ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.271 by root, Mon Nov 3 12:13:15 2008 UTC vs.
Revision 1.428 by root, Tue May 8 15:44:09 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
130# endif 163# endif
131 164
132#endif 165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
152#endif 197#endif
153 198
154#ifndef _WIN32 199#ifndef _WIN32
155# include <sys/time.h> 200# include <sys/time.h>
156# include <sys/wait.h> 201# include <sys/wait.h>
157# include <unistd.h> 202# include <unistd.h>
158#else 203#else
159# include <io.h> 204# include <io.h>
160# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
161# include <windows.h> 206# include <windows.h>
207# include <winsock2.h>
162# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
163# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
164# endif 210# endif
211# undef EV_AVOID_STDIO
165#endif 212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
166 221
167/* this block tries to deduce configuration from header-defined symbols and defaults */ 222/* this block tries to deduce configuration from header-defined symbols and defaults */
168 223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
255
256#ifndef EV_USE_CLOCK_SYSCALL
257# if __linux && __GLIBC__ >= 2
258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259# else
260# define EV_USE_CLOCK_SYSCALL 0
261# endif
262#endif
263
169#ifndef EV_USE_MONOTONIC 264#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1 266# define EV_USE_MONOTONIC EV_FEATURE_OS
172# else 267# else
173# define EV_USE_MONOTONIC 0 268# define EV_USE_MONOTONIC 0
174# endif 269# endif
175#endif 270#endif
176 271
177#ifndef EV_USE_REALTIME 272#ifndef EV_USE_REALTIME
178# define EV_USE_REALTIME 0 273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
179#endif 274#endif
180 275
181#ifndef EV_USE_NANOSLEEP 276#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L 277# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1 278# define EV_USE_NANOSLEEP EV_FEATURE_OS
184# else 279# else
185# define EV_USE_NANOSLEEP 0 280# define EV_USE_NANOSLEEP 0
186# endif 281# endif
187#endif 282#endif
188 283
189#ifndef EV_USE_SELECT 284#ifndef EV_USE_SELECT
190# define EV_USE_SELECT 1 285# define EV_USE_SELECT EV_FEATURE_BACKENDS
191#endif 286#endif
192 287
193#ifndef EV_USE_POLL 288#ifndef EV_USE_POLL
194# ifdef _WIN32 289# ifdef _WIN32
195# define EV_USE_POLL 0 290# define EV_USE_POLL 0
196# else 291# else
197# define EV_USE_POLL 1 292# define EV_USE_POLL EV_FEATURE_BACKENDS
198# endif 293# endif
199#endif 294#endif
200 295
201#ifndef EV_USE_EPOLL 296#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1 298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
204# else 299# else
205# define EV_USE_EPOLL 0 300# define EV_USE_EPOLL 0
206# endif 301# endif
207#endif 302#endif
208 303
214# define EV_USE_PORT 0 309# define EV_USE_PORT 0
215#endif 310#endif
216 311
217#ifndef EV_USE_INOTIFY 312#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1 314# define EV_USE_INOTIFY EV_FEATURE_OS
220# else 315# else
221# define EV_USE_INOTIFY 0 316# define EV_USE_INOTIFY 0
222# endif 317# endif
223#endif 318#endif
224 319
225#ifndef EV_PID_HASHSIZE 320#ifndef EV_PID_HASHSIZE
226# if EV_MINIMAL 321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
230# endif
231#endif 322#endif
232 323
233#ifndef EV_INOTIFY_HASHSIZE 324#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL 325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif 326#endif
240 327
241#ifndef EV_USE_EVENTFD 328#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1 330# define EV_USE_EVENTFD EV_FEATURE_OS
244# else 331# else
245# define EV_USE_EVENTFD 0 332# define EV_USE_EVENTFD 0
333# endif
334#endif
335
336#ifndef EV_USE_SIGNALFD
337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338# define EV_USE_SIGNALFD EV_FEATURE_OS
339# else
340# define EV_USE_SIGNALFD 0
246# endif 341# endif
247#endif 342#endif
248 343
249#if 0 /* debugging */ 344#if 0 /* debugging */
250# define EV_VERIFY 3 345# define EV_VERIFY 3
251# define EV_USE_4HEAP 1 346# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1 347# define EV_HEAP_CACHE_AT 1
253#endif 348#endif
254 349
255#ifndef EV_VERIFY 350#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL 351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
257#endif 352#endif
258 353
259#ifndef EV_USE_4HEAP 354#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL 355# define EV_USE_4HEAP EV_FEATURE_DATA
261#endif 356#endif
262 357
263#ifndef EV_HEAP_CACHE_AT 358#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL 359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
363/* which makes programs even slower. might work on other unices, too. */
364#if EV_USE_CLOCK_SYSCALL
365# include <sys/syscall.h>
366# ifdef SYS_clock_gettime
367# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
368# undef EV_USE_MONOTONIC
369# define EV_USE_MONOTONIC 1
370# else
371# undef EV_USE_CLOCK_SYSCALL
372# define EV_USE_CLOCK_SYSCALL 0
373# endif
265#endif 374#endif
266 375
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 376/* this block fixes any misconfiguration where we know we run into trouble otherwise */
377
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
268 383
269#ifndef CLOCK_MONOTONIC 384#ifndef CLOCK_MONOTONIC
270# undef EV_USE_MONOTONIC 385# undef EV_USE_MONOTONIC
271# define EV_USE_MONOTONIC 0 386# define EV_USE_MONOTONIC 0
272#endif 387#endif
280# undef EV_USE_INOTIFY 395# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0 396# define EV_USE_INOTIFY 0
282#endif 397#endif
283 398
284#if !EV_USE_NANOSLEEP 399#if !EV_USE_NANOSLEEP
285# ifndef _WIN32 400/* hp-ux has it in sys/time.h, which we unconditionally include above */
401# if !defined _WIN32 && !defined __hpux
286# include <sys/select.h> 402# include <sys/select.h>
287# endif 403# endif
288#endif 404#endif
289 405
290#if EV_USE_INOTIFY 406#if EV_USE_INOTIFY
291# include <sys/utsname.h>
292# include <sys/statfs.h> 407# include <sys/statfs.h>
293# include <sys/inotify.h> 408# include <sys/inotify.h>
294/* some very old inotify.h headers don't have IN_DONT_FOLLOW */ 409/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
295# ifndef IN_DONT_FOLLOW 410# ifndef IN_DONT_FOLLOW
296# undef EV_USE_INOTIFY 411# undef EV_USE_INOTIFY
303#endif 418#endif
304 419
305#if EV_USE_EVENTFD 420#if EV_USE_EVENTFD
306/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 421/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
307# include <stdint.h> 422# include <stdint.h>
308# ifdef __cplusplus 423# ifndef EFD_NONBLOCK
309extern "C" { 424# define EFD_NONBLOCK O_NONBLOCK
310# endif 425# endif
311int eventfd (unsigned int initval, int flags); 426# ifndef EFD_CLOEXEC
312# ifdef __cplusplus 427# ifdef O_CLOEXEC
313} 428# define EFD_CLOEXEC O_CLOEXEC
429# else
430# define EFD_CLOEXEC 02000000
431# endif
314# endif 432# endif
433EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
434#endif
435
436#if EV_USE_SIGNALFD
437/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
438# include <stdint.h>
439# ifndef SFD_NONBLOCK
440# define SFD_NONBLOCK O_NONBLOCK
441# endif
442# ifndef SFD_CLOEXEC
443# ifdef O_CLOEXEC
444# define SFD_CLOEXEC O_CLOEXEC
445# else
446# define SFD_CLOEXEC 02000000
447# endif
448# endif
449EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
450
451struct signalfd_siginfo
452{
453 uint32_t ssi_signo;
454 char pad[128 - sizeof (uint32_t)];
455};
315#endif 456#endif
316 457
317/**/ 458/**/
318 459
319#if EV_VERIFY >= 3 460#if EV_VERIFY >= 3
320# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 461# define EV_FREQUENT_CHECK ev_verify (EV_A)
321#else 462#else
322# define EV_FREQUENT_CHECK do { } while (0) 463# define EV_FREQUENT_CHECK do { } while (0)
323#endif 464#endif
324 465
325/* 466/*
326 * This is used to avoid floating point rounding problems. 467 * This is used to work around floating point rounding problems.
327 * It is added to ev_rt_now when scheduling periodics
328 * to ensure progress, time-wise, even when rounding
329 * errors are against us.
330 * This value is good at least till the year 4000. 468 * This value is good at least till the year 4000.
331 * Better solutions welcome.
332 */ 469 */
333#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 470#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
471/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
334 472
335#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 473#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
336#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 474#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
337/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
338 475
476#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
477#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
478
479/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
480/* ECB.H BEGIN */
481/*
482 * libecb - http://software.schmorp.de/pkg/libecb
483 *
484 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
485 * Copyright (©) 2011 Emanuele Giaquinta
486 * All rights reserved.
487 *
488 * Redistribution and use in source and binary forms, with or without modifica-
489 * tion, are permitted provided that the following conditions are met:
490 *
491 * 1. Redistributions of source code must retain the above copyright notice,
492 * this list of conditions and the following disclaimer.
493 *
494 * 2. Redistributions in binary form must reproduce the above copyright
495 * notice, this list of conditions and the following disclaimer in the
496 * documentation and/or other materials provided with the distribution.
497 *
498 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
499 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
500 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
501 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
502 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
503 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
504 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
505 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
506 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
507 * OF THE POSSIBILITY OF SUCH DAMAGE.
508 */
509
510#ifndef ECB_H
511#define ECB_H
512
513#ifdef _WIN32
514 typedef signed char int8_t;
515 typedef unsigned char uint8_t;
516 typedef signed short int16_t;
517 typedef unsigned short uint16_t;
518 typedef signed int int32_t;
519 typedef unsigned int uint32_t;
339#if __GNUC__ >= 4 520 #if __GNUC__
340# define expect(expr,value) __builtin_expect ((expr),(value)) 521 typedef signed long long int64_t;
341# define noinline __attribute__ ((noinline)) 522 typedef unsigned long long uint64_t;
523 #else /* _MSC_VER || __BORLANDC__ */
524 typedef signed __int64 int64_t;
525 typedef unsigned __int64 uint64_t;
526 #endif
342#else 527#else
343# define expect(expr,value) (expr) 528 #include <inttypes.h>
344# define noinline
345# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
346# define inline
347# endif 529#endif
530
531/* many compilers define _GNUC_ to some versions but then only implement
532 * what their idiot authors think are the "more important" extensions,
533 * causing enormous grief in return for some better fake benchmark numbers.
534 * or so.
535 * we try to detect these and simply assume they are not gcc - if they have
536 * an issue with that they should have done it right in the first place.
537 */
538#ifndef ECB_GCC_VERSION
539 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
540 #define ECB_GCC_VERSION(major,minor) 0
541 #else
542 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
348#endif 543 #endif
544#endif
349 545
546/*****************************************************************************/
547
548/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
549/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
550
551#if ECB_NO_THREADS
552# define ECB_NO_SMP 1
553#endif
554
555#if ECB_NO_THREADS || ECB_NO_SMP
556 #define ECB_MEMORY_FENCE do { } while (0)
557#endif
558
559#ifndef ECB_MEMORY_FENCE
560 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
561 #if __i386 || __i386__
562 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
563 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
564 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
565 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
566 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
567 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
568 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
569 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
570 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
571 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
572 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
573 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
574 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
575 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
576 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
577 #elif __sparc || __sparc__
578 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
579 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
580 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
581 #elif defined __s390__ || defined __s390x__
582 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
583 #elif defined __mips__
584 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
585 #elif defined __alpha__
586 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
587 #endif
588 #endif
589#endif
590
591#ifndef ECB_MEMORY_FENCE
592 #if ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
593 #define ECB_MEMORY_FENCE __sync_synchronize ()
594 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
595 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
596 #elif _MSC_VER >= 1400 /* VC++ 2005 */
597 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
598 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
599 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
600 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
601 #elif defined _WIN32
602 #include <WinNT.h>
603 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
604 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
605 #include <mbarrier.h>
606 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
607 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
608 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
609 #elif __xlC__
610 #define ECB_MEMORY_FENCE __sync ()
611 #endif
612#endif
613
614#ifndef ECB_MEMORY_FENCE
615 #if !ECB_AVOID_PTHREADS
616 /*
617 * if you get undefined symbol references to pthread_mutex_lock,
618 * or failure to find pthread.h, then you should implement
619 * the ECB_MEMORY_FENCE operations for your cpu/compiler
620 * OR provide pthread.h and link against the posix thread library
621 * of your system.
622 */
623 #include <pthread.h>
624 #define ECB_NEEDS_PTHREADS 1
625 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
626
627 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
628 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
629 #endif
630#endif
631
632#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
633 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
634#endif
635
636#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
637 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
638#endif
639
640/*****************************************************************************/
641
642#define ECB_C99 (__STDC_VERSION__ >= 199901L)
643
644#if __cplusplus
645 #define ecb_inline static inline
646#elif ECB_GCC_VERSION(2,5)
647 #define ecb_inline static __inline__
648#elif ECB_C99
649 #define ecb_inline static inline
650#else
651 #define ecb_inline static
652#endif
653
654#if ECB_GCC_VERSION(3,3)
655 #define ecb_restrict __restrict__
656#elif ECB_C99
657 #define ecb_restrict restrict
658#else
659 #define ecb_restrict
660#endif
661
662typedef int ecb_bool;
663
664#define ECB_CONCAT_(a, b) a ## b
665#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
666#define ECB_STRINGIFY_(a) # a
667#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
668
669#define ecb_function_ ecb_inline
670
671#if ECB_GCC_VERSION(3,1)
672 #define ecb_attribute(attrlist) __attribute__(attrlist)
673 #define ecb_is_constant(expr) __builtin_constant_p (expr)
674 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
675 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
676#else
677 #define ecb_attribute(attrlist)
678 #define ecb_is_constant(expr) 0
679 #define ecb_expect(expr,value) (expr)
680 #define ecb_prefetch(addr,rw,locality)
681#endif
682
683/* no emulation for ecb_decltype */
684#if ECB_GCC_VERSION(4,5)
685 #define ecb_decltype(x) __decltype(x)
686#elif ECB_GCC_VERSION(3,0)
687 #define ecb_decltype(x) __typeof(x)
688#endif
689
690#define ecb_noinline ecb_attribute ((__noinline__))
691#define ecb_noreturn ecb_attribute ((__noreturn__))
692#define ecb_unused ecb_attribute ((__unused__))
693#define ecb_const ecb_attribute ((__const__))
694#define ecb_pure ecb_attribute ((__pure__))
695
696#if ECB_GCC_VERSION(4,3)
697 #define ecb_artificial ecb_attribute ((__artificial__))
698 #define ecb_hot ecb_attribute ((__hot__))
699 #define ecb_cold ecb_attribute ((__cold__))
700#else
701 #define ecb_artificial
702 #define ecb_hot
703 #define ecb_cold
704#endif
705
706/* put around conditional expressions if you are very sure that the */
707/* expression is mostly true or mostly false. note that these return */
708/* booleans, not the expression. */
350#define expect_false(expr) expect ((expr) != 0, 0) 709#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
351#define expect_true(expr) expect ((expr) != 0, 1) 710#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
711/* for compatibility to the rest of the world */
712#define ecb_likely(expr) ecb_expect_true (expr)
713#define ecb_unlikely(expr) ecb_expect_false (expr)
714
715/* count trailing zero bits and count # of one bits */
716#if ECB_GCC_VERSION(3,4)
717 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
718 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
719 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
720 #define ecb_ctz32(x) __builtin_ctz (x)
721 #define ecb_ctz64(x) __builtin_ctzll (x)
722 #define ecb_popcount32(x) __builtin_popcount (x)
723 /* no popcountll */
724#else
725 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
726 ecb_function_ int
727 ecb_ctz32 (uint32_t x)
728 {
729 int r = 0;
730
731 x &= ~x + 1; /* this isolates the lowest bit */
732
733#if ECB_branchless_on_i386
734 r += !!(x & 0xaaaaaaaa) << 0;
735 r += !!(x & 0xcccccccc) << 1;
736 r += !!(x & 0xf0f0f0f0) << 2;
737 r += !!(x & 0xff00ff00) << 3;
738 r += !!(x & 0xffff0000) << 4;
739#else
740 if (x & 0xaaaaaaaa) r += 1;
741 if (x & 0xcccccccc) r += 2;
742 if (x & 0xf0f0f0f0) r += 4;
743 if (x & 0xff00ff00) r += 8;
744 if (x & 0xffff0000) r += 16;
745#endif
746
747 return r;
748 }
749
750 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
751 ecb_function_ int
752 ecb_ctz64 (uint64_t x)
753 {
754 int shift = x & 0xffffffffU ? 0 : 32;
755 return ecb_ctz32 (x >> shift) + shift;
756 }
757
758 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
759 ecb_function_ int
760 ecb_popcount32 (uint32_t x)
761 {
762 x -= (x >> 1) & 0x55555555;
763 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
764 x = ((x >> 4) + x) & 0x0f0f0f0f;
765 x *= 0x01010101;
766
767 return x >> 24;
768 }
769
770 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
771 ecb_function_ int ecb_ld32 (uint32_t x)
772 {
773 int r = 0;
774
775 if (x >> 16) { x >>= 16; r += 16; }
776 if (x >> 8) { x >>= 8; r += 8; }
777 if (x >> 4) { x >>= 4; r += 4; }
778 if (x >> 2) { x >>= 2; r += 2; }
779 if (x >> 1) { r += 1; }
780
781 return r;
782 }
783
784 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
785 ecb_function_ int ecb_ld64 (uint64_t x)
786 {
787 int r = 0;
788
789 if (x >> 32) { x >>= 32; r += 32; }
790
791 return r + ecb_ld32 (x);
792 }
793#endif
794
795ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
796ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
797{
798 return ( (x * 0x0802U & 0x22110U)
799 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
800}
801
802ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
803ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
804{
805 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
806 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
807 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
808 x = ( x >> 8 ) | ( x << 8);
809
810 return x;
811}
812
813ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
814ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
815{
816 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
817 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
818 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
819 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
820 x = ( x >> 16 ) | ( x << 16);
821
822 return x;
823}
824
825/* popcount64 is only available on 64 bit cpus as gcc builtin */
826/* so for this version we are lazy */
827ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
828ecb_function_ int
829ecb_popcount64 (uint64_t x)
830{
831 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
832}
833
834ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
835ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
836ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
837ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
838ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
839ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
840ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
841ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
842
843ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
844ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
845ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
846ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
847ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
848ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
849ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
850ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
851
852#if ECB_GCC_VERSION(4,3)
853 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
854 #define ecb_bswap32(x) __builtin_bswap32 (x)
855 #define ecb_bswap64(x) __builtin_bswap64 (x)
856#else
857 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
858 ecb_function_ uint16_t
859 ecb_bswap16 (uint16_t x)
860 {
861 return ecb_rotl16 (x, 8);
862 }
863
864 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
865 ecb_function_ uint32_t
866 ecb_bswap32 (uint32_t x)
867 {
868 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
869 }
870
871 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
872 ecb_function_ uint64_t
873 ecb_bswap64 (uint64_t x)
874 {
875 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
876 }
877#endif
878
879#if ECB_GCC_VERSION(4,5)
880 #define ecb_unreachable() __builtin_unreachable ()
881#else
882 /* this seems to work fine, but gcc always emits a warning for it :/ */
883 ecb_inline void ecb_unreachable (void) ecb_noreturn;
884 ecb_inline void ecb_unreachable (void) { }
885#endif
886
887/* try to tell the compiler that some condition is definitely true */
888#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
889
890ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
891ecb_inline unsigned char
892ecb_byteorder_helper (void)
893{
894 const uint32_t u = 0x11223344;
895 return *(unsigned char *)&u;
896}
897
898ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
899ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
900ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
901ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
902
903#if ECB_GCC_VERSION(3,0) || ECB_C99
904 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
905#else
906 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
907#endif
908
909#if __cplusplus
910 template<typename T>
911 static inline T ecb_div_rd (T val, T div)
912 {
913 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
914 }
915 template<typename T>
916 static inline T ecb_div_ru (T val, T div)
917 {
918 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
919 }
920#else
921 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
922 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
923#endif
924
925#if ecb_cplusplus_does_not_suck
926 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
927 template<typename T, int N>
928 static inline int ecb_array_length (const T (&arr)[N])
929 {
930 return N;
931 }
932#else
933 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
934#endif
935
936#endif
937
938/* ECB.H END */
939
940#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
941/* if your architecture doesn't need memory fences, e.g. because it is
942 * single-cpu/core, or if you use libev in a project that doesn't use libev
943 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
944 * libev, in which cases the memory fences become nops.
945 * alternatively, you can remove this #error and link against libpthread,
946 * which will then provide the memory fences.
947 */
948# error "memory fences not defined for your architecture, please report"
949#endif
950
951#ifndef ECB_MEMORY_FENCE
952# define ECB_MEMORY_FENCE do { } while (0)
953# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
954# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
955#endif
956
957#define expect_false(cond) ecb_expect_false (cond)
958#define expect_true(cond) ecb_expect_true (cond)
959#define noinline ecb_noinline
960
352#define inline_size static inline 961#define inline_size ecb_inline
353 962
354#if EV_MINIMAL 963#if EV_FEATURE_CODE
964# define inline_speed ecb_inline
965#else
355# define inline_speed static noinline 966# define inline_speed static noinline
967#endif
968
969#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
970
971#if EV_MINPRI == EV_MAXPRI
972# define ABSPRI(w) (((W)w), 0)
356#else 973#else
357# define inline_speed static inline
358#endif
359
360#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
361#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 974# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
975#endif
362 976
363#define EMPTY /* required for microsofts broken pseudo-c compiler */ 977#define EMPTY /* required for microsofts broken pseudo-c compiler */
364#define EMPTY2(a,b) /* used to suppress some warnings */ 978#define EMPTY2(a,b) /* used to suppress some warnings */
365 979
366typedef ev_watcher *W; 980typedef ev_watcher *W;
368typedef ev_watcher_time *WT; 982typedef ev_watcher_time *WT;
369 983
370#define ev_active(w) ((W)(w))->active 984#define ev_active(w) ((W)(w))->active
371#define ev_at(w) ((WT)(w))->at 985#define ev_at(w) ((WT)(w))->at
372 986
987#if EV_USE_REALTIME
988/* sig_atomic_t is used to avoid per-thread variables or locking but still */
989/* giving it a reasonably high chance of working on typical architectures */
990static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
991#endif
992
373#if EV_USE_MONOTONIC 993#if EV_USE_MONOTONIC
374/* sig_atomic_t is used to avoid per-thread variables or locking but still */
375/* giving it a reasonably high chance of working on typical architetcures */
376static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 994static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
995#endif
996
997#ifndef EV_FD_TO_WIN32_HANDLE
998# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
999#endif
1000#ifndef EV_WIN32_HANDLE_TO_FD
1001# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1002#endif
1003#ifndef EV_WIN32_CLOSE_FD
1004# define EV_WIN32_CLOSE_FD(fd) close (fd)
377#endif 1005#endif
378 1006
379#ifdef _WIN32 1007#ifdef _WIN32
380# include "ev_win32.c" 1008# include "ev_win32.c"
381#endif 1009#endif
382 1010
383/*****************************************************************************/ 1011/*****************************************************************************/
384 1012
1013/* define a suitable floor function (only used by periodics atm) */
1014
1015#if EV_USE_FLOOR
1016# include <math.h>
1017# define ev_floor(v) floor (v)
1018#else
1019
1020#include <float.h>
1021
1022/* a floor() replacement function, should be independent of ev_tstamp type */
1023static ev_tstamp noinline
1024ev_floor (ev_tstamp v)
1025{
1026 /* the choice of shift factor is not terribly important */
1027#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1028 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1029#else
1030 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1031#endif
1032
1033 /* argument too large for an unsigned long? */
1034 if (expect_false (v >= shift))
1035 {
1036 ev_tstamp f;
1037
1038 if (v == v - 1.)
1039 return v; /* very large number */
1040
1041 f = shift * ev_floor (v * (1. / shift));
1042 return f + ev_floor (v - f);
1043 }
1044
1045 /* special treatment for negative args? */
1046 if (expect_false (v < 0.))
1047 {
1048 ev_tstamp f = -ev_floor (-v);
1049
1050 return f - (f == v ? 0 : 1);
1051 }
1052
1053 /* fits into an unsigned long */
1054 return (unsigned long)v;
1055}
1056
1057#endif
1058
1059/*****************************************************************************/
1060
1061#ifdef __linux
1062# include <sys/utsname.h>
1063#endif
1064
1065static unsigned int noinline ecb_cold
1066ev_linux_version (void)
1067{
1068#ifdef __linux
1069 unsigned int v = 0;
1070 struct utsname buf;
1071 int i;
1072 char *p = buf.release;
1073
1074 if (uname (&buf))
1075 return 0;
1076
1077 for (i = 3+1; --i; )
1078 {
1079 unsigned int c = 0;
1080
1081 for (;;)
1082 {
1083 if (*p >= '0' && *p <= '9')
1084 c = c * 10 + *p++ - '0';
1085 else
1086 {
1087 p += *p == '.';
1088 break;
1089 }
1090 }
1091
1092 v = (v << 8) | c;
1093 }
1094
1095 return v;
1096#else
1097 return 0;
1098#endif
1099}
1100
1101/*****************************************************************************/
1102
1103#if EV_AVOID_STDIO
1104static void noinline ecb_cold
1105ev_printerr (const char *msg)
1106{
1107 write (STDERR_FILENO, msg, strlen (msg));
1108}
1109#endif
1110
385static void (*syserr_cb)(const char *msg); 1111static void (*syserr_cb)(const char *msg) EV_THROW;
386 1112
387void 1113void ecb_cold
388ev_set_syserr_cb (void (*cb)(const char *msg)) 1114ev_set_syserr_cb (void (*cb)(const char *msg)) EV_THROW
389{ 1115{
390 syserr_cb = cb; 1116 syserr_cb = cb;
391} 1117}
392 1118
393static void noinline 1119static void noinline ecb_cold
394ev_syserr (const char *msg) 1120ev_syserr (const char *msg)
395{ 1121{
396 if (!msg) 1122 if (!msg)
397 msg = "(libev) system error"; 1123 msg = "(libev) system error";
398 1124
399 if (syserr_cb) 1125 if (syserr_cb)
400 syserr_cb (msg); 1126 syserr_cb (msg);
401 else 1127 else
402 { 1128 {
1129#if EV_AVOID_STDIO
1130 ev_printerr (msg);
1131 ev_printerr (": ");
1132 ev_printerr (strerror (errno));
1133 ev_printerr ("\n");
1134#else
403 perror (msg); 1135 perror (msg);
1136#endif
404 abort (); 1137 abort ();
405 } 1138 }
406} 1139}
407 1140
408static void * 1141static void *
409ev_realloc_emul (void *ptr, long size) 1142ev_realloc_emul (void *ptr, long size)
410{ 1143{
1144#if __GLIBC__
1145 return realloc (ptr, size);
1146#else
411 /* some systems, notably openbsd and darwin, fail to properly 1147 /* some systems, notably openbsd and darwin, fail to properly
412 * implement realloc (x, 0) (as required by both ansi c-98 and 1148 * implement realloc (x, 0) (as required by both ansi c-89 and
413 * the single unix specification, so work around them here. 1149 * the single unix specification, so work around them here.
414 */ 1150 */
415 1151
416 if (size) 1152 if (size)
417 return realloc (ptr, size); 1153 return realloc (ptr, size);
418 1154
419 free (ptr); 1155 free (ptr);
420 return 0; 1156 return 0;
1157#endif
421} 1158}
422 1159
423static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1160static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
424 1161
425void 1162void ecb_cold
426ev_set_allocator (void *(*cb)(void *ptr, long size)) 1163ev_set_allocator (void *(*cb)(void *ptr, long size)) EV_THROW
427{ 1164{
428 alloc = cb; 1165 alloc = cb;
429} 1166}
430 1167
431inline_speed void * 1168inline_speed void *
433{ 1170{
434 ptr = alloc (ptr, size); 1171 ptr = alloc (ptr, size);
435 1172
436 if (!ptr && size) 1173 if (!ptr && size)
437 { 1174 {
1175#if EV_AVOID_STDIO
1176 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1177#else
438 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1178 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1179#endif
439 abort (); 1180 abort ();
440 } 1181 }
441 1182
442 return ptr; 1183 return ptr;
443} 1184}
445#define ev_malloc(size) ev_realloc (0, (size)) 1186#define ev_malloc(size) ev_realloc (0, (size))
446#define ev_free(ptr) ev_realloc ((ptr), 0) 1187#define ev_free(ptr) ev_realloc ((ptr), 0)
447 1188
448/*****************************************************************************/ 1189/*****************************************************************************/
449 1190
1191/* set in reify when reification needed */
1192#define EV_ANFD_REIFY 1
1193
1194/* file descriptor info structure */
450typedef struct 1195typedef struct
451{ 1196{
452 WL head; 1197 WL head;
453 unsigned char events; 1198 unsigned char events; /* the events watched for */
454 unsigned char reify; 1199 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
455 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 1200 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
456 unsigned char unused; 1201 unsigned char unused;
457#if EV_USE_EPOLL 1202#if EV_USE_EPOLL
458 unsigned int egen; /* generation counter to counter epoll bugs */ 1203 unsigned int egen; /* generation counter to counter epoll bugs */
459#endif 1204#endif
460#if EV_SELECT_IS_WINSOCKET 1205#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
461 SOCKET handle; 1206 SOCKET handle;
462#endif 1207#endif
1208#if EV_USE_IOCP
1209 OVERLAPPED or, ow;
1210#endif
463} ANFD; 1211} ANFD;
464 1212
1213/* stores the pending event set for a given watcher */
465typedef struct 1214typedef struct
466{ 1215{
467 W w; 1216 W w;
468 int events; 1217 int events; /* the pending event set for the given watcher */
469} ANPENDING; 1218} ANPENDING;
470 1219
471#if EV_USE_INOTIFY 1220#if EV_USE_INOTIFY
472/* hash table entry per inotify-id */ 1221/* hash table entry per inotify-id */
473typedef struct 1222typedef struct
476} ANFS; 1225} ANFS;
477#endif 1226#endif
478 1227
479/* Heap Entry */ 1228/* Heap Entry */
480#if EV_HEAP_CACHE_AT 1229#if EV_HEAP_CACHE_AT
1230 /* a heap element */
481 typedef struct { 1231 typedef struct {
482 ev_tstamp at; 1232 ev_tstamp at;
483 WT w; 1233 WT w;
484 } ANHE; 1234 } ANHE;
485 1235
486 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1236 #define ANHE_w(he) (he).w /* access watcher, read-write */
487 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1237 #define ANHE_at(he) (he).at /* access cached at, read-only */
488 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 1238 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
489#else 1239#else
1240 /* a heap element */
490 typedef WT ANHE; 1241 typedef WT ANHE;
491 1242
492 #define ANHE_w(he) (he) 1243 #define ANHE_w(he) (he)
493 #define ANHE_at(he) (he)->at 1244 #define ANHE_at(he) (he)->at
494 #define ANHE_at_cache(he) 1245 #define ANHE_at_cache(he)
505 #undef VAR 1256 #undef VAR
506 }; 1257 };
507 #include "ev_wrap.h" 1258 #include "ev_wrap.h"
508 1259
509 static struct ev_loop default_loop_struct; 1260 static struct ev_loop default_loop_struct;
510 struct ev_loop *ev_default_loop_ptr; 1261 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
511 1262
512#else 1263#else
513 1264
514 ev_tstamp ev_rt_now; 1265 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
515 #define VAR(name,decl) static decl; 1266 #define VAR(name,decl) static decl;
516 #include "ev_vars.h" 1267 #include "ev_vars.h"
517 #undef VAR 1268 #undef VAR
518 1269
519 static int ev_default_loop_ptr; 1270 static int ev_default_loop_ptr;
520 1271
521#endif 1272#endif
522 1273
1274#if EV_FEATURE_API
1275# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1276# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1277# define EV_INVOKE_PENDING invoke_cb (EV_A)
1278#else
1279# define EV_RELEASE_CB (void)0
1280# define EV_ACQUIRE_CB (void)0
1281# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1282#endif
1283
1284#define EVBREAK_RECURSE 0x80
1285
523/*****************************************************************************/ 1286/*****************************************************************************/
524 1287
1288#ifndef EV_HAVE_EV_TIME
525ev_tstamp 1289ev_tstamp
526ev_time (void) 1290ev_time (void) EV_THROW
527{ 1291{
528#if EV_USE_REALTIME 1292#if EV_USE_REALTIME
1293 if (expect_true (have_realtime))
1294 {
529 struct timespec ts; 1295 struct timespec ts;
530 clock_gettime (CLOCK_REALTIME, &ts); 1296 clock_gettime (CLOCK_REALTIME, &ts);
531 return ts.tv_sec + ts.tv_nsec * 1e-9; 1297 return ts.tv_sec + ts.tv_nsec * 1e-9;
532#else 1298 }
1299#endif
1300
533 struct timeval tv; 1301 struct timeval tv;
534 gettimeofday (&tv, 0); 1302 gettimeofday (&tv, 0);
535 return tv.tv_sec + tv.tv_usec * 1e-6; 1303 return tv.tv_sec + tv.tv_usec * 1e-6;
536#endif
537} 1304}
1305#endif
538 1306
539ev_tstamp inline_size 1307inline_size ev_tstamp
540get_clock (void) 1308get_clock (void)
541{ 1309{
542#if EV_USE_MONOTONIC 1310#if EV_USE_MONOTONIC
543 if (expect_true (have_monotonic)) 1311 if (expect_true (have_monotonic))
544 { 1312 {
551 return ev_time (); 1319 return ev_time ();
552} 1320}
553 1321
554#if EV_MULTIPLICITY 1322#if EV_MULTIPLICITY
555ev_tstamp 1323ev_tstamp
556ev_now (EV_P) 1324ev_now (EV_P) EV_THROW
557{ 1325{
558 return ev_rt_now; 1326 return ev_rt_now;
559} 1327}
560#endif 1328#endif
561 1329
562void 1330void
563ev_sleep (ev_tstamp delay) 1331ev_sleep (ev_tstamp delay) EV_THROW
564{ 1332{
565 if (delay > 0.) 1333 if (delay > 0.)
566 { 1334 {
567#if EV_USE_NANOSLEEP 1335#if EV_USE_NANOSLEEP
568 struct timespec ts; 1336 struct timespec ts;
569 1337
570 ts.tv_sec = (time_t)delay; 1338 EV_TS_SET (ts, delay);
571 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
572
573 nanosleep (&ts, 0); 1339 nanosleep (&ts, 0);
574#elif defined(_WIN32) 1340#elif defined _WIN32
575 Sleep ((unsigned long)(delay * 1e3)); 1341 Sleep ((unsigned long)(delay * 1e3));
576#else 1342#else
577 struct timeval tv; 1343 struct timeval tv;
578 1344
579 tv.tv_sec = (time_t)delay;
580 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
581
582 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 1345 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
583 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 1346 /* something not guaranteed by newer posix versions, but guaranteed */
584 /* by older ones */ 1347 /* by older ones */
1348 EV_TV_SET (tv, delay);
585 select (0, 0, 0, 0, &tv); 1349 select (0, 0, 0, 0, &tv);
586#endif 1350#endif
587 } 1351 }
588} 1352}
589 1353
590/*****************************************************************************/ 1354/*****************************************************************************/
591 1355
592#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1356#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
593 1357
594int inline_size 1358/* find a suitable new size for the given array, */
1359/* hopefully by rounding to a nice-to-malloc size */
1360inline_size int
595array_nextsize (int elem, int cur, int cnt) 1361array_nextsize (int elem, int cur, int cnt)
596{ 1362{
597 int ncur = cur + 1; 1363 int ncur = cur + 1;
598 1364
599 do 1365 do
600 ncur <<= 1; 1366 ncur <<= 1;
601 while (cnt > ncur); 1367 while (cnt > ncur);
602 1368
603 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1369 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
604 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1370 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
605 { 1371 {
606 ncur *= elem; 1372 ncur *= elem;
607 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1373 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
608 ncur = ncur - sizeof (void *) * 4; 1374 ncur = ncur - sizeof (void *) * 4;
610 } 1376 }
611 1377
612 return ncur; 1378 return ncur;
613} 1379}
614 1380
615static noinline void * 1381static void * noinline ecb_cold
616array_realloc (int elem, void *base, int *cur, int cnt) 1382array_realloc (int elem, void *base, int *cur, int cnt)
617{ 1383{
618 *cur = array_nextsize (elem, *cur, cnt); 1384 *cur = array_nextsize (elem, *cur, cnt);
619 return ev_realloc (base, elem * *cur); 1385 return ev_realloc (base, elem * *cur);
620} 1386}
623 memset ((void *)(base), 0, sizeof (*(base)) * (count)) 1389 memset ((void *)(base), 0, sizeof (*(base)) * (count))
624 1390
625#define array_needsize(type,base,cur,cnt,init) \ 1391#define array_needsize(type,base,cur,cnt,init) \
626 if (expect_false ((cnt) > (cur))) \ 1392 if (expect_false ((cnt) > (cur))) \
627 { \ 1393 { \
628 int ocur_ = (cur); \ 1394 int ecb_unused ocur_ = (cur); \
629 (base) = (type *)array_realloc \ 1395 (base) = (type *)array_realloc \
630 (sizeof (type), (base), &(cur), (cnt)); \ 1396 (sizeof (type), (base), &(cur), (cnt)); \
631 init ((base) + (ocur_), (cur) - ocur_); \ 1397 init ((base) + (ocur_), (cur) - ocur_); \
632 } 1398 }
633 1399
640 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1406 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
641 } 1407 }
642#endif 1408#endif
643 1409
644#define array_free(stem, idx) \ 1410#define array_free(stem, idx) \
645 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1411 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
646 1412
647/*****************************************************************************/ 1413/*****************************************************************************/
648 1414
1415/* dummy callback for pending events */
1416static void noinline
1417pendingcb (EV_P_ ev_prepare *w, int revents)
1418{
1419}
1420
649void noinline 1421void noinline
650ev_feed_event (EV_P_ void *w, int revents) 1422ev_feed_event (EV_P_ void *w, int revents) EV_THROW
651{ 1423{
652 W w_ = (W)w; 1424 W w_ = (W)w;
653 int pri = ABSPRI (w_); 1425 int pri = ABSPRI (w_);
654 1426
655 if (expect_false (w_->pending)) 1427 if (expect_false (w_->pending))
659 w_->pending = ++pendingcnt [pri]; 1431 w_->pending = ++pendingcnt [pri];
660 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1432 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
661 pendings [pri][w_->pending - 1].w = w_; 1433 pendings [pri][w_->pending - 1].w = w_;
662 pendings [pri][w_->pending - 1].events = revents; 1434 pendings [pri][w_->pending - 1].events = revents;
663 } 1435 }
664}
665 1436
666void inline_speed 1437 pendingpri = NUMPRI - 1;
1438}
1439
1440inline_speed void
1441feed_reverse (EV_P_ W w)
1442{
1443 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1444 rfeeds [rfeedcnt++] = w;
1445}
1446
1447inline_size void
1448feed_reverse_done (EV_P_ int revents)
1449{
1450 do
1451 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1452 while (rfeedcnt);
1453}
1454
1455inline_speed void
667queue_events (EV_P_ W *events, int eventcnt, int type) 1456queue_events (EV_P_ W *events, int eventcnt, int type)
668{ 1457{
669 int i; 1458 int i;
670 1459
671 for (i = 0; i < eventcnt; ++i) 1460 for (i = 0; i < eventcnt; ++i)
672 ev_feed_event (EV_A_ events [i], type); 1461 ev_feed_event (EV_A_ events [i], type);
673} 1462}
674 1463
675/*****************************************************************************/ 1464/*****************************************************************************/
676 1465
677void inline_speed 1466inline_speed void
678fd_event (EV_P_ int fd, int revents) 1467fd_event_nocheck (EV_P_ int fd, int revents)
679{ 1468{
680 ANFD *anfd = anfds + fd; 1469 ANFD *anfd = anfds + fd;
681 ev_io *w; 1470 ev_io *w;
682 1471
683 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1472 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
687 if (ev) 1476 if (ev)
688 ev_feed_event (EV_A_ (W)w, ev); 1477 ev_feed_event (EV_A_ (W)w, ev);
689 } 1478 }
690} 1479}
691 1480
1481/* do not submit kernel events for fds that have reify set */
1482/* because that means they changed while we were polling for new events */
1483inline_speed void
1484fd_event (EV_P_ int fd, int revents)
1485{
1486 ANFD *anfd = anfds + fd;
1487
1488 if (expect_true (!anfd->reify))
1489 fd_event_nocheck (EV_A_ fd, revents);
1490}
1491
692void 1492void
693ev_feed_fd_event (EV_P_ int fd, int revents) 1493ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
694{ 1494{
695 if (fd >= 0 && fd < anfdmax) 1495 if (fd >= 0 && fd < anfdmax)
696 fd_event (EV_A_ fd, revents); 1496 fd_event_nocheck (EV_A_ fd, revents);
697} 1497}
698 1498
699void inline_size 1499/* make sure the external fd watch events are in-sync */
1500/* with the kernel/libev internal state */
1501inline_size void
700fd_reify (EV_P) 1502fd_reify (EV_P)
701{ 1503{
702 int i; 1504 int i;
1505
1506#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1507 for (i = 0; i < fdchangecnt; ++i)
1508 {
1509 int fd = fdchanges [i];
1510 ANFD *anfd = anfds + fd;
1511
1512 if (anfd->reify & EV__IOFDSET && anfd->head)
1513 {
1514 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1515
1516 if (handle != anfd->handle)
1517 {
1518 unsigned long arg;
1519
1520 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1521
1522 /* handle changed, but fd didn't - we need to do it in two steps */
1523 backend_modify (EV_A_ fd, anfd->events, 0);
1524 anfd->events = 0;
1525 anfd->handle = handle;
1526 }
1527 }
1528 }
1529#endif
703 1530
704 for (i = 0; i < fdchangecnt; ++i) 1531 for (i = 0; i < fdchangecnt; ++i)
705 { 1532 {
706 int fd = fdchanges [i]; 1533 int fd = fdchanges [i];
707 ANFD *anfd = anfds + fd; 1534 ANFD *anfd = anfds + fd;
708 ev_io *w; 1535 ev_io *w;
709 1536
710 unsigned char events = 0; 1537 unsigned char o_events = anfd->events;
1538 unsigned char o_reify = anfd->reify;
711 1539
712 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1540 anfd->reify = 0;
713 events |= (unsigned char)w->events;
714 1541
715#if EV_SELECT_IS_WINSOCKET 1542 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
716 if (events)
717 { 1543 {
718 unsigned long arg; 1544 anfd->events = 0;
719 #ifdef EV_FD_TO_WIN32_HANDLE 1545
720 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1546 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
721 #else 1547 anfd->events |= (unsigned char)w->events;
722 anfd->handle = _get_osfhandle (fd); 1548
723 #endif 1549 if (o_events != anfd->events)
724 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 1550 o_reify = EV__IOFDSET; /* actually |= */
725 } 1551 }
726#endif
727 1552
728 { 1553 if (o_reify & EV__IOFDSET)
729 unsigned char o_events = anfd->events;
730 unsigned char o_reify = anfd->reify;
731
732 anfd->reify = 0;
733 anfd->events = events;
734
735 if (o_events != events || o_reify & EV_IOFDSET)
736 backend_modify (EV_A_ fd, o_events, events); 1554 backend_modify (EV_A_ fd, o_events, anfd->events);
737 }
738 } 1555 }
739 1556
740 fdchangecnt = 0; 1557 fdchangecnt = 0;
741} 1558}
742 1559
743void inline_size 1560/* something about the given fd changed */
1561inline_size void
744fd_change (EV_P_ int fd, int flags) 1562fd_change (EV_P_ int fd, int flags)
745{ 1563{
746 unsigned char reify = anfds [fd].reify; 1564 unsigned char reify = anfds [fd].reify;
747 anfds [fd].reify |= flags; 1565 anfds [fd].reify |= flags;
748 1566
752 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1570 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
753 fdchanges [fdchangecnt - 1] = fd; 1571 fdchanges [fdchangecnt - 1] = fd;
754 } 1572 }
755} 1573}
756 1574
757void inline_speed 1575/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1576inline_speed void ecb_cold
758fd_kill (EV_P_ int fd) 1577fd_kill (EV_P_ int fd)
759{ 1578{
760 ev_io *w; 1579 ev_io *w;
761 1580
762 while ((w = (ev_io *)anfds [fd].head)) 1581 while ((w = (ev_io *)anfds [fd].head))
764 ev_io_stop (EV_A_ w); 1583 ev_io_stop (EV_A_ w);
765 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1584 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
766 } 1585 }
767} 1586}
768 1587
769int inline_size 1588/* check whether the given fd is actually valid, for error recovery */
1589inline_size int ecb_cold
770fd_valid (int fd) 1590fd_valid (int fd)
771{ 1591{
772#ifdef _WIN32 1592#ifdef _WIN32
773 return _get_osfhandle (fd) != -1; 1593 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
774#else 1594#else
775 return fcntl (fd, F_GETFD) != -1; 1595 return fcntl (fd, F_GETFD) != -1;
776#endif 1596#endif
777} 1597}
778 1598
779/* called on EBADF to verify fds */ 1599/* called on EBADF to verify fds */
780static void noinline 1600static void noinline ecb_cold
781fd_ebadf (EV_P) 1601fd_ebadf (EV_P)
782{ 1602{
783 int fd; 1603 int fd;
784 1604
785 for (fd = 0; fd < anfdmax; ++fd) 1605 for (fd = 0; fd < anfdmax; ++fd)
787 if (!fd_valid (fd) && errno == EBADF) 1607 if (!fd_valid (fd) && errno == EBADF)
788 fd_kill (EV_A_ fd); 1608 fd_kill (EV_A_ fd);
789} 1609}
790 1610
791/* called on ENOMEM in select/poll to kill some fds and retry */ 1611/* called on ENOMEM in select/poll to kill some fds and retry */
792static void noinline 1612static void noinline ecb_cold
793fd_enomem (EV_P) 1613fd_enomem (EV_P)
794{ 1614{
795 int fd; 1615 int fd;
796 1616
797 for (fd = anfdmax; fd--; ) 1617 for (fd = anfdmax; fd--; )
798 if (anfds [fd].events) 1618 if (anfds [fd].events)
799 { 1619 {
800 fd_kill (EV_A_ fd); 1620 fd_kill (EV_A_ fd);
801 return; 1621 break;
802 } 1622 }
803} 1623}
804 1624
805/* usually called after fork if backend needs to re-arm all fds from scratch */ 1625/* usually called after fork if backend needs to re-arm all fds from scratch */
806static void noinline 1626static void noinline
811 for (fd = 0; fd < anfdmax; ++fd) 1631 for (fd = 0; fd < anfdmax; ++fd)
812 if (anfds [fd].events) 1632 if (anfds [fd].events)
813 { 1633 {
814 anfds [fd].events = 0; 1634 anfds [fd].events = 0;
815 anfds [fd].emask = 0; 1635 anfds [fd].emask = 0;
816 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1636 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
817 } 1637 }
818} 1638}
819 1639
1640/* used to prepare libev internal fd's */
1641/* this is not fork-safe */
1642inline_speed void
1643fd_intern (int fd)
1644{
1645#ifdef _WIN32
1646 unsigned long arg = 1;
1647 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1648#else
1649 fcntl (fd, F_SETFD, FD_CLOEXEC);
1650 fcntl (fd, F_SETFL, O_NONBLOCK);
1651#endif
1652}
1653
820/*****************************************************************************/ 1654/*****************************************************************************/
821 1655
822/* 1656/*
823 * the heap functions want a real array index. array index 0 uis guaranteed to not 1657 * the heap functions want a real array index. array index 0 is guaranteed to not
824 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1658 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
825 * the branching factor of the d-tree. 1659 * the branching factor of the d-tree.
826 */ 1660 */
827 1661
828/* 1662/*
837#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1671#define HEAP0 (DHEAP - 1) /* index of first element in heap */
838#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1672#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
839#define UPHEAP_DONE(p,k) ((p) == (k)) 1673#define UPHEAP_DONE(p,k) ((p) == (k))
840 1674
841/* away from the root */ 1675/* away from the root */
842void inline_speed 1676inline_speed void
843downheap (ANHE *heap, int N, int k) 1677downheap (ANHE *heap, int N, int k)
844{ 1678{
845 ANHE he = heap [k]; 1679 ANHE he = heap [k];
846 ANHE *E = heap + N + HEAP0; 1680 ANHE *E = heap + N + HEAP0;
847 1681
887#define HEAP0 1 1721#define HEAP0 1
888#define HPARENT(k) ((k) >> 1) 1722#define HPARENT(k) ((k) >> 1)
889#define UPHEAP_DONE(p,k) (!(p)) 1723#define UPHEAP_DONE(p,k) (!(p))
890 1724
891/* away from the root */ 1725/* away from the root */
892void inline_speed 1726inline_speed void
893downheap (ANHE *heap, int N, int k) 1727downheap (ANHE *heap, int N, int k)
894{ 1728{
895 ANHE he = heap [k]; 1729 ANHE he = heap [k];
896 1730
897 for (;;) 1731 for (;;)
898 { 1732 {
899 int c = k << 1; 1733 int c = k << 1;
900 1734
901 if (c > N + HEAP0 - 1) 1735 if (c >= N + HEAP0)
902 break; 1736 break;
903 1737
904 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1738 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
905 ? 1 : 0; 1739 ? 1 : 0;
906 1740
917 ev_active (ANHE_w (he)) = k; 1751 ev_active (ANHE_w (he)) = k;
918} 1752}
919#endif 1753#endif
920 1754
921/* towards the root */ 1755/* towards the root */
922void inline_speed 1756inline_speed void
923upheap (ANHE *heap, int k) 1757upheap (ANHE *heap, int k)
924{ 1758{
925 ANHE he = heap [k]; 1759 ANHE he = heap [k];
926 1760
927 for (;;) 1761 for (;;)
938 1772
939 heap [k] = he; 1773 heap [k] = he;
940 ev_active (ANHE_w (he)) = k; 1774 ev_active (ANHE_w (he)) = k;
941} 1775}
942 1776
943void inline_size 1777/* move an element suitably so it is in a correct place */
1778inline_size void
944adjustheap (ANHE *heap, int N, int k) 1779adjustheap (ANHE *heap, int N, int k)
945{ 1780{
946 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1781 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
947 upheap (heap, k); 1782 upheap (heap, k);
948 else 1783 else
949 downheap (heap, N, k); 1784 downheap (heap, N, k);
950} 1785}
951 1786
952/* rebuild the heap: this function is used only once and executed rarely */ 1787/* rebuild the heap: this function is used only once and executed rarely */
953void inline_size 1788inline_size void
954reheap (ANHE *heap, int N) 1789reheap (ANHE *heap, int N)
955{ 1790{
956 int i; 1791 int i;
957 1792
958 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1793 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
961 upheap (heap, i + HEAP0); 1796 upheap (heap, i + HEAP0);
962} 1797}
963 1798
964/*****************************************************************************/ 1799/*****************************************************************************/
965 1800
1801/* associate signal watchers to a signal signal */
966typedef struct 1802typedef struct
967{ 1803{
1804 EV_ATOMIC_T pending;
1805#if EV_MULTIPLICITY
1806 EV_P;
1807#endif
968 WL head; 1808 WL head;
969 EV_ATOMIC_T gotsig;
970} ANSIG; 1809} ANSIG;
971 1810
972static ANSIG *signals; 1811static ANSIG signals [EV_NSIG - 1];
973static int signalmax;
974
975static EV_ATOMIC_T gotsig;
976 1812
977/*****************************************************************************/ 1813/*****************************************************************************/
978 1814
979void inline_speed 1815#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
980fd_intern (int fd)
981{
982#ifdef _WIN32
983 unsigned long arg = 1;
984 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
985#else
986 fcntl (fd, F_SETFD, FD_CLOEXEC);
987 fcntl (fd, F_SETFL, O_NONBLOCK);
988#endif
989}
990 1816
991static void noinline 1817static void noinline ecb_cold
992evpipe_init (EV_P) 1818evpipe_init (EV_P)
993{ 1819{
994 if (!ev_is_active (&pipeev)) 1820 if (!ev_is_active (&pipe_w))
995 { 1821 {
996#if EV_USE_EVENTFD 1822# if EV_USE_EVENTFD
1823 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1824 if (evfd < 0 && errno == EINVAL)
997 if ((evfd = eventfd (0, 0)) >= 0) 1825 evfd = eventfd (0, 0);
1826
1827 if (evfd >= 0)
998 { 1828 {
999 evpipe [0] = -1; 1829 evpipe [0] = -1;
1000 fd_intern (evfd); 1830 fd_intern (evfd); /* doing it twice doesn't hurt */
1001 ev_io_set (&pipeev, evfd, EV_READ); 1831 ev_io_set (&pipe_w, evfd, EV_READ);
1002 } 1832 }
1003 else 1833 else
1004#endif 1834# endif
1005 { 1835 {
1006 while (pipe (evpipe)) 1836 while (pipe (evpipe))
1007 ev_syserr ("(libev) error creating signal/async pipe"); 1837 ev_syserr ("(libev) error creating signal/async pipe");
1008 1838
1009 fd_intern (evpipe [0]); 1839 fd_intern (evpipe [0]);
1010 fd_intern (evpipe [1]); 1840 fd_intern (evpipe [1]);
1011 ev_io_set (&pipeev, evpipe [0], EV_READ); 1841 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1012 } 1842 }
1013 1843
1014 ev_io_start (EV_A_ &pipeev); 1844 ev_io_start (EV_A_ &pipe_w);
1015 ev_unref (EV_A); /* watcher should not keep loop alive */ 1845 ev_unref (EV_A); /* watcher should not keep loop alive */
1016 } 1846 }
1017} 1847}
1018 1848
1019void inline_size 1849inline_speed void
1020evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1850evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1021{ 1851{
1022 if (!*flag) 1852 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1853
1854 if (expect_true (*flag))
1855 return;
1856
1857 *flag = 1;
1858
1859 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1860
1861 pipe_write_skipped = 1;
1862
1863 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1864
1865 if (pipe_write_wanted)
1023 { 1866 {
1867 int old_errno;
1868
1869 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1870
1024 int old_errno = errno; /* save errno because write might clobber it */ 1871 old_errno = errno; /* save errno because write will clobber it */
1025
1026 *flag = 1;
1027 1872
1028#if EV_USE_EVENTFD 1873#if EV_USE_EVENTFD
1029 if (evfd >= 0) 1874 if (evfd >= 0)
1030 { 1875 {
1031 uint64_t counter = 1; 1876 uint64_t counter = 1;
1032 write (evfd, &counter, sizeof (uint64_t)); 1877 write (evfd, &counter, sizeof (uint64_t));
1033 } 1878 }
1034 else 1879 else
1035#endif 1880#endif
1881 {
1882#ifdef _WIN32
1883 WSABUF buf;
1884 DWORD sent;
1885 buf.buf = &buf;
1886 buf.len = 1;
1887 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
1888#else
1036 write (evpipe [1], &old_errno, 1); 1889 write (evpipe [1], &(evpipe [1]), 1);
1890#endif
1891 }
1037 1892
1038 errno = old_errno; 1893 errno = old_errno;
1039 } 1894 }
1040} 1895}
1041 1896
1897/* called whenever the libev signal pipe */
1898/* got some events (signal, async) */
1042static void 1899static void
1043pipecb (EV_P_ ev_io *iow, int revents) 1900pipecb (EV_P_ ev_io *iow, int revents)
1044{ 1901{
1902 int i;
1903
1904 if (revents & EV_READ)
1905 {
1045#if EV_USE_EVENTFD 1906#if EV_USE_EVENTFD
1046 if (evfd >= 0) 1907 if (evfd >= 0)
1047 { 1908 {
1048 uint64_t counter; 1909 uint64_t counter;
1049 read (evfd, &counter, sizeof (uint64_t)); 1910 read (evfd, &counter, sizeof (uint64_t));
1050 } 1911 }
1051 else 1912 else
1052#endif 1913#endif
1053 { 1914 {
1054 char dummy; 1915 char dummy[4];
1916#ifdef _WIN32
1917 WSABUF buf;
1918 DWORD recvd;
1919 buf.buf = dummy;
1920 buf.len = sizeof (dummy);
1921 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, 0, 0, 0);
1922#else
1055 read (evpipe [0], &dummy, 1); 1923 read (evpipe [0], &dummy, sizeof (dummy));
1924#endif
1925 }
1926 }
1927
1928 pipe_write_skipped = 0;
1929
1930 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
1931
1932#if EV_SIGNAL_ENABLE
1933 if (sig_pending)
1056 } 1934 {
1935 sig_pending = 0;
1057 1936
1058 if (gotsig && ev_is_default_loop (EV_A)) 1937 ECB_MEMORY_FENCE_RELEASE;
1059 {
1060 int signum;
1061 gotsig = 0;
1062 1938
1063 for (signum = signalmax; signum--; ) 1939 for (i = EV_NSIG - 1; i--; )
1064 if (signals [signum].gotsig) 1940 if (expect_false (signals [i].pending))
1065 ev_feed_signal_event (EV_A_ signum + 1); 1941 ev_feed_signal_event (EV_A_ i + 1);
1066 } 1942 }
1943#endif
1067 1944
1068#if EV_ASYNC_ENABLE 1945#if EV_ASYNC_ENABLE
1069 if (gotasync) 1946 if (async_pending)
1070 { 1947 {
1071 int i; 1948 async_pending = 0;
1072 gotasync = 0; 1949
1950 ECB_MEMORY_FENCE_RELEASE;
1073 1951
1074 for (i = asynccnt; i--; ) 1952 for (i = asynccnt; i--; )
1075 if (asyncs [i]->sent) 1953 if (asyncs [i]->sent)
1076 { 1954 {
1077 asyncs [i]->sent = 0; 1955 asyncs [i]->sent = 0;
1081#endif 1959#endif
1082} 1960}
1083 1961
1084/*****************************************************************************/ 1962/*****************************************************************************/
1085 1963
1964void
1965ev_feed_signal (int signum) EV_THROW
1966{
1967#if EV_MULTIPLICITY
1968 EV_P = signals [signum - 1].loop;
1969
1970 if (!EV_A)
1971 return;
1972#endif
1973
1974 if (!ev_active (&pipe_w))
1975 return;
1976
1977 signals [signum - 1].pending = 1;
1978 evpipe_write (EV_A_ &sig_pending);
1979}
1980
1086static void 1981static void
1087ev_sighandler (int signum) 1982ev_sighandler (int signum)
1088{ 1983{
1984#ifdef _WIN32
1985 signal (signum, ev_sighandler);
1986#endif
1987
1988 ev_feed_signal (signum);
1989}
1990
1991void noinline
1992ev_feed_signal_event (EV_P_ int signum) EV_THROW
1993{
1994 WL w;
1995
1996 if (expect_false (signum <= 0 || signum > EV_NSIG))
1997 return;
1998
1999 --signum;
2000
1089#if EV_MULTIPLICITY 2001#if EV_MULTIPLICITY
1090 struct ev_loop *loop = &default_loop_struct; 2002 /* it is permissible to try to feed a signal to the wrong loop */
1091#endif 2003 /* or, likely more useful, feeding a signal nobody is waiting for */
1092 2004
1093#if _WIN32 2005 if (expect_false (signals [signum].loop != EV_A))
1094 signal (signum, ev_sighandler);
1095#endif
1096
1097 signals [signum - 1].gotsig = 1;
1098 evpipe_write (EV_A_ &gotsig);
1099}
1100
1101void noinline
1102ev_feed_signal_event (EV_P_ int signum)
1103{
1104 WL w;
1105
1106#if EV_MULTIPLICITY
1107 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1108#endif
1109
1110 --signum;
1111
1112 if (signum < 0 || signum >= signalmax)
1113 return; 2006 return;
2007#endif
1114 2008
1115 signals [signum].gotsig = 0; 2009 signals [signum].pending = 0;
1116 2010
1117 for (w = signals [signum].head; w; w = w->next) 2011 for (w = signals [signum].head; w; w = w->next)
1118 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2012 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1119} 2013}
1120 2014
2015#if EV_USE_SIGNALFD
2016static void
2017sigfdcb (EV_P_ ev_io *iow, int revents)
2018{
2019 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2020
2021 for (;;)
2022 {
2023 ssize_t res = read (sigfd, si, sizeof (si));
2024
2025 /* not ISO-C, as res might be -1, but works with SuS */
2026 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2027 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2028
2029 if (res < (ssize_t)sizeof (si))
2030 break;
2031 }
2032}
2033#endif
2034
2035#endif
2036
1121/*****************************************************************************/ 2037/*****************************************************************************/
1122 2038
2039#if EV_CHILD_ENABLE
1123static WL childs [EV_PID_HASHSIZE]; 2040static WL childs [EV_PID_HASHSIZE];
1124
1125#ifndef _WIN32
1126 2041
1127static ev_signal childev; 2042static ev_signal childev;
1128 2043
1129#ifndef WIFCONTINUED 2044#ifndef WIFCONTINUED
1130# define WIFCONTINUED(status) 0 2045# define WIFCONTINUED(status) 0
1131#endif 2046#endif
1132 2047
1133void inline_speed 2048/* handle a single child status event */
2049inline_speed void
1134child_reap (EV_P_ int chain, int pid, int status) 2050child_reap (EV_P_ int chain, int pid, int status)
1135{ 2051{
1136 ev_child *w; 2052 ev_child *w;
1137 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2053 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1138 2054
1139 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2055 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1140 { 2056 {
1141 if ((w->pid == pid || !w->pid) 2057 if ((w->pid == pid || !w->pid)
1142 && (!traced || (w->flags & 1))) 2058 && (!traced || (w->flags & 1)))
1143 { 2059 {
1144 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2060 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1151 2067
1152#ifndef WCONTINUED 2068#ifndef WCONTINUED
1153# define WCONTINUED 0 2069# define WCONTINUED 0
1154#endif 2070#endif
1155 2071
2072/* called on sigchld etc., calls waitpid */
1156static void 2073static void
1157childcb (EV_P_ ev_signal *sw, int revents) 2074childcb (EV_P_ ev_signal *sw, int revents)
1158{ 2075{
1159 int pid, status; 2076 int pid, status;
1160 2077
1168 /* make sure we are called again until all children have been reaped */ 2085 /* make sure we are called again until all children have been reaped */
1169 /* we need to do it this way so that the callback gets called before we continue */ 2086 /* we need to do it this way so that the callback gets called before we continue */
1170 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2087 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1171 2088
1172 child_reap (EV_A_ pid, pid, status); 2089 child_reap (EV_A_ pid, pid, status);
1173 if (EV_PID_HASHSIZE > 1) 2090 if ((EV_PID_HASHSIZE) > 1)
1174 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2091 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1175} 2092}
1176 2093
1177#endif 2094#endif
1178 2095
1179/*****************************************************************************/ 2096/*****************************************************************************/
1180 2097
2098#if EV_USE_IOCP
2099# include "ev_iocp.c"
2100#endif
1181#if EV_USE_PORT 2101#if EV_USE_PORT
1182# include "ev_port.c" 2102# include "ev_port.c"
1183#endif 2103#endif
1184#if EV_USE_KQUEUE 2104#if EV_USE_KQUEUE
1185# include "ev_kqueue.c" 2105# include "ev_kqueue.c"
1192#endif 2112#endif
1193#if EV_USE_SELECT 2113#if EV_USE_SELECT
1194# include "ev_select.c" 2114# include "ev_select.c"
1195#endif 2115#endif
1196 2116
1197int 2117int ecb_cold
1198ev_version_major (void) 2118ev_version_major (void) EV_THROW
1199{ 2119{
1200 return EV_VERSION_MAJOR; 2120 return EV_VERSION_MAJOR;
1201} 2121}
1202 2122
1203int 2123int ecb_cold
1204ev_version_minor (void) 2124ev_version_minor (void) EV_THROW
1205{ 2125{
1206 return EV_VERSION_MINOR; 2126 return EV_VERSION_MINOR;
1207} 2127}
1208 2128
1209/* return true if we are running with elevated privileges and should ignore env variables */ 2129/* return true if we are running with elevated privileges and should ignore env variables */
1210int inline_size 2130int inline_size ecb_cold
1211enable_secure (void) 2131enable_secure (void)
1212{ 2132{
1213#ifdef _WIN32 2133#ifdef _WIN32
1214 return 0; 2134 return 0;
1215#else 2135#else
1216 return getuid () != geteuid () 2136 return getuid () != geteuid ()
1217 || getgid () != getegid (); 2137 || getgid () != getegid ();
1218#endif 2138#endif
1219} 2139}
1220 2140
1221unsigned int 2141unsigned int ecb_cold
1222ev_supported_backends (void) 2142ev_supported_backends (void) EV_THROW
1223{ 2143{
1224 unsigned int flags = 0; 2144 unsigned int flags = 0;
1225 2145
1226 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2146 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1227 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2147 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1230 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2150 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1231 2151
1232 return flags; 2152 return flags;
1233} 2153}
1234 2154
1235unsigned int 2155unsigned int ecb_cold
1236ev_recommended_backends (void) 2156ev_recommended_backends (void) EV_THROW
1237{ 2157{
1238 unsigned int flags = ev_supported_backends (); 2158 unsigned int flags = ev_supported_backends ();
1239 2159
1240#ifndef __NetBSD__ 2160#ifndef __NetBSD__
1241 /* kqueue is borked on everything but netbsd apparently */ 2161 /* kqueue is borked on everything but netbsd apparently */
1242 /* it usually doesn't work correctly on anything but sockets and pipes */ 2162 /* it usually doesn't work correctly on anything but sockets and pipes */
1243 flags &= ~EVBACKEND_KQUEUE; 2163 flags &= ~EVBACKEND_KQUEUE;
1244#endif 2164#endif
1245#ifdef __APPLE__ 2165#ifdef __APPLE__
1246 // flags &= ~EVBACKEND_KQUEUE; for documentation 2166 /* only select works correctly on that "unix-certified" platform */
1247 flags &= ~EVBACKEND_POLL; 2167 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2168 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2169#endif
2170#ifdef __FreeBSD__
2171 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1248#endif 2172#endif
1249 2173
1250 return flags; 2174 return flags;
1251} 2175}
1252 2176
2177unsigned int ecb_cold
2178ev_embeddable_backends (void) EV_THROW
2179{
2180 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2181
2182 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2183 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2184 flags &= ~EVBACKEND_EPOLL;
2185
2186 return flags;
2187}
2188
1253unsigned int 2189unsigned int
1254ev_embeddable_backends (void) 2190ev_backend (EV_P) EV_THROW
1255{ 2191{
1256 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2192 return backend;
1257
1258 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1259 /* please fix it and tell me how to detect the fix */
1260 flags &= ~EVBACKEND_EPOLL;
1261
1262 return flags;
1263} 2193}
1264 2194
2195#if EV_FEATURE_API
1265unsigned int 2196unsigned int
1266ev_backend (EV_P) 2197ev_iteration (EV_P) EV_THROW
1267{ 2198{
1268 return backend; 2199 return loop_count;
1269} 2200}
1270 2201
1271unsigned int 2202unsigned int
1272ev_loop_count (EV_P) 2203ev_depth (EV_P) EV_THROW
1273{ 2204{
1274 return loop_count; 2205 return loop_depth;
1275} 2206}
1276 2207
1277void 2208void
1278ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2209ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1279{ 2210{
1280 io_blocktime = interval; 2211 io_blocktime = interval;
1281} 2212}
1282 2213
1283void 2214void
1284ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2215ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1285{ 2216{
1286 timeout_blocktime = interval; 2217 timeout_blocktime = interval;
1287} 2218}
1288 2219
2220void
2221ev_set_userdata (EV_P_ void *data) EV_THROW
2222{
2223 userdata = data;
2224}
2225
2226void *
2227ev_userdata (EV_P) EV_THROW
2228{
2229 return userdata;
2230}
2231
2232void
2233ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2234{
2235 invoke_cb = invoke_pending_cb;
2236}
2237
2238void
2239ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2240{
2241 release_cb = release;
2242 acquire_cb = acquire;
2243}
2244#endif
2245
2246/* initialise a loop structure, must be zero-initialised */
1289static void noinline 2247static void noinline ecb_cold
1290loop_init (EV_P_ unsigned int flags) 2248loop_init (EV_P_ unsigned int flags) EV_THROW
1291{ 2249{
1292 if (!backend) 2250 if (!backend)
1293 { 2251 {
2252 origflags = flags;
2253
2254#if EV_USE_REALTIME
2255 if (!have_realtime)
2256 {
2257 struct timespec ts;
2258
2259 if (!clock_gettime (CLOCK_REALTIME, &ts))
2260 have_realtime = 1;
2261 }
2262#endif
2263
1294#if EV_USE_MONOTONIC 2264#if EV_USE_MONOTONIC
2265 if (!have_monotonic)
1295 { 2266 {
1296 struct timespec ts; 2267 struct timespec ts;
2268
1297 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2269 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1298 have_monotonic = 1; 2270 have_monotonic = 1;
1299 } 2271 }
1300#endif
1301
1302 ev_rt_now = ev_time ();
1303 mn_now = get_clock ();
1304 now_floor = mn_now;
1305 rtmn_diff = ev_rt_now - mn_now;
1306
1307 io_blocktime = 0.;
1308 timeout_blocktime = 0.;
1309 backend = 0;
1310 backend_fd = -1;
1311 gotasync = 0;
1312#if EV_USE_INOTIFY
1313 fs_fd = -2;
1314#endif 2272#endif
1315 2273
1316 /* pid check not overridable via env */ 2274 /* pid check not overridable via env */
1317#ifndef _WIN32 2275#ifndef _WIN32
1318 if (flags & EVFLAG_FORKCHECK) 2276 if (flags & EVFLAG_FORKCHECK)
1322 if (!(flags & EVFLAG_NOENV) 2280 if (!(flags & EVFLAG_NOENV)
1323 && !enable_secure () 2281 && !enable_secure ()
1324 && getenv ("LIBEV_FLAGS")) 2282 && getenv ("LIBEV_FLAGS"))
1325 flags = atoi (getenv ("LIBEV_FLAGS")); 2283 flags = atoi (getenv ("LIBEV_FLAGS"));
1326 2284
1327 if (!(flags & 0x0000ffffU)) 2285 ev_rt_now = ev_time ();
2286 mn_now = get_clock ();
2287 now_floor = mn_now;
2288 rtmn_diff = ev_rt_now - mn_now;
2289#if EV_FEATURE_API
2290 invoke_cb = ev_invoke_pending;
2291#endif
2292
2293 io_blocktime = 0.;
2294 timeout_blocktime = 0.;
2295 backend = 0;
2296 backend_fd = -1;
2297 sig_pending = 0;
2298#if EV_ASYNC_ENABLE
2299 async_pending = 0;
2300#endif
2301 pipe_write_skipped = 0;
2302 pipe_write_wanted = 0;
2303#if EV_USE_INOTIFY
2304 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2305#endif
2306#if EV_USE_SIGNALFD
2307 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2308#endif
2309
2310 if (!(flags & EVBACKEND_MASK))
1328 flags |= ev_recommended_backends (); 2311 flags |= ev_recommended_backends ();
1329 2312
2313#if EV_USE_IOCP
2314 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2315#endif
1330#if EV_USE_PORT 2316#if EV_USE_PORT
1331 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2317 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1332#endif 2318#endif
1333#if EV_USE_KQUEUE 2319#if EV_USE_KQUEUE
1334 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2320 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1341#endif 2327#endif
1342#if EV_USE_SELECT 2328#if EV_USE_SELECT
1343 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2329 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1344#endif 2330#endif
1345 2331
2332 ev_prepare_init (&pending_w, pendingcb);
2333
2334#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1346 ev_init (&pipeev, pipecb); 2335 ev_init (&pipe_w, pipecb);
1347 ev_set_priority (&pipeev, EV_MAXPRI); 2336 ev_set_priority (&pipe_w, EV_MAXPRI);
2337#endif
1348 } 2338 }
1349} 2339}
1350 2340
1351static void noinline 2341/* free up a loop structure */
2342void ecb_cold
1352loop_destroy (EV_P) 2343ev_loop_destroy (EV_P)
1353{ 2344{
1354 int i; 2345 int i;
1355 2346
2347#if EV_MULTIPLICITY
2348 /* mimic free (0) */
2349 if (!EV_A)
2350 return;
2351#endif
2352
2353#if EV_CLEANUP_ENABLE
2354 /* queue cleanup watchers (and execute them) */
2355 if (expect_false (cleanupcnt))
2356 {
2357 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2358 EV_INVOKE_PENDING;
2359 }
2360#endif
2361
2362#if EV_CHILD_ENABLE
2363 if (ev_is_active (&childev))
2364 {
2365 ev_ref (EV_A); /* child watcher */
2366 ev_signal_stop (EV_A_ &childev);
2367 }
2368#endif
2369
1356 if (ev_is_active (&pipeev)) 2370 if (ev_is_active (&pipe_w))
1357 { 2371 {
1358 ev_ref (EV_A); /* signal watcher */ 2372 /*ev_ref (EV_A);*/
1359 ev_io_stop (EV_A_ &pipeev); 2373 /*ev_io_stop (EV_A_ &pipe_w);*/
1360 2374
1361#if EV_USE_EVENTFD 2375#if EV_USE_EVENTFD
1362 if (evfd >= 0) 2376 if (evfd >= 0)
1363 close (evfd); 2377 close (evfd);
1364#endif 2378#endif
1365 2379
1366 if (evpipe [0] >= 0) 2380 if (evpipe [0] >= 0)
1367 { 2381 {
1368 close (evpipe [0]); 2382 EV_WIN32_CLOSE_FD (evpipe [0]);
1369 close (evpipe [1]); 2383 EV_WIN32_CLOSE_FD (evpipe [1]);
1370 } 2384 }
1371 } 2385 }
2386
2387#if EV_USE_SIGNALFD
2388 if (ev_is_active (&sigfd_w))
2389 close (sigfd);
2390#endif
1372 2391
1373#if EV_USE_INOTIFY 2392#if EV_USE_INOTIFY
1374 if (fs_fd >= 0) 2393 if (fs_fd >= 0)
1375 close (fs_fd); 2394 close (fs_fd);
1376#endif 2395#endif
1377 2396
1378 if (backend_fd >= 0) 2397 if (backend_fd >= 0)
1379 close (backend_fd); 2398 close (backend_fd);
1380 2399
2400#if EV_USE_IOCP
2401 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2402#endif
1381#if EV_USE_PORT 2403#if EV_USE_PORT
1382 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2404 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1383#endif 2405#endif
1384#if EV_USE_KQUEUE 2406#if EV_USE_KQUEUE
1385 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2407 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1400#if EV_IDLE_ENABLE 2422#if EV_IDLE_ENABLE
1401 array_free (idle, [i]); 2423 array_free (idle, [i]);
1402#endif 2424#endif
1403 } 2425 }
1404 2426
1405 ev_free (anfds); anfdmax = 0; 2427 ev_free (anfds); anfds = 0; anfdmax = 0;
1406 2428
1407 /* have to use the microsoft-never-gets-it-right macro */ 2429 /* have to use the microsoft-never-gets-it-right macro */
2430 array_free (rfeed, EMPTY);
1408 array_free (fdchange, EMPTY); 2431 array_free (fdchange, EMPTY);
1409 array_free (timer, EMPTY); 2432 array_free (timer, EMPTY);
1410#if EV_PERIODIC_ENABLE 2433#if EV_PERIODIC_ENABLE
1411 array_free (periodic, EMPTY); 2434 array_free (periodic, EMPTY);
1412#endif 2435#endif
1413#if EV_FORK_ENABLE 2436#if EV_FORK_ENABLE
1414 array_free (fork, EMPTY); 2437 array_free (fork, EMPTY);
1415#endif 2438#endif
2439#if EV_CLEANUP_ENABLE
2440 array_free (cleanup, EMPTY);
2441#endif
1416 array_free (prepare, EMPTY); 2442 array_free (prepare, EMPTY);
1417 array_free (check, EMPTY); 2443 array_free (check, EMPTY);
1418#if EV_ASYNC_ENABLE 2444#if EV_ASYNC_ENABLE
1419 array_free (async, EMPTY); 2445 array_free (async, EMPTY);
1420#endif 2446#endif
1421 2447
1422 backend = 0; 2448 backend = 0;
2449
2450#if EV_MULTIPLICITY
2451 if (ev_is_default_loop (EV_A))
2452#endif
2453 ev_default_loop_ptr = 0;
2454#if EV_MULTIPLICITY
2455 else
2456 ev_free (EV_A);
2457#endif
1423} 2458}
1424 2459
1425#if EV_USE_INOTIFY 2460#if EV_USE_INOTIFY
1426void inline_size infy_fork (EV_P); 2461inline_size void infy_fork (EV_P);
1427#endif 2462#endif
1428 2463
1429void inline_size 2464inline_size void
1430loop_fork (EV_P) 2465loop_fork (EV_P)
1431{ 2466{
1432#if EV_USE_PORT 2467#if EV_USE_PORT
1433 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2468 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1434#endif 2469#endif
1440#endif 2475#endif
1441#if EV_USE_INOTIFY 2476#if EV_USE_INOTIFY
1442 infy_fork (EV_A); 2477 infy_fork (EV_A);
1443#endif 2478#endif
1444 2479
1445 if (ev_is_active (&pipeev)) 2480 if (ev_is_active (&pipe_w))
1446 { 2481 {
1447 /* this "locks" the handlers against writing to the pipe */ 2482 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1448 /* while we modify the fd vars */
1449 gotsig = 1;
1450#if EV_ASYNC_ENABLE
1451 gotasync = 1;
1452#endif
1453 2483
1454 ev_ref (EV_A); 2484 ev_ref (EV_A);
1455 ev_io_stop (EV_A_ &pipeev); 2485 ev_io_stop (EV_A_ &pipe_w);
1456 2486
1457#if EV_USE_EVENTFD 2487#if EV_USE_EVENTFD
1458 if (evfd >= 0) 2488 if (evfd >= 0)
1459 close (evfd); 2489 close (evfd);
1460#endif 2490#endif
1461 2491
1462 if (evpipe [0] >= 0) 2492 if (evpipe [0] >= 0)
1463 { 2493 {
1464 close (evpipe [0]); 2494 EV_WIN32_CLOSE_FD (evpipe [0]);
1465 close (evpipe [1]); 2495 EV_WIN32_CLOSE_FD (evpipe [1]);
1466 } 2496 }
1467 2497
2498#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1468 evpipe_init (EV_A); 2499 evpipe_init (EV_A);
1469 /* now iterate over everything, in case we missed something */ 2500 /* now iterate over everything, in case we missed something */
1470 pipecb (EV_A_ &pipeev, EV_READ); 2501 pipecb (EV_A_ &pipe_w, EV_READ);
2502#endif
1471 } 2503 }
1472 2504
1473 postfork = 0; 2505 postfork = 0;
1474} 2506}
1475 2507
1476#if EV_MULTIPLICITY 2508#if EV_MULTIPLICITY
1477 2509
1478struct ev_loop * 2510struct ev_loop * ecb_cold
1479ev_loop_new (unsigned int flags) 2511ev_loop_new (unsigned int flags) EV_THROW
1480{ 2512{
1481 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2513 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1482 2514
1483 memset (loop, 0, sizeof (struct ev_loop)); 2515 memset (EV_A, 0, sizeof (struct ev_loop));
1484
1485 loop_init (EV_A_ flags); 2516 loop_init (EV_A_ flags);
1486 2517
1487 if (ev_backend (EV_A)) 2518 if (ev_backend (EV_A))
1488 return loop; 2519 return EV_A;
1489 2520
2521 ev_free (EV_A);
1490 return 0; 2522 return 0;
1491} 2523}
1492 2524
1493void 2525#endif /* multiplicity */
1494ev_loop_destroy (EV_P)
1495{
1496 loop_destroy (EV_A);
1497 ev_free (loop);
1498}
1499
1500void
1501ev_loop_fork (EV_P)
1502{
1503 postfork = 1; /* must be in line with ev_default_fork */
1504}
1505 2526
1506#if EV_VERIFY 2527#if EV_VERIFY
1507static void noinline 2528static void noinline ecb_cold
1508verify_watcher (EV_P_ W w) 2529verify_watcher (EV_P_ W w)
1509{ 2530{
1510 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 2531 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1511 2532
1512 if (w->pending) 2533 if (w->pending)
1513 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 2534 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1514} 2535}
1515 2536
1516static void noinline 2537static void noinline ecb_cold
1517verify_heap (EV_P_ ANHE *heap, int N) 2538verify_heap (EV_P_ ANHE *heap, int N)
1518{ 2539{
1519 int i; 2540 int i;
1520 2541
1521 for (i = HEAP0; i < N + HEAP0; ++i) 2542 for (i = HEAP0; i < N + HEAP0; ++i)
1522 { 2543 {
1523 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 2544 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1524 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 2545 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1525 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 2546 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1526 2547
1527 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 2548 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1528 } 2549 }
1529} 2550}
1530 2551
1531static void noinline 2552static void noinline ecb_cold
1532array_verify (EV_P_ W *ws, int cnt) 2553array_verify (EV_P_ W *ws, int cnt)
1533{ 2554{
1534 while (cnt--) 2555 while (cnt--)
1535 { 2556 {
1536 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 2557 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1537 verify_watcher (EV_A_ ws [cnt]); 2558 verify_watcher (EV_A_ ws [cnt]);
1538 } 2559 }
1539} 2560}
1540#endif 2561#endif
1541 2562
1542void 2563#if EV_FEATURE_API
1543ev_loop_verify (EV_P) 2564void ecb_cold
2565ev_verify (EV_P) EV_THROW
1544{ 2566{
1545#if EV_VERIFY 2567#if EV_VERIFY
1546 int i; 2568 int i, j;
1547 WL w; 2569 WL w, w2;
1548 2570
1549 assert (activecnt >= -1); 2571 assert (activecnt >= -1);
1550 2572
1551 assert (fdchangemax >= fdchangecnt); 2573 assert (fdchangemax >= fdchangecnt);
1552 for (i = 0; i < fdchangecnt; ++i) 2574 for (i = 0; i < fdchangecnt; ++i)
1553 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 2575 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1554 2576
1555 assert (anfdmax >= 0); 2577 assert (anfdmax >= 0);
1556 for (i = 0; i < anfdmax; ++i) 2578 for (i = j = 0; i < anfdmax; ++i)
1557 for (w = anfds [i].head; w; w = w->next) 2579 for (w = w2 = anfds [i].head; w; w = w->next)
1558 { 2580 {
1559 verify_watcher (EV_A_ (W)w); 2581 verify_watcher (EV_A_ (W)w);
2582
2583 if (j++ & 1)
2584 {
2585 assert (("libev: io watcher list contains a loop", w != w2));
2586 w2 = w2->next;
2587 }
2588
1560 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 2589 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1561 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 2590 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1562 } 2591 }
1563 2592
1564 assert (timermax >= timercnt); 2593 assert (timermax >= timercnt);
1565 verify_heap (EV_A_ timers, timercnt); 2594 verify_heap (EV_A_ timers, timercnt);
1566 2595
1582#if EV_FORK_ENABLE 2611#if EV_FORK_ENABLE
1583 assert (forkmax >= forkcnt); 2612 assert (forkmax >= forkcnt);
1584 array_verify (EV_A_ (W *)forks, forkcnt); 2613 array_verify (EV_A_ (W *)forks, forkcnt);
1585#endif 2614#endif
1586 2615
2616#if EV_CLEANUP_ENABLE
2617 assert (cleanupmax >= cleanupcnt);
2618 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2619#endif
2620
1587#if EV_ASYNC_ENABLE 2621#if EV_ASYNC_ENABLE
1588 assert (asyncmax >= asynccnt); 2622 assert (asyncmax >= asynccnt);
1589 array_verify (EV_A_ (W *)asyncs, asynccnt); 2623 array_verify (EV_A_ (W *)asyncs, asynccnt);
1590#endif 2624#endif
1591 2625
2626#if EV_PREPARE_ENABLE
1592 assert (preparemax >= preparecnt); 2627 assert (preparemax >= preparecnt);
1593 array_verify (EV_A_ (W *)prepares, preparecnt); 2628 array_verify (EV_A_ (W *)prepares, preparecnt);
2629#endif
1594 2630
2631#if EV_CHECK_ENABLE
1595 assert (checkmax >= checkcnt); 2632 assert (checkmax >= checkcnt);
1596 array_verify (EV_A_ (W *)checks, checkcnt); 2633 array_verify (EV_A_ (W *)checks, checkcnt);
2634#endif
1597 2635
1598# if 0 2636# if 0
2637#if EV_CHILD_ENABLE
1599 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2638 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1600 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 2639 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2640#endif
1601# endif 2641# endif
1602#endif 2642#endif
1603} 2643}
1604 2644#endif
1605#endif /* multiplicity */
1606 2645
1607#if EV_MULTIPLICITY 2646#if EV_MULTIPLICITY
1608struct ev_loop * 2647struct ev_loop * ecb_cold
1609ev_default_loop_init (unsigned int flags)
1610#else 2648#else
1611int 2649int
2650#endif
1612ev_default_loop (unsigned int flags) 2651ev_default_loop (unsigned int flags) EV_THROW
1613#endif
1614{ 2652{
1615 if (!ev_default_loop_ptr) 2653 if (!ev_default_loop_ptr)
1616 { 2654 {
1617#if EV_MULTIPLICITY 2655#if EV_MULTIPLICITY
1618 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2656 EV_P = ev_default_loop_ptr = &default_loop_struct;
1619#else 2657#else
1620 ev_default_loop_ptr = 1; 2658 ev_default_loop_ptr = 1;
1621#endif 2659#endif
1622 2660
1623 loop_init (EV_A_ flags); 2661 loop_init (EV_A_ flags);
1624 2662
1625 if (ev_backend (EV_A)) 2663 if (ev_backend (EV_A))
1626 { 2664 {
1627#ifndef _WIN32 2665#if EV_CHILD_ENABLE
1628 ev_signal_init (&childev, childcb, SIGCHLD); 2666 ev_signal_init (&childev, childcb, SIGCHLD);
1629 ev_set_priority (&childev, EV_MAXPRI); 2667 ev_set_priority (&childev, EV_MAXPRI);
1630 ev_signal_start (EV_A_ &childev); 2668 ev_signal_start (EV_A_ &childev);
1631 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2669 ev_unref (EV_A); /* child watcher should not keep loop alive */
1632#endif 2670#endif
1637 2675
1638 return ev_default_loop_ptr; 2676 return ev_default_loop_ptr;
1639} 2677}
1640 2678
1641void 2679void
1642ev_default_destroy (void) 2680ev_loop_fork (EV_P) EV_THROW
1643{ 2681{
1644#if EV_MULTIPLICITY
1645 struct ev_loop *loop = ev_default_loop_ptr;
1646#endif
1647
1648 ev_default_loop_ptr = 0;
1649
1650#ifndef _WIN32
1651 ev_ref (EV_A); /* child watcher */
1652 ev_signal_stop (EV_A_ &childev);
1653#endif
1654
1655 loop_destroy (EV_A);
1656}
1657
1658void
1659ev_default_fork (void)
1660{
1661#if EV_MULTIPLICITY
1662 struct ev_loop *loop = ev_default_loop_ptr;
1663#endif
1664
1665 postfork = 1; /* must be in line with ev_loop_fork */ 2682 postfork = 1; /* must be in line with ev_default_fork */
1666} 2683}
1667 2684
1668/*****************************************************************************/ 2685/*****************************************************************************/
1669 2686
1670void 2687void
1671ev_invoke (EV_P_ void *w, int revents) 2688ev_invoke (EV_P_ void *w, int revents)
1672{ 2689{
1673 EV_CB_INVOKE ((W)w, revents); 2690 EV_CB_INVOKE ((W)w, revents);
1674} 2691}
1675 2692
1676void inline_speed 2693unsigned int
1677call_pending (EV_P) 2694ev_pending_count (EV_P) EV_THROW
1678{ 2695{
1679 int pri; 2696 int pri;
2697 unsigned int count = 0;
1680 2698
1681 for (pri = NUMPRI; pri--; ) 2699 for (pri = NUMPRI; pri--; )
2700 count += pendingcnt [pri];
2701
2702 return count;
2703}
2704
2705void noinline
2706ev_invoke_pending (EV_P)
2707{
2708 for (pendingpri = NUMPRI; pendingpri--; ) /* pendingpri is modified during the loop */
1682 while (pendingcnt [pri]) 2709 while (pendingcnt [pendingpri])
1683 { 2710 {
1684 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2711 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1685 2712
1686 if (expect_true (p->w))
1687 {
1688 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1689
1690 p->w->pending = 0; 2713 p->w->pending = 0;
1691 EV_CB_INVOKE (p->w, p->events); 2714 EV_CB_INVOKE (p->w, p->events);
1692 EV_FREQUENT_CHECK; 2715 EV_FREQUENT_CHECK;
1693 }
1694 } 2716 }
1695} 2717}
1696 2718
1697#if EV_IDLE_ENABLE 2719#if EV_IDLE_ENABLE
1698void inline_size 2720/* make idle watchers pending. this handles the "call-idle */
2721/* only when higher priorities are idle" logic */
2722inline_size void
1699idle_reify (EV_P) 2723idle_reify (EV_P)
1700{ 2724{
1701 if (expect_false (idleall)) 2725 if (expect_false (idleall))
1702 { 2726 {
1703 int pri; 2727 int pri;
1715 } 2739 }
1716 } 2740 }
1717} 2741}
1718#endif 2742#endif
1719 2743
1720void inline_size 2744/* make timers pending */
2745inline_size void
1721timers_reify (EV_P) 2746timers_reify (EV_P)
1722{ 2747{
1723 EV_FREQUENT_CHECK; 2748 EV_FREQUENT_CHECK;
1724 2749
1725 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2750 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1726 { 2751 {
1727 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2752 do
1728
1729 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1730
1731 /* first reschedule or stop timer */
1732 if (w->repeat)
1733 { 2753 {
2754 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2755
2756 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2757
2758 /* first reschedule or stop timer */
2759 if (w->repeat)
2760 {
1734 ev_at (w) += w->repeat; 2761 ev_at (w) += w->repeat;
1735 if (ev_at (w) < mn_now) 2762 if (ev_at (w) < mn_now)
1736 ev_at (w) = mn_now; 2763 ev_at (w) = mn_now;
1737 2764
1738 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2765 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1739 2766
1740 ANHE_at_cache (timers [HEAP0]); 2767 ANHE_at_cache (timers [HEAP0]);
1741 downheap (timers, timercnt, HEAP0); 2768 downheap (timers, timercnt, HEAP0);
2769 }
2770 else
2771 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2772
2773 EV_FREQUENT_CHECK;
2774 feed_reverse (EV_A_ (W)w);
1742 } 2775 }
1743 else 2776 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1744 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1745 2777
1746 EV_FREQUENT_CHECK; 2778 feed_reverse_done (EV_A_ EV_TIMER);
1747 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1748 } 2779 }
1749} 2780}
1750 2781
1751#if EV_PERIODIC_ENABLE 2782#if EV_PERIODIC_ENABLE
1752void inline_size 2783
2784static void noinline
2785periodic_recalc (EV_P_ ev_periodic *w)
2786{
2787 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2788 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2789
2790 /* the above almost always errs on the low side */
2791 while (at <= ev_rt_now)
2792 {
2793 ev_tstamp nat = at + w->interval;
2794
2795 /* when resolution fails us, we use ev_rt_now */
2796 if (expect_false (nat == at))
2797 {
2798 at = ev_rt_now;
2799 break;
2800 }
2801
2802 at = nat;
2803 }
2804
2805 ev_at (w) = at;
2806}
2807
2808/* make periodics pending */
2809inline_size void
1753periodics_reify (EV_P) 2810periodics_reify (EV_P)
1754{ 2811{
1755 EV_FREQUENT_CHECK; 2812 EV_FREQUENT_CHECK;
1756 2813
1757 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2814 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1758 { 2815 {
1759 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2816 int feed_count = 0;
1760 2817
1761 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2818 do
1762
1763 /* first reschedule or stop timer */
1764 if (w->reschedule_cb)
1765 { 2819 {
2820 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2821
2822 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2823
2824 /* first reschedule or stop timer */
2825 if (w->reschedule_cb)
2826 {
1766 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2827 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1767 2828
1768 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2829 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1769 2830
1770 ANHE_at_cache (periodics [HEAP0]); 2831 ANHE_at_cache (periodics [HEAP0]);
1771 downheap (periodics, periodiccnt, HEAP0); 2832 downheap (periodics, periodiccnt, HEAP0);
2833 }
2834 else if (w->interval)
2835 {
2836 periodic_recalc (EV_A_ w);
2837 ANHE_at_cache (periodics [HEAP0]);
2838 downheap (periodics, periodiccnt, HEAP0);
2839 }
2840 else
2841 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2842
2843 EV_FREQUENT_CHECK;
2844 feed_reverse (EV_A_ (W)w);
1772 } 2845 }
1773 else if (w->interval) 2846 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1774 {
1775 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1776 /* if next trigger time is not sufficiently in the future, put it there */
1777 /* this might happen because of floating point inexactness */
1778 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1779 {
1780 ev_at (w) += w->interval;
1781 2847
1782 /* if interval is unreasonably low we might still have a time in the past */
1783 /* so correct this. this will make the periodic very inexact, but the user */
1784 /* has effectively asked to get triggered more often than possible */
1785 if (ev_at (w) < ev_rt_now)
1786 ev_at (w) = ev_rt_now;
1787 }
1788
1789 ANHE_at_cache (periodics [HEAP0]);
1790 downheap (periodics, periodiccnt, HEAP0);
1791 }
1792 else
1793 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1794
1795 EV_FREQUENT_CHECK;
1796 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2848 feed_reverse_done (EV_A_ EV_PERIODIC);
1797 } 2849 }
1798} 2850}
1799 2851
2852/* simply recalculate all periodics */
2853/* TODO: maybe ensure that at least one event happens when jumping forward? */
1800static void noinline 2854static void noinline ecb_cold
1801periodics_reschedule (EV_P) 2855periodics_reschedule (EV_P)
1802{ 2856{
1803 int i; 2857 int i;
1804 2858
1805 /* adjust periodics after time jump */ 2859 /* adjust periodics after time jump */
1808 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 2862 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1809 2863
1810 if (w->reschedule_cb) 2864 if (w->reschedule_cb)
1811 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2865 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1812 else if (w->interval) 2866 else if (w->interval)
1813 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2867 periodic_recalc (EV_A_ w);
1814 2868
1815 ANHE_at_cache (periodics [i]); 2869 ANHE_at_cache (periodics [i]);
1816 } 2870 }
1817 2871
1818 reheap (periodics, periodiccnt); 2872 reheap (periodics, periodiccnt);
1819} 2873}
1820#endif 2874#endif
1821 2875
1822void inline_speed 2876/* adjust all timers by a given offset */
2877static void noinline ecb_cold
2878timers_reschedule (EV_P_ ev_tstamp adjust)
2879{
2880 int i;
2881
2882 for (i = 0; i < timercnt; ++i)
2883 {
2884 ANHE *he = timers + i + HEAP0;
2885 ANHE_w (*he)->at += adjust;
2886 ANHE_at_cache (*he);
2887 }
2888}
2889
2890/* fetch new monotonic and realtime times from the kernel */
2891/* also detect if there was a timejump, and act accordingly */
2892inline_speed void
1823time_update (EV_P_ ev_tstamp max_block) 2893time_update (EV_P_ ev_tstamp max_block)
1824{ 2894{
1825 int i;
1826
1827#if EV_USE_MONOTONIC 2895#if EV_USE_MONOTONIC
1828 if (expect_true (have_monotonic)) 2896 if (expect_true (have_monotonic))
1829 { 2897 {
2898 int i;
1830 ev_tstamp odiff = rtmn_diff; 2899 ev_tstamp odiff = rtmn_diff;
1831 2900
1832 mn_now = get_clock (); 2901 mn_now = get_clock ();
1833 2902
1834 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2903 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1850 * doesn't hurt either as we only do this on time-jumps or 2919 * doesn't hurt either as we only do this on time-jumps or
1851 * in the unlikely event of having been preempted here. 2920 * in the unlikely event of having been preempted here.
1852 */ 2921 */
1853 for (i = 4; --i; ) 2922 for (i = 4; --i; )
1854 { 2923 {
2924 ev_tstamp diff;
1855 rtmn_diff = ev_rt_now - mn_now; 2925 rtmn_diff = ev_rt_now - mn_now;
1856 2926
2927 diff = odiff - rtmn_diff;
2928
1857 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 2929 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1858 return; /* all is well */ 2930 return; /* all is well */
1859 2931
1860 ev_rt_now = ev_time (); 2932 ev_rt_now = ev_time ();
1861 mn_now = get_clock (); 2933 mn_now = get_clock ();
1862 now_floor = mn_now; 2934 now_floor = mn_now;
1863 } 2935 }
1864 2936
2937 /* no timer adjustment, as the monotonic clock doesn't jump */
2938 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1865# if EV_PERIODIC_ENABLE 2939# if EV_PERIODIC_ENABLE
1866 periodics_reschedule (EV_A); 2940 periodics_reschedule (EV_A);
1867# endif 2941# endif
1868 /* no timer adjustment, as the monotonic clock doesn't jump */
1869 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1870 } 2942 }
1871 else 2943 else
1872#endif 2944#endif
1873 { 2945 {
1874 ev_rt_now = ev_time (); 2946 ev_rt_now = ev_time ();
1875 2947
1876 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2948 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1877 { 2949 {
2950 /* adjust timers. this is easy, as the offset is the same for all of them */
2951 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1878#if EV_PERIODIC_ENABLE 2952#if EV_PERIODIC_ENABLE
1879 periodics_reschedule (EV_A); 2953 periodics_reschedule (EV_A);
1880#endif 2954#endif
1881 /* adjust timers. this is easy, as the offset is the same for all of them */
1882 for (i = 0; i < timercnt; ++i)
1883 {
1884 ANHE *he = timers + i + HEAP0;
1885 ANHE_w (*he)->at += ev_rt_now - mn_now;
1886 ANHE_at_cache (*he);
1887 }
1888 } 2955 }
1889 2956
1890 mn_now = ev_rt_now; 2957 mn_now = ev_rt_now;
1891 } 2958 }
1892} 2959}
1893 2960
1894void 2961int
1895ev_ref (EV_P)
1896{
1897 ++activecnt;
1898}
1899
1900void
1901ev_unref (EV_P)
1902{
1903 --activecnt;
1904}
1905
1906void
1907ev_now_update (EV_P)
1908{
1909 time_update (EV_A_ 1e100);
1910}
1911
1912static int loop_done;
1913
1914void
1915ev_loop (EV_P_ int flags) 2962ev_run (EV_P_ int flags)
1916{ 2963{
2964#if EV_FEATURE_API
2965 ++loop_depth;
2966#endif
2967
2968 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2969
1917 loop_done = EVUNLOOP_CANCEL; 2970 loop_done = EVBREAK_CANCEL;
1918 2971
1919 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2972 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1920 2973
1921 do 2974 do
1922 { 2975 {
1923#if EV_VERIFY >= 2 2976#if EV_VERIFY >= 2
1924 ev_loop_verify (EV_A); 2977 ev_verify (EV_A);
1925#endif 2978#endif
1926 2979
1927#ifndef _WIN32 2980#ifndef _WIN32
1928 if (expect_false (curpid)) /* penalise the forking check even more */ 2981 if (expect_false (curpid)) /* penalise the forking check even more */
1929 if (expect_false (getpid () != curpid)) 2982 if (expect_false (getpid () != curpid))
1937 /* we might have forked, so queue fork handlers */ 2990 /* we might have forked, so queue fork handlers */
1938 if (expect_false (postfork)) 2991 if (expect_false (postfork))
1939 if (forkcnt) 2992 if (forkcnt)
1940 { 2993 {
1941 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2994 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1942 call_pending (EV_A); 2995 EV_INVOKE_PENDING;
1943 } 2996 }
1944#endif 2997#endif
1945 2998
2999#if EV_PREPARE_ENABLE
1946 /* queue prepare watchers (and execute them) */ 3000 /* queue prepare watchers (and execute them) */
1947 if (expect_false (preparecnt)) 3001 if (expect_false (preparecnt))
1948 { 3002 {
1949 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3003 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1950 call_pending (EV_A); 3004 EV_INVOKE_PENDING;
1951 } 3005 }
3006#endif
1952 3007
1953 if (expect_false (!activecnt)) 3008 if (expect_false (loop_done))
1954 break; 3009 break;
1955 3010
1956 /* we might have forked, so reify kernel state if necessary */ 3011 /* we might have forked, so reify kernel state if necessary */
1957 if (expect_false (postfork)) 3012 if (expect_false (postfork))
1958 loop_fork (EV_A); 3013 loop_fork (EV_A);
1963 /* calculate blocking time */ 3018 /* calculate blocking time */
1964 { 3019 {
1965 ev_tstamp waittime = 0.; 3020 ev_tstamp waittime = 0.;
1966 ev_tstamp sleeptime = 0.; 3021 ev_tstamp sleeptime = 0.;
1967 3022
3023 /* remember old timestamp for io_blocktime calculation */
3024 ev_tstamp prev_mn_now = mn_now;
3025
3026 /* update time to cancel out callback processing overhead */
3027 time_update (EV_A_ 1e100);
3028
3029 /* from now on, we want a pipe-wake-up */
3030 pipe_write_wanted = 1;
3031
3032 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3033
1968 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3034 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1969 { 3035 {
1970 /* update time to cancel out callback processing overhead */
1971 time_update (EV_A_ 1e100);
1972
1973 waittime = MAX_BLOCKTIME; 3036 waittime = MAX_BLOCKTIME;
1974 3037
1975 if (timercnt) 3038 if (timercnt)
1976 { 3039 {
1977 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3040 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1978 if (waittime > to) waittime = to; 3041 if (waittime > to) waittime = to;
1979 } 3042 }
1980 3043
1981#if EV_PERIODIC_ENABLE 3044#if EV_PERIODIC_ENABLE
1982 if (periodiccnt) 3045 if (periodiccnt)
1983 { 3046 {
1984 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3047 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1985 if (waittime > to) waittime = to; 3048 if (waittime > to) waittime = to;
1986 } 3049 }
1987#endif 3050#endif
1988 3051
3052 /* don't let timeouts decrease the waittime below timeout_blocktime */
1989 if (expect_false (waittime < timeout_blocktime)) 3053 if (expect_false (waittime < timeout_blocktime))
1990 waittime = timeout_blocktime; 3054 waittime = timeout_blocktime;
1991 3055
1992 sleeptime = waittime - backend_fudge; 3056 /* at this point, we NEED to wait, so we have to ensure */
3057 /* to pass a minimum nonzero value to the backend */
3058 if (expect_false (waittime < backend_mintime))
3059 waittime = backend_mintime;
1993 3060
3061 /* extra check because io_blocktime is commonly 0 */
1994 if (expect_true (sleeptime > io_blocktime)) 3062 if (expect_false (io_blocktime))
1995 sleeptime = io_blocktime;
1996
1997 if (sleeptime)
1998 { 3063 {
3064 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3065
3066 if (sleeptime > waittime - backend_mintime)
3067 sleeptime = waittime - backend_mintime;
3068
3069 if (expect_true (sleeptime > 0.))
3070 {
1999 ev_sleep (sleeptime); 3071 ev_sleep (sleeptime);
2000 waittime -= sleeptime; 3072 waittime -= sleeptime;
3073 }
2001 } 3074 }
2002 } 3075 }
2003 3076
3077#if EV_FEATURE_API
2004 ++loop_count; 3078 ++loop_count;
3079#endif
3080 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2005 backend_poll (EV_A_ waittime); 3081 backend_poll (EV_A_ waittime);
3082 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3083
3084 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3085
3086 if (pipe_write_skipped)
3087 {
3088 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3089 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3090 }
3091
2006 3092
2007 /* update ev_rt_now, do magic */ 3093 /* update ev_rt_now, do magic */
2008 time_update (EV_A_ waittime + sleeptime); 3094 time_update (EV_A_ waittime + sleeptime);
2009 } 3095 }
2010 3096
2017#if EV_IDLE_ENABLE 3103#if EV_IDLE_ENABLE
2018 /* queue idle watchers unless other events are pending */ 3104 /* queue idle watchers unless other events are pending */
2019 idle_reify (EV_A); 3105 idle_reify (EV_A);
2020#endif 3106#endif
2021 3107
3108#if EV_CHECK_ENABLE
2022 /* queue check watchers, to be executed first */ 3109 /* queue check watchers, to be executed first */
2023 if (expect_false (checkcnt)) 3110 if (expect_false (checkcnt))
2024 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3111 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3112#endif
2025 3113
2026 call_pending (EV_A); 3114 EV_INVOKE_PENDING;
2027 } 3115 }
2028 while (expect_true ( 3116 while (expect_true (
2029 activecnt 3117 activecnt
2030 && !loop_done 3118 && !loop_done
2031 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3119 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2032 )); 3120 ));
2033 3121
2034 if (loop_done == EVUNLOOP_ONE) 3122 if (loop_done == EVBREAK_ONE)
2035 loop_done = EVUNLOOP_CANCEL; 3123 loop_done = EVBREAK_CANCEL;
3124
3125#if EV_FEATURE_API
3126 --loop_depth;
3127#endif
3128
3129 return activecnt;
2036} 3130}
2037 3131
2038void 3132void
2039ev_unloop (EV_P_ int how) 3133ev_break (EV_P_ int how) EV_THROW
2040{ 3134{
2041 loop_done = how; 3135 loop_done = how;
2042} 3136}
2043 3137
3138void
3139ev_ref (EV_P) EV_THROW
3140{
3141 ++activecnt;
3142}
3143
3144void
3145ev_unref (EV_P) EV_THROW
3146{
3147 --activecnt;
3148}
3149
3150void
3151ev_now_update (EV_P) EV_THROW
3152{
3153 time_update (EV_A_ 1e100);
3154}
3155
3156void
3157ev_suspend (EV_P) EV_THROW
3158{
3159 ev_now_update (EV_A);
3160}
3161
3162void
3163ev_resume (EV_P) EV_THROW
3164{
3165 ev_tstamp mn_prev = mn_now;
3166
3167 ev_now_update (EV_A);
3168 timers_reschedule (EV_A_ mn_now - mn_prev);
3169#if EV_PERIODIC_ENABLE
3170 /* TODO: really do this? */
3171 periodics_reschedule (EV_A);
3172#endif
3173}
3174
2044/*****************************************************************************/ 3175/*****************************************************************************/
3176/* singly-linked list management, used when the expected list length is short */
2045 3177
2046void inline_size 3178inline_size void
2047wlist_add (WL *head, WL elem) 3179wlist_add (WL *head, WL elem)
2048{ 3180{
2049 elem->next = *head; 3181 elem->next = *head;
2050 *head = elem; 3182 *head = elem;
2051} 3183}
2052 3184
2053void inline_size 3185inline_size void
2054wlist_del (WL *head, WL elem) 3186wlist_del (WL *head, WL elem)
2055{ 3187{
2056 while (*head) 3188 while (*head)
2057 { 3189 {
2058 if (*head == elem) 3190 if (expect_true (*head == elem))
2059 { 3191 {
2060 *head = elem->next; 3192 *head = elem->next;
2061 return; 3193 break;
2062 } 3194 }
2063 3195
2064 head = &(*head)->next; 3196 head = &(*head)->next;
2065 } 3197 }
2066} 3198}
2067 3199
2068void inline_speed 3200/* internal, faster, version of ev_clear_pending */
3201inline_speed void
2069clear_pending (EV_P_ W w) 3202clear_pending (EV_P_ W w)
2070{ 3203{
2071 if (w->pending) 3204 if (w->pending)
2072 { 3205 {
2073 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3206 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2074 w->pending = 0; 3207 w->pending = 0;
2075 } 3208 }
2076} 3209}
2077 3210
2078int 3211int
2079ev_clear_pending (EV_P_ void *w) 3212ev_clear_pending (EV_P_ void *w) EV_THROW
2080{ 3213{
2081 W w_ = (W)w; 3214 W w_ = (W)w;
2082 int pending = w_->pending; 3215 int pending = w_->pending;
2083 3216
2084 if (expect_true (pending)) 3217 if (expect_true (pending))
2085 { 3218 {
2086 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3219 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3220 p->w = (W)&pending_w;
2087 w_->pending = 0; 3221 w_->pending = 0;
2088 p->w = 0;
2089 return p->events; 3222 return p->events;
2090 } 3223 }
2091 else 3224 else
2092 return 0; 3225 return 0;
2093} 3226}
2094 3227
2095void inline_size 3228inline_size void
2096pri_adjust (EV_P_ W w) 3229pri_adjust (EV_P_ W w)
2097{ 3230{
2098 int pri = w->priority; 3231 int pri = ev_priority (w);
2099 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3232 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2100 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3233 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2101 w->priority = pri; 3234 ev_set_priority (w, pri);
2102} 3235}
2103 3236
2104void inline_speed 3237inline_speed void
2105ev_start (EV_P_ W w, int active) 3238ev_start (EV_P_ W w, int active)
2106{ 3239{
2107 pri_adjust (EV_A_ w); 3240 pri_adjust (EV_A_ w);
2108 w->active = active; 3241 w->active = active;
2109 ev_ref (EV_A); 3242 ev_ref (EV_A);
2110} 3243}
2111 3244
2112void inline_size 3245inline_size void
2113ev_stop (EV_P_ W w) 3246ev_stop (EV_P_ W w)
2114{ 3247{
2115 ev_unref (EV_A); 3248 ev_unref (EV_A);
2116 w->active = 0; 3249 w->active = 0;
2117} 3250}
2118 3251
2119/*****************************************************************************/ 3252/*****************************************************************************/
2120 3253
2121void noinline 3254void noinline
2122ev_io_start (EV_P_ ev_io *w) 3255ev_io_start (EV_P_ ev_io *w) EV_THROW
2123{ 3256{
2124 int fd = w->fd; 3257 int fd = w->fd;
2125 3258
2126 if (expect_false (ev_is_active (w))) 3259 if (expect_false (ev_is_active (w)))
2127 return; 3260 return;
2128 3261
2129 assert (("ev_io_start called with negative fd", fd >= 0)); 3262 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2130 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE)))); 3263 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2131 3264
2132 EV_FREQUENT_CHECK; 3265 EV_FREQUENT_CHECK;
2133 3266
2134 ev_start (EV_A_ (W)w, 1); 3267 ev_start (EV_A_ (W)w, 1);
2135 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 3268 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2136 wlist_add (&anfds[fd].head, (WL)w); 3269 wlist_add (&anfds[fd].head, (WL)w);
2137 3270
3271 /* common bug, apparently */
3272 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3273
2138 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3274 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2139 w->events &= ~EV_IOFDSET; 3275 w->events &= ~EV__IOFDSET;
2140 3276
2141 EV_FREQUENT_CHECK; 3277 EV_FREQUENT_CHECK;
2142} 3278}
2143 3279
2144void noinline 3280void noinline
2145ev_io_stop (EV_P_ ev_io *w) 3281ev_io_stop (EV_P_ ev_io *w) EV_THROW
2146{ 3282{
2147 clear_pending (EV_A_ (W)w); 3283 clear_pending (EV_A_ (W)w);
2148 if (expect_false (!ev_is_active (w))) 3284 if (expect_false (!ev_is_active (w)))
2149 return; 3285 return;
2150 3286
2151 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3287 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2152 3288
2153 EV_FREQUENT_CHECK; 3289 EV_FREQUENT_CHECK;
2154 3290
2155 wlist_del (&anfds[w->fd].head, (WL)w); 3291 wlist_del (&anfds[w->fd].head, (WL)w);
2156 ev_stop (EV_A_ (W)w); 3292 ev_stop (EV_A_ (W)w);
2157 3293
2158 fd_change (EV_A_ w->fd, 1); 3294 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2159 3295
2160 EV_FREQUENT_CHECK; 3296 EV_FREQUENT_CHECK;
2161} 3297}
2162 3298
2163void noinline 3299void noinline
2164ev_timer_start (EV_P_ ev_timer *w) 3300ev_timer_start (EV_P_ ev_timer *w) EV_THROW
2165{ 3301{
2166 if (expect_false (ev_is_active (w))) 3302 if (expect_false (ev_is_active (w)))
2167 return; 3303 return;
2168 3304
2169 ev_at (w) += mn_now; 3305 ev_at (w) += mn_now;
2170 3306
2171 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3307 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2172 3308
2173 EV_FREQUENT_CHECK; 3309 EV_FREQUENT_CHECK;
2174 3310
2175 ++timercnt; 3311 ++timercnt;
2176 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 3312 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2179 ANHE_at_cache (timers [ev_active (w)]); 3315 ANHE_at_cache (timers [ev_active (w)]);
2180 upheap (timers, ev_active (w)); 3316 upheap (timers, ev_active (w));
2181 3317
2182 EV_FREQUENT_CHECK; 3318 EV_FREQUENT_CHECK;
2183 3319
2184 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3320 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2185} 3321}
2186 3322
2187void noinline 3323void noinline
2188ev_timer_stop (EV_P_ ev_timer *w) 3324ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
2189{ 3325{
2190 clear_pending (EV_A_ (W)w); 3326 clear_pending (EV_A_ (W)w);
2191 if (expect_false (!ev_is_active (w))) 3327 if (expect_false (!ev_is_active (w)))
2192 return; 3328 return;
2193 3329
2194 EV_FREQUENT_CHECK; 3330 EV_FREQUENT_CHECK;
2195 3331
2196 { 3332 {
2197 int active = ev_active (w); 3333 int active = ev_active (w);
2198 3334
2199 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 3335 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2200 3336
2201 --timercnt; 3337 --timercnt;
2202 3338
2203 if (expect_true (active < timercnt + HEAP0)) 3339 if (expect_true (active < timercnt + HEAP0))
2204 { 3340 {
2205 timers [active] = timers [timercnt + HEAP0]; 3341 timers [active] = timers [timercnt + HEAP0];
2206 adjustheap (timers, timercnt, active); 3342 adjustheap (timers, timercnt, active);
2207 } 3343 }
2208 } 3344 }
2209 3345
2210 EV_FREQUENT_CHECK;
2211
2212 ev_at (w) -= mn_now; 3346 ev_at (w) -= mn_now;
2213 3347
2214 ev_stop (EV_A_ (W)w); 3348 ev_stop (EV_A_ (W)w);
3349
3350 EV_FREQUENT_CHECK;
2215} 3351}
2216 3352
2217void noinline 3353void noinline
2218ev_timer_again (EV_P_ ev_timer *w) 3354ev_timer_again (EV_P_ ev_timer *w) EV_THROW
2219{ 3355{
2220 EV_FREQUENT_CHECK; 3356 EV_FREQUENT_CHECK;
3357
3358 clear_pending (EV_A_ (W)w);
2221 3359
2222 if (ev_is_active (w)) 3360 if (ev_is_active (w))
2223 { 3361 {
2224 if (w->repeat) 3362 if (w->repeat)
2225 { 3363 {
2237 } 3375 }
2238 3376
2239 EV_FREQUENT_CHECK; 3377 EV_FREQUENT_CHECK;
2240} 3378}
2241 3379
3380ev_tstamp
3381ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3382{
3383 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3384}
3385
2242#if EV_PERIODIC_ENABLE 3386#if EV_PERIODIC_ENABLE
2243void noinline 3387void noinline
2244ev_periodic_start (EV_P_ ev_periodic *w) 3388ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
2245{ 3389{
2246 if (expect_false (ev_is_active (w))) 3390 if (expect_false (ev_is_active (w)))
2247 return; 3391 return;
2248 3392
2249 if (w->reschedule_cb) 3393 if (w->reschedule_cb)
2250 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3394 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2251 else if (w->interval) 3395 else if (w->interval)
2252 { 3396 {
2253 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3397 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2254 /* this formula differs from the one in periodic_reify because we do not always round up */ 3398 periodic_recalc (EV_A_ w);
2255 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2256 } 3399 }
2257 else 3400 else
2258 ev_at (w) = w->offset; 3401 ev_at (w) = w->offset;
2259 3402
2260 EV_FREQUENT_CHECK; 3403 EV_FREQUENT_CHECK;
2266 ANHE_at_cache (periodics [ev_active (w)]); 3409 ANHE_at_cache (periodics [ev_active (w)]);
2267 upheap (periodics, ev_active (w)); 3410 upheap (periodics, ev_active (w));
2268 3411
2269 EV_FREQUENT_CHECK; 3412 EV_FREQUENT_CHECK;
2270 3413
2271 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 3414 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2272} 3415}
2273 3416
2274void noinline 3417void noinline
2275ev_periodic_stop (EV_P_ ev_periodic *w) 3418ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
2276{ 3419{
2277 clear_pending (EV_A_ (W)w); 3420 clear_pending (EV_A_ (W)w);
2278 if (expect_false (!ev_is_active (w))) 3421 if (expect_false (!ev_is_active (w)))
2279 return; 3422 return;
2280 3423
2281 EV_FREQUENT_CHECK; 3424 EV_FREQUENT_CHECK;
2282 3425
2283 { 3426 {
2284 int active = ev_active (w); 3427 int active = ev_active (w);
2285 3428
2286 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 3429 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2287 3430
2288 --periodiccnt; 3431 --periodiccnt;
2289 3432
2290 if (expect_true (active < periodiccnt + HEAP0)) 3433 if (expect_true (active < periodiccnt + HEAP0))
2291 { 3434 {
2292 periodics [active] = periodics [periodiccnt + HEAP0]; 3435 periodics [active] = periodics [periodiccnt + HEAP0];
2293 adjustheap (periodics, periodiccnt, active); 3436 adjustheap (periodics, periodiccnt, active);
2294 } 3437 }
2295 } 3438 }
2296 3439
2297 EV_FREQUENT_CHECK;
2298
2299 ev_stop (EV_A_ (W)w); 3440 ev_stop (EV_A_ (W)w);
3441
3442 EV_FREQUENT_CHECK;
2300} 3443}
2301 3444
2302void noinline 3445void noinline
2303ev_periodic_again (EV_P_ ev_periodic *w) 3446ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
2304{ 3447{
2305 /* TODO: use adjustheap and recalculation */ 3448 /* TODO: use adjustheap and recalculation */
2306 ev_periodic_stop (EV_A_ w); 3449 ev_periodic_stop (EV_A_ w);
2307 ev_periodic_start (EV_A_ w); 3450 ev_periodic_start (EV_A_ w);
2308} 3451}
2310 3453
2311#ifndef SA_RESTART 3454#ifndef SA_RESTART
2312# define SA_RESTART 0 3455# define SA_RESTART 0
2313#endif 3456#endif
2314 3457
3458#if EV_SIGNAL_ENABLE
3459
2315void noinline 3460void noinline
2316ev_signal_start (EV_P_ ev_signal *w) 3461ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2317{ 3462{
2318#if EV_MULTIPLICITY
2319 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2320#endif
2321 if (expect_false (ev_is_active (w))) 3463 if (expect_false (ev_is_active (w)))
2322 return; 3464 return;
2323 3465
2324 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3466 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2325 3467
2326 evpipe_init (EV_A); 3468#if EV_MULTIPLICITY
3469 assert (("libev: a signal must not be attached to two different loops",
3470 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2327 3471
2328 EV_FREQUENT_CHECK; 3472 signals [w->signum - 1].loop = EV_A;
3473#endif
2329 3474
3475 EV_FREQUENT_CHECK;
3476
3477#if EV_USE_SIGNALFD
3478 if (sigfd == -2)
2330 { 3479 {
2331#ifndef _WIN32 3480 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2332 sigset_t full, prev; 3481 if (sigfd < 0 && errno == EINVAL)
2333 sigfillset (&full); 3482 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2334 sigprocmask (SIG_SETMASK, &full, &prev);
2335#endif
2336 3483
2337 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero); 3484 if (sigfd >= 0)
3485 {
3486 fd_intern (sigfd); /* doing it twice will not hurt */
2338 3487
2339#ifndef _WIN32 3488 sigemptyset (&sigfd_set);
2340 sigprocmask (SIG_SETMASK, &prev, 0); 3489
2341#endif 3490 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3491 ev_set_priority (&sigfd_w, EV_MAXPRI);
3492 ev_io_start (EV_A_ &sigfd_w);
3493 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3494 }
2342 } 3495 }
3496
3497 if (sigfd >= 0)
3498 {
3499 /* TODO: check .head */
3500 sigaddset (&sigfd_set, w->signum);
3501 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3502
3503 signalfd (sigfd, &sigfd_set, 0);
3504 }
3505#endif
2343 3506
2344 ev_start (EV_A_ (W)w, 1); 3507 ev_start (EV_A_ (W)w, 1);
2345 wlist_add (&signals [w->signum - 1].head, (WL)w); 3508 wlist_add (&signals [w->signum - 1].head, (WL)w);
2346 3509
2347 if (!((WL)w)->next) 3510 if (!((WL)w)->next)
3511# if EV_USE_SIGNALFD
3512 if (sigfd < 0) /*TODO*/
3513# endif
2348 { 3514 {
2349#if _WIN32 3515# ifdef _WIN32
3516 evpipe_init (EV_A);
3517
2350 signal (w->signum, ev_sighandler); 3518 signal (w->signum, ev_sighandler);
2351#else 3519# else
2352 struct sigaction sa; 3520 struct sigaction sa;
3521
3522 evpipe_init (EV_A);
3523
2353 sa.sa_handler = ev_sighandler; 3524 sa.sa_handler = ev_sighandler;
2354 sigfillset (&sa.sa_mask); 3525 sigfillset (&sa.sa_mask);
2355 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3526 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2356 sigaction (w->signum, &sa, 0); 3527 sigaction (w->signum, &sa, 0);
3528
3529 if (origflags & EVFLAG_NOSIGMASK)
3530 {
3531 sigemptyset (&sa.sa_mask);
3532 sigaddset (&sa.sa_mask, w->signum);
3533 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3534 }
2357#endif 3535#endif
2358 } 3536 }
2359 3537
2360 EV_FREQUENT_CHECK; 3538 EV_FREQUENT_CHECK;
2361} 3539}
2362 3540
2363void noinline 3541void noinline
2364ev_signal_stop (EV_P_ ev_signal *w) 3542ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2365{ 3543{
2366 clear_pending (EV_A_ (W)w); 3544 clear_pending (EV_A_ (W)w);
2367 if (expect_false (!ev_is_active (w))) 3545 if (expect_false (!ev_is_active (w)))
2368 return; 3546 return;
2369 3547
2371 3549
2372 wlist_del (&signals [w->signum - 1].head, (WL)w); 3550 wlist_del (&signals [w->signum - 1].head, (WL)w);
2373 ev_stop (EV_A_ (W)w); 3551 ev_stop (EV_A_ (W)w);
2374 3552
2375 if (!signals [w->signum - 1].head) 3553 if (!signals [w->signum - 1].head)
3554 {
3555#if EV_MULTIPLICITY
3556 signals [w->signum - 1].loop = 0; /* unattach from signal */
3557#endif
3558#if EV_USE_SIGNALFD
3559 if (sigfd >= 0)
3560 {
3561 sigset_t ss;
3562
3563 sigemptyset (&ss);
3564 sigaddset (&ss, w->signum);
3565 sigdelset (&sigfd_set, w->signum);
3566
3567 signalfd (sigfd, &sigfd_set, 0);
3568 sigprocmask (SIG_UNBLOCK, &ss, 0);
3569 }
3570 else
3571#endif
2376 signal (w->signum, SIG_DFL); 3572 signal (w->signum, SIG_DFL);
3573 }
2377 3574
2378 EV_FREQUENT_CHECK; 3575 EV_FREQUENT_CHECK;
2379} 3576}
3577
3578#endif
3579
3580#if EV_CHILD_ENABLE
2380 3581
2381void 3582void
2382ev_child_start (EV_P_ ev_child *w) 3583ev_child_start (EV_P_ ev_child *w) EV_THROW
2383{ 3584{
2384#if EV_MULTIPLICITY 3585#if EV_MULTIPLICITY
2385 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3586 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2386#endif 3587#endif
2387 if (expect_false (ev_is_active (w))) 3588 if (expect_false (ev_is_active (w)))
2388 return; 3589 return;
2389 3590
2390 EV_FREQUENT_CHECK; 3591 EV_FREQUENT_CHECK;
2391 3592
2392 ev_start (EV_A_ (W)w, 1); 3593 ev_start (EV_A_ (W)w, 1);
2393 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3594 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2394 3595
2395 EV_FREQUENT_CHECK; 3596 EV_FREQUENT_CHECK;
2396} 3597}
2397 3598
2398void 3599void
2399ev_child_stop (EV_P_ ev_child *w) 3600ev_child_stop (EV_P_ ev_child *w) EV_THROW
2400{ 3601{
2401 clear_pending (EV_A_ (W)w); 3602 clear_pending (EV_A_ (W)w);
2402 if (expect_false (!ev_is_active (w))) 3603 if (expect_false (!ev_is_active (w)))
2403 return; 3604 return;
2404 3605
2405 EV_FREQUENT_CHECK; 3606 EV_FREQUENT_CHECK;
2406 3607
2407 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3608 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2408 ev_stop (EV_A_ (W)w); 3609 ev_stop (EV_A_ (W)w);
2409 3610
2410 EV_FREQUENT_CHECK; 3611 EV_FREQUENT_CHECK;
2411} 3612}
3613
3614#endif
2412 3615
2413#if EV_STAT_ENABLE 3616#if EV_STAT_ENABLE
2414 3617
2415# ifdef _WIN32 3618# ifdef _WIN32
2416# undef lstat 3619# undef lstat
2417# define lstat(a,b) _stati64 (a,b) 3620# define lstat(a,b) _stati64 (a,b)
2418# endif 3621# endif
2419 3622
2420#define DEF_STAT_INTERVAL 5.0074891 3623#define DEF_STAT_INTERVAL 5.0074891
3624#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2421#define MIN_STAT_INTERVAL 0.1074891 3625#define MIN_STAT_INTERVAL 0.1074891
2422 3626
2423static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3627static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2424 3628
2425#if EV_USE_INOTIFY 3629#if EV_USE_INOTIFY
2426# define EV_INOTIFY_BUFSIZE 8192 3630
3631/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3632# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2427 3633
2428static void noinline 3634static void noinline
2429infy_add (EV_P_ ev_stat *w) 3635infy_add (EV_P_ ev_stat *w)
2430{ 3636{
2431 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3637 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2432 3638
2433 if (w->wd < 0) 3639 if (w->wd >= 0)
3640 {
3641 struct statfs sfs;
3642
3643 /* now local changes will be tracked by inotify, but remote changes won't */
3644 /* unless the filesystem is known to be local, we therefore still poll */
3645 /* also do poll on <2.6.25, but with normal frequency */
3646
3647 if (!fs_2625)
3648 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3649 else if (!statfs (w->path, &sfs)
3650 && (sfs.f_type == 0x1373 /* devfs */
3651 || sfs.f_type == 0xEF53 /* ext2/3 */
3652 || sfs.f_type == 0x3153464a /* jfs */
3653 || sfs.f_type == 0x52654973 /* reiser3 */
3654 || sfs.f_type == 0x01021994 /* tempfs */
3655 || sfs.f_type == 0x58465342 /* xfs */))
3656 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3657 else
3658 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2434 { 3659 }
2435 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3660 else
3661 {
3662 /* can't use inotify, continue to stat */
3663 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2436 3664
2437 /* monitor some parent directory for speedup hints */ 3665 /* if path is not there, monitor some parent directory for speedup hints */
2438 /* note that exceeding the hardcoded path limit is not a correctness issue, */ 3666 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2439 /* but an efficiency issue only */ 3667 /* but an efficiency issue only */
2440 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3668 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2441 { 3669 {
2442 char path [4096]; 3670 char path [4096];
2447 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3675 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2448 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3676 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2449 3677
2450 char *pend = strrchr (path, '/'); 3678 char *pend = strrchr (path, '/');
2451 3679
2452 if (!pend) 3680 if (!pend || pend == path)
2453 break; /* whoops, no '/', complain to your admin */ 3681 break;
2454 3682
2455 *pend = 0; 3683 *pend = 0;
2456 w->wd = inotify_add_watch (fs_fd, path, mask); 3684 w->wd = inotify_add_watch (fs_fd, path, mask);
2457 } 3685 }
2458 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3686 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2459 } 3687 }
2460 } 3688 }
2461 else
2462 todo, on nfs etc., we need to poll every 60s or so
2463 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2464 3689
2465 if (w->wd >= 0) 3690 if (w->wd >= 0)
2466 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3691 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3692
3693 /* now re-arm timer, if required */
3694 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3695 ev_timer_again (EV_A_ &w->timer);
3696 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2467} 3697}
2468 3698
2469static void noinline 3699static void noinline
2470infy_del (EV_P_ ev_stat *w) 3700infy_del (EV_P_ ev_stat *w)
2471{ 3701{
2474 3704
2475 if (wd < 0) 3705 if (wd < 0)
2476 return; 3706 return;
2477 3707
2478 w->wd = -2; 3708 w->wd = -2;
2479 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3709 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2480 wlist_del (&fs_hash [slot].head, (WL)w); 3710 wlist_del (&fs_hash [slot].head, (WL)w);
2481 3711
2482 /* remove this watcher, if others are watching it, they will rearm */ 3712 /* remove this watcher, if others are watching it, they will rearm */
2483 inotify_rm_watch (fs_fd, wd); 3713 inotify_rm_watch (fs_fd, wd);
2484} 3714}
2486static void noinline 3716static void noinline
2487infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3717infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2488{ 3718{
2489 if (slot < 0) 3719 if (slot < 0)
2490 /* overflow, need to check for all hash slots */ 3720 /* overflow, need to check for all hash slots */
2491 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3721 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2492 infy_wd (EV_A_ slot, wd, ev); 3722 infy_wd (EV_A_ slot, wd, ev);
2493 else 3723 else
2494 { 3724 {
2495 WL w_; 3725 WL w_;
2496 3726
2497 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3727 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2498 { 3728 {
2499 ev_stat *w = (ev_stat *)w_; 3729 ev_stat *w = (ev_stat *)w_;
2500 w_ = w_->next; /* lets us remove this watcher and all before it */ 3730 w_ = w_->next; /* lets us remove this watcher and all before it */
2501 3731
2502 if (w->wd == wd || wd == -1) 3732 if (w->wd == wd || wd == -1)
2503 { 3733 {
2504 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3734 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2505 { 3735 {
3736 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2506 w->wd = -1; 3737 w->wd = -1;
2507 infy_add (EV_A_ w); /* re-add, no matter what */ 3738 infy_add (EV_A_ w); /* re-add, no matter what */
2508 } 3739 }
2509 3740
2510 stat_timer_cb (EV_A_ &w->timer, 0); 3741 stat_timer_cb (EV_A_ &w->timer, 0);
2515 3746
2516static void 3747static void
2517infy_cb (EV_P_ ev_io *w, int revents) 3748infy_cb (EV_P_ ev_io *w, int revents)
2518{ 3749{
2519 char buf [EV_INOTIFY_BUFSIZE]; 3750 char buf [EV_INOTIFY_BUFSIZE];
2520 struct inotify_event *ev = (struct inotify_event *)buf;
2521 int ofs; 3751 int ofs;
2522 int len = read (fs_fd, buf, sizeof (buf)); 3752 int len = read (fs_fd, buf, sizeof (buf));
2523 3753
2524 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3754 for (ofs = 0; ofs < len; )
3755 {
3756 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2525 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3757 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3758 ofs += sizeof (struct inotify_event) + ev->len;
3759 }
2526} 3760}
2527 3761
2528void inline_size 3762inline_size void ecb_cold
2529infy_init (EV_P) 3763ev_check_2625 (EV_P)
2530{ 3764{
2531 if (fs_fd != -2)
2532 return;
2533
2534 /* kernels < 2.6.25 are borked 3765 /* kernels < 2.6.25 are borked
2535 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 3766 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2536 */ 3767 */
2537 { 3768 if (ev_linux_version () < 0x020619)
2538 struct utsname buf; 3769 return;
2539 int major, minor, micro;
2540 3770
3771 fs_2625 = 1;
3772}
3773
3774inline_size int
3775infy_newfd (void)
3776{
3777#if defined IN_CLOEXEC && defined IN_NONBLOCK
3778 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3779 if (fd >= 0)
3780 return fd;
3781#endif
3782 return inotify_init ();
3783}
3784
3785inline_size void
3786infy_init (EV_P)
3787{
3788 if (fs_fd != -2)
3789 return;
3790
2541 fs_fd = -1; 3791 fs_fd = -1;
2542 3792
2543 if (uname (&buf)) 3793 ev_check_2625 (EV_A);
2544 return;
2545 3794
2546 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2547 return;
2548
2549 if (major < 2
2550 || (major == 2 && minor < 6)
2551 || (major == 2 && minor == 6 && micro < 25))
2552 return;
2553 }
2554
2555 fs_fd = inotify_init (); 3795 fs_fd = infy_newfd ();
2556 3796
2557 if (fs_fd >= 0) 3797 if (fs_fd >= 0)
2558 { 3798 {
3799 fd_intern (fs_fd);
2559 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3800 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2560 ev_set_priority (&fs_w, EV_MAXPRI); 3801 ev_set_priority (&fs_w, EV_MAXPRI);
2561 ev_io_start (EV_A_ &fs_w); 3802 ev_io_start (EV_A_ &fs_w);
3803 ev_unref (EV_A);
2562 } 3804 }
2563} 3805}
2564 3806
2565void inline_size 3807inline_size void
2566infy_fork (EV_P) 3808infy_fork (EV_P)
2567{ 3809{
2568 int slot; 3810 int slot;
2569 3811
2570 if (fs_fd < 0) 3812 if (fs_fd < 0)
2571 return; 3813 return;
2572 3814
3815 ev_ref (EV_A);
3816 ev_io_stop (EV_A_ &fs_w);
2573 close (fs_fd); 3817 close (fs_fd);
2574 fs_fd = inotify_init (); 3818 fs_fd = infy_newfd ();
2575 3819
3820 if (fs_fd >= 0)
3821 {
3822 fd_intern (fs_fd);
3823 ev_io_set (&fs_w, fs_fd, EV_READ);
3824 ev_io_start (EV_A_ &fs_w);
3825 ev_unref (EV_A);
3826 }
3827
2576 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3828 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2577 { 3829 {
2578 WL w_ = fs_hash [slot].head; 3830 WL w_ = fs_hash [slot].head;
2579 fs_hash [slot].head = 0; 3831 fs_hash [slot].head = 0;
2580 3832
2581 while (w_) 3833 while (w_)
2586 w->wd = -1; 3838 w->wd = -1;
2587 3839
2588 if (fs_fd >= 0) 3840 if (fs_fd >= 0)
2589 infy_add (EV_A_ w); /* re-add, no matter what */ 3841 infy_add (EV_A_ w); /* re-add, no matter what */
2590 else 3842 else
3843 {
3844 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3845 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2591 ev_timer_start (EV_A_ &w->timer); 3846 ev_timer_again (EV_A_ &w->timer);
3847 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3848 }
2592 } 3849 }
2593 } 3850 }
2594} 3851}
2595 3852
2596#endif 3853#endif
2600#else 3857#else
2601# define EV_LSTAT(p,b) lstat (p, b) 3858# define EV_LSTAT(p,b) lstat (p, b)
2602#endif 3859#endif
2603 3860
2604void 3861void
2605ev_stat_stat (EV_P_ ev_stat *w) 3862ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2606{ 3863{
2607 if (lstat (w->path, &w->attr) < 0) 3864 if (lstat (w->path, &w->attr) < 0)
2608 w->attr.st_nlink = 0; 3865 w->attr.st_nlink = 0;
2609 else if (!w->attr.st_nlink) 3866 else if (!w->attr.st_nlink)
2610 w->attr.st_nlink = 1; 3867 w->attr.st_nlink = 1;
2613static void noinline 3870static void noinline
2614stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3871stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2615{ 3872{
2616 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3873 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2617 3874
2618 /* we copy this here each the time so that */ 3875 ev_statdata prev = w->attr;
2619 /* prev has the old value when the callback gets invoked */
2620 w->prev = w->attr;
2621 ev_stat_stat (EV_A_ w); 3876 ev_stat_stat (EV_A_ w);
2622 3877
2623 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3878 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2624 if ( 3879 if (
2625 w->prev.st_dev != w->attr.st_dev 3880 prev.st_dev != w->attr.st_dev
2626 || w->prev.st_ino != w->attr.st_ino 3881 || prev.st_ino != w->attr.st_ino
2627 || w->prev.st_mode != w->attr.st_mode 3882 || prev.st_mode != w->attr.st_mode
2628 || w->prev.st_nlink != w->attr.st_nlink 3883 || prev.st_nlink != w->attr.st_nlink
2629 || w->prev.st_uid != w->attr.st_uid 3884 || prev.st_uid != w->attr.st_uid
2630 || w->prev.st_gid != w->attr.st_gid 3885 || prev.st_gid != w->attr.st_gid
2631 || w->prev.st_rdev != w->attr.st_rdev 3886 || prev.st_rdev != w->attr.st_rdev
2632 || w->prev.st_size != w->attr.st_size 3887 || prev.st_size != w->attr.st_size
2633 || w->prev.st_atime != w->attr.st_atime 3888 || prev.st_atime != w->attr.st_atime
2634 || w->prev.st_mtime != w->attr.st_mtime 3889 || prev.st_mtime != w->attr.st_mtime
2635 || w->prev.st_ctime != w->attr.st_ctime 3890 || prev.st_ctime != w->attr.st_ctime
2636 ) { 3891 ) {
3892 /* we only update w->prev on actual differences */
3893 /* in case we test more often than invoke the callback, */
3894 /* to ensure that prev is always different to attr */
3895 w->prev = prev;
3896
2637 #if EV_USE_INOTIFY 3897 #if EV_USE_INOTIFY
2638 if (fs_fd >= 0) 3898 if (fs_fd >= 0)
2639 { 3899 {
2640 infy_del (EV_A_ w); 3900 infy_del (EV_A_ w);
2641 infy_add (EV_A_ w); 3901 infy_add (EV_A_ w);
2646 ev_feed_event (EV_A_ w, EV_STAT); 3906 ev_feed_event (EV_A_ w, EV_STAT);
2647 } 3907 }
2648} 3908}
2649 3909
2650void 3910void
2651ev_stat_start (EV_P_ ev_stat *w) 3911ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2652{ 3912{
2653 if (expect_false (ev_is_active (w))) 3913 if (expect_false (ev_is_active (w)))
2654 return; 3914 return;
2655 3915
2656 /* since we use memcmp, we need to clear any padding data etc. */
2657 memset (&w->prev, 0, sizeof (ev_statdata));
2658 memset (&w->attr, 0, sizeof (ev_statdata));
2659
2660 ev_stat_stat (EV_A_ w); 3916 ev_stat_stat (EV_A_ w);
2661 3917
3918 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2662 if (w->interval < MIN_STAT_INTERVAL) 3919 w->interval = MIN_STAT_INTERVAL;
2663 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2664 3920
2665 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3921 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2666 ev_set_priority (&w->timer, ev_priority (w)); 3922 ev_set_priority (&w->timer, ev_priority (w));
2667 3923
2668#if EV_USE_INOTIFY 3924#if EV_USE_INOTIFY
2669 infy_init (EV_A); 3925 infy_init (EV_A);
2670 3926
2671 if (fs_fd >= 0) 3927 if (fs_fd >= 0)
2672 infy_add (EV_A_ w); 3928 infy_add (EV_A_ w);
2673 else 3929 else
2674#endif 3930#endif
3931 {
2675 ev_timer_start (EV_A_ &w->timer); 3932 ev_timer_again (EV_A_ &w->timer);
3933 ev_unref (EV_A);
3934 }
2676 3935
2677 ev_start (EV_A_ (W)w, 1); 3936 ev_start (EV_A_ (W)w, 1);
2678 3937
2679 EV_FREQUENT_CHECK; 3938 EV_FREQUENT_CHECK;
2680} 3939}
2681 3940
2682void 3941void
2683ev_stat_stop (EV_P_ ev_stat *w) 3942ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2684{ 3943{
2685 clear_pending (EV_A_ (W)w); 3944 clear_pending (EV_A_ (W)w);
2686 if (expect_false (!ev_is_active (w))) 3945 if (expect_false (!ev_is_active (w)))
2687 return; 3946 return;
2688 3947
2689 EV_FREQUENT_CHECK; 3948 EV_FREQUENT_CHECK;
2690 3949
2691#if EV_USE_INOTIFY 3950#if EV_USE_INOTIFY
2692 infy_del (EV_A_ w); 3951 infy_del (EV_A_ w);
2693#endif 3952#endif
3953
3954 if (ev_is_active (&w->timer))
3955 {
3956 ev_ref (EV_A);
2694 ev_timer_stop (EV_A_ &w->timer); 3957 ev_timer_stop (EV_A_ &w->timer);
3958 }
2695 3959
2696 ev_stop (EV_A_ (W)w); 3960 ev_stop (EV_A_ (W)w);
2697 3961
2698 EV_FREQUENT_CHECK; 3962 EV_FREQUENT_CHECK;
2699} 3963}
2700#endif 3964#endif
2701 3965
2702#if EV_IDLE_ENABLE 3966#if EV_IDLE_ENABLE
2703void 3967void
2704ev_idle_start (EV_P_ ev_idle *w) 3968ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2705{ 3969{
2706 if (expect_false (ev_is_active (w))) 3970 if (expect_false (ev_is_active (w)))
2707 return; 3971 return;
2708 3972
2709 pri_adjust (EV_A_ (W)w); 3973 pri_adjust (EV_A_ (W)w);
2722 3986
2723 EV_FREQUENT_CHECK; 3987 EV_FREQUENT_CHECK;
2724} 3988}
2725 3989
2726void 3990void
2727ev_idle_stop (EV_P_ ev_idle *w) 3991ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2728{ 3992{
2729 clear_pending (EV_A_ (W)w); 3993 clear_pending (EV_A_ (W)w);
2730 if (expect_false (!ev_is_active (w))) 3994 if (expect_false (!ev_is_active (w)))
2731 return; 3995 return;
2732 3996
2744 4008
2745 EV_FREQUENT_CHECK; 4009 EV_FREQUENT_CHECK;
2746} 4010}
2747#endif 4011#endif
2748 4012
4013#if EV_PREPARE_ENABLE
2749void 4014void
2750ev_prepare_start (EV_P_ ev_prepare *w) 4015ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2751{ 4016{
2752 if (expect_false (ev_is_active (w))) 4017 if (expect_false (ev_is_active (w)))
2753 return; 4018 return;
2754 4019
2755 EV_FREQUENT_CHECK; 4020 EV_FREQUENT_CHECK;
2760 4025
2761 EV_FREQUENT_CHECK; 4026 EV_FREQUENT_CHECK;
2762} 4027}
2763 4028
2764void 4029void
2765ev_prepare_stop (EV_P_ ev_prepare *w) 4030ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2766{ 4031{
2767 clear_pending (EV_A_ (W)w); 4032 clear_pending (EV_A_ (W)w);
2768 if (expect_false (!ev_is_active (w))) 4033 if (expect_false (!ev_is_active (w)))
2769 return; 4034 return;
2770 4035
2779 4044
2780 ev_stop (EV_A_ (W)w); 4045 ev_stop (EV_A_ (W)w);
2781 4046
2782 EV_FREQUENT_CHECK; 4047 EV_FREQUENT_CHECK;
2783} 4048}
4049#endif
2784 4050
4051#if EV_CHECK_ENABLE
2785void 4052void
2786ev_check_start (EV_P_ ev_check *w) 4053ev_check_start (EV_P_ ev_check *w) EV_THROW
2787{ 4054{
2788 if (expect_false (ev_is_active (w))) 4055 if (expect_false (ev_is_active (w)))
2789 return; 4056 return;
2790 4057
2791 EV_FREQUENT_CHECK; 4058 EV_FREQUENT_CHECK;
2796 4063
2797 EV_FREQUENT_CHECK; 4064 EV_FREQUENT_CHECK;
2798} 4065}
2799 4066
2800void 4067void
2801ev_check_stop (EV_P_ ev_check *w) 4068ev_check_stop (EV_P_ ev_check *w) EV_THROW
2802{ 4069{
2803 clear_pending (EV_A_ (W)w); 4070 clear_pending (EV_A_ (W)w);
2804 if (expect_false (!ev_is_active (w))) 4071 if (expect_false (!ev_is_active (w)))
2805 return; 4072 return;
2806 4073
2815 4082
2816 ev_stop (EV_A_ (W)w); 4083 ev_stop (EV_A_ (W)w);
2817 4084
2818 EV_FREQUENT_CHECK; 4085 EV_FREQUENT_CHECK;
2819} 4086}
4087#endif
2820 4088
2821#if EV_EMBED_ENABLE 4089#if EV_EMBED_ENABLE
2822void noinline 4090void noinline
2823ev_embed_sweep (EV_P_ ev_embed *w) 4091ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2824{ 4092{
2825 ev_loop (w->other, EVLOOP_NONBLOCK); 4093 ev_run (w->other, EVRUN_NOWAIT);
2826} 4094}
2827 4095
2828static void 4096static void
2829embed_io_cb (EV_P_ ev_io *io, int revents) 4097embed_io_cb (EV_P_ ev_io *io, int revents)
2830{ 4098{
2831 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4099 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2832 4100
2833 if (ev_cb (w)) 4101 if (ev_cb (w))
2834 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4102 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2835 else 4103 else
2836 ev_loop (w->other, EVLOOP_NONBLOCK); 4104 ev_run (w->other, EVRUN_NOWAIT);
2837} 4105}
2838 4106
2839static void 4107static void
2840embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4108embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2841{ 4109{
2842 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4110 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2843 4111
2844 { 4112 {
2845 struct ev_loop *loop = w->other; 4113 EV_P = w->other;
2846 4114
2847 while (fdchangecnt) 4115 while (fdchangecnt)
2848 { 4116 {
2849 fd_reify (EV_A); 4117 fd_reify (EV_A);
2850 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4118 ev_run (EV_A_ EVRUN_NOWAIT);
2851 } 4119 }
2852 } 4120 }
2853} 4121}
2854 4122
2855static void 4123static void
2856embed_fork_cb (EV_P_ ev_fork *fork_w, int revents) 4124embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2857{ 4125{
2858 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 4126 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2859 4127
4128 ev_embed_stop (EV_A_ w);
4129
2860 { 4130 {
2861 struct ev_loop *loop = w->other; 4131 EV_P = w->other;
2862 4132
2863 ev_loop_fork (EV_A); 4133 ev_loop_fork (EV_A);
4134 ev_run (EV_A_ EVRUN_NOWAIT);
2864 } 4135 }
4136
4137 ev_embed_start (EV_A_ w);
2865} 4138}
2866 4139
2867#if 0 4140#if 0
2868static void 4141static void
2869embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4142embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2871 ev_idle_stop (EV_A_ idle); 4144 ev_idle_stop (EV_A_ idle);
2872} 4145}
2873#endif 4146#endif
2874 4147
2875void 4148void
2876ev_embed_start (EV_P_ ev_embed *w) 4149ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2877{ 4150{
2878 if (expect_false (ev_is_active (w))) 4151 if (expect_false (ev_is_active (w)))
2879 return; 4152 return;
2880 4153
2881 { 4154 {
2882 struct ev_loop *loop = w->other; 4155 EV_P = w->other;
2883 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4156 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2884 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4157 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2885 } 4158 }
2886 4159
2887 EV_FREQUENT_CHECK; 4160 EV_FREQUENT_CHECK;
2888 4161
2902 4175
2903 EV_FREQUENT_CHECK; 4176 EV_FREQUENT_CHECK;
2904} 4177}
2905 4178
2906void 4179void
2907ev_embed_stop (EV_P_ ev_embed *w) 4180ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2908{ 4181{
2909 clear_pending (EV_A_ (W)w); 4182 clear_pending (EV_A_ (W)w);
2910 if (expect_false (!ev_is_active (w))) 4183 if (expect_false (!ev_is_active (w)))
2911 return; 4184 return;
2912 4185
2914 4187
2915 ev_io_stop (EV_A_ &w->io); 4188 ev_io_stop (EV_A_ &w->io);
2916 ev_prepare_stop (EV_A_ &w->prepare); 4189 ev_prepare_stop (EV_A_ &w->prepare);
2917 ev_fork_stop (EV_A_ &w->fork); 4190 ev_fork_stop (EV_A_ &w->fork);
2918 4191
4192 ev_stop (EV_A_ (W)w);
4193
2919 EV_FREQUENT_CHECK; 4194 EV_FREQUENT_CHECK;
2920} 4195}
2921#endif 4196#endif
2922 4197
2923#if EV_FORK_ENABLE 4198#if EV_FORK_ENABLE
2924void 4199void
2925ev_fork_start (EV_P_ ev_fork *w) 4200ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2926{ 4201{
2927 if (expect_false (ev_is_active (w))) 4202 if (expect_false (ev_is_active (w)))
2928 return; 4203 return;
2929 4204
2930 EV_FREQUENT_CHECK; 4205 EV_FREQUENT_CHECK;
2935 4210
2936 EV_FREQUENT_CHECK; 4211 EV_FREQUENT_CHECK;
2937} 4212}
2938 4213
2939void 4214void
2940ev_fork_stop (EV_P_ ev_fork *w) 4215ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2941{ 4216{
2942 clear_pending (EV_A_ (W)w); 4217 clear_pending (EV_A_ (W)w);
2943 if (expect_false (!ev_is_active (w))) 4218 if (expect_false (!ev_is_active (w)))
2944 return; 4219 return;
2945 4220
2956 4231
2957 EV_FREQUENT_CHECK; 4232 EV_FREQUENT_CHECK;
2958} 4233}
2959#endif 4234#endif
2960 4235
4236#if EV_CLEANUP_ENABLE
4237void
4238ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4239{
4240 if (expect_false (ev_is_active (w)))
4241 return;
4242
4243 EV_FREQUENT_CHECK;
4244
4245 ev_start (EV_A_ (W)w, ++cleanupcnt);
4246 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4247 cleanups [cleanupcnt - 1] = w;
4248
4249 /* cleanup watchers should never keep a refcount on the loop */
4250 ev_unref (EV_A);
4251 EV_FREQUENT_CHECK;
4252}
4253
4254void
4255ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4256{
4257 clear_pending (EV_A_ (W)w);
4258 if (expect_false (!ev_is_active (w)))
4259 return;
4260
4261 EV_FREQUENT_CHECK;
4262 ev_ref (EV_A);
4263
4264 {
4265 int active = ev_active (w);
4266
4267 cleanups [active - 1] = cleanups [--cleanupcnt];
4268 ev_active (cleanups [active - 1]) = active;
4269 }
4270
4271 ev_stop (EV_A_ (W)w);
4272
4273 EV_FREQUENT_CHECK;
4274}
4275#endif
4276
2961#if EV_ASYNC_ENABLE 4277#if EV_ASYNC_ENABLE
2962void 4278void
2963ev_async_start (EV_P_ ev_async *w) 4279ev_async_start (EV_P_ ev_async *w) EV_THROW
2964{ 4280{
2965 if (expect_false (ev_is_active (w))) 4281 if (expect_false (ev_is_active (w)))
2966 return; 4282 return;
4283
4284 w->sent = 0;
2967 4285
2968 evpipe_init (EV_A); 4286 evpipe_init (EV_A);
2969 4287
2970 EV_FREQUENT_CHECK; 4288 EV_FREQUENT_CHECK;
2971 4289
2975 4293
2976 EV_FREQUENT_CHECK; 4294 EV_FREQUENT_CHECK;
2977} 4295}
2978 4296
2979void 4297void
2980ev_async_stop (EV_P_ ev_async *w) 4298ev_async_stop (EV_P_ ev_async *w) EV_THROW
2981{ 4299{
2982 clear_pending (EV_A_ (W)w); 4300 clear_pending (EV_A_ (W)w);
2983 if (expect_false (!ev_is_active (w))) 4301 if (expect_false (!ev_is_active (w)))
2984 return; 4302 return;
2985 4303
2996 4314
2997 EV_FREQUENT_CHECK; 4315 EV_FREQUENT_CHECK;
2998} 4316}
2999 4317
3000void 4318void
3001ev_async_send (EV_P_ ev_async *w) 4319ev_async_send (EV_P_ ev_async *w) EV_THROW
3002{ 4320{
3003 w->sent = 1; 4321 w->sent = 1;
3004 evpipe_write (EV_A_ &gotasync); 4322 evpipe_write (EV_A_ &async_pending);
3005} 4323}
3006#endif 4324#endif
3007 4325
3008/*****************************************************************************/ 4326/*****************************************************************************/
3009 4327
3043 4361
3044 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io)); 4362 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3045} 4363}
3046 4364
3047void 4365void
3048ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4366ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
3049{ 4367{
3050 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4368 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3051 4369
3052 if (expect_false (!once)) 4370 if (expect_false (!once))
3053 { 4371 {
3054 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4372 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3055 return; 4373 return;
3056 } 4374 }
3057 4375
3058 once->cb = cb; 4376 once->cb = cb;
3059 once->arg = arg; 4377 once->arg = arg;
3071 ev_timer_set (&once->to, timeout, 0.); 4389 ev_timer_set (&once->to, timeout, 0.);
3072 ev_timer_start (EV_A_ &once->to); 4390 ev_timer_start (EV_A_ &once->to);
3073 } 4391 }
3074} 4392}
3075 4393
4394/*****************************************************************************/
4395
4396#if EV_WALK_ENABLE
4397void ecb_cold
4398ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4399{
4400 int i, j;
4401 ev_watcher_list *wl, *wn;
4402
4403 if (types & (EV_IO | EV_EMBED))
4404 for (i = 0; i < anfdmax; ++i)
4405 for (wl = anfds [i].head; wl; )
4406 {
4407 wn = wl->next;
4408
4409#if EV_EMBED_ENABLE
4410 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4411 {
4412 if (types & EV_EMBED)
4413 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4414 }
4415 else
4416#endif
4417#if EV_USE_INOTIFY
4418 if (ev_cb ((ev_io *)wl) == infy_cb)
4419 ;
4420 else
4421#endif
4422 if ((ev_io *)wl != &pipe_w)
4423 if (types & EV_IO)
4424 cb (EV_A_ EV_IO, wl);
4425
4426 wl = wn;
4427 }
4428
4429 if (types & (EV_TIMER | EV_STAT))
4430 for (i = timercnt + HEAP0; i-- > HEAP0; )
4431#if EV_STAT_ENABLE
4432 /*TODO: timer is not always active*/
4433 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4434 {
4435 if (types & EV_STAT)
4436 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4437 }
4438 else
4439#endif
4440 if (types & EV_TIMER)
4441 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4442
4443#if EV_PERIODIC_ENABLE
4444 if (types & EV_PERIODIC)
4445 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4446 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4447#endif
4448
4449#if EV_IDLE_ENABLE
4450 if (types & EV_IDLE)
4451 for (j = NUMPRI; j--; )
4452 for (i = idlecnt [j]; i--; )
4453 cb (EV_A_ EV_IDLE, idles [j][i]);
4454#endif
4455
4456#if EV_FORK_ENABLE
4457 if (types & EV_FORK)
4458 for (i = forkcnt; i--; )
4459 if (ev_cb (forks [i]) != embed_fork_cb)
4460 cb (EV_A_ EV_FORK, forks [i]);
4461#endif
4462
4463#if EV_ASYNC_ENABLE
4464 if (types & EV_ASYNC)
4465 for (i = asynccnt; i--; )
4466 cb (EV_A_ EV_ASYNC, asyncs [i]);
4467#endif
4468
4469#if EV_PREPARE_ENABLE
4470 if (types & EV_PREPARE)
4471 for (i = preparecnt; i--; )
4472# if EV_EMBED_ENABLE
4473 if (ev_cb (prepares [i]) != embed_prepare_cb)
4474# endif
4475 cb (EV_A_ EV_PREPARE, prepares [i]);
4476#endif
4477
4478#if EV_CHECK_ENABLE
4479 if (types & EV_CHECK)
4480 for (i = checkcnt; i--; )
4481 cb (EV_A_ EV_CHECK, checks [i]);
4482#endif
4483
4484#if EV_SIGNAL_ENABLE
4485 if (types & EV_SIGNAL)
4486 for (i = 0; i < EV_NSIG - 1; ++i)
4487 for (wl = signals [i].head; wl; )
4488 {
4489 wn = wl->next;
4490 cb (EV_A_ EV_SIGNAL, wl);
4491 wl = wn;
4492 }
4493#endif
4494
4495#if EV_CHILD_ENABLE
4496 if (types & EV_CHILD)
4497 for (i = (EV_PID_HASHSIZE); i--; )
4498 for (wl = childs [i]; wl; )
4499 {
4500 wn = wl->next;
4501 cb (EV_A_ EV_CHILD, wl);
4502 wl = wn;
4503 }
4504#endif
4505/* EV_STAT 0x00001000 /* stat data changed */
4506/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4507}
4508#endif
4509
3076#if EV_MULTIPLICITY 4510#if EV_MULTIPLICITY
3077 #include "ev_wrap.h" 4511 #include "ev_wrap.h"
3078#endif 4512#endif
3079 4513
3080#ifdef __cplusplus
3081}
3082#endif
3083

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines