ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.160 by root, Sat Dec 1 22:57:20 2007 UTC vs.
Revision 1.273 by root, Mon Nov 3 14:27:06 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
129#ifndef _WIN32 154#ifndef _WIN32
130# include <sys/time.h> 155# include <sys/time.h>
131# include <sys/wait.h> 156# include <sys/wait.h>
132# include <unistd.h> 157# include <unistd.h>
133#else 158#else
159# include <io.h>
134# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 161# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
138# endif 164# endif
139#endif 165#endif
140 166
141/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
142 168
143#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
144# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
145#endif 175#endif
146 176
147#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
179#endif
180
181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
185# define EV_USE_NANOSLEEP 0
186# endif
149#endif 187#endif
150 188
151#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
153#endif 191#endif
159# define EV_USE_POLL 1 197# define EV_USE_POLL 1
160# endif 198# endif
161#endif 199#endif
162 200
163#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
164# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
165#endif 207#endif
166 208
167#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
169#endif 211#endif
171#ifndef EV_USE_PORT 213#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 214# define EV_USE_PORT 0
173#endif 215#endif
174 216
175#ifndef EV_USE_INOTIFY 217#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1
220# else
176# define EV_USE_INOTIFY 0 221# define EV_USE_INOTIFY 0
222# endif
177#endif 223#endif
178 224
179#ifndef EV_PID_HASHSIZE 225#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 226# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 227# define EV_PID_HASHSIZE 1
190# else 236# else
191# define EV_INOTIFY_HASHSIZE 16 237# define EV_INOTIFY_HASHSIZE 16
192# endif 238# endif
193#endif 239#endif
194 240
195/**/ 241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 268
197#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
200#endif 272#endif
202#ifndef CLOCK_REALTIME 274#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 275# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 276# define EV_USE_REALTIME 0
205#endif 277#endif
206 278
279#if !EV_STAT_ENABLE
280# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0
282#endif
283
284#if !EV_USE_NANOSLEEP
285# ifndef _WIN32
286# include <sys/select.h>
287# endif
288#endif
289
290#if EV_USE_INOTIFY
291# include <sys/utsname.h>
292# include <sys/statfs.h>
293# include <sys/inotify.h>
294/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
295# ifndef IN_DONT_FOLLOW
296# undef EV_USE_INOTIFY
297# define EV_USE_INOTIFY 0
298# endif
299#endif
300
207#if EV_SELECT_IS_WINSOCKET 301#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 302# include <winsock.h>
209#endif 303#endif
210 304
211#if !EV_STAT_ENABLE 305#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 306/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
307# include <stdint.h>
308# ifdef __cplusplus
309extern "C" {
213#endif 310# endif
214 311int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 312# ifdef __cplusplus
216# include <sys/inotify.h> 313}
314# endif
217#endif 315#endif
218 316
219/**/ 317/**/
318
319#if EV_VERIFY >= 3
320# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
321#else
322# define EV_FREQUENT_CHECK do { } while (0)
323#endif
324
325/*
326 * This is used to avoid floating point rounding problems.
327 * It is added to ev_rt_now when scheduling periodics
328 * to ensure progress, time-wise, even when rounding
329 * errors are against us.
330 * This value is good at least till the year 4000.
331 * Better solutions welcome.
332 */
333#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 334
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 335#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 336#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 337/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 338
225#if __GNUC__ >= 3 339#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 340# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 341# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 342#else
236# define expect(expr,value) (expr) 343# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 344# define noinline
345# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
346# define inline
347# endif
240#endif 348#endif
241 349
242#define expect_false(expr) expect ((expr) != 0, 0) 350#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 351#define expect_true(expr) expect ((expr) != 0, 1)
352#define inline_size static inline
353
354#if EV_MINIMAL
355# define inline_speed static noinline
356#else
357# define inline_speed static inline
358#endif
244 359
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 360#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 361#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 362
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 363#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 364#define EMPTY2(a,b) /* used to suppress some warnings */
250 365
251typedef ev_watcher *W; 366typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 367typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 368typedef ev_watcher_time *WT;
254 369
370#define ev_active(w) ((W)(w))->active
371#define ev_at(w) ((WT)(w))->at
372
373#if EV_USE_MONOTONIC
374/* sig_atomic_t is used to avoid per-thread variables or locking but still */
375/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 376static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
377#endif
256 378
257#ifdef _WIN32 379#ifdef _WIN32
258# include "ev_win32.c" 380# include "ev_win32.c"
259#endif 381#endif
260 382
267{ 389{
268 syserr_cb = cb; 390 syserr_cb = cb;
269} 391}
270 392
271static void noinline 393static void noinline
272syserr (const char *msg) 394ev_syserr (const char *msg)
273{ 395{
274 if (!msg) 396 if (!msg)
275 msg = "(libev) system error"; 397 msg = "(libev) system error";
276 398
277 if (syserr_cb) 399 if (syserr_cb)
281 perror (msg); 403 perror (msg);
282 abort (); 404 abort ();
283 } 405 }
284} 406}
285 407
408static void *
409ev_realloc_emul (void *ptr, long size)
410{
411 /* some systems, notably openbsd and darwin, fail to properly
412 * implement realloc (x, 0) (as required by both ansi c-98 and
413 * the single unix specification, so work around them here.
414 */
415
416 if (size)
417 return realloc (ptr, size);
418
419 free (ptr);
420 return 0;
421}
422
286static void *(*alloc)(void *ptr, long size); 423static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 424
288void 425void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 426ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 427{
291 alloc = cb; 428 alloc = cb;
292} 429}
293 430
294inline_speed void * 431inline_speed void *
295ev_realloc (void *ptr, long size) 432ev_realloc (void *ptr, long size)
296{ 433{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 434 ptr = alloc (ptr, size);
298 435
299 if (!ptr && size) 436 if (!ptr && size)
300 { 437 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 438 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 439 abort ();
313typedef struct 450typedef struct
314{ 451{
315 WL head; 452 WL head;
316 unsigned char events; 453 unsigned char events;
317 unsigned char reify; 454 unsigned char reify;
455 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
456 unsigned char unused;
457#if EV_USE_EPOLL
458 unsigned int egen; /* generation counter to counter epoll bugs */
459#endif
318#if EV_SELECT_IS_WINSOCKET 460#if EV_SELECT_IS_WINSOCKET
319 SOCKET handle; 461 SOCKET handle;
320#endif 462#endif
321} ANFD; 463} ANFD;
322 464
325 W w; 467 W w;
326 int events; 468 int events;
327} ANPENDING; 469} ANPENDING;
328 470
329#if EV_USE_INOTIFY 471#if EV_USE_INOTIFY
472/* hash table entry per inotify-id */
330typedef struct 473typedef struct
331{ 474{
332 WL head; 475 WL head;
333} ANFS; 476} ANFS;
477#endif
478
479/* Heap Entry */
480#if EV_HEAP_CACHE_AT
481 typedef struct {
482 ev_tstamp at;
483 WT w;
484 } ANHE;
485
486 #define ANHE_w(he) (he).w /* access watcher, read-write */
487 #define ANHE_at(he) (he).at /* access cached at, read-only */
488 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
489#else
490 typedef WT ANHE;
491
492 #define ANHE_w(he) (he)
493 #define ANHE_at(he) (he)->at
494 #define ANHE_at_cache(he)
334#endif 495#endif
335 496
336#if EV_MULTIPLICITY 497#if EV_MULTIPLICITY
337 498
338 struct ev_loop 499 struct ev_loop
396{ 557{
397 return ev_rt_now; 558 return ev_rt_now;
398} 559}
399#endif 560#endif
400 561
401#define array_roundsize(type,n) (((n) | 4) & ~3) 562void
563ev_sleep (ev_tstamp delay)
564{
565 if (delay > 0.)
566 {
567#if EV_USE_NANOSLEEP
568 struct timespec ts;
569
570 ts.tv_sec = (time_t)delay;
571 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
572
573 nanosleep (&ts, 0);
574#elif defined(_WIN32)
575 Sleep ((unsigned long)(delay * 1e3));
576#else
577 struct timeval tv;
578
579 tv.tv_sec = (time_t)delay;
580 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
581
582 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
583 /* somehting nto guaranteed by newer posix versions, but guaranteed */
584 /* by older ones */
585 select (0, 0, 0, 0, &tv);
586#endif
587 }
588}
589
590/*****************************************************************************/
591
592#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
593
594int inline_size
595array_nextsize (int elem, int cur, int cnt)
596{
597 int ncur = cur + 1;
598
599 do
600 ncur <<= 1;
601 while (cnt > ncur);
602
603 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
604 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
605 {
606 ncur *= elem;
607 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
608 ncur = ncur - sizeof (void *) * 4;
609 ncur /= elem;
610 }
611
612 return ncur;
613}
614
615static noinline void *
616array_realloc (int elem, void *base, int *cur, int cnt)
617{
618 *cur = array_nextsize (elem, *cur, cnt);
619 return ev_realloc (base, elem * *cur);
620}
621
622#define array_init_zero(base,count) \
623 memset ((void *)(base), 0, sizeof (*(base)) * (count))
402 624
403#define array_needsize(type,base,cur,cnt,init) \ 625#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 626 if (expect_false ((cnt) > (cur))) \
405 { \ 627 { \
406 int newcnt = cur; \ 628 int ocur_ = (cur); \
407 do \ 629 (base) = (type *)array_realloc \
408 { \ 630 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 631 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 632 }
417 633
634#if 0
418#define array_slim(type,stem) \ 635#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 636 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 637 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 638 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 639 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 640 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 641 }
642#endif
425 643
426#define array_free(stem, idx) \ 644#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 645 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
428 646
429/*****************************************************************************/ 647/*****************************************************************************/
430 648
431void noinline 649void noinline
432ev_feed_event (EV_P_ void *w, int revents) 650ev_feed_event (EV_P_ void *w, int revents)
433{ 651{
434 W w_ = (W)w; 652 W w_ = (W)w;
653 int pri = ABSPRI (w_);
435 654
436 if (expect_false (w_->pending)) 655 if (expect_false (w_->pending))
656 pendings [pri][w_->pending - 1].events |= revents;
657 else
437 { 658 {
659 w_->pending = ++pendingcnt [pri];
660 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
661 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 662 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 663 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 664}
447 665
448void inline_size 666void inline_speed
449queue_events (EV_P_ W *events, int eventcnt, int type) 667queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 668{
451 int i; 669 int i;
452 670
453 for (i = 0; i < eventcnt; ++i) 671 for (i = 0; i < eventcnt; ++i)
454 ev_feed_event (EV_A_ events [i], type); 672 ev_feed_event (EV_A_ events [i], type);
455} 673}
456 674
457/*****************************************************************************/ 675/*****************************************************************************/
458 676
459void inline_size
460anfds_init (ANFD *base, int count)
461{
462 while (count--)
463 {
464 base->head = 0;
465 base->events = EV_NONE;
466 base->reify = 0;
467
468 ++base;
469 }
470}
471
472void inline_speed 677void inline_speed
473fd_event (EV_P_ int fd, int revents) 678fd_event (EV_P_ int fd, int revents)
474{ 679{
475 ANFD *anfd = anfds + fd; 680 ANFD *anfd = anfds + fd;
476 ev_io *w; 681 ev_io *w;
485} 690}
486 691
487void 692void
488ev_feed_fd_event (EV_P_ int fd, int revents) 693ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 694{
695 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 696 fd_event (EV_A_ fd, revents);
491} 697}
492 698
493void inline_size 699void inline_size
494fd_reify (EV_P) 700fd_reify (EV_P)
495{ 701{
499 { 705 {
500 int fd = fdchanges [i]; 706 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 707 ANFD *anfd = anfds + fd;
502 ev_io *w; 708 ev_io *w;
503 709
504 int events = 0; 710 unsigned char events = 0;
505 711
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 712 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 713 events |= (unsigned char)w->events;
508 714
509#if EV_SELECT_IS_WINSOCKET 715#if EV_SELECT_IS_WINSOCKET
510 if (events) 716 if (events)
511 { 717 {
512 unsigned long argp; 718 unsigned long arg;
719 #ifdef EV_FD_TO_WIN32_HANDLE
720 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
721 #else
513 anfd->handle = _get_osfhandle (fd); 722 anfd->handle = _get_osfhandle (fd);
723 #endif
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 724 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
515 } 725 }
516#endif 726#endif
517 727
728 {
729 unsigned char o_events = anfd->events;
730 unsigned char o_reify = anfd->reify;
731
518 anfd->reify = 0; 732 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 733 anfd->events = events;
734
735 if (o_events != events || o_reify & EV_IOFDSET)
736 backend_modify (EV_A_ fd, o_events, events);
737 }
522 } 738 }
523 739
524 fdchangecnt = 0; 740 fdchangecnt = 0;
525} 741}
526 742
527void inline_size 743void inline_size
528fd_change (EV_P_ int fd) 744fd_change (EV_P_ int fd, int flags)
529{ 745{
530 if (expect_false (anfds [fd].reify)) 746 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 747 anfds [fd].reify |= flags;
534 748
749 if (expect_true (!reify))
750 {
535 ++fdchangecnt; 751 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 752 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 753 fdchanges [fdchangecnt - 1] = fd;
754 }
538} 755}
539 756
540void inline_speed 757void inline_speed
541fd_kill (EV_P_ int fd) 758fd_kill (EV_P_ int fd)
542{ 759{
565{ 782{
566 int fd; 783 int fd;
567 784
568 for (fd = 0; fd < anfdmax; ++fd) 785 for (fd = 0; fd < anfdmax; ++fd)
569 if (anfds [fd].events) 786 if (anfds [fd].events)
570 if (!fd_valid (fd) == -1 && errno == EBADF) 787 if (!fd_valid (fd) && errno == EBADF)
571 fd_kill (EV_A_ fd); 788 fd_kill (EV_A_ fd);
572} 789}
573 790
574/* called on ENOMEM in select/poll to kill some fds and retry */ 791/* called on ENOMEM in select/poll to kill some fds and retry */
575static void noinline 792static void noinline
593 810
594 for (fd = 0; fd < anfdmax; ++fd) 811 for (fd = 0; fd < anfdmax; ++fd)
595 if (anfds [fd].events) 812 if (anfds [fd].events)
596 { 813 {
597 anfds [fd].events = 0; 814 anfds [fd].events = 0;
815 anfds [fd].emask = 0;
598 fd_change (EV_A_ fd); 816 fd_change (EV_A_ fd, EV_IOFDSET | 1);
599 } 817 }
600} 818}
601 819
602/*****************************************************************************/ 820/*****************************************************************************/
603 821
822/*
823 * the heap functions want a real array index. array index 0 uis guaranteed to not
824 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
825 * the branching factor of the d-tree.
826 */
827
828/*
829 * at the moment we allow libev the luxury of two heaps,
830 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
831 * which is more cache-efficient.
832 * the difference is about 5% with 50000+ watchers.
833 */
834#if EV_USE_4HEAP
835
836#define DHEAP 4
837#define HEAP0 (DHEAP - 1) /* index of first element in heap */
838#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
839#define UPHEAP_DONE(p,k) ((p) == (k))
840
841/* away from the root */
604void inline_speed 842void inline_speed
605upheap (WT *heap, int k) 843downheap (ANHE *heap, int N, int k)
606{ 844{
607 WT w = heap [k]; 845 ANHE he = heap [k];
846 ANHE *E = heap + N + HEAP0;
608 847
609 while (k && heap [k >> 1]->at > w->at) 848 for (;;)
610 {
611 heap [k] = heap [k >> 1];
612 ((W)heap [k])->active = k + 1;
613 k >>= 1;
614 } 849 {
850 ev_tstamp minat;
851 ANHE *minpos;
852 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
615 853
854 /* find minimum child */
855 if (expect_true (pos + DHEAP - 1 < E))
856 {
857 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
858 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
859 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
860 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
861 }
862 else if (pos < E)
863 {
864 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
865 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
866 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
867 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
868 }
869 else
870 break;
871
872 if (ANHE_at (he) <= minat)
873 break;
874
875 heap [k] = *minpos;
876 ev_active (ANHE_w (*minpos)) = k;
877
878 k = minpos - heap;
879 }
880
616 heap [k] = w; 881 heap [k] = he;
617 ((W)heap [k])->active = k + 1; 882 ev_active (ANHE_w (he)) = k;
618
619} 883}
620 884
885#else /* 4HEAP */
886
887#define HEAP0 1
888#define HPARENT(k) ((k) >> 1)
889#define UPHEAP_DONE(p,k) (!(p))
890
891/* away from the root */
621void inline_speed 892void inline_speed
622downheap (WT *heap, int N, int k) 893downheap (ANHE *heap, int N, int k)
623{ 894{
624 WT w = heap [k]; 895 ANHE he = heap [k];
625 896
626 while (k < (N >> 1)) 897 for (;;)
627 { 898 {
628 int j = k << 1; 899 int c = k << 1;
629 900
630 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 901 if (c > N + HEAP0 - 1)
631 ++j;
632
633 if (w->at <= heap [j]->at)
634 break; 902 break;
635 903
904 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
905 ? 1 : 0;
906
907 if (ANHE_at (he) <= ANHE_at (heap [c]))
908 break;
909
636 heap [k] = heap [j]; 910 heap [k] = heap [c];
637 ((W)heap [k])->active = k + 1; 911 ev_active (ANHE_w (heap [k])) = k;
912
638 k = j; 913 k = c;
639 } 914 }
640 915
641 heap [k] = w; 916 heap [k] = he;
642 ((W)heap [k])->active = k + 1; 917 ev_active (ANHE_w (he)) = k;
918}
919#endif
920
921/* towards the root */
922void inline_speed
923upheap (ANHE *heap, int k)
924{
925 ANHE he = heap [k];
926
927 for (;;)
928 {
929 int p = HPARENT (k);
930
931 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
932 break;
933
934 heap [k] = heap [p];
935 ev_active (ANHE_w (heap [k])) = k;
936 k = p;
937 }
938
939 heap [k] = he;
940 ev_active (ANHE_w (he)) = k;
643} 941}
644 942
645void inline_size 943void inline_size
646adjustheap (WT *heap, int N, int k) 944adjustheap (ANHE *heap, int N, int k)
647{ 945{
946 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
648 upheap (heap, k); 947 upheap (heap, k);
948 else
649 downheap (heap, N, k); 949 downheap (heap, N, k);
950}
951
952/* rebuild the heap: this function is used only once and executed rarely */
953void inline_size
954reheap (ANHE *heap, int N)
955{
956 int i;
957
958 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
959 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
960 for (i = 0; i < N; ++i)
961 upheap (heap, i + HEAP0);
650} 962}
651 963
652/*****************************************************************************/ 964/*****************************************************************************/
653 965
654typedef struct 966typedef struct
655{ 967{
656 WL head; 968 WL head;
657 sig_atomic_t volatile gotsig; 969 EV_ATOMIC_T gotsig;
658} ANSIG; 970} ANSIG;
659 971
660static ANSIG *signals; 972static ANSIG *signals;
661static int signalmax; 973static int signalmax;
662 974
663static int sigpipe [2]; 975static EV_ATOMIC_T gotsig;
664static sig_atomic_t volatile gotsig;
665static ev_io sigev;
666 976
977/*****************************************************************************/
978
667void inline_size 979void inline_speed
668signals_init (ANSIG *base, int count)
669{
670 while (count--)
671 {
672 base->head = 0;
673 base->gotsig = 0;
674
675 ++base;
676 }
677}
678
679static void
680sighandler (int signum)
681{
682#if _WIN32
683 signal (signum, sighandler);
684#endif
685
686 signals [signum - 1].gotsig = 1;
687
688 if (!gotsig)
689 {
690 int old_errno = errno;
691 gotsig = 1;
692 write (sigpipe [1], &signum, 1);
693 errno = old_errno;
694 }
695}
696
697void noinline
698ev_feed_signal_event (EV_P_ int signum)
699{
700 WL w;
701
702#if EV_MULTIPLICITY
703 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
704#endif
705
706 --signum;
707
708 if (signum < 0 || signum >= signalmax)
709 return;
710
711 signals [signum].gotsig = 0;
712
713 for (w = signals [signum].head; w; w = w->next)
714 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
715}
716
717static void
718sigcb (EV_P_ ev_io *iow, int revents)
719{
720 int signum;
721
722 read (sigpipe [0], &revents, 1);
723 gotsig = 0;
724
725 for (signum = signalmax; signum--; )
726 if (signals [signum].gotsig)
727 ev_feed_signal_event (EV_A_ signum + 1);
728}
729
730void inline_size
731fd_intern (int fd) 980fd_intern (int fd)
732{ 981{
733#ifdef _WIN32 982#ifdef _WIN32
734 int arg = 1; 983 unsigned long arg = 1;
735 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 984 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
736#else 985#else
737 fcntl (fd, F_SETFD, FD_CLOEXEC); 986 fcntl (fd, F_SETFD, FD_CLOEXEC);
738 fcntl (fd, F_SETFL, O_NONBLOCK); 987 fcntl (fd, F_SETFL, O_NONBLOCK);
739#endif 988#endif
740} 989}
741 990
742static void noinline 991static void noinline
743siginit (EV_P) 992evpipe_init (EV_P)
744{ 993{
994 if (!ev_is_active (&pipeev))
995 {
996#if EV_USE_EVENTFD
997 if ((evfd = eventfd (0, 0)) >= 0)
998 {
999 evpipe [0] = -1;
1000 fd_intern (evfd);
1001 ev_io_set (&pipeev, evfd, EV_READ);
1002 }
1003 else
1004#endif
1005 {
1006 while (pipe (evpipe))
1007 ev_syserr ("(libev) error creating signal/async pipe");
1008
745 fd_intern (sigpipe [0]); 1009 fd_intern (evpipe [0]);
746 fd_intern (sigpipe [1]); 1010 fd_intern (evpipe [1]);
1011 ev_io_set (&pipeev, evpipe [0], EV_READ);
1012 }
747 1013
748 ev_io_set (&sigev, sigpipe [0], EV_READ);
749 ev_io_start (EV_A_ &sigev); 1014 ev_io_start (EV_A_ &pipeev);
750 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1015 ev_unref (EV_A); /* watcher should not keep loop alive */
1016 }
1017}
1018
1019void inline_size
1020evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1021{
1022 if (!*flag)
1023 {
1024 int old_errno = errno; /* save errno because write might clobber it */
1025
1026 *flag = 1;
1027
1028#if EV_USE_EVENTFD
1029 if (evfd >= 0)
1030 {
1031 uint64_t counter = 1;
1032 write (evfd, &counter, sizeof (uint64_t));
1033 }
1034 else
1035#endif
1036 write (evpipe [1], &old_errno, 1);
1037
1038 errno = old_errno;
1039 }
1040}
1041
1042static void
1043pipecb (EV_P_ ev_io *iow, int revents)
1044{
1045#if EV_USE_EVENTFD
1046 if (evfd >= 0)
1047 {
1048 uint64_t counter;
1049 read (evfd, &counter, sizeof (uint64_t));
1050 }
1051 else
1052#endif
1053 {
1054 char dummy;
1055 read (evpipe [0], &dummy, 1);
1056 }
1057
1058 if (gotsig && ev_is_default_loop (EV_A))
1059 {
1060 int signum;
1061 gotsig = 0;
1062
1063 for (signum = signalmax; signum--; )
1064 if (signals [signum].gotsig)
1065 ev_feed_signal_event (EV_A_ signum + 1);
1066 }
1067
1068#if EV_ASYNC_ENABLE
1069 if (gotasync)
1070 {
1071 int i;
1072 gotasync = 0;
1073
1074 for (i = asynccnt; i--; )
1075 if (asyncs [i]->sent)
1076 {
1077 asyncs [i]->sent = 0;
1078 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1079 }
1080 }
1081#endif
751} 1082}
752 1083
753/*****************************************************************************/ 1084/*****************************************************************************/
754 1085
1086static void
1087ev_sighandler (int signum)
1088{
1089#if EV_MULTIPLICITY
1090 struct ev_loop *loop = &default_loop_struct;
1091#endif
1092
1093#if _WIN32
1094 signal (signum, ev_sighandler);
1095#endif
1096
1097 signals [signum - 1].gotsig = 1;
1098 evpipe_write (EV_A_ &gotsig);
1099}
1100
1101void noinline
1102ev_feed_signal_event (EV_P_ int signum)
1103{
1104 WL w;
1105
1106#if EV_MULTIPLICITY
1107 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1108#endif
1109
1110 --signum;
1111
1112 if (signum < 0 || signum >= signalmax)
1113 return;
1114
1115 signals [signum].gotsig = 0;
1116
1117 for (w = signals [signum].head; w; w = w->next)
1118 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1119}
1120
1121/*****************************************************************************/
1122
755static ev_child *childs [EV_PID_HASHSIZE]; 1123static WL childs [EV_PID_HASHSIZE];
756 1124
757#ifndef _WIN32 1125#ifndef _WIN32
758 1126
759static ev_signal childev; 1127static ev_signal childev;
760 1128
1129#ifndef WIFCONTINUED
1130# define WIFCONTINUED(status) 0
1131#endif
1132
761void inline_speed 1133void inline_speed
762child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1134child_reap (EV_P_ int chain, int pid, int status)
763{ 1135{
764 ev_child *w; 1136 ev_child *w;
1137 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
765 1138
766 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1139 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1140 {
767 if (w->pid == pid || !w->pid) 1141 if ((w->pid == pid || !w->pid)
1142 && (!traced || (w->flags & 1)))
768 { 1143 {
769 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1144 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
770 w->rpid = pid; 1145 w->rpid = pid;
771 w->rstatus = status; 1146 w->rstatus = status;
772 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1147 ev_feed_event (EV_A_ (W)w, EV_CHILD);
773 } 1148 }
1149 }
774} 1150}
775 1151
776#ifndef WCONTINUED 1152#ifndef WCONTINUED
777# define WCONTINUED 0 1153# define WCONTINUED 0
778#endif 1154#endif
787 if (!WCONTINUED 1163 if (!WCONTINUED
788 || errno != EINVAL 1164 || errno != EINVAL
789 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1165 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
790 return; 1166 return;
791 1167
792 /* make sure we are called again until all childs have been reaped */ 1168 /* make sure we are called again until all children have been reaped */
793 /* we need to do it this way so that the callback gets called before we continue */ 1169 /* we need to do it this way so that the callback gets called before we continue */
794 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1170 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
795 1171
796 child_reap (EV_A_ sw, pid, pid, status); 1172 child_reap (EV_A_ pid, pid, status);
797 if (EV_PID_HASHSIZE > 1) 1173 if (EV_PID_HASHSIZE > 1)
798 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1174 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
799} 1175}
800 1176
801#endif 1177#endif
802 1178
803/*****************************************************************************/ 1179/*****************************************************************************/
875} 1251}
876 1252
877unsigned int 1253unsigned int
878ev_embeddable_backends (void) 1254ev_embeddable_backends (void)
879{ 1255{
880 return EVBACKEND_EPOLL 1256 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
881 | EVBACKEND_KQUEUE 1257
882 | EVBACKEND_PORT; 1258 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1259 /* please fix it and tell me how to detect the fix */
1260 flags &= ~EVBACKEND_EPOLL;
1261
1262 return flags;
883} 1263}
884 1264
885unsigned int 1265unsigned int
886ev_backend (EV_P) 1266ev_backend (EV_P)
887{ 1267{
888 return backend; 1268 return backend;
1269}
1270
1271unsigned int
1272ev_loop_count (EV_P)
1273{
1274 return loop_count;
1275}
1276
1277void
1278ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1279{
1280 io_blocktime = interval;
1281}
1282
1283void
1284ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1285{
1286 timeout_blocktime = interval;
889} 1287}
890 1288
891static void noinline 1289static void noinline
892loop_init (EV_P_ unsigned int flags) 1290loop_init (EV_P_ unsigned int flags)
893{ 1291{
899 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1297 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
900 have_monotonic = 1; 1298 have_monotonic = 1;
901 } 1299 }
902#endif 1300#endif
903 1301
904 ev_rt_now = ev_time (); 1302 ev_rt_now = ev_time ();
905 mn_now = get_clock (); 1303 mn_now = get_clock ();
906 now_floor = mn_now; 1304 now_floor = mn_now;
907 rtmn_diff = ev_rt_now - mn_now; 1305 rtmn_diff = ev_rt_now - mn_now;
1306
1307 io_blocktime = 0.;
1308 timeout_blocktime = 0.;
1309 backend = 0;
1310 backend_fd = -1;
1311 gotasync = 0;
1312#if EV_USE_INOTIFY
1313 fs_fd = -2;
1314#endif
908 1315
909 /* pid check not overridable via env */ 1316 /* pid check not overridable via env */
910#ifndef _WIN32 1317#ifndef _WIN32
911 if (flags & EVFLAG_FORKCHECK) 1318 if (flags & EVFLAG_FORKCHECK)
912 curpid = getpid (); 1319 curpid = getpid ();
915 if (!(flags & EVFLAG_NOENV) 1322 if (!(flags & EVFLAG_NOENV)
916 && !enable_secure () 1323 && !enable_secure ()
917 && getenv ("LIBEV_FLAGS")) 1324 && getenv ("LIBEV_FLAGS"))
918 flags = atoi (getenv ("LIBEV_FLAGS")); 1325 flags = atoi (getenv ("LIBEV_FLAGS"));
919 1326
920 if (!(flags & 0x0000ffffUL)) 1327 if (!(flags & 0x0000ffffU))
921 flags |= ev_recommended_backends (); 1328 flags |= ev_recommended_backends ();
922
923 backend = 0;
924 backend_fd = -1;
925#if EV_USE_INOTIFY
926 fs_fd = -2;
927#endif
928 1329
929#if EV_USE_PORT 1330#if EV_USE_PORT
930 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1331 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
931#endif 1332#endif
932#if EV_USE_KQUEUE 1333#if EV_USE_KQUEUE
940#endif 1341#endif
941#if EV_USE_SELECT 1342#if EV_USE_SELECT
942 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1343 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
943#endif 1344#endif
944 1345
945 ev_init (&sigev, sigcb); 1346 ev_init (&pipeev, pipecb);
946 ev_set_priority (&sigev, EV_MAXPRI); 1347 ev_set_priority (&pipeev, EV_MAXPRI);
947 } 1348 }
948} 1349}
949 1350
950static void noinline 1351static void noinline
951loop_destroy (EV_P) 1352loop_destroy (EV_P)
952{ 1353{
953 int i; 1354 int i;
1355
1356 if (ev_is_active (&pipeev))
1357 {
1358 ev_ref (EV_A); /* signal watcher */
1359 ev_io_stop (EV_A_ &pipeev);
1360
1361#if EV_USE_EVENTFD
1362 if (evfd >= 0)
1363 close (evfd);
1364#endif
1365
1366 if (evpipe [0] >= 0)
1367 {
1368 close (evpipe [0]);
1369 close (evpipe [1]);
1370 }
1371 }
954 1372
955#if EV_USE_INOTIFY 1373#if EV_USE_INOTIFY
956 if (fs_fd >= 0) 1374 if (fs_fd >= 0)
957 close (fs_fd); 1375 close (fs_fd);
958#endif 1376#endif
975#if EV_USE_SELECT 1393#if EV_USE_SELECT
976 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1394 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
977#endif 1395#endif
978 1396
979 for (i = NUMPRI; i--; ) 1397 for (i = NUMPRI; i--; )
1398 {
980 array_free (pending, [i]); 1399 array_free (pending, [i]);
1400#if EV_IDLE_ENABLE
1401 array_free (idle, [i]);
1402#endif
1403 }
1404
1405 ev_free (anfds); anfdmax = 0;
981 1406
982 /* have to use the microsoft-never-gets-it-right macro */ 1407 /* have to use the microsoft-never-gets-it-right macro */
983 array_free (fdchange, EMPTY0); 1408 array_free (fdchange, EMPTY);
984 array_free (timer, EMPTY0); 1409 array_free (timer, EMPTY);
985#if EV_PERIODIC_ENABLE 1410#if EV_PERIODIC_ENABLE
986 array_free (periodic, EMPTY0); 1411 array_free (periodic, EMPTY);
987#endif 1412#endif
1413#if EV_FORK_ENABLE
988 array_free (idle, EMPTY0); 1414 array_free (fork, EMPTY);
1415#endif
989 array_free (prepare, EMPTY0); 1416 array_free (prepare, EMPTY);
990 array_free (check, EMPTY0); 1417 array_free (check, EMPTY);
1418#if EV_ASYNC_ENABLE
1419 array_free (async, EMPTY);
1420#endif
991 1421
992 backend = 0; 1422 backend = 0;
993} 1423}
994 1424
1425#if EV_USE_INOTIFY
995void inline_size infy_fork (EV_P); 1426void inline_size infy_fork (EV_P);
1427#endif
996 1428
997void inline_size 1429void inline_size
998loop_fork (EV_P) 1430loop_fork (EV_P)
999{ 1431{
1000#if EV_USE_PORT 1432#if EV_USE_PORT
1008#endif 1440#endif
1009#if EV_USE_INOTIFY 1441#if EV_USE_INOTIFY
1010 infy_fork (EV_A); 1442 infy_fork (EV_A);
1011#endif 1443#endif
1012 1444
1013 if (ev_is_active (&sigev)) 1445 if (ev_is_active (&pipeev))
1014 { 1446 {
1015 /* default loop */ 1447 /* this "locks" the handlers against writing to the pipe */
1448 /* while we modify the fd vars */
1449 gotsig = 1;
1450#if EV_ASYNC_ENABLE
1451 gotasync = 1;
1452#endif
1016 1453
1017 ev_ref (EV_A); 1454 ev_ref (EV_A);
1018 ev_io_stop (EV_A_ &sigev); 1455 ev_io_stop (EV_A_ &pipeev);
1456
1457#if EV_USE_EVENTFD
1458 if (evfd >= 0)
1459 close (evfd);
1460#endif
1461
1462 if (evpipe [0] >= 0)
1463 {
1019 close (sigpipe [0]); 1464 close (evpipe [0]);
1020 close (sigpipe [1]); 1465 close (evpipe [1]);
1466 }
1021 1467
1022 while (pipe (sigpipe))
1023 syserr ("(libev) error creating pipe");
1024
1025 siginit (EV_A); 1468 evpipe_init (EV_A);
1469 /* now iterate over everything, in case we missed something */
1470 pipecb (EV_A_ &pipeev, EV_READ);
1026 } 1471 }
1027 1472
1028 postfork = 0; 1473 postfork = 0;
1029} 1474}
1030 1475
1031#if EV_MULTIPLICITY 1476#if EV_MULTIPLICITY
1477
1032struct ev_loop * 1478struct ev_loop *
1033ev_loop_new (unsigned int flags) 1479ev_loop_new (unsigned int flags)
1034{ 1480{
1035 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1481 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1036 1482
1052} 1498}
1053 1499
1054void 1500void
1055ev_loop_fork (EV_P) 1501ev_loop_fork (EV_P)
1056{ 1502{
1057 postfork = 1; 1503 postfork = 1; /* must be in line with ev_default_fork */
1058} 1504}
1059 1505
1506#if EV_VERIFY
1507static void noinline
1508verify_watcher (EV_P_ W w)
1509{
1510 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1511
1512 if (w->pending)
1513 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1514}
1515
1516static void noinline
1517verify_heap (EV_P_ ANHE *heap, int N)
1518{
1519 int i;
1520
1521 for (i = HEAP0; i < N + HEAP0; ++i)
1522 {
1523 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1524 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1525 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1526
1527 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1528 }
1529}
1530
1531static void noinline
1532array_verify (EV_P_ W *ws, int cnt)
1533{
1534 while (cnt--)
1535 {
1536 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1537 verify_watcher (EV_A_ ws [cnt]);
1538 }
1539}
1540#endif
1541
1542void
1543ev_loop_verify (EV_P)
1544{
1545#if EV_VERIFY
1546 int i;
1547 WL w;
1548
1549 assert (activecnt >= -1);
1550
1551 assert (fdchangemax >= fdchangecnt);
1552 for (i = 0; i < fdchangecnt; ++i)
1553 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1554
1555 assert (anfdmax >= 0);
1556 for (i = 0; i < anfdmax; ++i)
1557 for (w = anfds [i].head; w; w = w->next)
1558 {
1559 verify_watcher (EV_A_ (W)w);
1560 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1561 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1562 }
1563
1564 assert (timermax >= timercnt);
1565 verify_heap (EV_A_ timers, timercnt);
1566
1567#if EV_PERIODIC_ENABLE
1568 assert (periodicmax >= periodiccnt);
1569 verify_heap (EV_A_ periodics, periodiccnt);
1570#endif
1571
1572 for (i = NUMPRI; i--; )
1573 {
1574 assert (pendingmax [i] >= pendingcnt [i]);
1575#if EV_IDLE_ENABLE
1576 assert (idleall >= 0);
1577 assert (idlemax [i] >= idlecnt [i]);
1578 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1579#endif
1580 }
1581
1582#if EV_FORK_ENABLE
1583 assert (forkmax >= forkcnt);
1584 array_verify (EV_A_ (W *)forks, forkcnt);
1585#endif
1586
1587#if EV_ASYNC_ENABLE
1588 assert (asyncmax >= asynccnt);
1589 array_verify (EV_A_ (W *)asyncs, asynccnt);
1590#endif
1591
1592 assert (preparemax >= preparecnt);
1593 array_verify (EV_A_ (W *)prepares, preparecnt);
1594
1595 assert (checkmax >= checkcnt);
1596 array_verify (EV_A_ (W *)checks, checkcnt);
1597
1598# if 0
1599 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1600 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1060#endif 1601# endif
1602#endif
1603}
1604
1605#endif /* multiplicity */
1061 1606
1062#if EV_MULTIPLICITY 1607#if EV_MULTIPLICITY
1063struct ev_loop * 1608struct ev_loop *
1064ev_default_loop_init (unsigned int flags) 1609ev_default_loop_init (unsigned int flags)
1065#else 1610#else
1066int 1611int
1067ev_default_loop (unsigned int flags) 1612ev_default_loop (unsigned int flags)
1068#endif 1613#endif
1069{ 1614{
1070 if (sigpipe [0] == sigpipe [1])
1071 if (pipe (sigpipe))
1072 return 0;
1073
1074 if (!ev_default_loop_ptr) 1615 if (!ev_default_loop_ptr)
1075 { 1616 {
1076#if EV_MULTIPLICITY 1617#if EV_MULTIPLICITY
1077 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1618 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1078#else 1619#else
1081 1622
1082 loop_init (EV_A_ flags); 1623 loop_init (EV_A_ flags);
1083 1624
1084 if (ev_backend (EV_A)) 1625 if (ev_backend (EV_A))
1085 { 1626 {
1086 siginit (EV_A);
1087
1088#ifndef _WIN32 1627#ifndef _WIN32
1089 ev_signal_init (&childev, childcb, SIGCHLD); 1628 ev_signal_init (&childev, childcb, SIGCHLD);
1090 ev_set_priority (&childev, EV_MAXPRI); 1629 ev_set_priority (&childev, EV_MAXPRI);
1091 ev_signal_start (EV_A_ &childev); 1630 ev_signal_start (EV_A_ &childev);
1092 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1631 ev_unref (EV_A); /* child watcher should not keep loop alive */
1104{ 1643{
1105#if EV_MULTIPLICITY 1644#if EV_MULTIPLICITY
1106 struct ev_loop *loop = ev_default_loop_ptr; 1645 struct ev_loop *loop = ev_default_loop_ptr;
1107#endif 1646#endif
1108 1647
1648 ev_default_loop_ptr = 0;
1649
1109#ifndef _WIN32 1650#ifndef _WIN32
1110 ev_ref (EV_A); /* child watcher */ 1651 ev_ref (EV_A); /* child watcher */
1111 ev_signal_stop (EV_A_ &childev); 1652 ev_signal_stop (EV_A_ &childev);
1112#endif 1653#endif
1113 1654
1114 ev_ref (EV_A); /* signal watcher */
1115 ev_io_stop (EV_A_ &sigev);
1116
1117 close (sigpipe [0]); sigpipe [0] = 0;
1118 close (sigpipe [1]); sigpipe [1] = 0;
1119
1120 loop_destroy (EV_A); 1655 loop_destroy (EV_A);
1121} 1656}
1122 1657
1123void 1658void
1124ev_default_fork (void) 1659ev_default_fork (void)
1125{ 1660{
1126#if EV_MULTIPLICITY 1661#if EV_MULTIPLICITY
1127 struct ev_loop *loop = ev_default_loop_ptr; 1662 struct ev_loop *loop = ev_default_loop_ptr;
1128#endif 1663#endif
1129 1664
1130 if (backend) 1665 postfork = 1; /* must be in line with ev_loop_fork */
1131 postfork = 1;
1132} 1666}
1133 1667
1134/*****************************************************************************/ 1668/*****************************************************************************/
1135 1669
1136int inline_size 1670void
1137any_pending (EV_P) 1671ev_invoke (EV_P_ void *w, int revents)
1138{ 1672{
1139 int pri; 1673 EV_CB_INVOKE ((W)w, revents);
1140
1141 for (pri = NUMPRI; pri--; )
1142 if (pendingcnt [pri])
1143 return 1;
1144
1145 return 0;
1146} 1674}
1147 1675
1148void inline_speed 1676void inline_speed
1149call_pending (EV_P) 1677call_pending (EV_P)
1150{ 1678{
1159 { 1687 {
1160 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1688 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1161 1689
1162 p->w->pending = 0; 1690 p->w->pending = 0;
1163 EV_CB_INVOKE (p->w, p->events); 1691 EV_CB_INVOKE (p->w, p->events);
1692 EV_FREQUENT_CHECK;
1164 } 1693 }
1165 } 1694 }
1166} 1695}
1167 1696
1697#if EV_IDLE_ENABLE
1698void inline_size
1699idle_reify (EV_P)
1700{
1701 if (expect_false (idleall))
1702 {
1703 int pri;
1704
1705 for (pri = NUMPRI; pri--; )
1706 {
1707 if (pendingcnt [pri])
1708 break;
1709
1710 if (idlecnt [pri])
1711 {
1712 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1713 break;
1714 }
1715 }
1716 }
1717}
1718#endif
1719
1168void inline_size 1720void inline_size
1169timers_reify (EV_P) 1721timers_reify (EV_P)
1170{ 1722{
1723 EV_FREQUENT_CHECK;
1724
1171 while (timercnt && ((WT)timers [0])->at <= mn_now) 1725 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1172 { 1726 {
1173 ev_timer *w = timers [0]; 1727 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1174 1728
1175 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1729 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1176 1730
1177 /* first reschedule or stop timer */ 1731 /* first reschedule or stop timer */
1178 if (w->repeat) 1732 if (w->repeat)
1179 { 1733 {
1734 ev_at (w) += w->repeat;
1735 if (ev_at (w) < mn_now)
1736 ev_at (w) = mn_now;
1737
1180 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1738 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1181 1739
1182 ((WT)w)->at += w->repeat; 1740 ANHE_at_cache (timers [HEAP0]);
1183 if (((WT)w)->at < mn_now)
1184 ((WT)w)->at = mn_now;
1185
1186 downheap ((WT *)timers, timercnt, 0); 1741 downheap (timers, timercnt, HEAP0);
1187 } 1742 }
1188 else 1743 else
1189 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1744 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1190 1745
1746 EV_FREQUENT_CHECK;
1191 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1747 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1192 } 1748 }
1193} 1749}
1194 1750
1195#if EV_PERIODIC_ENABLE 1751#if EV_PERIODIC_ENABLE
1196void inline_size 1752void inline_size
1197periodics_reify (EV_P) 1753periodics_reify (EV_P)
1198{ 1754{
1755 EV_FREQUENT_CHECK;
1756
1199 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1757 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1200 { 1758 {
1201 ev_periodic *w = periodics [0]; 1759 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1202 1760
1203 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1761 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1204 1762
1205 /* first reschedule or stop timer */ 1763 /* first reschedule or stop timer */
1206 if (w->reschedule_cb) 1764 if (w->reschedule_cb)
1207 { 1765 {
1208 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1766 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1767
1209 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1768 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1769
1770 ANHE_at_cache (periodics [HEAP0]);
1210 downheap ((WT *)periodics, periodiccnt, 0); 1771 downheap (periodics, periodiccnt, HEAP0);
1211 } 1772 }
1212 else if (w->interval) 1773 else if (w->interval)
1213 { 1774 {
1214 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1775 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1215 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1776 /* if next trigger time is not sufficiently in the future, put it there */
1777 /* this might happen because of floating point inexactness */
1778 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1779 {
1780 ev_at (w) += w->interval;
1781
1782 /* if interval is unreasonably low we might still have a time in the past */
1783 /* so correct this. this will make the periodic very inexact, but the user */
1784 /* has effectively asked to get triggered more often than possible */
1785 if (ev_at (w) < ev_rt_now)
1786 ev_at (w) = ev_rt_now;
1787 }
1788
1789 ANHE_at_cache (periodics [HEAP0]);
1216 downheap ((WT *)periodics, periodiccnt, 0); 1790 downheap (periodics, periodiccnt, HEAP0);
1217 } 1791 }
1218 else 1792 else
1219 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1793 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1220 1794
1795 EV_FREQUENT_CHECK;
1221 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1796 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1222 } 1797 }
1223} 1798}
1224 1799
1225static void noinline 1800static void noinline
1226periodics_reschedule (EV_P) 1801periodics_reschedule (EV_P)
1227{ 1802{
1228 int i; 1803 int i;
1229 1804
1230 /* adjust periodics after time jump */ 1805 /* adjust periodics after time jump */
1231 for (i = 0; i < periodiccnt; ++i) 1806 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1232 { 1807 {
1233 ev_periodic *w = periodics [i]; 1808 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1234 1809
1235 if (w->reschedule_cb) 1810 if (w->reschedule_cb)
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1811 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1237 else if (w->interval) 1812 else if (w->interval)
1238 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1813 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1814
1815 ANHE_at_cache (periodics [i]);
1816 }
1817
1818 reheap (periodics, periodiccnt);
1819}
1820#endif
1821
1822void inline_speed
1823time_update (EV_P_ ev_tstamp max_block)
1824{
1825 int i;
1826
1827#if EV_USE_MONOTONIC
1828 if (expect_true (have_monotonic))
1239 } 1829 {
1830 ev_tstamp odiff = rtmn_diff;
1240 1831
1241 /* now rebuild the heap */
1242 for (i = periodiccnt >> 1; i--; )
1243 downheap ((WT *)periodics, periodiccnt, i);
1244}
1245#endif
1246
1247int inline_size
1248time_update_monotonic (EV_P)
1249{
1250 mn_now = get_clock (); 1832 mn_now = get_clock ();
1251 1833
1834 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1835 /* interpolate in the meantime */
1252 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1836 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1253 { 1837 {
1254 ev_rt_now = rtmn_diff + mn_now; 1838 ev_rt_now = rtmn_diff + mn_now;
1255 return 0; 1839 return;
1256 } 1840 }
1257 else 1841
1258 {
1259 now_floor = mn_now; 1842 now_floor = mn_now;
1260 ev_rt_now = ev_time (); 1843 ev_rt_now = ev_time ();
1261 return 1;
1262 }
1263}
1264 1844
1265void inline_size 1845 /* loop a few times, before making important decisions.
1266time_update (EV_P) 1846 * on the choice of "4": one iteration isn't enough,
1267{ 1847 * in case we get preempted during the calls to
1268 int i; 1848 * ev_time and get_clock. a second call is almost guaranteed
1269 1849 * to succeed in that case, though. and looping a few more times
1270#if EV_USE_MONOTONIC 1850 * doesn't hurt either as we only do this on time-jumps or
1271 if (expect_true (have_monotonic)) 1851 * in the unlikely event of having been preempted here.
1272 { 1852 */
1273 if (time_update_monotonic (EV_A)) 1853 for (i = 4; --i; )
1274 { 1854 {
1275 ev_tstamp odiff = rtmn_diff;
1276
1277 /* loop a few times, before making important decisions.
1278 * on the choice of "4": one iteration isn't enough,
1279 * in case we get preempted during the calls to
1280 * ev_time and get_clock. a second call is almost guaranteed
1281 * to succeed in that case, though. and looping a few more times
1282 * doesn't hurt either as we only do this on time-jumps or
1283 * in the unlikely event of having been preempted here.
1284 */
1285 for (i = 4; --i; )
1286 {
1287 rtmn_diff = ev_rt_now - mn_now; 1855 rtmn_diff = ev_rt_now - mn_now;
1288 1856
1289 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1857 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1290 return; /* all is well */ 1858 return; /* all is well */
1291 1859
1292 ev_rt_now = ev_time (); 1860 ev_rt_now = ev_time ();
1293 mn_now = get_clock (); 1861 mn_now = get_clock ();
1294 now_floor = mn_now; 1862 now_floor = mn_now;
1295 } 1863 }
1296 1864
1297# if EV_PERIODIC_ENABLE 1865# if EV_PERIODIC_ENABLE
1298 periodics_reschedule (EV_A); 1866 periodics_reschedule (EV_A);
1299# endif 1867# endif
1300 /* no timer adjustment, as the monotonic clock doesn't jump */ 1868 /* no timer adjustment, as the monotonic clock doesn't jump */
1301 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1869 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1302 }
1303 } 1870 }
1304 else 1871 else
1305#endif 1872#endif
1306 { 1873 {
1307 ev_rt_now = ev_time (); 1874 ev_rt_now = ev_time ();
1308 1875
1309 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1876 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1310 { 1877 {
1311#if EV_PERIODIC_ENABLE 1878#if EV_PERIODIC_ENABLE
1312 periodics_reschedule (EV_A); 1879 periodics_reschedule (EV_A);
1313#endif 1880#endif
1314
1315 /* adjust timers. this is easy, as the offset is the same for all of them */ 1881 /* adjust timers. this is easy, as the offset is the same for all of them */
1316 for (i = 0; i < timercnt; ++i) 1882 for (i = 0; i < timercnt; ++i)
1883 {
1884 ANHE *he = timers + i + HEAP0;
1317 ((WT)timers [i])->at += ev_rt_now - mn_now; 1885 ANHE_w (*he)->at += ev_rt_now - mn_now;
1886 ANHE_at_cache (*he);
1887 }
1318 } 1888 }
1319 1889
1320 mn_now = ev_rt_now; 1890 mn_now = ev_rt_now;
1321 } 1891 }
1322} 1892}
1331ev_unref (EV_P) 1901ev_unref (EV_P)
1332{ 1902{
1333 --activecnt; 1903 --activecnt;
1334} 1904}
1335 1905
1906void
1907ev_now_update (EV_P)
1908{
1909 time_update (EV_A_ 1e100);
1910}
1911
1336static int loop_done; 1912static int loop_done;
1337 1913
1338void 1914void
1339ev_loop (EV_P_ int flags) 1915ev_loop (EV_P_ int flags)
1340{ 1916{
1341 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1917 loop_done = EVUNLOOP_CANCEL;
1342 ? EVUNLOOP_ONE
1343 : EVUNLOOP_CANCEL;
1344 1918
1345 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1919 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1346 1920
1347 while (expect_false (!activecnt)) 1921 do
1348 { 1922 {
1923#if EV_VERIFY >= 2
1924 ev_loop_verify (EV_A);
1925#endif
1926
1349#ifndef _WIN32 1927#ifndef _WIN32
1350 if (expect_false (curpid)) /* penalise the forking check even more */ 1928 if (expect_false (curpid)) /* penalise the forking check even more */
1351 if (expect_false (getpid () != curpid)) 1929 if (expect_false (getpid () != curpid))
1352 { 1930 {
1353 curpid = getpid (); 1931 curpid = getpid ();
1363 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1941 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1364 call_pending (EV_A); 1942 call_pending (EV_A);
1365 } 1943 }
1366#endif 1944#endif
1367 1945
1368 /* queue check watchers (and execute them) */ 1946 /* queue prepare watchers (and execute them) */
1369 if (expect_false (preparecnt)) 1947 if (expect_false (preparecnt))
1370 { 1948 {
1371 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1949 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1372 call_pending (EV_A); 1950 call_pending (EV_A);
1373 } 1951 }
1382 /* update fd-related kernel structures */ 1960 /* update fd-related kernel structures */
1383 fd_reify (EV_A); 1961 fd_reify (EV_A);
1384 1962
1385 /* calculate blocking time */ 1963 /* calculate blocking time */
1386 { 1964 {
1387 ev_tstamp block; 1965 ev_tstamp waittime = 0.;
1966 ev_tstamp sleeptime = 0.;
1388 1967
1389 if (expect_false (flags & EVLOOP_NONBLOCK || idlecnt || !activecnt)) 1968 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1390 block = 0.; /* do not block at all */
1391 else
1392 { 1969 {
1393 /* update time to cancel out callback processing overhead */ 1970 /* update time to cancel out callback processing overhead */
1394#if EV_USE_MONOTONIC
1395 if (expect_true (have_monotonic))
1396 time_update_monotonic (EV_A); 1971 time_update (EV_A_ 1e100);
1397 else
1398#endif
1399 {
1400 ev_rt_now = ev_time ();
1401 mn_now = ev_rt_now;
1402 }
1403 1972
1404 block = MAX_BLOCKTIME; 1973 waittime = MAX_BLOCKTIME;
1405 1974
1406 if (timercnt) 1975 if (timercnt)
1407 { 1976 {
1408 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1977 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1409 if (block > to) block = to; 1978 if (waittime > to) waittime = to;
1410 } 1979 }
1411 1980
1412#if EV_PERIODIC_ENABLE 1981#if EV_PERIODIC_ENABLE
1413 if (periodiccnt) 1982 if (periodiccnt)
1414 { 1983 {
1415 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1984 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1416 if (block > to) block = to; 1985 if (waittime > to) waittime = to;
1417 } 1986 }
1418#endif 1987#endif
1419 1988
1420 if (expect_false (block < 0.)) block = 0.; 1989 if (expect_false (waittime < timeout_blocktime))
1990 waittime = timeout_blocktime;
1991
1992 sleeptime = waittime - backend_fudge;
1993
1994 if (expect_true (sleeptime > io_blocktime))
1995 sleeptime = io_blocktime;
1996
1997 if (sleeptime)
1998 {
1999 ev_sleep (sleeptime);
2000 waittime -= sleeptime;
2001 }
1421 } 2002 }
1422 2003
2004 ++loop_count;
1423 backend_poll (EV_A_ block); 2005 backend_poll (EV_A_ waittime);
2006
2007 /* update ev_rt_now, do magic */
2008 time_update (EV_A_ waittime + sleeptime);
1424 } 2009 }
1425
1426 /* update ev_rt_now, do magic */
1427 time_update (EV_A);
1428 2010
1429 /* queue pending timers and reschedule them */ 2011 /* queue pending timers and reschedule them */
1430 timers_reify (EV_A); /* relative timers called last */ 2012 timers_reify (EV_A); /* relative timers called last */
1431#if EV_PERIODIC_ENABLE 2013#if EV_PERIODIC_ENABLE
1432 periodics_reify (EV_A); /* absolute timers called first */ 2014 periodics_reify (EV_A); /* absolute timers called first */
1433#endif 2015#endif
1434 2016
2017#if EV_IDLE_ENABLE
1435 /* queue idle watchers unless other events are pending */ 2018 /* queue idle watchers unless other events are pending */
1436 if (idlecnt && !any_pending (EV_A)) 2019 idle_reify (EV_A);
1437 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2020#endif
1438 2021
1439 /* queue check watchers, to be executed first */ 2022 /* queue check watchers, to be executed first */
1440 if (expect_false (checkcnt)) 2023 if (expect_false (checkcnt))
1441 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2024 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1442 2025
1443 call_pending (EV_A); 2026 call_pending (EV_A);
1444
1445 if (expect_false (loop_done))
1446 break;
1447 } 2027 }
2028 while (expect_true (
2029 activecnt
2030 && !loop_done
2031 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2032 ));
1448 2033
1449 if (loop_done == EVUNLOOP_ONE) 2034 if (loop_done == EVUNLOOP_ONE)
1450 loop_done = EVUNLOOP_CANCEL; 2035 loop_done = EVUNLOOP_CANCEL;
1451} 2036}
1452 2037
1479 head = &(*head)->next; 2064 head = &(*head)->next;
1480 } 2065 }
1481} 2066}
1482 2067
1483void inline_speed 2068void inline_speed
1484ev_clear_pending (EV_P_ W w) 2069clear_pending (EV_P_ W w)
1485{ 2070{
1486 if (w->pending) 2071 if (w->pending)
1487 { 2072 {
1488 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2073 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1489 w->pending = 0; 2074 w->pending = 0;
1490 } 2075 }
1491} 2076}
1492 2077
2078int
2079ev_clear_pending (EV_P_ void *w)
2080{
2081 W w_ = (W)w;
2082 int pending = w_->pending;
2083
2084 if (expect_true (pending))
2085 {
2086 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2087 w_->pending = 0;
2088 p->w = 0;
2089 return p->events;
2090 }
2091 else
2092 return 0;
2093}
2094
2095void inline_size
2096pri_adjust (EV_P_ W w)
2097{
2098 int pri = w->priority;
2099 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2100 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2101 w->priority = pri;
2102}
2103
1493void inline_speed 2104void inline_speed
1494ev_start (EV_P_ W w, int active) 2105ev_start (EV_P_ W w, int active)
1495{ 2106{
1496 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2107 pri_adjust (EV_A_ w);
1497 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1498
1499 w->active = active; 2108 w->active = active;
1500 ev_ref (EV_A); 2109 ev_ref (EV_A);
1501} 2110}
1502 2111
1503void inline_size 2112void inline_size
1507 w->active = 0; 2116 w->active = 0;
1508} 2117}
1509 2118
1510/*****************************************************************************/ 2119/*****************************************************************************/
1511 2120
1512void 2121void noinline
1513ev_io_start (EV_P_ ev_io *w) 2122ev_io_start (EV_P_ ev_io *w)
1514{ 2123{
1515 int fd = w->fd; 2124 int fd = w->fd;
1516 2125
1517 if (expect_false (ev_is_active (w))) 2126 if (expect_false (ev_is_active (w)))
1518 return; 2127 return;
1519 2128
1520 assert (("ev_io_start called with negative fd", fd >= 0)); 2129 assert (("ev_io_start called with negative fd", fd >= 0));
2130 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE))));
2131
2132 EV_FREQUENT_CHECK;
1521 2133
1522 ev_start (EV_A_ (W)w, 1); 2134 ev_start (EV_A_ (W)w, 1);
1523 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2135 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1524 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2136 wlist_add (&anfds[fd].head, (WL)w);
1525 2137
1526 fd_change (EV_A_ fd); 2138 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1527} 2139 w->events &= ~EV_IOFDSET;
1528 2140
1529void 2141 EV_FREQUENT_CHECK;
2142}
2143
2144void noinline
1530ev_io_stop (EV_P_ ev_io *w) 2145ev_io_stop (EV_P_ ev_io *w)
1531{ 2146{
1532 ev_clear_pending (EV_A_ (W)w); 2147 clear_pending (EV_A_ (W)w);
1533 if (expect_false (!ev_is_active (w))) 2148 if (expect_false (!ev_is_active (w)))
1534 return; 2149 return;
1535 2150
1536 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2151 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1537 2152
2153 EV_FREQUENT_CHECK;
2154
1538 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2155 wlist_del (&anfds[w->fd].head, (WL)w);
1539 ev_stop (EV_A_ (W)w); 2156 ev_stop (EV_A_ (W)w);
1540 2157
1541 fd_change (EV_A_ w->fd); 2158 fd_change (EV_A_ w->fd, 1);
1542}
1543 2159
1544void 2160 EV_FREQUENT_CHECK;
2161}
2162
2163void noinline
1545ev_timer_start (EV_P_ ev_timer *w) 2164ev_timer_start (EV_P_ ev_timer *w)
1546{ 2165{
1547 if (expect_false (ev_is_active (w))) 2166 if (expect_false (ev_is_active (w)))
1548 return; 2167 return;
1549 2168
1550 ((WT)w)->at += mn_now; 2169 ev_at (w) += mn_now;
1551 2170
1552 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2171 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1553 2172
2173 EV_FREQUENT_CHECK;
2174
2175 ++timercnt;
1554 ev_start (EV_A_ (W)w, ++timercnt); 2176 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1555 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2177 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1556 timers [timercnt - 1] = w; 2178 ANHE_w (timers [ev_active (w)]) = (WT)w;
1557 upheap ((WT *)timers, timercnt - 1); 2179 ANHE_at_cache (timers [ev_active (w)]);
2180 upheap (timers, ev_active (w));
1558 2181
2182 EV_FREQUENT_CHECK;
2183
1559 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2184 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1560} 2185}
1561 2186
1562void 2187void noinline
1563ev_timer_stop (EV_P_ ev_timer *w) 2188ev_timer_stop (EV_P_ ev_timer *w)
1564{ 2189{
1565 ev_clear_pending (EV_A_ (W)w); 2190 clear_pending (EV_A_ (W)w);
1566 if (expect_false (!ev_is_active (w))) 2191 if (expect_false (!ev_is_active (w)))
1567 return; 2192 return;
1568 2193
1569 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2194 EV_FREQUENT_CHECK;
1570 2195
1571 { 2196 {
1572 int active = ((W)w)->active; 2197 int active = ev_active (w);
1573 2198
2199 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2200
2201 --timercnt;
2202
1574 if (expect_true (--active < --timercnt)) 2203 if (expect_true (active < timercnt + HEAP0))
1575 { 2204 {
1576 timers [active] = timers [timercnt]; 2205 timers [active] = timers [timercnt + HEAP0];
1577 adjustheap ((WT *)timers, timercnt, active); 2206 adjustheap (timers, timercnt, active);
1578 } 2207 }
1579 } 2208 }
1580 2209
1581 ((WT)w)->at -= mn_now; 2210 EV_FREQUENT_CHECK;
2211
2212 ev_at (w) -= mn_now;
1582 2213
1583 ev_stop (EV_A_ (W)w); 2214 ev_stop (EV_A_ (W)w);
1584} 2215}
1585 2216
1586void 2217void noinline
1587ev_timer_again (EV_P_ ev_timer *w) 2218ev_timer_again (EV_P_ ev_timer *w)
1588{ 2219{
2220 EV_FREQUENT_CHECK;
2221
1589 if (ev_is_active (w)) 2222 if (ev_is_active (w))
1590 { 2223 {
1591 if (w->repeat) 2224 if (w->repeat)
1592 { 2225 {
1593 ((WT)w)->at = mn_now + w->repeat; 2226 ev_at (w) = mn_now + w->repeat;
2227 ANHE_at_cache (timers [ev_active (w)]);
1594 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2228 adjustheap (timers, timercnt, ev_active (w));
1595 } 2229 }
1596 else 2230 else
1597 ev_timer_stop (EV_A_ w); 2231 ev_timer_stop (EV_A_ w);
1598 } 2232 }
1599 else if (w->repeat) 2233 else if (w->repeat)
1600 { 2234 {
1601 w->at = w->repeat; 2235 ev_at (w) = w->repeat;
1602 ev_timer_start (EV_A_ w); 2236 ev_timer_start (EV_A_ w);
1603 } 2237 }
2238
2239 EV_FREQUENT_CHECK;
1604} 2240}
1605 2241
1606#if EV_PERIODIC_ENABLE 2242#if EV_PERIODIC_ENABLE
1607void 2243void noinline
1608ev_periodic_start (EV_P_ ev_periodic *w) 2244ev_periodic_start (EV_P_ ev_periodic *w)
1609{ 2245{
1610 if (expect_false (ev_is_active (w))) 2246 if (expect_false (ev_is_active (w)))
1611 return; 2247 return;
1612 2248
1613 if (w->reschedule_cb) 2249 if (w->reschedule_cb)
1614 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2250 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1615 else if (w->interval) 2251 else if (w->interval)
1616 { 2252 {
1617 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2253 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1618 /* this formula differs from the one in periodic_reify because we do not always round up */ 2254 /* this formula differs from the one in periodic_reify because we do not always round up */
1619 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2255 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1620 } 2256 }
2257 else
2258 ev_at (w) = w->offset;
1621 2259
2260 EV_FREQUENT_CHECK;
2261
2262 ++periodiccnt;
1622 ev_start (EV_A_ (W)w, ++periodiccnt); 2263 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1623 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2264 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1624 periodics [periodiccnt - 1] = w; 2265 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1625 upheap ((WT *)periodics, periodiccnt - 1); 2266 ANHE_at_cache (periodics [ev_active (w)]);
2267 upheap (periodics, ev_active (w));
1626 2268
2269 EV_FREQUENT_CHECK;
2270
1627 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2271 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1628} 2272}
1629 2273
1630void 2274void noinline
1631ev_periodic_stop (EV_P_ ev_periodic *w) 2275ev_periodic_stop (EV_P_ ev_periodic *w)
1632{ 2276{
1633 ev_clear_pending (EV_A_ (W)w); 2277 clear_pending (EV_A_ (W)w);
1634 if (expect_false (!ev_is_active (w))) 2278 if (expect_false (!ev_is_active (w)))
1635 return; 2279 return;
1636 2280
1637 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2281 EV_FREQUENT_CHECK;
1638 2282
1639 { 2283 {
1640 int active = ((W)w)->active; 2284 int active = ev_active (w);
1641 2285
2286 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2287
2288 --periodiccnt;
2289
1642 if (expect_true (--active < --periodiccnt)) 2290 if (expect_true (active < periodiccnt + HEAP0))
1643 { 2291 {
1644 periodics [active] = periodics [periodiccnt]; 2292 periodics [active] = periodics [periodiccnt + HEAP0];
1645 adjustheap ((WT *)periodics, periodiccnt, active); 2293 adjustheap (periodics, periodiccnt, active);
1646 } 2294 }
1647 } 2295 }
1648 2296
2297 EV_FREQUENT_CHECK;
2298
1649 ev_stop (EV_A_ (W)w); 2299 ev_stop (EV_A_ (W)w);
1650} 2300}
1651 2301
1652void 2302void noinline
1653ev_periodic_again (EV_P_ ev_periodic *w) 2303ev_periodic_again (EV_P_ ev_periodic *w)
1654{ 2304{
1655 /* TODO: use adjustheap and recalculation */ 2305 /* TODO: use adjustheap and recalculation */
1656 ev_periodic_stop (EV_A_ w); 2306 ev_periodic_stop (EV_A_ w);
1657 ev_periodic_start (EV_A_ w); 2307 ev_periodic_start (EV_A_ w);
1660 2310
1661#ifndef SA_RESTART 2311#ifndef SA_RESTART
1662# define SA_RESTART 0 2312# define SA_RESTART 0
1663#endif 2313#endif
1664 2314
1665void 2315void noinline
1666ev_signal_start (EV_P_ ev_signal *w) 2316ev_signal_start (EV_P_ ev_signal *w)
1667{ 2317{
1668#if EV_MULTIPLICITY 2318#if EV_MULTIPLICITY
1669 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2319 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1670#endif 2320#endif
1671 if (expect_false (ev_is_active (w))) 2321 if (expect_false (ev_is_active (w)))
1672 return; 2322 return;
1673 2323
1674 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2324 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1675 2325
2326 evpipe_init (EV_A);
2327
2328 EV_FREQUENT_CHECK;
2329
2330 {
2331#ifndef _WIN32
2332 sigset_t full, prev;
2333 sigfillset (&full);
2334 sigprocmask (SIG_SETMASK, &full, &prev);
2335#endif
2336
2337 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2338
2339#ifndef _WIN32
2340 sigprocmask (SIG_SETMASK, &prev, 0);
2341#endif
2342 }
2343
1676 ev_start (EV_A_ (W)w, 1); 2344 ev_start (EV_A_ (W)w, 1);
1677 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1678 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2345 wlist_add (&signals [w->signum - 1].head, (WL)w);
1679 2346
1680 if (!((WL)w)->next) 2347 if (!((WL)w)->next)
1681 { 2348 {
1682#if _WIN32 2349#if _WIN32
1683 signal (w->signum, sighandler); 2350 signal (w->signum, ev_sighandler);
1684#else 2351#else
1685 struct sigaction sa; 2352 struct sigaction sa;
1686 sa.sa_handler = sighandler; 2353 sa.sa_handler = ev_sighandler;
1687 sigfillset (&sa.sa_mask); 2354 sigfillset (&sa.sa_mask);
1688 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2355 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1689 sigaction (w->signum, &sa, 0); 2356 sigaction (w->signum, &sa, 0);
1690#endif 2357#endif
1691 } 2358 }
1692}
1693 2359
1694void 2360 EV_FREQUENT_CHECK;
2361}
2362
2363void noinline
1695ev_signal_stop (EV_P_ ev_signal *w) 2364ev_signal_stop (EV_P_ ev_signal *w)
1696{ 2365{
1697 ev_clear_pending (EV_A_ (W)w); 2366 clear_pending (EV_A_ (W)w);
1698 if (expect_false (!ev_is_active (w))) 2367 if (expect_false (!ev_is_active (w)))
1699 return; 2368 return;
1700 2369
2370 EV_FREQUENT_CHECK;
2371
1701 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2372 wlist_del (&signals [w->signum - 1].head, (WL)w);
1702 ev_stop (EV_A_ (W)w); 2373 ev_stop (EV_A_ (W)w);
1703 2374
1704 if (!signals [w->signum - 1].head) 2375 if (!signals [w->signum - 1].head)
1705 signal (w->signum, SIG_DFL); 2376 signal (w->signum, SIG_DFL);
2377
2378 EV_FREQUENT_CHECK;
1706} 2379}
1707 2380
1708void 2381void
1709ev_child_start (EV_P_ ev_child *w) 2382ev_child_start (EV_P_ ev_child *w)
1710{ 2383{
1712 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2385 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1713#endif 2386#endif
1714 if (expect_false (ev_is_active (w))) 2387 if (expect_false (ev_is_active (w)))
1715 return; 2388 return;
1716 2389
2390 EV_FREQUENT_CHECK;
2391
1717 ev_start (EV_A_ (W)w, 1); 2392 ev_start (EV_A_ (W)w, 1);
1718 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2393 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2394
2395 EV_FREQUENT_CHECK;
1719} 2396}
1720 2397
1721void 2398void
1722ev_child_stop (EV_P_ ev_child *w) 2399ev_child_stop (EV_P_ ev_child *w)
1723{ 2400{
1724 ev_clear_pending (EV_A_ (W)w); 2401 clear_pending (EV_A_ (W)w);
1725 if (expect_false (!ev_is_active (w))) 2402 if (expect_false (!ev_is_active (w)))
1726 return; 2403 return;
1727 2404
2405 EV_FREQUENT_CHECK;
2406
1728 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2407 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1729 ev_stop (EV_A_ (W)w); 2408 ev_stop (EV_A_ (W)w);
2409
2410 EV_FREQUENT_CHECK;
1730} 2411}
1731 2412
1732#if EV_STAT_ENABLE 2413#if EV_STAT_ENABLE
1733 2414
1734# ifdef _WIN32 2415# ifdef _WIN32
1735# undef lstat 2416# undef lstat
1736# define lstat(a,b) _stati64 (a,b) 2417# define lstat(a,b) _stati64 (a,b)
1737# endif 2418# endif
1738 2419
1739#define DEF_STAT_INTERVAL 5.0074891 2420#define DEF_STAT_INTERVAL 5.0074891
2421#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1740#define MIN_STAT_INTERVAL 0.1074891 2422#define MIN_STAT_INTERVAL 0.1074891
1741 2423
1742static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2424static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1743 2425
1744#if EV_USE_INOTIFY 2426#if EV_USE_INOTIFY
1745# define EV_INOTIFY_BUFSIZE 8192 2427# define EV_INOTIFY_BUFSIZE 8192
1749{ 2431{
1750 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2432 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1751 2433
1752 if (w->wd < 0) 2434 if (w->wd < 0)
1753 { 2435 {
2436 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1754 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2437 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1755 2438
1756 /* monitor some parent directory for speedup hints */ 2439 /* monitor some parent directory for speedup hints */
2440 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2441 /* but an efficiency issue only */
1757 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2442 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1758 { 2443 {
1759 char path [4096]; 2444 char path [4096];
1760 strcpy (path, w->path); 2445 strcpy (path, w->path);
1761 2446
1774 } 2459 }
1775 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2460 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1776 } 2461 }
1777 } 2462 }
1778 else 2463 else
1779 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */ 2464 {
1780
1781 if (w->wd >= 0)
1782 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2465 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2466
2467 /* now local changes will be tracked by inotify, but remote changes won't */
2468 /* unless the filesystem it known to be local, we therefore still poll */
2469 /* also do poll on <2.6.25, but with normal frequency */
2470 struct statfs sfs;
2471
2472 if (fs_2625 && !statfs (w->path, &sfs))
2473 if (sfs.f_type == 0x1373 /* devfs */
2474 || sfs.f_type == 0xEF53 /* ext2/3 */
2475 || sfs.f_type == 0x3153464a /* jfs */
2476 || sfs.f_type == 0x52654973 /* reiser3 */
2477 || sfs.f_type == 0x01021994 /* tempfs */
2478 || sfs.f_type == 0x58465342 /* xfs */)
2479 return;
2480
2481 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2482 ev_timer_again (EV_A_ &w->timer);
2483 }
1783} 2484}
1784 2485
1785static void noinline 2486static void noinline
1786infy_del (EV_P_ ev_stat *w) 2487infy_del (EV_P_ ev_stat *w)
1787{ 2488{
1801 2502
1802static void noinline 2503static void noinline
1803infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2504infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1804{ 2505{
1805 if (slot < 0) 2506 if (slot < 0)
1806 /* overflow, need to check for all hahs slots */ 2507 /* overflow, need to check for all hash slots */
1807 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2508 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1808 infy_wd (EV_A_ slot, wd, ev); 2509 infy_wd (EV_A_ slot, wd, ev);
1809 else 2510 else
1810 { 2511 {
1811 WL w_; 2512 WL w_;
1840 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2541 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1841 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2542 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1842} 2543}
1843 2544
1844void inline_size 2545void inline_size
2546check_2625 (EV_P)
2547{
2548 /* kernels < 2.6.25 are borked
2549 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2550 */
2551 struct utsname buf;
2552 int major, minor, micro;
2553
2554 if (uname (&buf))
2555 return;
2556
2557 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2558 return;
2559
2560 if (major < 2
2561 || (major == 2 && minor < 6)
2562 || (major == 2 && minor == 6 && micro < 25))
2563 return;
2564
2565 fs_2625 = 1;
2566}
2567
2568void inline_size
1845infy_init (EV_P) 2569infy_init (EV_P)
1846{ 2570{
1847 if (fs_fd != -2) 2571 if (fs_fd != -2)
1848 return; 2572 return;
2573
2574 fs_fd = -1;
2575
2576 check_2625 (EV_A);
1849 2577
1850 fs_fd = inotify_init (); 2578 fs_fd = inotify_init ();
1851 2579
1852 if (fs_fd >= 0) 2580 if (fs_fd >= 0)
1853 { 2581 {
1881 w->wd = -1; 2609 w->wd = -1;
1882 2610
1883 if (fs_fd >= 0) 2611 if (fs_fd >= 0)
1884 infy_add (EV_A_ w); /* re-add, no matter what */ 2612 infy_add (EV_A_ w); /* re-add, no matter what */
1885 else 2613 else
1886 ev_timer_start (EV_A_ &w->timer); 2614 ev_timer_again (EV_A_ &w->timer);
1887 } 2615 }
1888
1889 } 2616 }
1890} 2617}
1891 2618
2619#endif
2620
2621#ifdef _WIN32
2622# define EV_LSTAT(p,b) _stati64 (p, b)
2623#else
2624# define EV_LSTAT(p,b) lstat (p, b)
1892#endif 2625#endif
1893 2626
1894void 2627void
1895ev_stat_stat (EV_P_ ev_stat *w) 2628ev_stat_stat (EV_P_ ev_stat *w)
1896{ 2629{
1923 || w->prev.st_atime != w->attr.st_atime 2656 || w->prev.st_atime != w->attr.st_atime
1924 || w->prev.st_mtime != w->attr.st_mtime 2657 || w->prev.st_mtime != w->attr.st_mtime
1925 || w->prev.st_ctime != w->attr.st_ctime 2658 || w->prev.st_ctime != w->attr.st_ctime
1926 ) { 2659 ) {
1927 #if EV_USE_INOTIFY 2660 #if EV_USE_INOTIFY
2661 if (fs_fd >= 0)
2662 {
1928 infy_del (EV_A_ w); 2663 infy_del (EV_A_ w);
1929 infy_add (EV_A_ w); 2664 infy_add (EV_A_ w);
1930 ev_stat_stat (EV_A_ w); /* avoid race... */ 2665 ev_stat_stat (EV_A_ w); /* avoid race... */
2666 }
1931 #endif 2667 #endif
1932 2668
1933 ev_feed_event (EV_A_ w, EV_STAT); 2669 ev_feed_event (EV_A_ w, EV_STAT);
1934 } 2670 }
1935} 2671}
1938ev_stat_start (EV_P_ ev_stat *w) 2674ev_stat_start (EV_P_ ev_stat *w)
1939{ 2675{
1940 if (expect_false (ev_is_active (w))) 2676 if (expect_false (ev_is_active (w)))
1941 return; 2677 return;
1942 2678
1943 /* since we use memcmp, we need to clear any padding data etc. */
1944 memset (&w->prev, 0, sizeof (ev_statdata));
1945 memset (&w->attr, 0, sizeof (ev_statdata));
1946
1947 ev_stat_stat (EV_A_ w); 2679 ev_stat_stat (EV_A_ w);
1948 2680
2681 if (w->interval < MIN_STAT_INTERVAL && w->interval)
1949 if (w->interval < MIN_STAT_INTERVAL) 2682 w->interval = MIN_STAT_INTERVAL;
1950 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1951 2683
1952 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2684 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
1953 ev_set_priority (&w->timer, ev_priority (w)); 2685 ev_set_priority (&w->timer, ev_priority (w));
1954 2686
1955#if EV_USE_INOTIFY 2687#if EV_USE_INOTIFY
1956 infy_init (EV_A); 2688 infy_init (EV_A);
1957 2689
1958 if (fs_fd >= 0) 2690 if (fs_fd >= 0)
1959 infy_add (EV_A_ w); 2691 infy_add (EV_A_ w);
1960 else 2692 else
1961#endif 2693#endif
1962 ev_timer_start (EV_A_ &w->timer); 2694 ev_timer_again (EV_A_ &w->timer);
1963 2695
1964 ev_start (EV_A_ (W)w, 1); 2696 ev_start (EV_A_ (W)w, 1);
2697
2698 EV_FREQUENT_CHECK;
1965} 2699}
1966 2700
1967void 2701void
1968ev_stat_stop (EV_P_ ev_stat *w) 2702ev_stat_stop (EV_P_ ev_stat *w)
1969{ 2703{
1970 ev_clear_pending (EV_A_ (W)w); 2704 clear_pending (EV_A_ (W)w);
1971 if (expect_false (!ev_is_active (w))) 2705 if (expect_false (!ev_is_active (w)))
1972 return; 2706 return;
1973 2707
2708 EV_FREQUENT_CHECK;
2709
1974#if EV_USE_INOTIFY 2710#if EV_USE_INOTIFY
1975 infy_del (EV_A_ w); 2711 infy_del (EV_A_ w);
1976#endif 2712#endif
1977 ev_timer_stop (EV_A_ &w->timer); 2713 ev_timer_stop (EV_A_ &w->timer);
1978 2714
1979 ev_stop (EV_A_ (W)w); 2715 ev_stop (EV_A_ (W)w);
1980}
1981#endif
1982 2716
2717 EV_FREQUENT_CHECK;
2718}
2719#endif
2720
2721#if EV_IDLE_ENABLE
1983void 2722void
1984ev_idle_start (EV_P_ ev_idle *w) 2723ev_idle_start (EV_P_ ev_idle *w)
1985{ 2724{
1986 if (expect_false (ev_is_active (w))) 2725 if (expect_false (ev_is_active (w)))
1987 return; 2726 return;
1988 2727
2728 pri_adjust (EV_A_ (W)w);
2729
2730 EV_FREQUENT_CHECK;
2731
2732 {
2733 int active = ++idlecnt [ABSPRI (w)];
2734
2735 ++idleall;
1989 ev_start (EV_A_ (W)w, ++idlecnt); 2736 ev_start (EV_A_ (W)w, active);
2737
1990 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2738 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1991 idles [idlecnt - 1] = w; 2739 idles [ABSPRI (w)][active - 1] = w;
2740 }
2741
2742 EV_FREQUENT_CHECK;
1992} 2743}
1993 2744
1994void 2745void
1995ev_idle_stop (EV_P_ ev_idle *w) 2746ev_idle_stop (EV_P_ ev_idle *w)
1996{ 2747{
1997 ev_clear_pending (EV_A_ (W)w); 2748 clear_pending (EV_A_ (W)w);
1998 if (expect_false (!ev_is_active (w))) 2749 if (expect_false (!ev_is_active (w)))
1999 return; 2750 return;
2000 2751
2752 EV_FREQUENT_CHECK;
2753
2001 { 2754 {
2002 int active = ((W)w)->active; 2755 int active = ev_active (w);
2003 idles [active - 1] = idles [--idlecnt]; 2756
2004 ((W)idles [active - 1])->active = active; 2757 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2758 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2759
2760 ev_stop (EV_A_ (W)w);
2761 --idleall;
2005 } 2762 }
2006 2763
2007 ev_stop (EV_A_ (W)w); 2764 EV_FREQUENT_CHECK;
2008} 2765}
2766#endif
2009 2767
2010void 2768void
2011ev_prepare_start (EV_P_ ev_prepare *w) 2769ev_prepare_start (EV_P_ ev_prepare *w)
2012{ 2770{
2013 if (expect_false (ev_is_active (w))) 2771 if (expect_false (ev_is_active (w)))
2014 return; 2772 return;
2773
2774 EV_FREQUENT_CHECK;
2015 2775
2016 ev_start (EV_A_ (W)w, ++preparecnt); 2776 ev_start (EV_A_ (W)w, ++preparecnt);
2017 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2777 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2018 prepares [preparecnt - 1] = w; 2778 prepares [preparecnt - 1] = w;
2779
2780 EV_FREQUENT_CHECK;
2019} 2781}
2020 2782
2021void 2783void
2022ev_prepare_stop (EV_P_ ev_prepare *w) 2784ev_prepare_stop (EV_P_ ev_prepare *w)
2023{ 2785{
2024 ev_clear_pending (EV_A_ (W)w); 2786 clear_pending (EV_A_ (W)w);
2025 if (expect_false (!ev_is_active (w))) 2787 if (expect_false (!ev_is_active (w)))
2026 return; 2788 return;
2027 2789
2790 EV_FREQUENT_CHECK;
2791
2028 { 2792 {
2029 int active = ((W)w)->active; 2793 int active = ev_active (w);
2794
2030 prepares [active - 1] = prepares [--preparecnt]; 2795 prepares [active - 1] = prepares [--preparecnt];
2031 ((W)prepares [active - 1])->active = active; 2796 ev_active (prepares [active - 1]) = active;
2032 } 2797 }
2033 2798
2034 ev_stop (EV_A_ (W)w); 2799 ev_stop (EV_A_ (W)w);
2800
2801 EV_FREQUENT_CHECK;
2035} 2802}
2036 2803
2037void 2804void
2038ev_check_start (EV_P_ ev_check *w) 2805ev_check_start (EV_P_ ev_check *w)
2039{ 2806{
2040 if (expect_false (ev_is_active (w))) 2807 if (expect_false (ev_is_active (w)))
2041 return; 2808 return;
2809
2810 EV_FREQUENT_CHECK;
2042 2811
2043 ev_start (EV_A_ (W)w, ++checkcnt); 2812 ev_start (EV_A_ (W)w, ++checkcnt);
2044 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2813 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2045 checks [checkcnt - 1] = w; 2814 checks [checkcnt - 1] = w;
2815
2816 EV_FREQUENT_CHECK;
2046} 2817}
2047 2818
2048void 2819void
2049ev_check_stop (EV_P_ ev_check *w) 2820ev_check_stop (EV_P_ ev_check *w)
2050{ 2821{
2051 ev_clear_pending (EV_A_ (W)w); 2822 clear_pending (EV_A_ (W)w);
2052 if (expect_false (!ev_is_active (w))) 2823 if (expect_false (!ev_is_active (w)))
2053 return; 2824 return;
2054 2825
2826 EV_FREQUENT_CHECK;
2827
2055 { 2828 {
2056 int active = ((W)w)->active; 2829 int active = ev_active (w);
2830
2057 checks [active - 1] = checks [--checkcnt]; 2831 checks [active - 1] = checks [--checkcnt];
2058 ((W)checks [active - 1])->active = active; 2832 ev_active (checks [active - 1]) = active;
2059 } 2833 }
2060 2834
2061 ev_stop (EV_A_ (W)w); 2835 ev_stop (EV_A_ (W)w);
2836
2837 EV_FREQUENT_CHECK;
2062} 2838}
2063 2839
2064#if EV_EMBED_ENABLE 2840#if EV_EMBED_ENABLE
2065void noinline 2841void noinline
2066ev_embed_sweep (EV_P_ ev_embed *w) 2842ev_embed_sweep (EV_P_ ev_embed *w)
2067{ 2843{
2068 ev_loop (w->loop, EVLOOP_NONBLOCK); 2844 ev_loop (w->other, EVLOOP_NONBLOCK);
2069} 2845}
2070 2846
2071static void 2847static void
2072embed_cb (EV_P_ ev_io *io, int revents) 2848embed_io_cb (EV_P_ ev_io *io, int revents)
2073{ 2849{
2074 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2850 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2075 2851
2076 if (ev_cb (w)) 2852 if (ev_cb (w))
2077 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2853 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2078 else 2854 else
2079 ev_embed_sweep (loop, w); 2855 ev_loop (w->other, EVLOOP_NONBLOCK);
2080} 2856}
2857
2858static void
2859embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2860{
2861 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2862
2863 {
2864 struct ev_loop *loop = w->other;
2865
2866 while (fdchangecnt)
2867 {
2868 fd_reify (EV_A);
2869 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2870 }
2871 }
2872}
2873
2874static void
2875embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2876{
2877 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2878
2879 {
2880 struct ev_loop *loop = w->other;
2881
2882 ev_loop_fork (EV_A);
2883 }
2884}
2885
2886#if 0
2887static void
2888embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2889{
2890 ev_idle_stop (EV_A_ idle);
2891}
2892#endif
2081 2893
2082void 2894void
2083ev_embed_start (EV_P_ ev_embed *w) 2895ev_embed_start (EV_P_ ev_embed *w)
2084{ 2896{
2085 if (expect_false (ev_is_active (w))) 2897 if (expect_false (ev_is_active (w)))
2086 return; 2898 return;
2087 2899
2088 { 2900 {
2089 struct ev_loop *loop = w->loop; 2901 struct ev_loop *loop = w->other;
2090 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2902 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2091 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2903 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2092 } 2904 }
2905
2906 EV_FREQUENT_CHECK;
2093 2907
2094 ev_set_priority (&w->io, ev_priority (w)); 2908 ev_set_priority (&w->io, ev_priority (w));
2095 ev_io_start (EV_A_ &w->io); 2909 ev_io_start (EV_A_ &w->io);
2096 2910
2911 ev_prepare_init (&w->prepare, embed_prepare_cb);
2912 ev_set_priority (&w->prepare, EV_MINPRI);
2913 ev_prepare_start (EV_A_ &w->prepare);
2914
2915 ev_fork_init (&w->fork, embed_fork_cb);
2916 ev_fork_start (EV_A_ &w->fork);
2917
2918 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2919
2097 ev_start (EV_A_ (W)w, 1); 2920 ev_start (EV_A_ (W)w, 1);
2921
2922 EV_FREQUENT_CHECK;
2098} 2923}
2099 2924
2100void 2925void
2101ev_embed_stop (EV_P_ ev_embed *w) 2926ev_embed_stop (EV_P_ ev_embed *w)
2102{ 2927{
2103 ev_clear_pending (EV_A_ (W)w); 2928 clear_pending (EV_A_ (W)w);
2104 if (expect_false (!ev_is_active (w))) 2929 if (expect_false (!ev_is_active (w)))
2105 return; 2930 return;
2106 2931
2932 EV_FREQUENT_CHECK;
2933
2107 ev_io_stop (EV_A_ &w->io); 2934 ev_io_stop (EV_A_ &w->io);
2935 ev_prepare_stop (EV_A_ &w->prepare);
2936 ev_fork_stop (EV_A_ &w->fork);
2108 2937
2109 ev_stop (EV_A_ (W)w); 2938 EV_FREQUENT_CHECK;
2110} 2939}
2111#endif 2940#endif
2112 2941
2113#if EV_FORK_ENABLE 2942#if EV_FORK_ENABLE
2114void 2943void
2115ev_fork_start (EV_P_ ev_fork *w) 2944ev_fork_start (EV_P_ ev_fork *w)
2116{ 2945{
2117 if (expect_false (ev_is_active (w))) 2946 if (expect_false (ev_is_active (w)))
2118 return; 2947 return;
2948
2949 EV_FREQUENT_CHECK;
2119 2950
2120 ev_start (EV_A_ (W)w, ++forkcnt); 2951 ev_start (EV_A_ (W)w, ++forkcnt);
2121 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2952 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2122 forks [forkcnt - 1] = w; 2953 forks [forkcnt - 1] = w;
2954
2955 EV_FREQUENT_CHECK;
2123} 2956}
2124 2957
2125void 2958void
2126ev_fork_stop (EV_P_ ev_fork *w) 2959ev_fork_stop (EV_P_ ev_fork *w)
2127{ 2960{
2128 ev_clear_pending (EV_A_ (W)w); 2961 clear_pending (EV_A_ (W)w);
2129 if (expect_false (!ev_is_active (w))) 2962 if (expect_false (!ev_is_active (w)))
2130 return; 2963 return;
2131 2964
2965 EV_FREQUENT_CHECK;
2966
2132 { 2967 {
2133 int active = ((W)w)->active; 2968 int active = ev_active (w);
2969
2134 forks [active - 1] = forks [--forkcnt]; 2970 forks [active - 1] = forks [--forkcnt];
2135 ((W)forks [active - 1])->active = active; 2971 ev_active (forks [active - 1]) = active;
2136 } 2972 }
2137 2973
2138 ev_stop (EV_A_ (W)w); 2974 ev_stop (EV_A_ (W)w);
2975
2976 EV_FREQUENT_CHECK;
2977}
2978#endif
2979
2980#if EV_ASYNC_ENABLE
2981void
2982ev_async_start (EV_P_ ev_async *w)
2983{
2984 if (expect_false (ev_is_active (w)))
2985 return;
2986
2987 evpipe_init (EV_A);
2988
2989 EV_FREQUENT_CHECK;
2990
2991 ev_start (EV_A_ (W)w, ++asynccnt);
2992 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2993 asyncs [asynccnt - 1] = w;
2994
2995 EV_FREQUENT_CHECK;
2996}
2997
2998void
2999ev_async_stop (EV_P_ ev_async *w)
3000{
3001 clear_pending (EV_A_ (W)w);
3002 if (expect_false (!ev_is_active (w)))
3003 return;
3004
3005 EV_FREQUENT_CHECK;
3006
3007 {
3008 int active = ev_active (w);
3009
3010 asyncs [active - 1] = asyncs [--asynccnt];
3011 ev_active (asyncs [active - 1]) = active;
3012 }
3013
3014 ev_stop (EV_A_ (W)w);
3015
3016 EV_FREQUENT_CHECK;
3017}
3018
3019void
3020ev_async_send (EV_P_ ev_async *w)
3021{
3022 w->sent = 1;
3023 evpipe_write (EV_A_ &gotasync);
2139} 3024}
2140#endif 3025#endif
2141 3026
2142/*****************************************************************************/ 3027/*****************************************************************************/
2143 3028
2153once_cb (EV_P_ struct ev_once *once, int revents) 3038once_cb (EV_P_ struct ev_once *once, int revents)
2154{ 3039{
2155 void (*cb)(int revents, void *arg) = once->cb; 3040 void (*cb)(int revents, void *arg) = once->cb;
2156 void *arg = once->arg; 3041 void *arg = once->arg;
2157 3042
2158 ev_io_stop (EV_A_ &once->io); 3043 ev_io_stop (EV_A_ &once->io);
2159 ev_timer_stop (EV_A_ &once->to); 3044 ev_timer_stop (EV_A_ &once->to);
2160 ev_free (once); 3045 ev_free (once);
2161 3046
2162 cb (revents, arg); 3047 cb (revents, arg);
2163} 3048}
2164 3049
2165static void 3050static void
2166once_cb_io (EV_P_ ev_io *w, int revents) 3051once_cb_io (EV_P_ ev_io *w, int revents)
2167{ 3052{
2168 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3053 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3054
3055 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2169} 3056}
2170 3057
2171static void 3058static void
2172once_cb_to (EV_P_ ev_timer *w, int revents) 3059once_cb_to (EV_P_ ev_timer *w, int revents)
2173{ 3060{
2174 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3061 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3062
3063 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2175} 3064}
2176 3065
2177void 3066void
2178ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3067ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2179{ 3068{
2201 ev_timer_set (&once->to, timeout, 0.); 3090 ev_timer_set (&once->to, timeout, 0.);
2202 ev_timer_start (EV_A_ &once->to); 3091 ev_timer_start (EV_A_ &once->to);
2203 } 3092 }
2204} 3093}
2205 3094
3095#if EV_MULTIPLICITY
3096 #include "ev_wrap.h"
3097#endif
3098
2206#ifdef __cplusplus 3099#ifdef __cplusplus
2207} 3100}
2208#endif 3101#endif
2209 3102

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines