events */
956inline_speed void
957fd_event (EV_P_ int fd, int revents)
958{
959 ANFD *anfd = anfds + fd;
960
961 if (expect_true (!anfd->reify))
962 fd_event_nocheck (EV_A_ fd, revents);
963}
964
692void 965void
693ev_feed_fd_event (EV_P_ int fd, int revents) 966ev_feed_fd_event (EV_P_ int fd, int revents)
694{ 967{
695 if (fd >= 0 && fd < anfdmax) 968 if (fd >= 0 && fd < anfdmax)
696 fd_event (EV_A_ fd, revents); 969 fd_event_nocheck (EV_A_ fd, revents);
697} 970}
698 971
699void inline_size 972/* make sure the external fd watch events are in-sync */
973/* with the kernel/libev internal state */
974inline_size void
700fd_reify (EV_P) 975fd_reify (EV_P)
701{ 976{
702 int i; 977 int i;
978
979#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
980 for (i = 0; i < fdchangecnt; ++i)
981 {
982 int fd = fdchanges [i];
983 ANFD *anfd = anfds + fd;
984
985 if (anfd->reify & EV__IOFDSET)
986 {
987 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
988
989 if (handle != anfd->handle)
990 {
991 unsigned long arg;
992
993 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
994
995 /* handle changed, but fd didn't - we need to do it in two steps */
996 backend_modify (EV_A_ fd, anfd->events, 0);
997 anfd->events = 0;
998 anfd->handle = handle;
999 }
1000 }
1001 }
1002#endif
703 1003
704 for (i = 0; i < fdchangecnt; ++i) 1004 for (i = 0; i < fdchangecnt; ++i)
705 { 1005 {
706 int fd = fdchanges [i]; 1006 int fd = fdchanges [i];
707 ANFD *anfd = anfds + fd; 1007 ANFD *anfd = anfds + fd;
708 ev_io *w; 1008 ev_io *w;
709 1009
710 unsigned char events = 0; 1010 unsigned char o_events = anfd->events;
1011 unsigned char o_reify = anfd->reify;
711 1012
712 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1013 anfd->reify = 0;
713 events |= (unsigned char)w->events;
714 1014
715#if EV_SELECT_IS_WINSOCKET 1015 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
716 if (events)
717 { 1016 {
718 unsigned long arg; 1017 anfd->events = 0;
719 #ifdef EV_FD_TO_WIN32_HANDLE 1018
720 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1019 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
721 #else 1020 anfd->events |= (unsigned char)w->events;
722 anfd->handle = _get_osfhandle (fd); 1021
723 #endif 1022 if (o_events != anfd->events)
724 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 1023 o_reify = EV__IOFDSET; /* actually |= */
725 } 1024 }
726#endif
727 1025
728 { 1026 if (o_reify & EV__IOFDSET)
729 unsigned char o_events = anfd->events;
730 unsigned char o_reify = anfd->reify;
731
732 anfd->reify = 0;
733 anfd->events = events;
734
735 if (o_events != events || o_reify & EV_IOFDSET)
736 backend_modify (EV_A_ fd, o_events, events); 1027 backend_modify (EV_A_ fd, o_events, anfd->events);
737 }
738 } 1028 }
739 1029
740 fdchangecnt = 0; 1030 fdchangecnt = 0;
741} 1031}
742 1032
743void inline_size 1033/* something about the given fd changed */
1034inline_size void
744fd_change (EV_P_ int fd, int flags) 1035fd_change (EV_P_ int fd, int flags)
745{ 1036{
746 unsigned char reify = anfds [fd].reify; 1037 unsigned char reify = anfds [fd].reify;
747 anfds [fd].reify |= flags; 1038 anfds [fd].reify |= flags;
748 1039
752 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1043 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
753 fdchanges [fdchangecnt - 1] = fd; 1044 fdchanges [fdchangecnt - 1] = fd;
754 } 1045 }
755} 1046}
756 1047
757void inline_speed 1048/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1049inline_speed void
758fd_kill (EV_P_ int fd) 1050fd_kill (EV_P_ int fd)
759{ 1051{
760 ev_io *w; 1052 ev_io *w;
761 1053
762 while ((w = (ev_io *)anfds [fd].head)) 1054 while ((w = (ev_io *)anfds [fd].head))
764 ev_io_stop (EV_A_ w); 1056 ev_io_stop (EV_A_ w);
765 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1057 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
766 } 1058 }
767} 1059}
768 1060
769int inline_size 1061/* check whether the given fd is actually valid, for error recovery */
1062inline_size int
770fd_valid (int fd) 1063fd_valid (int fd)
771{ 1064{
772#ifdef _WIN32 1065#ifdef _WIN32
773 return _get_osfhandle (fd) != -1; 1066 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
774#else 1067#else
775 return fcntl (fd, F_GETFD) != -1; 1068 return fcntl (fd, F_GETFD) != -1;
776#endif 1069#endif
777} 1070}
778 1071
796 1089
797 for (fd = anfdmax; fd--; ) 1090 for (fd = anfdmax; fd--; )
798 if (anfds [fd].events) 1091 if (anfds [fd].events)
799 { 1092 {
800 fd_kill (EV_A_ fd); 1093 fd_kill (EV_A_ fd);
801 return; 1094 break;
802 } 1095 }
803} 1096}
804 1097
805/* usually called after fork if backend needs to re-arm all fds from scratch */ 1098/* usually called after fork if backend needs to re-arm all fds from scratch */
806static void noinline 1099static void noinline
811 for (fd = 0; fd < anfdmax; ++fd) 1104 for (fd = 0; fd < anfdmax; ++fd)
812 if (anfds [fd].events) 1105 if (anfds [fd].events)
813 { 1106 {
814 anfds [fd].events = 0; 1107 anfds [fd].events = 0;
815 anfds [fd].emask = 0; 1108 anfds [fd].emask = 0;
816 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1109 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
817 } 1110 }
818} 1111}
819 1112
1113/* used to prepare libev internal fd's */
1114/* this is not fork-safe */
1115inline_speed void
1116fd_intern (int fd)
1117{
1118#ifdef _WIN32
1119 unsigned long arg = 1;
1120 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1121#else
1122 fcntl (fd, F_SETFD, FD_CLOEXEC);
1123 fcntl (fd, F_SETFL, O_NONBLOCK);
1124#endif
1125}
1126
820/*****************************************************************************/ 1127/*****************************************************************************/
821 1128
822/* 1129/*
823 * the heap functions want a real array index. array index 0 uis guaranteed to not 1130 * the heap functions want a real array index. array index 0 is guaranteed to not
824 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1131 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
825 * the branching factor of the d-tree. 1132 * the branching factor of the d-tree.
826 */ 1133 */
827 1134
828/* 1135/*
837#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1144#define HEAP0 (DHEAP - 1) /* index of first element in heap */
838#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1145#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
839#define UPHEAP_DONE(p,k) ((p) == (k)) 1146#define UPHEAP_DONE(p,k) ((p) == (k))
840 1147
841/* away from the root */ 1148/* away from the root */
842void inline_speed 1149inline_speed void
843downheap (ANHE *heap, int N, int k) 1150downheap (ANHE *heap, int N, int k)
844{ 1151{
845 ANHE he = heap [k]; 1152 ANHE he = heap [k];
846 ANHE *E = heap + N + HEAP0; 1153 ANHE *E = heap + N + HEAP0;
847 1154
887#define HEAP0 1 1194#define HEAP0 1
888#define HPARENT(k) ((k) >> 1) 1195#define HPARENT(k) ((k) >> 1)
889#define UPHEAP_DONE(p,k) (!(p)) 1196#define UPHEAP_DONE(p,k) (!(p))
890 1197
891/* away from the root */ 1198/* away from the root */
892void inline_speed 1199inline_speed void
893downheap (ANHE *heap, int N, int k) 1200downheap (ANHE *heap, int N, int k)
894{ 1201{
895 ANHE he = heap [k]; 1202 ANHE he = heap [k];
896 1203
897 for (;;) 1204 for (;;)
898 { 1205 {
899 int c = k << 1; 1206 int c = k << 1;
900 1207
901 if (c > N + HEAP0 - 1) 1208 if (c >= N + HEAP0)
902 break; 1209 break;
903 1210
904 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1211 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
905 ? 1 : 0; 1212 ? 1 : 0;
906 1213
917 ev_active (ANHE_w (he)) = k; 1224 ev_active (ANHE_w (he)) = k;
918} 1225}
919#endif 1226#endif
920 1227
921/* towards the root */ 1228/* towards the root */
922void inline_speed 1229inline_speed void
923upheap (ANHE *heap, int k) 1230upheap (ANHE *heap, int k)
924{ 1231{
925 ANHE he = heap [k]; 1232 ANHE he = heap [k];
926 1233
927 for (;;) 1234 for (;;)
938 1245
939 heap [k] = he; 1246 heap [k] = he;
940 ev_active (ANHE_w (he)) = k; 1247 ev_active (ANHE_w (he)) = k;
941} 1248}
942 1249
943void inline_size 1250/* move an element suitably so it is in a correct place */
1251inline_size void
944adjustheap (ANHE *heap, int N, int k) 1252adjustheap (ANHE *heap, int N, int k)
945{ 1253{
946 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1254 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
947 upheap (heap, k); 1255 upheap (heap, k);
948 else 1256 else
949 downheap (heap, N, k); 1257 downheap (heap, N, k);
950} 1258}
951 1259
952/* rebuild the heap: this function is used only once and executed rarely */ 1260/* rebuild the heap: this function is used only once and executed rarely */
953void inline_size 1261inline_size void
954reheap (ANHE *heap, int N) 1262reheap (ANHE *heap, int N)
955{ 1263{
956 int i; 1264 int i;
957 1265
958 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1266 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
961 upheap (heap, i + HEAP0); 1269 upheap (heap, i + HEAP0);
962} 1270}
963 1271
964/*****************************************************************************/ 1272/*****************************************************************************/
965 1273
1274/* associate signal watchers to a signal signal */
966typedef struct 1275typedef struct
967{ 1276{
1277 EV_ATOMIC_T pending;
1278#if EV_MULTIPLICITY
1279 EV_P;
1280#endif
968 WL head; 1281 WL head;
969 EV_ATOMIC_T gotsig;
970} ANSIG; 1282} ANSIG;
971 1283
972static ANSIG *signals; 1284static ANSIG signals [EV_NSIG - 1];
973static int signalmax;
974
975static EV_ATOMIC_T gotsig;
976 1285
977/*****************************************************************************/ 1286/*****************************************************************************/
978 1287
979void inline_speed 1288#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
980fd_intern (int fd)
981{
982#ifdef _WIN32
983 unsigned long arg = 1;
984 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
985#else
986 fcntl (fd, F_SETFD, FD_CLOEXEC);
987 fcntl (fd, F_SETFL, O_NONBLOCK);
988#endif
989}
990 1289
991static void noinline 1290static void noinline
992evpipe_init (EV_P) 1291evpipe_init (EV_P)
993{ 1292{
994 if (!ev_is_active (&pipeev)) 1293 if (!ev_is_active (&pipe_w))
995 { 1294 {
996#if EV_USE_EVENTFD 1295# if EV_USE_EVENTFD
1296 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1297 if (evfd < 0 && errno == EINVAL)
997 if ((evfd = eventfd (0, 0)) >= 0) 1298 evfd = eventfd (0, 0);
1299
1300 if (evfd >= 0)
998 { 1301 {
999 evpipe [0] = -1; 1302 evpipe [0] = -1;
1000 fd_intern (evfd); 1303 fd_intern (evfd); /* doing it twice doesn't hurt */
1001 ev_io_set (&pipeev, evfd, EV_READ); 1304 ev_io_set (&pipe_w, evfd, EV_READ);
1002 } 1305 }
1003 else 1306 else
1004#endif 1307# endif
1005 { 1308 {
1006 while (pipe (evpipe)) 1309 while (pipe (evpipe))
1007 ev_syserr ("(libev) error creating signal/async pipe"); 1310 ev_syserr ("(libev) error creating signal/async pipe");
1008 1311
1009 fd_intern (evpipe [0]); 1312 fd_intern (evpipe [0]);
1010 fd_intern (evpipe [1]); 1313 fd_intern (evpipe [1]);
1011 ev_io_set (&pipeev, evpipe [0], EV_READ); 1314 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1012 } 1315 }
1013 1316
1014 ev_io_start (EV_A_ &pipeev); 1317 ev_io_start (EV_A_ &pipe_w);
1015 ev_unref (EV_A); /* watcher should not keep loop alive */ 1318 ev_unref (EV_A); /* watcher should not keep loop alive */
1016 } 1319 }
1017} 1320}
1018 1321
1019void inline_size 1322inline_size void
1020evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1323evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1021{ 1324{
1022 if (!*flag) 1325 if (!*flag)
1023 { 1326 {
1024 int old_errno = errno; /* save errno because write might clobber it */ 1327 int old_errno = errno; /* save errno because write might clobber it */
1328 char dummy;
1025 1329
1026 *flag = 1; 1330 *flag = 1;
1027 1331
1028#if EV_USE_EVENTFD 1332#if EV_USE_EVENTFD
1029 if (evfd >= 0) 1333 if (evfd >= 0)
1031 uint64_t counter = 1; 1335 uint64_t counter = 1;
1032 write (evfd, &counter, sizeof (uint64_t)); 1336 write (evfd, &counter, sizeof (uint64_t));
1033 } 1337 }
1034 else 1338 else
1035#endif 1339#endif
1340 /* win32 people keep sending patches that change this write() to send() */
1341 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1342 /* so when you think this write should be a send instead, please find out */
1343 /* where your send() is from - it's definitely not the microsoft send, and */
1344 /* tell me. thank you. */
1036 write (evpipe [1], &old_errno, 1); 1345 write (evpipe [1], &dummy, 1);
1037 1346
1038 errno = old_errno; 1347 errno = old_errno;
1039 } 1348 }
1040} 1349}
1041 1350
1351/* called whenever the libev signal pipe */
1352/* got some events (signal, async) */
1042static void 1353static void
1043pipecb (EV_P_ ev_io *iow, int revents) 1354pipecb (EV_P_ ev_io *iow, int revents)
1044{ 1355{
1356 int i;
1357
1045#if EV_USE_EVENTFD 1358#if EV_USE_EVENTFD
1046 if (evfd >= 0) 1359 if (evfd >= 0)
1047 { 1360 {
1048 uint64_t counter; 1361 uint64_t counter;
1049 read (evfd, &counter, sizeof (uint64_t)); 1362 read (evfd, &counter, sizeof (uint64_t));
1050 } 1363 }
1051 else 1364 else
1052#endif 1365#endif
1053 { 1366 {
1054 char dummy; 1367 char dummy;
1368 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1055 read (evpipe [0], &dummy, 1); 1369 read (evpipe [0], &dummy, 1);
1056 } 1370 }
1057 1371
1058 if (gotsig && ev_is_default_loop (EV_A)) 1372#if EV_SIGNAL_ENABLE
1059 { 1373 if (sig_pending)
1060 int signum; 1374 {
1061 gotsig = 0; 1375 sig_pending = 0;
1062 1376
1063 for (signum = signalmax; signum--; ) 1377 for (i = EV_NSIG - 1; i--; )
1064 if (signals [signum].gotsig) 1378 if (expect_false (signals [i].pending))
1065 ev_feed_signal_event (EV_A_ signum + 1); 1379 ev_feed_signal_event (EV_A_ i + 1);
1066 } 1380 }
1381#endif
1067 1382
1068#if EV_ASYNC_ENABLE 1383#if EV_ASYNC_ENABLE
1069 if (gotasync) 1384 if (async_pending)
1070 { 1385 {
1071 int i; 1386 async_pending = 0;
1072 gotasync = 0;
1073 1387
1074 for (i = asynccnt; i--; ) 1388 for (i = asynccnt; i--; )
1075 if (asyncs [i]->sent) 1389 if (asyncs [i]->sent)
1076 { 1390 {
1077 asyncs [i]->sent = 0; 1391 asyncs [i]->sent = 0;
1081#endif 1395#endif
1082} 1396}
1083 1397
1084/*****************************************************************************/ 1398/*****************************************************************************/
1085 1399
1400void
1401ev_feed_signal (int signum)
1402{
1403#if EV_MULTIPLICITY
1404 EV_P = signals [signum - 1].loop;
1405
1406 if (!EV_A)
1407 return;
1408#endif
1409
1410 signals [signum - 1].pending = 1;
1411 evpipe_write (EV_A_ &sig_pending);
1412}
1413
1086static void 1414static void
1087ev_sighandler (int signum) 1415ev_sighandler (int signum)
1088{ 1416{
1089#if EV_MULTIPLICITY
1090 struct ev_loop *loop = &default_loop_struct;
1091#endif
1092
1093#if _WIN32 1417#ifdef _WIN32
1094 signal (signum, ev_sighandler); 1418 signal (signum, ev_sighandler);
1095#endif 1419#endif
1096 1420
1097 signals [signum - 1].gotsig = 1; 1421 ev_feed_signal (signum);
1098 evpipe_write (EV_A_ &gotsig);
1099} 1422}
1100 1423
1101void noinline 1424void noinline
1102ev_feed_signal_event (EV_P_ int signum) 1425ev_feed_signal_event (EV_P_ int signum)
1103{ 1426{
1104 WL w; 1427 WL w;
1105 1428
1429 if (expect_false (signum <= 0 || signum > EV_NSIG))
1430 return;
1431
1432 --signum;
1433
1106#if EV_MULTIPLICITY 1434#if EV_MULTIPLICITY
1107 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1435 /* it is permissible to try to feed a signal to the wrong loop */
1108#endif 1436 /* or, likely more useful, feeding a signal nobody is waiting for */
1109 1437
1110 --signum; 1438 if (expect_false (signals [signum].loop != EV_A))
1111
1112 if (signum < 0 || signum >= signalmax)
1113 return; 1439 return;
1440#endif
1114 1441
1115 signals [signum].gotsig = 0; 1442 signals [signum].pending = 0;
1116 1443
1117 for (w = signals [signum].head; w; w = w->next) 1444 for (w = signals [signum].head; w; w = w->next)
1118 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1445 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1119} 1446}
1120 1447
1448#if EV_USE_SIGNALFD
1449static void
1450sigfdcb (EV_P_ ev_io *iow, int revents)
1451{
1452 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1453
1454 for (;;)
1455 {
1456 ssize_t res = read (sigfd, si, sizeof (si));
1457
1458 /* not ISO-C, as res might be -1, but works with SuS */
1459 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1460 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1461
1462 if (res < (ssize_t)sizeof (si))
1463 break;
1464 }
1465}
1466#endif
1467
1468#endif
1469
1121/*****************************************************************************/ 1470/*****************************************************************************/
1122 1471
1472#if EV_CHILD_ENABLE
1123static WL childs [EV_PID_HASHSIZE]; 1473static WL childs [EV_PID_HASHSIZE];
1124
1125#ifndef _WIN32
1126 1474
1127static ev_signal childev; 1475static ev_signal childev;
1128 1476
1129#ifndef WIFCONTINUED 1477#ifndef WIFCONTINUED
1130# define WIFCONTINUED(status) 0 1478# define WIFCONTINUED(status) 0
1131#endif 1479#endif
1132 1480
1133void inline_speed 1481/* handle a single child status event */
1482inline_speed void
1134child_reap (EV_P_ int chain, int pid, int status) 1483child_reap (EV_P_ int chain, int pid, int status)
1135{ 1484{
1136 ev_child *w; 1485 ev_child *w;
1137 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1486 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1138 1487
1139 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1488 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1140 { 1489 {
1141 if ((w->pid == pid || !w->pid) 1490 if ((w->pid == pid || !w->pid)
1142 && (!traced || (w->flags & 1))) 1491 && (!traced || (w->flags & 1)))
1143 { 1492 {
1144 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1493 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1151 1500
1152#ifndef WCONTINUED 1501#ifndef WCONTINUED
1153# define WCONTINUED 0 1502# define WCONTINUED 0
1154#endif 1503#endif
1155 1504
1505/* called on sigchld etc., calls waitpid */
1156static void 1506static void
1157childcb (EV_P_ ev_signal *sw, int revents) 1507childcb (EV_P_ ev_signal *sw, int revents)
1158{ 1508{
1159 int pid, status; 1509 int pid, status;
1160 1510
1168 /* make sure we are called again until all children have been reaped */ 1518 /* make sure we are called again until all children have been reaped */
1169 /* we need to do it this way so that the callback gets called before we continue */ 1519 /* we need to do it this way so that the callback gets called before we continue */
1170 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1520 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1171 1521
1172 child_reap (EV_A_ pid, pid, status); 1522 child_reap (EV_A_ pid, pid, status);
1173 if (EV_PID_HASHSIZE > 1) 1523 if ((EV_PID_HASHSIZE) > 1)
1174 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1524 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1175} 1525}
1176 1526
1177#endif 1527#endif
1178 1528
1179/*****************************************************************************/ 1529/*****************************************************************************/
1180 1530
1531#if EV_USE_IOCP
1532# include "ev_iocp.c"
1533#endif
1181#if EV_USE_PORT 1534#if EV_USE_PORT
1182# include "ev_port.c" 1535# include "ev_port.c"
1183#endif 1536#endif
1184#if EV_USE_KQUEUE 1537#if EV_USE_KQUEUE
1185# include "ev_kqueue.c" 1538# include "ev_kqueue.c"
1241 /* kqueue is borked on everything but netbsd apparently */ 1594 /* kqueue is borked on everything but netbsd apparently */
1242 /* it usually doesn't work correctly on anything but sockets and pipes */ 1595 /* it usually doesn't work correctly on anything but sockets and pipes */
1243 flags &= ~EVBACKEND_KQUEUE; 1596 flags &= ~EVBACKEND_KQUEUE;
1244#endif 1597#endif
1245#ifdef __APPLE__ 1598#ifdef __APPLE__
1246 // flags &= ~EVBACKEND_KQUEUE; for documentation 1599 /* only select works correctly on that "unix-certified" platform */
1247 flags &= ~EVBACKEND_POLL; 1600 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1601 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1602#endif
1603#ifdef __FreeBSD__
1604 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1248#endif 1605#endif
1249 1606
1250 return flags; 1607 return flags;
1251} 1608}
1252 1609
1254ev_embeddable_backends (void) 1611ev_embeddable_backends (void)
1255{ 1612{
1256 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 1613 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1257 1614
1258 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1615 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1259 /* please fix it and tell me how to detect the fix */ 1616 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1260 flags &= ~EVBACKEND_EPOLL; 1617 flags &= ~EVBACKEND_EPOLL;
1261 1618
1262 return flags; 1619 return flags;
1263} 1620}
1264 1621
1265unsigned int 1622unsigned int
1266ev_backend (EV_P) 1623ev_backend (EV_P)
1267{ 1624{
1268 return backend; 1625 return backend;
1269} 1626}
1270 1627
1628#if EV_FEATURE_API
1271unsigned int 1629unsigned int
1272ev_loop_count (EV_P) 1630ev_iteration (EV_P)
1273{ 1631{
1274 return loop_count; 1632 return loop_count;
1275} 1633}
1276 1634
1635unsigned int
1636ev_depth (EV_P)
1637{
1638 return loop_depth;
1639}
1640
1277void 1641void
1278ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1642ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1279{ 1643{
1280 io_blocktime = interval; 1644 io_blocktime = interval;
1281} 1645}
1284ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1648ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1285{ 1649{
1286 timeout_blocktime = interval; 1650 timeout_blocktime = interval;
1287} 1651}
1288 1652
1653void
1654ev_set_userdata (EV_P_ void *data)
1655{
1656 userdata = data;
1657}
1658
1659void *
1660ev_userdata (EV_P)
1661{
1662 return userdata;
1663}
1664
1665void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1666{
1667 invoke_cb = invoke_pending_cb;
1668}
1669
1670void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1671{
1672 release_cb = release;
1673 acquire_cb = acquire;
1674}
1675#endif
1676
1677/* initialise a loop structure, must be zero-initialised */
1289static void noinline 1678static void noinline
1290loop_init (EV_P_ unsigned int flags) 1679loop_init (EV_P_ unsigned int flags)
1291{ 1680{
1292 if (!backend) 1681 if (!backend)
1293 { 1682 {
1683 origflags = flags;
1684
1685#if EV_USE_REALTIME
1686 if (!have_realtime)
1687 {
1688 struct timespec ts;
1689
1690 if (!clock_gettime (CLOCK_REALTIME, &ts))
1691 have_realtime = 1;
1692 }
1693#endif
1694
1294#if EV_USE_MONOTONIC 1695#if EV_USE_MONOTONIC
1696 if (!have_monotonic)
1295 { 1697 {
1296 struct timespec ts; 1698 struct timespec ts;
1699
1297 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1700 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1298 have_monotonic = 1; 1701 have_monotonic = 1;
1299 } 1702 }
1300#endif 1703#endif
1704
1705 /* pid check not overridable via env */
1706#ifndef _WIN32
1707 if (flags & EVFLAG_FORKCHECK)
1708 curpid = getpid ();
1709#endif
1710
1711 if (!(flags & EVFLAG_NOENV)
1712 && !enable_secure ()
1713 && getenv ("LIBEV_FLAGS"))
1714 flags = atoi (getenv ("LIBEV_FLAGS"));
1301 1715
1302 ev_rt_now = ev_time (); 1716 ev_rt_now = ev_time ();
1303 mn_now = get_clock (); 1717 mn_now = get_clock ();
1304 now_floor = mn_now; 1718 now_floor = mn_now;
1305 rtmn_diff = ev_rt_now - mn_now; 1719 rtmn_diff = ev_rt_now - mn_now;
1720#if EV_FEATURE_API
1721 invoke_cb = ev_invoke_pending;
1722#endif
1306 1723
1307 io_blocktime = 0.; 1724 io_blocktime = 0.;
1308 timeout_blocktime = 0.; 1725 timeout_blocktime = 0.;
1309 backend = 0; 1726 backend = 0;
1310 backend_fd = -1; 1727 backend_fd = -1;
1311 gotasync = 0; 1728 sig_pending = 0;
1729#if EV_ASYNC_ENABLE
1730 async_pending = 0;
1731#endif
1312#if EV_USE_INOTIFY 1732#if EV_USE_INOTIFY
1313 fs_fd = -2; 1733 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1314#endif 1734#endif
1315 1735#if EV_USE_SIGNALFD
1316 /* pid check not overridable via env */ 1736 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1317#ifndef _WIN32
1318 if (flags & EVFLAG_FORKCHECK)
1319 curpid = getpid ();
1320#endif 1737#endif
1321 1738
1322 if (!(flags & EVFLAG_NOENV) 1739 if (!(flags & EVBACKEND_MASK))
1323 && !enable_secure ()
1324 && getenv ("LIBEV_FLAGS"))
1325 flags = atoi (getenv ("LIBEV_FLAGS"));
1326
1327 if (!(flags & 0x0000ffffU))
1328 flags |= ev_recommended_backends (); 1740 flags |= ev_recommended_backends ();
1329 1741
1742#if EV_USE_IOCP
1743 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1744#endif
1330#if EV_USE_PORT 1745#if EV_USE_PORT
1331 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1746 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1332#endif 1747#endif
1333#if EV_USE_KQUEUE 1748#if EV_USE_KQUEUE
1334 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1749 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1341#endif 1756#endif
1342#if EV_USE_SELECT 1757#if EV_USE_SELECT
1343 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1758 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1344#endif 1759#endif
1345 1760
1761 ev_prepare_init (&pending_w, pendingcb);
1762
1763#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1346 ev_init (&pipeev, pipecb); 1764 ev_init (&pipe_w, pipecb);
1347 ev_set_priority (&pipeev, EV_MAXPRI); 1765 ev_set_priority (&pipe_w, EV_MAXPRI);
1766#endif
1348 } 1767 }
1349} 1768}
1350 1769
1351static void noinline 1770/* free up a loop structure */
1771void
1352loop_destroy (EV_P) 1772ev_loop_destroy (EV_P)
1353{ 1773{
1354 int i; 1774 int i;
1355 1775
1776#if EV_MULTIPLICITY
1777 /* mimic free (0) */
1778 if (!EV_A)
1779 return;
1780#endif
1781
1782#if EV_CLEANUP_ENABLE
1783 /* queue cleanup watchers (and execute them) */
1784 if (expect_false (cleanupcnt))
1785 {
1786 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1787 EV_INVOKE_PENDING;
1788 }
1789#endif
1790
1791#if EV_CHILD_ENABLE
1792 if (ev_is_active (&childev))
1793 {
1794 ev_ref (EV_A); /* child watcher */
1795 ev_signal_stop (EV_A_ &childev);
1796 }
1797#endif
1798
1356 if (ev_is_active (&pipeev)) 1799 if (ev_is_active (&pipe_w))
1357 { 1800 {
1358 ev_ref (EV_A); /* signal watcher */ 1801 /*ev_ref (EV_A);*/
1359 ev_io_stop (EV_A_ &pipeev); 1802 /*ev_io_stop (EV_A_ &pipe_w);*/
1360 1803
1361#if EV_USE_EVENTFD 1804#if EV_USE_EVENTFD
1362 if (evfd >= 0) 1805 if (evfd >= 0)
1363 close (evfd); 1806 close (evfd);
1364#endif 1807#endif
1365 1808
1366 if (evpipe [0] >= 0) 1809 if (evpipe [0] >= 0)
1367 { 1810 {
1368 close (evpipe [0]); 1811 EV_WIN32_CLOSE_FD (evpipe [0]);
1369 close (evpipe [1]); 1812 EV_WIN32_CLOSE_FD (evpipe [1]);
1370 } 1813 }
1371 } 1814 }
1815
1816#if EV_USE_SIGNALFD
1817 if (ev_is_active (&sigfd_w))
1818 close (sigfd);
1819#endif
1372 1820
1373#if EV_USE_INOTIFY 1821#if EV_USE_INOTIFY
1374 if (fs_fd >= 0) 1822 if (fs_fd >= 0)
1375 close (fs_fd); 1823 close (fs_fd);
1376#endif 1824#endif
1377 1825
1378 if (backend_fd >= 0) 1826 if (backend_fd >= 0)
1379 close (backend_fd); 1827 close (backend_fd);
1380 1828
1829#if EV_USE_IOCP
1830 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1831#endif
1381#if EV_USE_PORT 1832#if EV_USE_PORT
1382 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1833 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1383#endif 1834#endif
1384#if EV_USE_KQUEUE 1835#if EV_USE_KQUEUE
1385 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1836 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1400#if EV_IDLE_ENABLE 1851#if EV_IDLE_ENABLE
1401 array_free (idle, [i]); 1852 array_free (idle, [i]);
1402#endif 1853#endif
1403 } 1854 }
1404 1855
1405 ev_free (anfds); anfdmax = 0; 1856 ev_free (anfds); anfds = 0; anfdmax = 0;
1406 1857
1407 /* have to use the microsoft-never-gets-it-right macro */ 1858 /* have to use the microsoft-never-gets-it-right macro */
1859 array_free (rfeed, EMPTY);
1408 array_free (fdchange, EMPTY); 1860 array_free (fdchange, EMPTY);
1409 array_free (timer, EMPTY); 1861 array_free (timer, EMPTY);
1410#if EV_PERIODIC_ENABLE 1862#if EV_PERIODIC_ENABLE
1411 array_free (periodic, EMPTY); 1863 array_free (periodic, EMPTY);
1412#endif 1864#endif
1413#if EV_FORK_ENABLE 1865#if EV_FORK_ENABLE
1414 array_free (fork, EMPTY); 1866 array_free (fork, EMPTY);
1415#endif 1867#endif
1868#if EV_CLEANUP_ENABLE
1869 array_free (cleanup, EMPTY);
1870#endif
1416 array_free (prepare, EMPTY); 1871 array_free (prepare, EMPTY);
1417 array_free (check, EMPTY); 1872 array_free (check, EMPTY);
1418#if EV_ASYNC_ENABLE 1873#if EV_ASYNC_ENABLE
1419 array_free (async, EMPTY); 1874 array_free (async, EMPTY);
1420#endif 1875#endif
1421 1876
1422 backend = 0; 1877 backend = 0;
1878
1879#if EV_MULTIPLICITY
1880 if (ev_is_default_loop (EV_A))
1881#endif
1882 ev_default_loop_ptr = 0;
1883#if EV_MULTIPLICITY
1884 else
1885 ev_free (EV_A);
1886#endif
1423} 1887}
1424 1888
1425#if EV_USE_INOTIFY 1889#if EV_USE_INOTIFY
1426void inline_size infy_fork (EV_P); 1890inline_size void infy_fork (EV_P);
1427#endif 1891#endif
1428 1892
1429void inline_size 1893inline_size void
1430loop_fork (EV_P) 1894loop_fork (EV_P)
1431{ 1895{
1432#if EV_USE_PORT 1896#if EV_USE_PORT
1433 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1897 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1434#endif 1898#endif
1440#endif 1904#endif
1441#if EV_USE_INOTIFY 1905#if EV_USE_INOTIFY
1442 infy_fork (EV_A); 1906 infy_fork (EV_A);
1443#endif 1907#endif
1444 1908
1445 if (ev_is_active (&pipeev)) 1909 if (ev_is_active (&pipe_w))
1446 { 1910 {
1447 /* this "locks" the handlers against writing to the pipe */ 1911 /* this "locks" the handlers against writing to the pipe */
1448 /* while we modify the fd vars */ 1912 /* while we modify the fd vars */
1449 gotsig = 1; 1913 sig_pending = 1;
1450#if EV_ASYNC_ENABLE 1914#if EV_ASYNC_ENABLE
1451 gotasync = 1; 1915 async_pending = 1;
1452#endif 1916#endif
1453 1917
1454 ev_ref (EV_A); 1918 ev_ref (EV_A);
1455 ev_io_stop (EV_A_ &pipeev); 1919 ev_io_stop (EV_A_ &pipe_w);
1456 1920
1457#if EV_USE_EVENTFD 1921#if EV_USE_EVENTFD
1458 if (evfd >= 0) 1922 if (evfd >= 0)
1459 close (evfd); 1923 close (evfd);
1460#endif 1924#endif
1461 1925
1462 if (evpipe [0] >= 0) 1926 if (evpipe [0] >= 0)
1463 { 1927 {
1464 close (evpipe [0]); 1928 EV_WIN32_CLOSE_FD (evpipe [0]);
1465 close (evpipe [1]); 1929 EV_WIN32_CLOSE_FD (evpipe [1]);
1466 } 1930 }
1467 1931
1932#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1468 evpipe_init (EV_A); 1933 evpipe_init (EV_A);
1469 /* now iterate over everything, in case we missed something */ 1934 /* now iterate over everything, in case we missed something */
1470 pipecb (EV_A_ &pipeev, EV_READ); 1935 pipecb (EV_A_ &pipe_w, EV_READ);
1936#endif
1471 } 1937 }
1472 1938
1473 postfork = 0; 1939 postfork = 0;
1474} 1940}
1475 1941
1476#if EV_MULTIPLICITY 1942#if EV_MULTIPLICITY
1477 1943
1478struct ev_loop * 1944struct ev_loop *
1479ev_loop_new (unsigned int flags) 1945ev_loop_new (unsigned int flags)
1480{ 1946{
1481 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1947 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1482 1948
1483 memset (loop, 0, sizeof (struct ev_loop)); 1949 memset (EV_A, 0, sizeof (struct ev_loop));
1484
1485 loop_init (EV_A_ flags); 1950 loop_init (EV_A_ flags);
1486 1951
1487 if (ev_backend (EV_A)) 1952 if (ev_backend (EV_A))
1488 return loop; 1953 return EV_A;
1489 1954
1955 ev_free (EV_A);
1490 return 0; 1956 return 0;
1491} 1957}
1492 1958
1493void 1959#endif /* multiplicity */
1494ev_loop_destroy (EV_P)
1495{
1496 loop_destroy (EV_A);
1497 ev_free (loop);
1498}
1499
1500void
1501ev_loop_fork (EV_P)
1502{
1503 postfork = 1; /* must be in line with ev_default_fork */
1504}
1505 1960
1506#if EV_VERIFY 1961#if EV_VERIFY
1507static void noinline 1962static void noinline
1508verify_watcher (EV_P_ W w) 1963verify_watcher (EV_P_ W w)
1509{ 1964{
1510 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 1965 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1511 1966
1512 if (w->pending) 1967 if (w->pending)
1513 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 1968 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1514} 1969}
1515 1970
1516static void noinline 1971static void noinline
1517verify_heap (EV_P_ ANHE *heap, int N) 1972verify_heap (EV_P_ ANHE *heap, int N)
1518{ 1973{
1519 int i; 1974 int i;
1520 1975
1521 for (i = HEAP0; i < N + HEAP0; ++i) 1976 for (i = HEAP0; i < N + HEAP0; ++i)
1522 { 1977 {
1523 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 1978 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1524 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 1979 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1525 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 1980 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1526 1981
1527 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 1982 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1528 } 1983 }
1529} 1984}
1530 1985
1531static void noinline 1986static void noinline
1532array_verify (EV_P_ W *ws, int cnt) 1987array_verify (EV_P_ W *ws, int cnt)
1533{ 1988{
1534 while (cnt--) 1989 while (cnt--)
1535 { 1990 {
1536 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 1991 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1537 verify_watcher (EV_A_ ws [cnt]); 1992 verify_watcher (EV_A_ ws [cnt]);
1538 } 1993 }
1539} 1994}
1540#endif 1995#endif
1541 1996
1997#if EV_FEATURE_API
1542void 1998void
1543ev_loop_verify (EV_P) 1999ev_verify (EV_P)
1544{ 2000{
1545#if EV_VERIFY 2001#if EV_VERIFY
1546 int i; 2002 int i;
1547 WL w; 2003 WL w;
1548 2004
1549 assert (activecnt >= -1); 2005 assert (activecnt >= -1);
1550 2006
1551 assert (fdchangemax >= fdchangecnt); 2007 assert (fdchangemax >= fdchangecnt);
1552 for (i = 0; i < fdchangecnt; ++i) 2008 for (i = 0; i < fdchangecnt; ++i)
1553 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 2009 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1554 2010
1555 assert (anfdmax >= 0); 2011 assert (anfdmax >= 0);
1556 for (i = 0; i < anfdmax; ++i) 2012 for (i = 0; i < anfdmax; ++i)
1557 for (w = anfds [i].head; w; w = w->next) 2013 for (w = anfds [i].head; w; w = w->next)
1558 { 2014 {
1559 verify_watcher (EV_A_ (W)w); 2015 verify_watcher (EV_A_ (W)w);
1560 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 2016 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1561 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 2017 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1562 } 2018 }
1563 2019
1564 assert (timermax >= timercnt); 2020 assert (timermax >= timercnt);
1565 verify_heap (EV_A_ timers, timercnt); 2021 verify_heap (EV_A_ timers, timercnt);
1566 2022
1582#if EV_FORK_ENABLE 2038#if EV_FORK_ENABLE
1583 assert (forkmax >= forkcnt); 2039 assert (forkmax >= forkcnt);
1584 array_verify (EV_A_ (W *)forks, forkcnt); 2040 array_verify (EV_A_ (W *)forks, forkcnt);
1585#endif 2041#endif
1586 2042
2043#if EV_CLEANUP_ENABLE
2044 assert (cleanupmax >= cleanupcnt);
2045 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2046#endif
2047
1587#if EV_ASYNC_ENABLE 2048#if EV_ASYNC_ENABLE
1588 assert (asyncmax >= asynccnt); 2049 assert (asyncmax >= asynccnt);
1589 array_verify (EV_A_ (W *)asyncs, asynccnt); 2050 array_verify (EV_A_ (W *)asyncs, asynccnt);
1590#endif 2051#endif
1591 2052
2053#if EV_PREPARE_ENABLE
1592 assert (preparemax >= preparecnt); 2054 assert (preparemax >= preparecnt);
1593 array_verify (EV_A_ (W *)prepares, preparecnt); 2055 array_verify (EV_A_ (W *)prepares, preparecnt);
2056#endif
1594 2057
2058#if EV_CHECK_ENABLE
1595 assert (checkmax >= checkcnt); 2059 assert (checkmax >= checkcnt);
1596 array_verify (EV_A_ (W *)checks, checkcnt); 2060 array_verify (EV_A_ (W *)checks, checkcnt);
2061#endif
1597 2062
1598# if 0 2063# if 0
2064#if EV_CHILD_ENABLE
1599 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2065 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1600 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 2066 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2067#endif
1601# endif 2068# endif
1602#endif 2069#endif
1603} 2070}
1604 2071#endif
1605#endif /* multiplicity */
1606 2072
1607#if EV_MULTIPLICITY 2073#if EV_MULTIPLICITY
1608struct ev_loop * 2074struct ev_loop *
1609ev_default_loop_init (unsigned int flags)
1610#else 2075#else
1611int 2076int
2077#endif
1612ev_default_loop (unsigned int flags) 2078ev_default_loop (unsigned int flags)
1613#endif
1614{ 2079{
1615 if (!ev_default_loop_ptr) 2080 if (!ev_default_loop_ptr)
1616 { 2081 {
1617#if EV_MULTIPLICITY 2082#if EV_MULTIPLICITY
1618 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2083 EV_P = ev_default_loop_ptr = &default_loop_struct;
1619#else 2084#else
1620 ev_default_loop_ptr = 1; 2085 ev_default_loop_ptr = 1;
1621#endif 2086#endif
1622 2087
1623 loop_init (EV_A_ flags); 2088 loop_init (EV_A_ flags);
1624 2089
1625 if (ev_backend (EV_A)) 2090 if (ev_backend (EV_A))
1626 { 2091 {
1627#ifndef _WIN32 2092#if EV_CHILD_ENABLE
1628 ev_signal_init (&childev, childcb, SIGCHLD); 2093 ev_signal_init (&childev, childcb, SIGCHLD);
1629 ev_set_priority (&childev, EV_MAXPRI); 2094 ev_set_priority (&childev, EV_MAXPRI);
1630 ev_signal_start (EV_A_ &childev); 2095 ev_signal_start (EV_A_ &childev);
1631 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2096 ev_unref (EV_A); /* child watcher should not keep loop alive */
1632#endif 2097#endif
1637 2102
1638 return ev_default_loop_ptr; 2103 return ev_default_loop_ptr;
1639} 2104}
1640 2105
1641void 2106void
1642ev_default_destroy (void) 2107ev_loop_fork (EV_P)
1643{ 2108{
1644#if EV_MULTIPLICITY
1645 struct ev_loop *loop = ev_default_loop_ptr;
1646#endif
1647
1648 ev_default_loop_ptr = 0;
1649
1650#ifndef _WIN32
1651 ev_ref (EV_A); /* child watcher */
1652 ev_signal_stop (EV_A_ &childev);
1653#endif
1654
1655 loop_destroy (EV_A);
1656}
1657
1658void
1659ev_default_fork (void)
1660{
1661#if EV_MULTIPLICITY
1662 struct ev_loop *loop = ev_default_loop_ptr;
1663#endif
1664
1665 postfork = 1; /* must be in line with ev_loop_fork */ 2109 postfork = 1; /* must be in line with ev_default_fork */
1666} 2110}
1667 2111
1668/*****************************************************************************/ 2112/*****************************************************************************/
1669 2113
1670void 2114void
1671ev_invoke (EV_P_ void *w, int revents) 2115ev_invoke (EV_P_ void *w, int revents)
1672{ 2116{
1673 EV_CB_INVOKE ((W)w, revents); 2117 EV_CB_INVOKE ((W)w, revents);
1674} 2118}
1675 2119
1676void inline_speed 2120unsigned int
1677call_pending (EV_P) 2121ev_pending_count (EV_P)
2122{
2123 int pri;
2124 unsigned int count = 0;
2125
2126 for (pri = NUMPRI; pri--; )
2127 count += pendingcnt [pri];
2128
2129 return count;
2130}
2131
2132void noinline
2133ev_invoke_pending (EV_P)
1678{ 2134{
1679 int pri; 2135 int pri;
1680 2136
1681 for (pri = NUMPRI; pri--; ) 2137 for (pri = NUMPRI; pri--; )
1682 while (pendingcnt [pri]) 2138 while (pendingcnt [pri])
1683 { 2139 {
1684 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2140 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1685 2141
1686 if (expect_true (p->w))
1687 {
1688 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1689
1690 p->w->pending = 0; 2142 p->w->pending = 0;
1691 EV_CB_INVOKE (p->w, p->events); 2143 EV_CB_INVOKE (p->w, p->events);
1692 EV_FREQUENT_CHECK; 2144 EV_FREQUENT_CHECK;
1693 }
1694 } 2145 }
1695} 2146}
1696 2147
1697#if EV_IDLE_ENABLE 2148#if EV_IDLE_ENABLE
1698void inline_size 2149/* make idle watchers pending. this handles the "call-idle */
2150/* only when higher priorities are idle" logic */
2151inline_size void
1699idle_reify (EV_P) 2152idle_reify (EV_P)
1700{ 2153{
1701 if (expect_false (idleall)) 2154 if (expect_false (idleall))
1702 { 2155 {
1703 int pri; 2156 int pri;
1715 } 2168 }
1716 } 2169 }
1717} 2170}
1718#endif 2171#endif
1719 2172
1720void inline_size 2173/* make timers pending */
2174inline_size void
1721timers_reify (EV_P) 2175timers_reify (EV_P)
1722{ 2176{
1723 EV_FREQUENT_CHECK; 2177 EV_FREQUENT_CHECK;
1724 2178
1725 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2179 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1726 { 2180 {
1727 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2181 do
1728
1729 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1730
1731 /* first reschedule or stop timer */
1732 if (w->repeat)
1733 { 2182 {
2183 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2184
2185 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2186
2187 /* first reschedule or stop timer */
2188 if (w->repeat)
2189 {
1734 ev_at (w) += w->repeat; 2190 ev_at (w) += w->repeat;
1735 if (ev_at (w) < mn_now) 2191 if (ev_at (w) < mn_now)
1736 ev_at (w) = mn_now; 2192 ev_at (w) = mn_now;
1737 2193
1738 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2194 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1739 2195
1740 ANHE_at_cache (timers [HEAP0]); 2196 ANHE_at_cache (timers [HEAP0]);
1741 downheap (timers, timercnt, HEAP0); 2197 downheap (timers, timercnt, HEAP0);
2198 }
2199 else
2200 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2201
2202 EV_FREQUENT_CHECK;
2203 feed_reverse (EV_A_ (W)w);
1742 } 2204 }
1743 else 2205 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1744 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1745 2206
1746 EV_FREQUENT_CHECK; 2207 feed_reverse_done (EV_A_ EV_TIMER);
1747 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1748 } 2208 }
1749} 2209}
1750 2210
1751#if EV_PERIODIC_ENABLE 2211#if EV_PERIODIC_ENABLE
1752void inline_size 2212
2213inline_speed void
2214periodic_recalc (EV_P_ ev_periodic *w)
2215{
2216 /* TODO: use slow but potentially more correct incremental algo, */
2217 /* also do not rely on ceil */
2218 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2219}
2220
2221/* make periodics pending */
2222inline_size void
1753periodics_reify (EV_P) 2223periodics_reify (EV_P)
1754{ 2224{
1755 EV_FREQUENT_CHECK; 2225 EV_FREQUENT_CHECK;
1756 2226
1757 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2227 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1758 { 2228 {
1759 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2229 int feed_count = 0;
1760 2230
1761 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2231 do
1762
1763 /* first reschedule or stop timer */
1764 if (w->reschedule_cb)
1765 { 2232 {
2233 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2234
2235 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2236
2237 /* first reschedule or stop timer */
2238 if (w->reschedule_cb)
2239 {
1766 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2240 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1767 2241
1768 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2242 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1769 2243
1770 ANHE_at_cache (periodics [HEAP0]); 2244 ANHE_at_cache (periodics [HEAP0]);
1771 downheap (periodics, periodiccnt, HEAP0); 2245 downheap (periodics, periodiccnt, HEAP0);
2246 }
2247 else if (w->interval)
2248 {
2249 periodic_recalc (EV_A_ w);
2250
2251 /* if next trigger time is not sufficiently in the future, put it there */
2252 /* this might happen because of floating point inexactness */
2253 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2254 {
2255 ev_at (w) += w->interval;
2256
2257 /* if interval is unreasonably low we might still have a time in the past */
2258 /* so correct this. this will make the periodic very inexact, but the user */
2259 /* has effectively asked to get triggered more often than possible */
2260 if (ev_at (w) < ev_rt_now)
2261 ev_at (w) = ev_rt_now;
2262 }
2263
2264 ANHE_at_cache (periodics [HEAP0]);
2265 downheap (periodics, periodiccnt, HEAP0);
2266 }
2267 else
2268 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2269
2270 EV_FREQUENT_CHECK;
2271 feed_reverse (EV_A_ (W)w);
1772 } 2272 }
1773 else if (w->interval) 2273 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1774 {
1775 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1776 /* if next trigger time is not sufficiently in the future, put it there */
1777 /* this might happen because of floating point inexactness */
1778 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1779 {
1780 ev_at (w) += w->interval;
1781 2274
1782 /* if interval is unreasonably low we might still have a time in the past */
1783 /* so correct this. this will make the periodic very inexact, but the user */
1784 /* has effectively asked to get triggered more often than possible */
1785 if (ev_at (w) < ev_rt_now)
1786 ev_at (w) = ev_rt_now;
1787 }
1788
1789 ANHE_at_cache (periodics [HEAP0]);
1790 downheap (periodics, periodiccnt, HEAP0);
1791 }
1792 else
1793 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1794
1795 EV_FREQUENT_CHECK;
1796 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2275 feed_reverse_done (EV_A_ EV_PERIODIC);
1797 } 2276 }
1798} 2277}
1799 2278
2279/* simply recalculate all periodics */
2280/* TODO: maybe ensure that at least one event happens when jumping forward? */
1800static void noinline 2281static void noinline
1801periodics_reschedule (EV_P) 2282periodics_reschedule (EV_P)
1802{ 2283{
1803 int i; 2284 int i;
1804 2285
1808 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 2289 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1809 2290
1810 if (w->reschedule_cb) 2291 if (w->reschedule_cb)
1811 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2292 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1812 else if (w->interval) 2293 else if (w->interval)
1813 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2294 periodic_recalc (EV_A_ w);
1814 2295
1815 ANHE_at_cache (periodics [i]); 2296 ANHE_at_cache (periodics [i]);
1816 } 2297 }
1817 2298
1818 reheap (periodics, periodiccnt); 2299 reheap (periodics, periodiccnt);
1819} 2300}
1820#endif 2301#endif
1821 2302
1822void inline_speed 2303/* adjust all timers by a given offset */
2304static void noinline
2305timers_reschedule (EV_P_ ev_tstamp adjust)
2306{
2307 int i;
2308
2309 for (i = 0; i < timercnt; ++i)
2310 {
2311 ANHE *he = timers + i + HEAP0;
2312 ANHE_w (*he)->at += adjust;
2313 ANHE_at_cache (*he);
2314 }
2315}
2316
2317/* fetch new monotonic and realtime times from the kernel */
2318/* also detect if there was a timejump, and act accordingly */
2319inline_speed void
1823time_update (EV_P_ ev_tstamp max_block) 2320time_update (EV_P_ ev_tstamp max_block)
1824{ 2321{
1825 int i;
1826
1827#if EV_USE_MONOTONIC 2322#if EV_USE_MONOTONIC
1828 if (expect_true (have_monotonic)) 2323 if (expect_true (have_monotonic))
1829 { 2324 {
2325 int i;
1830 ev_tstamp odiff = rtmn_diff; 2326 ev_tstamp odiff = rtmn_diff;
1831 2327
1832 mn_now = get_clock (); 2328 mn_now = get_clock ();
1833 2329
1834 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2330 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1860 ev_rt_now = ev_time (); 2356 ev_rt_now = ev_time ();
1861 mn_now = get_clock (); 2357 mn_now = get_clock ();
1862 now_floor = mn_now; 2358 now_floor = mn_now;
1863 } 2359 }
1864 2360
2361 /* no timer adjustment, as the monotonic clock doesn't jump */
2362 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1865# if EV_PERIODIC_ENABLE 2363# if EV_PERIODIC_ENABLE
1866 periodics_reschedule (EV_A); 2364 periodics_reschedule (EV_A);
1867# endif 2365# endif
1868 /* no timer adjustment, as the monotonic clock doesn't jump */
1869 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1870 } 2366 }
1871 else 2367 else
1872#endif 2368#endif
1873 { 2369 {
1874 ev_rt_now = ev_time (); 2370 ev_rt_now = ev_time ();
1875 2371
1876 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2372 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1877 { 2373 {
2374 /* adjust timers. this is easy, as the offset is the same for all of them */
2375 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1878#if EV_PERIODIC_ENABLE 2376#if EV_PERIODIC_ENABLE
1879 periodics_reschedule (EV_A); 2377 periodics_reschedule (EV_A);
1880#endif 2378#endif
1881 /* adjust timers. this is easy, as the offset is the same for all of them */
1882 for (i = 0; i < timercnt; ++i)
1883 {
1884 ANHE *he = timers + i + HEAP0;
1885 ANHE_w (*he)->at += ev_rt_now - mn_now;
1886 ANHE_at_cache (*he);
1887 }
1888 } 2379 }
1889 2380
1890 mn_now = ev_rt_now; 2381 mn_now = ev_rt_now;
1891 } 2382 }
1892} 2383}
1893 2384
1894void 2385void
1895ev_ref (EV_P)
1896{
1897 ++activecnt;
1898}
1899
1900void
1901ev_unref (EV_P)
1902{
1903 --activecnt;
1904}
1905
1906void
1907ev_now_update (EV_P)
1908{
1909 time_update (EV_A_ 1e100);
1910}
1911
1912static int loop_done;
1913
1914void
1915ev_loop (EV_P_ int flags) 2386ev_run (EV_P_ int flags)
1916{ 2387{
2388#if EV_FEATURE_API
2389 ++loop_depth;
2390#endif
2391
2392 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2393
1917 loop_done = EVUNLOOP_CANCEL; 2394 loop_done = EVBREAK_CANCEL;
1918 2395
1919 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2396 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1920 2397
1921 do 2398 do
1922 { 2399 {
1923#if EV_VERIFY >= 2 2400#if EV_VERIFY >= 2
1924 ev_loop_verify (EV_A); 2401 ev_verify (EV_A);
1925#endif 2402#endif
1926 2403
1927#ifndef _WIN32 2404#ifndef _WIN32
1928 if (expect_false (curpid)) /* penalise the forking check even more */ 2405 if (expect_false (curpid)) /* penalise the forking check even more */
1929 if (expect_false (getpid () != curpid)) 2406 if (expect_false (getpid () != curpid))
1937 /* we might have forked, so queue fork handlers */ 2414 /* we might have forked, so queue fork handlers */
1938 if (expect_false (postfork)) 2415 if (expect_false (postfork))
1939 if (forkcnt) 2416 if (forkcnt)
1940 { 2417 {
1941 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2418 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1942 call_pending (EV_A); 2419 EV_INVOKE_PENDING;
1943 } 2420 }
1944#endif 2421#endif
1945 2422
2423#if EV_PREPARE_ENABLE
1946 /* queue prepare watchers (and execute them) */ 2424 /* queue prepare watchers (and execute them) */
1947 if (expect_false (preparecnt)) 2425 if (expect_false (preparecnt))
1948 { 2426 {
1949 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2427 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1950 call_pending (EV_A); 2428 EV_INVOKE_PENDING;
1951 } 2429 }
2430#endif
1952 2431
1953 if (expect_false (!activecnt)) 2432 if (expect_false (loop_done))
1954 break; 2433 break;
1955 2434
1956 /* we might have forked, so reify kernel state if necessary */ 2435 /* we might have forked, so reify kernel state if necessary */
1957 if (expect_false (postfork)) 2436 if (expect_false (postfork))
1958 loop_fork (EV_A); 2437 loop_fork (EV_A);
1963 /* calculate blocking time */ 2442 /* calculate blocking time */
1964 { 2443 {
1965 ev_tstamp waittime = 0.; 2444 ev_tstamp waittime = 0.;
1966 ev_tstamp sleeptime = 0.; 2445 ev_tstamp sleeptime = 0.;
1967 2446
2447 /* remember old timestamp for io_blocktime calculation */
2448 ev_tstamp prev_mn_now = mn_now;
2449
2450 /* update time to cancel out callback processing overhead */
2451 time_update (EV_A_ 1e100);
2452
1968 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2453 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1969 { 2454 {
1970 /* update time to cancel out callback processing overhead */
1971 time_update (EV_A_ 1e100);
1972
1973 waittime = MAX_BLOCKTIME; 2455 waittime = MAX_BLOCKTIME;
1974 2456
1975 if (timercnt) 2457 if (timercnt)
1976 { 2458 {
1977 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 2459 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1984 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2466 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1985 if (waittime > to) waittime = to; 2467 if (waittime > to) waittime = to;
1986 } 2468 }
1987#endif 2469#endif
1988 2470
2471 /* don't let timeouts decrease the waittime below timeout_blocktime */
1989 if (expect_false (waittime < timeout_blocktime)) 2472 if (expect_false (waittime < timeout_blocktime))
1990 waittime = timeout_blocktime; 2473 waittime = timeout_blocktime;
1991 2474
1992 sleeptime = waittime - backend_fudge; 2475 /* extra check because io_blocktime is commonly 0 */
1993
1994 if (expect_true (sleeptime > io_blocktime)) 2476 if (expect_false (io_blocktime))
1995 sleeptime = io_blocktime;
1996
1997 if (sleeptime)
1998 { 2477 {
2478 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2479
2480 if (sleeptime > waittime - backend_fudge)
2481 sleeptime = waittime - backend_fudge;
2482
2483 if (expect_true (sleeptime > 0.))
2484 {
1999 ev_sleep (sleeptime); 2485 ev_sleep (sleeptime);
2000 waittime -= sleeptime; 2486 waittime -= sleeptime;
2487 }
2001 } 2488 }
2002 } 2489 }
2003 2490
2491#if EV_FEATURE_API
2004 ++loop_count; 2492 ++loop_count;
2493#endif
2494 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2005 backend_poll (EV_A_ waittime); 2495 backend_poll (EV_A_ waittime);
2496 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2006 2497
2007 /* update ev_rt_now, do magic */ 2498 /* update ev_rt_now, do magic */
2008 time_update (EV_A_ waittime + sleeptime); 2499 time_update (EV_A_ waittime + sleeptime);
2009 } 2500 }
2010 2501
2017#if EV_IDLE_ENABLE 2508#if EV_IDLE_ENABLE
2018 /* queue idle watchers unless other events are pending */ 2509 /* queue idle watchers unless other events are pending */
2019 idle_reify (EV_A); 2510 idle_reify (EV_A);
2020#endif 2511#endif
2021 2512
2513#if EV_CHECK_ENABLE
2022 /* queue check watchers, to be executed first */ 2514 /* queue check watchers, to be executed first */
2023 if (expect_false (checkcnt)) 2515 if (expect_false (checkcnt))
2024 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2516 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2517#endif
2025 2518
2026 call_pending (EV_A); 2519 EV_INVOKE_PENDING;
2027 } 2520 }
2028 while (expect_true ( 2521 while (expect_true (
2029 activecnt 2522 activecnt
2030 && !loop_done 2523 && !loop_done
2031 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2524 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2032 )); 2525 ));
2033 2526
2034 if (loop_done == EVUNLOOP_ONE) 2527 if (loop_done == EVBREAK_ONE)
2035 loop_done = EVUNLOOP_CANCEL; 2528 loop_done = EVBREAK_CANCEL;
2036}
2037 2529
2530#if EV_FEATURE_API
2531 --loop_depth;
2532#endif
2533}
2534
2038void 2535void
2039ev_unloop (EV_P_ int how) 2536ev_break (EV_P_ int how)
2040{ 2537{
2041 loop_done = how; 2538 loop_done = how;
2042} 2539}
2043 2540
2541void
2542ev_ref (EV_P)
2543{
2544 ++activecnt;
2545}
2546
2547void
2548ev_unref (EV_P)
2549{
2550 --activecnt;
2551}
2552
2553void
2554ev_now_update (EV_P)
2555{
2556 time_update (EV_A_ 1e100);
2557}
2558
2559void
2560ev_suspend (EV_P)
2561{
2562 ev_now_update (EV_A);
2563}
2564
2565void
2566ev_resume (EV_P)
2567{
2568 ev_tstamp mn_prev = mn_now;
2569
2570 ev_now_update (EV_A);
2571 timers_reschedule (EV_A_ mn_now - mn_prev);
2572#if EV_PERIODIC_ENABLE
2573 /* TODO: really do this? */
2574 periodics_reschedule (EV_A);
2575#endif
2576}
2577
2044/*****************************************************************************/ 2578/*****************************************************************************/
2579/* singly-linked list management, used when the expected list length is short */
2045 2580
2046void inline_size 2581inline_size void
2047wlist_add (WL *head, WL elem) 2582wlist_add (WL *head, WL elem)
2048{ 2583{
2049 elem->next = *head; 2584 elem->next = *head;
2050 *head = elem; 2585 *head = elem;
2051} 2586}
2052 2587
2053void inline_size 2588inline_size void
2054wlist_del (WL *head, WL elem) 2589wlist_del (WL *head, WL elem)
2055{ 2590{
2056 while (*head) 2591 while (*head)
2057 { 2592 {
2058 if (*head == elem) 2593 if (expect_true (*head == elem))
2059 { 2594 {
2060 *head = elem->next; 2595 *head = elem->next;
2061 return; 2596 break;
2062 } 2597 }
2063 2598
2064 head = &(*head)->next; 2599 head = &(*head)->next;
2065 } 2600 }
2066} 2601}
2067 2602
2068void inline_speed 2603/* internal, faster, version of ev_clear_pending */
2604inline_speed void
2069clear_pending (EV_P_ W w) 2605clear_pending (EV_P_ W w)
2070{ 2606{
2071 if (w->pending) 2607 if (w->pending)
2072 { 2608 {
2073 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2609 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2074 w->pending = 0; 2610 w->pending = 0;
2075 } 2611 }
2076} 2612}
2077 2613
2078int 2614int
2082 int pending = w_->pending; 2618 int pending = w_->pending;
2083 2619
2084 if (expect_true (pending)) 2620 if (expect_true (pending))
2085 { 2621 {
2086 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2622 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2623 p->w = (W)&pending_w;
2087 w_->pending = 0; 2624 w_->pending = 0;
2088 p->w = 0;
2089 return p->events; 2625 return p->events;
2090 } 2626 }
2091 else 2627 else
2092 return 0; 2628 return 0;
2093} 2629}
2094 2630
2095void inline_size 2631inline_size void
2096pri_adjust (EV_P_ W w) 2632pri_adjust (EV_P_ W w)
2097{ 2633{
2098 int pri = w->priority; 2634 int pri = ev_priority (w);
2099 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2635 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2100 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2636 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2101 w->priority = pri; 2637 ev_set_priority (w, pri);
2102} 2638}
2103 2639
2104void inline_speed 2640inline_speed void
2105ev_start (EV_P_ W w, int active) 2641ev_start (EV_P_ W w, int active)
2106{ 2642{
2107 pri_adjust (EV_A_ w); 2643 pri_adjust (EV_A_ w);
2108 w->active = active; 2644 w->active = active;
2109 ev_ref (EV_A); 2645 ev_ref (EV_A);
2110} 2646}
2111 2647
2112void inline_size 2648inline_size void
2113ev_stop (EV_P_ W w) 2649ev_stop (EV_P_ W w)
2114{ 2650{
2115 ev_unref (EV_A); 2651 ev_unref (EV_A);
2116 w->active = 0; 2652 w->active = 0;
2117} 2653}
2124 int fd = w->fd; 2660 int fd = w->fd;
2125 2661
2126 if (expect_false (ev_is_active (w))) 2662 if (expect_false (ev_is_active (w)))
2127 return; 2663 return;
2128 2664
2129 assert (("ev_io_start called with negative fd", fd >= 0)); 2665 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2130 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE)))); 2666 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2131 2667
2132 EV_FREQUENT_CHECK; 2668 EV_FREQUENT_CHECK;
2133 2669
2134 ev_start (EV_A_ (W)w, 1); 2670 ev_start (EV_A_ (W)w, 1);
2135 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 2671 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2136 wlist_add (&anfds[fd].head, (WL)w); 2672 wlist_add (&anfds[fd].head, (WL)w);
2137 2673
2138 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2674 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2139 w->events &= ~EV_IOFDSET; 2675 w->events &= ~EV__IOFDSET;
2140 2676
2141 EV_FREQUENT_CHECK; 2677 EV_FREQUENT_CHECK;
2142} 2678}
2143 2679
2144void noinline 2680void noinline
2146{ 2682{
2147 clear_pending (EV_A_ (W)w); 2683 clear_pending (EV_A_ (W)w);
2148 if (expect_false (!ev_is_active (w))) 2684 if (expect_false (!ev_is_active (w)))
2149 return; 2685 return;
2150 2686
2151 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2687 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2152 2688
2153 EV_FREQUENT_CHECK; 2689 EV_FREQUENT_CHECK;
2154 2690
2155 wlist_del (&anfds[w->fd].head, (WL)w); 2691 wlist_del (&anfds[w->fd].head, (WL)w);
2156 ev_stop (EV_A_ (W)w); 2692 ev_stop (EV_A_ (W)w);
2157 2693
2158 fd_change (EV_A_ w->fd, 1); 2694 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2159 2695
2160 EV_FREQUENT_CHECK; 2696 EV_FREQUENT_CHECK;
2161} 2697}
2162 2698
2163void noinline 2699void noinline
2166 if (expect_false (ev_is_active (w))) 2702 if (expect_false (ev_is_active (w)))
2167 return; 2703 return;
2168 2704
2169 ev_at (w) += mn_now; 2705 ev_at (w) += mn_now;
2170 2706
2171 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2707 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2172 2708
2173 EV_FREQUENT_CHECK; 2709 EV_FREQUENT_CHECK;
2174 2710
2175 ++timercnt; 2711 ++timercnt;
2176 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 2712 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2179 ANHE_at_cache (timers [ev_active (w)]); 2715 ANHE_at_cache (timers [ev_active (w)]);
2180 upheap (timers, ev_active (w)); 2716 upheap (timers, ev_active (w));
2181 2717
2182 EV_FREQUENT_CHECK; 2718 EV_FREQUENT_CHECK;
2183 2719
2184 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2720 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2185} 2721}
2186 2722
2187void noinline 2723void noinline
2188ev_timer_stop (EV_P_ ev_timer *w) 2724ev_timer_stop (EV_P_ ev_timer *w)
2189{ 2725{
2194 EV_FREQUENT_CHECK; 2730 EV_FREQUENT_CHECK;
2195 2731
2196 { 2732 {
2197 int active = ev_active (w); 2733 int active = ev_active (w);
2198 2734
2199 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2735 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2200 2736
2201 --timercnt; 2737 --timercnt;
2202 2738
2203 if (expect_true (active < timercnt + HEAP0)) 2739 if (expect_true (active < timercnt + HEAP0))
2204 { 2740 {
2205 timers [active] = timers [timercnt + HEAP0]; 2741 timers [active] = timers [timercnt + HEAP0];
2206 adjustheap (timers, timercnt, active); 2742 adjustheap (timers, timercnt, active);
2207 } 2743 }
2208 } 2744 }
2209 2745
2210 EV_FREQUENT_CHECK;
2211
2212 ev_at (w) -= mn_now; 2746 ev_at (w) -= mn_now;
2213 2747
2214 ev_stop (EV_A_ (W)w); 2748 ev_stop (EV_A_ (W)w);
2749
2750 EV_FREQUENT_CHECK;
2215} 2751}
2216 2752
2217void noinline 2753void noinline
2218ev_timer_again (EV_P_ ev_timer *w) 2754ev_timer_again (EV_P_ ev_timer *w)
2219{ 2755{
2237 } 2773 }
2238 2774
2239 EV_FREQUENT_CHECK; 2775 EV_FREQUENT_CHECK;
2240} 2776}
2241 2777
2778ev_tstamp
2779ev_timer_remaining (EV_P_ ev_timer *w)
2780{
2781 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2782}
2783
2242#if EV_PERIODIC_ENABLE 2784#if EV_PERIODIC_ENABLE
2243void noinline 2785void noinline
2244ev_periodic_start (EV_P_ ev_periodic *w) 2786ev_periodic_start (EV_P_ ev_periodic *w)
2245{ 2787{
2246 if (expect_false (ev_is_active (w))) 2788 if (expect_false (ev_is_active (w)))
2248 2790
2249 if (w->reschedule_cb) 2791 if (w->reschedule_cb)
2250 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2792 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2251 else if (w->interval) 2793 else if (w->interval)
2252 { 2794 {
2253 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2795 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2254 /* this formula differs from the one in periodic_reify because we do not always round up */ 2796 periodic_recalc (EV_A_ w);
2255 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2256 } 2797 }
2257 else 2798 else
2258 ev_at (w) = w->offset; 2799 ev_at (w) = w->offset;
2259 2800
2260 EV_FREQUENT_CHECK; 2801 EV_FREQUENT_CHECK;
2266 ANHE_at_cache (periodics [ev_active (w)]); 2807 ANHE_at_cache (periodics [ev_active (w)]);
2267 upheap (periodics, ev_active (w)); 2808 upheap (periodics, ev_active (w));
2268 2809
2269 EV_FREQUENT_CHECK; 2810 EV_FREQUENT_CHECK;
2270 2811
2271 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2812 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2272} 2813}
2273 2814
2274void noinline 2815void noinline
2275ev_periodic_stop (EV_P_ ev_periodic *w) 2816ev_periodic_stop (EV_P_ ev_periodic *w)
2276{ 2817{
2281 EV_FREQUENT_CHECK; 2822 EV_FREQUENT_CHECK;
2282 2823
2283 { 2824 {
2284 int active = ev_active (w); 2825 int active = ev_active (w);
2285 2826
2286 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2827 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2287 2828
2288 --periodiccnt; 2829 --periodiccnt;
2289 2830
2290 if (expect_true (active < periodiccnt + HEAP0)) 2831 if (expect_true (active < periodiccnt + HEAP0))
2291 { 2832 {
2292 periodics [active] = periodics [periodiccnt + HEAP0]; 2833 periodics [active] = periodics [periodiccnt + HEAP0];
2293 adjustheap (periodics, periodiccnt, active); 2834 adjustheap (periodics, periodiccnt, active);
2294 } 2835 }
2295 } 2836 }
2296 2837
2297 EV_FREQUENT_CHECK;
2298
2299 ev_stop (EV_A_ (W)w); 2838 ev_stop (EV_A_ (W)w);
2839
2840 EV_FREQUENT_CHECK;
2300} 2841}
2301 2842
2302void noinline 2843void noinline
2303ev_periodic_again (EV_P_ ev_periodic *w) 2844ev_periodic_again (EV_P_ ev_periodic *w)
2304{ 2845{
2310 2851
2311#ifndef SA_RESTART 2852#ifndef SA_RESTART
2312# define SA_RESTART 0 2853# define SA_RESTART 0
2313#endif 2854#endif
2314 2855
2856#if EV_SIGNAL_ENABLE
2857
2315void noinline 2858void noinline
2316ev_signal_start (EV_P_ ev_signal *w) 2859ev_signal_start (EV_P_ ev_signal *w)
2317{ 2860{
2318#if EV_MULTIPLICITY
2319 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2320#endif
2321 if (expect_false (ev_is_active (w))) 2861 if (expect_false (ev_is_active (w)))
2322 return; 2862 return;
2323 2863
2324 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2864 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2325 2865
2326 evpipe_init (EV_A); 2866#if EV_MULTIPLICITY
2867 assert (("libev: a signal must not be attached to two different loops",
2868 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2327 2869
2328 EV_FREQUENT_CHECK; 2870 signals [w->signum - 1].loop = EV_A;
2871#endif
2329 2872
2873 EV_FREQUENT_CHECK;
2874
2875#if EV_USE_SIGNALFD
2876 if (sigfd == -2)
2330 { 2877 {
2331#ifndef _WIN32 2878 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2332 sigset_t full, prev; 2879 if (sigfd < 0 && errno == EINVAL)
2333 sigfillset (&full); 2880 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2334 sigprocmask (SIG_SETMASK, &full, &prev);
2335#endif
2336 2881
2337 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero); 2882 if (sigfd >= 0)
2883 {
2884 fd_intern (sigfd); /* doing it twice will not hurt */
2338 2885
2339#ifndef _WIN32 2886 sigemptyset (&sigfd_set);
2340 sigprocmask (SIG_SETMASK, &prev, 0); 2887
2341#endif 2888 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2889 ev_set_priority (&sigfd_w, EV_MAXPRI);
2890 ev_io_start (EV_A_ &sigfd_w);
2891 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2892 }
2342 } 2893 }
2894
2895 if (sigfd >= 0)
2896 {
2897 /* TODO: check .head */
2898 sigaddset (&sigfd_set, w->signum);
2899 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2900
2901 signalfd (sigfd, &sigfd_set, 0);
2902 }
2903#endif
2343 2904
2344 ev_start (EV_A_ (W)w, 1); 2905 ev_start (EV_A_ (W)w, 1);
2345 wlist_add (&signals [w->signum - 1].head, (WL)w); 2906 wlist_add (&signals [w->signum - 1].head, (WL)w);
2346 2907
2347 if (!((WL)w)->next) 2908 if (!((WL)w)->next)
2909# if EV_USE_SIGNALFD
2910 if (sigfd < 0) /*TODO*/
2911# endif
2348 { 2912 {
2349#if _WIN32 2913# ifdef _WIN32
2914 evpipe_init (EV_A);
2915
2350 signal (w->signum, ev_sighandler); 2916 signal (w->signum, ev_sighandler);
2351#else 2917# else
2352 struct sigaction sa; 2918 struct sigaction sa;
2919
2920 evpipe_init (EV_A);
2921
2353 sa.sa_handler = ev_sighandler; 2922 sa.sa_handler = ev_sighandler;
2354 sigfillset (&sa.sa_mask); 2923 sigfillset (&sa.sa_mask);
2355 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2924 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2356 sigaction (w->signum, &sa, 0); 2925 sigaction (w->signum, &sa, 0);
2926
2927 if (origflags & EVFLAG_NOSIGMASK)
2928 {
2929 sigemptyset (&sa.sa_mask);
2930 sigaddset (&sa.sa_mask, w->signum);
2931 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2932 }
2357#endif 2933#endif
2358 } 2934 }
2359 2935
2360 EV_FREQUENT_CHECK; 2936 EV_FREQUENT_CHECK;
2361} 2937}
2362 2938
2363void noinline 2939void noinline
2371 2947
2372 wlist_del (&signals [w->signum - 1].head, (WL)w); 2948 wlist_del (&signals [w->signum - 1].head, (WL)w);
2373 ev_stop (EV_A_ (W)w); 2949 ev_stop (EV_A_ (W)w);
2374 2950
2375 if (!signals [w->signum - 1].head) 2951 if (!signals [w->signum - 1].head)
2952 {
2953#if EV_MULTIPLICITY
2954 signals [w->signum - 1].loop = 0; /* unattach from signal */
2955#endif
2956#if EV_USE_SIGNALFD
2957 if (sigfd >= 0)
2958 {
2959 sigset_t ss;
2960
2961 sigemptyset (&ss);
2962 sigaddset (&ss, w->signum);
2963 sigdelset (&sigfd_set, w->signum);
2964
2965 signalfd (sigfd, &sigfd_set, 0);
2966 sigprocmask (SIG_UNBLOCK, &ss, 0);
2967 }
2968 else
2969#endif
2376 signal (w->signum, SIG_DFL); 2970 signal (w->signum, SIG_DFL);
2971 }
2377 2972
2378 EV_FREQUENT_CHECK; 2973 EV_FREQUENT_CHECK;
2379} 2974}
2975
2976#endif
2977
2978#if EV_CHILD_ENABLE
2380 2979
2381void 2980void
2382ev_child_start (EV_P_ ev_child *w) 2981ev_child_start (EV_P_ ev_child *w)
2383{ 2982{
2384#if EV_MULTIPLICITY 2983#if EV_MULTIPLICITY
2385 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2984 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2386#endif 2985#endif
2387 if (expect_false (ev_is_active (w))) 2986 if (expect_false (ev_is_active (w)))
2388 return; 2987 return;
2389 2988
2390 EV_FREQUENT_CHECK; 2989 EV_FREQUENT_CHECK;
2391 2990
2392 ev_start (EV_A_ (W)w, 1); 2991 ev_start (EV_A_ (W)w, 1);
2393 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2992 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2394 2993
2395 EV_FREQUENT_CHECK; 2994 EV_FREQUENT_CHECK;
2396} 2995}
2397 2996
2398void 2997void
2402 if (expect_false (!ev_is_active (w))) 3001 if (expect_false (!ev_is_active (w)))
2403 return; 3002 return;
2404 3003
2405 EV_FREQUENT_CHECK; 3004 EV_FREQUENT_CHECK;
2406 3005
2407 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3006 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2408 ev_stop (EV_A_ (W)w); 3007 ev_stop (EV_A_ (W)w);
2409 3008
2410 EV_FREQUENT_CHECK; 3009 EV_FREQUENT_CHECK;
2411} 3010}
3011
3012#endif
2412 3013
2413#if EV_STAT_ENABLE 3014#if EV_STAT_ENABLE
2414 3015
2415# ifdef _WIN32 3016# ifdef _WIN32
2416# undef lstat 3017# undef lstat
2417# define lstat(a,b) _stati64 (a,b) 3018# define lstat(a,b) _stati64 (a,b)
2418# endif 3019# endif
2419 3020
2420#define DEF_STAT_INTERVAL 5.0074891 3021#define DEF_STAT_INTERVAL 5.0074891
3022#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2421#define MIN_STAT_INTERVAL 0.1074891 3023#define MIN_STAT_INTERVAL 0.1074891
2422 3024
2423static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3025static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2424 3026
2425#if EV_USE_INOTIFY 3027#if EV_USE_INOTIFY
2426# define EV_INOTIFY_BUFSIZE 8192 3028
3029/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3030# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2427 3031
2428static void noinline 3032static void noinline
2429infy_add (EV_P_ ev_stat *w) 3033infy_add (EV_P_ ev_stat *w)
2430{ 3034{
2431 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3035 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2432 3036
2433 if (w->wd < 0) 3037 if (w->wd >= 0)
3038 {
3039 struct statfs sfs;
3040
3041 /* now local changes will be tracked by inotify, but remote changes won't */
3042 /* unless the filesystem is known to be local, we therefore still poll */
3043 /* also do poll on <2.6.25, but with normal frequency */
3044
3045 if (!fs_2625)
3046 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3047 else if (!statfs (w->path, &sfs)
3048 && (sfs.f_type == 0x1373 /* devfs */
3049 || sfs.f_type == 0xEF53 /* ext2/3 */
3050 || sfs.f_type == 0x3153464a /* jfs */
3051 || sfs.f_type == 0x52654973 /* reiser3 */
3052 || sfs.f_type == 0x01021994 /* tempfs */
3053 || sfs.f_type == 0x58465342 /* xfs */))
3054 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3055 else
3056 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2434 { 3057 }
2435 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3058 else
3059 {
3060 /* can't use inotify, continue to stat */
3061 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2436 3062
2437 /* monitor some parent directory for speedup hints */ 3063 /* if path is not there, monitor some parent directory for speedup hints */
2438 /* note that exceeding the hardcoded path limit is not a correctness issue, */ 3064 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2439 /* but an efficiency issue only */ 3065 /* but an efficiency issue only */
2440 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3066 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2441 { 3067 {
2442 char path [4096]; 3068 char path [4096];
2447 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3073 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2448 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3074 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2449 3075
2450 char *pend = strrchr (path, '/'); 3076 char *pend = strrchr (path, '/');
2451 3077
2452 if (!pend) 3078 if (!pend || pend == path)
2453 break; /* whoops, no '/', complain to your admin */ 3079 break;
2454 3080
2455 *pend = 0; 3081 *pend = 0;
2456 w->wd = inotify_add_watch (fs_fd, path, mask); 3082 w->wd = inotify_add_watch (fs_fd, path, mask);
2457 } 3083 }
2458 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3084 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2459 } 3085 }
2460 } 3086 }
2461 else
2462 todo, on nfs etc., we need to poll every 60s or so
2463 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2464 3087
2465 if (w->wd >= 0) 3088 if (w->wd >= 0)
2466 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3089 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3090
3091 /* now re-arm timer, if required */
3092 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3093 ev_timer_again (EV_A_ &w->timer);
3094 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2467} 3095}
2468 3096
2469static void noinline 3097static void noinline
2470infy_del (EV_P_ ev_stat *w) 3098infy_del (EV_P_ ev_stat *w)
2471{ 3099{
2474 3102
2475 if (wd < 0) 3103 if (wd < 0)
2476 return; 3104 return;
2477 3105
2478 w->wd = -2; 3106 w->wd = -2;
2479 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3107 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2480 wlist_del (&fs_hash [slot].head, (WL)w); 3108 wlist_del (&fs_hash [slot].head, (WL)w);
2481 3109
2482 /* remove this watcher, if others are watching it, they will rearm */ 3110 /* remove this watcher, if others are watching it, they will rearm */
2483 inotify_rm_watch (fs_fd, wd); 3111 inotify_rm_watch (fs_fd, wd);
2484} 3112}
2486static void noinline 3114static void noinline
2487infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3115infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2488{ 3116{
2489 if (slot < 0) 3117 if (slot < 0)
2490 /* overflow, need to check for all hash slots */ 3118 /* overflow, need to check for all hash slots */
2491 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3119 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2492 infy_wd (EV_A_ slot, wd, ev); 3120 infy_wd (EV_A_ slot, wd, ev);
2493 else 3121 else
2494 { 3122 {
2495 WL w_; 3123 WL w_;
2496 3124
2497 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3125 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2498 { 3126 {
2499 ev_stat *w = (ev_stat *)w_; 3127 ev_stat *w = (ev_stat *)w_;
2500 w_ = w_->next; /* lets us remove this watcher and all before it */ 3128 w_ = w_->next; /* lets us remove this watcher and all before it */
2501 3129
2502 if (w->wd == wd || wd == -1) 3130 if (w->wd == wd || wd == -1)
2503 { 3131 {
2504 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3132 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2505 { 3133 {
3134 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2506 w->wd = -1; 3135 w->wd = -1;
2507 infy_add (EV_A_ w); /* re-add, no matter what */ 3136 infy_add (EV_A_ w); /* re-add, no matter what */
2508 } 3137 }
2509 3138
2510 stat_timer_cb (EV_A_ &w->timer, 0); 3139 stat_timer_cb (EV_A_ &w->timer, 0);
2515 3144
2516static void 3145static void
2517infy_cb (EV_P_ ev_io *w, int revents) 3146infy_cb (EV_P_ ev_io *w, int revents)
2518{ 3147{
2519 char buf [EV_INOTIFY_BUFSIZE]; 3148 char buf [EV_INOTIFY_BUFSIZE];
2520 struct inotify_event *ev = (struct inotify_event *)buf;
2521 int ofs; 3149 int ofs;
2522 int len = read (fs_fd, buf, sizeof (buf)); 3150 int len = read (fs_fd, buf, sizeof (buf));
2523 3151
2524 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3152 for (ofs = 0; ofs < len; )
3153 {
3154 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2525 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3155 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3156 ofs += sizeof (struct inotify_event) + ev->len;
3157 }
2526} 3158}
2527 3159
2528void inline_size 3160inline_size void
2529infy_init (EV_P) 3161ev_check_2625 (EV_P)
2530{ 3162{
2531 if (fs_fd != -2)
2532 return;
2533
2534 /* kernels < 2.6.25 are borked 3163 /* kernels < 2.6.25 are borked
2535 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 3164 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2536 */ 3165 */
2537 { 3166 if (ev_linux_version () < 0x020619)
2538 struct utsname buf; 3167 return;
2539 int major, minor, micro;
2540 3168
3169 fs_2625 = 1;
3170}
3171
3172inline_size int
3173infy_newfd (void)
3174{
3175#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3176 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3177 if (fd >= 0)
3178 return fd;
3179#endif
3180 return inotify_init ();
3181}
3182
3183inline_size void
3184infy_init (EV_P)
3185{
3186 if (fs_fd != -2)
3187 return;
3188
2541 fs_fd = -1; 3189 fs_fd = -1;
2542 3190
2543 if (uname (&buf)) 3191 ev_check_2625 (EV_A);
2544 return;
2545 3192
2546 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2547 return;
2548
2549 if (major < 2
2550 || (major == 2 && minor < 6)
2551 || (major == 2 && minor == 6 && micro < 25))
2552 return;
2553 }
2554
2555 fs_fd = inotify_init (); 3193 fs_fd = infy_newfd ();
2556 3194
2557 if (fs_fd >= 0) 3195 if (fs_fd >= 0)
2558 { 3196 {
3197 fd_intern (fs_fd);
2559 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3198 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2560 ev_set_priority (&fs_w, EV_MAXPRI); 3199 ev_set_priority (&fs_w, EV_MAXPRI);
2561 ev_io_start (EV_A_ &fs_w); 3200 ev_io_start (EV_A_ &fs_w);
3201 ev_unref (EV_A);
2562 } 3202 }
2563} 3203}
2564 3204
2565void inline_size 3205inline_size void
2566infy_fork (EV_P) 3206infy_fork (EV_P)
2567{ 3207{
2568 int slot; 3208 int slot;
2569 3209
2570 if (fs_fd < 0) 3210 if (fs_fd < 0)
2571 return; 3211 return;
2572 3212
3213 ev_ref (EV_A);
3214 ev_io_stop (EV_A_ &fs_w);
2573 close (fs_fd); 3215 close (fs_fd);
2574 fs_fd = inotify_init (); 3216 fs_fd = infy_newfd ();
2575 3217
3218 if (fs_fd >= 0)
3219 {
3220 fd_intern (fs_fd);
3221 ev_io_set (&fs_w, fs_fd, EV_READ);
3222 ev_io_start (EV_A_ &fs_w);
3223 ev_unref (EV_A);
3224 }
3225
2576 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3226 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2577 { 3227 {
2578 WL w_ = fs_hash [slot].head; 3228 WL w_ = fs_hash [slot].head;
2579 fs_hash [slot].head = 0; 3229 fs_hash [slot].head = 0;
2580 3230
2581 while (w_) 3231 while (w_)
2586 w->wd = -1; 3236 w->wd = -1;
2587 3237
2588 if (fs_fd >= 0) 3238 if (fs_fd >= 0)
2589 infy_add (EV_A_ w); /* re-add, no matter what */ 3239 infy_add (EV_A_ w); /* re-add, no matter what */
2590 else 3240 else
3241 {
3242 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3243 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2591 ev_timer_start (EV_A_ &w->timer); 3244 ev_timer_again (EV_A_ &w->timer);
3245 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3246 }
2592 } 3247 }
2593 } 3248 }
2594} 3249}
2595 3250
2596#endif 3251#endif
2613static void noinline 3268static void noinline
2614stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3269stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2615{ 3270{
2616 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3271 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2617 3272
2618 /* we copy this here each the time so that */ 3273 ev_statdata prev = w->attr;
2619 /* prev has the old value when the callback gets invoked */
2620 w->prev = w->attr;
2621 ev_stat_stat (EV_A_ w); 3274 ev_stat_stat (EV_A_ w);
2622 3275
2623 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3276 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2624 if ( 3277 if (
2625 w->prev.st_dev != w->attr.st_dev 3278 prev.st_dev != w->attr.st_dev
2626 || w->prev.st_ino != w->attr.st_ino 3279 || prev.st_ino != w->attr.st_ino
2627 || w->prev.st_mode != w->attr.st_mode 3280 || prev.st_mode != w->attr.st_mode
2628 || w->prev.st_nlink != w->attr.st_nlink 3281 || prev.st_nlink != w->attr.st_nlink
2629 || w->prev.st_uid != w->attr.st_uid 3282 || prev.st_uid != w->attr.st_uid
2630 || w->prev.st_gid != w->attr.st_gid 3283 || prev.st_gid != w->attr.st_gid
2631 || w->prev.st_rdev != w->attr.st_rdev 3284 || prev.st_rdev != w->attr.st_rdev
2632 || w->prev.st_size != w->attr.st_size 3285 || prev.st_size != w->attr.st_size
2633 || w->prev.st_atime != w->attr.st_atime 3286 || prev.st_atime != w->attr.st_atime
2634 || w->prev.st_mtime != w->attr.st_mtime 3287 || prev.st_mtime != w->attr.st_mtime
2635 || w->prev.st_ctime != w->attr.st_ctime 3288 || prev.st_ctime != w->attr.st_ctime
2636 ) { 3289 ) {
3290 /* we only update w->prev on actual differences */
3291 /* in case we test more often than invoke the callback, */
3292 /* to ensure that prev is always different to attr */
3293 w->prev = prev;
3294
2637 #if EV_USE_INOTIFY 3295 #if EV_USE_INOTIFY
2638 if (fs_fd >= 0) 3296 if (fs_fd >= 0)
2639 { 3297 {
2640 infy_del (EV_A_ w); 3298 infy_del (EV_A_ w);
2641 infy_add (EV_A_ w); 3299 infy_add (EV_A_ w);
2651ev_stat_start (EV_P_ ev_stat *w) 3309ev_stat_start (EV_P_ ev_stat *w)
2652{ 3310{
2653 if (expect_false (ev_is_active (w))) 3311 if (expect_false (ev_is_active (w)))
2654 return; 3312 return;
2655 3313
2656 /* since we use memcmp, we need to clear any padding data etc. */
2657 memset (&w->prev, 0, sizeof (ev_statdata));
2658 memset (&w->attr, 0, sizeof (ev_statdata));
2659
2660 ev_stat_stat (EV_A_ w); 3314 ev_stat_stat (EV_A_ w);
2661 3315
3316 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2662 if (w->interval < MIN_STAT_INTERVAL) 3317 w->interval = MIN_STAT_INTERVAL;
2663 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2664 3318
2665 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3319 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2666 ev_set_priority (&w->timer, ev_priority (w)); 3320 ev_set_priority (&w->timer, ev_priority (w));
2667 3321
2668#if EV_USE_INOTIFY 3322#if EV_USE_INOTIFY
2669 infy_init (EV_A); 3323 infy_init (EV_A);
2670 3324
2671 if (fs_fd >= 0) 3325 if (fs_fd >= 0)
2672 infy_add (EV_A_ w); 3326 infy_add (EV_A_ w);
2673 else 3327 else
2674#endif 3328#endif
3329 {
2675 ev_timer_start (EV_A_ &w->timer); 3330 ev_timer_again (EV_A_ &w->timer);
3331 ev_unref (EV_A);
3332 }
2676 3333
2677 ev_start (EV_A_ (W)w, 1); 3334 ev_start (EV_A_ (W)w, 1);
2678 3335
2679 EV_FREQUENT_CHECK; 3336 EV_FREQUENT_CHECK;
2680} 3337}
2689 EV_FREQUENT_CHECK; 3346 EV_FREQUENT_CHECK;
2690 3347
2691#if EV_USE_INOTIFY 3348#if EV_USE_INOTIFY
2692 infy_del (EV_A_ w); 3349 infy_del (EV_A_ w);
2693#endif 3350#endif
3351
3352 if (ev_is_active (&w->timer))
3353 {
3354 ev_ref (EV_A);
2694 ev_timer_stop (EV_A_ &w->timer); 3355 ev_timer_stop (EV_A_ &w->timer);
3356 }
2695 3357
2696 ev_stop (EV_A_ (W)w); 3358 ev_stop (EV_A_ (W)w);
2697 3359
2698 EV_FREQUENT_CHECK; 3360 EV_FREQUENT_CHECK;
2699} 3361}
2744 3406
2745 EV_FREQUENT_CHECK; 3407 EV_FREQUENT_CHECK;
2746} 3408}
2747#endif 3409#endif
2748 3410
3411#if EV_PREPARE_ENABLE
2749void 3412void
2750ev_prepare_start (EV_P_ ev_prepare *w) 3413ev_prepare_start (EV_P_ ev_prepare *w)
2751{ 3414{
2752 if (expect_false (ev_is_active (w))) 3415 if (expect_false (ev_is_active (w)))
2753 return; 3416 return;
2779 3442
2780 ev_stop (EV_A_ (W)w); 3443 ev_stop (EV_A_ (W)w);
2781 3444
2782 EV_FREQUENT_CHECK; 3445 EV_FREQUENT_CHECK;
2783} 3446}
3447#endif
2784 3448
3449#if EV_CHECK_ENABLE
2785void 3450void
2786ev_check_start (EV_P_ ev_check *w) 3451ev_check_start (EV_P_ ev_check *w)
2787{ 3452{
2788 if (expect_false (ev_is_active (w))) 3453 if (expect_false (ev_is_active (w)))
2789 return; 3454 return;
2815 3480
2816 ev_stop (EV_A_ (W)w); 3481 ev_stop (EV_A_ (W)w);
2817 3482
2818 EV_FREQUENT_CHECK; 3483 EV_FREQUENT_CHECK;
2819} 3484}
3485#endif
2820 3486
2821#if EV_EMBED_ENABLE 3487#if EV_EMBED_ENABLE
2822void noinline 3488void noinline
2823ev_embed_sweep (EV_P_ ev_embed *w) 3489ev_embed_sweep (EV_P_ ev_embed *w)
2824{ 3490{
2825 ev_loop (w->other, EVLOOP_NONBLOCK); 3491 ev_run (w->other, EVRUN_NOWAIT);
2826} 3492}
2827 3493
2828static void 3494static void
2829embed_io_cb (EV_P_ ev_io *io, int revents) 3495embed_io_cb (EV_P_ ev_io *io, int revents)
2830{ 3496{
2831 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3497 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2832 3498
2833 if (ev_cb (w)) 3499 if (ev_cb (w))
2834 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3500 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2835 else 3501 else
2836 ev_loop (w->other, EVLOOP_NONBLOCK); 3502 ev_run (w->other, EVRUN_NOWAIT);
2837} 3503}
2838 3504
2839static void 3505static void
2840embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3506embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2841{ 3507{
2842 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3508 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2843 3509
2844 { 3510 {
2845 struct ev_loop *loop = w->other; 3511 EV_P = w->other;
2846 3512
2847 while (fdchangecnt) 3513 while (fdchangecnt)
2848 { 3514 {
2849 fd_reify (EV_A); 3515 fd_reify (EV_A);
2850 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3516 ev_run (EV_A_ EVRUN_NOWAIT);
2851 } 3517 }
2852 } 3518 }
2853} 3519}
2854 3520
2855static void 3521static void
2856embed_fork_cb (EV_P_ ev_fork *fork_w, int revents) 3522embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2857{ 3523{
2858 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 3524 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2859 3525
3526 ev_embed_stop (EV_A_ w);
3527
2860 { 3528 {
2861 struct ev_loop *loop = w->other; 3529 EV_P = w->other;
2862 3530
2863 ev_loop_fork (EV_A); 3531 ev_loop_fork (EV_A);
3532 ev_run (EV_A_ EVRUN_NOWAIT);
2864 } 3533 }
3534
3535 ev_embed_start (EV_A_ w);
2865} 3536}
2866 3537
2867#if 0 3538#if 0
2868static void 3539static void
2869embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3540embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2877{ 3548{
2878 if (expect_false (ev_is_active (w))) 3549 if (expect_false (ev_is_active (w)))
2879 return; 3550 return;
2880 3551
2881 { 3552 {
2882 struct ev_loop *loop = w->other; 3553 EV_P = w->other;
2883 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3554 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2884 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3555 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2885 } 3556 }
2886 3557
2887 EV_FREQUENT_CHECK; 3558 EV_FREQUENT_CHECK;
2888 3559
2914 3585
2915 ev_io_stop (EV_A_ &w->io); 3586 ev_io_stop (EV_A_ &w->io);
2916 ev_prepare_stop (EV_A_ &w->prepare); 3587 ev_prepare_stop (EV_A_ &w->prepare);
2917 ev_fork_stop (EV_A_ &w->fork); 3588 ev_fork_stop (EV_A_ &w->fork);
2918 3589
3590 ev_stop (EV_A_ (W)w);
3591
2919 EV_FREQUENT_CHECK; 3592 EV_FREQUENT_CHECK;
2920} 3593}
2921#endif 3594#endif
2922 3595
2923#if EV_FORK_ENABLE 3596#if EV_FORK_ENABLE
2956 3629
2957 EV_FREQUENT_CHECK; 3630 EV_FREQUENT_CHECK;
2958} 3631}
2959#endif 3632#endif
2960 3633
2961#if EV_ASYNC_ENABLE 3634#if EV_CLEANUP_ENABLE
2962void 3635void
2963ev_async_start (EV_P_ ev_async *w) 3636ev_cleanup_start (EV_P_ ev_cleanup *w)
2964{ 3637{
2965 if (expect_false (ev_is_active (w))) 3638 if (expect_false (ev_is_active (w)))
2966 return; 3639 return;
3640
3641 EV_FREQUENT_CHECK;
3642
3643 ev_start (EV_A_ (W)w, ++cleanupcnt);
3644 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3645 cleanups [cleanupcnt - 1] = w;
3646
3647 /* cleanup watchers should never keep a refcount on the loop */
3648 ev_unref (EV_A);
3649 EV_FREQUENT_CHECK;
3650}
3651
3652void
3653ev_cleanup_stop (EV_P_ ev_cleanup *w)
3654{
3655 clear_pending (EV_A_ (W)w);
3656 if (expect_false (!ev_is_active (w)))
3657 return;
3658
3659 EV_FREQUENT_CHECK;
3660 ev_ref (EV_A);
3661
3662 {
3663 int active = ev_active (w);
3664
3665 cleanups [active - 1] = cleanups [--cleanupcnt];
3666 ev_active (cleanups [active - 1]) = active;
3667 }
3668
3669 ev_stop (EV_A_ (W)w);
3670
3671 EV_FREQUENT_CHECK;
3672}
3673#endif
3674
3675#if EV_ASYNC_ENABLE
3676void
3677ev_async_start (EV_P_ ev_async *w)
3678{
3679 if (expect_false (ev_is_active (w)))
3680 return;
3681
3682 w->sent = 0;
2967 3683
2968 evpipe_init (EV_A); 3684 evpipe_init (EV_A);
2969 3685
2970 EV_FREQUENT_CHECK; 3686 EV_FREQUENT_CHECK;
2971 3687
2999 3715
3000void 3716void
3001ev_async_send (EV_P_ ev_async *w) 3717ev_async_send (EV_P_ ev_async *w)
3002{ 3718{
3003 w->sent = 1; 3719 w->sent = 1;
3004 evpipe_write (EV_A_ &gotasync); 3720 evpipe_write (EV_A_ &async_pending);
3005} 3721}
3006#endif 3722#endif
3007 3723
3008/*****************************************************************************/ 3724/*****************************************************************************/
3009 3725
3049{ 3765{
3050 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3766 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3051 3767
3052 if (expect_false (!once)) 3768 if (expect_false (!once))
3053 { 3769 {
3054 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3770 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3055 return; 3771 return;
3056 } 3772 }
3057 3773
3058 once->cb = cb; 3774 once->cb = cb;
3059 once->arg = arg; 3775 once->arg = arg;
3071 ev_timer_set (&once->to, timeout, 0.); 3787 ev_timer_set (&once->to, timeout, 0.);
3072 ev_timer_start (EV_A_ &once->to); 3788 ev_timer_start (EV_A_ &once->to);
3073 } 3789 }
3074} 3790}
3075 3791
3792/*****************************************************************************/
3793
3794#if EV_WALK_ENABLE
3795void
3796ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3797{
3798 int i, j;
3799 ev_watcher_list *wl, *wn;
3800
3801 if (types & (EV_IO | EV_EMBED))
3802 for (i = 0; i < anfdmax; ++i)
3803 for (wl = anfds [i].head; wl; )
3804 {
3805 wn = wl->next;
3806
3807#if EV_EMBED_ENABLE
3808 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3809 {
3810 if (types & EV_EMBED)
3811 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3812 }
3813 else
3814#endif
3815#if EV_USE_INOTIFY
3816 if (ev_cb ((ev_io *)wl) == infy_cb)
3817 ;
3818 else
3819#endif
3820 if ((ev_io *)wl != &pipe_w)
3821 if (types & EV_IO)
3822 cb (EV_A_ EV_IO, wl);
3823
3824 wl = wn;
3825 }
3826
3827 if (types & (EV_TIMER | EV_STAT))
3828 for (i = timercnt + HEAP0; i-- > HEAP0; )
3829#if EV_STAT_ENABLE
3830 /*TODO: timer is not always active*/
3831 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3832 {
3833 if (types & EV_STAT)
3834 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3835 }
3836 else
3837#endif
3838 if (types & EV_TIMER)
3839 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3840
3841#if EV_PERIODIC_ENABLE
3842 if (types & EV_PERIODIC)
3843 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3844 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3845#endif
3846
3847#if EV_IDLE_ENABLE
3848 if (types & EV_IDLE)
3849 for (j = NUMPRI; i--; )
3850 for (i = idlecnt [j]; i--; )
3851 cb (EV_A_ EV_IDLE, idles [j][i]);
3852#endif
3853
3854#if EV_FORK_ENABLE
3855 if (types & EV_FORK)
3856 for (i = forkcnt; i--; )
3857 if (ev_cb (forks [i]) != embed_fork_cb)
3858 cb (EV_A_ EV_FORK, forks [i]);
3859#endif
3860
3861#if EV_ASYNC_ENABLE
3862 if (types & EV_ASYNC)
3863 for (i = asynccnt; i--; )
3864 cb (EV_A_ EV_ASYNC, asyncs [i]);
3865#endif
3866
3867#if EV_PREPARE_ENABLE
3868 if (types & EV_PREPARE)
3869 for (i = preparecnt; i--; )
3870# if EV_EMBED_ENABLE
3871 if (ev_cb (prepares [i]) != embed_prepare_cb)
3872# endif
3873 cb (EV_A_ EV_PREPARE, prepares [i]);
3874#endif
3875
3876#if EV_CHECK_ENABLE
3877 if (types & EV_CHECK)
3878 for (i = checkcnt; i--; )
3879 cb (EV_A_ EV_CHECK, checks [i]);
3880#endif
3881
3882#if EV_SIGNAL_ENABLE
3883 if (types & EV_SIGNAL)
3884 for (i = 0; i < EV_NSIG - 1; ++i)
3885 for (wl = signals [i].head; wl; )
3886 {
3887 wn = wl->next;
3888 cb (EV_A_ EV_SIGNAL, wl);
3889 wl = wn;
3890 }
3891#endif
3892
3893#if EV_CHILD_ENABLE
3894 if (types & EV_CHILD)
3895 for (i = (EV_PID_HASHSIZE); i--; )
3896 for (wl = childs [i]; wl; )
3897 {
3898 wn = wl->next;
3899 cb (EV_A_ EV_CHILD, wl);
3900 wl = wn;
3901 }
3902#endif
3903/* EV_STAT 0x00001000 /* stat data changed */
3904/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3905}
3906#endif
3907
3076#if EV_MULTIPLICITY 3908#if EV_MULTIPLICITY
3077 #include "ev_wrap.h" 3909 #include "ev_wrap.h"
3078#endif 3910#endif
3079 3911
3080#ifdef __cplusplus 3912EV_CPP(})
3081}
3082#endif
3083 3913

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines