ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.271 by root, Mon Nov 3 12:13:15 2008 UTC vs.
Revision 1.514 by root, Fri Dec 20 05:20:50 2019 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
100# ifndef EV_USE_KQUEUE 120# if HAVE_LINUX_AIO_ABI_H
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 121# ifndef EV_USE_LINUXAIO
102# define EV_USE_KQUEUE 1 122# define EV_USE_LINUXAIO EV_FEATURE_BACKENDS
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_LINUXAIO
126# define EV_USE_LINUXAIO 0
106# endif 127# endif
107 128
129# if HAVE_LINUX_FS_H && HAVE_SYS_TIMERFD_H && HAVE_KERNEL_RWF_T
108# ifndef EV_USE_PORT 130# ifndef EV_USE_IOURING
109# if HAVE_PORT_H && HAVE_PORT_CREATE 131# define EV_USE_IOURING EV_FEATURE_BACKENDS
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif 132# endif
114# endif
115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else 133# else
134# undef EV_USE_IOURING
120# define EV_USE_INOTIFY 0 135# define EV_USE_IOURING 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif 136# endif
131 137
138# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
139# ifndef EV_USE_KQUEUE
140# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
141# endif
142# else
143# undef EV_USE_KQUEUE
144# define EV_USE_KQUEUE 0
132#endif 145# endif
146
147# if HAVE_PORT_H && HAVE_PORT_CREATE
148# ifndef EV_USE_PORT
149# define EV_USE_PORT EV_FEATURE_BACKENDS
150# endif
151# else
152# undef EV_USE_PORT
153# define EV_USE_PORT 0
154# endif
133 155
134#include <math.h> 156# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
157# ifndef EV_USE_INOTIFY
158# define EV_USE_INOTIFY EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_INOTIFY
162# define EV_USE_INOTIFY 0
163# endif
164
165# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
166# ifndef EV_USE_SIGNALFD
167# define EV_USE_SIGNALFD EV_FEATURE_OS
168# endif
169# else
170# undef EV_USE_SIGNALFD
171# define EV_USE_SIGNALFD 0
172# endif
173
174# if HAVE_EVENTFD
175# ifndef EV_USE_EVENTFD
176# define EV_USE_EVENTFD EV_FEATURE_OS
177# endif
178# else
179# undef EV_USE_EVENTFD
180# define EV_USE_EVENTFD 0
181# endif
182
183#endif
184
185/* OS X, in its infinite idiocy, actually HARDCODES
186 * a limit of 1024 into their select. Where people have brains,
187 * OS X engineers apparently have a vacuum. Or maybe they were
188 * ordered to have a vacuum, or they do anything for money.
189 * This might help. Or not.
190 * Note that this must be defined early, as other include files
191 * will rely on this define as well.
192 */
193#define _DARWIN_UNLIMITED_SELECT 1
194
135#include <stdlib.h> 195#include <stdlib.h>
196#include <string.h>
136#include <fcntl.h> 197#include <fcntl.h>
137#include <stddef.h> 198#include <stddef.h>
138 199
139#include <stdio.h> 200#include <stdio.h>
140 201
141#include <assert.h> 202#include <assert.h>
142#include <errno.h> 203#include <errno.h>
143#include <sys/types.h> 204#include <sys/types.h>
144#include <time.h> 205#include <time.h>
206#include <limits.h>
145 207
146#include <signal.h> 208#include <signal.h>
147 209
148#ifdef EV_H 210#ifdef EV_H
149# include EV_H 211# include EV_H
150#else 212#else
151# include "ev.h" 213# include "ev.h"
214#endif
215
216#if EV_NO_THREADS
217# undef EV_NO_SMP
218# define EV_NO_SMP 1
219# undef ECB_NO_THREADS
220# define ECB_NO_THREADS 1
221#endif
222#if EV_NO_SMP
223# undef EV_NO_SMP
224# define ECB_NO_SMP 1
152#endif 225#endif
153 226
154#ifndef _WIN32 227#ifndef _WIN32
155# include <sys/time.h> 228# include <sys/time.h>
156# include <sys/wait.h> 229# include <sys/wait.h>
157# include <unistd.h> 230# include <unistd.h>
158#else 231#else
159# include <io.h> 232# include <io.h>
160# define WIN32_LEAN_AND_MEAN 233# define WIN32_LEAN_AND_MEAN
234# include <winsock2.h>
161# include <windows.h> 235# include <windows.h>
162# ifndef EV_SELECT_IS_WINSOCKET 236# ifndef EV_SELECT_IS_WINSOCKET
163# define EV_SELECT_IS_WINSOCKET 1 237# define EV_SELECT_IS_WINSOCKET 1
164# endif 238# endif
239# undef EV_AVOID_STDIO
165#endif 240#endif
166 241
167/* this block tries to deduce configuration from header-defined symbols and defaults */ 242/* this block tries to deduce configuration from header-defined symbols and defaults */
168 243
244/* try to deduce the maximum number of signals on this platform */
245#if defined EV_NSIG
246/* use what's provided */
247#elif defined NSIG
248# define EV_NSIG (NSIG)
249#elif defined _NSIG
250# define EV_NSIG (_NSIG)
251#elif defined SIGMAX
252# define EV_NSIG (SIGMAX+1)
253#elif defined SIG_MAX
254# define EV_NSIG (SIG_MAX+1)
255#elif defined _SIG_MAX
256# define EV_NSIG (_SIG_MAX+1)
257#elif defined MAXSIG
258# define EV_NSIG (MAXSIG+1)
259#elif defined MAX_SIG
260# define EV_NSIG (MAX_SIG+1)
261#elif defined SIGARRAYSIZE
262# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
263#elif defined _sys_nsig
264# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
265#else
266# define EV_NSIG (8 * sizeof (sigset_t) + 1)
267#endif
268
269#ifndef EV_USE_FLOOR
270# define EV_USE_FLOOR 0
271#endif
272
273#ifndef EV_USE_CLOCK_SYSCALL
274# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
275# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
276# else
277# define EV_USE_CLOCK_SYSCALL 0
278# endif
279#endif
280
281#if !(_POSIX_TIMERS > 0)
282# ifndef EV_USE_MONOTONIC
283# define EV_USE_MONOTONIC 0
284# endif
285# ifndef EV_USE_REALTIME
286# define EV_USE_REALTIME 0
287# endif
288#endif
289
169#ifndef EV_USE_MONOTONIC 290#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 291# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1 292# define EV_USE_MONOTONIC EV_FEATURE_OS
172# else 293# else
173# define EV_USE_MONOTONIC 0 294# define EV_USE_MONOTONIC 0
174# endif 295# endif
175#endif 296#endif
176 297
177#ifndef EV_USE_REALTIME 298#ifndef EV_USE_REALTIME
178# define EV_USE_REALTIME 0 299# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
179#endif 300#endif
180 301
181#ifndef EV_USE_NANOSLEEP 302#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L 303# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1 304# define EV_USE_NANOSLEEP EV_FEATURE_OS
184# else 305# else
185# define EV_USE_NANOSLEEP 0 306# define EV_USE_NANOSLEEP 0
186# endif 307# endif
187#endif 308#endif
188 309
189#ifndef EV_USE_SELECT 310#ifndef EV_USE_SELECT
190# define EV_USE_SELECT 1 311# define EV_USE_SELECT EV_FEATURE_BACKENDS
191#endif 312#endif
192 313
193#ifndef EV_USE_POLL 314#ifndef EV_USE_POLL
194# ifdef _WIN32 315# ifdef _WIN32
195# define EV_USE_POLL 0 316# define EV_USE_POLL 0
196# else 317# else
197# define EV_USE_POLL 1 318# define EV_USE_POLL EV_FEATURE_BACKENDS
198# endif 319# endif
199#endif 320#endif
200 321
201#ifndef EV_USE_EPOLL 322#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 323# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1 324# define EV_USE_EPOLL EV_FEATURE_BACKENDS
204# else 325# else
205# define EV_USE_EPOLL 0 326# define EV_USE_EPOLL 0
206# endif 327# endif
207#endif 328#endif
208 329
212 333
213#ifndef EV_USE_PORT 334#ifndef EV_USE_PORT
214# define EV_USE_PORT 0 335# define EV_USE_PORT 0
215#endif 336#endif
216 337
338#ifndef EV_USE_LINUXAIO
339# if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
340# define EV_USE_LINUXAIO 1
341# else
342# define EV_USE_LINUXAIO 0
343# endif
344#endif
345
346#ifndef EV_USE_IOURING
347# if __linux /* later checks might disable again */
348# define EV_USE_IOURING 1
349# else
350# define EV_USE_IOURING 0
351# endif
352#endif
353
217#ifndef EV_USE_INOTIFY 354#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 355# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1 356# define EV_USE_INOTIFY EV_FEATURE_OS
220# else 357# else
221# define EV_USE_INOTIFY 0 358# define EV_USE_INOTIFY 0
222# endif 359# endif
223#endif 360#endif
224 361
225#ifndef EV_PID_HASHSIZE 362#ifndef EV_PID_HASHSIZE
226# if EV_MINIMAL 363# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
230# endif
231#endif 364#endif
232 365
233#ifndef EV_INOTIFY_HASHSIZE 366#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL 367# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif 368#endif
240 369
241#ifndef EV_USE_EVENTFD 370#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 371# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1 372# define EV_USE_EVENTFD EV_FEATURE_OS
244# else 373# else
245# define EV_USE_EVENTFD 0 374# define EV_USE_EVENTFD 0
375# endif
376#endif
377
378#ifndef EV_USE_SIGNALFD
379# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
380# define EV_USE_SIGNALFD EV_FEATURE_OS
381# else
382# define EV_USE_SIGNALFD 0
246# endif 383# endif
247#endif 384#endif
248 385
249#if 0 /* debugging */ 386#if 0 /* debugging */
250# define EV_VERIFY 3 387# define EV_VERIFY 3
251# define EV_USE_4HEAP 1 388# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1 389# define EV_HEAP_CACHE_AT 1
253#endif 390#endif
254 391
255#ifndef EV_VERIFY 392#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL 393# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
257#endif 394#endif
258 395
259#ifndef EV_USE_4HEAP 396#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL 397# define EV_USE_4HEAP EV_FEATURE_DATA
261#endif 398#endif
262 399
263#ifndef EV_HEAP_CACHE_AT 400#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL 401# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
402#endif
403
404#ifdef __ANDROID__
405/* supposedly, android doesn't typedef fd_mask */
406# undef EV_USE_SELECT
407# define EV_USE_SELECT 0
408/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
409# undef EV_USE_CLOCK_SYSCALL
410# define EV_USE_CLOCK_SYSCALL 0
411#endif
412
413/* aix's poll.h seems to cause lots of trouble */
414#ifdef _AIX
415/* AIX has a completely broken poll.h header */
416# undef EV_USE_POLL
417# define EV_USE_POLL 0
418#endif
419
420/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
421/* which makes programs even slower. might work on other unices, too. */
422#if EV_USE_CLOCK_SYSCALL
423# include <sys/syscall.h>
424# ifdef SYS_clock_gettime
425# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
426# undef EV_USE_MONOTONIC
427# define EV_USE_MONOTONIC 1
428# define EV_NEED_SYSCALL 1
429# else
430# undef EV_USE_CLOCK_SYSCALL
431# define EV_USE_CLOCK_SYSCALL 0
432# endif
265#endif 433#endif
266 434
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 435/* this block fixes any misconfiguration where we know we run into trouble otherwise */
268 436
269#ifndef CLOCK_MONOTONIC 437#ifndef CLOCK_MONOTONIC
279#if !EV_STAT_ENABLE 447#if !EV_STAT_ENABLE
280# undef EV_USE_INOTIFY 448# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0 449# define EV_USE_INOTIFY 0
282#endif 450#endif
283 451
452#if __linux && EV_USE_IOURING
453# include <linux/version.h>
454# if LINUX_VERSION_CODE < KERNEL_VERSION(4,14,0)
455# undef EV_USE_IOURING
456# define EV_USE_IOURING 0
457# endif
458#endif
459
284#if !EV_USE_NANOSLEEP 460#if !EV_USE_NANOSLEEP
285# ifndef _WIN32 461/* hp-ux has it in sys/time.h, which we unconditionally include above */
462# if !defined _WIN32 && !defined __hpux
286# include <sys/select.h> 463# include <sys/select.h>
287# endif 464# endif
288#endif 465#endif
289 466
467#if EV_USE_LINUXAIO
468# include <sys/syscall.h>
469# if SYS_io_getevents && EV_USE_EPOLL /* linuxaio backend requires epoll backend */
470# define EV_NEED_SYSCALL 1
471# else
472# undef EV_USE_LINUXAIO
473# define EV_USE_LINUXAIO 0
474# endif
475#endif
476
477#if EV_USE_IOURING
478# include <sys/syscall.h>
479# if !SYS_io_uring_setup && __linux && !__alpha
480# define SYS_io_uring_setup 425
481# define SYS_io_uring_enter 426
482# define SYS_io_uring_wregister 427
483# endif
484# if SYS_io_uring_setup && EV_USE_EPOLL /* iouring backend requires epoll backend */
485# define EV_NEED_SYSCALL 1
486# else
487# undef EV_USE_IOURING
488# define EV_USE_IOURING 0
489# endif
490#endif
491
290#if EV_USE_INOTIFY 492#if EV_USE_INOTIFY
291# include <sys/utsname.h>
292# include <sys/statfs.h> 493# include <sys/statfs.h>
293# include <sys/inotify.h> 494# include <sys/inotify.h>
294/* some very old inotify.h headers don't have IN_DONT_FOLLOW */ 495/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
295# ifndef IN_DONT_FOLLOW 496# ifndef IN_DONT_FOLLOW
296# undef EV_USE_INOTIFY 497# undef EV_USE_INOTIFY
297# define EV_USE_INOTIFY 0 498# define EV_USE_INOTIFY 0
298# endif 499# endif
299#endif 500#endif
300 501
301#if EV_SELECT_IS_WINSOCKET
302# include <winsock.h>
303#endif
304
305#if EV_USE_EVENTFD 502#if EV_USE_EVENTFD
306/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 503/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
307# include <stdint.h> 504# include <stdint.h>
308# ifdef __cplusplus 505# ifndef EFD_NONBLOCK
309extern "C" { 506# define EFD_NONBLOCK O_NONBLOCK
310# endif 507# endif
311int eventfd (unsigned int initval, int flags); 508# ifndef EFD_CLOEXEC
312# ifdef __cplusplus 509# ifdef O_CLOEXEC
313} 510# define EFD_CLOEXEC O_CLOEXEC
511# else
512# define EFD_CLOEXEC 02000000
513# endif
314# endif 514# endif
515EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
516#endif
517
518#if EV_USE_SIGNALFD
519/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
520# include <stdint.h>
521# ifndef SFD_NONBLOCK
522# define SFD_NONBLOCK O_NONBLOCK
315#endif 523# endif
524# ifndef SFD_CLOEXEC
525# ifdef O_CLOEXEC
526# define SFD_CLOEXEC O_CLOEXEC
527# else
528# define SFD_CLOEXEC 02000000
529# endif
530# endif
531EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
316 532
317/**/ 533struct signalfd_siginfo
534{
535 uint32_t ssi_signo;
536 char pad[128 - sizeof (uint32_t)];
537};
538#endif
539
540/*****************************************************************************/
318 541
319#if EV_VERIFY >= 3 542#if EV_VERIFY >= 3
320# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 543# define EV_FREQUENT_CHECK ev_verify (EV_A)
321#else 544#else
322# define EV_FREQUENT_CHECK do { } while (0) 545# define EV_FREQUENT_CHECK do { } while (0)
323#endif 546#endif
324 547
325/* 548/*
326 * This is used to avoid floating point rounding problems. 549 * This is used to work around floating point rounding problems.
327 * It is added to ev_rt_now when scheduling periodics
328 * to ensure progress, time-wise, even when rounding
329 * errors are against us.
330 * This value is good at least till the year 4000. 550 * This value is good at least till the year 4000.
331 * Better solutions welcome.
332 */ 551 */
333#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 552#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
553/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
334 554
335#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 555#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
336#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 556#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
337/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
338 557
558/* find a portable timestamp that is "always" in the future but fits into time_t.
559 * this is quite hard, and we are mostly guessing - we handle 32 bit signed/unsigned time_t,
560 * and sizes larger than 32 bit, and maybe the unlikely floating point time_t */
561#define EV_TSTAMP_HUGE \
562 (sizeof (time_t) >= 8 ? 10000000000000. \
563 : 0 < (time_t)4294967295 ? 4294967295. \
564 : 2147483647.) \
565
566#ifndef EV_TS_CONST
567# define EV_TS_CONST(nv) nv
568# define EV_TS_TO_MSEC(a) a * 1e3 + 0.9999
569# define EV_TS_FROM_USEC(us) us * 1e-6
570# define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
571# define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
572# define EV_TV_GET(tv) ((tv).tv_sec + (tv).tv_usec * 1e-6)
573# define EV_TS_GET(ts) ((ts).tv_sec + (ts).tv_nsec * 1e-9)
574#endif
575
576/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
577/* ECB.H BEGIN */
578/*
579 * libecb - http://software.schmorp.de/pkg/libecb
580 *
581 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
582 * Copyright (©) 2011 Emanuele Giaquinta
583 * All rights reserved.
584 *
585 * Redistribution and use in source and binary forms, with or without modifica-
586 * tion, are permitted provided that the following conditions are met:
587 *
588 * 1. Redistributions of source code must retain the above copyright notice,
589 * this list of conditions and the following disclaimer.
590 *
591 * 2. Redistributions in binary form must reproduce the above copyright
592 * notice, this list of conditions and the following disclaimer in the
593 * documentation and/or other materials provided with the distribution.
594 *
595 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
596 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
597 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
598 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
599 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
600 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
601 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
602 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
603 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
604 * OF THE POSSIBILITY OF SUCH DAMAGE.
605 *
606 * Alternatively, the contents of this file may be used under the terms of
607 * the GNU General Public License ("GPL") version 2 or any later version,
608 * in which case the provisions of the GPL are applicable instead of
609 * the above. If you wish to allow the use of your version of this file
610 * only under the terms of the GPL and not to allow others to use your
611 * version of this file under the BSD license, indicate your decision
612 * by deleting the provisions above and replace them with the notice
613 * and other provisions required by the GPL. If you do not delete the
614 * provisions above, a recipient may use your version of this file under
615 * either the BSD or the GPL.
616 */
617
618#ifndef ECB_H
619#define ECB_H
620
621/* 16 bits major, 16 bits minor */
622#define ECB_VERSION 0x00010006
623
624#ifdef _WIN32
625 typedef signed char int8_t;
626 typedef unsigned char uint8_t;
627 typedef signed short int16_t;
628 typedef unsigned short uint16_t;
629 typedef signed int int32_t;
630 typedef unsigned int uint32_t;
339#if __GNUC__ >= 4 631 #if __GNUC__
340# define expect(expr,value) __builtin_expect ((expr),(value)) 632 typedef signed long long int64_t;
341# define noinline __attribute__ ((noinline)) 633 typedef unsigned long long uint64_t;
634 #else /* _MSC_VER || __BORLANDC__ */
635 typedef signed __int64 int64_t;
636 typedef unsigned __int64 uint64_t;
637 #endif
638 #ifdef _WIN64
639 #define ECB_PTRSIZE 8
640 typedef uint64_t uintptr_t;
641 typedef int64_t intptr_t;
642 #else
643 #define ECB_PTRSIZE 4
644 typedef uint32_t uintptr_t;
645 typedef int32_t intptr_t;
646 #endif
342#else 647#else
343# define expect(expr,value) (expr) 648 #include <inttypes.h>
344# define noinline 649 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
345# if __STDC_VERSION__ < 199901L && __GNUC__ < 2 650 #define ECB_PTRSIZE 8
346# define inline 651 #else
652 #define ECB_PTRSIZE 4
653 #endif
347# endif 654#endif
655
656#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
657#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
658
659/* work around x32 idiocy by defining proper macros */
660#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
661 #if _ILP32
662 #define ECB_AMD64_X32 1
663 #else
664 #define ECB_AMD64 1
348#endif 665 #endif
666#endif
349 667
350#define expect_false(expr) expect ((expr) != 0, 0) 668/* many compilers define _GNUC_ to some versions but then only implement
351#define expect_true(expr) expect ((expr) != 0, 1) 669 * what their idiot authors think are the "more important" extensions,
352#define inline_size static inline 670 * causing enormous grief in return for some better fake benchmark numbers.
353 671 * or so.
354#if EV_MINIMAL 672 * we try to detect these and simply assume they are not gcc - if they have
355# define inline_speed static noinline 673 * an issue with that they should have done it right in the first place.
674 */
675#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
676 #define ECB_GCC_VERSION(major,minor) 0
356#else 677#else
678 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
679#endif
680
681#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
682
683#if __clang__ && defined __has_builtin
684 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
685#else
686 #define ECB_CLANG_BUILTIN(x) 0
687#endif
688
689#if __clang__ && defined __has_extension
690 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
691#else
692 #define ECB_CLANG_EXTENSION(x) 0
693#endif
694
695#define ECB_CPP (__cplusplus+0)
696#define ECB_CPP11 (__cplusplus >= 201103L)
697#define ECB_CPP14 (__cplusplus >= 201402L)
698#define ECB_CPP17 (__cplusplus >= 201703L)
699
700#if ECB_CPP
701 #define ECB_C 0
702 #define ECB_STDC_VERSION 0
703#else
704 #define ECB_C 1
705 #define ECB_STDC_VERSION __STDC_VERSION__
706#endif
707
708#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
709#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
710#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
711
712#if ECB_CPP
713 #define ECB_EXTERN_C extern "C"
714 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
715 #define ECB_EXTERN_C_END }
716#else
717 #define ECB_EXTERN_C extern
718 #define ECB_EXTERN_C_BEG
719 #define ECB_EXTERN_C_END
720#endif
721
722/*****************************************************************************/
723
724/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
725/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
726
727#if ECB_NO_THREADS
728 #define ECB_NO_SMP 1
729#endif
730
731#if ECB_NO_SMP
732 #define ECB_MEMORY_FENCE do { } while (0)
733#endif
734
735/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
736#if __xlC__ && ECB_CPP
737 #include <builtins.h>
738#endif
739
740#if 1400 <= _MSC_VER
741 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
742#endif
743
744#ifndef ECB_MEMORY_FENCE
745 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
746 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
747 #if __i386 || __i386__
748 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
749 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
750 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
751 #elif ECB_GCC_AMD64
752 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
753 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
754 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
755 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
756 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
757 #elif defined __ARM_ARCH_2__ \
758 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
759 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
760 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
761 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
762 || defined __ARM_ARCH_5TEJ__
763 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
764 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
765 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
766 || defined __ARM_ARCH_6T2__
767 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
768 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
769 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
770 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
771 #elif __aarch64__
772 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
773 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
774 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
775 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
776 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
777 #elif defined __s390__ || defined __s390x__
778 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
779 #elif defined __mips__
780 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
781 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
782 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
783 #elif defined __alpha__
784 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
785 #elif defined __hppa__
786 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
787 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
788 #elif defined __ia64__
789 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
790 #elif defined __m68k__
791 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
792 #elif defined __m88k__
793 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
794 #elif defined __sh__
795 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
796 #endif
797 #endif
798#endif
799
800#ifndef ECB_MEMORY_FENCE
801 #if ECB_GCC_VERSION(4,7)
802 /* see comment below (stdatomic.h) about the C11 memory model. */
803 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
804 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
805 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
806 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
807
808 #elif ECB_CLANG_EXTENSION(c_atomic)
809 /* see comment below (stdatomic.h) about the C11 memory model. */
810 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
811 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
812 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
813 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
814
815 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
816 #define ECB_MEMORY_FENCE __sync_synchronize ()
817 #elif _MSC_VER >= 1500 /* VC++ 2008 */
818 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
819 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
820 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
821 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
822 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
823 #elif _MSC_VER >= 1400 /* VC++ 2005 */
824 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
825 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
826 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
827 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
828 #elif defined _WIN32
829 #include <WinNT.h>
830 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
831 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
832 #include <mbarrier.h>
833 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
834 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
835 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
836 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
837 #elif __xlC__
838 #define ECB_MEMORY_FENCE __sync ()
839 #endif
840#endif
841
842#ifndef ECB_MEMORY_FENCE
843 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
844 /* we assume that these memory fences work on all variables/all memory accesses, */
845 /* not just C11 atomics and atomic accesses */
846 #include <stdatomic.h>
847 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
848 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
849 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
850 #endif
851#endif
852
853#ifndef ECB_MEMORY_FENCE
854 #if !ECB_AVOID_PTHREADS
855 /*
856 * if you get undefined symbol references to pthread_mutex_lock,
857 * or failure to find pthread.h, then you should implement
858 * the ECB_MEMORY_FENCE operations for your cpu/compiler
859 * OR provide pthread.h and link against the posix thread library
860 * of your system.
861 */
862 #include <pthread.h>
863 #define ECB_NEEDS_PTHREADS 1
864 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
865
866 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
867 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
868 #endif
869#endif
870
871#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
872 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
873#endif
874
875#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
876 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
877#endif
878
879#if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
880 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
881#endif
882
883/*****************************************************************************/
884
885#if ECB_CPP
886 #define ecb_inline static inline
887#elif ECB_GCC_VERSION(2,5)
888 #define ecb_inline static __inline__
889#elif ECB_C99
890 #define ecb_inline static inline
891#else
892 #define ecb_inline static
893#endif
894
895#if ECB_GCC_VERSION(3,3)
896 #define ecb_restrict __restrict__
897#elif ECB_C99
898 #define ecb_restrict restrict
899#else
900 #define ecb_restrict
901#endif
902
903typedef int ecb_bool;
904
905#define ECB_CONCAT_(a, b) a ## b
906#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
907#define ECB_STRINGIFY_(a) # a
908#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
909#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
910
911#define ecb_function_ ecb_inline
912
913#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
914 #define ecb_attribute(attrlist) __attribute__ (attrlist)
915#else
916 #define ecb_attribute(attrlist)
917#endif
918
919#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
920 #define ecb_is_constant(expr) __builtin_constant_p (expr)
921#else
922 /* possible C11 impl for integral types
923 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
924 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
925
926 #define ecb_is_constant(expr) 0
927#endif
928
929#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
930 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
931#else
932 #define ecb_expect(expr,value) (expr)
933#endif
934
935#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
936 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
937#else
938 #define ecb_prefetch(addr,rw,locality)
939#endif
940
941/* no emulation for ecb_decltype */
942#if ECB_CPP11
943 // older implementations might have problems with decltype(x)::type, work around it
944 template<class T> struct ecb_decltype_t { typedef T type; };
945 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
946#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
947 #define ecb_decltype(x) __typeof__ (x)
948#endif
949
950#if _MSC_VER >= 1300
951 #define ecb_deprecated __declspec (deprecated)
952#else
953 #define ecb_deprecated ecb_attribute ((__deprecated__))
954#endif
955
956#if _MSC_VER >= 1500
957 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
958#elif ECB_GCC_VERSION(4,5)
959 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
960#else
961 #define ecb_deprecated_message(msg) ecb_deprecated
962#endif
963
964#if _MSC_VER >= 1400
965 #define ecb_noinline __declspec (noinline)
966#else
967 #define ecb_noinline ecb_attribute ((__noinline__))
968#endif
969
970#define ecb_unused ecb_attribute ((__unused__))
971#define ecb_const ecb_attribute ((__const__))
972#define ecb_pure ecb_attribute ((__pure__))
973
974#if ECB_C11 || __IBMC_NORETURN
975 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
976 #define ecb_noreturn _Noreturn
977#elif ECB_CPP11
978 #define ecb_noreturn [[noreturn]]
979#elif _MSC_VER >= 1200
980 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
981 #define ecb_noreturn __declspec (noreturn)
982#else
983 #define ecb_noreturn ecb_attribute ((__noreturn__))
984#endif
985
986#if ECB_GCC_VERSION(4,3)
987 #define ecb_artificial ecb_attribute ((__artificial__))
988 #define ecb_hot ecb_attribute ((__hot__))
989 #define ecb_cold ecb_attribute ((__cold__))
990#else
991 #define ecb_artificial
992 #define ecb_hot
993 #define ecb_cold
994#endif
995
996/* put around conditional expressions if you are very sure that the */
997/* expression is mostly true or mostly false. note that these return */
998/* booleans, not the expression. */
999#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
1000#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
1001/* for compatibility to the rest of the world */
1002#define ecb_likely(expr) ecb_expect_true (expr)
1003#define ecb_unlikely(expr) ecb_expect_false (expr)
1004
1005/* count trailing zero bits and count # of one bits */
1006#if ECB_GCC_VERSION(3,4) \
1007 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
1008 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
1009 && ECB_CLANG_BUILTIN(__builtin_popcount))
1010 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
1011 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
1012 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
1013 #define ecb_ctz32(x) __builtin_ctz (x)
1014 #define ecb_ctz64(x) __builtin_ctzll (x)
1015 #define ecb_popcount32(x) __builtin_popcount (x)
1016 /* no popcountll */
1017#else
1018 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
1019 ecb_function_ ecb_const int
1020 ecb_ctz32 (uint32_t x)
1021 {
1022#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1023 unsigned long r;
1024 _BitScanForward (&r, x);
1025 return (int)r;
1026#else
1027 int r = 0;
1028
1029 x &= ~x + 1; /* this isolates the lowest bit */
1030
1031#if ECB_branchless_on_i386
1032 r += !!(x & 0xaaaaaaaa) << 0;
1033 r += !!(x & 0xcccccccc) << 1;
1034 r += !!(x & 0xf0f0f0f0) << 2;
1035 r += !!(x & 0xff00ff00) << 3;
1036 r += !!(x & 0xffff0000) << 4;
1037#else
1038 if (x & 0xaaaaaaaa) r += 1;
1039 if (x & 0xcccccccc) r += 2;
1040 if (x & 0xf0f0f0f0) r += 4;
1041 if (x & 0xff00ff00) r += 8;
1042 if (x & 0xffff0000) r += 16;
1043#endif
1044
1045 return r;
1046#endif
1047 }
1048
1049 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
1050 ecb_function_ ecb_const int
1051 ecb_ctz64 (uint64_t x)
1052 {
1053#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1054 unsigned long r;
1055 _BitScanForward64 (&r, x);
1056 return (int)r;
1057#else
1058 int shift = x & 0xffffffff ? 0 : 32;
1059 return ecb_ctz32 (x >> shift) + shift;
1060#endif
1061 }
1062
1063 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1064 ecb_function_ ecb_const int
1065 ecb_popcount32 (uint32_t x)
1066 {
1067 x -= (x >> 1) & 0x55555555;
1068 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1069 x = ((x >> 4) + x) & 0x0f0f0f0f;
1070 x *= 0x01010101;
1071
1072 return x >> 24;
1073 }
1074
1075 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1076 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1077 {
1078#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1079 unsigned long r;
1080 _BitScanReverse (&r, x);
1081 return (int)r;
1082#else
1083 int r = 0;
1084
1085 if (x >> 16) { x >>= 16; r += 16; }
1086 if (x >> 8) { x >>= 8; r += 8; }
1087 if (x >> 4) { x >>= 4; r += 4; }
1088 if (x >> 2) { x >>= 2; r += 2; }
1089 if (x >> 1) { r += 1; }
1090
1091 return r;
1092#endif
1093 }
1094
1095 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1096 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1097 {
1098#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1099 unsigned long r;
1100 _BitScanReverse64 (&r, x);
1101 return (int)r;
1102#else
1103 int r = 0;
1104
1105 if (x >> 32) { x >>= 32; r += 32; }
1106
1107 return r + ecb_ld32 (x);
1108#endif
1109 }
1110#endif
1111
1112ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1113ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1114ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1115ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1116
1117ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1118ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1119{
1120 return ( (x * 0x0802U & 0x22110U)
1121 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1122}
1123
1124ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1125ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1126{
1127 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1128 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1129 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1130 x = ( x >> 8 ) | ( x << 8);
1131
1132 return x;
1133}
1134
1135ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1136ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1137{
1138 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1139 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1140 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1141 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1142 x = ( x >> 16 ) | ( x << 16);
1143
1144 return x;
1145}
1146
1147/* popcount64 is only available on 64 bit cpus as gcc builtin */
1148/* so for this version we are lazy */
1149ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1150ecb_function_ ecb_const int
1151ecb_popcount64 (uint64_t x)
1152{
1153 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1154}
1155
1156ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1157ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1158ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1159ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1160ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1161ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1162ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1163ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1164
1165ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1166ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1167ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1168ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1169ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1170ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1171ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1172ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1173
1174#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1175 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1176 #define ecb_bswap16(x) __builtin_bswap16 (x)
1177 #else
1178 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1179 #endif
1180 #define ecb_bswap32(x) __builtin_bswap32 (x)
1181 #define ecb_bswap64(x) __builtin_bswap64 (x)
1182#elif _MSC_VER
1183 #include <stdlib.h>
1184 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1185 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1186 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1187#else
1188 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1189 ecb_function_ ecb_const uint16_t
1190 ecb_bswap16 (uint16_t x)
1191 {
1192 return ecb_rotl16 (x, 8);
1193 }
1194
1195 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1196 ecb_function_ ecb_const uint32_t
1197 ecb_bswap32 (uint32_t x)
1198 {
1199 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1200 }
1201
1202 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1203 ecb_function_ ecb_const uint64_t
1204 ecb_bswap64 (uint64_t x)
1205 {
1206 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1207 }
1208#endif
1209
1210#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1211 #define ecb_unreachable() __builtin_unreachable ()
1212#else
1213 /* this seems to work fine, but gcc always emits a warning for it :/ */
1214 ecb_inline ecb_noreturn void ecb_unreachable (void);
1215 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1216#endif
1217
1218/* try to tell the compiler that some condition is definitely true */
1219#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1220
1221ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1222ecb_inline ecb_const uint32_t
1223ecb_byteorder_helper (void)
1224{
1225 /* the union code still generates code under pressure in gcc, */
1226 /* but less than using pointers, and always seems to */
1227 /* successfully return a constant. */
1228 /* the reason why we have this horrible preprocessor mess */
1229 /* is to avoid it in all cases, at least on common architectures */
1230 /* or when using a recent enough gcc version (>= 4.6) */
1231#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1232 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1233 #define ECB_LITTLE_ENDIAN 1
1234 return 0x44332211;
1235#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1236 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1237 #define ECB_BIG_ENDIAN 1
1238 return 0x11223344;
1239#else
1240 union
1241 {
1242 uint8_t c[4];
1243 uint32_t u;
1244 } u = { 0x11, 0x22, 0x33, 0x44 };
1245 return u.u;
1246#endif
1247}
1248
1249ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1250ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1251ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1252ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1253
1254#if ECB_GCC_VERSION(3,0) || ECB_C99
1255 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1256#else
1257 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1258#endif
1259
1260#if ECB_CPP
1261 template<typename T>
1262 static inline T ecb_div_rd (T val, T div)
1263 {
1264 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1265 }
1266 template<typename T>
1267 static inline T ecb_div_ru (T val, T div)
1268 {
1269 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1270 }
1271#else
1272 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1273 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1274#endif
1275
1276#if ecb_cplusplus_does_not_suck
1277 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1278 template<typename T, int N>
1279 static inline int ecb_array_length (const T (&arr)[N])
1280 {
1281 return N;
1282 }
1283#else
1284 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1285#endif
1286
1287ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1288ecb_function_ ecb_const uint32_t
1289ecb_binary16_to_binary32 (uint32_t x)
1290{
1291 unsigned int s = (x & 0x8000) << (31 - 15);
1292 int e = (x >> 10) & 0x001f;
1293 unsigned int m = x & 0x03ff;
1294
1295 if (ecb_expect_false (e == 31))
1296 /* infinity or NaN */
1297 e = 255 - (127 - 15);
1298 else if (ecb_expect_false (!e))
1299 {
1300 if (ecb_expect_true (!m))
1301 /* zero, handled by code below by forcing e to 0 */
1302 e = 0 - (127 - 15);
1303 else
1304 {
1305 /* subnormal, renormalise */
1306 unsigned int s = 10 - ecb_ld32 (m);
1307
1308 m = (m << s) & 0x3ff; /* mask implicit bit */
1309 e -= s - 1;
1310 }
1311 }
1312
1313 /* e and m now are normalised, or zero, (or inf or nan) */
1314 e += 127 - 15;
1315
1316 return s | (e << 23) | (m << (23 - 10));
1317}
1318
1319ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1320ecb_function_ ecb_const uint16_t
1321ecb_binary32_to_binary16 (uint32_t x)
1322{
1323 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1324 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1325 unsigned int m = x & 0x007fffff;
1326
1327 x &= 0x7fffffff;
1328
1329 /* if it's within range of binary16 normals, use fast path */
1330 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1331 {
1332 /* mantissa round-to-even */
1333 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1334
1335 /* handle overflow */
1336 if (ecb_expect_false (m >= 0x00800000))
1337 {
1338 m >>= 1;
1339 e += 1;
1340 }
1341
1342 return s | (e << 10) | (m >> (23 - 10));
1343 }
1344
1345 /* handle large numbers and infinity */
1346 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1347 return s | 0x7c00;
1348
1349 /* handle zero, subnormals and small numbers */
1350 if (ecb_expect_true (x < 0x38800000))
1351 {
1352 /* zero */
1353 if (ecb_expect_true (!x))
1354 return s;
1355
1356 /* handle subnormals */
1357
1358 /* too small, will be zero */
1359 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1360 return s;
1361
1362 m |= 0x00800000; /* make implicit bit explicit */
1363
1364 /* very tricky - we need to round to the nearest e (+10) bit value */
1365 {
1366 unsigned int bits = 14 - e;
1367 unsigned int half = (1 << (bits - 1)) - 1;
1368 unsigned int even = (m >> bits) & 1;
1369
1370 /* if this overflows, we will end up with a normalised number */
1371 m = (m + half + even) >> bits;
1372 }
1373
1374 return s | m;
1375 }
1376
1377 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1378 m >>= 13;
1379
1380 return s | 0x7c00 | m | !m;
1381}
1382
1383/*******************************************************************************/
1384/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1385
1386/* basically, everything uses "ieee pure-endian" floating point numbers */
1387/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1388#if 0 \
1389 || __i386 || __i386__ \
1390 || ECB_GCC_AMD64 \
1391 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1392 || defined __s390__ || defined __s390x__ \
1393 || defined __mips__ \
1394 || defined __alpha__ \
1395 || defined __hppa__ \
1396 || defined __ia64__ \
1397 || defined __m68k__ \
1398 || defined __m88k__ \
1399 || defined __sh__ \
1400 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1401 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1402 || defined __aarch64__
1403 #define ECB_STDFP 1
1404 #include <string.h> /* for memcpy */
1405#else
1406 #define ECB_STDFP 0
1407#endif
1408
1409#ifndef ECB_NO_LIBM
1410
1411 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1412
1413 /* only the oldest of old doesn't have this one. solaris. */
1414 #ifdef INFINITY
1415 #define ECB_INFINITY INFINITY
1416 #else
1417 #define ECB_INFINITY HUGE_VAL
1418 #endif
1419
1420 #ifdef NAN
1421 #define ECB_NAN NAN
1422 #else
1423 #define ECB_NAN ECB_INFINITY
1424 #endif
1425
1426 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1427 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1428 #define ecb_frexpf(x,e) frexpf ((x), (e))
1429 #else
1430 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1431 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1432 #endif
1433
1434 /* convert a float to ieee single/binary32 */
1435 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1436 ecb_function_ ecb_const uint32_t
1437 ecb_float_to_binary32 (float x)
1438 {
1439 uint32_t r;
1440
1441 #if ECB_STDFP
1442 memcpy (&r, &x, 4);
1443 #else
1444 /* slow emulation, works for anything but -0 */
1445 uint32_t m;
1446 int e;
1447
1448 if (x == 0e0f ) return 0x00000000U;
1449 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1450 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1451 if (x != x ) return 0x7fbfffffU;
1452
1453 m = ecb_frexpf (x, &e) * 0x1000000U;
1454
1455 r = m & 0x80000000U;
1456
1457 if (r)
1458 m = -m;
1459
1460 if (e <= -126)
1461 {
1462 m &= 0xffffffU;
1463 m >>= (-125 - e);
1464 e = -126;
1465 }
1466
1467 r |= (e + 126) << 23;
1468 r |= m & 0x7fffffU;
1469 #endif
1470
1471 return r;
1472 }
1473
1474 /* converts an ieee single/binary32 to a float */
1475 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1476 ecb_function_ ecb_const float
1477 ecb_binary32_to_float (uint32_t x)
1478 {
1479 float r;
1480
1481 #if ECB_STDFP
1482 memcpy (&r, &x, 4);
1483 #else
1484 /* emulation, only works for normals and subnormals and +0 */
1485 int neg = x >> 31;
1486 int e = (x >> 23) & 0xffU;
1487
1488 x &= 0x7fffffU;
1489
1490 if (e)
1491 x |= 0x800000U;
1492 else
1493 e = 1;
1494
1495 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1496 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1497
1498 r = neg ? -r : r;
1499 #endif
1500
1501 return r;
1502 }
1503
1504 /* convert a double to ieee double/binary64 */
1505 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1506 ecb_function_ ecb_const uint64_t
1507 ecb_double_to_binary64 (double x)
1508 {
1509 uint64_t r;
1510
1511 #if ECB_STDFP
1512 memcpy (&r, &x, 8);
1513 #else
1514 /* slow emulation, works for anything but -0 */
1515 uint64_t m;
1516 int e;
1517
1518 if (x == 0e0 ) return 0x0000000000000000U;
1519 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1520 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1521 if (x != x ) return 0X7ff7ffffffffffffU;
1522
1523 m = frexp (x, &e) * 0x20000000000000U;
1524
1525 r = m & 0x8000000000000000;;
1526
1527 if (r)
1528 m = -m;
1529
1530 if (e <= -1022)
1531 {
1532 m &= 0x1fffffffffffffU;
1533 m >>= (-1021 - e);
1534 e = -1022;
1535 }
1536
1537 r |= ((uint64_t)(e + 1022)) << 52;
1538 r |= m & 0xfffffffffffffU;
1539 #endif
1540
1541 return r;
1542 }
1543
1544 /* converts an ieee double/binary64 to a double */
1545 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1546 ecb_function_ ecb_const double
1547 ecb_binary64_to_double (uint64_t x)
1548 {
1549 double r;
1550
1551 #if ECB_STDFP
1552 memcpy (&r, &x, 8);
1553 #else
1554 /* emulation, only works for normals and subnormals and +0 */
1555 int neg = x >> 63;
1556 int e = (x >> 52) & 0x7ffU;
1557
1558 x &= 0xfffffffffffffU;
1559
1560 if (e)
1561 x |= 0x10000000000000U;
1562 else
1563 e = 1;
1564
1565 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1566 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1567
1568 r = neg ? -r : r;
1569 #endif
1570
1571 return r;
1572 }
1573
1574 /* convert a float to ieee half/binary16 */
1575 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1576 ecb_function_ ecb_const uint16_t
1577 ecb_float_to_binary16 (float x)
1578 {
1579 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1580 }
1581
1582 /* convert an ieee half/binary16 to float */
1583 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1584 ecb_function_ ecb_const float
1585 ecb_binary16_to_float (uint16_t x)
1586 {
1587 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1588 }
1589
1590#endif
1591
1592#endif
1593
1594/* ECB.H END */
1595
1596#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1597/* if your architecture doesn't need memory fences, e.g. because it is
1598 * single-cpu/core, or if you use libev in a project that doesn't use libev
1599 * from multiple threads, then you can define ECB_NO_THREADS when compiling
1600 * libev, in which cases the memory fences become nops.
1601 * alternatively, you can remove this #error and link against libpthread,
1602 * which will then provide the memory fences.
1603 */
1604# error "memory fences not defined for your architecture, please report"
1605#endif
1606
1607#ifndef ECB_MEMORY_FENCE
1608# define ECB_MEMORY_FENCE do { } while (0)
1609# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1610# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1611#endif
1612
1613#define inline_size ecb_inline
1614
1615#if EV_FEATURE_CODE
357# define inline_speed static inline 1616# define inline_speed ecb_inline
1617#else
1618# define inline_speed ecb_noinline static
358#endif 1619#endif
359 1620
1621/*****************************************************************************/
1622/* raw syscall wrappers */
1623
1624#if EV_NEED_SYSCALL
1625
1626#include <sys/syscall.h>
1627
1628/*
1629 * define some syscall wrappers for common architectures
1630 * this is mostly for nice looks during debugging, not performance.
1631 * our syscalls return < 0, not == -1, on error. which is good
1632 * enough for linux aio.
1633 * TODO: arm is also common nowadays, maybe even mips and x86
1634 * TODO: after implementing this, it suddenly looks like overkill, but its hard to remove...
1635 */
1636#if __GNUC__ && __linux && ECB_AMD64 && !defined __OPTIMIZE_SIZE__
1637 /* the costly errno access probably kills this for size optimisation */
1638
1639 #define ev_syscall(nr,narg,arg1,arg2,arg3,arg4,arg5,arg6) \
1640 ({ \
1641 long res; \
1642 register unsigned long r6 __asm__ ("r9" ); \
1643 register unsigned long r5 __asm__ ("r8" ); \
1644 register unsigned long r4 __asm__ ("r10"); \
1645 register unsigned long r3 __asm__ ("rdx"); \
1646 register unsigned long r2 __asm__ ("rsi"); \
1647 register unsigned long r1 __asm__ ("rdi"); \
1648 if (narg >= 6) r6 = (unsigned long)(arg6); \
1649 if (narg >= 5) r5 = (unsigned long)(arg5); \
1650 if (narg >= 4) r4 = (unsigned long)(arg4); \
1651 if (narg >= 3) r3 = (unsigned long)(arg3); \
1652 if (narg >= 2) r2 = (unsigned long)(arg2); \
1653 if (narg >= 1) r1 = (unsigned long)(arg1); \
1654 __asm__ __volatile__ ( \
1655 "syscall\n\t" \
1656 : "=a" (res) \
1657 : "0" (nr), "r" (r1), "r" (r2), "r" (r3), "r" (r4), "r" (r5) \
1658 : "cc", "r11", "cx", "memory"); \
1659 errno = -res; \
1660 res; \
1661 })
1662
1663#endif
1664
1665#ifdef ev_syscall
1666 #define ev_syscall0(nr) ev_syscall (nr, 0, 0, 0, 0, 0, 0, 0)
1667 #define ev_syscall1(nr,arg1) ev_syscall (nr, 1, arg1, 0, 0, 0, 0, 0)
1668 #define ev_syscall2(nr,arg1,arg2) ev_syscall (nr, 2, arg1, arg2, 0, 0, 0, 0)
1669 #define ev_syscall3(nr,arg1,arg2,arg3) ev_syscall (nr, 3, arg1, arg2, arg3, 0, 0, 0)
1670 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) ev_syscall (nr, 3, arg1, arg2, arg3, arg4, 0, 0)
1671 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) ev_syscall (nr, 5, arg1, arg2, arg3, arg4, arg5, 0)
1672 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) ev_syscall (nr, 6, arg1, arg2, arg3, arg4, arg5,arg6)
1673#else
1674 #define ev_syscall0(nr) syscall (nr)
1675 #define ev_syscall1(nr,arg1) syscall (nr, arg1)
1676 #define ev_syscall2(nr,arg1,arg2) syscall (nr, arg1, arg2)
1677 #define ev_syscall3(nr,arg1,arg2,arg3) syscall (nr, arg1, arg2, arg3)
1678 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) syscall (nr, arg1, arg2, arg3, arg4)
1679 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) syscall (nr, arg1, arg2, arg3, arg4, arg5)
1680 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) syscall (nr, arg1, arg2, arg3, arg4, arg5,arg6)
1681#endif
1682
1683#endif
1684
1685/*****************************************************************************/
1686
360#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1687#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1688
1689#if EV_MINPRI == EV_MAXPRI
1690# define ABSPRI(w) (((W)w), 0)
1691#else
361#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1692# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1693#endif
362 1694
363#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1695#define EMPTY /* required for microsofts broken pseudo-c compiler */
364#define EMPTY2(a,b) /* used to suppress some warnings */
365 1696
366typedef ev_watcher *W; 1697typedef ev_watcher *W;
367typedef ev_watcher_list *WL; 1698typedef ev_watcher_list *WL;
368typedef ev_watcher_time *WT; 1699typedef ev_watcher_time *WT;
369 1700
370#define ev_active(w) ((W)(w))->active 1701#define ev_active(w) ((W)(w))->active
371#define ev_at(w) ((WT)(w))->at 1702#define ev_at(w) ((WT)(w))->at
372 1703
1704#if EV_USE_REALTIME
1705/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1706/* giving it a reasonably high chance of working on typical architectures */
1707static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1708#endif
1709
373#if EV_USE_MONOTONIC 1710#if EV_USE_MONOTONIC
374/* sig_atomic_t is used to avoid per-thread variables or locking but still */
375/* giving it a reasonably high chance of working on typical architetcures */
376static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1711static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1712#endif
1713
1714#ifndef EV_FD_TO_WIN32_HANDLE
1715# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1716#endif
1717#ifndef EV_WIN32_HANDLE_TO_FD
1718# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1719#endif
1720#ifndef EV_WIN32_CLOSE_FD
1721# define EV_WIN32_CLOSE_FD(fd) close (fd)
377#endif 1722#endif
378 1723
379#ifdef _WIN32 1724#ifdef _WIN32
380# include "ev_win32.c" 1725# include "ev_win32.c"
381#endif 1726#endif
382 1727
383/*****************************************************************************/ 1728/*****************************************************************************/
384 1729
1730#if EV_USE_LINUXAIO
1731# include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1732#endif
1733
1734/* define a suitable floor function (only used by periodics atm) */
1735
1736#if EV_USE_FLOOR
1737# include <math.h>
1738# define ev_floor(v) floor (v)
1739#else
1740
1741#include <float.h>
1742
1743/* a floor() replacement function, should be independent of ev_tstamp type */
1744ecb_noinline
1745static ev_tstamp
1746ev_floor (ev_tstamp v)
1747{
1748 /* the choice of shift factor is not terribly important */
1749#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1750 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1751#else
1752 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1753#endif
1754
1755 /* special treatment for negative arguments */
1756 if (ecb_expect_false (v < 0.))
1757 {
1758 ev_tstamp f = -ev_floor (-v);
1759
1760 return f - (f == v ? 0 : 1);
1761 }
1762
1763 /* argument too large for an unsigned long? then reduce it */
1764 if (ecb_expect_false (v >= shift))
1765 {
1766 ev_tstamp f;
1767
1768 if (v == v - 1.)
1769 return v; /* very large numbers are assumed to be integer */
1770
1771 f = shift * ev_floor (v * (1. / shift));
1772 return f + ev_floor (v - f);
1773 }
1774
1775 /* fits into an unsigned long */
1776 return (unsigned long)v;
1777}
1778
1779#endif
1780
1781/*****************************************************************************/
1782
1783#ifdef __linux
1784# include <sys/utsname.h>
1785#endif
1786
1787ecb_noinline ecb_cold
1788static unsigned int
1789ev_linux_version (void)
1790{
1791#ifdef __linux
1792 unsigned int v = 0;
1793 struct utsname buf;
1794 int i;
1795 char *p = buf.release;
1796
1797 if (uname (&buf))
1798 return 0;
1799
1800 for (i = 3+1; --i; )
1801 {
1802 unsigned int c = 0;
1803
1804 for (;;)
1805 {
1806 if (*p >= '0' && *p <= '9')
1807 c = c * 10 + *p++ - '0';
1808 else
1809 {
1810 p += *p == '.';
1811 break;
1812 }
1813 }
1814
1815 v = (v << 8) | c;
1816 }
1817
1818 return v;
1819#else
1820 return 0;
1821#endif
1822}
1823
1824/*****************************************************************************/
1825
1826#if EV_AVOID_STDIO
1827ecb_noinline ecb_cold
1828static void
1829ev_printerr (const char *msg)
1830{
1831 write (STDERR_FILENO, msg, strlen (msg));
1832}
1833#endif
1834
385static void (*syserr_cb)(const char *msg); 1835static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
386 1836
1837ecb_cold
387void 1838void
388ev_set_syserr_cb (void (*cb)(const char *msg)) 1839ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
389{ 1840{
390 syserr_cb = cb; 1841 syserr_cb = cb;
391} 1842}
392 1843
393static void noinline 1844ecb_noinline ecb_cold
1845static void
394ev_syserr (const char *msg) 1846ev_syserr (const char *msg)
395{ 1847{
396 if (!msg) 1848 if (!msg)
397 msg = "(libev) system error"; 1849 msg = "(libev) system error";
398 1850
399 if (syserr_cb) 1851 if (syserr_cb)
400 syserr_cb (msg); 1852 syserr_cb (msg);
401 else 1853 else
402 { 1854 {
1855#if EV_AVOID_STDIO
1856 ev_printerr (msg);
1857 ev_printerr (": ");
1858 ev_printerr (strerror (errno));
1859 ev_printerr ("\n");
1860#else
403 perror (msg); 1861 perror (msg);
1862#endif
404 abort (); 1863 abort ();
405 } 1864 }
406} 1865}
407 1866
408static void * 1867static void *
409ev_realloc_emul (void *ptr, long size) 1868ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
410{ 1869{
411 /* some systems, notably openbsd and darwin, fail to properly 1870 /* some systems, notably openbsd and darwin, fail to properly
412 * implement realloc (x, 0) (as required by both ansi c-98 and 1871 * implement realloc (x, 0) (as required by both ansi c-89 and
413 * the single unix specification, so work around them here. 1872 * the single unix specification, so work around them here.
1873 * recently, also (at least) fedora and debian started breaking it,
1874 * despite documenting it otherwise.
414 */ 1875 */
415 1876
416 if (size) 1877 if (size)
417 return realloc (ptr, size); 1878 return realloc (ptr, size);
418 1879
419 free (ptr); 1880 free (ptr);
420 return 0; 1881 return 0;
421} 1882}
422 1883
423static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1884static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
424 1885
1886ecb_cold
425void 1887void
426ev_set_allocator (void *(*cb)(void *ptr, long size)) 1888ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
427{ 1889{
428 alloc = cb; 1890 alloc = cb;
429} 1891}
430 1892
431inline_speed void * 1893inline_speed void *
433{ 1895{
434 ptr = alloc (ptr, size); 1896 ptr = alloc (ptr, size);
435 1897
436 if (!ptr && size) 1898 if (!ptr && size)
437 { 1899 {
1900#if EV_AVOID_STDIO
1901 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1902#else
438 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1903 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1904#endif
439 abort (); 1905 abort ();
440 } 1906 }
441 1907
442 return ptr; 1908 return ptr;
443} 1909}
445#define ev_malloc(size) ev_realloc (0, (size)) 1911#define ev_malloc(size) ev_realloc (0, (size))
446#define ev_free(ptr) ev_realloc ((ptr), 0) 1912#define ev_free(ptr) ev_realloc ((ptr), 0)
447 1913
448/*****************************************************************************/ 1914/*****************************************************************************/
449 1915
1916/* set in reify when reification needed */
1917#define EV_ANFD_REIFY 1
1918
1919/* file descriptor info structure */
450typedef struct 1920typedef struct
451{ 1921{
452 WL head; 1922 WL head;
453 unsigned char events; 1923 unsigned char events; /* the events watched for */
454 unsigned char reify; 1924 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
455 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 1925 unsigned char emask; /* some backends store the actual kernel mask in here */
456 unsigned char unused; 1926 unsigned char eflags; /* flags field for use by backends */
457#if EV_USE_EPOLL 1927#if EV_USE_EPOLL
458 unsigned int egen; /* generation counter to counter epoll bugs */ 1928 unsigned int egen; /* generation counter to counter epoll bugs */
459#endif 1929#endif
460#if EV_SELECT_IS_WINSOCKET 1930#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
461 SOCKET handle; 1931 SOCKET handle;
462#endif 1932#endif
1933#if EV_USE_IOCP
1934 OVERLAPPED or, ow;
1935#endif
463} ANFD; 1936} ANFD;
464 1937
1938/* stores the pending event set for a given watcher */
465typedef struct 1939typedef struct
466{ 1940{
467 W w; 1941 W w;
468 int events; 1942 int events; /* the pending event set for the given watcher */
469} ANPENDING; 1943} ANPENDING;
470 1944
471#if EV_USE_INOTIFY 1945#if EV_USE_INOTIFY
472/* hash table entry per inotify-id */ 1946/* hash table entry per inotify-id */
473typedef struct 1947typedef struct
476} ANFS; 1950} ANFS;
477#endif 1951#endif
478 1952
479/* Heap Entry */ 1953/* Heap Entry */
480#if EV_HEAP_CACHE_AT 1954#if EV_HEAP_CACHE_AT
1955 /* a heap element */
481 typedef struct { 1956 typedef struct {
482 ev_tstamp at; 1957 ev_tstamp at;
483 WT w; 1958 WT w;
484 } ANHE; 1959 } ANHE;
485 1960
486 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1961 #define ANHE_w(he) (he).w /* access watcher, read-write */
487 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1962 #define ANHE_at(he) (he).at /* access cached at, read-only */
488 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 1963 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
489#else 1964#else
1965 /* a heap element */
490 typedef WT ANHE; 1966 typedef WT ANHE;
491 1967
492 #define ANHE_w(he) (he) 1968 #define ANHE_w(he) (he)
493 #define ANHE_at(he) (he)->at 1969 #define ANHE_at(he) (he)->at
494 #define ANHE_at_cache(he) 1970 #define ANHE_at_cache(he)
505 #undef VAR 1981 #undef VAR
506 }; 1982 };
507 #include "ev_wrap.h" 1983 #include "ev_wrap.h"
508 1984
509 static struct ev_loop default_loop_struct; 1985 static struct ev_loop default_loop_struct;
510 struct ev_loop *ev_default_loop_ptr; 1986 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
511 1987
512#else 1988#else
513 1989
514 ev_tstamp ev_rt_now; 1990 EV_API_DECL ev_tstamp ev_rt_now = EV_TS_CONST (0.); /* needs to be initialised to make it a definition despite extern */
515 #define VAR(name,decl) static decl; 1991 #define VAR(name,decl) static decl;
516 #include "ev_vars.h" 1992 #include "ev_vars.h"
517 #undef VAR 1993 #undef VAR
518 1994
519 static int ev_default_loop_ptr; 1995 static int ev_default_loop_ptr;
520 1996
521#endif 1997#endif
522 1998
1999#if EV_FEATURE_API
2000# define EV_RELEASE_CB if (ecb_expect_false (release_cb)) release_cb (EV_A)
2001# define EV_ACQUIRE_CB if (ecb_expect_false (acquire_cb)) acquire_cb (EV_A)
2002# define EV_INVOKE_PENDING invoke_cb (EV_A)
2003#else
2004# define EV_RELEASE_CB (void)0
2005# define EV_ACQUIRE_CB (void)0
2006# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
2007#endif
2008
2009#define EVBREAK_RECURSE 0x80
2010
523/*****************************************************************************/ 2011/*****************************************************************************/
524 2012
2013#ifndef EV_HAVE_EV_TIME
525ev_tstamp 2014ev_tstamp
526ev_time (void) 2015ev_time (void) EV_NOEXCEPT
527{ 2016{
528#if EV_USE_REALTIME 2017#if EV_USE_REALTIME
2018 if (ecb_expect_true (have_realtime))
2019 {
529 struct timespec ts; 2020 struct timespec ts;
530 clock_gettime (CLOCK_REALTIME, &ts); 2021 clock_gettime (CLOCK_REALTIME, &ts);
531 return ts.tv_sec + ts.tv_nsec * 1e-9; 2022 return EV_TS_GET (ts);
532#else 2023 }
2024#endif
2025
2026 {
533 struct timeval tv; 2027 struct timeval tv;
534 gettimeofday (&tv, 0); 2028 gettimeofday (&tv, 0);
535 return tv.tv_sec + tv.tv_usec * 1e-6; 2029 return EV_TV_GET (tv);
536#endif 2030 }
537} 2031}
2032#endif
538 2033
539ev_tstamp inline_size 2034inline_size ev_tstamp
540get_clock (void) 2035get_clock (void)
541{ 2036{
542#if EV_USE_MONOTONIC 2037#if EV_USE_MONOTONIC
543 if (expect_true (have_monotonic)) 2038 if (ecb_expect_true (have_monotonic))
544 { 2039 {
545 struct timespec ts; 2040 struct timespec ts;
546 clock_gettime (CLOCK_MONOTONIC, &ts); 2041 clock_gettime (CLOCK_MONOTONIC, &ts);
547 return ts.tv_sec + ts.tv_nsec * 1e-9; 2042 return EV_TS_GET (ts);
548 } 2043 }
549#endif 2044#endif
550 2045
551 return ev_time (); 2046 return ev_time ();
552} 2047}
553 2048
554#if EV_MULTIPLICITY 2049#if EV_MULTIPLICITY
555ev_tstamp 2050ev_tstamp
556ev_now (EV_P) 2051ev_now (EV_P) EV_NOEXCEPT
557{ 2052{
558 return ev_rt_now; 2053 return ev_rt_now;
559} 2054}
560#endif 2055#endif
561 2056
562void 2057void
563ev_sleep (ev_tstamp delay) 2058ev_sleep (ev_tstamp delay) EV_NOEXCEPT
564{ 2059{
565 if (delay > 0.) 2060 if (delay > EV_TS_CONST (0.))
566 { 2061 {
567#if EV_USE_NANOSLEEP 2062#if EV_USE_NANOSLEEP
568 struct timespec ts; 2063 struct timespec ts;
569 2064
570 ts.tv_sec = (time_t)delay; 2065 EV_TS_SET (ts, delay);
571 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
572
573 nanosleep (&ts, 0); 2066 nanosleep (&ts, 0);
574#elif defined(_WIN32) 2067#elif defined _WIN32
2068 /* maybe this should round up, as ms is very low resolution */
2069 /* compared to select (µs) or nanosleep (ns) */
575 Sleep ((unsigned long)(delay * 1e3)); 2070 Sleep ((unsigned long)(EV_TS_TO_MSEC (delay)));
576#else 2071#else
577 struct timeval tv; 2072 struct timeval tv;
578 2073
579 tv.tv_sec = (time_t)delay;
580 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
581
582 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 2074 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
583 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 2075 /* something not guaranteed by newer posix versions, but guaranteed */
584 /* by older ones */ 2076 /* by older ones */
2077 EV_TV_SET (tv, delay);
585 select (0, 0, 0, 0, &tv); 2078 select (0, 0, 0, 0, &tv);
586#endif 2079#endif
587 } 2080 }
588} 2081}
589 2082
590/*****************************************************************************/ 2083/*****************************************************************************/
591 2084
592#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 2085#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
593 2086
594int inline_size 2087/* find a suitable new size for the given array, */
2088/* hopefully by rounding to a nice-to-malloc size */
2089inline_size int
595array_nextsize (int elem, int cur, int cnt) 2090array_nextsize (int elem, int cur, int cnt)
596{ 2091{
597 int ncur = cur + 1; 2092 int ncur = cur + 1;
598 2093
599 do 2094 do
600 ncur <<= 1; 2095 ncur <<= 1;
601 while (cnt > ncur); 2096 while (cnt > ncur);
602 2097
603 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 2098 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
604 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 2099 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
605 { 2100 {
606 ncur *= elem; 2101 ncur *= elem;
607 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 2102 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
608 ncur = ncur - sizeof (void *) * 4; 2103 ncur = ncur - sizeof (void *) * 4;
610 } 2105 }
611 2106
612 return ncur; 2107 return ncur;
613} 2108}
614 2109
615static noinline void * 2110ecb_noinline ecb_cold
2111static void *
616array_realloc (int elem, void *base, int *cur, int cnt) 2112array_realloc (int elem, void *base, int *cur, int cnt)
617{ 2113{
618 *cur = array_nextsize (elem, *cur, cnt); 2114 *cur = array_nextsize (elem, *cur, cnt);
619 return ev_realloc (base, elem * *cur); 2115 return ev_realloc (base, elem * *cur);
620} 2116}
621 2117
2118#define array_needsize_noinit(base,offset,count)
2119
622#define array_init_zero(base,count) \ 2120#define array_needsize_zerofill(base,offset,count) \
623 memset ((void *)(base), 0, sizeof (*(base)) * (count)) 2121 memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
624 2122
625#define array_needsize(type,base,cur,cnt,init) \ 2123#define array_needsize(type,base,cur,cnt,init) \
626 if (expect_false ((cnt) > (cur))) \ 2124 if (ecb_expect_false ((cnt) > (cur))) \
627 { \ 2125 { \
628 int ocur_ = (cur); \ 2126 ecb_unused int ocur_ = (cur); \
629 (base) = (type *)array_realloc \ 2127 (base) = (type *)array_realloc \
630 (sizeof (type), (base), &(cur), (cnt)); \ 2128 (sizeof (type), (base), &(cur), (cnt)); \
631 init ((base) + (ocur_), (cur) - ocur_); \ 2129 init ((base), ocur_, ((cur) - ocur_)); \
632 } 2130 }
633 2131
634#if 0 2132#if 0
635#define array_slim(type,stem) \ 2133#define array_slim(type,stem) \
636 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 2134 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
640 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 2138 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
641 } 2139 }
642#endif 2140#endif
643 2141
644#define array_free(stem, idx) \ 2142#define array_free(stem, idx) \
645 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 2143 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
646 2144
647/*****************************************************************************/ 2145/*****************************************************************************/
648 2146
649void noinline 2147/* dummy callback for pending events */
2148ecb_noinline
2149static void
2150pendingcb (EV_P_ ev_prepare *w, int revents)
2151{
2152}
2153
2154ecb_noinline
2155void
650ev_feed_event (EV_P_ void *w, int revents) 2156ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
651{ 2157{
652 W w_ = (W)w; 2158 W w_ = (W)w;
653 int pri = ABSPRI (w_); 2159 int pri = ABSPRI (w_);
654 2160
655 if (expect_false (w_->pending)) 2161 if (ecb_expect_false (w_->pending))
656 pendings [pri][w_->pending - 1].events |= revents; 2162 pendings [pri][w_->pending - 1].events |= revents;
657 else 2163 else
658 { 2164 {
659 w_->pending = ++pendingcnt [pri]; 2165 w_->pending = ++pendingcnt [pri];
660 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 2166 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
661 pendings [pri][w_->pending - 1].w = w_; 2167 pendings [pri][w_->pending - 1].w = w_;
662 pendings [pri][w_->pending - 1].events = revents; 2168 pendings [pri][w_->pending - 1].events = revents;
663 } 2169 }
664}
665 2170
666void inline_speed 2171 pendingpri = NUMPRI - 1;
2172}
2173
2174inline_speed void
2175feed_reverse (EV_P_ W w)
2176{
2177 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2178 rfeeds [rfeedcnt++] = w;
2179}
2180
2181inline_size void
2182feed_reverse_done (EV_P_ int revents)
2183{
2184 do
2185 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2186 while (rfeedcnt);
2187}
2188
2189inline_speed void
667queue_events (EV_P_ W *events, int eventcnt, int type) 2190queue_events (EV_P_ W *events, int eventcnt, int type)
668{ 2191{
669 int i; 2192 int i;
670 2193
671 for (i = 0; i < eventcnt; ++i) 2194 for (i = 0; i < eventcnt; ++i)
672 ev_feed_event (EV_A_ events [i], type); 2195 ev_feed_event (EV_A_ events [i], type);
673} 2196}
674 2197
675/*****************************************************************************/ 2198/*****************************************************************************/
676 2199
677void inline_speed 2200inline_speed void
678fd_event (EV_P_ int fd, int revents) 2201fd_event_nocheck (EV_P_ int fd, int revents)
679{ 2202{
680 ANFD *anfd = anfds + fd; 2203 ANFD *anfd = anfds + fd;
681 ev_io *w; 2204 ev_io *w;
682 2205
683 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2206 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
687 if (ev) 2210 if (ev)
688 ev_feed_event (EV_A_ (W)w, ev); 2211 ev_feed_event (EV_A_ (W)w, ev);
689 } 2212 }
690} 2213}
691 2214
692void 2215/* do not submit kernel events for fds that have reify set */
2216/* because that means they changed while we were polling for new events */
2217inline_speed void
693ev_feed_fd_event (EV_P_ int fd, int revents) 2218fd_event (EV_P_ int fd, int revents)
2219{
2220 ANFD *anfd = anfds + fd;
2221
2222 if (ecb_expect_true (!anfd->reify))
2223 fd_event_nocheck (EV_A_ fd, revents);
2224}
2225
2226void
2227ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
694{ 2228{
695 if (fd >= 0 && fd < anfdmax) 2229 if (fd >= 0 && fd < anfdmax)
696 fd_event (EV_A_ fd, revents); 2230 fd_event_nocheck (EV_A_ fd, revents);
697} 2231}
698 2232
699void inline_size 2233/* make sure the external fd watch events are in-sync */
2234/* with the kernel/libev internal state */
2235inline_size void
700fd_reify (EV_P) 2236fd_reify (EV_P)
701{ 2237{
702 int i; 2238 int i;
2239
2240#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2241 for (i = 0; i < fdchangecnt; ++i)
2242 {
2243 int fd = fdchanges [i];
2244 ANFD *anfd = anfds + fd;
2245
2246 if (anfd->reify & EV__IOFDSET && anfd->head)
2247 {
2248 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2249
2250 if (handle != anfd->handle)
2251 {
2252 unsigned long arg;
2253
2254 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2255
2256 /* handle changed, but fd didn't - we need to do it in two steps */
2257 backend_modify (EV_A_ fd, anfd->events, 0);
2258 anfd->events = 0;
2259 anfd->handle = handle;
2260 }
2261 }
2262 }
2263#endif
703 2264
704 for (i = 0; i < fdchangecnt; ++i) 2265 for (i = 0; i < fdchangecnt; ++i)
705 { 2266 {
706 int fd = fdchanges [i]; 2267 int fd = fdchanges [i];
707 ANFD *anfd = anfds + fd; 2268 ANFD *anfd = anfds + fd;
708 ev_io *w; 2269 ev_io *w;
709 2270
710 unsigned char events = 0; 2271 unsigned char o_events = anfd->events;
2272 unsigned char o_reify = anfd->reify;
711 2273
712 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2274 anfd->reify = 0;
713 events |= (unsigned char)w->events;
714 2275
715#if EV_SELECT_IS_WINSOCKET 2276 /*if (ecb_expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
716 if (events)
717 { 2277 {
718 unsigned long arg; 2278 anfd->events = 0;
719 #ifdef EV_FD_TO_WIN32_HANDLE 2279
720 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 2280 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
721 #else 2281 anfd->events |= (unsigned char)w->events;
722 anfd->handle = _get_osfhandle (fd); 2282
723 #endif 2283 if (o_events != anfd->events)
724 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 2284 o_reify = EV__IOFDSET; /* actually |= */
725 } 2285 }
726#endif
727 2286
728 { 2287 if (o_reify & EV__IOFDSET)
729 unsigned char o_events = anfd->events;
730 unsigned char o_reify = anfd->reify;
731
732 anfd->reify = 0;
733 anfd->events = events;
734
735 if (o_events != events || o_reify & EV_IOFDSET)
736 backend_modify (EV_A_ fd, o_events, events); 2288 backend_modify (EV_A_ fd, o_events, anfd->events);
737 }
738 } 2289 }
739 2290
740 fdchangecnt = 0; 2291 fdchangecnt = 0;
741} 2292}
742 2293
2294/* something about the given fd changed */
743void inline_size 2295inline_size
2296void
744fd_change (EV_P_ int fd, int flags) 2297fd_change (EV_P_ int fd, int flags)
745{ 2298{
746 unsigned char reify = anfds [fd].reify; 2299 unsigned char reify = anfds [fd].reify;
747 anfds [fd].reify |= flags; 2300 anfds [fd].reify |= flags;
748 2301
749 if (expect_true (!reify)) 2302 if (ecb_expect_true (!reify))
750 { 2303 {
751 ++fdchangecnt; 2304 ++fdchangecnt;
752 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2305 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
753 fdchanges [fdchangecnt - 1] = fd; 2306 fdchanges [fdchangecnt - 1] = fd;
754 } 2307 }
755} 2308}
756 2309
757void inline_speed 2310/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2311inline_speed ecb_cold void
758fd_kill (EV_P_ int fd) 2312fd_kill (EV_P_ int fd)
759{ 2313{
760 ev_io *w; 2314 ev_io *w;
761 2315
762 while ((w = (ev_io *)anfds [fd].head)) 2316 while ((w = (ev_io *)anfds [fd].head))
764 ev_io_stop (EV_A_ w); 2318 ev_io_stop (EV_A_ w);
765 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2319 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
766 } 2320 }
767} 2321}
768 2322
769int inline_size 2323/* check whether the given fd is actually valid, for error recovery */
2324inline_size ecb_cold int
770fd_valid (int fd) 2325fd_valid (int fd)
771{ 2326{
772#ifdef _WIN32 2327#ifdef _WIN32
773 return _get_osfhandle (fd) != -1; 2328 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
774#else 2329#else
775 return fcntl (fd, F_GETFD) != -1; 2330 return fcntl (fd, F_GETFD) != -1;
776#endif 2331#endif
777} 2332}
778 2333
779/* called on EBADF to verify fds */ 2334/* called on EBADF to verify fds */
780static void noinline 2335ecb_noinline ecb_cold
2336static void
781fd_ebadf (EV_P) 2337fd_ebadf (EV_P)
782{ 2338{
783 int fd; 2339 int fd;
784 2340
785 for (fd = 0; fd < anfdmax; ++fd) 2341 for (fd = 0; fd < anfdmax; ++fd)
787 if (!fd_valid (fd) && errno == EBADF) 2343 if (!fd_valid (fd) && errno == EBADF)
788 fd_kill (EV_A_ fd); 2344 fd_kill (EV_A_ fd);
789} 2345}
790 2346
791/* called on ENOMEM in select/poll to kill some fds and retry */ 2347/* called on ENOMEM in select/poll to kill some fds and retry */
792static void noinline 2348ecb_noinline ecb_cold
2349static void
793fd_enomem (EV_P) 2350fd_enomem (EV_P)
794{ 2351{
795 int fd; 2352 int fd;
796 2353
797 for (fd = anfdmax; fd--; ) 2354 for (fd = anfdmax; fd--; )
798 if (anfds [fd].events) 2355 if (anfds [fd].events)
799 { 2356 {
800 fd_kill (EV_A_ fd); 2357 fd_kill (EV_A_ fd);
801 return; 2358 break;
802 } 2359 }
803} 2360}
804 2361
805/* usually called after fork if backend needs to re-arm all fds from scratch */ 2362/* usually called after fork if backend needs to re-arm all fds from scratch */
806static void noinline 2363ecb_noinline
2364static void
807fd_rearm_all (EV_P) 2365fd_rearm_all (EV_P)
808{ 2366{
809 int fd; 2367 int fd;
810 2368
811 for (fd = 0; fd < anfdmax; ++fd) 2369 for (fd = 0; fd < anfdmax; ++fd)
812 if (anfds [fd].events) 2370 if (anfds [fd].events)
813 { 2371 {
814 anfds [fd].events = 0; 2372 anfds [fd].events = 0;
815 anfds [fd].emask = 0; 2373 anfds [fd].emask = 0;
816 fd_change (EV_A_ fd, EV_IOFDSET | 1); 2374 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
817 } 2375 }
818} 2376}
819 2377
2378/* used to prepare libev internal fd's */
2379/* this is not fork-safe */
2380inline_speed void
2381fd_intern (int fd)
2382{
2383#ifdef _WIN32
2384 unsigned long arg = 1;
2385 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2386#else
2387 fcntl (fd, F_SETFD, FD_CLOEXEC);
2388 fcntl (fd, F_SETFL, O_NONBLOCK);
2389#endif
2390}
2391
820/*****************************************************************************/ 2392/*****************************************************************************/
821 2393
822/* 2394/*
823 * the heap functions want a real array index. array index 0 uis guaranteed to not 2395 * the heap functions want a real array index. array index 0 is guaranteed to not
824 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 2396 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
825 * the branching factor of the d-tree. 2397 * the branching factor of the d-tree.
826 */ 2398 */
827 2399
828/* 2400/*
837#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 2409#define HEAP0 (DHEAP - 1) /* index of first element in heap */
838#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 2410#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
839#define UPHEAP_DONE(p,k) ((p) == (k)) 2411#define UPHEAP_DONE(p,k) ((p) == (k))
840 2412
841/* away from the root */ 2413/* away from the root */
842void inline_speed 2414inline_speed void
843downheap (ANHE *heap, int N, int k) 2415downheap (ANHE *heap, int N, int k)
844{ 2416{
845 ANHE he = heap [k]; 2417 ANHE he = heap [k];
846 ANHE *E = heap + N + HEAP0; 2418 ANHE *E = heap + N + HEAP0;
847 2419
850 ev_tstamp minat; 2422 ev_tstamp minat;
851 ANHE *minpos; 2423 ANHE *minpos;
852 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1; 2424 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
853 2425
854 /* find minimum child */ 2426 /* find minimum child */
855 if (expect_true (pos + DHEAP - 1 < E)) 2427 if (ecb_expect_true (pos + DHEAP - 1 < E))
856 { 2428 {
857 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 2429 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
858 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 2430 if ( minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
859 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 2431 if ( minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
860 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 2432 if ( minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
861 } 2433 }
862 else if (pos < E) 2434 else if (pos < E)
863 { 2435 {
864 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 2436 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
865 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 2437 if (pos + 1 < E && minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
866 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 2438 if (pos + 2 < E && minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
867 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 2439 if (pos + 3 < E && minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
868 } 2440 }
869 else 2441 else
870 break; 2442 break;
871 2443
872 if (ANHE_at (he) <= minat) 2444 if (ANHE_at (he) <= minat)
880 2452
881 heap [k] = he; 2453 heap [k] = he;
882 ev_active (ANHE_w (he)) = k; 2454 ev_active (ANHE_w (he)) = k;
883} 2455}
884 2456
885#else /* 4HEAP */ 2457#else /* not 4HEAP */
886 2458
887#define HEAP0 1 2459#define HEAP0 1
888#define HPARENT(k) ((k) >> 1) 2460#define HPARENT(k) ((k) >> 1)
889#define UPHEAP_DONE(p,k) (!(p)) 2461#define UPHEAP_DONE(p,k) (!(p))
890 2462
891/* away from the root */ 2463/* away from the root */
892void inline_speed 2464inline_speed void
893downheap (ANHE *heap, int N, int k) 2465downheap (ANHE *heap, int N, int k)
894{ 2466{
895 ANHE he = heap [k]; 2467 ANHE he = heap [k];
896 2468
897 for (;;) 2469 for (;;)
898 { 2470 {
899 int c = k << 1; 2471 int c = k << 1;
900 2472
901 if (c > N + HEAP0 - 1) 2473 if (c >= N + HEAP0)
902 break; 2474 break;
903 2475
904 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 2476 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
905 ? 1 : 0; 2477 ? 1 : 0;
906 2478
917 ev_active (ANHE_w (he)) = k; 2489 ev_active (ANHE_w (he)) = k;
918} 2490}
919#endif 2491#endif
920 2492
921/* towards the root */ 2493/* towards the root */
922void inline_speed 2494inline_speed void
923upheap (ANHE *heap, int k) 2495upheap (ANHE *heap, int k)
924{ 2496{
925 ANHE he = heap [k]; 2497 ANHE he = heap [k];
926 2498
927 for (;;) 2499 for (;;)
938 2510
939 heap [k] = he; 2511 heap [k] = he;
940 ev_active (ANHE_w (he)) = k; 2512 ev_active (ANHE_w (he)) = k;
941} 2513}
942 2514
943void inline_size 2515/* move an element suitably so it is in a correct place */
2516inline_size void
944adjustheap (ANHE *heap, int N, int k) 2517adjustheap (ANHE *heap, int N, int k)
945{ 2518{
946 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 2519 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
947 upheap (heap, k); 2520 upheap (heap, k);
948 else 2521 else
949 downheap (heap, N, k); 2522 downheap (heap, N, k);
950} 2523}
951 2524
952/* rebuild the heap: this function is used only once and executed rarely */ 2525/* rebuild the heap: this function is used only once and executed rarely */
953void inline_size 2526inline_size void
954reheap (ANHE *heap, int N) 2527reheap (ANHE *heap, int N)
955{ 2528{
956 int i; 2529 int i;
957 2530
958 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 2531 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
961 upheap (heap, i + HEAP0); 2534 upheap (heap, i + HEAP0);
962} 2535}
963 2536
964/*****************************************************************************/ 2537/*****************************************************************************/
965 2538
2539/* associate signal watchers to a signal signal */
966typedef struct 2540typedef struct
967{ 2541{
2542 EV_ATOMIC_T pending;
2543#if EV_MULTIPLICITY
2544 EV_P;
2545#endif
968 WL head; 2546 WL head;
969 EV_ATOMIC_T gotsig;
970} ANSIG; 2547} ANSIG;
971 2548
972static ANSIG *signals; 2549static ANSIG signals [EV_NSIG - 1];
973static int signalmax;
974
975static EV_ATOMIC_T gotsig;
976 2550
977/*****************************************************************************/ 2551/*****************************************************************************/
978 2552
979void inline_speed 2553#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
980fd_intern (int fd)
981{
982#ifdef _WIN32
983 unsigned long arg = 1;
984 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
985#else
986 fcntl (fd, F_SETFD, FD_CLOEXEC);
987 fcntl (fd, F_SETFL, O_NONBLOCK);
988#endif
989}
990 2554
991static void noinline 2555ecb_noinline ecb_cold
2556static void
992evpipe_init (EV_P) 2557evpipe_init (EV_P)
993{ 2558{
994 if (!ev_is_active (&pipeev)) 2559 if (!ev_is_active (&pipe_w))
2560 {
2561 int fds [2];
2562
2563# if EV_USE_EVENTFD
2564 fds [0] = -1;
2565 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2566 if (fds [1] < 0 && errno == EINVAL)
2567 fds [1] = eventfd (0, 0);
2568
2569 if (fds [1] < 0)
2570# endif
2571 {
2572 while (pipe (fds))
2573 ev_syserr ("(libev) error creating signal/async pipe");
2574
2575 fd_intern (fds [0]);
2576 }
2577
2578 evpipe [0] = fds [0];
2579
2580 if (evpipe [1] < 0)
2581 evpipe [1] = fds [1]; /* first call, set write fd */
2582 else
2583 {
2584 /* on subsequent calls, do not change evpipe [1] */
2585 /* so that evpipe_write can always rely on its value. */
2586 /* this branch does not do anything sensible on windows, */
2587 /* so must not be executed on windows */
2588
2589 dup2 (fds [1], evpipe [1]);
2590 close (fds [1]);
2591 }
2592
2593 fd_intern (evpipe [1]);
2594
2595 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2596 ev_io_start (EV_A_ &pipe_w);
2597 ev_unref (EV_A); /* watcher should not keep loop alive */
995 { 2598 }
2599}
2600
2601inline_speed void
2602evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2603{
2604 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2605
2606 if (ecb_expect_true (*flag))
2607 return;
2608
2609 *flag = 1;
2610 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2611
2612 pipe_write_skipped = 1;
2613
2614 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2615
2616 if (pipe_write_wanted)
2617 {
2618 int old_errno;
2619
2620 pipe_write_skipped = 0;
2621 ECB_MEMORY_FENCE_RELEASE;
2622
2623 old_errno = errno; /* save errno because write will clobber it */
2624
996#if EV_USE_EVENTFD 2625#if EV_USE_EVENTFD
997 if ((evfd = eventfd (0, 0)) >= 0) 2626 if (evpipe [0] < 0)
998 { 2627 {
999 evpipe [0] = -1; 2628 uint64_t counter = 1;
1000 fd_intern (evfd); 2629 write (evpipe [1], &counter, sizeof (uint64_t));
1001 ev_io_set (&pipeev, evfd, EV_READ);
1002 } 2630 }
1003 else 2631 else
1004#endif 2632#endif
1005 { 2633 {
1006 while (pipe (evpipe)) 2634#ifdef _WIN32
1007 ev_syserr ("(libev) error creating signal/async pipe"); 2635 WSABUF buf;
1008 2636 DWORD sent;
1009 fd_intern (evpipe [0]); 2637 buf.buf = (char *)&buf;
1010 fd_intern (evpipe [1]); 2638 buf.len = 1;
1011 ev_io_set (&pipeev, evpipe [0], EV_READ); 2639 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2640#else
2641 write (evpipe [1], &(evpipe [1]), 1);
2642#endif
1012 } 2643 }
1013 2644
1014 ev_io_start (EV_A_ &pipeev); 2645 errno = old_errno;
1015 ev_unref (EV_A); /* watcher should not keep loop alive */
1016 }
1017}
1018
1019void inline_size
1020evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1021{
1022 if (!*flag)
1023 { 2646 }
1024 int old_errno = errno; /* save errno because write might clobber it */ 2647}
1025 2648
1026 *flag = 1; 2649/* called whenever the libev signal pipe */
2650/* got some events (signal, async) */
2651static void
2652pipecb (EV_P_ ev_io *iow, int revents)
2653{
2654 int i;
1027 2655
2656 if (revents & EV_READ)
2657 {
1028#if EV_USE_EVENTFD 2658#if EV_USE_EVENTFD
1029 if (evfd >= 0) 2659 if (evpipe [0] < 0)
1030 { 2660 {
1031 uint64_t counter = 1; 2661 uint64_t counter;
1032 write (evfd, &counter, sizeof (uint64_t)); 2662 read (evpipe [1], &counter, sizeof (uint64_t));
1033 } 2663 }
1034 else 2664 else
1035#endif 2665#endif
1036 write (evpipe [1], &old_errno, 1); 2666 {
1037
1038 errno = old_errno;
1039 }
1040}
1041
1042static void
1043pipecb (EV_P_ ev_io *iow, int revents)
1044{
1045#if EV_USE_EVENTFD
1046 if (evfd >= 0)
1047 {
1048 uint64_t counter;
1049 read (evfd, &counter, sizeof (uint64_t));
1050 }
1051 else
1052#endif
1053 {
1054 char dummy; 2667 char dummy[4];
2668#ifdef _WIN32
2669 WSABUF buf;
2670 DWORD recvd;
2671 DWORD flags = 0;
2672 buf.buf = dummy;
2673 buf.len = sizeof (dummy);
2674 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2675#else
1055 read (evpipe [0], &dummy, 1); 2676 read (evpipe [0], &dummy, sizeof (dummy));
2677#endif
2678 }
2679 }
2680
2681 pipe_write_skipped = 0;
2682
2683 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2684
2685#if EV_SIGNAL_ENABLE
2686 if (sig_pending)
1056 } 2687 {
2688 sig_pending = 0;
1057 2689
1058 if (gotsig && ev_is_default_loop (EV_A)) 2690 ECB_MEMORY_FENCE;
1059 {
1060 int signum;
1061 gotsig = 0;
1062 2691
1063 for (signum = signalmax; signum--; ) 2692 for (i = EV_NSIG - 1; i--; )
1064 if (signals [signum].gotsig) 2693 if (ecb_expect_false (signals [i].pending))
1065 ev_feed_signal_event (EV_A_ signum + 1); 2694 ev_feed_signal_event (EV_A_ i + 1);
1066 } 2695 }
2696#endif
1067 2697
1068#if EV_ASYNC_ENABLE 2698#if EV_ASYNC_ENABLE
1069 if (gotasync) 2699 if (async_pending)
1070 { 2700 {
1071 int i; 2701 async_pending = 0;
1072 gotasync = 0; 2702
2703 ECB_MEMORY_FENCE;
1073 2704
1074 for (i = asynccnt; i--; ) 2705 for (i = asynccnt; i--; )
1075 if (asyncs [i]->sent) 2706 if (asyncs [i]->sent)
1076 { 2707 {
1077 asyncs [i]->sent = 0; 2708 asyncs [i]->sent = 0;
2709 ECB_MEMORY_FENCE_RELEASE;
1078 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2710 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1079 } 2711 }
1080 } 2712 }
1081#endif 2713#endif
1082} 2714}
1083 2715
1084/*****************************************************************************/ 2716/*****************************************************************************/
1085 2717
2718void
2719ev_feed_signal (int signum) EV_NOEXCEPT
2720{
2721#if EV_MULTIPLICITY
2722 EV_P;
2723 ECB_MEMORY_FENCE_ACQUIRE;
2724 EV_A = signals [signum - 1].loop;
2725
2726 if (!EV_A)
2727 return;
2728#endif
2729
2730 signals [signum - 1].pending = 1;
2731 evpipe_write (EV_A_ &sig_pending);
2732}
2733
1086static void 2734static void
1087ev_sighandler (int signum) 2735ev_sighandler (int signum)
1088{ 2736{
2737#ifdef _WIN32
2738 signal (signum, ev_sighandler);
2739#endif
2740
2741 ev_feed_signal (signum);
2742}
2743
2744ecb_noinline
2745void
2746ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2747{
2748 WL w;
2749
2750 if (ecb_expect_false (signum <= 0 || signum >= EV_NSIG))
2751 return;
2752
2753 --signum;
2754
1089#if EV_MULTIPLICITY 2755#if EV_MULTIPLICITY
1090 struct ev_loop *loop = &default_loop_struct; 2756 /* it is permissible to try to feed a signal to the wrong loop */
1091#endif 2757 /* or, likely more useful, feeding a signal nobody is waiting for */
1092 2758
1093#if _WIN32 2759 if (ecb_expect_false (signals [signum].loop != EV_A))
1094 signal (signum, ev_sighandler);
1095#endif
1096
1097 signals [signum - 1].gotsig = 1;
1098 evpipe_write (EV_A_ &gotsig);
1099}
1100
1101void noinline
1102ev_feed_signal_event (EV_P_ int signum)
1103{
1104 WL w;
1105
1106#if EV_MULTIPLICITY
1107 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1108#endif
1109
1110 --signum;
1111
1112 if (signum < 0 || signum >= signalmax)
1113 return; 2760 return;
2761#endif
1114 2762
1115 signals [signum].gotsig = 0; 2763 signals [signum].pending = 0;
2764 ECB_MEMORY_FENCE_RELEASE;
1116 2765
1117 for (w = signals [signum].head; w; w = w->next) 2766 for (w = signals [signum].head; w; w = w->next)
1118 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2767 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1119} 2768}
1120 2769
2770#if EV_USE_SIGNALFD
2771static void
2772sigfdcb (EV_P_ ev_io *iow, int revents)
2773{
2774 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2775
2776 for (;;)
2777 {
2778 ssize_t res = read (sigfd, si, sizeof (si));
2779
2780 /* not ISO-C, as res might be -1, but works with SuS */
2781 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2782 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2783
2784 if (res < (ssize_t)sizeof (si))
2785 break;
2786 }
2787}
2788#endif
2789
2790#endif
2791
1121/*****************************************************************************/ 2792/*****************************************************************************/
1122 2793
2794#if EV_CHILD_ENABLE
1123static WL childs [EV_PID_HASHSIZE]; 2795static WL childs [EV_PID_HASHSIZE];
1124
1125#ifndef _WIN32
1126 2796
1127static ev_signal childev; 2797static ev_signal childev;
1128 2798
1129#ifndef WIFCONTINUED 2799#ifndef WIFCONTINUED
1130# define WIFCONTINUED(status) 0 2800# define WIFCONTINUED(status) 0
1131#endif 2801#endif
1132 2802
1133void inline_speed 2803/* handle a single child status event */
2804inline_speed void
1134child_reap (EV_P_ int chain, int pid, int status) 2805child_reap (EV_P_ int chain, int pid, int status)
1135{ 2806{
1136 ev_child *w; 2807 ev_child *w;
1137 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2808 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1138 2809
1139 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2810 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1140 { 2811 {
1141 if ((w->pid == pid || !w->pid) 2812 if ((w->pid == pid || !w->pid)
1142 && (!traced || (w->flags & 1))) 2813 && (!traced || (w->flags & 1)))
1143 { 2814 {
1144 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2815 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1151 2822
1152#ifndef WCONTINUED 2823#ifndef WCONTINUED
1153# define WCONTINUED 0 2824# define WCONTINUED 0
1154#endif 2825#endif
1155 2826
2827/* called on sigchld etc., calls waitpid */
1156static void 2828static void
1157childcb (EV_P_ ev_signal *sw, int revents) 2829childcb (EV_P_ ev_signal *sw, int revents)
1158{ 2830{
1159 int pid, status; 2831 int pid, status;
1160 2832
1168 /* make sure we are called again until all children have been reaped */ 2840 /* make sure we are called again until all children have been reaped */
1169 /* we need to do it this way so that the callback gets called before we continue */ 2841 /* we need to do it this way so that the callback gets called before we continue */
1170 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2842 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1171 2843
1172 child_reap (EV_A_ pid, pid, status); 2844 child_reap (EV_A_ pid, pid, status);
1173 if (EV_PID_HASHSIZE > 1) 2845 if ((EV_PID_HASHSIZE) > 1)
1174 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2846 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1175} 2847}
1176 2848
1177#endif 2849#endif
1178 2850
1179/*****************************************************************************/ 2851/*****************************************************************************/
1180 2852
2853#if EV_USE_IOCP
2854# include "ev_iocp.c"
2855#endif
1181#if EV_USE_PORT 2856#if EV_USE_PORT
1182# include "ev_port.c" 2857# include "ev_port.c"
1183#endif 2858#endif
1184#if EV_USE_KQUEUE 2859#if EV_USE_KQUEUE
1185# include "ev_kqueue.c" 2860# include "ev_kqueue.c"
1186#endif 2861#endif
1187#if EV_USE_EPOLL 2862#if EV_USE_EPOLL
1188# include "ev_epoll.c" 2863# include "ev_epoll.c"
1189#endif 2864#endif
2865#if EV_USE_LINUXAIO
2866# include "ev_linuxaio.c"
2867#endif
2868#if EV_USE_IOURING
2869# include "ev_iouring.c"
2870#endif
1190#if EV_USE_POLL 2871#if EV_USE_POLL
1191# include "ev_poll.c" 2872# include "ev_poll.c"
1192#endif 2873#endif
1193#if EV_USE_SELECT 2874#if EV_USE_SELECT
1194# include "ev_select.c" 2875# include "ev_select.c"
1195#endif 2876#endif
1196 2877
1197int 2878ecb_cold int
1198ev_version_major (void) 2879ev_version_major (void) EV_NOEXCEPT
1199{ 2880{
1200 return EV_VERSION_MAJOR; 2881 return EV_VERSION_MAJOR;
1201} 2882}
1202 2883
1203int 2884ecb_cold int
1204ev_version_minor (void) 2885ev_version_minor (void) EV_NOEXCEPT
1205{ 2886{
1206 return EV_VERSION_MINOR; 2887 return EV_VERSION_MINOR;
1207} 2888}
1208 2889
1209/* return true if we are running with elevated privileges and should ignore env variables */ 2890/* return true if we are running with elevated privileges and should ignore env variables */
1210int inline_size 2891inline_size ecb_cold int
1211enable_secure (void) 2892enable_secure (void)
1212{ 2893{
1213#ifdef _WIN32 2894#ifdef _WIN32
1214 return 0; 2895 return 0;
1215#else 2896#else
1216 return getuid () != geteuid () 2897 return getuid () != geteuid ()
1217 || getgid () != getegid (); 2898 || getgid () != getegid ();
1218#endif 2899#endif
1219} 2900}
1220 2901
2902ecb_cold
1221unsigned int 2903unsigned int
1222ev_supported_backends (void) 2904ev_supported_backends (void) EV_NOEXCEPT
1223{ 2905{
1224 unsigned int flags = 0; 2906 unsigned int flags = 0;
1225 2907
1226 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2908 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1227 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2909 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
1228 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL; 2910 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2911 if (EV_USE_LINUXAIO) flags |= EVBACKEND_LINUXAIO;
2912 if (EV_USE_IOURING ) flags |= EVBACKEND_IOURING;
1229 if (EV_USE_POLL ) flags |= EVBACKEND_POLL; 2913 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1230 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2914 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
1231 2915
1232 return flags; 2916 return flags;
1233} 2917}
1234 2918
2919ecb_cold
1235unsigned int 2920unsigned int
1236ev_recommended_backends (void) 2921ev_recommended_backends (void) EV_NOEXCEPT
1237{ 2922{
1238 unsigned int flags = ev_supported_backends (); 2923 unsigned int flags = ev_supported_backends ();
1239 2924
1240#ifndef __NetBSD__ 2925#ifndef __NetBSD__
1241 /* kqueue is borked on everything but netbsd apparently */ 2926 /* kqueue is borked on everything but netbsd apparently */
1242 /* it usually doesn't work correctly on anything but sockets and pipes */ 2927 /* it usually doesn't work correctly on anything but sockets and pipes */
1243 flags &= ~EVBACKEND_KQUEUE; 2928 flags &= ~EVBACKEND_KQUEUE;
1244#endif 2929#endif
1245#ifdef __APPLE__ 2930#ifdef __APPLE__
1246 // flags &= ~EVBACKEND_KQUEUE; for documentation 2931 /* only select works correctly on that "unix-certified" platform */
2932 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2933 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2934#endif
2935#ifdef __FreeBSD__
2936 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2937#endif
2938
2939 /* TODO: linuxaio is very experimental */
2940#if !EV_RECOMMEND_LINUXAIO
2941 flags &= ~EVBACKEND_LINUXAIO;
2942#endif
2943 /* TODO: linuxaio is super experimental */
2944#if !EV_RECOMMEND_IOURING
1247 flags &= ~EVBACKEND_POLL; 2945 flags &= ~EVBACKEND_IOURING;
1248#endif 2946#endif
1249 2947
1250 return flags; 2948 return flags;
1251} 2949}
1252 2950
2951ecb_cold
1253unsigned int 2952unsigned int
1254ev_embeddable_backends (void) 2953ev_embeddable_backends (void) EV_NOEXCEPT
1255{ 2954{
1256 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2955 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1257 2956
1258 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 2957 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1259 /* please fix it and tell me how to detect the fix */ 2958 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1260 flags &= ~EVBACKEND_EPOLL; 2959 flags &= ~EVBACKEND_EPOLL;
2960
2961 /* EVBACKEND_LINUXAIO is theoretically embeddable, but suffers from a performance overhead */
2962
2963 /* EVBACKEND_IOURING is practically embeddable, but the current implementation is not
2964 * because our backend_fd is the epoll fd we need as fallback.
2965 * if the kernel ever is fixed, this might change...
2966 */
1261 2967
1262 return flags; 2968 return flags;
1263} 2969}
1264 2970
1265unsigned int 2971unsigned int
1266ev_backend (EV_P) 2972ev_backend (EV_P) EV_NOEXCEPT
1267{ 2973{
1268 return backend; 2974 return backend;
1269} 2975}
1270 2976
2977#if EV_FEATURE_API
1271unsigned int 2978unsigned int
1272ev_loop_count (EV_P) 2979ev_iteration (EV_P) EV_NOEXCEPT
1273{ 2980{
1274 return loop_count; 2981 return loop_count;
1275} 2982}
1276 2983
2984unsigned int
2985ev_depth (EV_P) EV_NOEXCEPT
2986{
2987 return loop_depth;
2988}
2989
1277void 2990void
1278ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2991ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
1279{ 2992{
1280 io_blocktime = interval; 2993 io_blocktime = interval;
1281} 2994}
1282 2995
1283void 2996void
1284ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2997ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
1285{ 2998{
1286 timeout_blocktime = interval; 2999 timeout_blocktime = interval;
1287} 3000}
1288 3001
1289static void noinline 3002void
3003ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
3004{
3005 userdata = data;
3006}
3007
3008void *
3009ev_userdata (EV_P) EV_NOEXCEPT
3010{
3011 return userdata;
3012}
3013
3014void
3015ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
3016{
3017 invoke_cb = invoke_pending_cb;
3018}
3019
3020void
3021ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
3022{
3023 release_cb = release;
3024 acquire_cb = acquire;
3025}
3026#endif
3027
3028/* initialise a loop structure, must be zero-initialised */
3029ecb_noinline ecb_cold
3030static void
1290loop_init (EV_P_ unsigned int flags) 3031loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
1291{ 3032{
1292 if (!backend) 3033 if (!backend)
1293 { 3034 {
3035 origflags = flags;
3036
3037#if EV_USE_REALTIME
3038 if (!have_realtime)
3039 {
3040 struct timespec ts;
3041
3042 if (!clock_gettime (CLOCK_REALTIME, &ts))
3043 have_realtime = 1;
3044 }
3045#endif
3046
1294#if EV_USE_MONOTONIC 3047#if EV_USE_MONOTONIC
3048 if (!have_monotonic)
1295 { 3049 {
1296 struct timespec ts; 3050 struct timespec ts;
3051
1297 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 3052 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1298 have_monotonic = 1; 3053 have_monotonic = 1;
1299 } 3054 }
1300#endif
1301
1302 ev_rt_now = ev_time ();
1303 mn_now = get_clock ();
1304 now_floor = mn_now;
1305 rtmn_diff = ev_rt_now - mn_now;
1306
1307 io_blocktime = 0.;
1308 timeout_blocktime = 0.;
1309 backend = 0;
1310 backend_fd = -1;
1311 gotasync = 0;
1312#if EV_USE_INOTIFY
1313 fs_fd = -2;
1314#endif 3055#endif
1315 3056
1316 /* pid check not overridable via env */ 3057 /* pid check not overridable via env */
1317#ifndef _WIN32 3058#ifndef _WIN32
1318 if (flags & EVFLAG_FORKCHECK) 3059 if (flags & EVFLAG_FORKCHECK)
1322 if (!(flags & EVFLAG_NOENV) 3063 if (!(flags & EVFLAG_NOENV)
1323 && !enable_secure () 3064 && !enable_secure ()
1324 && getenv ("LIBEV_FLAGS")) 3065 && getenv ("LIBEV_FLAGS"))
1325 flags = atoi (getenv ("LIBEV_FLAGS")); 3066 flags = atoi (getenv ("LIBEV_FLAGS"));
1326 3067
1327 if (!(flags & 0x0000ffffU)) 3068 ev_rt_now = ev_time ();
3069 mn_now = get_clock ();
3070 now_floor = mn_now;
3071 rtmn_diff = ev_rt_now - mn_now;
3072#if EV_FEATURE_API
3073 invoke_cb = ev_invoke_pending;
3074#endif
3075
3076 io_blocktime = 0.;
3077 timeout_blocktime = 0.;
3078 backend = 0;
3079 backend_fd = -1;
3080 sig_pending = 0;
3081#if EV_ASYNC_ENABLE
3082 async_pending = 0;
3083#endif
3084 pipe_write_skipped = 0;
3085 pipe_write_wanted = 0;
3086 evpipe [0] = -1;
3087 evpipe [1] = -1;
3088#if EV_USE_INOTIFY
3089 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
3090#endif
3091#if EV_USE_SIGNALFD
3092 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
3093#endif
3094
3095 if (!(flags & EVBACKEND_MASK))
1328 flags |= ev_recommended_backends (); 3096 flags |= ev_recommended_backends ();
1329 3097
3098#if EV_USE_IOCP
3099 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
3100#endif
1330#if EV_USE_PORT 3101#if EV_USE_PORT
1331 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 3102 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1332#endif 3103#endif
1333#if EV_USE_KQUEUE 3104#if EV_USE_KQUEUE
1334 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 3105 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
3106#endif
3107#if EV_USE_IOURING
3108 if (!backend && (flags & EVBACKEND_IOURING )) backend = iouring_init (EV_A_ flags);
3109#endif
3110#if EV_USE_LINUXAIO
3111 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
1335#endif 3112#endif
1336#if EV_USE_EPOLL 3113#if EV_USE_EPOLL
1337 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags); 3114 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1338#endif 3115#endif
1339#if EV_USE_POLL 3116#if EV_USE_POLL
1340 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags); 3117 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1341#endif 3118#endif
1342#if EV_USE_SELECT 3119#if EV_USE_SELECT
1343 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 3120 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
1344#endif 3121#endif
1345 3122
3123 ev_prepare_init (&pending_w, pendingcb);
3124
3125#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1346 ev_init (&pipeev, pipecb); 3126 ev_init (&pipe_w, pipecb);
1347 ev_set_priority (&pipeev, EV_MAXPRI); 3127 ev_set_priority (&pipe_w, EV_MAXPRI);
3128#endif
1348 } 3129 }
1349} 3130}
1350 3131
1351static void noinline 3132/* free up a loop structure */
3133ecb_cold
3134void
1352loop_destroy (EV_P) 3135ev_loop_destroy (EV_P)
1353{ 3136{
1354 int i; 3137 int i;
1355 3138
3139#if EV_MULTIPLICITY
3140 /* mimic free (0) */
3141 if (!EV_A)
3142 return;
3143#endif
3144
3145#if EV_CLEANUP_ENABLE
3146 /* queue cleanup watchers (and execute them) */
3147 if (ecb_expect_false (cleanupcnt))
3148 {
3149 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3150 EV_INVOKE_PENDING;
3151 }
3152#endif
3153
3154#if EV_CHILD_ENABLE
3155 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3156 {
3157 ev_ref (EV_A); /* child watcher */
3158 ev_signal_stop (EV_A_ &childev);
3159 }
3160#endif
3161
1356 if (ev_is_active (&pipeev)) 3162 if (ev_is_active (&pipe_w))
1357 { 3163 {
1358 ev_ref (EV_A); /* signal watcher */ 3164 /*ev_ref (EV_A);*/
1359 ev_io_stop (EV_A_ &pipeev); 3165 /*ev_io_stop (EV_A_ &pipe_w);*/
1360 3166
3167 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3168 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3169 }
3170
1361#if EV_USE_EVENTFD 3171#if EV_USE_SIGNALFD
1362 if (evfd >= 0) 3172 if (ev_is_active (&sigfd_w))
1363 close (evfd); 3173 close (sigfd);
1364#endif 3174#endif
1365
1366 if (evpipe [0] >= 0)
1367 {
1368 close (evpipe [0]);
1369 close (evpipe [1]);
1370 }
1371 }
1372 3175
1373#if EV_USE_INOTIFY 3176#if EV_USE_INOTIFY
1374 if (fs_fd >= 0) 3177 if (fs_fd >= 0)
1375 close (fs_fd); 3178 close (fs_fd);
1376#endif 3179#endif
1377 3180
1378 if (backend_fd >= 0) 3181 if (backend_fd >= 0)
1379 close (backend_fd); 3182 close (backend_fd);
1380 3183
3184#if EV_USE_IOCP
3185 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3186#endif
1381#if EV_USE_PORT 3187#if EV_USE_PORT
1382 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 3188 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1383#endif 3189#endif
1384#if EV_USE_KQUEUE 3190#if EV_USE_KQUEUE
1385 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 3191 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3192#endif
3193#if EV_USE_IOURING
3194 if (backend == EVBACKEND_IOURING ) iouring_destroy (EV_A);
3195#endif
3196#if EV_USE_LINUXAIO
3197 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
1386#endif 3198#endif
1387#if EV_USE_EPOLL 3199#if EV_USE_EPOLL
1388 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A); 3200 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1389#endif 3201#endif
1390#if EV_USE_POLL 3202#if EV_USE_POLL
1391 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A); 3203 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1392#endif 3204#endif
1393#if EV_USE_SELECT 3205#if EV_USE_SELECT
1394 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 3206 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
1395#endif 3207#endif
1396 3208
1397 for (i = NUMPRI; i--; ) 3209 for (i = NUMPRI; i--; )
1398 { 3210 {
1399 array_free (pending, [i]); 3211 array_free (pending, [i]);
1400#if EV_IDLE_ENABLE 3212#if EV_IDLE_ENABLE
1401 array_free (idle, [i]); 3213 array_free (idle, [i]);
1402#endif 3214#endif
1403 } 3215 }
1404 3216
1405 ev_free (anfds); anfdmax = 0; 3217 ev_free (anfds); anfds = 0; anfdmax = 0;
1406 3218
1407 /* have to use the microsoft-never-gets-it-right macro */ 3219 /* have to use the microsoft-never-gets-it-right macro */
3220 array_free (rfeed, EMPTY);
1408 array_free (fdchange, EMPTY); 3221 array_free (fdchange, EMPTY);
1409 array_free (timer, EMPTY); 3222 array_free (timer, EMPTY);
1410#if EV_PERIODIC_ENABLE 3223#if EV_PERIODIC_ENABLE
1411 array_free (periodic, EMPTY); 3224 array_free (periodic, EMPTY);
1412#endif 3225#endif
1413#if EV_FORK_ENABLE 3226#if EV_FORK_ENABLE
1414 array_free (fork, EMPTY); 3227 array_free (fork, EMPTY);
1415#endif 3228#endif
3229#if EV_CLEANUP_ENABLE
3230 array_free (cleanup, EMPTY);
3231#endif
1416 array_free (prepare, EMPTY); 3232 array_free (prepare, EMPTY);
1417 array_free (check, EMPTY); 3233 array_free (check, EMPTY);
1418#if EV_ASYNC_ENABLE 3234#if EV_ASYNC_ENABLE
1419 array_free (async, EMPTY); 3235 array_free (async, EMPTY);
1420#endif 3236#endif
1421 3237
1422 backend = 0; 3238 backend = 0;
3239
3240#if EV_MULTIPLICITY
3241 if (ev_is_default_loop (EV_A))
3242#endif
3243 ev_default_loop_ptr = 0;
3244#if EV_MULTIPLICITY
3245 else
3246 ev_free (EV_A);
3247#endif
1423} 3248}
1424 3249
1425#if EV_USE_INOTIFY 3250#if EV_USE_INOTIFY
1426void inline_size infy_fork (EV_P); 3251inline_size void infy_fork (EV_P);
1427#endif 3252#endif
1428 3253
1429void inline_size 3254inline_size void
1430loop_fork (EV_P) 3255loop_fork (EV_P)
1431{ 3256{
1432#if EV_USE_PORT 3257#if EV_USE_PORT
1433 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 3258 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1434#endif 3259#endif
1435#if EV_USE_KQUEUE 3260#if EV_USE_KQUEUE
1436 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 3261 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3262#endif
3263#if EV_USE_IOURING
3264 if (backend == EVBACKEND_IOURING ) iouring_fork (EV_A);
3265#endif
3266#if EV_USE_LINUXAIO
3267 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
1437#endif 3268#endif
1438#if EV_USE_EPOLL 3269#if EV_USE_EPOLL
1439 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 3270 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1440#endif 3271#endif
1441#if EV_USE_INOTIFY 3272#if EV_USE_INOTIFY
1442 infy_fork (EV_A); 3273 infy_fork (EV_A);
1443#endif 3274#endif
1444 3275
1445 if (ev_is_active (&pipeev)) 3276#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3277 if (ev_is_active (&pipe_w) && postfork != 2)
1446 { 3278 {
1447 /* this "locks" the handlers against writing to the pipe */ 3279 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1448 /* while we modify the fd vars */
1449 gotsig = 1;
1450#if EV_ASYNC_ENABLE
1451 gotasync = 1;
1452#endif
1453 3280
1454 ev_ref (EV_A); 3281 ev_ref (EV_A);
1455 ev_io_stop (EV_A_ &pipeev); 3282 ev_io_stop (EV_A_ &pipe_w);
1456
1457#if EV_USE_EVENTFD
1458 if (evfd >= 0)
1459 close (evfd);
1460#endif
1461 3283
1462 if (evpipe [0] >= 0) 3284 if (evpipe [0] >= 0)
1463 { 3285 EV_WIN32_CLOSE_FD (evpipe [0]);
1464 close (evpipe [0]);
1465 close (evpipe [1]);
1466 }
1467 3286
1468 evpipe_init (EV_A); 3287 evpipe_init (EV_A);
1469 /* now iterate over everything, in case we missed something */ 3288 /* iterate over everything, in case we missed something before */
1470 pipecb (EV_A_ &pipeev, EV_READ); 3289 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1471 } 3290 }
3291#endif
1472 3292
1473 postfork = 0; 3293 postfork = 0;
1474} 3294}
1475 3295
1476#if EV_MULTIPLICITY 3296#if EV_MULTIPLICITY
1477 3297
3298ecb_cold
1478struct ev_loop * 3299struct ev_loop *
1479ev_loop_new (unsigned int flags) 3300ev_loop_new (unsigned int flags) EV_NOEXCEPT
1480{ 3301{
1481 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 3302 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1482 3303
1483 memset (loop, 0, sizeof (struct ev_loop)); 3304 memset (EV_A, 0, sizeof (struct ev_loop));
1484
1485 loop_init (EV_A_ flags); 3305 loop_init (EV_A_ flags);
1486 3306
1487 if (ev_backend (EV_A)) 3307 if (ev_backend (EV_A))
1488 return loop; 3308 return EV_A;
1489 3309
3310 ev_free (EV_A);
1490 return 0; 3311 return 0;
1491} 3312}
1492 3313
1493void 3314#endif /* multiplicity */
1494ev_loop_destroy (EV_P)
1495{
1496 loop_destroy (EV_A);
1497 ev_free (loop);
1498}
1499
1500void
1501ev_loop_fork (EV_P)
1502{
1503 postfork = 1; /* must be in line with ev_default_fork */
1504}
1505 3315
1506#if EV_VERIFY 3316#if EV_VERIFY
1507static void noinline 3317ecb_noinline ecb_cold
3318static void
1508verify_watcher (EV_P_ W w) 3319verify_watcher (EV_P_ W w)
1509{ 3320{
1510 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 3321 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1511 3322
1512 if (w->pending) 3323 if (w->pending)
1513 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 3324 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1514} 3325}
1515 3326
1516static void noinline 3327ecb_noinline ecb_cold
3328static void
1517verify_heap (EV_P_ ANHE *heap, int N) 3329verify_heap (EV_P_ ANHE *heap, int N)
1518{ 3330{
1519 int i; 3331 int i;
1520 3332
1521 for (i = HEAP0; i < N + HEAP0; ++i) 3333 for (i = HEAP0; i < N + HEAP0; ++i)
1522 { 3334 {
1523 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 3335 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1524 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 3336 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1525 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 3337 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1526 3338
1527 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 3339 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1528 } 3340 }
1529} 3341}
1530 3342
1531static void noinline 3343ecb_noinline ecb_cold
3344static void
1532array_verify (EV_P_ W *ws, int cnt) 3345array_verify (EV_P_ W *ws, int cnt)
1533{ 3346{
1534 while (cnt--) 3347 while (cnt--)
1535 { 3348 {
1536 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 3349 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1537 verify_watcher (EV_A_ ws [cnt]); 3350 verify_watcher (EV_A_ ws [cnt]);
1538 } 3351 }
1539} 3352}
1540#endif 3353#endif
1541 3354
1542void 3355#if EV_FEATURE_API
1543ev_loop_verify (EV_P) 3356void ecb_cold
3357ev_verify (EV_P) EV_NOEXCEPT
1544{ 3358{
1545#if EV_VERIFY 3359#if EV_VERIFY
1546 int i; 3360 int i;
1547 WL w; 3361 WL w, w2;
1548 3362
1549 assert (activecnt >= -1); 3363 assert (activecnt >= -1);
1550 3364
1551 assert (fdchangemax >= fdchangecnt); 3365 assert (fdchangemax >= fdchangecnt);
1552 for (i = 0; i < fdchangecnt; ++i) 3366 for (i = 0; i < fdchangecnt; ++i)
1553 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 3367 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1554 3368
1555 assert (anfdmax >= 0); 3369 assert (anfdmax >= 0);
1556 for (i = 0; i < anfdmax; ++i) 3370 for (i = 0; i < anfdmax; ++i)
3371 {
3372 int j = 0;
3373
1557 for (w = anfds [i].head; w; w = w->next) 3374 for (w = w2 = anfds [i].head; w; w = w->next)
1558 { 3375 {
1559 verify_watcher (EV_A_ (W)w); 3376 verify_watcher (EV_A_ (W)w);
3377
3378 if (j++ & 1)
3379 {
3380 assert (("libev: io watcher list contains a loop", w != w2));
3381 w2 = w2->next;
3382 }
3383
1560 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 3384 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1561 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 3385 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1562 } 3386 }
3387 }
1563 3388
1564 assert (timermax >= timercnt); 3389 assert (timermax >= timercnt);
1565 verify_heap (EV_A_ timers, timercnt); 3390 verify_heap (EV_A_ timers, timercnt);
1566 3391
1567#if EV_PERIODIC_ENABLE 3392#if EV_PERIODIC_ENABLE
1582#if EV_FORK_ENABLE 3407#if EV_FORK_ENABLE
1583 assert (forkmax >= forkcnt); 3408 assert (forkmax >= forkcnt);
1584 array_verify (EV_A_ (W *)forks, forkcnt); 3409 array_verify (EV_A_ (W *)forks, forkcnt);
1585#endif 3410#endif
1586 3411
3412#if EV_CLEANUP_ENABLE
3413 assert (cleanupmax >= cleanupcnt);
3414 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3415#endif
3416
1587#if EV_ASYNC_ENABLE 3417#if EV_ASYNC_ENABLE
1588 assert (asyncmax >= asynccnt); 3418 assert (asyncmax >= asynccnt);
1589 array_verify (EV_A_ (W *)asyncs, asynccnt); 3419 array_verify (EV_A_ (W *)asyncs, asynccnt);
1590#endif 3420#endif
1591 3421
3422#if EV_PREPARE_ENABLE
1592 assert (preparemax >= preparecnt); 3423 assert (preparemax >= preparecnt);
1593 array_verify (EV_A_ (W *)prepares, preparecnt); 3424 array_verify (EV_A_ (W *)prepares, preparecnt);
3425#endif
1594 3426
3427#if EV_CHECK_ENABLE
1595 assert (checkmax >= checkcnt); 3428 assert (checkmax >= checkcnt);
1596 array_verify (EV_A_ (W *)checks, checkcnt); 3429 array_verify (EV_A_ (W *)checks, checkcnt);
3430#endif
1597 3431
1598# if 0 3432# if 0
3433#if EV_CHILD_ENABLE
1599 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 3434 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1600 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 3435 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3436#endif
1601# endif 3437# endif
1602#endif 3438#endif
1603} 3439}
1604 3440#endif
1605#endif /* multiplicity */
1606 3441
1607#if EV_MULTIPLICITY 3442#if EV_MULTIPLICITY
3443ecb_cold
1608struct ev_loop * 3444struct ev_loop *
1609ev_default_loop_init (unsigned int flags)
1610#else 3445#else
1611int 3446int
3447#endif
1612ev_default_loop (unsigned int flags) 3448ev_default_loop (unsigned int flags) EV_NOEXCEPT
1613#endif
1614{ 3449{
1615 if (!ev_default_loop_ptr) 3450 if (!ev_default_loop_ptr)
1616 { 3451 {
1617#if EV_MULTIPLICITY 3452#if EV_MULTIPLICITY
1618 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3453 EV_P = ev_default_loop_ptr = &default_loop_struct;
1619#else 3454#else
1620 ev_default_loop_ptr = 1; 3455 ev_default_loop_ptr = 1;
1621#endif 3456#endif
1622 3457
1623 loop_init (EV_A_ flags); 3458 loop_init (EV_A_ flags);
1624 3459
1625 if (ev_backend (EV_A)) 3460 if (ev_backend (EV_A))
1626 { 3461 {
1627#ifndef _WIN32 3462#if EV_CHILD_ENABLE
1628 ev_signal_init (&childev, childcb, SIGCHLD); 3463 ev_signal_init (&childev, childcb, SIGCHLD);
1629 ev_set_priority (&childev, EV_MAXPRI); 3464 ev_set_priority (&childev, EV_MAXPRI);
1630 ev_signal_start (EV_A_ &childev); 3465 ev_signal_start (EV_A_ &childev);
1631 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3466 ev_unref (EV_A); /* child watcher should not keep loop alive */
1632#endif 3467#endif
1637 3472
1638 return ev_default_loop_ptr; 3473 return ev_default_loop_ptr;
1639} 3474}
1640 3475
1641void 3476void
1642ev_default_destroy (void) 3477ev_loop_fork (EV_P) EV_NOEXCEPT
1643{ 3478{
1644#if EV_MULTIPLICITY 3479 postfork = 1;
1645 struct ev_loop *loop = ev_default_loop_ptr;
1646#endif
1647
1648 ev_default_loop_ptr = 0;
1649
1650#ifndef _WIN32
1651 ev_ref (EV_A); /* child watcher */
1652 ev_signal_stop (EV_A_ &childev);
1653#endif
1654
1655 loop_destroy (EV_A);
1656}
1657
1658void
1659ev_default_fork (void)
1660{
1661#if EV_MULTIPLICITY
1662 struct ev_loop *loop = ev_default_loop_ptr;
1663#endif
1664
1665 postfork = 1; /* must be in line with ev_loop_fork */
1666} 3480}
1667 3481
1668/*****************************************************************************/ 3482/*****************************************************************************/
1669 3483
1670void 3484void
1671ev_invoke (EV_P_ void *w, int revents) 3485ev_invoke (EV_P_ void *w, int revents)
1672{ 3486{
1673 EV_CB_INVOKE ((W)w, revents); 3487 EV_CB_INVOKE ((W)w, revents);
1674} 3488}
1675 3489
1676void inline_speed 3490unsigned int
1677call_pending (EV_P) 3491ev_pending_count (EV_P) EV_NOEXCEPT
1678{ 3492{
1679 int pri; 3493 int pri;
3494 unsigned int count = 0;
1680 3495
1681 for (pri = NUMPRI; pri--; ) 3496 for (pri = NUMPRI; pri--; )
3497 count += pendingcnt [pri];
3498
3499 return count;
3500}
3501
3502ecb_noinline
3503void
3504ev_invoke_pending (EV_P)
3505{
3506 pendingpri = NUMPRI;
3507
3508 do
3509 {
3510 --pendingpri;
3511
3512 /* pendingpri possibly gets modified in the inner loop */
1682 while (pendingcnt [pri]) 3513 while (pendingcnt [pendingpri])
1683 {
1684 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1685
1686 if (expect_true (p->w))
1687 { 3514 {
1688 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 3515 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1689 3516
1690 p->w->pending = 0; 3517 p->w->pending = 0;
1691 EV_CB_INVOKE (p->w, p->events); 3518 EV_CB_INVOKE (p->w, p->events);
1692 EV_FREQUENT_CHECK; 3519 EV_FREQUENT_CHECK;
1693 } 3520 }
1694 } 3521 }
3522 while (pendingpri);
1695} 3523}
1696 3524
1697#if EV_IDLE_ENABLE 3525#if EV_IDLE_ENABLE
1698void inline_size 3526/* make idle watchers pending. this handles the "call-idle */
3527/* only when higher priorities are idle" logic */
3528inline_size void
1699idle_reify (EV_P) 3529idle_reify (EV_P)
1700{ 3530{
1701 if (expect_false (idleall)) 3531 if (ecb_expect_false (idleall))
1702 { 3532 {
1703 int pri; 3533 int pri;
1704 3534
1705 for (pri = NUMPRI; pri--; ) 3535 for (pri = NUMPRI; pri--; )
1706 { 3536 {
1715 } 3545 }
1716 } 3546 }
1717} 3547}
1718#endif 3548#endif
1719 3549
1720void inline_size 3550/* make timers pending */
3551inline_size void
1721timers_reify (EV_P) 3552timers_reify (EV_P)
1722{ 3553{
1723 EV_FREQUENT_CHECK; 3554 EV_FREQUENT_CHECK;
1724 3555
1725 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 3556 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1726 { 3557 {
1727 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 3558 do
1728
1729 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1730
1731 /* first reschedule or stop timer */
1732 if (w->repeat)
1733 { 3559 {
3560 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3561
3562 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3563
3564 /* first reschedule or stop timer */
3565 if (w->repeat)
3566 {
1734 ev_at (w) += w->repeat; 3567 ev_at (w) += w->repeat;
1735 if (ev_at (w) < mn_now) 3568 if (ev_at (w) < mn_now)
1736 ev_at (w) = mn_now; 3569 ev_at (w) = mn_now;
1737 3570
1738 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3571 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > EV_TS_CONST (0.)));
1739 3572
1740 ANHE_at_cache (timers [HEAP0]); 3573 ANHE_at_cache (timers [HEAP0]);
1741 downheap (timers, timercnt, HEAP0); 3574 downheap (timers, timercnt, HEAP0);
3575 }
3576 else
3577 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3578
3579 EV_FREQUENT_CHECK;
3580 feed_reverse (EV_A_ (W)w);
1742 } 3581 }
1743 else 3582 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1744 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1745 3583
1746 EV_FREQUENT_CHECK; 3584 feed_reverse_done (EV_A_ EV_TIMER);
1747 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1748 } 3585 }
1749} 3586}
1750 3587
1751#if EV_PERIODIC_ENABLE 3588#if EV_PERIODIC_ENABLE
1752void inline_size 3589
3590ecb_noinline
3591static void
3592periodic_recalc (EV_P_ ev_periodic *w)
3593{
3594 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3595 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3596
3597 /* the above almost always errs on the low side */
3598 while (at <= ev_rt_now)
3599 {
3600 ev_tstamp nat = at + w->interval;
3601
3602 /* when resolution fails us, we use ev_rt_now */
3603 if (ecb_expect_false (nat == at))
3604 {
3605 at = ev_rt_now;
3606 break;
3607 }
3608
3609 at = nat;
3610 }
3611
3612 ev_at (w) = at;
3613}
3614
3615/* make periodics pending */
3616inline_size void
1753periodics_reify (EV_P) 3617periodics_reify (EV_P)
1754{ 3618{
1755 EV_FREQUENT_CHECK; 3619 EV_FREQUENT_CHECK;
1756 3620
1757 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 3621 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1758 { 3622 {
1759 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 3623 do
1760
1761 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1762
1763 /* first reschedule or stop timer */
1764 if (w->reschedule_cb)
1765 { 3624 {
3625 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3626
3627 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3628
3629 /* first reschedule or stop timer */
3630 if (w->reschedule_cb)
3631 {
1766 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3632 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1767 3633
1768 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 3634 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1769 3635
1770 ANHE_at_cache (periodics [HEAP0]); 3636 ANHE_at_cache (periodics [HEAP0]);
1771 downheap (periodics, periodiccnt, HEAP0); 3637 downheap (periodics, periodiccnt, HEAP0);
3638 }
3639 else if (w->interval)
3640 {
3641 periodic_recalc (EV_A_ w);
3642 ANHE_at_cache (periodics [HEAP0]);
3643 downheap (periodics, periodiccnt, HEAP0);
3644 }
3645 else
3646 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3647
3648 EV_FREQUENT_CHECK;
3649 feed_reverse (EV_A_ (W)w);
1772 } 3650 }
1773 else if (w->interval) 3651 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1774 {
1775 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1776 /* if next trigger time is not sufficiently in the future, put it there */
1777 /* this might happen because of floating point inexactness */
1778 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1779 {
1780 ev_at (w) += w->interval;
1781 3652
1782 /* if interval is unreasonably low we might still have a time in the past */
1783 /* so correct this. this will make the periodic very inexact, but the user */
1784 /* has effectively asked to get triggered more often than possible */
1785 if (ev_at (w) < ev_rt_now)
1786 ev_at (w) = ev_rt_now;
1787 }
1788
1789 ANHE_at_cache (periodics [HEAP0]);
1790 downheap (periodics, periodiccnt, HEAP0);
1791 }
1792 else
1793 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1794
1795 EV_FREQUENT_CHECK;
1796 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3653 feed_reverse_done (EV_A_ EV_PERIODIC);
1797 } 3654 }
1798} 3655}
1799 3656
1800static void noinline 3657/* simply recalculate all periodics */
3658/* TODO: maybe ensure that at least one event happens when jumping forward? */
3659ecb_noinline ecb_cold
3660static void
1801periodics_reschedule (EV_P) 3661periodics_reschedule (EV_P)
1802{ 3662{
1803 int i; 3663 int i;
1804 3664
1805 /* adjust periodics after time jump */ 3665 /* adjust periodics after time jump */
1808 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 3668 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1809 3669
1810 if (w->reschedule_cb) 3670 if (w->reschedule_cb)
1811 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3671 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1812 else if (w->interval) 3672 else if (w->interval)
1813 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3673 periodic_recalc (EV_A_ w);
1814 3674
1815 ANHE_at_cache (periodics [i]); 3675 ANHE_at_cache (periodics [i]);
1816 } 3676 }
1817 3677
1818 reheap (periodics, periodiccnt); 3678 reheap (periodics, periodiccnt);
1819} 3679}
1820#endif 3680#endif
1821 3681
1822void inline_speed 3682/* adjust all timers by a given offset */
3683ecb_noinline ecb_cold
3684static void
3685timers_reschedule (EV_P_ ev_tstamp adjust)
3686{
3687 int i;
3688
3689 for (i = 0; i < timercnt; ++i)
3690 {
3691 ANHE *he = timers + i + HEAP0;
3692 ANHE_w (*he)->at += adjust;
3693 ANHE_at_cache (*he);
3694 }
3695}
3696
3697/* fetch new monotonic and realtime times from the kernel */
3698/* also detect if there was a timejump, and act accordingly */
3699inline_speed void
1823time_update (EV_P_ ev_tstamp max_block) 3700time_update (EV_P_ ev_tstamp max_block)
1824{ 3701{
1825 int i;
1826
1827#if EV_USE_MONOTONIC 3702#if EV_USE_MONOTONIC
1828 if (expect_true (have_monotonic)) 3703 if (ecb_expect_true (have_monotonic))
1829 { 3704 {
3705 int i;
1830 ev_tstamp odiff = rtmn_diff; 3706 ev_tstamp odiff = rtmn_diff;
1831 3707
1832 mn_now = get_clock (); 3708 mn_now = get_clock ();
1833 3709
1834 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3710 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1835 /* interpolate in the meantime */ 3711 /* interpolate in the meantime */
1836 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 3712 if (ecb_expect_true (mn_now - now_floor < EV_TS_CONST (MIN_TIMEJUMP * .5)))
1837 { 3713 {
1838 ev_rt_now = rtmn_diff + mn_now; 3714 ev_rt_now = rtmn_diff + mn_now;
1839 return; 3715 return;
1840 } 3716 }
1841 3717
1850 * doesn't hurt either as we only do this on time-jumps or 3726 * doesn't hurt either as we only do this on time-jumps or
1851 * in the unlikely event of having been preempted here. 3727 * in the unlikely event of having been preempted here.
1852 */ 3728 */
1853 for (i = 4; --i; ) 3729 for (i = 4; --i; )
1854 { 3730 {
3731 ev_tstamp diff;
1855 rtmn_diff = ev_rt_now - mn_now; 3732 rtmn_diff = ev_rt_now - mn_now;
1856 3733
1857 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3734 diff = odiff - rtmn_diff;
3735
3736 if (ecb_expect_true ((diff < EV_TS_CONST (0.) ? -diff : diff) < EV_TS_CONST (MIN_TIMEJUMP)))
1858 return; /* all is well */ 3737 return; /* all is well */
1859 3738
1860 ev_rt_now = ev_time (); 3739 ev_rt_now = ev_time ();
1861 mn_now = get_clock (); 3740 mn_now = get_clock ();
1862 now_floor = mn_now; 3741 now_floor = mn_now;
1863 } 3742 }
1864 3743
3744 /* no timer adjustment, as the monotonic clock doesn't jump */
3745 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1865# if EV_PERIODIC_ENABLE 3746# if EV_PERIODIC_ENABLE
1866 periodics_reschedule (EV_A); 3747 periodics_reschedule (EV_A);
1867# endif 3748# endif
1868 /* no timer adjustment, as the monotonic clock doesn't jump */
1869 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1870 } 3749 }
1871 else 3750 else
1872#endif 3751#endif
1873 { 3752 {
1874 ev_rt_now = ev_time (); 3753 ev_rt_now = ev_time ();
1875 3754
1876 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3755 if (ecb_expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + EV_TS_CONST (MIN_TIMEJUMP)))
1877 { 3756 {
3757 /* adjust timers. this is easy, as the offset is the same for all of them */
3758 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1878#if EV_PERIODIC_ENABLE 3759#if EV_PERIODIC_ENABLE
1879 periodics_reschedule (EV_A); 3760 periodics_reschedule (EV_A);
1880#endif 3761#endif
1881 /* adjust timers. this is easy, as the offset is the same for all of them */
1882 for (i = 0; i < timercnt; ++i)
1883 {
1884 ANHE *he = timers + i + HEAP0;
1885 ANHE_w (*he)->at += ev_rt_now - mn_now;
1886 ANHE_at_cache (*he);
1887 }
1888 } 3762 }
1889 3763
1890 mn_now = ev_rt_now; 3764 mn_now = ev_rt_now;
1891 } 3765 }
1892} 3766}
1893 3767
1894void 3768int
1895ev_ref (EV_P)
1896{
1897 ++activecnt;
1898}
1899
1900void
1901ev_unref (EV_P)
1902{
1903 --activecnt;
1904}
1905
1906void
1907ev_now_update (EV_P)
1908{
1909 time_update (EV_A_ 1e100);
1910}
1911
1912static int loop_done;
1913
1914void
1915ev_loop (EV_P_ int flags) 3769ev_run (EV_P_ int flags)
1916{ 3770{
3771#if EV_FEATURE_API
3772 ++loop_depth;
3773#endif
3774
3775 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3776
1917 loop_done = EVUNLOOP_CANCEL; 3777 loop_done = EVBREAK_CANCEL;
1918 3778
1919 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3779 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1920 3780
1921 do 3781 do
1922 { 3782 {
1923#if EV_VERIFY >= 2 3783#if EV_VERIFY >= 2
1924 ev_loop_verify (EV_A); 3784 ev_verify (EV_A);
1925#endif 3785#endif
1926 3786
1927#ifndef _WIN32 3787#ifndef _WIN32
1928 if (expect_false (curpid)) /* penalise the forking check even more */ 3788 if (ecb_expect_false (curpid)) /* penalise the forking check even more */
1929 if (expect_false (getpid () != curpid)) 3789 if (ecb_expect_false (getpid () != curpid))
1930 { 3790 {
1931 curpid = getpid (); 3791 curpid = getpid ();
1932 postfork = 1; 3792 postfork = 1;
1933 } 3793 }
1934#endif 3794#endif
1935 3795
1936#if EV_FORK_ENABLE 3796#if EV_FORK_ENABLE
1937 /* we might have forked, so queue fork handlers */ 3797 /* we might have forked, so queue fork handlers */
1938 if (expect_false (postfork)) 3798 if (ecb_expect_false (postfork))
1939 if (forkcnt) 3799 if (forkcnt)
1940 { 3800 {
1941 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3801 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1942 call_pending (EV_A); 3802 EV_INVOKE_PENDING;
1943 } 3803 }
1944#endif 3804#endif
1945 3805
3806#if EV_PREPARE_ENABLE
1946 /* queue prepare watchers (and execute them) */ 3807 /* queue prepare watchers (and execute them) */
1947 if (expect_false (preparecnt)) 3808 if (ecb_expect_false (preparecnt))
1948 { 3809 {
1949 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3810 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1950 call_pending (EV_A); 3811 EV_INVOKE_PENDING;
1951 } 3812 }
3813#endif
1952 3814
1953 if (expect_false (!activecnt)) 3815 if (ecb_expect_false (loop_done))
1954 break; 3816 break;
1955 3817
1956 /* we might have forked, so reify kernel state if necessary */ 3818 /* we might have forked, so reify kernel state if necessary */
1957 if (expect_false (postfork)) 3819 if (ecb_expect_false (postfork))
1958 loop_fork (EV_A); 3820 loop_fork (EV_A);
1959 3821
1960 /* update fd-related kernel structures */ 3822 /* update fd-related kernel structures */
1961 fd_reify (EV_A); 3823 fd_reify (EV_A);
1962 3824
1963 /* calculate blocking time */ 3825 /* calculate blocking time */
1964 { 3826 {
1965 ev_tstamp waittime = 0.; 3827 ev_tstamp waittime = 0.;
1966 ev_tstamp sleeptime = 0.; 3828 ev_tstamp sleeptime = 0.;
1967 3829
3830 /* remember old timestamp for io_blocktime calculation */
3831 ev_tstamp prev_mn_now = mn_now;
3832
3833 /* update time to cancel out callback processing overhead */
3834 time_update (EV_A_ EV_TS_CONST (EV_TSTAMP_HUGE));
3835
3836 /* from now on, we want a pipe-wake-up */
3837 pipe_write_wanted = 1;
3838
3839 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3840
1968 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3841 if (ecb_expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1969 { 3842 {
1970 /* update time to cancel out callback processing overhead */
1971 time_update (EV_A_ 1e100);
1972
1973 waittime = MAX_BLOCKTIME; 3843 waittime = EV_TS_CONST (MAX_BLOCKTIME);
1974 3844
1975 if (timercnt) 3845 if (timercnt)
1976 { 3846 {
1977 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3847 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1978 if (waittime > to) waittime = to; 3848 if (waittime > to) waittime = to;
1979 } 3849 }
1980 3850
1981#if EV_PERIODIC_ENABLE 3851#if EV_PERIODIC_ENABLE
1982 if (periodiccnt) 3852 if (periodiccnt)
1983 { 3853 {
1984 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3854 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1985 if (waittime > to) waittime = to; 3855 if (waittime > to) waittime = to;
1986 } 3856 }
1987#endif 3857#endif
1988 3858
3859 /* don't let timeouts decrease the waittime below timeout_blocktime */
1989 if (expect_false (waittime < timeout_blocktime)) 3860 if (ecb_expect_false (waittime < timeout_blocktime))
1990 waittime = timeout_blocktime; 3861 waittime = timeout_blocktime;
1991 3862
1992 sleeptime = waittime - backend_fudge; 3863 /* now there are two more special cases left, either we have
3864 * already-expired timers, so we should not sleep, or we have timers
3865 * that expire very soon, in which case we need to wait for a minimum
3866 * amount of time for some event loop backends.
3867 */
3868 if (ecb_expect_false (waittime < backend_mintime))
3869 waittime = waittime <= EV_TS_CONST (0.)
3870 ? EV_TS_CONST (0.)
3871 : backend_mintime;
1993 3872
3873 /* extra check because io_blocktime is commonly 0 */
1994 if (expect_true (sleeptime > io_blocktime)) 3874 if (ecb_expect_false (io_blocktime))
1995 sleeptime = io_blocktime;
1996
1997 if (sleeptime)
1998 { 3875 {
3876 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3877
3878 if (sleeptime > waittime - backend_mintime)
3879 sleeptime = waittime - backend_mintime;
3880
3881 if (ecb_expect_true (sleeptime > EV_TS_CONST (0.)))
3882 {
1999 ev_sleep (sleeptime); 3883 ev_sleep (sleeptime);
2000 waittime -= sleeptime; 3884 waittime -= sleeptime;
3885 }
2001 } 3886 }
2002 } 3887 }
2003 3888
3889#if EV_FEATURE_API
2004 ++loop_count; 3890 ++loop_count;
3891#endif
3892 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2005 backend_poll (EV_A_ waittime); 3893 backend_poll (EV_A_ waittime);
3894 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3895
3896 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3897
3898 ECB_MEMORY_FENCE_ACQUIRE;
3899 if (pipe_write_skipped)
3900 {
3901 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3902 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3903 }
2006 3904
2007 /* update ev_rt_now, do magic */ 3905 /* update ev_rt_now, do magic */
2008 time_update (EV_A_ waittime + sleeptime); 3906 time_update (EV_A_ waittime + sleeptime);
2009 } 3907 }
2010 3908
2017#if EV_IDLE_ENABLE 3915#if EV_IDLE_ENABLE
2018 /* queue idle watchers unless other events are pending */ 3916 /* queue idle watchers unless other events are pending */
2019 idle_reify (EV_A); 3917 idle_reify (EV_A);
2020#endif 3918#endif
2021 3919
3920#if EV_CHECK_ENABLE
2022 /* queue check watchers, to be executed first */ 3921 /* queue check watchers, to be executed first */
2023 if (expect_false (checkcnt)) 3922 if (ecb_expect_false (checkcnt))
2024 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3923 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3924#endif
2025 3925
2026 call_pending (EV_A); 3926 EV_INVOKE_PENDING;
2027 } 3927 }
2028 while (expect_true ( 3928 while (ecb_expect_true (
2029 activecnt 3929 activecnt
2030 && !loop_done 3930 && !loop_done
2031 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3931 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2032 )); 3932 ));
2033 3933
2034 if (loop_done == EVUNLOOP_ONE) 3934 if (loop_done == EVBREAK_ONE)
2035 loop_done = EVUNLOOP_CANCEL; 3935 loop_done = EVBREAK_CANCEL;
2036}
2037 3936
3937#if EV_FEATURE_API
3938 --loop_depth;
3939#endif
3940
3941 return activecnt;
3942}
3943
2038void 3944void
2039ev_unloop (EV_P_ int how) 3945ev_break (EV_P_ int how) EV_NOEXCEPT
2040{ 3946{
2041 loop_done = how; 3947 loop_done = how;
2042} 3948}
2043 3949
3950void
3951ev_ref (EV_P) EV_NOEXCEPT
3952{
3953 ++activecnt;
3954}
3955
3956void
3957ev_unref (EV_P) EV_NOEXCEPT
3958{
3959 --activecnt;
3960}
3961
3962void
3963ev_now_update (EV_P) EV_NOEXCEPT
3964{
3965 time_update (EV_A_ EV_TSTAMP_HUGE);
3966}
3967
3968void
3969ev_suspend (EV_P) EV_NOEXCEPT
3970{
3971 ev_now_update (EV_A);
3972}
3973
3974void
3975ev_resume (EV_P) EV_NOEXCEPT
3976{
3977 ev_tstamp mn_prev = mn_now;
3978
3979 ev_now_update (EV_A);
3980 timers_reschedule (EV_A_ mn_now - mn_prev);
3981#if EV_PERIODIC_ENABLE
3982 /* TODO: really do this? */
3983 periodics_reschedule (EV_A);
3984#endif
3985}
3986
2044/*****************************************************************************/ 3987/*****************************************************************************/
3988/* singly-linked list management, used when the expected list length is short */
2045 3989
2046void inline_size 3990inline_size void
2047wlist_add (WL *head, WL elem) 3991wlist_add (WL *head, WL elem)
2048{ 3992{
2049 elem->next = *head; 3993 elem->next = *head;
2050 *head = elem; 3994 *head = elem;
2051} 3995}
2052 3996
2053void inline_size 3997inline_size void
2054wlist_del (WL *head, WL elem) 3998wlist_del (WL *head, WL elem)
2055{ 3999{
2056 while (*head) 4000 while (*head)
2057 { 4001 {
2058 if (*head == elem) 4002 if (ecb_expect_true (*head == elem))
2059 { 4003 {
2060 *head = elem->next; 4004 *head = elem->next;
2061 return; 4005 break;
2062 } 4006 }
2063 4007
2064 head = &(*head)->next; 4008 head = &(*head)->next;
2065 } 4009 }
2066} 4010}
2067 4011
2068void inline_speed 4012/* internal, faster, version of ev_clear_pending */
4013inline_speed void
2069clear_pending (EV_P_ W w) 4014clear_pending (EV_P_ W w)
2070{ 4015{
2071 if (w->pending) 4016 if (w->pending)
2072 { 4017 {
2073 pendings [ABSPRI (w)][w->pending - 1].w = 0; 4018 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2074 w->pending = 0; 4019 w->pending = 0;
2075 } 4020 }
2076} 4021}
2077 4022
2078int 4023int
2079ev_clear_pending (EV_P_ void *w) 4024ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
2080{ 4025{
2081 W w_ = (W)w; 4026 W w_ = (W)w;
2082 int pending = w_->pending; 4027 int pending = w_->pending;
2083 4028
2084 if (expect_true (pending)) 4029 if (ecb_expect_true (pending))
2085 { 4030 {
2086 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 4031 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
4032 p->w = (W)&pending_w;
2087 w_->pending = 0; 4033 w_->pending = 0;
2088 p->w = 0;
2089 return p->events; 4034 return p->events;
2090 } 4035 }
2091 else 4036 else
2092 return 0; 4037 return 0;
2093} 4038}
2094 4039
2095void inline_size 4040inline_size void
2096pri_adjust (EV_P_ W w) 4041pri_adjust (EV_P_ W w)
2097{ 4042{
2098 int pri = w->priority; 4043 int pri = ev_priority (w);
2099 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 4044 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2100 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 4045 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2101 w->priority = pri; 4046 ev_set_priority (w, pri);
2102} 4047}
2103 4048
2104void inline_speed 4049inline_speed void
2105ev_start (EV_P_ W w, int active) 4050ev_start (EV_P_ W w, int active)
2106{ 4051{
2107 pri_adjust (EV_A_ w); 4052 pri_adjust (EV_A_ w);
2108 w->active = active; 4053 w->active = active;
2109 ev_ref (EV_A); 4054 ev_ref (EV_A);
2110} 4055}
2111 4056
2112void inline_size 4057inline_size void
2113ev_stop (EV_P_ W w) 4058ev_stop (EV_P_ W w)
2114{ 4059{
2115 ev_unref (EV_A); 4060 ev_unref (EV_A);
2116 w->active = 0; 4061 w->active = 0;
2117} 4062}
2118 4063
2119/*****************************************************************************/ 4064/*****************************************************************************/
2120 4065
2121void noinline 4066ecb_noinline
4067void
2122ev_io_start (EV_P_ ev_io *w) 4068ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
2123{ 4069{
2124 int fd = w->fd; 4070 int fd = w->fd;
2125 4071
2126 if (expect_false (ev_is_active (w))) 4072 if (ecb_expect_false (ev_is_active (w)))
2127 return; 4073 return;
2128 4074
2129 assert (("ev_io_start called with negative fd", fd >= 0)); 4075 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2130 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE)))); 4076 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2131 4077
4078#if EV_VERIFY >= 2
4079 assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
4080#endif
2132 EV_FREQUENT_CHECK; 4081 EV_FREQUENT_CHECK;
2133 4082
2134 ev_start (EV_A_ (W)w, 1); 4083 ev_start (EV_A_ (W)w, 1);
2135 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 4084 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
2136 wlist_add (&anfds[fd].head, (WL)w); 4085 wlist_add (&anfds[fd].head, (WL)w);
2137 4086
4087 /* common bug, apparently */
4088 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
4089
2138 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 4090 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2139 w->events &= ~EV_IOFDSET; 4091 w->events &= ~EV__IOFDSET;
2140 4092
2141 EV_FREQUENT_CHECK; 4093 EV_FREQUENT_CHECK;
2142} 4094}
2143 4095
2144void noinline 4096ecb_noinline
4097void
2145ev_io_stop (EV_P_ ev_io *w) 4098ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
2146{ 4099{
2147 clear_pending (EV_A_ (W)w); 4100 clear_pending (EV_A_ (W)w);
2148 if (expect_false (!ev_is_active (w))) 4101 if (ecb_expect_false (!ev_is_active (w)))
2149 return; 4102 return;
2150 4103
2151 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 4104 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2152 4105
4106#if EV_VERIFY >= 2
4107 assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
4108#endif
2153 EV_FREQUENT_CHECK; 4109 EV_FREQUENT_CHECK;
2154 4110
2155 wlist_del (&anfds[w->fd].head, (WL)w); 4111 wlist_del (&anfds[w->fd].head, (WL)w);
2156 ev_stop (EV_A_ (W)w); 4112 ev_stop (EV_A_ (W)w);
2157 4113
2158 fd_change (EV_A_ w->fd, 1); 4114 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2159 4115
2160 EV_FREQUENT_CHECK; 4116 EV_FREQUENT_CHECK;
2161} 4117}
2162 4118
2163void noinline 4119ecb_noinline
4120void
2164ev_timer_start (EV_P_ ev_timer *w) 4121ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
2165{ 4122{
2166 if (expect_false (ev_is_active (w))) 4123 if (ecb_expect_false (ev_is_active (w)))
2167 return; 4124 return;
2168 4125
2169 ev_at (w) += mn_now; 4126 ev_at (w) += mn_now;
2170 4127
2171 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 4128 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2172 4129
2173 EV_FREQUENT_CHECK; 4130 EV_FREQUENT_CHECK;
2174 4131
2175 ++timercnt; 4132 ++timercnt;
2176 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 4133 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2177 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 4134 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
2178 ANHE_w (timers [ev_active (w)]) = (WT)w; 4135 ANHE_w (timers [ev_active (w)]) = (WT)w;
2179 ANHE_at_cache (timers [ev_active (w)]); 4136 ANHE_at_cache (timers [ev_active (w)]);
2180 upheap (timers, ev_active (w)); 4137 upheap (timers, ev_active (w));
2181 4138
2182 EV_FREQUENT_CHECK; 4139 EV_FREQUENT_CHECK;
2183 4140
2184 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 4141 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2185} 4142}
2186 4143
2187void noinline 4144ecb_noinline
4145void
2188ev_timer_stop (EV_P_ ev_timer *w) 4146ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
2189{ 4147{
2190 clear_pending (EV_A_ (W)w); 4148 clear_pending (EV_A_ (W)w);
2191 if (expect_false (!ev_is_active (w))) 4149 if (ecb_expect_false (!ev_is_active (w)))
2192 return; 4150 return;
2193 4151
2194 EV_FREQUENT_CHECK; 4152 EV_FREQUENT_CHECK;
2195 4153
2196 { 4154 {
2197 int active = ev_active (w); 4155 int active = ev_active (w);
2198 4156
2199 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 4157 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2200 4158
2201 --timercnt; 4159 --timercnt;
2202 4160
2203 if (expect_true (active < timercnt + HEAP0)) 4161 if (ecb_expect_true (active < timercnt + HEAP0))
2204 { 4162 {
2205 timers [active] = timers [timercnt + HEAP0]; 4163 timers [active] = timers [timercnt + HEAP0];
2206 adjustheap (timers, timercnt, active); 4164 adjustheap (timers, timercnt, active);
2207 } 4165 }
2208 } 4166 }
2209 4167
2210 EV_FREQUENT_CHECK;
2211
2212 ev_at (w) -= mn_now; 4168 ev_at (w) -= mn_now;
2213 4169
2214 ev_stop (EV_A_ (W)w); 4170 ev_stop (EV_A_ (W)w);
2215}
2216 4171
2217void noinline 4172 EV_FREQUENT_CHECK;
4173}
4174
4175ecb_noinline
4176void
2218ev_timer_again (EV_P_ ev_timer *w) 4177ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
2219{ 4178{
2220 EV_FREQUENT_CHECK; 4179 EV_FREQUENT_CHECK;
4180
4181 clear_pending (EV_A_ (W)w);
2221 4182
2222 if (ev_is_active (w)) 4183 if (ev_is_active (w))
2223 { 4184 {
2224 if (w->repeat) 4185 if (w->repeat)
2225 { 4186 {
2237 } 4198 }
2238 4199
2239 EV_FREQUENT_CHECK; 4200 EV_FREQUENT_CHECK;
2240} 4201}
2241 4202
4203ev_tstamp
4204ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4205{
4206 return ev_at (w) - (ev_is_active (w) ? mn_now : EV_TS_CONST (0.));
4207}
4208
2242#if EV_PERIODIC_ENABLE 4209#if EV_PERIODIC_ENABLE
2243void noinline 4210ecb_noinline
4211void
2244ev_periodic_start (EV_P_ ev_periodic *w) 4212ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
2245{ 4213{
2246 if (expect_false (ev_is_active (w))) 4214 if (ecb_expect_false (ev_is_active (w)))
2247 return; 4215 return;
2248 4216
2249 if (w->reschedule_cb) 4217 if (w->reschedule_cb)
2250 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 4218 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2251 else if (w->interval) 4219 else if (w->interval)
2252 { 4220 {
2253 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 4221 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2254 /* this formula differs from the one in periodic_reify because we do not always round up */ 4222 periodic_recalc (EV_A_ w);
2255 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2256 } 4223 }
2257 else 4224 else
2258 ev_at (w) = w->offset; 4225 ev_at (w) = w->offset;
2259 4226
2260 EV_FREQUENT_CHECK; 4227 EV_FREQUENT_CHECK;
2261 4228
2262 ++periodiccnt; 4229 ++periodiccnt;
2263 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1); 4230 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2264 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 4231 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
2265 ANHE_w (periodics [ev_active (w)]) = (WT)w; 4232 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2266 ANHE_at_cache (periodics [ev_active (w)]); 4233 ANHE_at_cache (periodics [ev_active (w)]);
2267 upheap (periodics, ev_active (w)); 4234 upheap (periodics, ev_active (w));
2268 4235
2269 EV_FREQUENT_CHECK; 4236 EV_FREQUENT_CHECK;
2270 4237
2271 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 4238 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2272} 4239}
2273 4240
2274void noinline 4241ecb_noinline
4242void
2275ev_periodic_stop (EV_P_ ev_periodic *w) 4243ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
2276{ 4244{
2277 clear_pending (EV_A_ (W)w); 4245 clear_pending (EV_A_ (W)w);
2278 if (expect_false (!ev_is_active (w))) 4246 if (ecb_expect_false (!ev_is_active (w)))
2279 return; 4247 return;
2280 4248
2281 EV_FREQUENT_CHECK; 4249 EV_FREQUENT_CHECK;
2282 4250
2283 { 4251 {
2284 int active = ev_active (w); 4252 int active = ev_active (w);
2285 4253
2286 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 4254 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2287 4255
2288 --periodiccnt; 4256 --periodiccnt;
2289 4257
2290 if (expect_true (active < periodiccnt + HEAP0)) 4258 if (ecb_expect_true (active < periodiccnt + HEAP0))
2291 { 4259 {
2292 periodics [active] = periodics [periodiccnt + HEAP0]; 4260 periodics [active] = periodics [periodiccnt + HEAP0];
2293 adjustheap (periodics, periodiccnt, active); 4261 adjustheap (periodics, periodiccnt, active);
2294 } 4262 }
2295 } 4263 }
2296 4264
2297 EV_FREQUENT_CHECK;
2298
2299 ev_stop (EV_A_ (W)w); 4265 ev_stop (EV_A_ (W)w);
2300}
2301 4266
2302void noinline 4267 EV_FREQUENT_CHECK;
4268}
4269
4270ecb_noinline
4271void
2303ev_periodic_again (EV_P_ ev_periodic *w) 4272ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
2304{ 4273{
2305 /* TODO: use adjustheap and recalculation */ 4274 /* TODO: use adjustheap and recalculation */
2306 ev_periodic_stop (EV_A_ w); 4275 ev_periodic_stop (EV_A_ w);
2307 ev_periodic_start (EV_A_ w); 4276 ev_periodic_start (EV_A_ w);
2308} 4277}
2310 4279
2311#ifndef SA_RESTART 4280#ifndef SA_RESTART
2312# define SA_RESTART 0 4281# define SA_RESTART 0
2313#endif 4282#endif
2314 4283
2315void noinline 4284#if EV_SIGNAL_ENABLE
4285
4286ecb_noinline
4287void
2316ev_signal_start (EV_P_ ev_signal *w) 4288ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
2317{ 4289{
4290 if (ecb_expect_false (ev_is_active (w)))
4291 return;
4292
4293 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4294
2318#if EV_MULTIPLICITY 4295#if EV_MULTIPLICITY
2319 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4296 assert (("libev: a signal must not be attached to two different loops",
2320#endif 4297 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2321 if (expect_false (ev_is_active (w)))
2322 return;
2323 4298
2324 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4299 signals [w->signum - 1].loop = EV_A;
4300 ECB_MEMORY_FENCE_RELEASE;
4301#endif
2325 4302
2326 evpipe_init (EV_A);
2327
2328 EV_FREQUENT_CHECK; 4303 EV_FREQUENT_CHECK;
2329 4304
4305#if EV_USE_SIGNALFD
4306 if (sigfd == -2)
2330 { 4307 {
2331#ifndef _WIN32 4308 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2332 sigset_t full, prev; 4309 if (sigfd < 0 && errno == EINVAL)
2333 sigfillset (&full); 4310 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2334 sigprocmask (SIG_SETMASK, &full, &prev);
2335#endif
2336 4311
2337 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero); 4312 if (sigfd >= 0)
4313 {
4314 fd_intern (sigfd); /* doing it twice will not hurt */
2338 4315
2339#ifndef _WIN32 4316 sigemptyset (&sigfd_set);
2340 sigprocmask (SIG_SETMASK, &prev, 0); 4317
2341#endif 4318 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4319 ev_set_priority (&sigfd_w, EV_MAXPRI);
4320 ev_io_start (EV_A_ &sigfd_w);
4321 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4322 }
2342 } 4323 }
4324
4325 if (sigfd >= 0)
4326 {
4327 /* TODO: check .head */
4328 sigaddset (&sigfd_set, w->signum);
4329 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4330
4331 signalfd (sigfd, &sigfd_set, 0);
4332 }
4333#endif
2343 4334
2344 ev_start (EV_A_ (W)w, 1); 4335 ev_start (EV_A_ (W)w, 1);
2345 wlist_add (&signals [w->signum - 1].head, (WL)w); 4336 wlist_add (&signals [w->signum - 1].head, (WL)w);
2346 4337
2347 if (!((WL)w)->next) 4338 if (!((WL)w)->next)
4339# if EV_USE_SIGNALFD
4340 if (sigfd < 0) /*TODO*/
4341# endif
2348 { 4342 {
2349#if _WIN32 4343# ifdef _WIN32
4344 evpipe_init (EV_A);
4345
2350 signal (w->signum, ev_sighandler); 4346 signal (w->signum, ev_sighandler);
2351#else 4347# else
2352 struct sigaction sa; 4348 struct sigaction sa;
4349
4350 evpipe_init (EV_A);
4351
2353 sa.sa_handler = ev_sighandler; 4352 sa.sa_handler = ev_sighandler;
2354 sigfillset (&sa.sa_mask); 4353 sigfillset (&sa.sa_mask);
2355 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 4354 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2356 sigaction (w->signum, &sa, 0); 4355 sigaction (w->signum, &sa, 0);
4356
4357 if (origflags & EVFLAG_NOSIGMASK)
4358 {
4359 sigemptyset (&sa.sa_mask);
4360 sigaddset (&sa.sa_mask, w->signum);
4361 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4362 }
2357#endif 4363#endif
2358 } 4364 }
2359 4365
2360 EV_FREQUENT_CHECK; 4366 EV_FREQUENT_CHECK;
2361} 4367}
2362 4368
2363void noinline 4369ecb_noinline
4370void
2364ev_signal_stop (EV_P_ ev_signal *w) 4371ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
2365{ 4372{
2366 clear_pending (EV_A_ (W)w); 4373 clear_pending (EV_A_ (W)w);
2367 if (expect_false (!ev_is_active (w))) 4374 if (ecb_expect_false (!ev_is_active (w)))
2368 return; 4375 return;
2369 4376
2370 EV_FREQUENT_CHECK; 4377 EV_FREQUENT_CHECK;
2371 4378
2372 wlist_del (&signals [w->signum - 1].head, (WL)w); 4379 wlist_del (&signals [w->signum - 1].head, (WL)w);
2373 ev_stop (EV_A_ (W)w); 4380 ev_stop (EV_A_ (W)w);
2374 4381
2375 if (!signals [w->signum - 1].head) 4382 if (!signals [w->signum - 1].head)
2376 signal (w->signum, SIG_DFL); 4383 {
2377
2378 EV_FREQUENT_CHECK;
2379}
2380
2381void
2382ev_child_start (EV_P_ ev_child *w)
2383{
2384#if EV_MULTIPLICITY 4384#if EV_MULTIPLICITY
4385 signals [w->signum - 1].loop = 0; /* unattach from signal */
4386#endif
4387#if EV_USE_SIGNALFD
4388 if (sigfd >= 0)
4389 {
4390 sigset_t ss;
4391
4392 sigemptyset (&ss);
4393 sigaddset (&ss, w->signum);
4394 sigdelset (&sigfd_set, w->signum);
4395
4396 signalfd (sigfd, &sigfd_set, 0);
4397 sigprocmask (SIG_UNBLOCK, &ss, 0);
4398 }
4399 else
4400#endif
4401 signal (w->signum, SIG_DFL);
4402 }
4403
4404 EV_FREQUENT_CHECK;
4405}
4406
4407#endif
4408
4409#if EV_CHILD_ENABLE
4410
4411void
4412ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4413{
4414#if EV_MULTIPLICITY
2385 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4415 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2386#endif 4416#endif
2387 if (expect_false (ev_is_active (w))) 4417 if (ecb_expect_false (ev_is_active (w)))
2388 return; 4418 return;
2389 4419
2390 EV_FREQUENT_CHECK; 4420 EV_FREQUENT_CHECK;
2391 4421
2392 ev_start (EV_A_ (W)w, 1); 4422 ev_start (EV_A_ (W)w, 1);
2393 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4423 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2394 4424
2395 EV_FREQUENT_CHECK; 4425 EV_FREQUENT_CHECK;
2396} 4426}
2397 4427
2398void 4428void
2399ev_child_stop (EV_P_ ev_child *w) 4429ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
2400{ 4430{
2401 clear_pending (EV_A_ (W)w); 4431 clear_pending (EV_A_ (W)w);
2402 if (expect_false (!ev_is_active (w))) 4432 if (ecb_expect_false (!ev_is_active (w)))
2403 return; 4433 return;
2404 4434
2405 EV_FREQUENT_CHECK; 4435 EV_FREQUENT_CHECK;
2406 4436
2407 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4437 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2408 ev_stop (EV_A_ (W)w); 4438 ev_stop (EV_A_ (W)w);
2409 4439
2410 EV_FREQUENT_CHECK; 4440 EV_FREQUENT_CHECK;
2411} 4441}
4442
4443#endif
2412 4444
2413#if EV_STAT_ENABLE 4445#if EV_STAT_ENABLE
2414 4446
2415# ifdef _WIN32 4447# ifdef _WIN32
2416# undef lstat 4448# undef lstat
2417# define lstat(a,b) _stati64 (a,b) 4449# define lstat(a,b) _stati64 (a,b)
2418# endif 4450# endif
2419 4451
2420#define DEF_STAT_INTERVAL 5.0074891 4452#define DEF_STAT_INTERVAL 5.0074891
4453#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2421#define MIN_STAT_INTERVAL 0.1074891 4454#define MIN_STAT_INTERVAL 0.1074891
2422 4455
2423static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4456ecb_noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2424 4457
2425#if EV_USE_INOTIFY 4458#if EV_USE_INOTIFY
2426# define EV_INOTIFY_BUFSIZE 8192
2427 4459
2428static void noinline 4460/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4461# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4462
4463ecb_noinline
4464static void
2429infy_add (EV_P_ ev_stat *w) 4465infy_add (EV_P_ ev_stat *w)
2430{ 4466{
2431 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4467 w->wd = inotify_add_watch (fs_fd, w->path,
4468 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4469 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4470 | IN_DONT_FOLLOW | IN_MASK_ADD);
2432 4471
2433 if (w->wd < 0) 4472 if (w->wd >= 0)
4473 {
4474 struct statfs sfs;
4475
4476 /* now local changes will be tracked by inotify, but remote changes won't */
4477 /* unless the filesystem is known to be local, we therefore still poll */
4478 /* also do poll on <2.6.25, but with normal frequency */
4479
4480 if (!fs_2625)
4481 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4482 else if (!statfs (w->path, &sfs)
4483 && (sfs.f_type == 0x1373 /* devfs */
4484 || sfs.f_type == 0x4006 /* fat */
4485 || sfs.f_type == 0x4d44 /* msdos */
4486 || sfs.f_type == 0xEF53 /* ext2/3 */
4487 || sfs.f_type == 0x72b6 /* jffs2 */
4488 || sfs.f_type == 0x858458f6 /* ramfs */
4489 || sfs.f_type == 0x5346544e /* ntfs */
4490 || sfs.f_type == 0x3153464a /* jfs */
4491 || sfs.f_type == 0x9123683e /* btrfs */
4492 || sfs.f_type == 0x52654973 /* reiser3 */
4493 || sfs.f_type == 0x01021994 /* tmpfs */
4494 || sfs.f_type == 0x58465342 /* xfs */))
4495 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4496 else
4497 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2434 { 4498 }
2435 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 4499 else
4500 {
4501 /* can't use inotify, continue to stat */
4502 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2436 4503
2437 /* monitor some parent directory for speedup hints */ 4504 /* if path is not there, monitor some parent directory for speedup hints */
2438 /* note that exceeding the hardcoded path limit is not a correctness issue, */ 4505 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2439 /* but an efficiency issue only */ 4506 /* but an efficiency issue only */
2440 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4507 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2441 { 4508 {
2442 char path [4096]; 4509 char path [4096];
2447 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4514 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2448 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4515 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2449 4516
2450 char *pend = strrchr (path, '/'); 4517 char *pend = strrchr (path, '/');
2451 4518
2452 if (!pend) 4519 if (!pend || pend == path)
2453 break; /* whoops, no '/', complain to your admin */ 4520 break;
2454 4521
2455 *pend = 0; 4522 *pend = 0;
2456 w->wd = inotify_add_watch (fs_fd, path, mask); 4523 w->wd = inotify_add_watch (fs_fd, path, mask);
2457 } 4524 }
2458 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4525 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2459 } 4526 }
2460 } 4527 }
2461 else
2462 todo, on nfs etc., we need to poll every 60s or so
2463 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2464 4528
2465 if (w->wd >= 0) 4529 if (w->wd >= 0)
2466 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4530 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2467}
2468 4531
2469static void noinline 4532 /* now re-arm timer, if required */
4533 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4534 ev_timer_again (EV_A_ &w->timer);
4535 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4536}
4537
4538ecb_noinline
4539static void
2470infy_del (EV_P_ ev_stat *w) 4540infy_del (EV_P_ ev_stat *w)
2471{ 4541{
2472 int slot; 4542 int slot;
2473 int wd = w->wd; 4543 int wd = w->wd;
2474 4544
2475 if (wd < 0) 4545 if (wd < 0)
2476 return; 4546 return;
2477 4547
2478 w->wd = -2; 4548 w->wd = -2;
2479 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4549 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2480 wlist_del (&fs_hash [slot].head, (WL)w); 4550 wlist_del (&fs_hash [slot].head, (WL)w);
2481 4551
2482 /* remove this watcher, if others are watching it, they will rearm */ 4552 /* remove this watcher, if others are watching it, they will rearm */
2483 inotify_rm_watch (fs_fd, wd); 4553 inotify_rm_watch (fs_fd, wd);
2484} 4554}
2485 4555
2486static void noinline 4556ecb_noinline
4557static void
2487infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4558infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2488{ 4559{
2489 if (slot < 0) 4560 if (slot < 0)
2490 /* overflow, need to check for all hash slots */ 4561 /* overflow, need to check for all hash slots */
2491 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4562 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2492 infy_wd (EV_A_ slot, wd, ev); 4563 infy_wd (EV_A_ slot, wd, ev);
2493 else 4564 else
2494 { 4565 {
2495 WL w_; 4566 WL w_;
2496 4567
2497 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4568 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2498 { 4569 {
2499 ev_stat *w = (ev_stat *)w_; 4570 ev_stat *w = (ev_stat *)w_;
2500 w_ = w_->next; /* lets us remove this watcher and all before it */ 4571 w_ = w_->next; /* lets us remove this watcher and all before it */
2501 4572
2502 if (w->wd == wd || wd == -1) 4573 if (w->wd == wd || wd == -1)
2503 { 4574 {
2504 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4575 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2505 { 4576 {
4577 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2506 w->wd = -1; 4578 w->wd = -1;
2507 infy_add (EV_A_ w); /* re-add, no matter what */ 4579 infy_add (EV_A_ w); /* re-add, no matter what */
2508 } 4580 }
2509 4581
2510 stat_timer_cb (EV_A_ &w->timer, 0); 4582 stat_timer_cb (EV_A_ &w->timer, 0);
2515 4587
2516static void 4588static void
2517infy_cb (EV_P_ ev_io *w, int revents) 4589infy_cb (EV_P_ ev_io *w, int revents)
2518{ 4590{
2519 char buf [EV_INOTIFY_BUFSIZE]; 4591 char buf [EV_INOTIFY_BUFSIZE];
2520 struct inotify_event *ev = (struct inotify_event *)buf;
2521 int ofs; 4592 int ofs;
2522 int len = read (fs_fd, buf, sizeof (buf)); 4593 int len = read (fs_fd, buf, sizeof (buf));
2523 4594
2524 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4595 for (ofs = 0; ofs < len; )
4596 {
4597 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2525 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4598 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4599 ofs += sizeof (struct inotify_event) + ev->len;
4600 }
2526} 4601}
2527 4602
2528void inline_size 4603inline_size ecb_cold
2529infy_init (EV_P) 4604void
4605ev_check_2625 (EV_P)
2530{ 4606{
2531 if (fs_fd != -2)
2532 return;
2533
2534 /* kernels < 2.6.25 are borked 4607 /* kernels < 2.6.25 are borked
2535 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 4608 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2536 */ 4609 */
2537 { 4610 if (ev_linux_version () < 0x020619)
2538 struct utsname buf; 4611 return;
2539 int major, minor, micro;
2540 4612
4613 fs_2625 = 1;
4614}
4615
4616inline_size int
4617infy_newfd (void)
4618{
4619#if defined IN_CLOEXEC && defined IN_NONBLOCK
4620 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4621 if (fd >= 0)
4622 return fd;
4623#endif
4624 return inotify_init ();
4625}
4626
4627inline_size void
4628infy_init (EV_P)
4629{
4630 if (fs_fd != -2)
4631 return;
4632
2541 fs_fd = -1; 4633 fs_fd = -1;
2542 4634
2543 if (uname (&buf)) 4635 ev_check_2625 (EV_A);
2544 return;
2545 4636
2546 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2547 return;
2548
2549 if (major < 2
2550 || (major == 2 && minor < 6)
2551 || (major == 2 && minor == 6 && micro < 25))
2552 return;
2553 }
2554
2555 fs_fd = inotify_init (); 4637 fs_fd = infy_newfd ();
2556 4638
2557 if (fs_fd >= 0) 4639 if (fs_fd >= 0)
2558 { 4640 {
4641 fd_intern (fs_fd);
2559 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4642 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2560 ev_set_priority (&fs_w, EV_MAXPRI); 4643 ev_set_priority (&fs_w, EV_MAXPRI);
2561 ev_io_start (EV_A_ &fs_w); 4644 ev_io_start (EV_A_ &fs_w);
4645 ev_unref (EV_A);
2562 } 4646 }
2563} 4647}
2564 4648
2565void inline_size 4649inline_size void
2566infy_fork (EV_P) 4650infy_fork (EV_P)
2567{ 4651{
2568 int slot; 4652 int slot;
2569 4653
2570 if (fs_fd < 0) 4654 if (fs_fd < 0)
2571 return; 4655 return;
2572 4656
4657 ev_ref (EV_A);
4658 ev_io_stop (EV_A_ &fs_w);
2573 close (fs_fd); 4659 close (fs_fd);
2574 fs_fd = inotify_init (); 4660 fs_fd = infy_newfd ();
2575 4661
4662 if (fs_fd >= 0)
4663 {
4664 fd_intern (fs_fd);
4665 ev_io_set (&fs_w, fs_fd, EV_READ);
4666 ev_io_start (EV_A_ &fs_w);
4667 ev_unref (EV_A);
4668 }
4669
2576 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4670 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2577 { 4671 {
2578 WL w_ = fs_hash [slot].head; 4672 WL w_ = fs_hash [slot].head;
2579 fs_hash [slot].head = 0; 4673 fs_hash [slot].head = 0;
2580 4674
2581 while (w_) 4675 while (w_)
2586 w->wd = -1; 4680 w->wd = -1;
2587 4681
2588 if (fs_fd >= 0) 4682 if (fs_fd >= 0)
2589 infy_add (EV_A_ w); /* re-add, no matter what */ 4683 infy_add (EV_A_ w); /* re-add, no matter what */
2590 else 4684 else
4685 {
4686 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4687 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2591 ev_timer_start (EV_A_ &w->timer); 4688 ev_timer_again (EV_A_ &w->timer);
4689 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4690 }
2592 } 4691 }
2593 } 4692 }
2594} 4693}
2595 4694
2596#endif 4695#endif
2600#else 4699#else
2601# define EV_LSTAT(p,b) lstat (p, b) 4700# define EV_LSTAT(p,b) lstat (p, b)
2602#endif 4701#endif
2603 4702
2604void 4703void
2605ev_stat_stat (EV_P_ ev_stat *w) 4704ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
2606{ 4705{
2607 if (lstat (w->path, &w->attr) < 0) 4706 if (lstat (w->path, &w->attr) < 0)
2608 w->attr.st_nlink = 0; 4707 w->attr.st_nlink = 0;
2609 else if (!w->attr.st_nlink) 4708 else if (!w->attr.st_nlink)
2610 w->attr.st_nlink = 1; 4709 w->attr.st_nlink = 1;
2611} 4710}
2612 4711
2613static void noinline 4712ecb_noinline
4713static void
2614stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4714stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2615{ 4715{
2616 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4716 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2617 4717
2618 /* we copy this here each the time so that */ 4718 ev_statdata prev = w->attr;
2619 /* prev has the old value when the callback gets invoked */
2620 w->prev = w->attr;
2621 ev_stat_stat (EV_A_ w); 4719 ev_stat_stat (EV_A_ w);
2622 4720
2623 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4721 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2624 if ( 4722 if (
2625 w->prev.st_dev != w->attr.st_dev 4723 prev.st_dev != w->attr.st_dev
2626 || w->prev.st_ino != w->attr.st_ino 4724 || prev.st_ino != w->attr.st_ino
2627 || w->prev.st_mode != w->attr.st_mode 4725 || prev.st_mode != w->attr.st_mode
2628 || w->prev.st_nlink != w->attr.st_nlink 4726 || prev.st_nlink != w->attr.st_nlink
2629 || w->prev.st_uid != w->attr.st_uid 4727 || prev.st_uid != w->attr.st_uid
2630 || w->prev.st_gid != w->attr.st_gid 4728 || prev.st_gid != w->attr.st_gid
2631 || w->prev.st_rdev != w->attr.st_rdev 4729 || prev.st_rdev != w->attr.st_rdev
2632 || w->prev.st_size != w->attr.st_size 4730 || prev.st_size != w->attr.st_size
2633 || w->prev.st_atime != w->attr.st_atime 4731 || prev.st_atime != w->attr.st_atime
2634 || w->prev.st_mtime != w->attr.st_mtime 4732 || prev.st_mtime != w->attr.st_mtime
2635 || w->prev.st_ctime != w->attr.st_ctime 4733 || prev.st_ctime != w->attr.st_ctime
2636 ) { 4734 ) {
4735 /* we only update w->prev on actual differences */
4736 /* in case we test more often than invoke the callback, */
4737 /* to ensure that prev is always different to attr */
4738 w->prev = prev;
4739
2637 #if EV_USE_INOTIFY 4740 #if EV_USE_INOTIFY
2638 if (fs_fd >= 0) 4741 if (fs_fd >= 0)
2639 { 4742 {
2640 infy_del (EV_A_ w); 4743 infy_del (EV_A_ w);
2641 infy_add (EV_A_ w); 4744 infy_add (EV_A_ w);
2646 ev_feed_event (EV_A_ w, EV_STAT); 4749 ev_feed_event (EV_A_ w, EV_STAT);
2647 } 4750 }
2648} 4751}
2649 4752
2650void 4753void
2651ev_stat_start (EV_P_ ev_stat *w) 4754ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
2652{ 4755{
2653 if (expect_false (ev_is_active (w))) 4756 if (ecb_expect_false (ev_is_active (w)))
2654 return; 4757 return;
2655 4758
2656 /* since we use memcmp, we need to clear any padding data etc. */
2657 memset (&w->prev, 0, sizeof (ev_statdata));
2658 memset (&w->attr, 0, sizeof (ev_statdata));
2659
2660 ev_stat_stat (EV_A_ w); 4759 ev_stat_stat (EV_A_ w);
2661 4760
4761 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2662 if (w->interval < MIN_STAT_INTERVAL) 4762 w->interval = MIN_STAT_INTERVAL;
2663 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2664 4763
2665 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4764 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2666 ev_set_priority (&w->timer, ev_priority (w)); 4765 ev_set_priority (&w->timer, ev_priority (w));
2667 4766
2668#if EV_USE_INOTIFY 4767#if EV_USE_INOTIFY
2669 infy_init (EV_A); 4768 infy_init (EV_A);
2670 4769
2671 if (fs_fd >= 0) 4770 if (fs_fd >= 0)
2672 infy_add (EV_A_ w); 4771 infy_add (EV_A_ w);
2673 else 4772 else
2674#endif 4773#endif
4774 {
2675 ev_timer_start (EV_A_ &w->timer); 4775 ev_timer_again (EV_A_ &w->timer);
4776 ev_unref (EV_A);
4777 }
2676 4778
2677 ev_start (EV_A_ (W)w, 1); 4779 ev_start (EV_A_ (W)w, 1);
2678 4780
2679 EV_FREQUENT_CHECK; 4781 EV_FREQUENT_CHECK;
2680} 4782}
2681 4783
2682void 4784void
2683ev_stat_stop (EV_P_ ev_stat *w) 4785ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
2684{ 4786{
2685 clear_pending (EV_A_ (W)w); 4787 clear_pending (EV_A_ (W)w);
2686 if (expect_false (!ev_is_active (w))) 4788 if (ecb_expect_false (!ev_is_active (w)))
2687 return; 4789 return;
2688 4790
2689 EV_FREQUENT_CHECK; 4791 EV_FREQUENT_CHECK;
2690 4792
2691#if EV_USE_INOTIFY 4793#if EV_USE_INOTIFY
2692 infy_del (EV_A_ w); 4794 infy_del (EV_A_ w);
2693#endif 4795#endif
4796
4797 if (ev_is_active (&w->timer))
4798 {
4799 ev_ref (EV_A);
2694 ev_timer_stop (EV_A_ &w->timer); 4800 ev_timer_stop (EV_A_ &w->timer);
4801 }
2695 4802
2696 ev_stop (EV_A_ (W)w); 4803 ev_stop (EV_A_ (W)w);
2697 4804
2698 EV_FREQUENT_CHECK; 4805 EV_FREQUENT_CHECK;
2699} 4806}
2700#endif 4807#endif
2701 4808
2702#if EV_IDLE_ENABLE 4809#if EV_IDLE_ENABLE
2703void 4810void
2704ev_idle_start (EV_P_ ev_idle *w) 4811ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
2705{ 4812{
2706 if (expect_false (ev_is_active (w))) 4813 if (ecb_expect_false (ev_is_active (w)))
2707 return; 4814 return;
2708 4815
2709 pri_adjust (EV_A_ (W)w); 4816 pri_adjust (EV_A_ (W)w);
2710 4817
2711 EV_FREQUENT_CHECK; 4818 EV_FREQUENT_CHECK;
2714 int active = ++idlecnt [ABSPRI (w)]; 4821 int active = ++idlecnt [ABSPRI (w)];
2715 4822
2716 ++idleall; 4823 ++idleall;
2717 ev_start (EV_A_ (W)w, active); 4824 ev_start (EV_A_ (W)w, active);
2718 4825
2719 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4826 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
2720 idles [ABSPRI (w)][active - 1] = w; 4827 idles [ABSPRI (w)][active - 1] = w;
2721 } 4828 }
2722 4829
2723 EV_FREQUENT_CHECK; 4830 EV_FREQUENT_CHECK;
2724} 4831}
2725 4832
2726void 4833void
2727ev_idle_stop (EV_P_ ev_idle *w) 4834ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
2728{ 4835{
2729 clear_pending (EV_A_ (W)w); 4836 clear_pending (EV_A_ (W)w);
2730 if (expect_false (!ev_is_active (w))) 4837 if (ecb_expect_false (!ev_is_active (w)))
2731 return; 4838 return;
2732 4839
2733 EV_FREQUENT_CHECK; 4840 EV_FREQUENT_CHECK;
2734 4841
2735 { 4842 {
2744 4851
2745 EV_FREQUENT_CHECK; 4852 EV_FREQUENT_CHECK;
2746} 4853}
2747#endif 4854#endif
2748 4855
4856#if EV_PREPARE_ENABLE
2749void 4857void
2750ev_prepare_start (EV_P_ ev_prepare *w) 4858ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
2751{ 4859{
2752 if (expect_false (ev_is_active (w))) 4860 if (ecb_expect_false (ev_is_active (w)))
2753 return; 4861 return;
2754 4862
2755 EV_FREQUENT_CHECK; 4863 EV_FREQUENT_CHECK;
2756 4864
2757 ev_start (EV_A_ (W)w, ++preparecnt); 4865 ev_start (EV_A_ (W)w, ++preparecnt);
2758 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4866 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
2759 prepares [preparecnt - 1] = w; 4867 prepares [preparecnt - 1] = w;
2760 4868
2761 EV_FREQUENT_CHECK; 4869 EV_FREQUENT_CHECK;
2762} 4870}
2763 4871
2764void 4872void
2765ev_prepare_stop (EV_P_ ev_prepare *w) 4873ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
2766{ 4874{
2767 clear_pending (EV_A_ (W)w); 4875 clear_pending (EV_A_ (W)w);
2768 if (expect_false (!ev_is_active (w))) 4876 if (ecb_expect_false (!ev_is_active (w)))
2769 return; 4877 return;
2770 4878
2771 EV_FREQUENT_CHECK; 4879 EV_FREQUENT_CHECK;
2772 4880
2773 { 4881 {
2779 4887
2780 ev_stop (EV_A_ (W)w); 4888 ev_stop (EV_A_ (W)w);
2781 4889
2782 EV_FREQUENT_CHECK; 4890 EV_FREQUENT_CHECK;
2783} 4891}
4892#endif
2784 4893
4894#if EV_CHECK_ENABLE
2785void 4895void
2786ev_check_start (EV_P_ ev_check *w) 4896ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
2787{ 4897{
2788 if (expect_false (ev_is_active (w))) 4898 if (ecb_expect_false (ev_is_active (w)))
2789 return; 4899 return;
2790 4900
2791 EV_FREQUENT_CHECK; 4901 EV_FREQUENT_CHECK;
2792 4902
2793 ev_start (EV_A_ (W)w, ++checkcnt); 4903 ev_start (EV_A_ (W)w, ++checkcnt);
2794 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4904 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
2795 checks [checkcnt - 1] = w; 4905 checks [checkcnt - 1] = w;
2796 4906
2797 EV_FREQUENT_CHECK; 4907 EV_FREQUENT_CHECK;
2798} 4908}
2799 4909
2800void 4910void
2801ev_check_stop (EV_P_ ev_check *w) 4911ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
2802{ 4912{
2803 clear_pending (EV_A_ (W)w); 4913 clear_pending (EV_A_ (W)w);
2804 if (expect_false (!ev_is_active (w))) 4914 if (ecb_expect_false (!ev_is_active (w)))
2805 return; 4915 return;
2806 4916
2807 EV_FREQUENT_CHECK; 4917 EV_FREQUENT_CHECK;
2808 4918
2809 { 4919 {
2815 4925
2816 ev_stop (EV_A_ (W)w); 4926 ev_stop (EV_A_ (W)w);
2817 4927
2818 EV_FREQUENT_CHECK; 4928 EV_FREQUENT_CHECK;
2819} 4929}
4930#endif
2820 4931
2821#if EV_EMBED_ENABLE 4932#if EV_EMBED_ENABLE
2822void noinline 4933ecb_noinline
4934void
2823ev_embed_sweep (EV_P_ ev_embed *w) 4935ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
2824{ 4936{
2825 ev_loop (w->other, EVLOOP_NONBLOCK); 4937 ev_run (w->other, EVRUN_NOWAIT);
2826} 4938}
2827 4939
2828static void 4940static void
2829embed_io_cb (EV_P_ ev_io *io, int revents) 4941embed_io_cb (EV_P_ ev_io *io, int revents)
2830{ 4942{
2831 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4943 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2832 4944
2833 if (ev_cb (w)) 4945 if (ev_cb (w))
2834 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4946 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2835 else 4947 else
2836 ev_loop (w->other, EVLOOP_NONBLOCK); 4948 ev_run (w->other, EVRUN_NOWAIT);
2837} 4949}
2838 4950
2839static void 4951static void
2840embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4952embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2841{ 4953{
2842 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4954 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2843 4955
2844 { 4956 {
2845 struct ev_loop *loop = w->other; 4957 EV_P = w->other;
2846 4958
2847 while (fdchangecnt) 4959 while (fdchangecnt)
2848 { 4960 {
2849 fd_reify (EV_A); 4961 fd_reify (EV_A);
2850 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4962 ev_run (EV_A_ EVRUN_NOWAIT);
2851 } 4963 }
2852 } 4964 }
2853} 4965}
2854 4966
2855static void 4967static void
2856embed_fork_cb (EV_P_ ev_fork *fork_w, int revents) 4968embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2857{ 4969{
2858 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 4970 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2859 4971
4972 ev_embed_stop (EV_A_ w);
4973
2860 { 4974 {
2861 struct ev_loop *loop = w->other; 4975 EV_P = w->other;
2862 4976
2863 ev_loop_fork (EV_A); 4977 ev_loop_fork (EV_A);
4978 ev_run (EV_A_ EVRUN_NOWAIT);
2864 } 4979 }
4980
4981 ev_embed_start (EV_A_ w);
2865} 4982}
2866 4983
2867#if 0 4984#if 0
2868static void 4985static void
2869embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4986embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2871 ev_idle_stop (EV_A_ idle); 4988 ev_idle_stop (EV_A_ idle);
2872} 4989}
2873#endif 4990#endif
2874 4991
2875void 4992void
2876ev_embed_start (EV_P_ ev_embed *w) 4993ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
2877{ 4994{
2878 if (expect_false (ev_is_active (w))) 4995 if (ecb_expect_false (ev_is_active (w)))
2879 return; 4996 return;
2880 4997
2881 { 4998 {
2882 struct ev_loop *loop = w->other; 4999 EV_P = w->other;
2883 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 5000 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2884 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 5001 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2885 } 5002 }
2886 5003
2887 EV_FREQUENT_CHECK; 5004 EV_FREQUENT_CHECK;
2888 5005
2902 5019
2903 EV_FREQUENT_CHECK; 5020 EV_FREQUENT_CHECK;
2904} 5021}
2905 5022
2906void 5023void
2907ev_embed_stop (EV_P_ ev_embed *w) 5024ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
2908{ 5025{
2909 clear_pending (EV_A_ (W)w); 5026 clear_pending (EV_A_ (W)w);
2910 if (expect_false (!ev_is_active (w))) 5027 if (ecb_expect_false (!ev_is_active (w)))
2911 return; 5028 return;
2912 5029
2913 EV_FREQUENT_CHECK; 5030 EV_FREQUENT_CHECK;
2914 5031
2915 ev_io_stop (EV_A_ &w->io); 5032 ev_io_stop (EV_A_ &w->io);
2916 ev_prepare_stop (EV_A_ &w->prepare); 5033 ev_prepare_stop (EV_A_ &w->prepare);
2917 ev_fork_stop (EV_A_ &w->fork); 5034 ev_fork_stop (EV_A_ &w->fork);
2918 5035
5036 ev_stop (EV_A_ (W)w);
5037
2919 EV_FREQUENT_CHECK; 5038 EV_FREQUENT_CHECK;
2920} 5039}
2921#endif 5040#endif
2922 5041
2923#if EV_FORK_ENABLE 5042#if EV_FORK_ENABLE
2924void 5043void
2925ev_fork_start (EV_P_ ev_fork *w) 5044ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
2926{ 5045{
2927 if (expect_false (ev_is_active (w))) 5046 if (ecb_expect_false (ev_is_active (w)))
2928 return; 5047 return;
2929 5048
2930 EV_FREQUENT_CHECK; 5049 EV_FREQUENT_CHECK;
2931 5050
2932 ev_start (EV_A_ (W)w, ++forkcnt); 5051 ev_start (EV_A_ (W)w, ++forkcnt);
2933 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 5052 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
2934 forks [forkcnt - 1] = w; 5053 forks [forkcnt - 1] = w;
2935 5054
2936 EV_FREQUENT_CHECK; 5055 EV_FREQUENT_CHECK;
2937} 5056}
2938 5057
2939void 5058void
2940ev_fork_stop (EV_P_ ev_fork *w) 5059ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
2941{ 5060{
2942 clear_pending (EV_A_ (W)w); 5061 clear_pending (EV_A_ (W)w);
2943 if (expect_false (!ev_is_active (w))) 5062 if (ecb_expect_false (!ev_is_active (w)))
2944 return; 5063 return;
2945 5064
2946 EV_FREQUENT_CHECK; 5065 EV_FREQUENT_CHECK;
2947 5066
2948 { 5067 {
2956 5075
2957 EV_FREQUENT_CHECK; 5076 EV_FREQUENT_CHECK;
2958} 5077}
2959#endif 5078#endif
2960 5079
5080#if EV_CLEANUP_ENABLE
5081void
5082ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5083{
5084 if (ecb_expect_false (ev_is_active (w)))
5085 return;
5086
5087 EV_FREQUENT_CHECK;
5088
5089 ev_start (EV_A_ (W)w, ++cleanupcnt);
5090 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
5091 cleanups [cleanupcnt - 1] = w;
5092
5093 /* cleanup watchers should never keep a refcount on the loop */
5094 ev_unref (EV_A);
5095 EV_FREQUENT_CHECK;
5096}
5097
5098void
5099ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5100{
5101 clear_pending (EV_A_ (W)w);
5102 if (ecb_expect_false (!ev_is_active (w)))
5103 return;
5104
5105 EV_FREQUENT_CHECK;
5106 ev_ref (EV_A);
5107
5108 {
5109 int active = ev_active (w);
5110
5111 cleanups [active - 1] = cleanups [--cleanupcnt];
5112 ev_active (cleanups [active - 1]) = active;
5113 }
5114
5115 ev_stop (EV_A_ (W)w);
5116
5117 EV_FREQUENT_CHECK;
5118}
5119#endif
5120
2961#if EV_ASYNC_ENABLE 5121#if EV_ASYNC_ENABLE
2962void 5122void
2963ev_async_start (EV_P_ ev_async *w) 5123ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
2964{ 5124{
2965 if (expect_false (ev_is_active (w))) 5125 if (ecb_expect_false (ev_is_active (w)))
2966 return; 5126 return;
2967 5127
5128 w->sent = 0;
5129
2968 evpipe_init (EV_A); 5130 evpipe_init (EV_A);
2969 5131
2970 EV_FREQUENT_CHECK; 5132 EV_FREQUENT_CHECK;
2971 5133
2972 ev_start (EV_A_ (W)w, ++asynccnt); 5134 ev_start (EV_A_ (W)w, ++asynccnt);
2973 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 5135 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
2974 asyncs [asynccnt - 1] = w; 5136 asyncs [asynccnt - 1] = w;
2975 5137
2976 EV_FREQUENT_CHECK; 5138 EV_FREQUENT_CHECK;
2977} 5139}
2978 5140
2979void 5141void
2980ev_async_stop (EV_P_ ev_async *w) 5142ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
2981{ 5143{
2982 clear_pending (EV_A_ (W)w); 5144 clear_pending (EV_A_ (W)w);
2983 if (expect_false (!ev_is_active (w))) 5145 if (ecb_expect_false (!ev_is_active (w)))
2984 return; 5146 return;
2985 5147
2986 EV_FREQUENT_CHECK; 5148 EV_FREQUENT_CHECK;
2987 5149
2988 { 5150 {
2996 5158
2997 EV_FREQUENT_CHECK; 5159 EV_FREQUENT_CHECK;
2998} 5160}
2999 5161
3000void 5162void
3001ev_async_send (EV_P_ ev_async *w) 5163ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
3002{ 5164{
3003 w->sent = 1; 5165 w->sent = 1;
3004 evpipe_write (EV_A_ &gotasync); 5166 evpipe_write (EV_A_ &async_pending);
3005} 5167}
3006#endif 5168#endif
3007 5169
3008/*****************************************************************************/ 5170/*****************************************************************************/
3009 5171
3043 5205
3044 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io)); 5206 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3045} 5207}
3046 5208
3047void 5209void
3048ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5210ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
3049{ 5211{
3050 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 5212 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3051
3052 if (expect_false (!once))
3053 {
3054 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
3055 return;
3056 }
3057 5213
3058 once->cb = cb; 5214 once->cb = cb;
3059 once->arg = arg; 5215 once->arg = arg;
3060 5216
3061 ev_init (&once->io, once_cb_io); 5217 ev_init (&once->io, once_cb_io);
3071 ev_timer_set (&once->to, timeout, 0.); 5227 ev_timer_set (&once->to, timeout, 0.);
3072 ev_timer_start (EV_A_ &once->to); 5228 ev_timer_start (EV_A_ &once->to);
3073 } 5229 }
3074} 5230}
3075 5231
5232/*****************************************************************************/
5233
5234#if EV_WALK_ENABLE
5235ecb_cold
5236void
5237ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5238{
5239 int i, j;
5240 ev_watcher_list *wl, *wn;
5241
5242 if (types & (EV_IO | EV_EMBED))
5243 for (i = 0; i < anfdmax; ++i)
5244 for (wl = anfds [i].head; wl; )
5245 {
5246 wn = wl->next;
5247
5248#if EV_EMBED_ENABLE
5249 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5250 {
5251 if (types & EV_EMBED)
5252 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5253 }
5254 else
5255#endif
5256#if EV_USE_INOTIFY
5257 if (ev_cb ((ev_io *)wl) == infy_cb)
5258 ;
5259 else
5260#endif
5261 if ((ev_io *)wl != &pipe_w)
5262 if (types & EV_IO)
5263 cb (EV_A_ EV_IO, wl);
5264
5265 wl = wn;
5266 }
5267
5268 if (types & (EV_TIMER | EV_STAT))
5269 for (i = timercnt + HEAP0; i-- > HEAP0; )
5270#if EV_STAT_ENABLE
5271 /*TODO: timer is not always active*/
5272 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5273 {
5274 if (types & EV_STAT)
5275 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5276 }
5277 else
5278#endif
5279 if (types & EV_TIMER)
5280 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5281
5282#if EV_PERIODIC_ENABLE
5283 if (types & EV_PERIODIC)
5284 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5285 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5286#endif
5287
5288#if EV_IDLE_ENABLE
5289 if (types & EV_IDLE)
5290 for (j = NUMPRI; j--; )
5291 for (i = idlecnt [j]; i--; )
5292 cb (EV_A_ EV_IDLE, idles [j][i]);
5293#endif
5294
5295#if EV_FORK_ENABLE
5296 if (types & EV_FORK)
5297 for (i = forkcnt; i--; )
5298 if (ev_cb (forks [i]) != embed_fork_cb)
5299 cb (EV_A_ EV_FORK, forks [i]);
5300#endif
5301
5302#if EV_ASYNC_ENABLE
5303 if (types & EV_ASYNC)
5304 for (i = asynccnt; i--; )
5305 cb (EV_A_ EV_ASYNC, asyncs [i]);
5306#endif
5307
5308#if EV_PREPARE_ENABLE
5309 if (types & EV_PREPARE)
5310 for (i = preparecnt; i--; )
5311# if EV_EMBED_ENABLE
5312 if (ev_cb (prepares [i]) != embed_prepare_cb)
5313# endif
5314 cb (EV_A_ EV_PREPARE, prepares [i]);
5315#endif
5316
5317#if EV_CHECK_ENABLE
5318 if (types & EV_CHECK)
5319 for (i = checkcnt; i--; )
5320 cb (EV_A_ EV_CHECK, checks [i]);
5321#endif
5322
5323#if EV_SIGNAL_ENABLE
5324 if (types & EV_SIGNAL)
5325 for (i = 0; i < EV_NSIG - 1; ++i)
5326 for (wl = signals [i].head; wl; )
5327 {
5328 wn = wl->next;
5329 cb (EV_A_ EV_SIGNAL, wl);
5330 wl = wn;
5331 }
5332#endif
5333
5334#if EV_CHILD_ENABLE
5335 if (types & EV_CHILD)
5336 for (i = (EV_PID_HASHSIZE); i--; )
5337 for (wl = childs [i]; wl; )
5338 {
5339 wn = wl->next;
5340 cb (EV_A_ EV_CHILD, wl);
5341 wl = wn;
5342 }
5343#endif
5344/* EV_STAT 0x00001000 /* stat data changed */
5345/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5346}
5347#endif
5348
3076#if EV_MULTIPLICITY 5349#if EV_MULTIPLICITY
3077 #include "ev_wrap.h" 5350 #include "ev_wrap.h"
3078#endif 5351#endif
3079 5352
3080#ifdef __cplusplus
3081}
3082#endif
3083

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines