ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.271 by root, Mon Nov 3 12:13:15 2008 UTC vs.
Revision 1.501 by root, Mon Jul 1 21:47:42 2019 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
100# ifndef EV_USE_KQUEUE 120# if HAVE_LINUX_AIO_ABI_H
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 121# ifndef EV_USE_LINUXAIO
102# define EV_USE_KQUEUE 1 122# define EV_USE_LINUXAIO EV_FEATURE_BACKENDS
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_LINUXAIO
126# define EV_USE_LINUXAIO 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT 129# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
109# if HAVE_PORT_H && HAVE_PORT_CREATE 130# ifndef EV_USE_KQUEUE
110# define EV_USE_PORT 1 131# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
111# else
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_KQUEUE
135# define EV_USE_KQUEUE 0
114# endif 136# endif
115 137
138# if HAVE_PORT_H && HAVE_PORT_CREATE
116# ifndef EV_USE_INOTIFY 139# ifndef EV_USE_PORT
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 140# define EV_USE_PORT EV_FEATURE_BACKENDS
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif 141# endif
142# else
143# undef EV_USE_PORT
144# define EV_USE_PORT 0
122# endif 145# endif
123 146
147# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_INOTIFY
125# if HAVE_EVENTFD 149# define EV_USE_INOTIFY EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_INOTIFY
153# define EV_USE_INOTIFY 0
154# endif
155
156# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
157# ifndef EV_USE_SIGNALFD
158# define EV_USE_SIGNALFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_SIGNALFD
162# define EV_USE_SIGNALFD 0
163# endif
164
165# if HAVE_EVENTFD
166# ifndef EV_USE_EVENTFD
167# define EV_USE_EVENTFD EV_FEATURE_OS
168# endif
169# else
170# undef EV_USE_EVENTFD
171# define EV_USE_EVENTFD 0
130# endif 172# endif
131 173
132#endif 174#endif
133 175
134#include <math.h> 176/* OS X, in its infinite idiocy, actually HARDCODES
177 * a limit of 1024 into their select. Where people have brains,
178 * OS X engineers apparently have a vacuum. Or maybe they were
179 * ordered to have a vacuum, or they do anything for money.
180 * This might help. Or not.
181 * Note that this must be defined early, as other include files
182 * will rely on this define as well.
183 */
184#define _DARWIN_UNLIMITED_SELECT 1
185
135#include <stdlib.h> 186#include <stdlib.h>
187#include <string.h>
136#include <fcntl.h> 188#include <fcntl.h>
137#include <stddef.h> 189#include <stddef.h>
138 190
139#include <stdio.h> 191#include <stdio.h>
140 192
141#include <assert.h> 193#include <assert.h>
142#include <errno.h> 194#include <errno.h>
143#include <sys/types.h> 195#include <sys/types.h>
144#include <time.h> 196#include <time.h>
197#include <limits.h>
145 198
146#include <signal.h> 199#include <signal.h>
147 200
148#ifdef EV_H 201#ifdef EV_H
149# include EV_H 202# include EV_H
150#else 203#else
151# include "ev.h" 204# include "ev.h"
205#endif
206
207#if EV_NO_THREADS
208# undef EV_NO_SMP
209# define EV_NO_SMP 1
210# undef ECB_NO_THREADS
211# define ECB_NO_THREADS 1
212#endif
213#if EV_NO_SMP
214# undef EV_NO_SMP
215# define ECB_NO_SMP 1
152#endif 216#endif
153 217
154#ifndef _WIN32 218#ifndef _WIN32
155# include <sys/time.h> 219# include <sys/time.h>
156# include <sys/wait.h> 220# include <sys/wait.h>
157# include <unistd.h> 221# include <unistd.h>
158#else 222#else
159# include <io.h> 223# include <io.h>
160# define WIN32_LEAN_AND_MEAN 224# define WIN32_LEAN_AND_MEAN
225# include <winsock2.h>
161# include <windows.h> 226# include <windows.h>
162# ifndef EV_SELECT_IS_WINSOCKET 227# ifndef EV_SELECT_IS_WINSOCKET
163# define EV_SELECT_IS_WINSOCKET 1 228# define EV_SELECT_IS_WINSOCKET 1
164# endif 229# endif
230# undef EV_AVOID_STDIO
165#endif 231#endif
166 232
167/* this block tries to deduce configuration from header-defined symbols and defaults */ 233/* this block tries to deduce configuration from header-defined symbols and defaults */
168 234
235/* try to deduce the maximum number of signals on this platform */
236#if defined EV_NSIG
237/* use what's provided */
238#elif defined NSIG
239# define EV_NSIG (NSIG)
240#elif defined _NSIG
241# define EV_NSIG (_NSIG)
242#elif defined SIGMAX
243# define EV_NSIG (SIGMAX+1)
244#elif defined SIG_MAX
245# define EV_NSIG (SIG_MAX+1)
246#elif defined _SIG_MAX
247# define EV_NSIG (_SIG_MAX+1)
248#elif defined MAXSIG
249# define EV_NSIG (MAXSIG+1)
250#elif defined MAX_SIG
251# define EV_NSIG (MAX_SIG+1)
252#elif defined SIGARRAYSIZE
253# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
254#elif defined _sys_nsig
255# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
256#else
257# define EV_NSIG (8 * sizeof (sigset_t) + 1)
258#endif
259
260#ifndef EV_USE_FLOOR
261# define EV_USE_FLOOR 0
262#endif
263
264#ifndef EV_USE_CLOCK_SYSCALL
265# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
266# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
267# else
268# define EV_USE_CLOCK_SYSCALL 0
269# endif
270#endif
271
272#if !(_POSIX_TIMERS > 0)
273# ifndef EV_USE_MONOTONIC
274# define EV_USE_MONOTONIC 0
275# endif
276# ifndef EV_USE_REALTIME
277# define EV_USE_REALTIME 0
278# endif
279#endif
280
169#ifndef EV_USE_MONOTONIC 281#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 282# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1 283# define EV_USE_MONOTONIC EV_FEATURE_OS
172# else 284# else
173# define EV_USE_MONOTONIC 0 285# define EV_USE_MONOTONIC 0
174# endif 286# endif
175#endif 287#endif
176 288
177#ifndef EV_USE_REALTIME 289#ifndef EV_USE_REALTIME
178# define EV_USE_REALTIME 0 290# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
179#endif 291#endif
180 292
181#ifndef EV_USE_NANOSLEEP 293#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L 294# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1 295# define EV_USE_NANOSLEEP EV_FEATURE_OS
184# else 296# else
185# define EV_USE_NANOSLEEP 0 297# define EV_USE_NANOSLEEP 0
186# endif 298# endif
187#endif 299#endif
188 300
189#ifndef EV_USE_SELECT 301#ifndef EV_USE_SELECT
190# define EV_USE_SELECT 1 302# define EV_USE_SELECT EV_FEATURE_BACKENDS
191#endif 303#endif
192 304
193#ifndef EV_USE_POLL 305#ifndef EV_USE_POLL
194# ifdef _WIN32 306# ifdef _WIN32
195# define EV_USE_POLL 0 307# define EV_USE_POLL 0
196# else 308# else
197# define EV_USE_POLL 1 309# define EV_USE_POLL EV_FEATURE_BACKENDS
198# endif 310# endif
199#endif 311#endif
200 312
201#ifndef EV_USE_EPOLL 313#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 314# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1 315# define EV_USE_EPOLL EV_FEATURE_BACKENDS
204# else 316# else
205# define EV_USE_EPOLL 0 317# define EV_USE_EPOLL 0
206# endif 318# endif
207#endif 319#endif
208 320
212 324
213#ifndef EV_USE_PORT 325#ifndef EV_USE_PORT
214# define EV_USE_PORT 0 326# define EV_USE_PORT 0
215#endif 327#endif
216 328
329#ifndef EV_USE_LINUXAIO
330# if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
331# define EV_USE_LINUXAIO 1
332# else
333# define EV_USE_LINUXAIO 0
334# endif
335#endif
336
337#ifndef EV_USE_IOURING
338# if __linux
339# define EV_USE_IOURING 0
340# else
341# define EV_USE_IOURING 0
342# endif
343#endif
344
217#ifndef EV_USE_INOTIFY 345#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 346# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1 347# define EV_USE_INOTIFY EV_FEATURE_OS
220# else 348# else
221# define EV_USE_INOTIFY 0 349# define EV_USE_INOTIFY 0
222# endif 350# endif
223#endif 351#endif
224 352
225#ifndef EV_PID_HASHSIZE 353#ifndef EV_PID_HASHSIZE
226# if EV_MINIMAL 354# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
230# endif
231#endif 355#endif
232 356
233#ifndef EV_INOTIFY_HASHSIZE 357#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL 358# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif 359#endif
240 360
241#ifndef EV_USE_EVENTFD 361#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 362# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1 363# define EV_USE_EVENTFD EV_FEATURE_OS
244# else 364# else
245# define EV_USE_EVENTFD 0 365# define EV_USE_EVENTFD 0
366# endif
367#endif
368
369#ifndef EV_USE_SIGNALFD
370# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
371# define EV_USE_SIGNALFD EV_FEATURE_OS
372# else
373# define EV_USE_SIGNALFD 0
246# endif 374# endif
247#endif 375#endif
248 376
249#if 0 /* debugging */ 377#if 0 /* debugging */
250# define EV_VERIFY 3 378# define EV_VERIFY 3
251# define EV_USE_4HEAP 1 379# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1 380# define EV_HEAP_CACHE_AT 1
253#endif 381#endif
254 382
255#ifndef EV_VERIFY 383#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL 384# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
257#endif 385#endif
258 386
259#ifndef EV_USE_4HEAP 387#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL 388# define EV_USE_4HEAP EV_FEATURE_DATA
261#endif 389#endif
262 390
263#ifndef EV_HEAP_CACHE_AT 391#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL 392# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
393#endif
394
395#ifdef __ANDROID__
396/* supposedly, android doesn't typedef fd_mask */
397# undef EV_USE_SELECT
398# define EV_USE_SELECT 0
399/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
400# undef EV_USE_CLOCK_SYSCALL
401# define EV_USE_CLOCK_SYSCALL 0
402#endif
403
404/* aix's poll.h seems to cause lots of trouble */
405#ifdef _AIX
406/* AIX has a completely broken poll.h header */
407# undef EV_USE_POLL
408# define EV_USE_POLL 0
409#endif
410
411/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
412/* which makes programs even slower. might work on other unices, too. */
413#if EV_USE_CLOCK_SYSCALL
414# include <sys/syscall.h>
415# ifdef SYS_clock_gettime
416# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
417# undef EV_USE_MONOTONIC
418# define EV_USE_MONOTONIC 1
419# define EV_NEED_SYSCALL 1
420# else
421# undef EV_USE_CLOCK_SYSCALL
422# define EV_USE_CLOCK_SYSCALL 0
423# endif
265#endif 424#endif
266 425
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 426/* this block fixes any misconfiguration where we know we run into trouble otherwise */
268 427
269#ifndef CLOCK_MONOTONIC 428#ifndef CLOCK_MONOTONIC
280# undef EV_USE_INOTIFY 439# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0 440# define EV_USE_INOTIFY 0
282#endif 441#endif
283 442
284#if !EV_USE_NANOSLEEP 443#if !EV_USE_NANOSLEEP
285# ifndef _WIN32 444/* hp-ux has it in sys/time.h, which we unconditionally include above */
445# if !defined _WIN32 && !defined __hpux
286# include <sys/select.h> 446# include <sys/select.h>
287# endif 447# endif
288#endif 448#endif
289 449
450#if EV_USE_LINUXAIO
451# include <sys/syscall.h>
452# if !SYS_io_getevents || !EV_USE_EPOLL /* ev_linxaio uses ev_poll.c:ev_epoll_create */
453# undef EV_USE_LINUXAIO
454# define EV_USE_LINUXAIO 0
455# else
456# define EV_NEED_SYSCALL 1
457# endif
458#endif
459
460#if EV_USE_IOURING
461# include <sys/syscall.h>
462# if !__alpha && !SYS_io_uring_setup
463# define SYS_io_uring_setup 425
464# define SYS_io_uring_enter 426
465# define SYS_io_uring_wregister 427
466# endif
467# if SYS_io_uring_setup
468# define EV_NEED_SYSCALL 1
469# else
470# undef EV_USE_IOURING
471# define EV_USE_IOURING 0
472# endif
473#endif
474
290#if EV_USE_INOTIFY 475#if EV_USE_INOTIFY
291# include <sys/utsname.h>
292# include <sys/statfs.h> 476# include <sys/statfs.h>
293# include <sys/inotify.h> 477# include <sys/inotify.h>
294/* some very old inotify.h headers don't have IN_DONT_FOLLOW */ 478/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
295# ifndef IN_DONT_FOLLOW 479# ifndef IN_DONT_FOLLOW
296# undef EV_USE_INOTIFY 480# undef EV_USE_INOTIFY
297# define EV_USE_INOTIFY 0 481# define EV_USE_INOTIFY 0
298# endif 482# endif
299#endif 483#endif
300 484
301#if EV_SELECT_IS_WINSOCKET
302# include <winsock.h>
303#endif
304
305#if EV_USE_EVENTFD 485#if EV_USE_EVENTFD
306/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 486/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
307# include <stdint.h> 487# include <stdint.h>
308# ifdef __cplusplus 488# ifndef EFD_NONBLOCK
309extern "C" { 489# define EFD_NONBLOCK O_NONBLOCK
310# endif 490# endif
311int eventfd (unsigned int initval, int flags); 491# ifndef EFD_CLOEXEC
312# ifdef __cplusplus 492# ifdef O_CLOEXEC
313} 493# define EFD_CLOEXEC O_CLOEXEC
494# else
495# define EFD_CLOEXEC 02000000
496# endif
314# endif 497# endif
498EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
499#endif
500
501#if EV_USE_SIGNALFD
502/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
503# include <stdint.h>
504# ifndef SFD_NONBLOCK
505# define SFD_NONBLOCK O_NONBLOCK
315#endif 506# endif
507# ifndef SFD_CLOEXEC
508# ifdef O_CLOEXEC
509# define SFD_CLOEXEC O_CLOEXEC
510# else
511# define SFD_CLOEXEC 02000000
512# endif
513# endif
514EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
316 515
317/**/ 516struct signalfd_siginfo
517{
518 uint32_t ssi_signo;
519 char pad[128 - sizeof (uint32_t)];
520};
521#endif
522
523/*****************************************************************************/
524
525#if EV_NEED_SYSCALL
526
527#include <sys/syscall.h>
528
529/*
530 * define some syscall wrappers for common architectures
531 * this is mostly for nice looks during debugging, not performance.
532 * our syscalls return < 0, not == -1, on error. which is good
533 * enough for linux aio.
534 * TODO: arm is also common nowadays, maybe even mips and x86
535 * TODO: after implementing this, it suddenly looks like overkill, but its hard to remove...
536 */
537#if __GNUC__ && __linux && ECB_AMD64 && !defined __OPTIMIZE_SIZE__
538 /* the costly errno access probably kills this for size optimisation */
539
540 #define ev_syscall(nr,narg,arg1,arg2,arg3,arg4,arg5) \
541 ({ \
542 long res; \
543 register unsigned long r5 __asm__ ("r8" ); \
544 register unsigned long r4 __asm__ ("r10"); \
545 register unsigned long r3 __asm__ ("rdx"); \
546 register unsigned long r2 __asm__ ("rsi"); \
547 register unsigned long r1 __asm__ ("rdi"); \
548 if (narg >= 5) r5 = (unsigned long)(arg5); \
549 if (narg >= 4) r4 = (unsigned long)(arg4); \
550 if (narg >= 3) r3 = (unsigned long)(arg3); \
551 if (narg >= 2) r2 = (unsigned long)(arg2); \
552 if (narg >= 1) r1 = (unsigned long)(arg1); \
553 __asm__ __volatile__ ( \
554 "syscall\n\t" \
555 : "=a" (res) \
556 : "0" (nr), "r" (r1), "r" (r2), "r" (r3), "r" (r4), "r" (r5) \
557 : "cc", "r11", "cx", "memory"); \
558 errno = -res; \
559 res; \
560 })
561
562#endif
563
564#ifdef ev_syscall
565 #define ev_syscall0(nr) ev_syscall (nr, 0, 0, 0, 0, 0, 0
566 #define ev_syscall1(nr,arg1) ev_syscall (nr, 1, arg1, 0, 0, 0, 0)
567 #define ev_syscall2(nr,arg1,arg2) ev_syscall (nr, 2, arg1, arg2, 0, 0, 0)
568 #define ev_syscall3(nr,arg1,arg2,arg3) ev_syscall (nr, 3, arg1, arg2, arg3, 0, 0)
569 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) ev_syscall (nr, 3, arg1, arg2, arg3, arg4, 0)
570 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) ev_syscall (nr, 5, arg1, arg2, arg3, arg4, arg5)
571#else
572 #define ev_syscall0(nr) syscall (nr)
573 #define ev_syscall1(nr,arg1) syscall (nr, arg1)
574 #define ev_syscall2(nr,arg1,arg2) syscall (nr, arg1, arg2)
575 #define ev_syscall3(nr,arg1,arg2,arg3) syscall (nr, arg1, arg2, arg3)
576 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) syscall (nr, arg1, arg2, arg3, arg4)
577 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) syscall (nr, arg1, arg2, arg3, arg4, arg5)
578#endif
579
580#endif
581
582/*****************************************************************************/
318 583
319#if EV_VERIFY >= 3 584#if EV_VERIFY >= 3
320# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 585# define EV_FREQUENT_CHECK ev_verify (EV_A)
321#else 586#else
322# define EV_FREQUENT_CHECK do { } while (0) 587# define EV_FREQUENT_CHECK do { } while (0)
323#endif 588#endif
324 589
325/* 590/*
326 * This is used to avoid floating point rounding problems. 591 * This is used to work around floating point rounding problems.
327 * It is added to ev_rt_now when scheduling periodics
328 * to ensure progress, time-wise, even when rounding
329 * errors are against us.
330 * This value is good at least till the year 4000. 592 * This value is good at least till the year 4000.
331 * Better solutions welcome.
332 */ 593 */
333#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 594#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
595/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
334 596
335#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 597#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
336#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 598#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
337/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
338 599
600#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
601#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
602
603/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
604/* ECB.H BEGIN */
605/*
606 * libecb - http://software.schmorp.de/pkg/libecb
607 *
608 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
609 * Copyright (©) 2011 Emanuele Giaquinta
610 * All rights reserved.
611 *
612 * Redistribution and use in source and binary forms, with or without modifica-
613 * tion, are permitted provided that the following conditions are met:
614 *
615 * 1. Redistributions of source code must retain the above copyright notice,
616 * this list of conditions and the following disclaimer.
617 *
618 * 2. Redistributions in binary form must reproduce the above copyright
619 * notice, this list of conditions and the following disclaimer in the
620 * documentation and/or other materials provided with the distribution.
621 *
622 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
623 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
624 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
625 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
626 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
627 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
628 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
629 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
630 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
631 * OF THE POSSIBILITY OF SUCH DAMAGE.
632 *
633 * Alternatively, the contents of this file may be used under the terms of
634 * the GNU General Public License ("GPL") version 2 or any later version,
635 * in which case the provisions of the GPL are applicable instead of
636 * the above. If you wish to allow the use of your version of this file
637 * only under the terms of the GPL and not to allow others to use your
638 * version of this file under the BSD license, indicate your decision
639 * by deleting the provisions above and replace them with the notice
640 * and other provisions required by the GPL. If you do not delete the
641 * provisions above, a recipient may use your version of this file under
642 * either the BSD or the GPL.
643 */
644
645#ifndef ECB_H
646#define ECB_H
647
648/* 16 bits major, 16 bits minor */
649#define ECB_VERSION 0x00010006
650
651#ifdef _WIN32
652 typedef signed char int8_t;
653 typedef unsigned char uint8_t;
654 typedef signed short int16_t;
655 typedef unsigned short uint16_t;
656 typedef signed int int32_t;
657 typedef unsigned int uint32_t;
339#if __GNUC__ >= 4 658 #if __GNUC__
659 typedef signed long long int64_t;
660 typedef unsigned long long uint64_t;
661 #else /* _MSC_VER || __BORLANDC__ */
662 typedef signed __int64 int64_t;
663 typedef unsigned __int64 uint64_t;
664 #endif
665 #ifdef _WIN64
666 #define ECB_PTRSIZE 8
667 typedef uint64_t uintptr_t;
668 typedef int64_t intptr_t;
669 #else
670 #define ECB_PTRSIZE 4
671 typedef uint32_t uintptr_t;
672 typedef int32_t intptr_t;
673 #endif
674#else
675 #include <inttypes.h>
676 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
677 #define ECB_PTRSIZE 8
678 #else
679 #define ECB_PTRSIZE 4
680 #endif
681#endif
682
683#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
684#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
685
686/* work around x32 idiocy by defining proper macros */
687#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
688 #if _ILP32
689 #define ECB_AMD64_X32 1
690 #else
691 #define ECB_AMD64 1
692 #endif
693#endif
694
695/* many compilers define _GNUC_ to some versions but then only implement
696 * what their idiot authors think are the "more important" extensions,
697 * causing enormous grief in return for some better fake benchmark numbers.
698 * or so.
699 * we try to detect these and simply assume they are not gcc - if they have
700 * an issue with that they should have done it right in the first place.
701 */
702#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
703 #define ECB_GCC_VERSION(major,minor) 0
704#else
705 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
706#endif
707
708#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
709
710#if __clang__ && defined __has_builtin
711 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
712#else
713 #define ECB_CLANG_BUILTIN(x) 0
714#endif
715
716#if __clang__ && defined __has_extension
717 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
718#else
719 #define ECB_CLANG_EXTENSION(x) 0
720#endif
721
722#define ECB_CPP (__cplusplus+0)
723#define ECB_CPP11 (__cplusplus >= 201103L)
724#define ECB_CPP14 (__cplusplus >= 201402L)
725#define ECB_CPP17 (__cplusplus >= 201703L)
726
727#if ECB_CPP
728 #define ECB_C 0
729 #define ECB_STDC_VERSION 0
730#else
731 #define ECB_C 1
732 #define ECB_STDC_VERSION __STDC_VERSION__
733#endif
734
735#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
736#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
737#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
738
739#if ECB_CPP
740 #define ECB_EXTERN_C extern "C"
741 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
742 #define ECB_EXTERN_C_END }
743#else
744 #define ECB_EXTERN_C extern
745 #define ECB_EXTERN_C_BEG
746 #define ECB_EXTERN_C_END
747#endif
748
749/*****************************************************************************/
750
751/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
752/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
753
754#if ECB_NO_THREADS
755 #define ECB_NO_SMP 1
756#endif
757
758#if ECB_NO_SMP
759 #define ECB_MEMORY_FENCE do { } while (0)
760#endif
761
762/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
763#if __xlC__ && ECB_CPP
764 #include <builtins.h>
765#endif
766
767#if 1400 <= _MSC_VER
768 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
769#endif
770
771#ifndef ECB_MEMORY_FENCE
772 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
773 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
774 #if __i386 || __i386__
775 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
776 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
777 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
778 #elif ECB_GCC_AMD64
779 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
780 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
781 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
782 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
783 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
784 #elif defined __ARM_ARCH_2__ \
785 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
786 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
787 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
788 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
789 || defined __ARM_ARCH_5TEJ__
790 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
791 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
792 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
793 || defined __ARM_ARCH_6T2__
794 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
795 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
796 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
797 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
798 #elif __aarch64__
799 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
800 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
801 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
802 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
803 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
804 #elif defined __s390__ || defined __s390x__
805 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
806 #elif defined __mips__
807 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
808 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
809 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
810 #elif defined __alpha__
811 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
812 #elif defined __hppa__
813 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
814 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
815 #elif defined __ia64__
816 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
817 #elif defined __m68k__
818 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
819 #elif defined __m88k__
820 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
821 #elif defined __sh__
822 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
823 #endif
824 #endif
825#endif
826
827#ifndef ECB_MEMORY_FENCE
828 #if ECB_GCC_VERSION(4,7)
829 /* see comment below (stdatomic.h) about the C11 memory model. */
830 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
831 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
832 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
833 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
834
835 #elif ECB_CLANG_EXTENSION(c_atomic)
836 /* see comment below (stdatomic.h) about the C11 memory model. */
837 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
838 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
839 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
840 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
841
842 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
843 #define ECB_MEMORY_FENCE __sync_synchronize ()
844 #elif _MSC_VER >= 1500 /* VC++ 2008 */
845 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
846 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
847 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
848 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
849 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
850 #elif _MSC_VER >= 1400 /* VC++ 2005 */
851 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
852 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
853 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
854 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
855 #elif defined _WIN32
856 #include <WinNT.h>
857 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
858 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
859 #include <mbarrier.h>
860 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
861 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
862 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
863 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
864 #elif __xlC__
865 #define ECB_MEMORY_FENCE __sync ()
866 #endif
867#endif
868
869#ifndef ECB_MEMORY_FENCE
870 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
871 /* we assume that these memory fences work on all variables/all memory accesses, */
872 /* not just C11 atomics and atomic accesses */
873 #include <stdatomic.h>
874 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
875 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
876 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
877 #endif
878#endif
879
880#ifndef ECB_MEMORY_FENCE
881 #if !ECB_AVOID_PTHREADS
882 /*
883 * if you get undefined symbol references to pthread_mutex_lock,
884 * or failure to find pthread.h, then you should implement
885 * the ECB_MEMORY_FENCE operations for your cpu/compiler
886 * OR provide pthread.h and link against the posix thread library
887 * of your system.
888 */
889 #include <pthread.h>
890 #define ECB_NEEDS_PTHREADS 1
891 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
892
893 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
894 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
895 #endif
896#endif
897
898#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
899 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
900#endif
901
902#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
903 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
904#endif
905
906#if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
907 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
908#endif
909
910/*****************************************************************************/
911
912#if ECB_CPP
913 #define ecb_inline static inline
914#elif ECB_GCC_VERSION(2,5)
915 #define ecb_inline static __inline__
916#elif ECB_C99
917 #define ecb_inline static inline
918#else
919 #define ecb_inline static
920#endif
921
922#if ECB_GCC_VERSION(3,3)
923 #define ecb_restrict __restrict__
924#elif ECB_C99
925 #define ecb_restrict restrict
926#else
927 #define ecb_restrict
928#endif
929
930typedef int ecb_bool;
931
932#define ECB_CONCAT_(a, b) a ## b
933#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
934#define ECB_STRINGIFY_(a) # a
935#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
936#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
937
938#define ecb_function_ ecb_inline
939
940#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
941 #define ecb_attribute(attrlist) __attribute__ (attrlist)
942#else
943 #define ecb_attribute(attrlist)
944#endif
945
946#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
947 #define ecb_is_constant(expr) __builtin_constant_p (expr)
948#else
949 /* possible C11 impl for integral types
950 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
951 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
952
953 #define ecb_is_constant(expr) 0
954#endif
955
956#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
340# define expect(expr,value) __builtin_expect ((expr),(value)) 957 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
341# define noinline __attribute__ ((noinline))
342#else 958#else
343# define expect(expr,value) (expr) 959 #define ecb_expect(expr,value) (expr)
344# define noinline
345# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
346# define inline
347# endif 960#endif
348#endif
349 961
962#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
963 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
964#else
965 #define ecb_prefetch(addr,rw,locality)
966#endif
967
968/* no emulation for ecb_decltype */
969#if ECB_CPP11
970 // older implementations might have problems with decltype(x)::type, work around it
971 template<class T> struct ecb_decltype_t { typedef T type; };
972 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
973#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
974 #define ecb_decltype(x) __typeof__ (x)
975#endif
976
977#if _MSC_VER >= 1300
978 #define ecb_deprecated __declspec (deprecated)
979#else
980 #define ecb_deprecated ecb_attribute ((__deprecated__))
981#endif
982
983#if _MSC_VER >= 1500
984 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
985#elif ECB_GCC_VERSION(4,5)
986 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
987#else
988 #define ecb_deprecated_message(msg) ecb_deprecated
989#endif
990
991#if _MSC_VER >= 1400
992 #define ecb_noinline __declspec (noinline)
993#else
994 #define ecb_noinline ecb_attribute ((__noinline__))
995#endif
996
997#define ecb_unused ecb_attribute ((__unused__))
998#define ecb_const ecb_attribute ((__const__))
999#define ecb_pure ecb_attribute ((__pure__))
1000
1001#if ECB_C11 || __IBMC_NORETURN
1002 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
1003 #define ecb_noreturn _Noreturn
1004#elif ECB_CPP11
1005 #define ecb_noreturn [[noreturn]]
1006#elif _MSC_VER >= 1200
1007 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
1008 #define ecb_noreturn __declspec (noreturn)
1009#else
1010 #define ecb_noreturn ecb_attribute ((__noreturn__))
1011#endif
1012
1013#if ECB_GCC_VERSION(4,3)
1014 #define ecb_artificial ecb_attribute ((__artificial__))
1015 #define ecb_hot ecb_attribute ((__hot__))
1016 #define ecb_cold ecb_attribute ((__cold__))
1017#else
1018 #define ecb_artificial
1019 #define ecb_hot
1020 #define ecb_cold
1021#endif
1022
1023/* put around conditional expressions if you are very sure that the */
1024/* expression is mostly true or mostly false. note that these return */
1025/* booleans, not the expression. */
350#define expect_false(expr) expect ((expr) != 0, 0) 1026#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
351#define expect_true(expr) expect ((expr) != 0, 1) 1027#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
1028/* for compatibility to the rest of the world */
1029#define ecb_likely(expr) ecb_expect_true (expr)
1030#define ecb_unlikely(expr) ecb_expect_false (expr)
1031
1032/* count trailing zero bits and count # of one bits */
1033#if ECB_GCC_VERSION(3,4) \
1034 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
1035 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
1036 && ECB_CLANG_BUILTIN(__builtin_popcount))
1037 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
1038 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
1039 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
1040 #define ecb_ctz32(x) __builtin_ctz (x)
1041 #define ecb_ctz64(x) __builtin_ctzll (x)
1042 #define ecb_popcount32(x) __builtin_popcount (x)
1043 /* no popcountll */
1044#else
1045 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
1046 ecb_function_ ecb_const int
1047 ecb_ctz32 (uint32_t x)
1048 {
1049#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1050 unsigned long r;
1051 _BitScanForward (&r, x);
1052 return (int)r;
1053#else
1054 int r = 0;
1055
1056 x &= ~x + 1; /* this isolates the lowest bit */
1057
1058#if ECB_branchless_on_i386
1059 r += !!(x & 0xaaaaaaaa) << 0;
1060 r += !!(x & 0xcccccccc) << 1;
1061 r += !!(x & 0xf0f0f0f0) << 2;
1062 r += !!(x & 0xff00ff00) << 3;
1063 r += !!(x & 0xffff0000) << 4;
1064#else
1065 if (x & 0xaaaaaaaa) r += 1;
1066 if (x & 0xcccccccc) r += 2;
1067 if (x & 0xf0f0f0f0) r += 4;
1068 if (x & 0xff00ff00) r += 8;
1069 if (x & 0xffff0000) r += 16;
1070#endif
1071
1072 return r;
1073#endif
1074 }
1075
1076 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
1077 ecb_function_ ecb_const int
1078 ecb_ctz64 (uint64_t x)
1079 {
1080#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1081 unsigned long r;
1082 _BitScanForward64 (&r, x);
1083 return (int)r;
1084#else
1085 int shift = x & 0xffffffff ? 0 : 32;
1086 return ecb_ctz32 (x >> shift) + shift;
1087#endif
1088 }
1089
1090 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1091 ecb_function_ ecb_const int
1092 ecb_popcount32 (uint32_t x)
1093 {
1094 x -= (x >> 1) & 0x55555555;
1095 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1096 x = ((x >> 4) + x) & 0x0f0f0f0f;
1097 x *= 0x01010101;
1098
1099 return x >> 24;
1100 }
1101
1102 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1103 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1104 {
1105#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1106 unsigned long r;
1107 _BitScanReverse (&r, x);
1108 return (int)r;
1109#else
1110 int r = 0;
1111
1112 if (x >> 16) { x >>= 16; r += 16; }
1113 if (x >> 8) { x >>= 8; r += 8; }
1114 if (x >> 4) { x >>= 4; r += 4; }
1115 if (x >> 2) { x >>= 2; r += 2; }
1116 if (x >> 1) { r += 1; }
1117
1118 return r;
1119#endif
1120 }
1121
1122 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1123 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1124 {
1125#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1126 unsigned long r;
1127 _BitScanReverse64 (&r, x);
1128 return (int)r;
1129#else
1130 int r = 0;
1131
1132 if (x >> 32) { x >>= 32; r += 32; }
1133
1134 return r + ecb_ld32 (x);
1135#endif
1136 }
1137#endif
1138
1139ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1140ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1141ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1142ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1143
1144ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1145ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1146{
1147 return ( (x * 0x0802U & 0x22110U)
1148 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1149}
1150
1151ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1152ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1153{
1154 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1155 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1156 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1157 x = ( x >> 8 ) | ( x << 8);
1158
1159 return x;
1160}
1161
1162ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1163ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1164{
1165 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1166 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1167 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1168 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1169 x = ( x >> 16 ) | ( x << 16);
1170
1171 return x;
1172}
1173
1174/* popcount64 is only available on 64 bit cpus as gcc builtin */
1175/* so for this version we are lazy */
1176ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1177ecb_function_ ecb_const int
1178ecb_popcount64 (uint64_t x)
1179{
1180 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1181}
1182
1183ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1184ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1185ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1186ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1187ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1188ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1189ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1190ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1191
1192ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1193ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1194ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1195ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1196ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1197ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1198ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1199ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1200
1201#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1202 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1203 #define ecb_bswap16(x) __builtin_bswap16 (x)
1204 #else
1205 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1206 #endif
1207 #define ecb_bswap32(x) __builtin_bswap32 (x)
1208 #define ecb_bswap64(x) __builtin_bswap64 (x)
1209#elif _MSC_VER
1210 #include <stdlib.h>
1211 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1212 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1213 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1214#else
1215 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1216 ecb_function_ ecb_const uint16_t
1217 ecb_bswap16 (uint16_t x)
1218 {
1219 return ecb_rotl16 (x, 8);
1220 }
1221
1222 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1223 ecb_function_ ecb_const uint32_t
1224 ecb_bswap32 (uint32_t x)
1225 {
1226 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1227 }
1228
1229 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1230 ecb_function_ ecb_const uint64_t
1231 ecb_bswap64 (uint64_t x)
1232 {
1233 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1234 }
1235#endif
1236
1237#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1238 #define ecb_unreachable() __builtin_unreachable ()
1239#else
1240 /* this seems to work fine, but gcc always emits a warning for it :/ */
1241 ecb_inline ecb_noreturn void ecb_unreachable (void);
1242 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1243#endif
1244
1245/* try to tell the compiler that some condition is definitely true */
1246#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1247
1248ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1249ecb_inline ecb_const uint32_t
1250ecb_byteorder_helper (void)
1251{
1252 /* the union code still generates code under pressure in gcc, */
1253 /* but less than using pointers, and always seems to */
1254 /* successfully return a constant. */
1255 /* the reason why we have this horrible preprocessor mess */
1256 /* is to avoid it in all cases, at least on common architectures */
1257 /* or when using a recent enough gcc version (>= 4.6) */
1258#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1259 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1260 #define ECB_LITTLE_ENDIAN 1
1261 return 0x44332211;
1262#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1263 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1264 #define ECB_BIG_ENDIAN 1
1265 return 0x11223344;
1266#else
1267 union
1268 {
1269 uint8_t c[4];
1270 uint32_t u;
1271 } u = { 0x11, 0x22, 0x33, 0x44 };
1272 return u.u;
1273#endif
1274}
1275
1276ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1277ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1278ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1279ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1280
1281#if ECB_GCC_VERSION(3,0) || ECB_C99
1282 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1283#else
1284 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1285#endif
1286
1287#if ECB_CPP
1288 template<typename T>
1289 static inline T ecb_div_rd (T val, T div)
1290 {
1291 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1292 }
1293 template<typename T>
1294 static inline T ecb_div_ru (T val, T div)
1295 {
1296 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1297 }
1298#else
1299 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1300 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1301#endif
1302
1303#if ecb_cplusplus_does_not_suck
1304 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1305 template<typename T, int N>
1306 static inline int ecb_array_length (const T (&arr)[N])
1307 {
1308 return N;
1309 }
1310#else
1311 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1312#endif
1313
1314ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1315ecb_function_ ecb_const uint32_t
1316ecb_binary16_to_binary32 (uint32_t x)
1317{
1318 unsigned int s = (x & 0x8000) << (31 - 15);
1319 int e = (x >> 10) & 0x001f;
1320 unsigned int m = x & 0x03ff;
1321
1322 if (ecb_expect_false (e == 31))
1323 /* infinity or NaN */
1324 e = 255 - (127 - 15);
1325 else if (ecb_expect_false (!e))
1326 {
1327 if (ecb_expect_true (!m))
1328 /* zero, handled by code below by forcing e to 0 */
1329 e = 0 - (127 - 15);
1330 else
1331 {
1332 /* subnormal, renormalise */
1333 unsigned int s = 10 - ecb_ld32 (m);
1334
1335 m = (m << s) & 0x3ff; /* mask implicit bit */
1336 e -= s - 1;
1337 }
1338 }
1339
1340 /* e and m now are normalised, or zero, (or inf or nan) */
1341 e += 127 - 15;
1342
1343 return s | (e << 23) | (m << (23 - 10));
1344}
1345
1346ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1347ecb_function_ ecb_const uint16_t
1348ecb_binary32_to_binary16 (uint32_t x)
1349{
1350 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1351 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1352 unsigned int m = x & 0x007fffff;
1353
1354 x &= 0x7fffffff;
1355
1356 /* if it's within range of binary16 normals, use fast path */
1357 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1358 {
1359 /* mantissa round-to-even */
1360 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1361
1362 /* handle overflow */
1363 if (ecb_expect_false (m >= 0x00800000))
1364 {
1365 m >>= 1;
1366 e += 1;
1367 }
1368
1369 return s | (e << 10) | (m >> (23 - 10));
1370 }
1371
1372 /* handle large numbers and infinity */
1373 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1374 return s | 0x7c00;
1375
1376 /* handle zero, subnormals and small numbers */
1377 if (ecb_expect_true (x < 0x38800000))
1378 {
1379 /* zero */
1380 if (ecb_expect_true (!x))
1381 return s;
1382
1383 /* handle subnormals */
1384
1385 /* too small, will be zero */
1386 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1387 return s;
1388
1389 m |= 0x00800000; /* make implicit bit explicit */
1390
1391 /* very tricky - we need to round to the nearest e (+10) bit value */
1392 {
1393 unsigned int bits = 14 - e;
1394 unsigned int half = (1 << (bits - 1)) - 1;
1395 unsigned int even = (m >> bits) & 1;
1396
1397 /* if this overflows, we will end up with a normalised number */
1398 m = (m + half + even) >> bits;
1399 }
1400
1401 return s | m;
1402 }
1403
1404 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1405 m >>= 13;
1406
1407 return s | 0x7c00 | m | !m;
1408}
1409
1410/*******************************************************************************/
1411/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1412
1413/* basically, everything uses "ieee pure-endian" floating point numbers */
1414/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1415#if 0 \
1416 || __i386 || __i386__ \
1417 || ECB_GCC_AMD64 \
1418 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1419 || defined __s390__ || defined __s390x__ \
1420 || defined __mips__ \
1421 || defined __alpha__ \
1422 || defined __hppa__ \
1423 || defined __ia64__ \
1424 || defined __m68k__ \
1425 || defined __m88k__ \
1426 || defined __sh__ \
1427 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1428 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1429 || defined __aarch64__
1430 #define ECB_STDFP 1
1431 #include <string.h> /* for memcpy */
1432#else
1433 #define ECB_STDFP 0
1434#endif
1435
1436#ifndef ECB_NO_LIBM
1437
1438 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1439
1440 /* only the oldest of old doesn't have this one. solaris. */
1441 #ifdef INFINITY
1442 #define ECB_INFINITY INFINITY
1443 #else
1444 #define ECB_INFINITY HUGE_VAL
1445 #endif
1446
1447 #ifdef NAN
1448 #define ECB_NAN NAN
1449 #else
1450 #define ECB_NAN ECB_INFINITY
1451 #endif
1452
1453 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1454 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1455 #define ecb_frexpf(x,e) frexpf ((x), (e))
1456 #else
1457 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1458 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1459 #endif
1460
1461 /* convert a float to ieee single/binary32 */
1462 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1463 ecb_function_ ecb_const uint32_t
1464 ecb_float_to_binary32 (float x)
1465 {
1466 uint32_t r;
1467
1468 #if ECB_STDFP
1469 memcpy (&r, &x, 4);
1470 #else
1471 /* slow emulation, works for anything but -0 */
1472 uint32_t m;
1473 int e;
1474
1475 if (x == 0e0f ) return 0x00000000U;
1476 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1477 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1478 if (x != x ) return 0x7fbfffffU;
1479
1480 m = ecb_frexpf (x, &e) * 0x1000000U;
1481
1482 r = m & 0x80000000U;
1483
1484 if (r)
1485 m = -m;
1486
1487 if (e <= -126)
1488 {
1489 m &= 0xffffffU;
1490 m >>= (-125 - e);
1491 e = -126;
1492 }
1493
1494 r |= (e + 126) << 23;
1495 r |= m & 0x7fffffU;
1496 #endif
1497
1498 return r;
1499 }
1500
1501 /* converts an ieee single/binary32 to a float */
1502 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1503 ecb_function_ ecb_const float
1504 ecb_binary32_to_float (uint32_t x)
1505 {
1506 float r;
1507
1508 #if ECB_STDFP
1509 memcpy (&r, &x, 4);
1510 #else
1511 /* emulation, only works for normals and subnormals and +0 */
1512 int neg = x >> 31;
1513 int e = (x >> 23) & 0xffU;
1514
1515 x &= 0x7fffffU;
1516
1517 if (e)
1518 x |= 0x800000U;
1519 else
1520 e = 1;
1521
1522 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1523 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1524
1525 r = neg ? -r : r;
1526 #endif
1527
1528 return r;
1529 }
1530
1531 /* convert a double to ieee double/binary64 */
1532 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1533 ecb_function_ ecb_const uint64_t
1534 ecb_double_to_binary64 (double x)
1535 {
1536 uint64_t r;
1537
1538 #if ECB_STDFP
1539 memcpy (&r, &x, 8);
1540 #else
1541 /* slow emulation, works for anything but -0 */
1542 uint64_t m;
1543 int e;
1544
1545 if (x == 0e0 ) return 0x0000000000000000U;
1546 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1547 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1548 if (x != x ) return 0X7ff7ffffffffffffU;
1549
1550 m = frexp (x, &e) * 0x20000000000000U;
1551
1552 r = m & 0x8000000000000000;;
1553
1554 if (r)
1555 m = -m;
1556
1557 if (e <= -1022)
1558 {
1559 m &= 0x1fffffffffffffU;
1560 m >>= (-1021 - e);
1561 e = -1022;
1562 }
1563
1564 r |= ((uint64_t)(e + 1022)) << 52;
1565 r |= m & 0xfffffffffffffU;
1566 #endif
1567
1568 return r;
1569 }
1570
1571 /* converts an ieee double/binary64 to a double */
1572 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1573 ecb_function_ ecb_const double
1574 ecb_binary64_to_double (uint64_t x)
1575 {
1576 double r;
1577
1578 #if ECB_STDFP
1579 memcpy (&r, &x, 8);
1580 #else
1581 /* emulation, only works for normals and subnormals and +0 */
1582 int neg = x >> 63;
1583 int e = (x >> 52) & 0x7ffU;
1584
1585 x &= 0xfffffffffffffU;
1586
1587 if (e)
1588 x |= 0x10000000000000U;
1589 else
1590 e = 1;
1591
1592 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1593 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1594
1595 r = neg ? -r : r;
1596 #endif
1597
1598 return r;
1599 }
1600
1601 /* convert a float to ieee half/binary16 */
1602 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1603 ecb_function_ ecb_const uint16_t
1604 ecb_float_to_binary16 (float x)
1605 {
1606 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1607 }
1608
1609 /* convert an ieee half/binary16 to float */
1610 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1611 ecb_function_ ecb_const float
1612 ecb_binary16_to_float (uint16_t x)
1613 {
1614 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1615 }
1616
1617#endif
1618
1619#endif
1620
1621/* ECB.H END */
1622
1623#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1624/* if your architecture doesn't need memory fences, e.g. because it is
1625 * single-cpu/core, or if you use libev in a project that doesn't use libev
1626 * from multiple threads, then you can define ECB_NO_THREADS when compiling
1627 * libev, in which cases the memory fences become nops.
1628 * alternatively, you can remove this #error and link against libpthread,
1629 * which will then provide the memory fences.
1630 */
1631# error "memory fences not defined for your architecture, please report"
1632#endif
1633
1634#ifndef ECB_MEMORY_FENCE
1635# define ECB_MEMORY_FENCE do { } while (0)
1636# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1637# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1638#endif
1639
352#define inline_size static inline 1640#define inline_size ecb_inline
353 1641
354#if EV_MINIMAL 1642#if EV_FEATURE_CODE
355# define inline_speed static noinline
356#else
357# define inline_speed static inline 1643# define inline_speed ecb_inline
1644#else
1645# define inline_speed ecb_noinline static
358#endif 1646#endif
359 1647
360#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1648#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1649
1650#if EV_MINPRI == EV_MAXPRI
1651# define ABSPRI(w) (((W)w), 0)
1652#else
361#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1653# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1654#endif
362 1655
363#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1656#define EMPTY /* required for microsofts broken pseudo-c compiler */
364#define EMPTY2(a,b) /* used to suppress some warnings */
365 1657
366typedef ev_watcher *W; 1658typedef ev_watcher *W;
367typedef ev_watcher_list *WL; 1659typedef ev_watcher_list *WL;
368typedef ev_watcher_time *WT; 1660typedef ev_watcher_time *WT;
369 1661
370#define ev_active(w) ((W)(w))->active 1662#define ev_active(w) ((W)(w))->active
371#define ev_at(w) ((WT)(w))->at 1663#define ev_at(w) ((WT)(w))->at
372 1664
1665#if EV_USE_REALTIME
1666/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1667/* giving it a reasonably high chance of working on typical architectures */
1668static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1669#endif
1670
373#if EV_USE_MONOTONIC 1671#if EV_USE_MONOTONIC
374/* sig_atomic_t is used to avoid per-thread variables or locking but still */
375/* giving it a reasonably high chance of working on typical architetcures */
376static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1672static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1673#endif
1674
1675#ifndef EV_FD_TO_WIN32_HANDLE
1676# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1677#endif
1678#ifndef EV_WIN32_HANDLE_TO_FD
1679# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1680#endif
1681#ifndef EV_WIN32_CLOSE_FD
1682# define EV_WIN32_CLOSE_FD(fd) close (fd)
377#endif 1683#endif
378 1684
379#ifdef _WIN32 1685#ifdef _WIN32
380# include "ev_win32.c" 1686# include "ev_win32.c"
381#endif 1687#endif
382 1688
383/*****************************************************************************/ 1689/*****************************************************************************/
384 1690
1691#if EV_USE_LINUXAIO
1692# include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1693#endif
1694
1695/* define a suitable floor function (only used by periodics atm) */
1696
1697#if EV_USE_FLOOR
1698# include <math.h>
1699# define ev_floor(v) floor (v)
1700#else
1701
1702#include <float.h>
1703
1704/* a floor() replacement function, should be independent of ev_tstamp type */
1705ecb_noinline
1706static ev_tstamp
1707ev_floor (ev_tstamp v)
1708{
1709 /* the choice of shift factor is not terribly important */
1710#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1711 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1712#else
1713 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1714#endif
1715
1716 /* argument too large for an unsigned long? */
1717 if (ecb_expect_false (v >= shift))
1718 {
1719 ev_tstamp f;
1720
1721 if (v == v - 1.)
1722 return v; /* very large number */
1723
1724 f = shift * ev_floor (v * (1. / shift));
1725 return f + ev_floor (v - f);
1726 }
1727
1728 /* special treatment for negative args? */
1729 if (ecb_expect_false (v < 0.))
1730 {
1731 ev_tstamp f = -ev_floor (-v);
1732
1733 return f - (f == v ? 0 : 1);
1734 }
1735
1736 /* fits into an unsigned long */
1737 return (unsigned long)v;
1738}
1739
1740#endif
1741
1742/*****************************************************************************/
1743
1744#ifdef __linux
1745# include <sys/utsname.h>
1746#endif
1747
1748ecb_noinline ecb_cold
1749static unsigned int
1750ev_linux_version (void)
1751{
1752#ifdef __linux
1753 unsigned int v = 0;
1754 struct utsname buf;
1755 int i;
1756 char *p = buf.release;
1757
1758 if (uname (&buf))
1759 return 0;
1760
1761 for (i = 3+1; --i; )
1762 {
1763 unsigned int c = 0;
1764
1765 for (;;)
1766 {
1767 if (*p >= '0' && *p <= '9')
1768 c = c * 10 + *p++ - '0';
1769 else
1770 {
1771 p += *p == '.';
1772 break;
1773 }
1774 }
1775
1776 v = (v << 8) | c;
1777 }
1778
1779 return v;
1780#else
1781 return 0;
1782#endif
1783}
1784
1785/*****************************************************************************/
1786
1787#if EV_AVOID_STDIO
1788ecb_noinline ecb_cold
1789static void
1790ev_printerr (const char *msg)
1791{
1792 write (STDERR_FILENO, msg, strlen (msg));
1793}
1794#endif
1795
385static void (*syserr_cb)(const char *msg); 1796static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
386 1797
1798ecb_cold
387void 1799void
388ev_set_syserr_cb (void (*cb)(const char *msg)) 1800ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
389{ 1801{
390 syserr_cb = cb; 1802 syserr_cb = cb;
391} 1803}
392 1804
393static void noinline 1805ecb_noinline ecb_cold
1806static void
394ev_syserr (const char *msg) 1807ev_syserr (const char *msg)
395{ 1808{
396 if (!msg) 1809 if (!msg)
397 msg = "(libev) system error"; 1810 msg = "(libev) system error";
398 1811
399 if (syserr_cb) 1812 if (syserr_cb)
400 syserr_cb (msg); 1813 syserr_cb (msg);
401 else 1814 else
402 { 1815 {
1816#if EV_AVOID_STDIO
1817 ev_printerr (msg);
1818 ev_printerr (": ");
1819 ev_printerr (strerror (errno));
1820 ev_printerr ("\n");
1821#else
403 perror (msg); 1822 perror (msg);
1823#endif
404 abort (); 1824 abort ();
405 } 1825 }
406} 1826}
407 1827
408static void * 1828static void *
409ev_realloc_emul (void *ptr, long size) 1829ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
410{ 1830{
411 /* some systems, notably openbsd and darwin, fail to properly 1831 /* some systems, notably openbsd and darwin, fail to properly
412 * implement realloc (x, 0) (as required by both ansi c-98 and 1832 * implement realloc (x, 0) (as required by both ansi c-89 and
413 * the single unix specification, so work around them here. 1833 * the single unix specification, so work around them here.
1834 * recently, also (at least) fedora and debian started breaking it,
1835 * despite documenting it otherwise.
414 */ 1836 */
415 1837
416 if (size) 1838 if (size)
417 return realloc (ptr, size); 1839 return realloc (ptr, size);
418 1840
419 free (ptr); 1841 free (ptr);
420 return 0; 1842 return 0;
421} 1843}
422 1844
423static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1845static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
424 1846
1847ecb_cold
425void 1848void
426ev_set_allocator (void *(*cb)(void *ptr, long size)) 1849ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
427{ 1850{
428 alloc = cb; 1851 alloc = cb;
429} 1852}
430 1853
431inline_speed void * 1854inline_speed void *
433{ 1856{
434 ptr = alloc (ptr, size); 1857 ptr = alloc (ptr, size);
435 1858
436 if (!ptr && size) 1859 if (!ptr && size)
437 { 1860 {
1861#if EV_AVOID_STDIO
1862 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1863#else
438 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1864 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1865#endif
439 abort (); 1866 abort ();
440 } 1867 }
441 1868
442 return ptr; 1869 return ptr;
443} 1870}
445#define ev_malloc(size) ev_realloc (0, (size)) 1872#define ev_malloc(size) ev_realloc (0, (size))
446#define ev_free(ptr) ev_realloc ((ptr), 0) 1873#define ev_free(ptr) ev_realloc ((ptr), 0)
447 1874
448/*****************************************************************************/ 1875/*****************************************************************************/
449 1876
1877/* set in reify when reification needed */
1878#define EV_ANFD_REIFY 1
1879
1880/* file descriptor info structure */
450typedef struct 1881typedef struct
451{ 1882{
452 WL head; 1883 WL head;
453 unsigned char events; 1884 unsigned char events; /* the events watched for */
454 unsigned char reify; 1885 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
455 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 1886 unsigned char emask; /* some backends store the actual kernel mask in here */
456 unsigned char unused; 1887 unsigned char unused;
457#if EV_USE_EPOLL 1888#if EV_USE_EPOLL
458 unsigned int egen; /* generation counter to counter epoll bugs */ 1889 unsigned int egen; /* generation counter to counter epoll bugs */
459#endif 1890#endif
460#if EV_SELECT_IS_WINSOCKET 1891#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
461 SOCKET handle; 1892 SOCKET handle;
462#endif 1893#endif
1894#if EV_USE_IOCP
1895 OVERLAPPED or, ow;
1896#endif
463} ANFD; 1897} ANFD;
464 1898
1899/* stores the pending event set for a given watcher */
465typedef struct 1900typedef struct
466{ 1901{
467 W w; 1902 W w;
468 int events; 1903 int events; /* the pending event set for the given watcher */
469} ANPENDING; 1904} ANPENDING;
470 1905
471#if EV_USE_INOTIFY 1906#if EV_USE_INOTIFY
472/* hash table entry per inotify-id */ 1907/* hash table entry per inotify-id */
473typedef struct 1908typedef struct
476} ANFS; 1911} ANFS;
477#endif 1912#endif
478 1913
479/* Heap Entry */ 1914/* Heap Entry */
480#if EV_HEAP_CACHE_AT 1915#if EV_HEAP_CACHE_AT
1916 /* a heap element */
481 typedef struct { 1917 typedef struct {
482 ev_tstamp at; 1918 ev_tstamp at;
483 WT w; 1919 WT w;
484 } ANHE; 1920 } ANHE;
485 1921
486 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1922 #define ANHE_w(he) (he).w /* access watcher, read-write */
487 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1923 #define ANHE_at(he) (he).at /* access cached at, read-only */
488 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 1924 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
489#else 1925#else
1926 /* a heap element */
490 typedef WT ANHE; 1927 typedef WT ANHE;
491 1928
492 #define ANHE_w(he) (he) 1929 #define ANHE_w(he) (he)
493 #define ANHE_at(he) (he)->at 1930 #define ANHE_at(he) (he)->at
494 #define ANHE_at_cache(he) 1931 #define ANHE_at_cache(he)
505 #undef VAR 1942 #undef VAR
506 }; 1943 };
507 #include "ev_wrap.h" 1944 #include "ev_wrap.h"
508 1945
509 static struct ev_loop default_loop_struct; 1946 static struct ev_loop default_loop_struct;
510 struct ev_loop *ev_default_loop_ptr; 1947 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
511 1948
512#else 1949#else
513 1950
514 ev_tstamp ev_rt_now; 1951 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
515 #define VAR(name,decl) static decl; 1952 #define VAR(name,decl) static decl;
516 #include "ev_vars.h" 1953 #include "ev_vars.h"
517 #undef VAR 1954 #undef VAR
518 1955
519 static int ev_default_loop_ptr; 1956 static int ev_default_loop_ptr;
520 1957
521#endif 1958#endif
522 1959
1960#if EV_FEATURE_API
1961# define EV_RELEASE_CB if (ecb_expect_false (release_cb)) release_cb (EV_A)
1962# define EV_ACQUIRE_CB if (ecb_expect_false (acquire_cb)) acquire_cb (EV_A)
1963# define EV_INVOKE_PENDING invoke_cb (EV_A)
1964#else
1965# define EV_RELEASE_CB (void)0
1966# define EV_ACQUIRE_CB (void)0
1967# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1968#endif
1969
1970#define EVBREAK_RECURSE 0x80
1971
523/*****************************************************************************/ 1972/*****************************************************************************/
524 1973
1974#ifndef EV_HAVE_EV_TIME
525ev_tstamp 1975ev_tstamp
526ev_time (void) 1976ev_time (void) EV_NOEXCEPT
527{ 1977{
528#if EV_USE_REALTIME 1978#if EV_USE_REALTIME
1979 if (ecb_expect_true (have_realtime))
1980 {
529 struct timespec ts; 1981 struct timespec ts;
530 clock_gettime (CLOCK_REALTIME, &ts); 1982 clock_gettime (CLOCK_REALTIME, &ts);
531 return ts.tv_sec + ts.tv_nsec * 1e-9; 1983 return ts.tv_sec + ts.tv_nsec * 1e-9;
532#else 1984 }
1985#endif
1986
533 struct timeval tv; 1987 struct timeval tv;
534 gettimeofday (&tv, 0); 1988 gettimeofday (&tv, 0);
535 return tv.tv_sec + tv.tv_usec * 1e-6; 1989 return tv.tv_sec + tv.tv_usec * 1e-6;
536#endif
537} 1990}
1991#endif
538 1992
539ev_tstamp inline_size 1993inline_size ev_tstamp
540get_clock (void) 1994get_clock (void)
541{ 1995{
542#if EV_USE_MONOTONIC 1996#if EV_USE_MONOTONIC
543 if (expect_true (have_monotonic)) 1997 if (ecb_expect_true (have_monotonic))
544 { 1998 {
545 struct timespec ts; 1999 struct timespec ts;
546 clock_gettime (CLOCK_MONOTONIC, &ts); 2000 clock_gettime (CLOCK_MONOTONIC, &ts);
547 return ts.tv_sec + ts.tv_nsec * 1e-9; 2001 return ts.tv_sec + ts.tv_nsec * 1e-9;
548 } 2002 }
551 return ev_time (); 2005 return ev_time ();
552} 2006}
553 2007
554#if EV_MULTIPLICITY 2008#if EV_MULTIPLICITY
555ev_tstamp 2009ev_tstamp
556ev_now (EV_P) 2010ev_now (EV_P) EV_NOEXCEPT
557{ 2011{
558 return ev_rt_now; 2012 return ev_rt_now;
559} 2013}
560#endif 2014#endif
561 2015
562void 2016void
563ev_sleep (ev_tstamp delay) 2017ev_sleep (ev_tstamp delay) EV_NOEXCEPT
564{ 2018{
565 if (delay > 0.) 2019 if (delay > 0.)
566 { 2020 {
567#if EV_USE_NANOSLEEP 2021#if EV_USE_NANOSLEEP
568 struct timespec ts; 2022 struct timespec ts;
569 2023
570 ts.tv_sec = (time_t)delay; 2024 EV_TS_SET (ts, delay);
571 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
572
573 nanosleep (&ts, 0); 2025 nanosleep (&ts, 0);
574#elif defined(_WIN32) 2026#elif defined _WIN32
2027 /* maybe this should round up, as ms is very low resolution */
2028 /* compared to select (µs) or nanosleep (ns) */
575 Sleep ((unsigned long)(delay * 1e3)); 2029 Sleep ((unsigned long)(delay * 1e3));
576#else 2030#else
577 struct timeval tv; 2031 struct timeval tv;
578 2032
579 tv.tv_sec = (time_t)delay;
580 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
581
582 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 2033 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
583 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 2034 /* something not guaranteed by newer posix versions, but guaranteed */
584 /* by older ones */ 2035 /* by older ones */
2036 EV_TV_SET (tv, delay);
585 select (0, 0, 0, 0, &tv); 2037 select (0, 0, 0, 0, &tv);
586#endif 2038#endif
587 } 2039 }
588} 2040}
589 2041
590/*****************************************************************************/ 2042/*****************************************************************************/
591 2043
592#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 2044#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
593 2045
594int inline_size 2046/* find a suitable new size for the given array, */
2047/* hopefully by rounding to a nice-to-malloc size */
2048inline_size int
595array_nextsize (int elem, int cur, int cnt) 2049array_nextsize (int elem, int cur, int cnt)
596{ 2050{
597 int ncur = cur + 1; 2051 int ncur = cur + 1;
598 2052
599 do 2053 do
600 ncur <<= 1; 2054 ncur <<= 1;
601 while (cnt > ncur); 2055 while (cnt > ncur);
602 2056
603 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 2057 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
604 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 2058 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
605 { 2059 {
606 ncur *= elem; 2060 ncur *= elem;
607 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 2061 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
608 ncur = ncur - sizeof (void *) * 4; 2062 ncur = ncur - sizeof (void *) * 4;
610 } 2064 }
611 2065
612 return ncur; 2066 return ncur;
613} 2067}
614 2068
615static noinline void * 2069ecb_noinline ecb_cold
2070static void *
616array_realloc (int elem, void *base, int *cur, int cnt) 2071array_realloc (int elem, void *base, int *cur, int cnt)
617{ 2072{
618 *cur = array_nextsize (elem, *cur, cnt); 2073 *cur = array_nextsize (elem, *cur, cnt);
619 return ev_realloc (base, elem * *cur); 2074 return ev_realloc (base, elem * *cur);
620} 2075}
621 2076
2077#define array_needsize_noinit(base,offset,count)
2078
622#define array_init_zero(base,count) \ 2079#define array_needsize_zerofill(base,offset,count) \
623 memset ((void *)(base), 0, sizeof (*(base)) * (count)) 2080 memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
624 2081
625#define array_needsize(type,base,cur,cnt,init) \ 2082#define array_needsize(type,base,cur,cnt,init) \
626 if (expect_false ((cnt) > (cur))) \ 2083 if (ecb_expect_false ((cnt) > (cur))) \
627 { \ 2084 { \
628 int ocur_ = (cur); \ 2085 ecb_unused int ocur_ = (cur); \
629 (base) = (type *)array_realloc \ 2086 (base) = (type *)array_realloc \
630 (sizeof (type), (base), &(cur), (cnt)); \ 2087 (sizeof (type), (base), &(cur), (cnt)); \
631 init ((base) + (ocur_), (cur) - ocur_); \ 2088 init ((base), ocur_, ((cur) - ocur_)); \
632 } 2089 }
633 2090
634#if 0 2091#if 0
635#define array_slim(type,stem) \ 2092#define array_slim(type,stem) \
636 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 2093 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
640 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 2097 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
641 } 2098 }
642#endif 2099#endif
643 2100
644#define array_free(stem, idx) \ 2101#define array_free(stem, idx) \
645 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 2102 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
646 2103
647/*****************************************************************************/ 2104/*****************************************************************************/
648 2105
649void noinline 2106/* dummy callback for pending events */
2107ecb_noinline
2108static void
2109pendingcb (EV_P_ ev_prepare *w, int revents)
2110{
2111}
2112
2113ecb_noinline
2114void
650ev_feed_event (EV_P_ void *w, int revents) 2115ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
651{ 2116{
652 W w_ = (W)w; 2117 W w_ = (W)w;
653 int pri = ABSPRI (w_); 2118 int pri = ABSPRI (w_);
654 2119
655 if (expect_false (w_->pending)) 2120 if (ecb_expect_false (w_->pending))
656 pendings [pri][w_->pending - 1].events |= revents; 2121 pendings [pri][w_->pending - 1].events |= revents;
657 else 2122 else
658 { 2123 {
659 w_->pending = ++pendingcnt [pri]; 2124 w_->pending = ++pendingcnt [pri];
660 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 2125 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
661 pendings [pri][w_->pending - 1].w = w_; 2126 pendings [pri][w_->pending - 1].w = w_;
662 pendings [pri][w_->pending - 1].events = revents; 2127 pendings [pri][w_->pending - 1].events = revents;
663 } 2128 }
664}
665 2129
666void inline_speed 2130 pendingpri = NUMPRI - 1;
2131}
2132
2133inline_speed void
2134feed_reverse (EV_P_ W w)
2135{
2136 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2137 rfeeds [rfeedcnt++] = w;
2138}
2139
2140inline_size void
2141feed_reverse_done (EV_P_ int revents)
2142{
2143 do
2144 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2145 while (rfeedcnt);
2146}
2147
2148inline_speed void
667queue_events (EV_P_ W *events, int eventcnt, int type) 2149queue_events (EV_P_ W *events, int eventcnt, int type)
668{ 2150{
669 int i; 2151 int i;
670 2152
671 for (i = 0; i < eventcnt; ++i) 2153 for (i = 0; i < eventcnt; ++i)
672 ev_feed_event (EV_A_ events [i], type); 2154 ev_feed_event (EV_A_ events [i], type);
673} 2155}
674 2156
675/*****************************************************************************/ 2157/*****************************************************************************/
676 2158
677void inline_speed 2159inline_speed void
678fd_event (EV_P_ int fd, int revents) 2160fd_event_nocheck (EV_P_ int fd, int revents)
679{ 2161{
680 ANFD *anfd = anfds + fd; 2162 ANFD *anfd = anfds + fd;
681 ev_io *w; 2163 ev_io *w;
682 2164
683 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2165 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
687 if (ev) 2169 if (ev)
688 ev_feed_event (EV_A_ (W)w, ev); 2170 ev_feed_event (EV_A_ (W)w, ev);
689 } 2171 }
690} 2172}
691 2173
692void 2174/* do not submit kernel events for fds that have reify set */
2175/* because that means they changed while we were polling for new events */
2176inline_speed void
693ev_feed_fd_event (EV_P_ int fd, int revents) 2177fd_event (EV_P_ int fd, int revents)
2178{
2179 ANFD *anfd = anfds + fd;
2180
2181 if (ecb_expect_true (!anfd->reify))
2182 fd_event_nocheck (EV_A_ fd, revents);
2183}
2184
2185void
2186ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
694{ 2187{
695 if (fd >= 0 && fd < anfdmax) 2188 if (fd >= 0 && fd < anfdmax)
696 fd_event (EV_A_ fd, revents); 2189 fd_event_nocheck (EV_A_ fd, revents);
697} 2190}
698 2191
699void inline_size 2192/* make sure the external fd watch events are in-sync */
2193/* with the kernel/libev internal state */
2194inline_size void
700fd_reify (EV_P) 2195fd_reify (EV_P)
701{ 2196{
702 int i; 2197 int i;
2198
2199#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2200 for (i = 0; i < fdchangecnt; ++i)
2201 {
2202 int fd = fdchanges [i];
2203 ANFD *anfd = anfds + fd;
2204
2205 if (anfd->reify & EV__IOFDSET && anfd->head)
2206 {
2207 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2208
2209 if (handle != anfd->handle)
2210 {
2211 unsigned long arg;
2212
2213 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2214
2215 /* handle changed, but fd didn't - we need to do it in two steps */
2216 backend_modify (EV_A_ fd, anfd->events, 0);
2217 anfd->events = 0;
2218 anfd->handle = handle;
2219 }
2220 }
2221 }
2222#endif
703 2223
704 for (i = 0; i < fdchangecnt; ++i) 2224 for (i = 0; i < fdchangecnt; ++i)
705 { 2225 {
706 int fd = fdchanges [i]; 2226 int fd = fdchanges [i];
707 ANFD *anfd = anfds + fd; 2227 ANFD *anfd = anfds + fd;
708 ev_io *w; 2228 ev_io *w;
709 2229
710 unsigned char events = 0; 2230 unsigned char o_events = anfd->events;
2231 unsigned char o_reify = anfd->reify;
711 2232
712 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2233 anfd->reify = 0;
713 events |= (unsigned char)w->events;
714 2234
715#if EV_SELECT_IS_WINSOCKET 2235 /*if (ecb_expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
716 if (events)
717 { 2236 {
718 unsigned long arg; 2237 anfd->events = 0;
719 #ifdef EV_FD_TO_WIN32_HANDLE 2238
720 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 2239 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
721 #else 2240 anfd->events |= (unsigned char)w->events;
722 anfd->handle = _get_osfhandle (fd); 2241
723 #endif 2242 if (o_events != anfd->events)
724 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 2243 o_reify = EV__IOFDSET; /* actually |= */
725 } 2244 }
726#endif
727 2245
728 { 2246 if (o_reify & EV__IOFDSET)
729 unsigned char o_events = anfd->events;
730 unsigned char o_reify = anfd->reify;
731
732 anfd->reify = 0;
733 anfd->events = events;
734
735 if (o_events != events || o_reify & EV_IOFDSET)
736 backend_modify (EV_A_ fd, o_events, events); 2247 backend_modify (EV_A_ fd, o_events, anfd->events);
737 }
738 } 2248 }
739 2249
740 fdchangecnt = 0; 2250 fdchangecnt = 0;
741} 2251}
742 2252
2253/* something about the given fd changed */
743void inline_size 2254inline_size
2255void
744fd_change (EV_P_ int fd, int flags) 2256fd_change (EV_P_ int fd, int flags)
745{ 2257{
746 unsigned char reify = anfds [fd].reify; 2258 unsigned char reify = anfds [fd].reify;
747 anfds [fd].reify |= flags; 2259 anfds [fd].reify |= flags;
748 2260
749 if (expect_true (!reify)) 2261 if (ecb_expect_true (!reify))
750 { 2262 {
751 ++fdchangecnt; 2263 ++fdchangecnt;
752 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2264 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
753 fdchanges [fdchangecnt - 1] = fd; 2265 fdchanges [fdchangecnt - 1] = fd;
754 } 2266 }
755} 2267}
756 2268
757void inline_speed 2269/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2270inline_speed ecb_cold void
758fd_kill (EV_P_ int fd) 2271fd_kill (EV_P_ int fd)
759{ 2272{
760 ev_io *w; 2273 ev_io *w;
761 2274
762 while ((w = (ev_io *)anfds [fd].head)) 2275 while ((w = (ev_io *)anfds [fd].head))
764 ev_io_stop (EV_A_ w); 2277 ev_io_stop (EV_A_ w);
765 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2278 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
766 } 2279 }
767} 2280}
768 2281
769int inline_size 2282/* check whether the given fd is actually valid, for error recovery */
2283inline_size ecb_cold int
770fd_valid (int fd) 2284fd_valid (int fd)
771{ 2285{
772#ifdef _WIN32 2286#ifdef _WIN32
773 return _get_osfhandle (fd) != -1; 2287 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
774#else 2288#else
775 return fcntl (fd, F_GETFD) != -1; 2289 return fcntl (fd, F_GETFD) != -1;
776#endif 2290#endif
777} 2291}
778 2292
779/* called on EBADF to verify fds */ 2293/* called on EBADF to verify fds */
780static void noinline 2294ecb_noinline ecb_cold
2295static void
781fd_ebadf (EV_P) 2296fd_ebadf (EV_P)
782{ 2297{
783 int fd; 2298 int fd;
784 2299
785 for (fd = 0; fd < anfdmax; ++fd) 2300 for (fd = 0; fd < anfdmax; ++fd)
787 if (!fd_valid (fd) && errno == EBADF) 2302 if (!fd_valid (fd) && errno == EBADF)
788 fd_kill (EV_A_ fd); 2303 fd_kill (EV_A_ fd);
789} 2304}
790 2305
791/* called on ENOMEM in select/poll to kill some fds and retry */ 2306/* called on ENOMEM in select/poll to kill some fds and retry */
792static void noinline 2307ecb_noinline ecb_cold
2308static void
793fd_enomem (EV_P) 2309fd_enomem (EV_P)
794{ 2310{
795 int fd; 2311 int fd;
796 2312
797 for (fd = anfdmax; fd--; ) 2313 for (fd = anfdmax; fd--; )
798 if (anfds [fd].events) 2314 if (anfds [fd].events)
799 { 2315 {
800 fd_kill (EV_A_ fd); 2316 fd_kill (EV_A_ fd);
801 return; 2317 break;
802 } 2318 }
803} 2319}
804 2320
805/* usually called after fork if backend needs to re-arm all fds from scratch */ 2321/* usually called after fork if backend needs to re-arm all fds from scratch */
806static void noinline 2322ecb_noinline
2323static void
807fd_rearm_all (EV_P) 2324fd_rearm_all (EV_P)
808{ 2325{
809 int fd; 2326 int fd;
810 2327
811 for (fd = 0; fd < anfdmax; ++fd) 2328 for (fd = 0; fd < anfdmax; ++fd)
812 if (anfds [fd].events) 2329 if (anfds [fd].events)
813 { 2330 {
814 anfds [fd].events = 0; 2331 anfds [fd].events = 0;
815 anfds [fd].emask = 0; 2332 anfds [fd].emask = 0;
816 fd_change (EV_A_ fd, EV_IOFDSET | 1); 2333 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
817 } 2334 }
818} 2335}
819 2336
2337/* used to prepare libev internal fd's */
2338/* this is not fork-safe */
2339inline_speed void
2340fd_intern (int fd)
2341{
2342#ifdef _WIN32
2343 unsigned long arg = 1;
2344 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2345#else
2346 fcntl (fd, F_SETFD, FD_CLOEXEC);
2347 fcntl (fd, F_SETFL, O_NONBLOCK);
2348#endif
2349}
2350
820/*****************************************************************************/ 2351/*****************************************************************************/
821 2352
822/* 2353/*
823 * the heap functions want a real array index. array index 0 uis guaranteed to not 2354 * the heap functions want a real array index. array index 0 is guaranteed to not
824 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 2355 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
825 * the branching factor of the d-tree. 2356 * the branching factor of the d-tree.
826 */ 2357 */
827 2358
828/* 2359/*
837#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 2368#define HEAP0 (DHEAP - 1) /* index of first element in heap */
838#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 2369#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
839#define UPHEAP_DONE(p,k) ((p) == (k)) 2370#define UPHEAP_DONE(p,k) ((p) == (k))
840 2371
841/* away from the root */ 2372/* away from the root */
842void inline_speed 2373inline_speed void
843downheap (ANHE *heap, int N, int k) 2374downheap (ANHE *heap, int N, int k)
844{ 2375{
845 ANHE he = heap [k]; 2376 ANHE he = heap [k];
846 ANHE *E = heap + N + HEAP0; 2377 ANHE *E = heap + N + HEAP0;
847 2378
850 ev_tstamp minat; 2381 ev_tstamp minat;
851 ANHE *minpos; 2382 ANHE *minpos;
852 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1; 2383 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
853 2384
854 /* find minimum child */ 2385 /* find minimum child */
855 if (expect_true (pos + DHEAP - 1 < E)) 2386 if (ecb_expect_true (pos + DHEAP - 1 < E))
856 { 2387 {
857 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 2388 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
858 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 2389 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
859 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 2390 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
860 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 2391 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
887#define HEAP0 1 2418#define HEAP0 1
888#define HPARENT(k) ((k) >> 1) 2419#define HPARENT(k) ((k) >> 1)
889#define UPHEAP_DONE(p,k) (!(p)) 2420#define UPHEAP_DONE(p,k) (!(p))
890 2421
891/* away from the root */ 2422/* away from the root */
892void inline_speed 2423inline_speed void
893downheap (ANHE *heap, int N, int k) 2424downheap (ANHE *heap, int N, int k)
894{ 2425{
895 ANHE he = heap [k]; 2426 ANHE he = heap [k];
896 2427
897 for (;;) 2428 for (;;)
898 { 2429 {
899 int c = k << 1; 2430 int c = k << 1;
900 2431
901 if (c > N + HEAP0 - 1) 2432 if (c >= N + HEAP0)
902 break; 2433 break;
903 2434
904 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 2435 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
905 ? 1 : 0; 2436 ? 1 : 0;
906 2437
917 ev_active (ANHE_w (he)) = k; 2448 ev_active (ANHE_w (he)) = k;
918} 2449}
919#endif 2450#endif
920 2451
921/* towards the root */ 2452/* towards the root */
922void inline_speed 2453inline_speed void
923upheap (ANHE *heap, int k) 2454upheap (ANHE *heap, int k)
924{ 2455{
925 ANHE he = heap [k]; 2456 ANHE he = heap [k];
926 2457
927 for (;;) 2458 for (;;)
938 2469
939 heap [k] = he; 2470 heap [k] = he;
940 ev_active (ANHE_w (he)) = k; 2471 ev_active (ANHE_w (he)) = k;
941} 2472}
942 2473
943void inline_size 2474/* move an element suitably so it is in a correct place */
2475inline_size void
944adjustheap (ANHE *heap, int N, int k) 2476adjustheap (ANHE *heap, int N, int k)
945{ 2477{
946 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 2478 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
947 upheap (heap, k); 2479 upheap (heap, k);
948 else 2480 else
949 downheap (heap, N, k); 2481 downheap (heap, N, k);
950} 2482}
951 2483
952/* rebuild the heap: this function is used only once and executed rarely */ 2484/* rebuild the heap: this function is used only once and executed rarely */
953void inline_size 2485inline_size void
954reheap (ANHE *heap, int N) 2486reheap (ANHE *heap, int N)
955{ 2487{
956 int i; 2488 int i;
957 2489
958 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 2490 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
961 upheap (heap, i + HEAP0); 2493 upheap (heap, i + HEAP0);
962} 2494}
963 2495
964/*****************************************************************************/ 2496/*****************************************************************************/
965 2497
2498/* associate signal watchers to a signal signal */
966typedef struct 2499typedef struct
967{ 2500{
2501 EV_ATOMIC_T pending;
2502#if EV_MULTIPLICITY
2503 EV_P;
2504#endif
968 WL head; 2505 WL head;
969 EV_ATOMIC_T gotsig;
970} ANSIG; 2506} ANSIG;
971 2507
972static ANSIG *signals; 2508static ANSIG signals [EV_NSIG - 1];
973static int signalmax;
974
975static EV_ATOMIC_T gotsig;
976 2509
977/*****************************************************************************/ 2510/*****************************************************************************/
978 2511
979void inline_speed 2512#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
980fd_intern (int fd)
981{
982#ifdef _WIN32
983 unsigned long arg = 1;
984 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
985#else
986 fcntl (fd, F_SETFD, FD_CLOEXEC);
987 fcntl (fd, F_SETFL, O_NONBLOCK);
988#endif
989}
990 2513
991static void noinline 2514ecb_noinline ecb_cold
2515static void
992evpipe_init (EV_P) 2516evpipe_init (EV_P)
993{ 2517{
994 if (!ev_is_active (&pipeev)) 2518 if (!ev_is_active (&pipe_w))
2519 {
2520 int fds [2];
2521
2522# if EV_USE_EVENTFD
2523 fds [0] = -1;
2524 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2525 if (fds [1] < 0 && errno == EINVAL)
2526 fds [1] = eventfd (0, 0);
2527
2528 if (fds [1] < 0)
2529# endif
2530 {
2531 while (pipe (fds))
2532 ev_syserr ("(libev) error creating signal/async pipe");
2533
2534 fd_intern (fds [0]);
2535 }
2536
2537 evpipe [0] = fds [0];
2538
2539 if (evpipe [1] < 0)
2540 evpipe [1] = fds [1]; /* first call, set write fd */
2541 else
2542 {
2543 /* on subsequent calls, do not change evpipe [1] */
2544 /* so that evpipe_write can always rely on its value. */
2545 /* this branch does not do anything sensible on windows, */
2546 /* so must not be executed on windows */
2547
2548 dup2 (fds [1], evpipe [1]);
2549 close (fds [1]);
2550 }
2551
2552 fd_intern (evpipe [1]);
2553
2554 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2555 ev_io_start (EV_A_ &pipe_w);
2556 ev_unref (EV_A); /* watcher should not keep loop alive */
995 { 2557 }
2558}
2559
2560inline_speed void
2561evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2562{
2563 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2564
2565 if (ecb_expect_true (*flag))
2566 return;
2567
2568 *flag = 1;
2569 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2570
2571 pipe_write_skipped = 1;
2572
2573 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2574
2575 if (pipe_write_wanted)
2576 {
2577 int old_errno;
2578
2579 pipe_write_skipped = 0;
2580 ECB_MEMORY_FENCE_RELEASE;
2581
2582 old_errno = errno; /* save errno because write will clobber it */
2583
996#if EV_USE_EVENTFD 2584#if EV_USE_EVENTFD
997 if ((evfd = eventfd (0, 0)) >= 0) 2585 if (evpipe [0] < 0)
998 { 2586 {
999 evpipe [0] = -1; 2587 uint64_t counter = 1;
1000 fd_intern (evfd); 2588 write (evpipe [1], &counter, sizeof (uint64_t));
1001 ev_io_set (&pipeev, evfd, EV_READ);
1002 } 2589 }
1003 else 2590 else
1004#endif 2591#endif
1005 { 2592 {
1006 while (pipe (evpipe)) 2593#ifdef _WIN32
1007 ev_syserr ("(libev) error creating signal/async pipe"); 2594 WSABUF buf;
1008 2595 DWORD sent;
1009 fd_intern (evpipe [0]); 2596 buf.buf = (char *)&buf;
1010 fd_intern (evpipe [1]); 2597 buf.len = 1;
1011 ev_io_set (&pipeev, evpipe [0], EV_READ); 2598 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2599#else
2600 write (evpipe [1], &(evpipe [1]), 1);
2601#endif
1012 } 2602 }
1013 2603
1014 ev_io_start (EV_A_ &pipeev); 2604 errno = old_errno;
1015 ev_unref (EV_A); /* watcher should not keep loop alive */
1016 }
1017}
1018
1019void inline_size
1020evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1021{
1022 if (!*flag)
1023 { 2605 }
1024 int old_errno = errno; /* save errno because write might clobber it */ 2606}
1025 2607
1026 *flag = 1; 2608/* called whenever the libev signal pipe */
2609/* got some events (signal, async) */
2610static void
2611pipecb (EV_P_ ev_io *iow, int revents)
2612{
2613 int i;
1027 2614
2615 if (revents & EV_READ)
2616 {
1028#if EV_USE_EVENTFD 2617#if EV_USE_EVENTFD
1029 if (evfd >= 0) 2618 if (evpipe [0] < 0)
1030 { 2619 {
1031 uint64_t counter = 1; 2620 uint64_t counter;
1032 write (evfd, &counter, sizeof (uint64_t)); 2621 read (evpipe [1], &counter, sizeof (uint64_t));
1033 } 2622 }
1034 else 2623 else
1035#endif 2624#endif
1036 write (evpipe [1], &old_errno, 1); 2625 {
1037
1038 errno = old_errno;
1039 }
1040}
1041
1042static void
1043pipecb (EV_P_ ev_io *iow, int revents)
1044{
1045#if EV_USE_EVENTFD
1046 if (evfd >= 0)
1047 {
1048 uint64_t counter;
1049 read (evfd, &counter, sizeof (uint64_t));
1050 }
1051 else
1052#endif
1053 {
1054 char dummy; 2626 char dummy[4];
2627#ifdef _WIN32
2628 WSABUF buf;
2629 DWORD recvd;
2630 DWORD flags = 0;
2631 buf.buf = dummy;
2632 buf.len = sizeof (dummy);
2633 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2634#else
1055 read (evpipe [0], &dummy, 1); 2635 read (evpipe [0], &dummy, sizeof (dummy));
2636#endif
2637 }
2638 }
2639
2640 pipe_write_skipped = 0;
2641
2642 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2643
2644#if EV_SIGNAL_ENABLE
2645 if (sig_pending)
1056 } 2646 {
2647 sig_pending = 0;
1057 2648
1058 if (gotsig && ev_is_default_loop (EV_A)) 2649 ECB_MEMORY_FENCE;
1059 {
1060 int signum;
1061 gotsig = 0;
1062 2650
1063 for (signum = signalmax; signum--; ) 2651 for (i = EV_NSIG - 1; i--; )
1064 if (signals [signum].gotsig) 2652 if (ecb_expect_false (signals [i].pending))
1065 ev_feed_signal_event (EV_A_ signum + 1); 2653 ev_feed_signal_event (EV_A_ i + 1);
1066 } 2654 }
2655#endif
1067 2656
1068#if EV_ASYNC_ENABLE 2657#if EV_ASYNC_ENABLE
1069 if (gotasync) 2658 if (async_pending)
1070 { 2659 {
1071 int i; 2660 async_pending = 0;
1072 gotasync = 0; 2661
2662 ECB_MEMORY_FENCE;
1073 2663
1074 for (i = asynccnt; i--; ) 2664 for (i = asynccnt; i--; )
1075 if (asyncs [i]->sent) 2665 if (asyncs [i]->sent)
1076 { 2666 {
1077 asyncs [i]->sent = 0; 2667 asyncs [i]->sent = 0;
2668 ECB_MEMORY_FENCE_RELEASE;
1078 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2669 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1079 } 2670 }
1080 } 2671 }
1081#endif 2672#endif
1082} 2673}
1083 2674
1084/*****************************************************************************/ 2675/*****************************************************************************/
1085 2676
2677void
2678ev_feed_signal (int signum) EV_NOEXCEPT
2679{
2680#if EV_MULTIPLICITY
2681 EV_P;
2682 ECB_MEMORY_FENCE_ACQUIRE;
2683 EV_A = signals [signum - 1].loop;
2684
2685 if (!EV_A)
2686 return;
2687#endif
2688
2689 signals [signum - 1].pending = 1;
2690 evpipe_write (EV_A_ &sig_pending);
2691}
2692
1086static void 2693static void
1087ev_sighandler (int signum) 2694ev_sighandler (int signum)
1088{ 2695{
2696#ifdef _WIN32
2697 signal (signum, ev_sighandler);
2698#endif
2699
2700 ev_feed_signal (signum);
2701}
2702
2703ecb_noinline
2704void
2705ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2706{
2707 WL w;
2708
2709 if (ecb_expect_false (signum <= 0 || signum >= EV_NSIG))
2710 return;
2711
2712 --signum;
2713
1089#if EV_MULTIPLICITY 2714#if EV_MULTIPLICITY
1090 struct ev_loop *loop = &default_loop_struct; 2715 /* it is permissible to try to feed a signal to the wrong loop */
1091#endif 2716 /* or, likely more useful, feeding a signal nobody is waiting for */
1092 2717
1093#if _WIN32 2718 if (ecb_expect_false (signals [signum].loop != EV_A))
1094 signal (signum, ev_sighandler);
1095#endif
1096
1097 signals [signum - 1].gotsig = 1;
1098 evpipe_write (EV_A_ &gotsig);
1099}
1100
1101void noinline
1102ev_feed_signal_event (EV_P_ int signum)
1103{
1104 WL w;
1105
1106#if EV_MULTIPLICITY
1107 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1108#endif
1109
1110 --signum;
1111
1112 if (signum < 0 || signum >= signalmax)
1113 return; 2719 return;
2720#endif
1114 2721
1115 signals [signum].gotsig = 0; 2722 signals [signum].pending = 0;
2723 ECB_MEMORY_FENCE_RELEASE;
1116 2724
1117 for (w = signals [signum].head; w; w = w->next) 2725 for (w = signals [signum].head; w; w = w->next)
1118 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2726 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1119} 2727}
1120 2728
2729#if EV_USE_SIGNALFD
2730static void
2731sigfdcb (EV_P_ ev_io *iow, int revents)
2732{
2733 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2734
2735 for (;;)
2736 {
2737 ssize_t res = read (sigfd, si, sizeof (si));
2738
2739 /* not ISO-C, as res might be -1, but works with SuS */
2740 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2741 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2742
2743 if (res < (ssize_t)sizeof (si))
2744 break;
2745 }
2746}
2747#endif
2748
2749#endif
2750
1121/*****************************************************************************/ 2751/*****************************************************************************/
1122 2752
2753#if EV_CHILD_ENABLE
1123static WL childs [EV_PID_HASHSIZE]; 2754static WL childs [EV_PID_HASHSIZE];
1124
1125#ifndef _WIN32
1126 2755
1127static ev_signal childev; 2756static ev_signal childev;
1128 2757
1129#ifndef WIFCONTINUED 2758#ifndef WIFCONTINUED
1130# define WIFCONTINUED(status) 0 2759# define WIFCONTINUED(status) 0
1131#endif 2760#endif
1132 2761
1133void inline_speed 2762/* handle a single child status event */
2763inline_speed void
1134child_reap (EV_P_ int chain, int pid, int status) 2764child_reap (EV_P_ int chain, int pid, int status)
1135{ 2765{
1136 ev_child *w; 2766 ev_child *w;
1137 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2767 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1138 2768
1139 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2769 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1140 { 2770 {
1141 if ((w->pid == pid || !w->pid) 2771 if ((w->pid == pid || !w->pid)
1142 && (!traced || (w->flags & 1))) 2772 && (!traced || (w->flags & 1)))
1143 { 2773 {
1144 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2774 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1151 2781
1152#ifndef WCONTINUED 2782#ifndef WCONTINUED
1153# define WCONTINUED 0 2783# define WCONTINUED 0
1154#endif 2784#endif
1155 2785
2786/* called on sigchld etc., calls waitpid */
1156static void 2787static void
1157childcb (EV_P_ ev_signal *sw, int revents) 2788childcb (EV_P_ ev_signal *sw, int revents)
1158{ 2789{
1159 int pid, status; 2790 int pid, status;
1160 2791
1168 /* make sure we are called again until all children have been reaped */ 2799 /* make sure we are called again until all children have been reaped */
1169 /* we need to do it this way so that the callback gets called before we continue */ 2800 /* we need to do it this way so that the callback gets called before we continue */
1170 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2801 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1171 2802
1172 child_reap (EV_A_ pid, pid, status); 2803 child_reap (EV_A_ pid, pid, status);
1173 if (EV_PID_HASHSIZE > 1) 2804 if ((EV_PID_HASHSIZE) > 1)
1174 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2805 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1175} 2806}
1176 2807
1177#endif 2808#endif
1178 2809
1179/*****************************************************************************/ 2810/*****************************************************************************/
1180 2811
2812#if EV_USE_IOCP
2813# include "ev_iocp.c"
2814#endif
1181#if EV_USE_PORT 2815#if EV_USE_PORT
1182# include "ev_port.c" 2816# include "ev_port.c"
1183#endif 2817#endif
1184#if EV_USE_KQUEUE 2818#if EV_USE_KQUEUE
1185# include "ev_kqueue.c" 2819# include "ev_kqueue.c"
1186#endif 2820#endif
1187#if EV_USE_EPOLL 2821#if EV_USE_EPOLL
1188# include "ev_epoll.c" 2822# include "ev_epoll.c"
1189#endif 2823#endif
2824#if EV_USE_LINUXAIO
2825# include "ev_linuxaio.c"
2826#endif
2827#if EV_USE_IOURING
2828# include "ev_iouring.c"
2829#endif
1190#if EV_USE_POLL 2830#if EV_USE_POLL
1191# include "ev_poll.c" 2831# include "ev_poll.c"
1192#endif 2832#endif
1193#if EV_USE_SELECT 2833#if EV_USE_SELECT
1194# include "ev_select.c" 2834# include "ev_select.c"
1195#endif 2835#endif
1196 2836
1197int 2837ecb_cold int
1198ev_version_major (void) 2838ev_version_major (void) EV_NOEXCEPT
1199{ 2839{
1200 return EV_VERSION_MAJOR; 2840 return EV_VERSION_MAJOR;
1201} 2841}
1202 2842
1203int 2843ecb_cold int
1204ev_version_minor (void) 2844ev_version_minor (void) EV_NOEXCEPT
1205{ 2845{
1206 return EV_VERSION_MINOR; 2846 return EV_VERSION_MINOR;
1207} 2847}
1208 2848
1209/* return true if we are running with elevated privileges and should ignore env variables */ 2849/* return true if we are running with elevated privileges and should ignore env variables */
1210int inline_size 2850inline_size ecb_cold int
1211enable_secure (void) 2851enable_secure (void)
1212{ 2852{
1213#ifdef _WIN32 2853#ifdef _WIN32
1214 return 0; 2854 return 0;
1215#else 2855#else
1216 return getuid () != geteuid () 2856 return getuid () != geteuid ()
1217 || getgid () != getegid (); 2857 || getgid () != getegid ();
1218#endif 2858#endif
1219} 2859}
1220 2860
2861ecb_cold
1221unsigned int 2862unsigned int
1222ev_supported_backends (void) 2863ev_supported_backends (void) EV_NOEXCEPT
1223{ 2864{
1224 unsigned int flags = 0; 2865 unsigned int flags = 0;
1225 2866
1226 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2867 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1227 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2868 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
1228 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL; 2869 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2870 if (EV_USE_LINUXAIO) flags |= EVBACKEND_LINUXAIO;
2871 if (EV_USE_IOURING ) flags |= EVBACKEND_IOURING;
1229 if (EV_USE_POLL ) flags |= EVBACKEND_POLL; 2872 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1230 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2873 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
1231 2874
1232 return flags; 2875 return flags;
1233} 2876}
1234 2877
2878ecb_cold
1235unsigned int 2879unsigned int
1236ev_recommended_backends (void) 2880ev_recommended_backends (void) EV_NOEXCEPT
1237{ 2881{
1238 unsigned int flags = ev_supported_backends (); 2882 unsigned int flags = ev_supported_backends ();
1239 2883
1240#ifndef __NetBSD__ 2884#ifndef __NetBSD__
1241 /* kqueue is borked on everything but netbsd apparently */ 2885 /* kqueue is borked on everything but netbsd apparently */
1242 /* it usually doesn't work correctly on anything but sockets and pipes */ 2886 /* it usually doesn't work correctly on anything but sockets and pipes */
1243 flags &= ~EVBACKEND_KQUEUE; 2887 flags &= ~EVBACKEND_KQUEUE;
1244#endif 2888#endif
1245#ifdef __APPLE__ 2889#ifdef __APPLE__
1246 // flags &= ~EVBACKEND_KQUEUE; for documentation 2890 /* only select works correctly on that "unix-certified" platform */
2891 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2892 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2893#endif
2894#ifdef __FreeBSD__
2895 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2896#endif
2897
2898 /* TODO: linuxaio is very experimental */
2899#if !EV_RECOMMEND_LINUXAIO
2900 flags &= ~EVBACKEND_LINUXAIO;
2901#endif
2902 /* TODO: linuxaio is super experimental */
2903#if !EV_RECOMMEND_IOURING
1247 flags &= ~EVBACKEND_POLL; 2904 flags &= ~EVBACKEND_IOURING;
1248#endif 2905#endif
1249 2906
1250 return flags; 2907 return flags;
1251} 2908}
1252 2909
2910ecb_cold
1253unsigned int 2911unsigned int
1254ev_embeddable_backends (void) 2912ev_embeddable_backends (void) EV_NOEXCEPT
1255{ 2913{
1256 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2914 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1257 2915
1258 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 2916 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1259 /* please fix it and tell me how to detect the fix */ 2917 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1260 flags &= ~EVBACKEND_EPOLL; 2918 flags &= ~EVBACKEND_EPOLL;
1261 2919
1262 return flags; 2920 return flags;
1263} 2921}
1264 2922
1265unsigned int 2923unsigned int
1266ev_backend (EV_P) 2924ev_backend (EV_P) EV_NOEXCEPT
1267{ 2925{
1268 return backend; 2926 return backend;
1269} 2927}
1270 2928
2929#if EV_FEATURE_API
1271unsigned int 2930unsigned int
1272ev_loop_count (EV_P) 2931ev_iteration (EV_P) EV_NOEXCEPT
1273{ 2932{
1274 return loop_count; 2933 return loop_count;
1275} 2934}
1276 2935
2936unsigned int
2937ev_depth (EV_P) EV_NOEXCEPT
2938{
2939 return loop_depth;
2940}
2941
1277void 2942void
1278ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2943ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
1279{ 2944{
1280 io_blocktime = interval; 2945 io_blocktime = interval;
1281} 2946}
1282 2947
1283void 2948void
1284ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2949ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
1285{ 2950{
1286 timeout_blocktime = interval; 2951 timeout_blocktime = interval;
1287} 2952}
1288 2953
1289static void noinline 2954void
2955ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
2956{
2957 userdata = data;
2958}
2959
2960void *
2961ev_userdata (EV_P) EV_NOEXCEPT
2962{
2963 return userdata;
2964}
2965
2966void
2967ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
2968{
2969 invoke_cb = invoke_pending_cb;
2970}
2971
2972void
2973ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
2974{
2975 release_cb = release;
2976 acquire_cb = acquire;
2977}
2978#endif
2979
2980/* initialise a loop structure, must be zero-initialised */
2981ecb_noinline ecb_cold
2982static void
1290loop_init (EV_P_ unsigned int flags) 2983loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
1291{ 2984{
1292 if (!backend) 2985 if (!backend)
1293 { 2986 {
2987 origflags = flags;
2988
2989#if EV_USE_REALTIME
2990 if (!have_realtime)
2991 {
2992 struct timespec ts;
2993
2994 if (!clock_gettime (CLOCK_REALTIME, &ts))
2995 have_realtime = 1;
2996 }
2997#endif
2998
1294#if EV_USE_MONOTONIC 2999#if EV_USE_MONOTONIC
3000 if (!have_monotonic)
1295 { 3001 {
1296 struct timespec ts; 3002 struct timespec ts;
3003
1297 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 3004 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1298 have_monotonic = 1; 3005 have_monotonic = 1;
1299 } 3006 }
1300#endif
1301
1302 ev_rt_now = ev_time ();
1303 mn_now = get_clock ();
1304 now_floor = mn_now;
1305 rtmn_diff = ev_rt_now - mn_now;
1306
1307 io_blocktime = 0.;
1308 timeout_blocktime = 0.;
1309 backend = 0;
1310 backend_fd = -1;
1311 gotasync = 0;
1312#if EV_USE_INOTIFY
1313 fs_fd = -2;
1314#endif 3007#endif
1315 3008
1316 /* pid check not overridable via env */ 3009 /* pid check not overridable via env */
1317#ifndef _WIN32 3010#ifndef _WIN32
1318 if (flags & EVFLAG_FORKCHECK) 3011 if (flags & EVFLAG_FORKCHECK)
1322 if (!(flags & EVFLAG_NOENV) 3015 if (!(flags & EVFLAG_NOENV)
1323 && !enable_secure () 3016 && !enable_secure ()
1324 && getenv ("LIBEV_FLAGS")) 3017 && getenv ("LIBEV_FLAGS"))
1325 flags = atoi (getenv ("LIBEV_FLAGS")); 3018 flags = atoi (getenv ("LIBEV_FLAGS"));
1326 3019
1327 if (!(flags & 0x0000ffffU)) 3020 ev_rt_now = ev_time ();
3021 mn_now = get_clock ();
3022 now_floor = mn_now;
3023 rtmn_diff = ev_rt_now - mn_now;
3024#if EV_FEATURE_API
3025 invoke_cb = ev_invoke_pending;
3026#endif
3027
3028 io_blocktime = 0.;
3029 timeout_blocktime = 0.;
3030 backend = 0;
3031 backend_fd = -1;
3032 sig_pending = 0;
3033#if EV_ASYNC_ENABLE
3034 async_pending = 0;
3035#endif
3036 pipe_write_skipped = 0;
3037 pipe_write_wanted = 0;
3038 evpipe [0] = -1;
3039 evpipe [1] = -1;
3040#if EV_USE_INOTIFY
3041 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
3042#endif
3043#if EV_USE_SIGNALFD
3044 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
3045#endif
3046
3047 if (!(flags & EVBACKEND_MASK))
1328 flags |= ev_recommended_backends (); 3048 flags |= ev_recommended_backends ();
1329 3049
3050#if EV_USE_IOCP
3051 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
3052#endif
1330#if EV_USE_PORT 3053#if EV_USE_PORT
1331 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 3054 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1332#endif 3055#endif
1333#if EV_USE_KQUEUE 3056#if EV_USE_KQUEUE
1334 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 3057 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
3058#endif
3059#if EV_USE_IOURING
3060 if (!backend && (flags & EVBACKEND_IOURING )) backend = iouring_init (EV_A_ flags);
3061#endif
3062#if EV_USE_LINUXAIO
3063 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
1335#endif 3064#endif
1336#if EV_USE_EPOLL 3065#if EV_USE_EPOLL
1337 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags); 3066 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1338#endif 3067#endif
1339#if EV_USE_POLL 3068#if EV_USE_POLL
1340 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags); 3069 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1341#endif 3070#endif
1342#if EV_USE_SELECT 3071#if EV_USE_SELECT
1343 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 3072 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
1344#endif 3073#endif
1345 3074
3075 ev_prepare_init (&pending_w, pendingcb);
3076
3077#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1346 ev_init (&pipeev, pipecb); 3078 ev_init (&pipe_w, pipecb);
1347 ev_set_priority (&pipeev, EV_MAXPRI); 3079 ev_set_priority (&pipe_w, EV_MAXPRI);
3080#endif
1348 } 3081 }
1349} 3082}
1350 3083
1351static void noinline 3084/* free up a loop structure */
3085ecb_cold
3086void
1352loop_destroy (EV_P) 3087ev_loop_destroy (EV_P)
1353{ 3088{
1354 int i; 3089 int i;
1355 3090
3091#if EV_MULTIPLICITY
3092 /* mimic free (0) */
3093 if (!EV_A)
3094 return;
3095#endif
3096
3097#if EV_CLEANUP_ENABLE
3098 /* queue cleanup watchers (and execute them) */
3099 if (ecb_expect_false (cleanupcnt))
3100 {
3101 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3102 EV_INVOKE_PENDING;
3103 }
3104#endif
3105
3106#if EV_CHILD_ENABLE
3107 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3108 {
3109 ev_ref (EV_A); /* child watcher */
3110 ev_signal_stop (EV_A_ &childev);
3111 }
3112#endif
3113
1356 if (ev_is_active (&pipeev)) 3114 if (ev_is_active (&pipe_w))
1357 { 3115 {
1358 ev_ref (EV_A); /* signal watcher */ 3116 /*ev_ref (EV_A);*/
1359 ev_io_stop (EV_A_ &pipeev); 3117 /*ev_io_stop (EV_A_ &pipe_w);*/
1360 3118
3119 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3120 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3121 }
3122
1361#if EV_USE_EVENTFD 3123#if EV_USE_SIGNALFD
1362 if (evfd >= 0) 3124 if (ev_is_active (&sigfd_w))
1363 close (evfd); 3125 close (sigfd);
1364#endif 3126#endif
1365
1366 if (evpipe [0] >= 0)
1367 {
1368 close (evpipe [0]);
1369 close (evpipe [1]);
1370 }
1371 }
1372 3127
1373#if EV_USE_INOTIFY 3128#if EV_USE_INOTIFY
1374 if (fs_fd >= 0) 3129 if (fs_fd >= 0)
1375 close (fs_fd); 3130 close (fs_fd);
1376#endif 3131#endif
1377 3132
1378 if (backend_fd >= 0) 3133 if (backend_fd >= 0)
1379 close (backend_fd); 3134 close (backend_fd);
1380 3135
3136#if EV_USE_IOCP
3137 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3138#endif
1381#if EV_USE_PORT 3139#if EV_USE_PORT
1382 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 3140 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1383#endif 3141#endif
1384#if EV_USE_KQUEUE 3142#if EV_USE_KQUEUE
1385 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 3143 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3144#endif
3145#if EV_USE_IOURING
3146 if (backend == EVBACKEND_IOURING ) iouring_destroy (EV_A);
3147#endif
3148#if EV_USE_LINUXAIO
3149 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
1386#endif 3150#endif
1387#if EV_USE_EPOLL 3151#if EV_USE_EPOLL
1388 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A); 3152 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1389#endif 3153#endif
1390#if EV_USE_POLL 3154#if EV_USE_POLL
1391 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A); 3155 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1392#endif 3156#endif
1393#if EV_USE_SELECT 3157#if EV_USE_SELECT
1394 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 3158 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
1395#endif 3159#endif
1396 3160
1397 for (i = NUMPRI; i--; ) 3161 for (i = NUMPRI; i--; )
1398 { 3162 {
1399 array_free (pending, [i]); 3163 array_free (pending, [i]);
1400#if EV_IDLE_ENABLE 3164#if EV_IDLE_ENABLE
1401 array_free (idle, [i]); 3165 array_free (idle, [i]);
1402#endif 3166#endif
1403 } 3167 }
1404 3168
1405 ev_free (anfds); anfdmax = 0; 3169 ev_free (anfds); anfds = 0; anfdmax = 0;
1406 3170
1407 /* have to use the microsoft-never-gets-it-right macro */ 3171 /* have to use the microsoft-never-gets-it-right macro */
3172 array_free (rfeed, EMPTY);
1408 array_free (fdchange, EMPTY); 3173 array_free (fdchange, EMPTY);
1409 array_free (timer, EMPTY); 3174 array_free (timer, EMPTY);
1410#if EV_PERIODIC_ENABLE 3175#if EV_PERIODIC_ENABLE
1411 array_free (periodic, EMPTY); 3176 array_free (periodic, EMPTY);
1412#endif 3177#endif
1413#if EV_FORK_ENABLE 3178#if EV_FORK_ENABLE
1414 array_free (fork, EMPTY); 3179 array_free (fork, EMPTY);
1415#endif 3180#endif
3181#if EV_CLEANUP_ENABLE
3182 array_free (cleanup, EMPTY);
3183#endif
1416 array_free (prepare, EMPTY); 3184 array_free (prepare, EMPTY);
1417 array_free (check, EMPTY); 3185 array_free (check, EMPTY);
1418#if EV_ASYNC_ENABLE 3186#if EV_ASYNC_ENABLE
1419 array_free (async, EMPTY); 3187 array_free (async, EMPTY);
1420#endif 3188#endif
1421 3189
1422 backend = 0; 3190 backend = 0;
3191
3192#if EV_MULTIPLICITY
3193 if (ev_is_default_loop (EV_A))
3194#endif
3195 ev_default_loop_ptr = 0;
3196#if EV_MULTIPLICITY
3197 else
3198 ev_free (EV_A);
3199#endif
1423} 3200}
1424 3201
1425#if EV_USE_INOTIFY 3202#if EV_USE_INOTIFY
1426void inline_size infy_fork (EV_P); 3203inline_size void infy_fork (EV_P);
1427#endif 3204#endif
1428 3205
1429void inline_size 3206inline_size void
1430loop_fork (EV_P) 3207loop_fork (EV_P)
1431{ 3208{
1432#if EV_USE_PORT 3209#if EV_USE_PORT
1433 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 3210 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1434#endif 3211#endif
1435#if EV_USE_KQUEUE 3212#if EV_USE_KQUEUE
1436 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 3213 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3214#endif
3215#if EV_USE_IOURING
3216 if (backend == EVBACKEND_IOURING ) iouring_fork (EV_A);
3217#endif
3218#if EV_USE_LINUXAIO
3219 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
1437#endif 3220#endif
1438#if EV_USE_EPOLL 3221#if EV_USE_EPOLL
1439 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 3222 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1440#endif 3223#endif
1441#if EV_USE_INOTIFY 3224#if EV_USE_INOTIFY
1442 infy_fork (EV_A); 3225 infy_fork (EV_A);
1443#endif 3226#endif
1444 3227
1445 if (ev_is_active (&pipeev)) 3228#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3229 if (ev_is_active (&pipe_w) && postfork != 2)
1446 { 3230 {
1447 /* this "locks" the handlers against writing to the pipe */ 3231 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1448 /* while we modify the fd vars */
1449 gotsig = 1;
1450#if EV_ASYNC_ENABLE
1451 gotasync = 1;
1452#endif
1453 3232
1454 ev_ref (EV_A); 3233 ev_ref (EV_A);
1455 ev_io_stop (EV_A_ &pipeev); 3234 ev_io_stop (EV_A_ &pipe_w);
1456
1457#if EV_USE_EVENTFD
1458 if (evfd >= 0)
1459 close (evfd);
1460#endif
1461 3235
1462 if (evpipe [0] >= 0) 3236 if (evpipe [0] >= 0)
1463 { 3237 EV_WIN32_CLOSE_FD (evpipe [0]);
1464 close (evpipe [0]);
1465 close (evpipe [1]);
1466 }
1467 3238
1468 evpipe_init (EV_A); 3239 evpipe_init (EV_A);
1469 /* now iterate over everything, in case we missed something */ 3240 /* iterate over everything, in case we missed something before */
1470 pipecb (EV_A_ &pipeev, EV_READ); 3241 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1471 } 3242 }
3243#endif
1472 3244
1473 postfork = 0; 3245 postfork = 0;
1474} 3246}
1475 3247
1476#if EV_MULTIPLICITY 3248#if EV_MULTIPLICITY
1477 3249
3250ecb_cold
1478struct ev_loop * 3251struct ev_loop *
1479ev_loop_new (unsigned int flags) 3252ev_loop_new (unsigned int flags) EV_NOEXCEPT
1480{ 3253{
1481 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 3254 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1482 3255
1483 memset (loop, 0, sizeof (struct ev_loop)); 3256 memset (EV_A, 0, sizeof (struct ev_loop));
1484
1485 loop_init (EV_A_ flags); 3257 loop_init (EV_A_ flags);
1486 3258
1487 if (ev_backend (EV_A)) 3259 if (ev_backend (EV_A))
1488 return loop; 3260 return EV_A;
1489 3261
3262 ev_free (EV_A);
1490 return 0; 3263 return 0;
1491} 3264}
1492 3265
1493void 3266#endif /* multiplicity */
1494ev_loop_destroy (EV_P)
1495{
1496 loop_destroy (EV_A);
1497 ev_free (loop);
1498}
1499
1500void
1501ev_loop_fork (EV_P)
1502{
1503 postfork = 1; /* must be in line with ev_default_fork */
1504}
1505 3267
1506#if EV_VERIFY 3268#if EV_VERIFY
1507static void noinline 3269ecb_noinline ecb_cold
3270static void
1508verify_watcher (EV_P_ W w) 3271verify_watcher (EV_P_ W w)
1509{ 3272{
1510 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 3273 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1511 3274
1512 if (w->pending) 3275 if (w->pending)
1513 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 3276 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1514} 3277}
1515 3278
1516static void noinline 3279ecb_noinline ecb_cold
3280static void
1517verify_heap (EV_P_ ANHE *heap, int N) 3281verify_heap (EV_P_ ANHE *heap, int N)
1518{ 3282{
1519 int i; 3283 int i;
1520 3284
1521 for (i = HEAP0; i < N + HEAP0; ++i) 3285 for (i = HEAP0; i < N + HEAP0; ++i)
1522 { 3286 {
1523 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 3287 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1524 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 3288 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1525 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 3289 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1526 3290
1527 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 3291 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1528 } 3292 }
1529} 3293}
1530 3294
1531static void noinline 3295ecb_noinline ecb_cold
3296static void
1532array_verify (EV_P_ W *ws, int cnt) 3297array_verify (EV_P_ W *ws, int cnt)
1533{ 3298{
1534 while (cnt--) 3299 while (cnt--)
1535 { 3300 {
1536 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 3301 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1537 verify_watcher (EV_A_ ws [cnt]); 3302 verify_watcher (EV_A_ ws [cnt]);
1538 } 3303 }
1539} 3304}
1540#endif 3305#endif
1541 3306
1542void 3307#if EV_FEATURE_API
1543ev_loop_verify (EV_P) 3308void ecb_cold
3309ev_verify (EV_P) EV_NOEXCEPT
1544{ 3310{
1545#if EV_VERIFY 3311#if EV_VERIFY
1546 int i; 3312 int i;
1547 WL w; 3313 WL w, w2;
1548 3314
1549 assert (activecnt >= -1); 3315 assert (activecnt >= -1);
1550 3316
1551 assert (fdchangemax >= fdchangecnt); 3317 assert (fdchangemax >= fdchangecnt);
1552 for (i = 0; i < fdchangecnt; ++i) 3318 for (i = 0; i < fdchangecnt; ++i)
1553 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 3319 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1554 3320
1555 assert (anfdmax >= 0); 3321 assert (anfdmax >= 0);
1556 for (i = 0; i < anfdmax; ++i) 3322 for (i = 0; i < anfdmax; ++i)
3323 {
3324 int j = 0;
3325
1557 for (w = anfds [i].head; w; w = w->next) 3326 for (w = w2 = anfds [i].head; w; w = w->next)
1558 { 3327 {
1559 verify_watcher (EV_A_ (W)w); 3328 verify_watcher (EV_A_ (W)w);
3329
3330 if (j++ & 1)
3331 {
3332 assert (("libev: io watcher list contains a loop", w != w2));
3333 w2 = w2->next;
3334 }
3335
1560 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 3336 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1561 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 3337 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1562 } 3338 }
3339 }
1563 3340
1564 assert (timermax >= timercnt); 3341 assert (timermax >= timercnt);
1565 verify_heap (EV_A_ timers, timercnt); 3342 verify_heap (EV_A_ timers, timercnt);
1566 3343
1567#if EV_PERIODIC_ENABLE 3344#if EV_PERIODIC_ENABLE
1582#if EV_FORK_ENABLE 3359#if EV_FORK_ENABLE
1583 assert (forkmax >= forkcnt); 3360 assert (forkmax >= forkcnt);
1584 array_verify (EV_A_ (W *)forks, forkcnt); 3361 array_verify (EV_A_ (W *)forks, forkcnt);
1585#endif 3362#endif
1586 3363
3364#if EV_CLEANUP_ENABLE
3365 assert (cleanupmax >= cleanupcnt);
3366 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3367#endif
3368
1587#if EV_ASYNC_ENABLE 3369#if EV_ASYNC_ENABLE
1588 assert (asyncmax >= asynccnt); 3370 assert (asyncmax >= asynccnt);
1589 array_verify (EV_A_ (W *)asyncs, asynccnt); 3371 array_verify (EV_A_ (W *)asyncs, asynccnt);
1590#endif 3372#endif
1591 3373
3374#if EV_PREPARE_ENABLE
1592 assert (preparemax >= preparecnt); 3375 assert (preparemax >= preparecnt);
1593 array_verify (EV_A_ (W *)prepares, preparecnt); 3376 array_verify (EV_A_ (W *)prepares, preparecnt);
3377#endif
1594 3378
3379#if EV_CHECK_ENABLE
1595 assert (checkmax >= checkcnt); 3380 assert (checkmax >= checkcnt);
1596 array_verify (EV_A_ (W *)checks, checkcnt); 3381 array_verify (EV_A_ (W *)checks, checkcnt);
3382#endif
1597 3383
1598# if 0 3384# if 0
3385#if EV_CHILD_ENABLE
1599 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 3386 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1600 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 3387 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3388#endif
1601# endif 3389# endif
1602#endif 3390#endif
1603} 3391}
1604 3392#endif
1605#endif /* multiplicity */
1606 3393
1607#if EV_MULTIPLICITY 3394#if EV_MULTIPLICITY
3395ecb_cold
1608struct ev_loop * 3396struct ev_loop *
1609ev_default_loop_init (unsigned int flags)
1610#else 3397#else
1611int 3398int
3399#endif
1612ev_default_loop (unsigned int flags) 3400ev_default_loop (unsigned int flags) EV_NOEXCEPT
1613#endif
1614{ 3401{
1615 if (!ev_default_loop_ptr) 3402 if (!ev_default_loop_ptr)
1616 { 3403 {
1617#if EV_MULTIPLICITY 3404#if EV_MULTIPLICITY
1618 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3405 EV_P = ev_default_loop_ptr = &default_loop_struct;
1619#else 3406#else
1620 ev_default_loop_ptr = 1; 3407 ev_default_loop_ptr = 1;
1621#endif 3408#endif
1622 3409
1623 loop_init (EV_A_ flags); 3410 loop_init (EV_A_ flags);
1624 3411
1625 if (ev_backend (EV_A)) 3412 if (ev_backend (EV_A))
1626 { 3413 {
1627#ifndef _WIN32 3414#if EV_CHILD_ENABLE
1628 ev_signal_init (&childev, childcb, SIGCHLD); 3415 ev_signal_init (&childev, childcb, SIGCHLD);
1629 ev_set_priority (&childev, EV_MAXPRI); 3416 ev_set_priority (&childev, EV_MAXPRI);
1630 ev_signal_start (EV_A_ &childev); 3417 ev_signal_start (EV_A_ &childev);
1631 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3418 ev_unref (EV_A); /* child watcher should not keep loop alive */
1632#endif 3419#endif
1637 3424
1638 return ev_default_loop_ptr; 3425 return ev_default_loop_ptr;
1639} 3426}
1640 3427
1641void 3428void
1642ev_default_destroy (void) 3429ev_loop_fork (EV_P) EV_NOEXCEPT
1643{ 3430{
1644#if EV_MULTIPLICITY 3431 postfork = 1;
1645 struct ev_loop *loop = ev_default_loop_ptr;
1646#endif
1647
1648 ev_default_loop_ptr = 0;
1649
1650#ifndef _WIN32
1651 ev_ref (EV_A); /* child watcher */
1652 ev_signal_stop (EV_A_ &childev);
1653#endif
1654
1655 loop_destroy (EV_A);
1656}
1657
1658void
1659ev_default_fork (void)
1660{
1661#if EV_MULTIPLICITY
1662 struct ev_loop *loop = ev_default_loop_ptr;
1663#endif
1664
1665 postfork = 1; /* must be in line with ev_loop_fork */
1666} 3432}
1667 3433
1668/*****************************************************************************/ 3434/*****************************************************************************/
1669 3435
1670void 3436void
1671ev_invoke (EV_P_ void *w, int revents) 3437ev_invoke (EV_P_ void *w, int revents)
1672{ 3438{
1673 EV_CB_INVOKE ((W)w, revents); 3439 EV_CB_INVOKE ((W)w, revents);
1674} 3440}
1675 3441
1676void inline_speed 3442unsigned int
1677call_pending (EV_P) 3443ev_pending_count (EV_P) EV_NOEXCEPT
1678{ 3444{
1679 int pri; 3445 int pri;
3446 unsigned int count = 0;
1680 3447
1681 for (pri = NUMPRI; pri--; ) 3448 for (pri = NUMPRI; pri--; )
3449 count += pendingcnt [pri];
3450
3451 return count;
3452}
3453
3454ecb_noinline
3455void
3456ev_invoke_pending (EV_P)
3457{
3458 pendingpri = NUMPRI;
3459
3460 do
3461 {
3462 --pendingpri;
3463
3464 /* pendingpri possibly gets modified in the inner loop */
1682 while (pendingcnt [pri]) 3465 while (pendingcnt [pendingpri])
1683 {
1684 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1685
1686 if (expect_true (p->w))
1687 { 3466 {
1688 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 3467 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1689 3468
1690 p->w->pending = 0; 3469 p->w->pending = 0;
1691 EV_CB_INVOKE (p->w, p->events); 3470 EV_CB_INVOKE (p->w, p->events);
1692 EV_FREQUENT_CHECK; 3471 EV_FREQUENT_CHECK;
1693 } 3472 }
1694 } 3473 }
3474 while (pendingpri);
1695} 3475}
1696 3476
1697#if EV_IDLE_ENABLE 3477#if EV_IDLE_ENABLE
1698void inline_size 3478/* make idle watchers pending. this handles the "call-idle */
3479/* only when higher priorities are idle" logic */
3480inline_size void
1699idle_reify (EV_P) 3481idle_reify (EV_P)
1700{ 3482{
1701 if (expect_false (idleall)) 3483 if (ecb_expect_false (idleall))
1702 { 3484 {
1703 int pri; 3485 int pri;
1704 3486
1705 for (pri = NUMPRI; pri--; ) 3487 for (pri = NUMPRI; pri--; )
1706 { 3488 {
1715 } 3497 }
1716 } 3498 }
1717} 3499}
1718#endif 3500#endif
1719 3501
1720void inline_size 3502/* make timers pending */
3503inline_size void
1721timers_reify (EV_P) 3504timers_reify (EV_P)
1722{ 3505{
1723 EV_FREQUENT_CHECK; 3506 EV_FREQUENT_CHECK;
1724 3507
1725 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 3508 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1726 { 3509 {
1727 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 3510 do
1728
1729 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1730
1731 /* first reschedule or stop timer */
1732 if (w->repeat)
1733 { 3511 {
3512 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3513
3514 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3515
3516 /* first reschedule or stop timer */
3517 if (w->repeat)
3518 {
1734 ev_at (w) += w->repeat; 3519 ev_at (w) += w->repeat;
1735 if (ev_at (w) < mn_now) 3520 if (ev_at (w) < mn_now)
1736 ev_at (w) = mn_now; 3521 ev_at (w) = mn_now;
1737 3522
1738 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3523 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1739 3524
1740 ANHE_at_cache (timers [HEAP0]); 3525 ANHE_at_cache (timers [HEAP0]);
1741 downheap (timers, timercnt, HEAP0); 3526 downheap (timers, timercnt, HEAP0);
3527 }
3528 else
3529 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3530
3531 EV_FREQUENT_CHECK;
3532 feed_reverse (EV_A_ (W)w);
1742 } 3533 }
1743 else 3534 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1744 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1745 3535
1746 EV_FREQUENT_CHECK; 3536 feed_reverse_done (EV_A_ EV_TIMER);
1747 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1748 } 3537 }
1749} 3538}
1750 3539
1751#if EV_PERIODIC_ENABLE 3540#if EV_PERIODIC_ENABLE
1752void inline_size 3541
3542ecb_noinline
3543static void
3544periodic_recalc (EV_P_ ev_periodic *w)
3545{
3546 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3547 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3548
3549 /* the above almost always errs on the low side */
3550 while (at <= ev_rt_now)
3551 {
3552 ev_tstamp nat = at + w->interval;
3553
3554 /* when resolution fails us, we use ev_rt_now */
3555 if (ecb_expect_false (nat == at))
3556 {
3557 at = ev_rt_now;
3558 break;
3559 }
3560
3561 at = nat;
3562 }
3563
3564 ev_at (w) = at;
3565}
3566
3567/* make periodics pending */
3568inline_size void
1753periodics_reify (EV_P) 3569periodics_reify (EV_P)
1754{ 3570{
1755 EV_FREQUENT_CHECK; 3571 EV_FREQUENT_CHECK;
1756 3572
1757 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 3573 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1758 { 3574 {
1759 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 3575 do
1760
1761 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1762
1763 /* first reschedule or stop timer */
1764 if (w->reschedule_cb)
1765 { 3576 {
3577 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3578
3579 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3580
3581 /* first reschedule or stop timer */
3582 if (w->reschedule_cb)
3583 {
1766 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3584 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1767 3585
1768 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 3586 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1769 3587
1770 ANHE_at_cache (periodics [HEAP0]); 3588 ANHE_at_cache (periodics [HEAP0]);
1771 downheap (periodics, periodiccnt, HEAP0); 3589 downheap (periodics, periodiccnt, HEAP0);
3590 }
3591 else if (w->interval)
3592 {
3593 periodic_recalc (EV_A_ w);
3594 ANHE_at_cache (periodics [HEAP0]);
3595 downheap (periodics, periodiccnt, HEAP0);
3596 }
3597 else
3598 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3599
3600 EV_FREQUENT_CHECK;
3601 feed_reverse (EV_A_ (W)w);
1772 } 3602 }
1773 else if (w->interval) 3603 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1774 {
1775 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1776 /* if next trigger time is not sufficiently in the future, put it there */
1777 /* this might happen because of floating point inexactness */
1778 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1779 {
1780 ev_at (w) += w->interval;
1781 3604
1782 /* if interval is unreasonably low we might still have a time in the past */
1783 /* so correct this. this will make the periodic very inexact, but the user */
1784 /* has effectively asked to get triggered more often than possible */
1785 if (ev_at (w) < ev_rt_now)
1786 ev_at (w) = ev_rt_now;
1787 }
1788
1789 ANHE_at_cache (periodics [HEAP0]);
1790 downheap (periodics, periodiccnt, HEAP0);
1791 }
1792 else
1793 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1794
1795 EV_FREQUENT_CHECK;
1796 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3605 feed_reverse_done (EV_A_ EV_PERIODIC);
1797 } 3606 }
1798} 3607}
1799 3608
1800static void noinline 3609/* simply recalculate all periodics */
3610/* TODO: maybe ensure that at least one event happens when jumping forward? */
3611ecb_noinline ecb_cold
3612static void
1801periodics_reschedule (EV_P) 3613periodics_reschedule (EV_P)
1802{ 3614{
1803 int i; 3615 int i;
1804 3616
1805 /* adjust periodics after time jump */ 3617 /* adjust periodics after time jump */
1808 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 3620 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1809 3621
1810 if (w->reschedule_cb) 3622 if (w->reschedule_cb)
1811 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3623 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1812 else if (w->interval) 3624 else if (w->interval)
1813 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3625 periodic_recalc (EV_A_ w);
1814 3626
1815 ANHE_at_cache (periodics [i]); 3627 ANHE_at_cache (periodics [i]);
1816 } 3628 }
1817 3629
1818 reheap (periodics, periodiccnt); 3630 reheap (periodics, periodiccnt);
1819} 3631}
1820#endif 3632#endif
1821 3633
1822void inline_speed 3634/* adjust all timers by a given offset */
3635ecb_noinline ecb_cold
3636static void
3637timers_reschedule (EV_P_ ev_tstamp adjust)
3638{
3639 int i;
3640
3641 for (i = 0; i < timercnt; ++i)
3642 {
3643 ANHE *he = timers + i + HEAP0;
3644 ANHE_w (*he)->at += adjust;
3645 ANHE_at_cache (*he);
3646 }
3647}
3648
3649/* fetch new monotonic and realtime times from the kernel */
3650/* also detect if there was a timejump, and act accordingly */
3651inline_speed void
1823time_update (EV_P_ ev_tstamp max_block) 3652time_update (EV_P_ ev_tstamp max_block)
1824{ 3653{
1825 int i;
1826
1827#if EV_USE_MONOTONIC 3654#if EV_USE_MONOTONIC
1828 if (expect_true (have_monotonic)) 3655 if (ecb_expect_true (have_monotonic))
1829 { 3656 {
3657 int i;
1830 ev_tstamp odiff = rtmn_diff; 3658 ev_tstamp odiff = rtmn_diff;
1831 3659
1832 mn_now = get_clock (); 3660 mn_now = get_clock ();
1833 3661
1834 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3662 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1835 /* interpolate in the meantime */ 3663 /* interpolate in the meantime */
1836 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 3664 if (ecb_expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1837 { 3665 {
1838 ev_rt_now = rtmn_diff + mn_now; 3666 ev_rt_now = rtmn_diff + mn_now;
1839 return; 3667 return;
1840 } 3668 }
1841 3669
1850 * doesn't hurt either as we only do this on time-jumps or 3678 * doesn't hurt either as we only do this on time-jumps or
1851 * in the unlikely event of having been preempted here. 3679 * in the unlikely event of having been preempted here.
1852 */ 3680 */
1853 for (i = 4; --i; ) 3681 for (i = 4; --i; )
1854 { 3682 {
3683 ev_tstamp diff;
1855 rtmn_diff = ev_rt_now - mn_now; 3684 rtmn_diff = ev_rt_now - mn_now;
1856 3685
3686 diff = odiff - rtmn_diff;
3687
1857 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3688 if (ecb_expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1858 return; /* all is well */ 3689 return; /* all is well */
1859 3690
1860 ev_rt_now = ev_time (); 3691 ev_rt_now = ev_time ();
1861 mn_now = get_clock (); 3692 mn_now = get_clock ();
1862 now_floor = mn_now; 3693 now_floor = mn_now;
1863 } 3694 }
1864 3695
3696 /* no timer adjustment, as the monotonic clock doesn't jump */
3697 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1865# if EV_PERIODIC_ENABLE 3698# if EV_PERIODIC_ENABLE
1866 periodics_reschedule (EV_A); 3699 periodics_reschedule (EV_A);
1867# endif 3700# endif
1868 /* no timer adjustment, as the monotonic clock doesn't jump */
1869 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1870 } 3701 }
1871 else 3702 else
1872#endif 3703#endif
1873 { 3704 {
1874 ev_rt_now = ev_time (); 3705 ev_rt_now = ev_time ();
1875 3706
1876 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3707 if (ecb_expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1877 { 3708 {
3709 /* adjust timers. this is easy, as the offset is the same for all of them */
3710 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1878#if EV_PERIODIC_ENABLE 3711#if EV_PERIODIC_ENABLE
1879 periodics_reschedule (EV_A); 3712 periodics_reschedule (EV_A);
1880#endif 3713#endif
1881 /* adjust timers. this is easy, as the offset is the same for all of them */
1882 for (i = 0; i < timercnt; ++i)
1883 {
1884 ANHE *he = timers + i + HEAP0;
1885 ANHE_w (*he)->at += ev_rt_now - mn_now;
1886 ANHE_at_cache (*he);
1887 }
1888 } 3714 }
1889 3715
1890 mn_now = ev_rt_now; 3716 mn_now = ev_rt_now;
1891 } 3717 }
1892} 3718}
1893 3719
1894void 3720int
1895ev_ref (EV_P)
1896{
1897 ++activecnt;
1898}
1899
1900void
1901ev_unref (EV_P)
1902{
1903 --activecnt;
1904}
1905
1906void
1907ev_now_update (EV_P)
1908{
1909 time_update (EV_A_ 1e100);
1910}
1911
1912static int loop_done;
1913
1914void
1915ev_loop (EV_P_ int flags) 3721ev_run (EV_P_ int flags)
1916{ 3722{
3723#if EV_FEATURE_API
3724 ++loop_depth;
3725#endif
3726
3727 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3728
1917 loop_done = EVUNLOOP_CANCEL; 3729 loop_done = EVBREAK_CANCEL;
1918 3730
1919 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3731 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1920 3732
1921 do 3733 do
1922 { 3734 {
1923#if EV_VERIFY >= 2 3735#if EV_VERIFY >= 2
1924 ev_loop_verify (EV_A); 3736 ev_verify (EV_A);
1925#endif 3737#endif
1926 3738
1927#ifndef _WIN32 3739#ifndef _WIN32
1928 if (expect_false (curpid)) /* penalise the forking check even more */ 3740 if (ecb_expect_false (curpid)) /* penalise the forking check even more */
1929 if (expect_false (getpid () != curpid)) 3741 if (ecb_expect_false (getpid () != curpid))
1930 { 3742 {
1931 curpid = getpid (); 3743 curpid = getpid ();
1932 postfork = 1; 3744 postfork = 1;
1933 } 3745 }
1934#endif 3746#endif
1935 3747
1936#if EV_FORK_ENABLE 3748#if EV_FORK_ENABLE
1937 /* we might have forked, so queue fork handlers */ 3749 /* we might have forked, so queue fork handlers */
1938 if (expect_false (postfork)) 3750 if (ecb_expect_false (postfork))
1939 if (forkcnt) 3751 if (forkcnt)
1940 { 3752 {
1941 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3753 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1942 call_pending (EV_A); 3754 EV_INVOKE_PENDING;
1943 } 3755 }
1944#endif 3756#endif
1945 3757
3758#if EV_PREPARE_ENABLE
1946 /* queue prepare watchers (and execute them) */ 3759 /* queue prepare watchers (and execute them) */
1947 if (expect_false (preparecnt)) 3760 if (ecb_expect_false (preparecnt))
1948 { 3761 {
1949 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3762 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1950 call_pending (EV_A); 3763 EV_INVOKE_PENDING;
1951 } 3764 }
3765#endif
1952 3766
1953 if (expect_false (!activecnt)) 3767 if (ecb_expect_false (loop_done))
1954 break; 3768 break;
1955 3769
1956 /* we might have forked, so reify kernel state if necessary */ 3770 /* we might have forked, so reify kernel state if necessary */
1957 if (expect_false (postfork)) 3771 if (ecb_expect_false (postfork))
1958 loop_fork (EV_A); 3772 loop_fork (EV_A);
1959 3773
1960 /* update fd-related kernel structures */ 3774 /* update fd-related kernel structures */
1961 fd_reify (EV_A); 3775 fd_reify (EV_A);
1962 3776
1963 /* calculate blocking time */ 3777 /* calculate blocking time */
1964 { 3778 {
1965 ev_tstamp waittime = 0.; 3779 ev_tstamp waittime = 0.;
1966 ev_tstamp sleeptime = 0.; 3780 ev_tstamp sleeptime = 0.;
1967 3781
3782 /* remember old timestamp for io_blocktime calculation */
3783 ev_tstamp prev_mn_now = mn_now;
3784
3785 /* update time to cancel out callback processing overhead */
3786 time_update (EV_A_ 1e100);
3787
3788 /* from now on, we want a pipe-wake-up */
3789 pipe_write_wanted = 1;
3790
3791 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3792
1968 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3793 if (ecb_expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1969 { 3794 {
1970 /* update time to cancel out callback processing overhead */
1971 time_update (EV_A_ 1e100);
1972
1973 waittime = MAX_BLOCKTIME; 3795 waittime = MAX_BLOCKTIME;
1974 3796
1975 if (timercnt) 3797 if (timercnt)
1976 { 3798 {
1977 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3799 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1978 if (waittime > to) waittime = to; 3800 if (waittime > to) waittime = to;
1979 } 3801 }
1980 3802
1981#if EV_PERIODIC_ENABLE 3803#if EV_PERIODIC_ENABLE
1982 if (periodiccnt) 3804 if (periodiccnt)
1983 { 3805 {
1984 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3806 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1985 if (waittime > to) waittime = to; 3807 if (waittime > to) waittime = to;
1986 } 3808 }
1987#endif 3809#endif
1988 3810
3811 /* don't let timeouts decrease the waittime below timeout_blocktime */
1989 if (expect_false (waittime < timeout_blocktime)) 3812 if (ecb_expect_false (waittime < timeout_blocktime))
1990 waittime = timeout_blocktime; 3813 waittime = timeout_blocktime;
1991 3814
1992 sleeptime = waittime - backend_fudge; 3815 /* at this point, we NEED to wait, so we have to ensure */
3816 /* to pass a minimum nonzero value to the backend */
3817 if (ecb_expect_false (waittime < backend_mintime))
3818 waittime = backend_mintime;
1993 3819
3820 /* extra check because io_blocktime is commonly 0 */
1994 if (expect_true (sleeptime > io_blocktime)) 3821 if (ecb_expect_false (io_blocktime))
1995 sleeptime = io_blocktime;
1996
1997 if (sleeptime)
1998 { 3822 {
3823 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3824
3825 if (sleeptime > waittime - backend_mintime)
3826 sleeptime = waittime - backend_mintime;
3827
3828 if (ecb_expect_true (sleeptime > 0.))
3829 {
1999 ev_sleep (sleeptime); 3830 ev_sleep (sleeptime);
2000 waittime -= sleeptime; 3831 waittime -= sleeptime;
3832 }
2001 } 3833 }
2002 } 3834 }
2003 3835
3836#if EV_FEATURE_API
2004 ++loop_count; 3837 ++loop_count;
3838#endif
3839 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2005 backend_poll (EV_A_ waittime); 3840 backend_poll (EV_A_ waittime);
3841 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3842
3843 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3844
3845 ECB_MEMORY_FENCE_ACQUIRE;
3846 if (pipe_write_skipped)
3847 {
3848 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3849 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3850 }
2006 3851
2007 /* update ev_rt_now, do magic */ 3852 /* update ev_rt_now, do magic */
2008 time_update (EV_A_ waittime + sleeptime); 3853 time_update (EV_A_ waittime + sleeptime);
2009 } 3854 }
2010 3855
2017#if EV_IDLE_ENABLE 3862#if EV_IDLE_ENABLE
2018 /* queue idle watchers unless other events are pending */ 3863 /* queue idle watchers unless other events are pending */
2019 idle_reify (EV_A); 3864 idle_reify (EV_A);
2020#endif 3865#endif
2021 3866
3867#if EV_CHECK_ENABLE
2022 /* queue check watchers, to be executed first */ 3868 /* queue check watchers, to be executed first */
2023 if (expect_false (checkcnt)) 3869 if (ecb_expect_false (checkcnt))
2024 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3870 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3871#endif
2025 3872
2026 call_pending (EV_A); 3873 EV_INVOKE_PENDING;
2027 } 3874 }
2028 while (expect_true ( 3875 while (ecb_expect_true (
2029 activecnt 3876 activecnt
2030 && !loop_done 3877 && !loop_done
2031 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3878 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2032 )); 3879 ));
2033 3880
2034 if (loop_done == EVUNLOOP_ONE) 3881 if (loop_done == EVBREAK_ONE)
2035 loop_done = EVUNLOOP_CANCEL; 3882 loop_done = EVBREAK_CANCEL;
2036}
2037 3883
3884#if EV_FEATURE_API
3885 --loop_depth;
3886#endif
3887
3888 return activecnt;
3889}
3890
2038void 3891void
2039ev_unloop (EV_P_ int how) 3892ev_break (EV_P_ int how) EV_NOEXCEPT
2040{ 3893{
2041 loop_done = how; 3894 loop_done = how;
2042} 3895}
2043 3896
3897void
3898ev_ref (EV_P) EV_NOEXCEPT
3899{
3900 ++activecnt;
3901}
3902
3903void
3904ev_unref (EV_P) EV_NOEXCEPT
3905{
3906 --activecnt;
3907}
3908
3909void
3910ev_now_update (EV_P) EV_NOEXCEPT
3911{
3912 time_update (EV_A_ 1e100);
3913}
3914
3915void
3916ev_suspend (EV_P) EV_NOEXCEPT
3917{
3918 ev_now_update (EV_A);
3919}
3920
3921void
3922ev_resume (EV_P) EV_NOEXCEPT
3923{
3924 ev_tstamp mn_prev = mn_now;
3925
3926 ev_now_update (EV_A);
3927 timers_reschedule (EV_A_ mn_now - mn_prev);
3928#if EV_PERIODIC_ENABLE
3929 /* TODO: really do this? */
3930 periodics_reschedule (EV_A);
3931#endif
3932}
3933
2044/*****************************************************************************/ 3934/*****************************************************************************/
3935/* singly-linked list management, used when the expected list length is short */
2045 3936
2046void inline_size 3937inline_size void
2047wlist_add (WL *head, WL elem) 3938wlist_add (WL *head, WL elem)
2048{ 3939{
2049 elem->next = *head; 3940 elem->next = *head;
2050 *head = elem; 3941 *head = elem;
2051} 3942}
2052 3943
2053void inline_size 3944inline_size void
2054wlist_del (WL *head, WL elem) 3945wlist_del (WL *head, WL elem)
2055{ 3946{
2056 while (*head) 3947 while (*head)
2057 { 3948 {
2058 if (*head == elem) 3949 if (ecb_expect_true (*head == elem))
2059 { 3950 {
2060 *head = elem->next; 3951 *head = elem->next;
2061 return; 3952 break;
2062 } 3953 }
2063 3954
2064 head = &(*head)->next; 3955 head = &(*head)->next;
2065 } 3956 }
2066} 3957}
2067 3958
2068void inline_speed 3959/* internal, faster, version of ev_clear_pending */
3960inline_speed void
2069clear_pending (EV_P_ W w) 3961clear_pending (EV_P_ W w)
2070{ 3962{
2071 if (w->pending) 3963 if (w->pending)
2072 { 3964 {
2073 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3965 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2074 w->pending = 0; 3966 w->pending = 0;
2075 } 3967 }
2076} 3968}
2077 3969
2078int 3970int
2079ev_clear_pending (EV_P_ void *w) 3971ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
2080{ 3972{
2081 W w_ = (W)w; 3973 W w_ = (W)w;
2082 int pending = w_->pending; 3974 int pending = w_->pending;
2083 3975
2084 if (expect_true (pending)) 3976 if (ecb_expect_true (pending))
2085 { 3977 {
2086 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3978 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3979 p->w = (W)&pending_w;
2087 w_->pending = 0; 3980 w_->pending = 0;
2088 p->w = 0;
2089 return p->events; 3981 return p->events;
2090 } 3982 }
2091 else 3983 else
2092 return 0; 3984 return 0;
2093} 3985}
2094 3986
2095void inline_size 3987inline_size void
2096pri_adjust (EV_P_ W w) 3988pri_adjust (EV_P_ W w)
2097{ 3989{
2098 int pri = w->priority; 3990 int pri = ev_priority (w);
2099 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3991 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2100 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3992 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2101 w->priority = pri; 3993 ev_set_priority (w, pri);
2102} 3994}
2103 3995
2104void inline_speed 3996inline_speed void
2105ev_start (EV_P_ W w, int active) 3997ev_start (EV_P_ W w, int active)
2106{ 3998{
2107 pri_adjust (EV_A_ w); 3999 pri_adjust (EV_A_ w);
2108 w->active = active; 4000 w->active = active;
2109 ev_ref (EV_A); 4001 ev_ref (EV_A);
2110} 4002}
2111 4003
2112void inline_size 4004inline_size void
2113ev_stop (EV_P_ W w) 4005ev_stop (EV_P_ W w)
2114{ 4006{
2115 ev_unref (EV_A); 4007 ev_unref (EV_A);
2116 w->active = 0; 4008 w->active = 0;
2117} 4009}
2118 4010
2119/*****************************************************************************/ 4011/*****************************************************************************/
2120 4012
2121void noinline 4013ecb_noinline
4014void
2122ev_io_start (EV_P_ ev_io *w) 4015ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
2123{ 4016{
2124 int fd = w->fd; 4017 int fd = w->fd;
2125 4018
2126 if (expect_false (ev_is_active (w))) 4019 if (ecb_expect_false (ev_is_active (w)))
2127 return; 4020 return;
2128 4021
2129 assert (("ev_io_start called with negative fd", fd >= 0)); 4022 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2130 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE)))); 4023 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2131 4024
4025#if EV_VERIFY >= 2
4026 assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
4027#endif
2132 EV_FREQUENT_CHECK; 4028 EV_FREQUENT_CHECK;
2133 4029
2134 ev_start (EV_A_ (W)w, 1); 4030 ev_start (EV_A_ (W)w, 1);
2135 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 4031 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
2136 wlist_add (&anfds[fd].head, (WL)w); 4032 wlist_add (&anfds[fd].head, (WL)w);
2137 4033
4034 /* common bug, apparently */
4035 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
4036
2138 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 4037 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2139 w->events &= ~EV_IOFDSET; 4038 w->events &= ~EV__IOFDSET;
2140 4039
2141 EV_FREQUENT_CHECK; 4040 EV_FREQUENT_CHECK;
2142} 4041}
2143 4042
2144void noinline 4043ecb_noinline
4044void
2145ev_io_stop (EV_P_ ev_io *w) 4045ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
2146{ 4046{
2147 clear_pending (EV_A_ (W)w); 4047 clear_pending (EV_A_ (W)w);
2148 if (expect_false (!ev_is_active (w))) 4048 if (ecb_expect_false (!ev_is_active (w)))
2149 return; 4049 return;
2150 4050
2151 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 4051 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2152 4052
4053#if EV_VERIFY >= 2
4054 assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
4055#endif
2153 EV_FREQUENT_CHECK; 4056 EV_FREQUENT_CHECK;
2154 4057
2155 wlist_del (&anfds[w->fd].head, (WL)w); 4058 wlist_del (&anfds[w->fd].head, (WL)w);
2156 ev_stop (EV_A_ (W)w); 4059 ev_stop (EV_A_ (W)w);
2157 4060
2158 fd_change (EV_A_ w->fd, 1); 4061 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2159 4062
2160 EV_FREQUENT_CHECK; 4063 EV_FREQUENT_CHECK;
2161} 4064}
2162 4065
2163void noinline 4066ecb_noinline
4067void
2164ev_timer_start (EV_P_ ev_timer *w) 4068ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
2165{ 4069{
2166 if (expect_false (ev_is_active (w))) 4070 if (ecb_expect_false (ev_is_active (w)))
2167 return; 4071 return;
2168 4072
2169 ev_at (w) += mn_now; 4073 ev_at (w) += mn_now;
2170 4074
2171 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 4075 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2172 4076
2173 EV_FREQUENT_CHECK; 4077 EV_FREQUENT_CHECK;
2174 4078
2175 ++timercnt; 4079 ++timercnt;
2176 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 4080 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2177 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 4081 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
2178 ANHE_w (timers [ev_active (w)]) = (WT)w; 4082 ANHE_w (timers [ev_active (w)]) = (WT)w;
2179 ANHE_at_cache (timers [ev_active (w)]); 4083 ANHE_at_cache (timers [ev_active (w)]);
2180 upheap (timers, ev_active (w)); 4084 upheap (timers, ev_active (w));
2181 4085
2182 EV_FREQUENT_CHECK; 4086 EV_FREQUENT_CHECK;
2183 4087
2184 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 4088 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2185} 4089}
2186 4090
2187void noinline 4091ecb_noinline
4092void
2188ev_timer_stop (EV_P_ ev_timer *w) 4093ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
2189{ 4094{
2190 clear_pending (EV_A_ (W)w); 4095 clear_pending (EV_A_ (W)w);
2191 if (expect_false (!ev_is_active (w))) 4096 if (ecb_expect_false (!ev_is_active (w)))
2192 return; 4097 return;
2193 4098
2194 EV_FREQUENT_CHECK; 4099 EV_FREQUENT_CHECK;
2195 4100
2196 { 4101 {
2197 int active = ev_active (w); 4102 int active = ev_active (w);
2198 4103
2199 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 4104 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2200 4105
2201 --timercnt; 4106 --timercnt;
2202 4107
2203 if (expect_true (active < timercnt + HEAP0)) 4108 if (ecb_expect_true (active < timercnt + HEAP0))
2204 { 4109 {
2205 timers [active] = timers [timercnt + HEAP0]; 4110 timers [active] = timers [timercnt + HEAP0];
2206 adjustheap (timers, timercnt, active); 4111 adjustheap (timers, timercnt, active);
2207 } 4112 }
2208 } 4113 }
2209 4114
2210 EV_FREQUENT_CHECK;
2211
2212 ev_at (w) -= mn_now; 4115 ev_at (w) -= mn_now;
2213 4116
2214 ev_stop (EV_A_ (W)w); 4117 ev_stop (EV_A_ (W)w);
2215}
2216 4118
2217void noinline 4119 EV_FREQUENT_CHECK;
4120}
4121
4122ecb_noinline
4123void
2218ev_timer_again (EV_P_ ev_timer *w) 4124ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
2219{ 4125{
2220 EV_FREQUENT_CHECK; 4126 EV_FREQUENT_CHECK;
4127
4128 clear_pending (EV_A_ (W)w);
2221 4129
2222 if (ev_is_active (w)) 4130 if (ev_is_active (w))
2223 { 4131 {
2224 if (w->repeat) 4132 if (w->repeat)
2225 { 4133 {
2237 } 4145 }
2238 4146
2239 EV_FREQUENT_CHECK; 4147 EV_FREQUENT_CHECK;
2240} 4148}
2241 4149
4150ev_tstamp
4151ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4152{
4153 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
4154}
4155
2242#if EV_PERIODIC_ENABLE 4156#if EV_PERIODIC_ENABLE
2243void noinline 4157ecb_noinline
4158void
2244ev_periodic_start (EV_P_ ev_periodic *w) 4159ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
2245{ 4160{
2246 if (expect_false (ev_is_active (w))) 4161 if (ecb_expect_false (ev_is_active (w)))
2247 return; 4162 return;
2248 4163
2249 if (w->reschedule_cb) 4164 if (w->reschedule_cb)
2250 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 4165 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2251 else if (w->interval) 4166 else if (w->interval)
2252 { 4167 {
2253 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 4168 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2254 /* this formula differs from the one in periodic_reify because we do not always round up */ 4169 periodic_recalc (EV_A_ w);
2255 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2256 } 4170 }
2257 else 4171 else
2258 ev_at (w) = w->offset; 4172 ev_at (w) = w->offset;
2259 4173
2260 EV_FREQUENT_CHECK; 4174 EV_FREQUENT_CHECK;
2261 4175
2262 ++periodiccnt; 4176 ++periodiccnt;
2263 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1); 4177 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2264 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 4178 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
2265 ANHE_w (periodics [ev_active (w)]) = (WT)w; 4179 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2266 ANHE_at_cache (periodics [ev_active (w)]); 4180 ANHE_at_cache (periodics [ev_active (w)]);
2267 upheap (periodics, ev_active (w)); 4181 upheap (periodics, ev_active (w));
2268 4182
2269 EV_FREQUENT_CHECK; 4183 EV_FREQUENT_CHECK;
2270 4184
2271 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 4185 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2272} 4186}
2273 4187
2274void noinline 4188ecb_noinline
4189void
2275ev_periodic_stop (EV_P_ ev_periodic *w) 4190ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
2276{ 4191{
2277 clear_pending (EV_A_ (W)w); 4192 clear_pending (EV_A_ (W)w);
2278 if (expect_false (!ev_is_active (w))) 4193 if (ecb_expect_false (!ev_is_active (w)))
2279 return; 4194 return;
2280 4195
2281 EV_FREQUENT_CHECK; 4196 EV_FREQUENT_CHECK;
2282 4197
2283 { 4198 {
2284 int active = ev_active (w); 4199 int active = ev_active (w);
2285 4200
2286 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 4201 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2287 4202
2288 --periodiccnt; 4203 --periodiccnt;
2289 4204
2290 if (expect_true (active < periodiccnt + HEAP0)) 4205 if (ecb_expect_true (active < periodiccnt + HEAP0))
2291 { 4206 {
2292 periodics [active] = periodics [periodiccnt + HEAP0]; 4207 periodics [active] = periodics [periodiccnt + HEAP0];
2293 adjustheap (periodics, periodiccnt, active); 4208 adjustheap (periodics, periodiccnt, active);
2294 } 4209 }
2295 } 4210 }
2296 4211
2297 EV_FREQUENT_CHECK;
2298
2299 ev_stop (EV_A_ (W)w); 4212 ev_stop (EV_A_ (W)w);
2300}
2301 4213
2302void noinline 4214 EV_FREQUENT_CHECK;
4215}
4216
4217ecb_noinline
4218void
2303ev_periodic_again (EV_P_ ev_periodic *w) 4219ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
2304{ 4220{
2305 /* TODO: use adjustheap and recalculation */ 4221 /* TODO: use adjustheap and recalculation */
2306 ev_periodic_stop (EV_A_ w); 4222 ev_periodic_stop (EV_A_ w);
2307 ev_periodic_start (EV_A_ w); 4223 ev_periodic_start (EV_A_ w);
2308} 4224}
2310 4226
2311#ifndef SA_RESTART 4227#ifndef SA_RESTART
2312# define SA_RESTART 0 4228# define SA_RESTART 0
2313#endif 4229#endif
2314 4230
2315void noinline 4231#if EV_SIGNAL_ENABLE
4232
4233ecb_noinline
4234void
2316ev_signal_start (EV_P_ ev_signal *w) 4235ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
2317{ 4236{
4237 if (ecb_expect_false (ev_is_active (w)))
4238 return;
4239
4240 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4241
2318#if EV_MULTIPLICITY 4242#if EV_MULTIPLICITY
2319 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4243 assert (("libev: a signal must not be attached to two different loops",
2320#endif 4244 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2321 if (expect_false (ev_is_active (w)))
2322 return;
2323 4245
2324 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4246 signals [w->signum - 1].loop = EV_A;
4247 ECB_MEMORY_FENCE_RELEASE;
4248#endif
2325 4249
2326 evpipe_init (EV_A);
2327
2328 EV_FREQUENT_CHECK; 4250 EV_FREQUENT_CHECK;
2329 4251
4252#if EV_USE_SIGNALFD
4253 if (sigfd == -2)
2330 { 4254 {
2331#ifndef _WIN32 4255 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2332 sigset_t full, prev; 4256 if (sigfd < 0 && errno == EINVAL)
2333 sigfillset (&full); 4257 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2334 sigprocmask (SIG_SETMASK, &full, &prev);
2335#endif
2336 4258
2337 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero); 4259 if (sigfd >= 0)
4260 {
4261 fd_intern (sigfd); /* doing it twice will not hurt */
2338 4262
2339#ifndef _WIN32 4263 sigemptyset (&sigfd_set);
2340 sigprocmask (SIG_SETMASK, &prev, 0); 4264
2341#endif 4265 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4266 ev_set_priority (&sigfd_w, EV_MAXPRI);
4267 ev_io_start (EV_A_ &sigfd_w);
4268 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4269 }
2342 } 4270 }
4271
4272 if (sigfd >= 0)
4273 {
4274 /* TODO: check .head */
4275 sigaddset (&sigfd_set, w->signum);
4276 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4277
4278 signalfd (sigfd, &sigfd_set, 0);
4279 }
4280#endif
2343 4281
2344 ev_start (EV_A_ (W)w, 1); 4282 ev_start (EV_A_ (W)w, 1);
2345 wlist_add (&signals [w->signum - 1].head, (WL)w); 4283 wlist_add (&signals [w->signum - 1].head, (WL)w);
2346 4284
2347 if (!((WL)w)->next) 4285 if (!((WL)w)->next)
4286# if EV_USE_SIGNALFD
4287 if (sigfd < 0) /*TODO*/
4288# endif
2348 { 4289 {
2349#if _WIN32 4290# ifdef _WIN32
4291 evpipe_init (EV_A);
4292
2350 signal (w->signum, ev_sighandler); 4293 signal (w->signum, ev_sighandler);
2351#else 4294# else
2352 struct sigaction sa; 4295 struct sigaction sa;
4296
4297 evpipe_init (EV_A);
4298
2353 sa.sa_handler = ev_sighandler; 4299 sa.sa_handler = ev_sighandler;
2354 sigfillset (&sa.sa_mask); 4300 sigfillset (&sa.sa_mask);
2355 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 4301 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2356 sigaction (w->signum, &sa, 0); 4302 sigaction (w->signum, &sa, 0);
4303
4304 if (origflags & EVFLAG_NOSIGMASK)
4305 {
4306 sigemptyset (&sa.sa_mask);
4307 sigaddset (&sa.sa_mask, w->signum);
4308 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4309 }
2357#endif 4310#endif
2358 } 4311 }
2359 4312
2360 EV_FREQUENT_CHECK; 4313 EV_FREQUENT_CHECK;
2361} 4314}
2362 4315
2363void noinline 4316ecb_noinline
4317void
2364ev_signal_stop (EV_P_ ev_signal *w) 4318ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
2365{ 4319{
2366 clear_pending (EV_A_ (W)w); 4320 clear_pending (EV_A_ (W)w);
2367 if (expect_false (!ev_is_active (w))) 4321 if (ecb_expect_false (!ev_is_active (w)))
2368 return; 4322 return;
2369 4323
2370 EV_FREQUENT_CHECK; 4324 EV_FREQUENT_CHECK;
2371 4325
2372 wlist_del (&signals [w->signum - 1].head, (WL)w); 4326 wlist_del (&signals [w->signum - 1].head, (WL)w);
2373 ev_stop (EV_A_ (W)w); 4327 ev_stop (EV_A_ (W)w);
2374 4328
2375 if (!signals [w->signum - 1].head) 4329 if (!signals [w->signum - 1].head)
2376 signal (w->signum, SIG_DFL); 4330 {
2377
2378 EV_FREQUENT_CHECK;
2379}
2380
2381void
2382ev_child_start (EV_P_ ev_child *w)
2383{
2384#if EV_MULTIPLICITY 4331#if EV_MULTIPLICITY
4332 signals [w->signum - 1].loop = 0; /* unattach from signal */
4333#endif
4334#if EV_USE_SIGNALFD
4335 if (sigfd >= 0)
4336 {
4337 sigset_t ss;
4338
4339 sigemptyset (&ss);
4340 sigaddset (&ss, w->signum);
4341 sigdelset (&sigfd_set, w->signum);
4342
4343 signalfd (sigfd, &sigfd_set, 0);
4344 sigprocmask (SIG_UNBLOCK, &ss, 0);
4345 }
4346 else
4347#endif
4348 signal (w->signum, SIG_DFL);
4349 }
4350
4351 EV_FREQUENT_CHECK;
4352}
4353
4354#endif
4355
4356#if EV_CHILD_ENABLE
4357
4358void
4359ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4360{
4361#if EV_MULTIPLICITY
2385 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4362 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2386#endif 4363#endif
2387 if (expect_false (ev_is_active (w))) 4364 if (ecb_expect_false (ev_is_active (w)))
2388 return; 4365 return;
2389 4366
2390 EV_FREQUENT_CHECK; 4367 EV_FREQUENT_CHECK;
2391 4368
2392 ev_start (EV_A_ (W)w, 1); 4369 ev_start (EV_A_ (W)w, 1);
2393 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4370 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2394 4371
2395 EV_FREQUENT_CHECK; 4372 EV_FREQUENT_CHECK;
2396} 4373}
2397 4374
2398void 4375void
2399ev_child_stop (EV_P_ ev_child *w) 4376ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
2400{ 4377{
2401 clear_pending (EV_A_ (W)w); 4378 clear_pending (EV_A_ (W)w);
2402 if (expect_false (!ev_is_active (w))) 4379 if (ecb_expect_false (!ev_is_active (w)))
2403 return; 4380 return;
2404 4381
2405 EV_FREQUENT_CHECK; 4382 EV_FREQUENT_CHECK;
2406 4383
2407 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4384 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2408 ev_stop (EV_A_ (W)w); 4385 ev_stop (EV_A_ (W)w);
2409 4386
2410 EV_FREQUENT_CHECK; 4387 EV_FREQUENT_CHECK;
2411} 4388}
4389
4390#endif
2412 4391
2413#if EV_STAT_ENABLE 4392#if EV_STAT_ENABLE
2414 4393
2415# ifdef _WIN32 4394# ifdef _WIN32
2416# undef lstat 4395# undef lstat
2417# define lstat(a,b) _stati64 (a,b) 4396# define lstat(a,b) _stati64 (a,b)
2418# endif 4397# endif
2419 4398
2420#define DEF_STAT_INTERVAL 5.0074891 4399#define DEF_STAT_INTERVAL 5.0074891
4400#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2421#define MIN_STAT_INTERVAL 0.1074891 4401#define MIN_STAT_INTERVAL 0.1074891
2422 4402
2423static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4403ecb_noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2424 4404
2425#if EV_USE_INOTIFY 4405#if EV_USE_INOTIFY
2426# define EV_INOTIFY_BUFSIZE 8192
2427 4406
2428static void noinline 4407/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4408# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4409
4410ecb_noinline
4411static void
2429infy_add (EV_P_ ev_stat *w) 4412infy_add (EV_P_ ev_stat *w)
2430{ 4413{
2431 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4414 w->wd = inotify_add_watch (fs_fd, w->path,
4415 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4416 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4417 | IN_DONT_FOLLOW | IN_MASK_ADD);
2432 4418
2433 if (w->wd < 0) 4419 if (w->wd >= 0)
4420 {
4421 struct statfs sfs;
4422
4423 /* now local changes will be tracked by inotify, but remote changes won't */
4424 /* unless the filesystem is known to be local, we therefore still poll */
4425 /* also do poll on <2.6.25, but with normal frequency */
4426
4427 if (!fs_2625)
4428 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4429 else if (!statfs (w->path, &sfs)
4430 && (sfs.f_type == 0x1373 /* devfs */
4431 || sfs.f_type == 0x4006 /* fat */
4432 || sfs.f_type == 0x4d44 /* msdos */
4433 || sfs.f_type == 0xEF53 /* ext2/3 */
4434 || sfs.f_type == 0x72b6 /* jffs2 */
4435 || sfs.f_type == 0x858458f6 /* ramfs */
4436 || sfs.f_type == 0x5346544e /* ntfs */
4437 || sfs.f_type == 0x3153464a /* jfs */
4438 || sfs.f_type == 0x9123683e /* btrfs */
4439 || sfs.f_type == 0x52654973 /* reiser3 */
4440 || sfs.f_type == 0x01021994 /* tmpfs */
4441 || sfs.f_type == 0x58465342 /* xfs */))
4442 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4443 else
4444 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2434 { 4445 }
2435 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 4446 else
4447 {
4448 /* can't use inotify, continue to stat */
4449 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2436 4450
2437 /* monitor some parent directory for speedup hints */ 4451 /* if path is not there, monitor some parent directory for speedup hints */
2438 /* note that exceeding the hardcoded path limit is not a correctness issue, */ 4452 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2439 /* but an efficiency issue only */ 4453 /* but an efficiency issue only */
2440 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4454 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2441 { 4455 {
2442 char path [4096]; 4456 char path [4096];
2447 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4461 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2448 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4462 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2449 4463
2450 char *pend = strrchr (path, '/'); 4464 char *pend = strrchr (path, '/');
2451 4465
2452 if (!pend) 4466 if (!pend || pend == path)
2453 break; /* whoops, no '/', complain to your admin */ 4467 break;
2454 4468
2455 *pend = 0; 4469 *pend = 0;
2456 w->wd = inotify_add_watch (fs_fd, path, mask); 4470 w->wd = inotify_add_watch (fs_fd, path, mask);
2457 } 4471 }
2458 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4472 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2459 } 4473 }
2460 } 4474 }
2461 else
2462 todo, on nfs etc., we need to poll every 60s or so
2463 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2464 4475
2465 if (w->wd >= 0) 4476 if (w->wd >= 0)
2466 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4477 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2467}
2468 4478
2469static void noinline 4479 /* now re-arm timer, if required */
4480 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4481 ev_timer_again (EV_A_ &w->timer);
4482 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4483}
4484
4485ecb_noinline
4486static void
2470infy_del (EV_P_ ev_stat *w) 4487infy_del (EV_P_ ev_stat *w)
2471{ 4488{
2472 int slot; 4489 int slot;
2473 int wd = w->wd; 4490 int wd = w->wd;
2474 4491
2475 if (wd < 0) 4492 if (wd < 0)
2476 return; 4493 return;
2477 4494
2478 w->wd = -2; 4495 w->wd = -2;
2479 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4496 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2480 wlist_del (&fs_hash [slot].head, (WL)w); 4497 wlist_del (&fs_hash [slot].head, (WL)w);
2481 4498
2482 /* remove this watcher, if others are watching it, they will rearm */ 4499 /* remove this watcher, if others are watching it, they will rearm */
2483 inotify_rm_watch (fs_fd, wd); 4500 inotify_rm_watch (fs_fd, wd);
2484} 4501}
2485 4502
2486static void noinline 4503ecb_noinline
4504static void
2487infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4505infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2488{ 4506{
2489 if (slot < 0) 4507 if (slot < 0)
2490 /* overflow, need to check for all hash slots */ 4508 /* overflow, need to check for all hash slots */
2491 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4509 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2492 infy_wd (EV_A_ slot, wd, ev); 4510 infy_wd (EV_A_ slot, wd, ev);
2493 else 4511 else
2494 { 4512 {
2495 WL w_; 4513 WL w_;
2496 4514
2497 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4515 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2498 { 4516 {
2499 ev_stat *w = (ev_stat *)w_; 4517 ev_stat *w = (ev_stat *)w_;
2500 w_ = w_->next; /* lets us remove this watcher and all before it */ 4518 w_ = w_->next; /* lets us remove this watcher and all before it */
2501 4519
2502 if (w->wd == wd || wd == -1) 4520 if (w->wd == wd || wd == -1)
2503 { 4521 {
2504 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4522 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2505 { 4523 {
4524 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2506 w->wd = -1; 4525 w->wd = -1;
2507 infy_add (EV_A_ w); /* re-add, no matter what */ 4526 infy_add (EV_A_ w); /* re-add, no matter what */
2508 } 4527 }
2509 4528
2510 stat_timer_cb (EV_A_ &w->timer, 0); 4529 stat_timer_cb (EV_A_ &w->timer, 0);
2515 4534
2516static void 4535static void
2517infy_cb (EV_P_ ev_io *w, int revents) 4536infy_cb (EV_P_ ev_io *w, int revents)
2518{ 4537{
2519 char buf [EV_INOTIFY_BUFSIZE]; 4538 char buf [EV_INOTIFY_BUFSIZE];
2520 struct inotify_event *ev = (struct inotify_event *)buf;
2521 int ofs; 4539 int ofs;
2522 int len = read (fs_fd, buf, sizeof (buf)); 4540 int len = read (fs_fd, buf, sizeof (buf));
2523 4541
2524 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4542 for (ofs = 0; ofs < len; )
4543 {
4544 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2525 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4545 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4546 ofs += sizeof (struct inotify_event) + ev->len;
4547 }
2526} 4548}
2527 4549
2528void inline_size 4550inline_size ecb_cold
2529infy_init (EV_P) 4551void
4552ev_check_2625 (EV_P)
2530{ 4553{
2531 if (fs_fd != -2)
2532 return;
2533
2534 /* kernels < 2.6.25 are borked 4554 /* kernels < 2.6.25 are borked
2535 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 4555 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2536 */ 4556 */
2537 { 4557 if (ev_linux_version () < 0x020619)
2538 struct utsname buf; 4558 return;
2539 int major, minor, micro;
2540 4559
4560 fs_2625 = 1;
4561}
4562
4563inline_size int
4564infy_newfd (void)
4565{
4566#if defined IN_CLOEXEC && defined IN_NONBLOCK
4567 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4568 if (fd >= 0)
4569 return fd;
4570#endif
4571 return inotify_init ();
4572}
4573
4574inline_size void
4575infy_init (EV_P)
4576{
4577 if (fs_fd != -2)
4578 return;
4579
2541 fs_fd = -1; 4580 fs_fd = -1;
2542 4581
2543 if (uname (&buf)) 4582 ev_check_2625 (EV_A);
2544 return;
2545 4583
2546 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2547 return;
2548
2549 if (major < 2
2550 || (major == 2 && minor < 6)
2551 || (major == 2 && minor == 6 && micro < 25))
2552 return;
2553 }
2554
2555 fs_fd = inotify_init (); 4584 fs_fd = infy_newfd ();
2556 4585
2557 if (fs_fd >= 0) 4586 if (fs_fd >= 0)
2558 { 4587 {
4588 fd_intern (fs_fd);
2559 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4589 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2560 ev_set_priority (&fs_w, EV_MAXPRI); 4590 ev_set_priority (&fs_w, EV_MAXPRI);
2561 ev_io_start (EV_A_ &fs_w); 4591 ev_io_start (EV_A_ &fs_w);
4592 ev_unref (EV_A);
2562 } 4593 }
2563} 4594}
2564 4595
2565void inline_size 4596inline_size void
2566infy_fork (EV_P) 4597infy_fork (EV_P)
2567{ 4598{
2568 int slot; 4599 int slot;
2569 4600
2570 if (fs_fd < 0) 4601 if (fs_fd < 0)
2571 return; 4602 return;
2572 4603
4604 ev_ref (EV_A);
4605 ev_io_stop (EV_A_ &fs_w);
2573 close (fs_fd); 4606 close (fs_fd);
2574 fs_fd = inotify_init (); 4607 fs_fd = infy_newfd ();
2575 4608
4609 if (fs_fd >= 0)
4610 {
4611 fd_intern (fs_fd);
4612 ev_io_set (&fs_w, fs_fd, EV_READ);
4613 ev_io_start (EV_A_ &fs_w);
4614 ev_unref (EV_A);
4615 }
4616
2576 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4617 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2577 { 4618 {
2578 WL w_ = fs_hash [slot].head; 4619 WL w_ = fs_hash [slot].head;
2579 fs_hash [slot].head = 0; 4620 fs_hash [slot].head = 0;
2580 4621
2581 while (w_) 4622 while (w_)
2586 w->wd = -1; 4627 w->wd = -1;
2587 4628
2588 if (fs_fd >= 0) 4629 if (fs_fd >= 0)
2589 infy_add (EV_A_ w); /* re-add, no matter what */ 4630 infy_add (EV_A_ w); /* re-add, no matter what */
2590 else 4631 else
4632 {
4633 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4634 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2591 ev_timer_start (EV_A_ &w->timer); 4635 ev_timer_again (EV_A_ &w->timer);
4636 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4637 }
2592 } 4638 }
2593 } 4639 }
2594} 4640}
2595 4641
2596#endif 4642#endif
2600#else 4646#else
2601# define EV_LSTAT(p,b) lstat (p, b) 4647# define EV_LSTAT(p,b) lstat (p, b)
2602#endif 4648#endif
2603 4649
2604void 4650void
2605ev_stat_stat (EV_P_ ev_stat *w) 4651ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
2606{ 4652{
2607 if (lstat (w->path, &w->attr) < 0) 4653 if (lstat (w->path, &w->attr) < 0)
2608 w->attr.st_nlink = 0; 4654 w->attr.st_nlink = 0;
2609 else if (!w->attr.st_nlink) 4655 else if (!w->attr.st_nlink)
2610 w->attr.st_nlink = 1; 4656 w->attr.st_nlink = 1;
2611} 4657}
2612 4658
2613static void noinline 4659ecb_noinline
4660static void
2614stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4661stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2615{ 4662{
2616 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4663 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2617 4664
2618 /* we copy this here each the time so that */ 4665 ev_statdata prev = w->attr;
2619 /* prev has the old value when the callback gets invoked */
2620 w->prev = w->attr;
2621 ev_stat_stat (EV_A_ w); 4666 ev_stat_stat (EV_A_ w);
2622 4667
2623 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4668 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2624 if ( 4669 if (
2625 w->prev.st_dev != w->attr.st_dev 4670 prev.st_dev != w->attr.st_dev
2626 || w->prev.st_ino != w->attr.st_ino 4671 || prev.st_ino != w->attr.st_ino
2627 || w->prev.st_mode != w->attr.st_mode 4672 || prev.st_mode != w->attr.st_mode
2628 || w->prev.st_nlink != w->attr.st_nlink 4673 || prev.st_nlink != w->attr.st_nlink
2629 || w->prev.st_uid != w->attr.st_uid 4674 || prev.st_uid != w->attr.st_uid
2630 || w->prev.st_gid != w->attr.st_gid 4675 || prev.st_gid != w->attr.st_gid
2631 || w->prev.st_rdev != w->attr.st_rdev 4676 || prev.st_rdev != w->attr.st_rdev
2632 || w->prev.st_size != w->attr.st_size 4677 || prev.st_size != w->attr.st_size
2633 || w->prev.st_atime != w->attr.st_atime 4678 || prev.st_atime != w->attr.st_atime
2634 || w->prev.st_mtime != w->attr.st_mtime 4679 || prev.st_mtime != w->attr.st_mtime
2635 || w->prev.st_ctime != w->attr.st_ctime 4680 || prev.st_ctime != w->attr.st_ctime
2636 ) { 4681 ) {
4682 /* we only update w->prev on actual differences */
4683 /* in case we test more often than invoke the callback, */
4684 /* to ensure that prev is always different to attr */
4685 w->prev = prev;
4686
2637 #if EV_USE_INOTIFY 4687 #if EV_USE_INOTIFY
2638 if (fs_fd >= 0) 4688 if (fs_fd >= 0)
2639 { 4689 {
2640 infy_del (EV_A_ w); 4690 infy_del (EV_A_ w);
2641 infy_add (EV_A_ w); 4691 infy_add (EV_A_ w);
2646 ev_feed_event (EV_A_ w, EV_STAT); 4696 ev_feed_event (EV_A_ w, EV_STAT);
2647 } 4697 }
2648} 4698}
2649 4699
2650void 4700void
2651ev_stat_start (EV_P_ ev_stat *w) 4701ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
2652{ 4702{
2653 if (expect_false (ev_is_active (w))) 4703 if (ecb_expect_false (ev_is_active (w)))
2654 return; 4704 return;
2655 4705
2656 /* since we use memcmp, we need to clear any padding data etc. */
2657 memset (&w->prev, 0, sizeof (ev_statdata));
2658 memset (&w->attr, 0, sizeof (ev_statdata));
2659
2660 ev_stat_stat (EV_A_ w); 4706 ev_stat_stat (EV_A_ w);
2661 4707
4708 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2662 if (w->interval < MIN_STAT_INTERVAL) 4709 w->interval = MIN_STAT_INTERVAL;
2663 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2664 4710
2665 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4711 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2666 ev_set_priority (&w->timer, ev_priority (w)); 4712 ev_set_priority (&w->timer, ev_priority (w));
2667 4713
2668#if EV_USE_INOTIFY 4714#if EV_USE_INOTIFY
2669 infy_init (EV_A); 4715 infy_init (EV_A);
2670 4716
2671 if (fs_fd >= 0) 4717 if (fs_fd >= 0)
2672 infy_add (EV_A_ w); 4718 infy_add (EV_A_ w);
2673 else 4719 else
2674#endif 4720#endif
4721 {
2675 ev_timer_start (EV_A_ &w->timer); 4722 ev_timer_again (EV_A_ &w->timer);
4723 ev_unref (EV_A);
4724 }
2676 4725
2677 ev_start (EV_A_ (W)w, 1); 4726 ev_start (EV_A_ (W)w, 1);
2678 4727
2679 EV_FREQUENT_CHECK; 4728 EV_FREQUENT_CHECK;
2680} 4729}
2681 4730
2682void 4731void
2683ev_stat_stop (EV_P_ ev_stat *w) 4732ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
2684{ 4733{
2685 clear_pending (EV_A_ (W)w); 4734 clear_pending (EV_A_ (W)w);
2686 if (expect_false (!ev_is_active (w))) 4735 if (ecb_expect_false (!ev_is_active (w)))
2687 return; 4736 return;
2688 4737
2689 EV_FREQUENT_CHECK; 4738 EV_FREQUENT_CHECK;
2690 4739
2691#if EV_USE_INOTIFY 4740#if EV_USE_INOTIFY
2692 infy_del (EV_A_ w); 4741 infy_del (EV_A_ w);
2693#endif 4742#endif
4743
4744 if (ev_is_active (&w->timer))
4745 {
4746 ev_ref (EV_A);
2694 ev_timer_stop (EV_A_ &w->timer); 4747 ev_timer_stop (EV_A_ &w->timer);
4748 }
2695 4749
2696 ev_stop (EV_A_ (W)w); 4750 ev_stop (EV_A_ (W)w);
2697 4751
2698 EV_FREQUENT_CHECK; 4752 EV_FREQUENT_CHECK;
2699} 4753}
2700#endif 4754#endif
2701 4755
2702#if EV_IDLE_ENABLE 4756#if EV_IDLE_ENABLE
2703void 4757void
2704ev_idle_start (EV_P_ ev_idle *w) 4758ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
2705{ 4759{
2706 if (expect_false (ev_is_active (w))) 4760 if (ecb_expect_false (ev_is_active (w)))
2707 return; 4761 return;
2708 4762
2709 pri_adjust (EV_A_ (W)w); 4763 pri_adjust (EV_A_ (W)w);
2710 4764
2711 EV_FREQUENT_CHECK; 4765 EV_FREQUENT_CHECK;
2714 int active = ++idlecnt [ABSPRI (w)]; 4768 int active = ++idlecnt [ABSPRI (w)];
2715 4769
2716 ++idleall; 4770 ++idleall;
2717 ev_start (EV_A_ (W)w, active); 4771 ev_start (EV_A_ (W)w, active);
2718 4772
2719 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4773 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
2720 idles [ABSPRI (w)][active - 1] = w; 4774 idles [ABSPRI (w)][active - 1] = w;
2721 } 4775 }
2722 4776
2723 EV_FREQUENT_CHECK; 4777 EV_FREQUENT_CHECK;
2724} 4778}
2725 4779
2726void 4780void
2727ev_idle_stop (EV_P_ ev_idle *w) 4781ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
2728{ 4782{
2729 clear_pending (EV_A_ (W)w); 4783 clear_pending (EV_A_ (W)w);
2730 if (expect_false (!ev_is_active (w))) 4784 if (ecb_expect_false (!ev_is_active (w)))
2731 return; 4785 return;
2732 4786
2733 EV_FREQUENT_CHECK; 4787 EV_FREQUENT_CHECK;
2734 4788
2735 { 4789 {
2744 4798
2745 EV_FREQUENT_CHECK; 4799 EV_FREQUENT_CHECK;
2746} 4800}
2747#endif 4801#endif
2748 4802
4803#if EV_PREPARE_ENABLE
2749void 4804void
2750ev_prepare_start (EV_P_ ev_prepare *w) 4805ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
2751{ 4806{
2752 if (expect_false (ev_is_active (w))) 4807 if (ecb_expect_false (ev_is_active (w)))
2753 return; 4808 return;
2754 4809
2755 EV_FREQUENT_CHECK; 4810 EV_FREQUENT_CHECK;
2756 4811
2757 ev_start (EV_A_ (W)w, ++preparecnt); 4812 ev_start (EV_A_ (W)w, ++preparecnt);
2758 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4813 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
2759 prepares [preparecnt - 1] = w; 4814 prepares [preparecnt - 1] = w;
2760 4815
2761 EV_FREQUENT_CHECK; 4816 EV_FREQUENT_CHECK;
2762} 4817}
2763 4818
2764void 4819void
2765ev_prepare_stop (EV_P_ ev_prepare *w) 4820ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
2766{ 4821{
2767 clear_pending (EV_A_ (W)w); 4822 clear_pending (EV_A_ (W)w);
2768 if (expect_false (!ev_is_active (w))) 4823 if (ecb_expect_false (!ev_is_active (w)))
2769 return; 4824 return;
2770 4825
2771 EV_FREQUENT_CHECK; 4826 EV_FREQUENT_CHECK;
2772 4827
2773 { 4828 {
2779 4834
2780 ev_stop (EV_A_ (W)w); 4835 ev_stop (EV_A_ (W)w);
2781 4836
2782 EV_FREQUENT_CHECK; 4837 EV_FREQUENT_CHECK;
2783} 4838}
4839#endif
2784 4840
4841#if EV_CHECK_ENABLE
2785void 4842void
2786ev_check_start (EV_P_ ev_check *w) 4843ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
2787{ 4844{
2788 if (expect_false (ev_is_active (w))) 4845 if (ecb_expect_false (ev_is_active (w)))
2789 return; 4846 return;
2790 4847
2791 EV_FREQUENT_CHECK; 4848 EV_FREQUENT_CHECK;
2792 4849
2793 ev_start (EV_A_ (W)w, ++checkcnt); 4850 ev_start (EV_A_ (W)w, ++checkcnt);
2794 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4851 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
2795 checks [checkcnt - 1] = w; 4852 checks [checkcnt - 1] = w;
2796 4853
2797 EV_FREQUENT_CHECK; 4854 EV_FREQUENT_CHECK;
2798} 4855}
2799 4856
2800void 4857void
2801ev_check_stop (EV_P_ ev_check *w) 4858ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
2802{ 4859{
2803 clear_pending (EV_A_ (W)w); 4860 clear_pending (EV_A_ (W)w);
2804 if (expect_false (!ev_is_active (w))) 4861 if (ecb_expect_false (!ev_is_active (w)))
2805 return; 4862 return;
2806 4863
2807 EV_FREQUENT_CHECK; 4864 EV_FREQUENT_CHECK;
2808 4865
2809 { 4866 {
2815 4872
2816 ev_stop (EV_A_ (W)w); 4873 ev_stop (EV_A_ (W)w);
2817 4874
2818 EV_FREQUENT_CHECK; 4875 EV_FREQUENT_CHECK;
2819} 4876}
4877#endif
2820 4878
2821#if EV_EMBED_ENABLE 4879#if EV_EMBED_ENABLE
2822void noinline 4880ecb_noinline
4881void
2823ev_embed_sweep (EV_P_ ev_embed *w) 4882ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
2824{ 4883{
2825 ev_loop (w->other, EVLOOP_NONBLOCK); 4884 ev_run (w->other, EVRUN_NOWAIT);
2826} 4885}
2827 4886
2828static void 4887static void
2829embed_io_cb (EV_P_ ev_io *io, int revents) 4888embed_io_cb (EV_P_ ev_io *io, int revents)
2830{ 4889{
2831 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4890 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2832 4891
2833 if (ev_cb (w)) 4892 if (ev_cb (w))
2834 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4893 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2835 else 4894 else
2836 ev_loop (w->other, EVLOOP_NONBLOCK); 4895 ev_run (w->other, EVRUN_NOWAIT);
2837} 4896}
2838 4897
2839static void 4898static void
2840embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4899embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2841{ 4900{
2842 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4901 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2843 4902
2844 { 4903 {
2845 struct ev_loop *loop = w->other; 4904 EV_P = w->other;
2846 4905
2847 while (fdchangecnt) 4906 while (fdchangecnt)
2848 { 4907 {
2849 fd_reify (EV_A); 4908 fd_reify (EV_A);
2850 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4909 ev_run (EV_A_ EVRUN_NOWAIT);
2851 } 4910 }
2852 } 4911 }
2853} 4912}
2854 4913
2855static void 4914static void
2856embed_fork_cb (EV_P_ ev_fork *fork_w, int revents) 4915embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2857{ 4916{
2858 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 4917 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2859 4918
4919 ev_embed_stop (EV_A_ w);
4920
2860 { 4921 {
2861 struct ev_loop *loop = w->other; 4922 EV_P = w->other;
2862 4923
2863 ev_loop_fork (EV_A); 4924 ev_loop_fork (EV_A);
4925 ev_run (EV_A_ EVRUN_NOWAIT);
2864 } 4926 }
4927
4928 ev_embed_start (EV_A_ w);
2865} 4929}
2866 4930
2867#if 0 4931#if 0
2868static void 4932static void
2869embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4933embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2871 ev_idle_stop (EV_A_ idle); 4935 ev_idle_stop (EV_A_ idle);
2872} 4936}
2873#endif 4937#endif
2874 4938
2875void 4939void
2876ev_embed_start (EV_P_ ev_embed *w) 4940ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
2877{ 4941{
2878 if (expect_false (ev_is_active (w))) 4942 if (ecb_expect_false (ev_is_active (w)))
2879 return; 4943 return;
2880 4944
2881 { 4945 {
2882 struct ev_loop *loop = w->other; 4946 EV_P = w->other;
2883 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4947 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2884 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4948 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2885 } 4949 }
2886 4950
2887 EV_FREQUENT_CHECK; 4951 EV_FREQUENT_CHECK;
2888 4952
2902 4966
2903 EV_FREQUENT_CHECK; 4967 EV_FREQUENT_CHECK;
2904} 4968}
2905 4969
2906void 4970void
2907ev_embed_stop (EV_P_ ev_embed *w) 4971ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
2908{ 4972{
2909 clear_pending (EV_A_ (W)w); 4973 clear_pending (EV_A_ (W)w);
2910 if (expect_false (!ev_is_active (w))) 4974 if (ecb_expect_false (!ev_is_active (w)))
2911 return; 4975 return;
2912 4976
2913 EV_FREQUENT_CHECK; 4977 EV_FREQUENT_CHECK;
2914 4978
2915 ev_io_stop (EV_A_ &w->io); 4979 ev_io_stop (EV_A_ &w->io);
2916 ev_prepare_stop (EV_A_ &w->prepare); 4980 ev_prepare_stop (EV_A_ &w->prepare);
2917 ev_fork_stop (EV_A_ &w->fork); 4981 ev_fork_stop (EV_A_ &w->fork);
2918 4982
4983 ev_stop (EV_A_ (W)w);
4984
2919 EV_FREQUENT_CHECK; 4985 EV_FREQUENT_CHECK;
2920} 4986}
2921#endif 4987#endif
2922 4988
2923#if EV_FORK_ENABLE 4989#if EV_FORK_ENABLE
2924void 4990void
2925ev_fork_start (EV_P_ ev_fork *w) 4991ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
2926{ 4992{
2927 if (expect_false (ev_is_active (w))) 4993 if (ecb_expect_false (ev_is_active (w)))
2928 return; 4994 return;
2929 4995
2930 EV_FREQUENT_CHECK; 4996 EV_FREQUENT_CHECK;
2931 4997
2932 ev_start (EV_A_ (W)w, ++forkcnt); 4998 ev_start (EV_A_ (W)w, ++forkcnt);
2933 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4999 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
2934 forks [forkcnt - 1] = w; 5000 forks [forkcnt - 1] = w;
2935 5001
2936 EV_FREQUENT_CHECK; 5002 EV_FREQUENT_CHECK;
2937} 5003}
2938 5004
2939void 5005void
2940ev_fork_stop (EV_P_ ev_fork *w) 5006ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
2941{ 5007{
2942 clear_pending (EV_A_ (W)w); 5008 clear_pending (EV_A_ (W)w);
2943 if (expect_false (!ev_is_active (w))) 5009 if (ecb_expect_false (!ev_is_active (w)))
2944 return; 5010 return;
2945 5011
2946 EV_FREQUENT_CHECK; 5012 EV_FREQUENT_CHECK;
2947 5013
2948 { 5014 {
2956 5022
2957 EV_FREQUENT_CHECK; 5023 EV_FREQUENT_CHECK;
2958} 5024}
2959#endif 5025#endif
2960 5026
5027#if EV_CLEANUP_ENABLE
5028void
5029ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5030{
5031 if (ecb_expect_false (ev_is_active (w)))
5032 return;
5033
5034 EV_FREQUENT_CHECK;
5035
5036 ev_start (EV_A_ (W)w, ++cleanupcnt);
5037 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
5038 cleanups [cleanupcnt - 1] = w;
5039
5040 /* cleanup watchers should never keep a refcount on the loop */
5041 ev_unref (EV_A);
5042 EV_FREQUENT_CHECK;
5043}
5044
5045void
5046ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5047{
5048 clear_pending (EV_A_ (W)w);
5049 if (ecb_expect_false (!ev_is_active (w)))
5050 return;
5051
5052 EV_FREQUENT_CHECK;
5053 ev_ref (EV_A);
5054
5055 {
5056 int active = ev_active (w);
5057
5058 cleanups [active - 1] = cleanups [--cleanupcnt];
5059 ev_active (cleanups [active - 1]) = active;
5060 }
5061
5062 ev_stop (EV_A_ (W)w);
5063
5064 EV_FREQUENT_CHECK;
5065}
5066#endif
5067
2961#if EV_ASYNC_ENABLE 5068#if EV_ASYNC_ENABLE
2962void 5069void
2963ev_async_start (EV_P_ ev_async *w) 5070ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
2964{ 5071{
2965 if (expect_false (ev_is_active (w))) 5072 if (ecb_expect_false (ev_is_active (w)))
2966 return; 5073 return;
2967 5074
5075 w->sent = 0;
5076
2968 evpipe_init (EV_A); 5077 evpipe_init (EV_A);
2969 5078
2970 EV_FREQUENT_CHECK; 5079 EV_FREQUENT_CHECK;
2971 5080
2972 ev_start (EV_A_ (W)w, ++asynccnt); 5081 ev_start (EV_A_ (W)w, ++asynccnt);
2973 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 5082 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
2974 asyncs [asynccnt - 1] = w; 5083 asyncs [asynccnt - 1] = w;
2975 5084
2976 EV_FREQUENT_CHECK; 5085 EV_FREQUENT_CHECK;
2977} 5086}
2978 5087
2979void 5088void
2980ev_async_stop (EV_P_ ev_async *w) 5089ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
2981{ 5090{
2982 clear_pending (EV_A_ (W)w); 5091 clear_pending (EV_A_ (W)w);
2983 if (expect_false (!ev_is_active (w))) 5092 if (ecb_expect_false (!ev_is_active (w)))
2984 return; 5093 return;
2985 5094
2986 EV_FREQUENT_CHECK; 5095 EV_FREQUENT_CHECK;
2987 5096
2988 { 5097 {
2996 5105
2997 EV_FREQUENT_CHECK; 5106 EV_FREQUENT_CHECK;
2998} 5107}
2999 5108
3000void 5109void
3001ev_async_send (EV_P_ ev_async *w) 5110ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
3002{ 5111{
3003 w->sent = 1; 5112 w->sent = 1;
3004 evpipe_write (EV_A_ &gotasync); 5113 evpipe_write (EV_A_ &async_pending);
3005} 5114}
3006#endif 5115#endif
3007 5116
3008/*****************************************************************************/ 5117/*****************************************************************************/
3009 5118
3043 5152
3044 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io)); 5153 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3045} 5154}
3046 5155
3047void 5156void
3048ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5157ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
3049{ 5158{
3050 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 5159 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3051
3052 if (expect_false (!once))
3053 {
3054 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
3055 return;
3056 }
3057 5160
3058 once->cb = cb; 5161 once->cb = cb;
3059 once->arg = arg; 5162 once->arg = arg;
3060 5163
3061 ev_init (&once->io, once_cb_io); 5164 ev_init (&once->io, once_cb_io);
3071 ev_timer_set (&once->to, timeout, 0.); 5174 ev_timer_set (&once->to, timeout, 0.);
3072 ev_timer_start (EV_A_ &once->to); 5175 ev_timer_start (EV_A_ &once->to);
3073 } 5176 }
3074} 5177}
3075 5178
5179/*****************************************************************************/
5180
5181#if EV_WALK_ENABLE
5182ecb_cold
5183void
5184ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5185{
5186 int i, j;
5187 ev_watcher_list *wl, *wn;
5188
5189 if (types & (EV_IO | EV_EMBED))
5190 for (i = 0; i < anfdmax; ++i)
5191 for (wl = anfds [i].head; wl; )
5192 {
5193 wn = wl->next;
5194
5195#if EV_EMBED_ENABLE
5196 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5197 {
5198 if (types & EV_EMBED)
5199 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5200 }
5201 else
5202#endif
5203#if EV_USE_INOTIFY
5204 if (ev_cb ((ev_io *)wl) == infy_cb)
5205 ;
5206 else
5207#endif
5208 if ((ev_io *)wl != &pipe_w)
5209 if (types & EV_IO)
5210 cb (EV_A_ EV_IO, wl);
5211
5212 wl = wn;
5213 }
5214
5215 if (types & (EV_TIMER | EV_STAT))
5216 for (i = timercnt + HEAP0; i-- > HEAP0; )
5217#if EV_STAT_ENABLE
5218 /*TODO: timer is not always active*/
5219 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5220 {
5221 if (types & EV_STAT)
5222 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5223 }
5224 else
5225#endif
5226 if (types & EV_TIMER)
5227 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5228
5229#if EV_PERIODIC_ENABLE
5230 if (types & EV_PERIODIC)
5231 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5232 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5233#endif
5234
5235#if EV_IDLE_ENABLE
5236 if (types & EV_IDLE)
5237 for (j = NUMPRI; j--; )
5238 for (i = idlecnt [j]; i--; )
5239 cb (EV_A_ EV_IDLE, idles [j][i]);
5240#endif
5241
5242#if EV_FORK_ENABLE
5243 if (types & EV_FORK)
5244 for (i = forkcnt; i--; )
5245 if (ev_cb (forks [i]) != embed_fork_cb)
5246 cb (EV_A_ EV_FORK, forks [i]);
5247#endif
5248
5249#if EV_ASYNC_ENABLE
5250 if (types & EV_ASYNC)
5251 for (i = asynccnt; i--; )
5252 cb (EV_A_ EV_ASYNC, asyncs [i]);
5253#endif
5254
5255#if EV_PREPARE_ENABLE
5256 if (types & EV_PREPARE)
5257 for (i = preparecnt; i--; )
5258# if EV_EMBED_ENABLE
5259 if (ev_cb (prepares [i]) != embed_prepare_cb)
5260# endif
5261 cb (EV_A_ EV_PREPARE, prepares [i]);
5262#endif
5263
5264#if EV_CHECK_ENABLE
5265 if (types & EV_CHECK)
5266 for (i = checkcnt; i--; )
5267 cb (EV_A_ EV_CHECK, checks [i]);
5268#endif
5269
5270#if EV_SIGNAL_ENABLE
5271 if (types & EV_SIGNAL)
5272 for (i = 0; i < EV_NSIG - 1; ++i)
5273 for (wl = signals [i].head; wl; )
5274 {
5275 wn = wl->next;
5276 cb (EV_A_ EV_SIGNAL, wl);
5277 wl = wn;
5278 }
5279#endif
5280
5281#if EV_CHILD_ENABLE
5282 if (types & EV_CHILD)
5283 for (i = (EV_PID_HASHSIZE); i--; )
5284 for (wl = childs [i]; wl; )
5285 {
5286 wn = wl->next;
5287 cb (EV_A_ EV_CHILD, wl);
5288 wl = wn;
5289 }
5290#endif
5291/* EV_STAT 0x00001000 /* stat data changed */
5292/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5293}
5294#endif
5295
3076#if EV_MULTIPLICITY 5296#if EV_MULTIPLICITY
3077 #include "ev_wrap.h" 5297 #include "ev_wrap.h"
3078#endif 5298#endif
3079 5299
3080#ifdef __cplusplus
3081}
3082#endif
3083

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines